Skip to main content
Log in

Multiple bottlenecks in threatened western European populations of the common hamster Cricetus cricetus (L.)

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Common hamsters Cricetus cricetus (L.)show a highly fragmented distributionpattern across Europe. Over the last decades,human influence caused significant populationdeclines in particular at the western rangeboundary. Despite the initiation of breedingand release programs the genetic structure anddiversity of European common hamsterpopulations is largely unknown. In this study,hamsters from ten localities in five Europeancountries were investigated. Mitochondrialcontrol region was sequenced from 145 animalsrepresenting all sampled populations. 385hamster were screened for polymorphisms at 11microsatellite loci. Both marker systemsrevealed extensive genetic differentiationamong European common hamsters. Westernpopulations displayed very low levels of mtDNAdiversity (H = 0 − 0.2, Alsace, Limburg,Flanders, Baden-Wuerttemberg) compared toeastern populations from Saxony-Anhalt,Thuringia and Southern Moravia (H = 0.663− 0.816). Microsatellite analyses revealed asimilar pattern with low to moderate diversityvalues in western hamsters (A = 1.636 −5.364; H e = 0.111 − 0.504) and highlevels of polymorphism in eastern hamsters(A = 8.909 − 9.818; H e = 0.712− 0.786). High microsatellite based F STmeasures (up to 0.635) suggest a typical islandmodel of distribution with no current gene flowbetween most areas. Western hamster populationsexhibit obvious similarities in mitochondrialhaplotype and microsatellite alleledistributions. Gene trees group westernhamsters consistently together on the samebranch but bootstrap values never reachedsignificance. There are strong indications thatlow diversity in western populations ispartially caused by a joint historic founderevent and not only by recent population breakdowns. Overlapping mitochondrial haplotypesprove a close association between westernhamsters and animals from the east German rangein the recent past which does not support theexistence of a separate subspecies C. c.canescens in Europe. Hamsters from southernMoravia emerged as the genetically mostdistinguished population and could be part of a different genetic lineage in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks M, Eichert W (1999) WhichRun. A Computer Program for Population Assignment of Individuals Based on Multilocus Genotype Data, Version 4.0. Bodega Marine Laboratory, University of California, Davis.

    Google Scholar 

  • Barrett EM, Gurnell J, Malarky G et al. (1999) Genetic structure of fragmented populations of red squirrel (Sciurus vulgaris) in the UK. Molecular Ecology, 8, S55–S63.

    Google Scholar 

  • Berdyugin KI, Bolshakov VN (1998) The common hamster (Cricetus cricetus L.) in the eastern part of the area. In: Ecology and Protection of the Common Hamster (eds. Stubbe M, Stubbe A), pp. 43–80. Wissenschaftliche Beiträge Martin-Luther-Universität Halle-Wittenberg, Germany.

    Google Scholar 

  • Calinescu RJ (1931) Ñber Verbreitung und Einfälle von Cricetus cricetus nehringi MTSCH. in Rumänien. Zeitschrift für Säugetierkunde, 6, 231–233.

    Google Scholar 

  • Charlesworth B (1998) Measures of divergence between populations and the effect of forces that reduce variability. Molecular Biology and Evolution, 15, 538–543.

    CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Luitkart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.

    CAS  PubMed  Google Scholar 

  • Effenberger S, Suchentrunk F (1999) RFLP analysis of the mitochondrial DNA of otters (Lutra lutra) from Europe-implications for conservation of a flagship species. Biological Conservation, 90, 229–234.

    Article  Google Scholar 

  • Ehrich D, Fedorov VB, Stenseth NC et al. (2000) Phylogeography and mitochondrial DNA (mtDNA) diversity in North American collared lemmings (Dicrostonyx groenlandicus). Molecular Ecology, 9, 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Ehrich D, Jorde PE, Krebs CJ et al. (2001) Spatial structure of lemming populations (Dicrostonyx groenlandicus) fluctuating in density. Molecular Ecology, 10, 481–495.

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Hartmann G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc. Natl. Acad. Sci. USA, 90, 8150–8153.

    CAS  PubMed  Google Scholar 

  • Estoup A, Tailliez C, Cornuet J-M et al. (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Molecular Biology and Evolution, 12, 1074–1084.

    CAS  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet J-M (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 11, 1591–1604.

    Article  CAS  PubMed  Google Scholar 

  • Faulkes CG, Abbott DH, O'Brian et al. (1997) Micro-and macrogeographical genetic structure of naked mole-rats Heterocephalus glaber. Molecular Ecology, 6, 615–628.

    Article  CAS  PubMed  Google Scholar 

  • Gerber AS, Templeton AR (1996) Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia, 105, 343–350.

    Article  Google Scholar 

  • Gerlach G, Musolf K (2000) Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conservation Biology, 14, 1066–1074.

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 2.1): A computer program to calculate F-statistics. J. Heredity, 86, 485–486.

    Google Scholar 

  • Grulich I (1987) Variability of Cricetus cricetus in Europe. Acta Sc. Nat. Brno, 21, 1–53.

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48, 361–372.

    CAS  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

    Article  Google Scholar 

  • Karaseva EV (1962) A study of the pecularities of territory utilization by the hamster in the Altai territory carried out with the use of labeling. Zoological Journal (Russia), 41, 275–284.

    Google Scholar 

  • Koh HS, Lee W-J, Kocher TD (2000) The genetic relationship of two subspecies of striped field mice, Apodemus agrarius coreae and Apodemus agrarius chejuensis. Heredity, 85, 30–36.

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB et al. (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.

    Article  CAS  PubMed  Google Scholar 

  • Laikre L, Ryman N (1991) Inbreeding depression in a captive wolf (Canis lupus) population. Conservation Biology, 5, 33–40.

    Article  Google Scholar 

  • Leijs R, Apeldoorn RC, Bijlsma R (1999) Low genetic differentiation in north-west European populations of the locally endangered root vole, Microtus oeconomus. Biological Conservation, 87, 39–48.

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Research, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Mitchell-Jones AJ, Amori G, Bogdanowicz W et al. (1999) The Atlas of European Mammals. Poyser, London.

    Google Scholar 

  • Moritz C (1994) Defining 'evolutionarily significant units' for conservation. Trends in Ecology and Evolution, 9, 373–375.

    Google Scholar 

  • Nakamichi N, Rhoads DD, Hayashi JI, Kagawa Y, Matsumura T (1998) Detection, localization, and sequence analyses of mitochondrial regulatory region RNAs in several mammalian species. J. Biochem., 123, 392–398.

    PubMed  Google Scholar 

  • Nei M (1972) Genetic distances between populations. American Naturalists, 106, 283–292.

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70, 3321–3323.

    CAS  PubMed  Google Scholar 

  • Neumann K, Maak S, Stuermer IW et al. (2001) Low microsatellite variation in laboratory gerbils. J. Heredity, 92, 71–74.

    Article  CAS  Google Scholar 

  • Niethammer J (1982) Cricetus cricetus (Linnaeus, 1758)-Hamster (Feldhamster). In: Handbuch der Säugetiere Europas (eds. Niethammer J, Krapp F), pp. 7–28. Akad. Verlagsgesellschaft-Wiesbaden.

  • Oli MK, Holler NR, Wooten MC (2001) Viability analysis of endangered Gulf Coast beach mice (Peromyscus polionotus) populations. Biological Conservation, 97, 107–118.

    Article  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.

    CAS  PubMed  Google Scholar 

  • Petzsch H (1950) Der Hamster. Neue Brehm-Bücherei. Wittenberg-Lutherstadt.

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2). Population genetics software for exact tests and ecumenicism. J. Heredity, 86, 248–249.

    Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15, 174–175.

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, Version 2.0: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva.

    Google Scholar 

  • Spitzenberger F, Bauer K (2001) Hamster Cricetus cricetus (Linnaeus, 1758). In: Die Säugetierfauna Österreichs (ed. Spitzenberger F), pp. 406–415. Bundesministerium für Landund Forstwirtschaft, Umwelt und Wasserwirtschaft, Band 13.

  • Tallmon DA, Draheim HM, Scott-Mills L, Allendorf FW (2002) Insights into recently fragmented vole populations from combined genetic and demographic data. Molecular Ecology, 11, 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Genetics, 132, 619–633.

    CAS  PubMed  Google Scholar 

  • Vohralik V (1974) Biology of the reproduction of the common hamster Cricetus cricetus (L.). Vestnik Ceskoslovenske Spolecnosti Zoologicke, 38, 228–240.

    Google Scholar 

  • Vohralik V, Andera M (1976) Distribution of the common hamster, Cricetus cricetus (L.) in Czechoslovakia. Lynx, 18, 85–97.

    Google Scholar 

  • Walker CW, Vilà C, Landa A et al. (2001) Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Molecular Ecology, 10, 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Weinhold U (1996) Radiotelemetrische Untersuchungen zum Raum-Zeitverhalten des Feldhamsters (Cricetus cricetus L., 1758) auf landwirtschaftlich genutzten Flächen im Raum Mannheim-Heidelberg. Säugetierkundliche Informationen, 20, 129–134.

    Google Scholar 

  • Zenger KR, Richardson BJ, Vachot-Griffi AM (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Molecular Ecology, 12, 789–794.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, K., Jansman, H., Kayser, A. et al. Multiple bottlenecks in threatened western European populations of the common hamster Cricetus cricetus (L.). Conservation Genetics 5, 181–193 (2004). https://doi.org/10.1023/B:COGE.0000030002.01948.b3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000030002.01948.b3

Navigation