Skip to main content
Log in

The influence of physical fatigue on telephone-based neuropsychological test performance in COVID-19 survivors

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Fatigue has been characterized as a post COVID-19 condition known to persist months after SARS-CoV-2 infection. COVID-19 has been reported to be associated with impaired cognitive function, including disorders in attention, memory, information processing, and executive functions. The objective of this study was to determine if post-COVID fatigue, manifested as tiredness while performing low-intensity physical activity, has a detrimental effect on neuropsychological performance, to achieve this, we randomly selected 20 participants with post-COVID fatigue and 20 SARS-CoV-2 negative age-matched controls from a database of 360 residents of Tijuana, Baja California in a cross-sectional study design. All 40 participants responded to a health survey, along with a neuropsychological assessment test via telephone call. Statistical analysis was performed using a multiple linear regression model including the following independent variables: study condition (post-COVID fatigue or negative control), sex, age, years of education, hypertension, asthma, administration of supplemental oxygen during COVID-19 recovery, and the hour at which the evaluation started. Significant regression analysis was obtained for all global parameters of the assessment, including BANFE-2 score (p = 0.021, R2 Adj. = 0.263), NEUROPSI score (p = 0.008, R2 Adj. = 0.319), and total errors (p = 0.021, R2 Adj. = 0.263), with significant regression coefficients for study condition on two global parameters, BANFE-2 score (p = 0.028, β = − 0.371) and NEUROPSI score (p = 0.010, β = −0.428). These findings suggest that the presence of post-COVID fatigue is a factor associated with a decrease in neuropsychological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Supplementary data associated with this article can be found at the Mendeley Data repository [53], https://doi.org/10.17632/9ftc6z8znd.1.

References

  1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55:105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, Shi C, Hu S (2020) The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 129:98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Veldhuis A, Malhotra T (2021) Neuropsychiatric and cognitive sequelae of COVID-19. Front Psychol. https://doi.org/10.3389/fpsyg.2021.577529

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miskowiak KW, Johnsen S, Sattler SM, Nielsen S, Kunalan K, Rungby J, Lapperre T, Porsberg CM (2021) Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol 46:39–48. https://doi.org/10.1016/j.euroneuro.2021.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, Ciceri F, Rovere-Querini P, Benedetti F (2021) Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun 94:138–147. https://doi.org/10.1016/j.bbi.2021.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S (2020) Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol 77:1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou Z, Kang H, Li S, Zhao X (2020) Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267:2179–2184. https://doi.org/10.1007/s00415-020-09929-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, Lange F, Andersson JLR, Griffanti L, Duff E, Jbabdi S, Taschler B, Keating P, Winkler AM, Collins R, Matthews PM, Allen N, Miller KL, Nichols TE, Smith SM (2022) SARS-CoV-2 is associated with changes in brain structure in UK biobank. Nature 604:697–707. https://doi.org/10.1038/s41586-022-04569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, Guis S, Barthelemy F, Habert P, Ceccaldi M, Million M, Raoult D, Cammilleri S, Eldin C (2021) (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging 48:2823–2833. https://doi.org/10.1007/s00259-021-05215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, Mazibuko N, Williams SCR, Barnby JM, Hellyer P, Mehta MA (2021) Cognitive deficits in people who have recovered from COVID-19. eClinicalMedicine. https://doi.org/10.1016/j.eclinm.2021.101044

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woo MS, Malsy J, Pöttgen J, Seddiq Zai S, Ufer F, Hadjilaou A, Schmiedel S, Addo MM, Gerloff C, Heesen C, Schulze Zur Wiesch J, Friese MA (2020) Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun 2:fcca205. https://doi.org/10.1093/braincomms/fcaa205

    Article  CAS  Google Scholar 

  12. Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, Rodrigues NB, Subramaniapillai M, Di Vincenzo JD, Cao B, Lin K, Mansur RB, Ho RC, Rosenblat JD, Miskowiak KW, Vinberg M, Maletic V, McIntyre RS (2022) Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav Immun 101:93–135. https://doi.org/10.1016/j.bbi.2021.12.020

    Article  CAS  PubMed  Google Scholar 

  13. Stedman TL (2006) Stedman’s medical dictionary. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  14. Rudroff T, Fietsam AC, Deters JR, Bryant AD, Kamholz J (2020) Post-COVID-19 fatigue: potential contributing factors. Brain Sci 10:1012. https://doi.org/10.3390/brainsci10121012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reiterer M, Rajan M, Gómez-Banoy N, Lau JD, Gomez-Escobar LG, Ma L, Gilani A, Alvarez-Mulett S, Sholle ET, Chandar V, Bram Y, Hoffman K, Bhardwaj P, Piloco P, Rubio-Navarro A, Uhl S, Carrau L, Houhgton S, Redmond D, Shukla AP, Goyal P, Brown KA, tenOever BR, Alonso LC, Schwartz RE, Schenck EJ, Safford MM, Lo JC (2021) Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab 33:2174-2188.e2175. https://doi.org/10.1016/j.cmet.2021.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. deKay JT, Emery IF, Rud J, Eldridge A, Lord C, Gagnon DJ, May TL, Herrera VLM, Ruiz-Opazo N, Riker RR, Sawyer DB, Ryzhov S, Seder DB (2021) Desprhigh neutrophils are associated with critical illness in COVID-19. Sci Rep 11:22463. https://doi.org/10.1038/s41598-021-01943-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scherer PE, Kirwan JP, Rosen CJ (2022) Post-acute sequelae of COVID-19: a metabolic perspective. Elife. https://doi.org/10.7554/eLife.78200

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostrosky-Solís F, Ardila A, Rosselli M (1999) NEUROPSI: a brief neuropsychological test battery in Spanish with norms by age and educational level. J Int Neuropsychol Soc 5:413–433. https://doi.org/10.1017/S1355617799555045

    Article  PubMed  Google Scholar 

  19. Flores JC, Ostrosky F, Lozano A (2014) BANFE-2 batería neuropsicológica de funciones ejecutivas y lóbulos frontales, segunda edición. Manual Moderno, México D.F.

  20. Nitrini R, Caramelli P, Bottino CM, Damasceno BP, Brucki SM, Anghinah R (2005) diagnosis of Alzheimer’s disease in Brazil: cognitive and functional evaluation. Recommendations of the scientific department of cognitive neurology and aging of the Brazilian Academy Of Neurology. Arq Neuropsiquiatr 63:720–727. https://doi.org/10.1590/s0004-282x2005000400034

    Article  PubMed  Google Scholar 

  21. Loaiza S, Giraldo D, Galvis A, Ortiz L, Carvajal S (2021) Attention, memory, and executive functions profile in a prospective cohort of patients with malignant glioma. Appl Neuropsychol Adult 28:197–209. https://doi.org/10.1080/23279095.2019.1621315

    Article  PubMed  Google Scholar 

  22. Hilda Picasso HL, Ostrosky F, Nicolini H (2005) Sensitivity and specificity of a neuropsychological instrument in the evaluation of schizophrenia subtypes: a study with a Spanish speaking population. Actas Esp Psiquiatr 33:87–95

    CAS  PubMed  Google Scholar 

  23. Levine AJ, Palomo M, Hinkin CH, Valdes-Sueiras M, Lopez E, Mathisen G, Donovan S, Singer EJ (2011) A comparison of screening batteries in the detection of neurocognitive impairment in HIV-infected Spanish speakers. Neurobehav HIV Med 3:79–86. https://doi.org/10.2147/nbhiv.S22553

    Article  PubMed  PubMed Central  Google Scholar 

  24. Varela LB, Correa F, Cazaux A, Spaccesi A, Salica DA, Vanoni S (2021) Stable chronic obstructive pulmonary disease associated with cognitive impairment: possible causality factor. Rev Fac Cien Med Univ Nac Cordoba 78:97–102. https://doi.org/10.31053/1853.0605.v78.n2.28721

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roque GR, Reyes-López J, Garcell JR, Hidalgo ML, Fabré LA, Cruz GT, Gómez SC, Moctezuma AC, Cruz FO, Baron AO, García NA, Cortés ME, Montiel HH, Olvera JG (2021) Effect of transcranial magnetic stimulation as an enhancer of cognitive stimulation sessions on mild cognitive impairment: preliminary results. Psychiatry Res 304:114151. https://doi.org/10.1016/j.psychres.2021.114151

    Article  Google Scholar 

  26. Ardila A, Ostrosky-Solis F, Mendoza VU (2000) Learning to read is much more than learning to read: a neuropsychologically based reading program. J Int Neuropsychol Soc 6:789–801. https://doi.org/10.1017/s1355617700677068

    Article  CAS  PubMed  Google Scholar 

  27. Martínez-Alcalá CI, Rosales-Lagarde A, Hernández-Alonso E, Melchor-Agustin R, Rodriguez-Torres EE, Itzá-Ortiz BA (2018) A mobile app (iBeni) with a neuropsychological basis for cognitive stimulation for elderly adults: pilot and validation study. JMIR Res Protoc 7:e172. https://doi.org/10.2196/resprot.9603

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramos-Chávez LA, Roldán-Roldán G, García-Juárez B, González-Esquivel D, Pérez de la Cruz G, Pineda B, Ramírez-Ortega D, García Muñoz I, Jiménez Herrera B, Ríos C, Gómez-Manzo S, Marcial-Quino J, Sánchez Chapul L, Carrillo Mora P, Pérez de la Cruz V (2018) Low serum tryptophan levels as an indicator of global cognitive performance in nondemented women over 50 years of age. Oxid Med Cell Longev 2018:8604718. https://doi.org/10.1155/2018/8604718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guarneros RDD, Lechuga YA, León EE, González RRO, Escandón ÓS, Terán PGJ, Moctezuma JV (2022) Cognitive behavioral therapy for insomnia helps to reverse cognitive impairment in insomnia patients. Sleep Sci 15:355–360. https://doi.org/10.5935/1984-0063.20210026

    Article  Google Scholar 

  30. Chávez-Manzanera E, Ramírez-Flores M, Duran M, Torres M, Ramírez M, Kaufer-Horwitz M, Stephano S, Quiroz-Casian L, Cantú-Brito C, Chiquete E (2022) Influence of weight loss on cognitive functions: a pilot study of a multidisciplinary intervention program for obesity treatment. Brain Sci. https://doi.org/10.3390/brainsci12040509

    Article  PubMed  PubMed Central  Google Scholar 

  31. San-Juan D, Mas RNM, Gutiérrez C, Morales J, Díaz A, Quiñones G, Galindo AK, Baigts LA, Ximenez-Camilli C, Anschel D (2022) Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation. Sleep Sci 15:89–96. https://doi.org/10.5935/1984-0063.20220007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ruiz FJ, García-Martín MB, Suárez-Falcón JC, Bedoya-Valderrama L, Segura-Vargas MA, Peña-Vargas A, Henao ÁM, Ávila-Campos JE (2020) Development and initial validation of the generalized tracking questionnaire. PLoS ONE 15:e0234393. https://doi.org/10.1371/journal.pone.0234393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamayo LDA, Merchán MV, Ramírez BSM, Gallo RNE (2018) Nivel de desarrollo de las funciones ejecutivas en estudiantes adolescentes de los colegios públicos de envigado-Colombia. CES Psicol 11:21–36. https://doi.org/10.21615/cesp.11.2.3

    Article  Google Scholar 

  34. American Psychological Association (2020) Guidance on psychological tele-assessment during the COVID-19 crisis. http://www.apaservices.org/practice/reimbursement/health-codes/testing/tele-assessment-covid-19. Accessed 28 Feb 2021

  35. Salthouse TA (2000) Aging and measures of processing speed. Biol Psychol 54:35–54. https://doi.org/10.1016/s0301-0511(00)00052-1

    Article  CAS  PubMed  Google Scholar 

  36. Vos H, Marinova M, De Léon SC, Sasanguie D, Reynvoet B (2023) Gender differences in young adults’ mathematical performance: examining the contribution of working memory, math anxiety and gender-related stereotypes. Learn Individ Diff 102:102255. https://doi.org/10.1016/j.lindif.2022.102255

    Article  Google Scholar 

  37. Finell J, Sammallahti E, Korhonen J, Eklöf H, Jonsson B (2022) Working memory and its mediating role on the relationship of math anxiety and math performance: a meta-analysis. Front Psychol. https://doi.org/10.3389/fpsyg.2021.798090

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sigfrid L, Drake TM, Pauley E, Jesudason EC, Olliaro P, Lim WS, Gillesen A, Berry C, Lowe DJ, McPeake J, Lone N, Munblit D, Cevik M, Casey A, Bannister P, Russell CD, Goodwin L, Ho A, Turtle L, O’Hara ME, Hastie C, Donohue C, Spencer RG, Donegan C, Gummery A, Harrison J, Hardwick HE, Hastie CE, Carson G, Merson L, Baillie JK, Openshaw P, Harrison EM, Docherty AB, Semple MG, Scott JT (2021) Long Covid in adults discharged from UK hospitals after Covid-19: a prospective, multicentre cohort study using the Isaric who clinical characterisation protocol. Lancet Region Health Eur 8:100186. https://doi.org/10.1016/j.lanepe.2021.100186

    Article  Google Scholar 

  39. Fernández-de-las-Peñas C, Martín-Guerrero JD, Pellicer-Valero ÓJ, Navarro-Pardo E, Gómez-Mayordomo V, Cuadrado ML, Arias-Navalón JA, Cigarán-Méndez M, Hernández-Barrera V, Arendt-Nielsen L (2022) Female sex is a risk factor associated with long-term post-COVID related-symptoms but not with covid-19 symptoms: the long-COVID-EXP-CM multicenter study. J Clin Med 11:413. https://doi.org/10.3390/jcm11020413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guerra-Carrillo B, Katovich K, Bunge SA (2017) Does higher education hone cognitive functioning and learning efficacy? Findings from a large and diverse sample. PLoS ONE 12:e0182276. https://doi.org/10.1371/journal.pone.0182276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calabria M, García-Sánchez C, Grunden N, Pons C, Arroyo JA, Gómez-Anson B, Estévez García MDC, Belvís R, Morollón N, Vera Igual J, Mur I, Pomar V, Domingo P (2022) Post-COVID-19 fatigue: the contribution of cognitive and neuropsychiatric symptoms. J Neurol 269:3990–3999. https://doi.org/10.1007/s00415-022-11141-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matias-Guiu JA, Delgado-Alonso C, Díez-Cirarda M, Martínez-Petit Á, Oliver-Mas S, Delgado-Álvarez A, Cuevas C, Valles-Salgado M, Gil MJ, Yus M, Gómez-Ruiz N, Polidura C, Pagán J, Matías-Guiu J, Ayala JL (2022) Neuropsychological predictors of fatigue in post-COVID syndrome. J Clin Med. https://doi.org/10.3390/jcm11133886

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bompani N, Bertella L, Barbieri V, Scarabel L, Scarpina F, Perucca L, Rossi P (2023) The predictive role of fatigue and neuropsychological components on functional outcomes in COVID-19 after a multidisciplinary rehabilitation program. J Int Med Res 51:03000605221148435. https://doi.org/10.1177/03000605221148435

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bispo DDDC, Brandão PRDP, Pereira DA, Maluf FB, Dias BA, Paranhos HR, von Glehn F, de Oliveira ACP, Regattieri NAT, Silva LS, Yasuda CL, Soares AADSM, Descoteaux M (2022) Brain microstructural changes and fatigue after COVID-19. Front Neurol. https://doi.org/10.3389/fneur.2022.1029302

    Article  PubMed  PubMed Central  Google Scholar 

  45. Morin L, Savale L, Pham T, Colle R, Figueiredo S, Harrois A, Gasnier M, Lecoq A-L, Meyrignac O, Noel N, Baudry E, Bellin M-F, Beurnier A, Choucha W, Corruble E, Dortet L, Hardy-Leger I, Radiguer F, Sportouch S, Verny C, Wyplosz B, Zaidan M, Becquemont L, Montani D, Monnet X (2021) Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 325:1525–1534. https://doi.org/10.1001/jama.2021.3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hartung TJ, Neumann C, Bahmer T, Chaplinskaya-Sobol I, Endres M, Geritz J, Haeusler KG, Heuschmann PU, Hildesheim H, Hinz A, Hopff S, Horn A, Krawczak M, Krist L, Kudelka J, Lieb W, Maetzler C, Mehnert-Theuerkauf A, Montellano FA, Morbach C, Schmidt S, Schreiber S, Steigerwald F, Störk S, Maetzler W, Finke C (2022) Fatigue and cognitive impairment after COVID-19: A prospective multicentre study. eClinicalMedicine. https://doi.org/10.1016/j.eclinm.2022.101651

    Article  PubMed  PubMed Central  Google Scholar 

  47. Akbarialiabad H, Taghrir MH, Abdollahi A, Ghahramani N, Kumar M, Paydar S, Razani B, Mwangi J, Asadi-Pooya AA, Malekmakan L, Bastani B (2021) Long COVID, a comprehensive systematic scoping review. Infection 49:1163–1186. https://doi.org/10.1007/s15010-021-01666-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yong SJ (2021) Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis 53:737–754. https://doi.org/10.1080/23744235.2021.1924397

    Article  CAS  Google Scholar 

  49. Almeria M, Cejudo JC, Sotoca J, Deus J, Krupinski J (2020) Cognitive profile following COVID-19 infection: clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health 9:100163–100163. https://doi.org/10.1016/j.bbih.2020.100163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santomauro DF, Mantilla Herrera AM, Shadid J, Zheng P, Ashbaugh C, Pigott DM, Abbafati C, Adolph C, Amlag JO, Aravkin AY, Bang-Jensen BL, Bertolacci GJ, Bloom SS, Castellano R, Castro E, Chakrabarti S, Chattopadhyay J, Cogen RM, Collins JK, Dai X, Dangel WJ, Dapper C, Deen A, Erickson M, Ewald SB, Flaxman AD, Frostad JJ, Fullman N, Giles JR, Giref AZ, Guo G, He J, Helak M, Hulland EN, Idrisov B, Lindstrom A, Linebarger E, Lotufo PA, Lozano R, Magistro B, Malta DC, Månsson JC, Marinho F, Mokdad AH, Monasta L, Naik P, Nomura S, O’Halloran JK, Ostroff SM, Pasovic M, Penberthy L, Reiner RC Jr, Reinke G, Ribeiro ALP, Sholokhov A, Sorensen RJD, Varavikova E, Vo AT, Walcott R, Watson S, Wiysonge CS, Zigler B, Hay SI, Vos T, Murray CJL, Whiteford HA, Ferrari AJ (2021) Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 398:1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7

    Article  Google Scholar 

  51. Harpin VA (2005) The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Arch Dis Child 90:i2-7. https://doi.org/10.1136/adc.2004.059006

    Article  PubMed  PubMed Central  Google Scholar 

  52. Clark M, DiBenedetti D, Perez V (2016) Cognitive dysfunction and work productivity in major depressive disorder. Expert Rev Pharmacoecon Outcomes Res 16:455–463. https://doi.org/10.1080/14737167.2016.1195688

    Article  PubMed  Google Scholar 

  53. Mancilla-Corona CO, Sanchez-Alavez M, Serafín-Higuera IR, Lopez Baena JV, Rodríguez-Vásquez JI (2022) The influence of post-COVID fatigue on neuropsychological performance dataset. Mendeley Data. https://doi.org/10.17632/9ftc6z8znd.1

    Article  Google Scholar 

Download references

Acknowledgements

The COVID-19 Diagnostic Center at UABC is financially supported by federal and state resources as well as UABC's own earnings. COMC would like to thank SPSU UABC (grant No. 096/2022-1) and FICSAC Universidad Iberoamericana (grant No. OG.P21.7) for their tuition scholarship. IRSH acknowledges support from F-PROMEP-38/Rev-04. MSA acknowledges support from F-PROMEP-20/Rev-08. The authors thank all the participants involved in the study.

Funding

The funding source did not play a role in the study design, the collection, analysis, or interpretation of data, or in the writing of the manuscript and publication of the paper.

Author information

Authors and Affiliations

Authors

Contributions

COM-C: Conceptualization, methodology, investigation, formal analysis, visualization, writing—original draft. MS-A: Conceptualization, methodology, writing—review and editing, supervision. GP-G: methodology, visualization, writing—review and editing. JYI-L: writing—review and editing. OEZ: Methodology, writing—review and editing. JVL-B: Investigation. JIR-V: Investigation. IRS-H: Conceptualization, methodology, investigation, writing—review and editing, supervision.

Corresponding authors

Correspondence to Cristian O. Mancilla-Corona or Idanya R. Serafin-Higuera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study involving human participants was reviewed and approved by the Faculty of Medicine and Psychology Ethics Review Board (Archive D275) at Autonomous University of Baja California and meets the ethical principles promulgated in the Declaration of Helsinki.

Consent to participate

All individual participants included in the study provided their informed consent.

Appendices

Appendix

Complete set of verbal tasks used for neuropsychological assessment.

  1. 1.

    Brief Neuropsychological Assessment (NEUROPSI):

    1. (a)

      Digit span task (backwards): participants were asked to repeat a series of 2 to 6 numbers in the reverse order, 2 different series were provided for each number of digits, the task was terminated after 2 consecutive errors of the same series, the examiner registered the maximum number of digits repeated correctly. This task is sensitive to the evaluation of working memory.

    2. (b)

      Consecutive subtraction (20–3): participants performed a consecutive subtraction 3 by 3 starting at 20 (e.g., 20–3 = 17, 17–3 = 14…), the task ended after 5 subtractions. This task evaluates simple math abilities.

    3. (c)

      Spontaneous memory curve: participants were asked to repeat a list of 6 words, this procedure was repeated two more times with the same words in a different order. The examiner determined the average number of words repeated correctly in all 3 trials. This task evaluates short-term verbal memory.

    4. (d)

      Semantic fluency: participants were asked to name as many different animals (e.g., cow, dog, rabbit, etc.) as they could in one minute. This task evaluates cognitive flexibility and lexical access fluency.

    5. (e)

      Phonological fluency: participants were asked to name as many words as possible beginning with the letter “f” (e.g., food, fresh, flat, etc.) in one minute. This task evaluates cognitive flexibility and lexical access fluency.

    6. (f)

      Math: this task evaluates arithmetic abilities and reasoning, participants were asked to solve 3 simple math problems:

      1. 1.

        How much is 13 + 15?

      2. 2.

        John had $12, he received $9 and then spent $14, how much money did the end up with?

      3. 3.

        How many oranges are there in two and a half dozen?

  2. 2.

    Neuropsychological Battery of Executive Functions and Frontal Lobes (BANFE-2):

    1. (a)

      Alphabetical arrangement (Lists 1 and 2): participants were asked to alphabetize two lists of 5 and 6 words respectively, the examiner registered the number of trials participants required to repeat each list of words in the correct order. These tasks require to actively sort a list of words according to a rule, they evaluate working memory.

    2. (b)

      Consecutive subtraction (A: 40 − 3 and B: 100 − 7): participants performed a consecutive subtraction 3 by 3 and 7 by 7 starting at the indicated number (e.g., 100 − 7 = 93, 93 − 7 = 86…). These tasks evaluate simple math abilities and working memory, while the analysis of completion times allows for the assessment of processing speed.

    3. (c)

      Consecutive addition (1 + 5): participants performed a consecutive 5 by 5 addition starting at 1 (e.g., 1 + 5 = 6, 6 + 5 = 11…), the task ended after 20 consecutive sums. These tasks evaluate simple math abilities and working memory, while the analysis of completion times allows for the assessment of processing speed.

    4. (d)

      Verbal fluency: participants were asked to name as many verbs (e.g., running, speaking, eating, etc.) as they could in one minute. This task evaluates cognitive flexibility and lexical access fluency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancilla-Corona, C.O., Sanchez-Alavez, M., Pineda-García, G. et al. The influence of physical fatigue on telephone-based neuropsychological test performance in COVID-19 survivors. Eur Arch Psychiatry Clin Neurosci (2023). https://doi.org/10.1007/s00406-023-01638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00406-023-01638-2

Keywords

Navigation