Skip to main content
Log in

Evaluation of Biogenic Amine and Free Fatty Acid Profiles During the Manufacturing Process of Traditional Dry-Cured Tuna

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the changes in the formation of biogenic amines and free fatty acids occurring during the manufacturing process of a traditional dry-cured product based on yellowfin tuna, Thunnus albacares (protected geographical indication—Mojama) and how the different processing stages could affect food safety aspects. The biogenic amines profile was determined by HPLC–DAD, following the official methodology, and free fatty acids were quantified by GC–MS. Histamine levels found in all stages of the manufacturing process did not exceed the maximum limits established in the European Commission (100–200 mg/kg) and US Food and Drug Administration (50 mg/kg) regulations. Other biogenic amines, such as cadaverine and putrescine, were detected at low level or below the limit of detection. Yellowfin tuna filets could be classified as lean fish flesh, presenting 1.18% fat on average. An increment in the free fatty acid fraction was evidenced along the manufacturing process, ranging from 10.37% of the total lipids in fresh loins to 16.88% in the dry-cured filet product. The results indicated that the traditional manufacturing process of mojama, consisting of salting and drying tuna loins kept at a controlled temperature, promoted a moderate lipolysis phenomenon, and the formation of free fatty acids with high proportions of unsaturated fatty acids, likely arising from the lipolysis of muscle phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ackman, R. G., & Sipos, J. C. (1965). Fisheries Research Board of Canada, Technological Research Laboratory, Halifax. Nova Scotia. Science, 15(1963), 445–456.

    CAS  Google Scholar 

  • Andrés, A., Rodríguez-Barona, S., Barat, J. M., & Fito, P. (2005). Salted cod manufacturing: Influence of salting procedure on process yield and product characteristics. Journal of Food Engineering, 69(4), 467–471. https://doi.org/10.1016/j.jfoodeng.2004.08.040

    Article  Google Scholar 

  • Arason, S., Nguyen, M. Van., Thorarinsdottir, K. A., & Thorkelsson, G. (2014). Preservation of fish by curing. Seafood processing: technology, quality and safety (pp. 129–160). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118346174.ch6

    Chapter  Google Scholar 

  • Ashby, B. H., James, G. M., & Kramer, A. (1973). Effects of freezing and packaging methods on freezer burn of hams in frozen storage. Journal of Food Science, 38, 258–260. https://doi.org/10.1111/j.1365-2621.1973.tb01399.x

    Article  Google Scholar 

  • Askar, A., & Treptow, H. (1986). Biogene Amine in Lebensmitteln — Vorkommen. Verlag Eugen Ulmer KG.

    Google Scholar 

  • Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Meat. Food chemistry (pp. 563–616). Springer.

    Google Scholar 

  • Cejas, J. R., Almansa, E., Jérez, S., Bolaños, A., Samper, M., & Lorenzo, A. (2004). Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 138(1), 91–102. https://doi.org/10.1016/j.cbpc.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  • Christie, W. W. (1993). Preparation of derivatives of fatty acid. In W. W. Christie (Ed.), Lipid analysis - isolation, separation, identification and structural analysis of lipids (4th ed., pp. 205–224). Bridgwater: The Oily Press.

    Google Scholar 

  • Dalsgaard, J., & St. John, M., Kattner, G., Müller-Navarra, D., & Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46, 225–340. https://doi.org/10.1016/S0065-2881(03)46005-7

    Article  PubMed  Google Scholar 

  • Du, W. X., Lin, C. M., Phu, A. T., Cornell, J. A., Marshall, M. R., & Wei, C. I. (2002). Development of biogenic amines in yellowfin tuna (Thunnus albacares): Effect of storage and correlation with decarboxylase-positive bacterial flora. Journal of Food Science, 67(1), 292–301. https://doi.org/10.1111/j.1365-2621.2002.tb11400.x

    Article  CAS  Google Scholar 

  • EFSA. (2011). Scientifics Opinion on risk based control of biogenic amine formation in fremented foods. The EFSA Journal, 9, 2393.

    Article  Google Scholar 

  • Esteves, E., & Aníbal, J. (2019). Muxama and other traditional food products obtained from tuna in south Portugal and Spain: review and future perspectives. Journal of Ethnic Foods, 6, 18. https://doi.org/10.1186/s42779-019-0022-6. BioMed Central Ltd.

    Article  Google Scholar 

  • Flick, G. J., & Granata, L. A. (2004). Biogenic amines in foods. Toxins food (pp. 135–168). CRC Press. https://doi.org/10.1201/9780203502358-10

    Chapter  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (FDA) (2011). Fish and fisheries products hazards and controls guide. Chap, 13(4th ed.). Accessed on September 26, 2022

  • Garaffo, M. A., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus) and their salted product “Bottarga.” Food and Nutrition Sciences, 02(07), 736–743. https://doi.org/10.4236/fns.2011.27101

    Article  CAS  Google Scholar 

  • Hauff, S., & Vetter, W. (2010). Quantification of branched chain fatty acids in polar and neutral lipids of cheese and fish samples. Journal of Agricultural and Food Chemistry, 58(2), 707–712. https://doi.org/10.1021/jf9034805

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Herrero, M. M., Roig-Sagues, A. X., Lopez-Sabater, E. I., Rodriguez-Jerez, J. J., & Mora-Ventura, M. T. (2002). Influence of raw fish quality on some physicochemical and microbial characteristics as related to ripening of salted anchovies (Engraulis encrasicholus L). Journal of Food Science, 67, 2631–2640. https://doi.org/10.1111/j.1365-2621.2002.tb08790.x

    Article  CAS  Google Scholar 

  • Ishimaru, M., Muto, Y., Nakayama, A., Hatate, H., & Tanaka, R. (2019). Determination of biogenic amines in fish meat and fermented foods using column-switching high-performance liquid chromatography with fluorescence detection. Food Analytical Methods, 12(1), 166–175. https://doi.org/10.1007/s12161-018-1349-0

    Article  Google Scholar 

  • Jin, G., Zhang, J., Yu, X., Zhang, Y., Lei, Y., & Wang, J. (2010). Lipolysis and lipid oxidation in bacon during curing and drying-ripening. Food Chemistry, 123(2), 465–471. https://doi.org/10.1016/j.foodchem.2010.05.031

    Article  CAS  Google Scholar 

  • Jeewantha, P. D. A., & Abeyrathne, E. D. N. S. (2015). Incorporation of salt extracted compounds from yellowfin tuna (Thunnus albacares) to produce a fish flavored vegetable burger. SLJAP, 7, 8.

    Google Scholar 

  • Medina, I., Aubourg, S. P., & Martín, R. P. (1995). Composition of phospholipids of white muscle of six tuna species. Lipids, 30(12), 1127–1135. https://doi.org/10.1007/BF02536613

    Article  CAS  PubMed  Google Scholar 

  • Mercogliano, R., De Felice, A., Luisa Cortesi, M., Murru, N., Marrone, R., & Anastasio, A. (2013). Biogenic amines profile in processed bluefin tuna (Thunnus thynnus) products. CYTA - Journal of Food, 11(2), 101–107. https://doi.org/10.1080/19476337.2012.699103

    Article  CAS  Google Scholar 

  • Moretti, V. M., Vasconi, M., Caprino, F., & Bellagamba, F. (2017). Fatty acid profiles and volatile compounds formation during processing and ripening of a traditional salted dry fish product. Journal of Food Processing and Preservation, 41(5), e13133. https://doi.org/10.1111/jfpp.13133

    Article  CAS  Google Scholar 

  • Murase, T., & Saito, H. (1996). The docosahexaenoic acid content in the lipid of albacore Thunnus alalunga caught in two separate localities. Fisheries Science, 62(4), 634–638. https://doi.org/10.2331/fishsci.62.634

    Article  CAS  Google Scholar 

  • Nout, M. J. R. (1994). Fermented foods and food safety. Food Research International, 27(3), 291–298. https://doi.org/10.1016/0963-9969(94)90097-3

    Article  CAS  Google Scholar 

  • Ordóñez, J. L., Troncoso, A. M., García-Parrilla, M. D. C., & Callejón, R. M. (2016). Recent trends in the determination of biogenic amines in fermented beverages – A review. Analytica Chimica Acta, 939, 10–25. https://doi.org/10.1016/j.aca.2016.07.045

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez, J. L., & Callejón, R. (2019). Biogenic amines in non–fermented food. Biogenic Amines in Food: Analysis, Occurrence and Toxicity (pp. 76–102). Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Özogul, Y., & Özogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean. Aegean and Black Seas. Food Chemistry, 100(4), 1634–1638. https://doi.org/10.1016/j.foodchem.2005.11.047

    Article  CAS  Google Scholar 

  • Parrish, C. C., Pethybridge, H., Young, J. W., & Nichols, P. D. (2015). Spatial variation in fatty acid trophic markers in albacore tuna from the southwestern Pacific Ocean-A potential “tropicalization” signal. Deep-Sea Research Part II: Topical Studies in Oceanography, 113, 199–207. https://doi.org/10.1016/j.dsr2.2013.12.003

    Article  CAS  Google Scholar 

  • Passi, S., Cataudella, S., Di Marco, P., De Simone, F., & Rastrelli, L. (2002). Fatty acid composition and antioxidant levels in muscle tissue of different Mediterranean marine species of fish and shellfish. Journal of Agricultural and Food Chemistry, 50(25), 7314–7322. https://doi.org/10.1021/jf020451y

    Article  CAS  PubMed  Google Scholar 

  • Potier, M., Marsac, F., Lucas, V., Sabatié, R., Hallier, J., & Ménard, F. (2004). Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and Bigeye (T. obesus) in the western tropical Indian Ocean. Western Indian Ocean Journal of Marine Science, 3(1), 51–62.

    Google Scholar 

  • Prester, L. (2011). Biogenic amines in fish, fish products and shellfish: A review. Food Additives and Contaminants: Part A, 28(11), 1547–1560. https://doi.org/10.1080/19440049.2011.600728

    Article  CAS  Google Scholar 

  • Regulation (EU) No. 2073/2005 of the European parliament and of the council of 15 November 2005 on microbiological criteria for foodstuffs. In Official Journal of the European Union, L338, Eur-Lex: Brussels Belgium 2005 1

  • Regulation (EU) No. 2015/2110 of 12 November 2015entering a name in the register of protected designations of origin and protected geographical indications (Mojama de Barbate (PGI)). In Official Journal of the European Union, L 306; Eur-Lex: Brussels, Belgium, pp. 1–2.2

  • Regulation (EU) No. 2016/199 of 9 February 2016 entering a name in the register of protected designations of origin and protected geographical indications (Mojama de Isla Cristina (PGI)). In Official Journal of the European Union, L 39; Eur-Lex: Brussels, Belgium, p. 1.3

  • Regulation (EU) 2020/1326 of 15 September 2020 approving a non-minor amendment to the terms and conditions of a name entered in the Register of Protected Designations of Origin and Indications Protected Geography (“Mojama de Isla Cristina” (PGI))

  • Regulation (EU) 2020/913 of 25 June 2020 approving a non-minor amendment to the terms and conditions of a name entered in the Register of Protected Designations of Origin and Designations of Origin Protected Geography ("Mojama de Barbate" (PGI))

  • Roseiro, L. C., Santos, C., Gonçalves, H., Serrano, C., Aleixo, C., Partidário, A., Lourenço, A. R., Dias, M. A., & da Ponte, D. J. B. (2017). Susceptibility of dry-cured tuna to oxidative deterioration and biogenic amines generation: I. Effect of NaCl content, antioxidant type and ageing. Food Chemistry, 228, 26–34. https://doi.org/10.1016/j.foodchem.2017.01.125

    Article  CAS  PubMed  Google Scholar 

  • Rossi, S., Lee, C., Ellis, P. C., & Pivarnik, L. F. (2002). Biogenic amines formation in bigeye tuna steaks and whole skipjack tuna. In Food Chemistry and Toxicology JFS: Food Chemistry and Toxicology, 67(6)

  • Roy, B. C., Miyake, Y., Ando, M., Kawasaki, K. I., & Tsukamasa, Y. (2010). Proximate and fatty acid compositions in different flesh cuts of cultured, cultured fasted, and wild Pacific bluefin tuna (Thunnus orientalis). Journal of Aquatic Food Product Technology, 19(3–4), 284–297. https://doi.org/10.1080/10498850.2010.518281

    Article  CAS  Google Scholar 

  • Ruiz-Capillas, C., & Herrero, A. M. (2019). Impact of biogenic amines on food quality and safety. Foods, 8(2), 62. https://doi.org/10.3390/foods8020062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saaid, M., Saad, B., Hashim, N. H., Ali, A. S. M., & Saleh, M. I. (2009). Determination of biogenic amines in selected Malaysian food. Food Chemistry, 113(4), 1356–1362. https://doi.org/10.1016/j.chroma.2009.04.091

    Article  CAS  Google Scholar 

  • Sánchez-Parra, M., Lopez, A., Muñoz-Redondo, J. M., Montenegro-Gómez, J. C., Pérez-Aparicio, J., Pereira-Caro, G., Rodríguez-Solana, R., Moreno-Rojas, J. M., & Ordóñez-Díaz, J. L. (2022). Study of the influence of the fishing season and the storage temperature in the fishing vessel on the biogenic amine and volatile profiles in fresh yellowfin tuna (Thunnus albacares) and dry-cured mojama. Journal of Food Composition and Analysis, 114, 104845. https://doi.org/10.1016/J.JFCA.2022.104845

    Article  Google Scholar 

  • Santos, C., Roseiro, C., Gonçalves, H., Aleixo, C., Moniz, C., & Duarte, J. B. (2019). Susceptibility of dry-cured tuna to oxidation and biogenic amines generation related to microbial status and salting/curing technology. LWT - Food Science and Technology, 115, 108420. https://doi.org/10.1016/j.lwt.2019.108420

    Article  CAS  Google Scholar 

  • Sprague, M., Dick, J. R., Medina, A., Tocher, D. R., Bell, J. G., & Mourente, G. (2012). Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock. Environmental Pollution, 171, 61–71. https://doi.org/10.1016/j.envpol.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  • Stansby, M. (1976). Chemical characteristics of fish caught in the northeast Pacific Ocean. Marine Fisheries Review; (United States), 38(9)

  • Toldrá, F. (1998). Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Science, 49(1). https://doi.org/10.1016/s0309-1740(98)00077-1

  • Veciana-Nogués, M. T., Mariné-Font, A., & Vidal-Carou, M. C. (1997). Biogenic Amines as hygienic quality indicators of tuna. Relationships with microbial counts, ATP-related compounds, volatile amines, and organoleptic changes. Journal of Agricultural and Food Chemistry, 45(6), 2036–2041. https://doi.org/10.1021/jf960911l

    Article  Google Scholar 

  • Xu, W., Xu, X., Zhou, G., Wang, D., & Li, C. (2008). Changes of intramuscular phospholipids and free fatty acids during the processing of Nanjing dry-cured duck. Food Chemistry, 110(2), 279–284. https://doi.org/10.1016/j.foodchem.2007.11.044

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Lu, Y., Yu, J., Liu, W., Jing, G., Li, W., & Liu, W. (2023). Determination of seven biogenic amines in tuna with high-performance liquid chromatography coupled to electrospray ionization ion mobility spectrometry. Food Analytical Methods. https://doi.org/10.1007/s12161-023-02455-y

    Article  Google Scholar 

  • Yerlikaya, P., Alp, A. C., Tokay, F. G., Aygun, T., Kaya, A., Topuz, O. K., & Yatmaz, H. A. (2022). Determination of fatty acids and vitamins A, D and E intake through fish consumption. International Journal of Food Science and Technology, 57(1), 653–661. https://doi.org/10.1111/ijfs.15435

    Article  CAS  Google Scholar 

  • Zhang, J., Xu, D., Zhao, X., Mo, H., & Fang, Z. (2016). Effect of zanthoxylum bungeanum maxim on the lipid oxidation and fatty acid composition of dry-cured fish during processing. Journal of Food Processing and Preservation, 41(3), 1–8. https://doi.org/10.1111/jfpp.12894

    Article  CAS  Google Scholar 

  • Zhang, Q., Ding, Y., Gu, S., Zhu, S., Zhou, X., & Ding, Y. (2020). Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Research International, 137(May). https://doi.org/10.1016/j.foodres.2020.109339

  • Zhang, Q., Jia, S., Bai, Y., Zhou, X., & Ding, Y. (2021). Formation mechanisms of reactive carbonyl species from fatty acids in dry-cured fish during storage in the presence of free radicals. Journal of Future Foods, 1(2), 203–210. https://doi.org/10.1016/j.jf

    Article  Google Scholar 

Download references

Acknowledgements

M.S.P. was granted by a research contract funded by the Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), and the National Youth Guarantee System funded through the European Social Fund (ESF) and the Youth Employment Initiative (YEI). J.C.M.G. was supported by a research contract funded by the project PR.PEI.IDF2019.003. R.R.S. was awarded a Juan de la Cierva-Incorporation contract from the Spanish Ministry of Science, Innovation and Universities (IJC2018-036207-I).

The authors thank the “Asociación Andaluza de Fabricantes de Salazones Ahumados y Otros Transformados Primarios de la Pesca” and the “Consejo Regulador de las Indicaciones Geográficas Protegidas “Mojama de Barbate” and “Mojama de Isla Cristina”. We thank Manuel Becerra for his availability during samplings and the coordination with the companies. We thank the companies and workers: Juan Vázquez, José Vázquez, José Luis Trufero and Lourdes Fernández (Usisa, S. A.); Manuel Columé, Fidel Columé and María de las Mercedes Rodríguez (Pescatún Isleña, S. L.); Francisco Pacheco and Francisco Javier Rodríguez (Herpac) and José Luis Gómez (Salpesca, S.L.).

Funding

This study was funded by the Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) through the Project “Influencia de la temperatura de congelación de la materia prima sobre parámetros de calidad y seguridad alimentaria en la mojama de atún. Seguimiento de la elaboración, la vida útil y la estacionalidad de las materias primas” PR.PEI.IDF2019.003 and the European Rural Development Fund (ERDF, EU).

Author information

Authors and Affiliations

Authors

Contributions

Mónica Sánchez-Parra: acquisition of data, analysis and interpretation of data, drafting the manuscript. Annalaura Lopez: acquisition of data, analysis and interpretation of data, drafting the manuscript. José Luis Ordóñez Díaz: conception and design of study, analysis and interpretation of data, and revising the manuscript critically for important intellectual content. Raquel Rodríguez-Solana: analysis and interpretation of data, drafting the manuscript, revising the manuscript critically for important intellectual content. José Carlos Montenegro-Gómez: acquisition of data and revising the manuscript critically for important intellectual content. Jesús Pérez Aparicio: conception and design of study and revising the manuscript critically for important intellectual content. José Manuel Moreno-Rojas: conception and design of study, acquisition of data, analysis and interpretation of data, and revising the manuscript critically for important intellectual content. All authors reviewed the manuscript.

Corresponding authors

Correspondence to José Luis Ordóñez-Díaz or José Manuel Moreno-Rojas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Parra, M., Lopez, A., Ordóñez-Díaz, J.L. et al. Evaluation of Biogenic Amine and Free Fatty Acid Profiles During the Manufacturing Process of Traditional Dry-Cured Tuna. Food Bioprocess Technol 17, 452–463 (2024). https://doi.org/10.1007/s11947-023-03134-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03134-w

Keywords

Navigation