
Event-Driven Technologies for
Reactive Motion Planning

Neuromorphic Stereo Vision and Robot Path
Planning and Their Application on Parallel Hardware

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Lea Steffen

Datum der mündlichen Prüfung: 27. Juni 2023
Erster Referent: Prof. Dr.-Ing. Rüdiger Dillmann
Zweiter Referent: Prof. Dr. sc.nat. Jörg Conradt

Meinem Bruder,
Armando

iii

Acknowledgement

This thesis was conducted during my work as a research scientist at the FZI
Forschungszentrum Informatik in the department of Interactive Diagnostic and
Service Systems (IDS). Many people have accompanied me on this journey and
have positively influenced this work. First and foremost, I want to thank my
supervisor, Prof. Rüdiger Dillmann, for giving me the chance to work at this re-
search lab and for his continuous support throughout my thesis. I also want to
thank Prof. Jörg Conradt for his interest in my work and for becoming my second
supervisor.
I would like to thank our department manager Arne Rönnau for the opportunity
to work on many exciting projects, especially NeuroReact and the Human Brain
Project. This allowed me to gain important experience and further my education
in a wide variety of topics. Sharing them and collecting valuable feedback from
colleagues has been a great opportunity and inspiration over the years. Particu-
lar thanks are due to Camilo Vasquez Tieck and Jacque Kaiser for introducing me
to scientific work during my first years at the FZI as well as Stefan Ulbrich for
his consistent dedication to engage in deep scientific discourse. Furthermore,
I would like to thank some outstanding students, Robin Koch, Tobias Weyer,
Katharina Glück, Daniel Azanov, Max Elfgen, Benedikt Hauck, Rafael Kübler da
Silva, Artur Liebert, Philipp Augenstein and Björn Ehrlinspiel. I am also grateful
to my IDS colleagues for a great team, the solidarity in stressful times, and for the
lively conversations. I would especially like to thank Marvin Große Besselmann
and Lennart Puck for their friendship, and a constant source of good humor.
Following a goal over such a long period also requires emotional support. I
am therefore deeply grateful to my parents, Claudia and Harald as well as my
siblings Mona, Jana, Armando and Madeleine for their unconditional support.
Lastly, I want to thank Fabian, for always having my back and for reminding me
in the right moments of my strengths.

i

Abstract (English Version)

Robotics is increasingly becoming a key factor in technological progress. Even
though impressive advances have been made, in vision and motion-planning
mammal brains still outperform even the most performant machines by far. In-
dustrial robots are very fast and precise, but their planning algorithms do not
perform well enough in changing, dynamic environments, as necessary for Hu-
man–robot Interaction (HRI). Without adaptive and flexible motion planning, in
which the human being is taken into account by the robot, safe HRI cannot be
guaranteed. Neuromorphic technologies, including visual sensors and hardware
chips, work asynchronously and process spatiotemporal information efficiently.
In particular, event-based cameras already outperform their frame-based coun-
terparts in many applications. Hence event-driven methods have great potential
to enable faster and more energy efficient algorithms for motion control in HRI.
This work presents a method for flexible, reactive motion control of a robotic arm.
Thereby the exteroception is achieved by event-based stereo vision, and path
planning is implemented in a neural representation of the configuration space.
The multi-view 3D reconstruction is evaluated by a qualitative analysis in simu-
lation and transferred to an event-based stereo system. To evaluate the reactive,
collision-free online planning a robotic demonstrator was realized and used for
a comparative study regarding sampling-based planners. This is complemented
by a benchmark of parallel hardware solutions for robotic path planning. The
results show that the proposed neural solutions represent an effective way to re-
alize robot control for dynamic scenarios. This work is a basis for neural solutions
regarding adaptive manufacturing processes, also in cooperation with humans,
without sacrificing speed or safety. Thereby, it paves the way for integration of
brain-inspired hardware and algorithms into industrial robotics and HRI.

iii

Abstract (German Version)

Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Auf-
schwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, über-
treffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung
noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr
schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen
Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich
sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungspla-
nung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien,
einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und
verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereig-
nisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vie-
len Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden
ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewe-
gungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur
flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei
wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfad-
planung ist in einer neuronalen Repräsentation des Konfigurationsraums imple-
mentiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analy-
se in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras
übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird
ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für
eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird
dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testsze-
nario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass
die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung
einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft
eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch
in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und
Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nach-
empfundener Hardware und Algorithmen in die Industrierobotik und MRK.

v

Contents

Glossary xi

Acronyms xiii

1. Introduction 1
1.1. Motivation . 1
1.2. Research Goal and Problem Statement 5
1.3. Thematic Classification and Scientific Contribution 6
1.4. Outline . 8

2. Foundations 11
2.1. Design and Functioning of the Human Brain 11

2.1.1. Neurons, Synapses and Plasticity 12
2.1.2. Self-Organization in the Brain 17
2.1.3. Human Vision . 18
2.1.4. Spatial Awareness in the Brain 23

2.2. Modeling the Human Brain . 25
2.2.1. Networks of Spiking Neurons 25
2.2.2. Self-organizing Neural Networks 33
2.2.3. Event Cameras . 42

3. Event-based Stereo Vision 49
3.1. State-of-the-art . 50

3.1.1. Monocular Techniques . 51
3.1.2. Stereo Techniques . 53
3.1.3. Discussion . 58

3.2. 3D Reconstruction through Self-organization 60
3.2.1. Biological Derivation and Rationale 61
3.2.2. Formalism of Topology Induction 64
3.2.3. Detachment of Learning by a Prelearned SOM 66
3.2.4. Receptive Fields . 68
3.2.5. Bootstrapping by Shape Segmentation 69

3.3. Experiments and Results . 70
3.3.1. Simulated Event-based Data 70
3.3.2. A Stereo Setup of Two Event Cameras 73

3.4. Discussion . 81

vii

Contents

4. Reactive Neural Path Planning 83
4.1. State-of-the-art . 84

4.1.1. Conventional Methods for Path and Motion Planning 85
4.1.2. Brain-inspired Methods for Path and Motion Planning . . . 88
4.1.3. Path Planning in a Reduced C-space 94
4.1.4. Discussion . 98

4.2. A Reduced C-space for Efficient Path Planning 100
4.2.1. Reducing the Complexity of the C-space 102
4.2.2. SONN-versions and their Characteristics 105
4.2.3. Obstacle Avoidance . 112
4.2.4. Path Planning in a Cognitive Map 114

4.3. Experiments and Results . 116
4.3.1. Comparing SONN-types for Path Planning 116
4.3.2. Wavefront vs. Dijkstra’s . 121
4.3.3. Obstacle Avoidance with γ-SOM and GNG 122
4.3.4. Comparisons with Modern Sample-based Planners 126

4.4. Discussion . 127

5. Neuromorphic Technologies for Neural Algorithms 131
5.1. State-of-the-art . 132

5.1.1. Parallel Hardware . 132
5.1.2. Simulation Tools for SNN . 136
5.1.3. Benchmarking Hardware and Software for SNN 139
5.1.4. Discussion . 143

5.2. Performance Analysis of a Robotic Use Case on Parallel Hardware 143
5.2.1. A Neural 3D Wavefront Algorithm 144
5.2.2. Technical and Implementational Details 146
5.2.3. Metrics . 149

5.3. Experiments and Results . 150
5.3.1. Simulation Time . 151
5.3.2. Energy Consumption . 154
5.3.3. Path Length . 155
5.3.4. Hardware Resources . 156

5.4. Discussion . 157
5.4.1. Context Analysis . 158
5.4.2. Limitations and Implications 160

6. Conclusion 161
6.1. Summary . 161
6.2. Discussion and Outlook . 163

Appendix 165

A. Appendix for chapter 3 167
A.1. Sensor Specifications . 167

viii

Contents

B. Appendix for chapter 4 169
B.1. Constant Parameters for the SONN Analysis 169
B.2. ROS 2 Components for Online Motion Control 170
B.3. Special Features of the Path Planning Method 171

C. Appendix for chapter 5 173
C.1. Additional Benchmark Results . 173

ix

Glossary

Ccont The boundaries between Cfree and Cobst. ix, 99, 100, 102

Cfree All configurations in the C-space that can be taken by the robot without
causing a collision with obstacles in task space. ix, xi, 99, 100, 102, 104

Cobst All configurations in the C-space that would cause a collision because the
corresponding part of the task space is occupied by obstacles. ix, xi, 99, 100,
102

canonical neuron Neuron types which are activated while looking as well as
grasping an object. ix, 61, 62

disparity Binocular cue to determine depth or distance of an object. ix, 22, 23,
49, 54, 55, 57

end effector Device for handling objects mounted at the end of a robotic arm.
ix, xv, 4, 95, 98, 101, 102, 116, 118, 122, 124–127, 129, 179

mirror neuron Neuron types which are activated while grasping an object and
observing sombody else grasp an object. ix, 61

space-sweep Monocular technique for depth reconstruction. ix, 51, 52, 57, 177

SPA-cycle Conventional sequence of robot actions in three steps. Sensory per-
ception including data analysis, action planning and blind execution ac-
cording to plans. ix, 1, 5

task space Subset of the workspace in which the robot operates, thus the space
the robot can reach with its end effector. ix, xi, 4, 8, 85, 90, 95, 97–101, 103,
104, 114–116, 118, 122, 124–131, 146, 148, 164, 173, 178, 179

xi

Acronyms

AER Address Event Representation: Hardware protocol for event-based com-
munication. ix, 32, 33, 44, 47, 57, 92, 135, 139, 177

ALU Arithmetic Logic Unit: Combinational digital circuit used in processors. ix,
137

ANN Artificial Neural Network: Network type with analogue neurons and syn-
chronous communication with continuous values. ix, xiv, xvi, xviii, 1, 2, 4,
7, 11, 25, 26, 28, 30, 31, 33, 64, 76, 90, 97, 177

Anti-STDP Anti-Spike-Timing-Dependent-Plasticity: Contrary learning rule to
STDP, whereby the activation order of the pre- and postsnaptic neuron is
reversed. ix, 29, 30, 146–148, 177

APF Artificial Potential Field: Robotic path planning method that uses attractive
forces to reach the goal point and repulsive forces to avoid obstacles. ix, 87,
90

APS Active Pixel Sensor: Semiconductor detector for light measurement. ix, 46–
48

ARM Advanced RISC Machines: Microprocessor architecture with low power
consumption and high performance. ix, xviii, 33, 134, 135

ASIC Application Specific Integrated Circuit: Electronic wiring realized as an
integrated circuit. ix, 33

ATIS Asynchronous Time-Based Image Sensor: Event camera of the manufac-
turer prophesee. ix, xiv, 9, 44, 46–49, 52, 57, 59, 68, 73–79, 81, 164, 169,
177–179, 181

Batch SOM Batch Self-organizing Map: A deterministic SOM variation. ix, 36,
37, 65

BFS Breadth-first Search: A uninformed search algorithm, which is used to tra-
verse the nodes of a graph. All nodes that can be reached from the current
node are considered before descending into depths. ix, xix, 4, 87, 166

BMLS Best Matching Linear Segment: The BMU for SGNG. ix, 113, 114

BMU Best Matching Unit: The neuron that is most similar to the training vector
when training a SONN. ix, xiii, 34–40, 42, 62, 68, 71, 73, 106–112, 114, 164

xiii

Acronyms

CD Change Detection: Basic technology of all event cameras to generate asyn-
chronous event streams from illumination changes. ix, 46–48, 57

CM C-Measure: Standard metric for SONN representing how well neighborhood
structures between neurons are maintained from the input to the output
space. ix, 42, 118, 120–123, 181

CNN Convolutional Neural Network: A type of ANN using convolution in place
of general matrix multiplication. ix, 58, 60, 69, 142–145, 160

CPU Central Processing Unit: Processor in a computer which executes sequen-
tially instructions as arithmetic, logic, controlling, and input/output opera-
tions. ix, 31, 57, 133, 134, 137, 138, 143, 144, 149, 152–162, 176, 179

C-space configuration space: N -dimensional configuration space, where N is
the DOF. iii, viii, ix, xi, xvi, 4, 5, 8, 9, 85–87, 90, 91, 94–107, 109, 111, 113–118,
120–124, 126, 128–130, 164, 166, 178, 179

CUDA Compute Unified Device Architecture: Nvidia developed programming
interface, which allows program parts to be processed by the GPU. ix, xv,
33, 137, 141, 143, 153, 159, 161, 179

DAVIS Dynamic and Active-pixel Vision Sensor: Event camera of the manufac-
turer inivation. ix, 46–48, 52, 59, 177

DMP Dynamical Movement Primitives: Extension of MP learning movements by
learning from demonstration whereby autonomous nonlinear differential
equations are applied to express the motion units. ix, 6, 97, 101

DOF Degrees of freedom: Number of joints in a robot. Each of the n joint angles
can be used as a coordinate to span a space in Rn. A full set of joint angles
is referred to as configuration q and is sufficient to position every point of a
robot in space. ix, xiv, 4–6, 85–87, 89–92, 94–106, 114, 120, 130, 166, 178

DSN Disparity sensitive neuron: Neuron responsible for measuring disparity in
cooperative networks for stereo vision. ix, 54, 55

DTRN Dynamic Topology Representing Network: Incrementally growing TRN.
ix, 38

DVS Dynamic Vision Sensor: Event camera of the manufacturer inivation and
first commercially available representative of this sensor type. ix, 45–49, 59,
177

EM Exposure Measurement: Method of the ATIS to obtain grayscale images with
entirely asynchronous image acquisition. ix, 47, 48, 57, 59

EMVS Event-based Multi-View Stereo: Algorithm to produce accurate, semi-
dense depth maps from event data. ix, 51, 59

xiv

Acronyms

FK Forward Kinematic: Determination of the pose by means of joint angles of
the arm elements. ix, 98, 100, 116

FPGA Field Programmable Gate Array: Integrated digital circuit into which a
logic circuit can be loaded. ix, 57, 59

FPS Frames per Second. ix

GeNN GPU-enhanced Neuronal Networks: Simulation environment for SNN,
based on CUDA technology. ix, 33, 101, 133, 138, 139, 141–145, 149–162, 165,
176, 179, 181

GNG Growing Neural Gas: Extension of a NG that can create and delete neurons
during learning to optimally adapt to a data structure. viii, ix, xvi, xvii, 8,
36, 38–41, 99, 107, 110–114, 118–126, 128–131, 164, 171, 173, 178, 181

γ-GNG γ Growing Neural Gas: Variation of the GNG that includes a memory
structure with an adjustable depth. ix, 39, 107, 109, 110, 113, 118–122, 130,
171

GPU Graphics Processing Unit: Processor in a computer which is optimized for
the calculation of graphics and operates in parallel. ix, xiv, xviii, 7, 8, 31, 33,
57, 64, 133, 134, 136–138, 141, 142, 144, 145, 149–155, 157, 159–162, 165, 179

HH Hodgkin-Huxley: Biologically plausible neuron model for SNN. ix, 27, 28,
92, 94, 95, 141

HPC High Performance Computing: Method of processing large amounts of
data at very high speeds using multiple computers and storage devices as a
cohesive structure. ix, 134, 140, 142, 143

HRI Human–robot Interaction. iii, ix, 1, 6, 7, 85

IF Integrate-and-Fire: Simple but performant neuron model for SNN. ix, xv, 26–
28, 177

IK Inverse Kinematic: Determination of the joint angles of the arm elements
based on the poseof the . ix, 4, 85, 90, 95, 98–100, 116

IMU Inertial Measurement Unit: Spatial combination of several inertial sensors
such as accelerometers and angular rate sensors. ix, 46

LIF Leaky-Integrate-and-Fire: Extension of IF that incorporates neural leakage.
ix, xviii, 26–28, 30, 32, 95, 141, 142, 147, 150, 151

LTD Long Term Depression: Permanent weakening of signal transmission at the
synapses of nerve cells. ix, 15, 16, 29, 177

LTP Long Term Potentiation: Permanent strengthening of synapses that leads to
a long-lasting increase in neural signal transmission. ix, 15–17, 29, 177

xv

Acronyms

LUT Lookup Table: Array of data that maps input values to output values. ix, 8,
100, 102–104, 114–116, 128, 164, 178

MGNG Merge Growing Neural Gas: Combination of GNG and MNG. ix, 36, 40,
41, 107–113, 118–122, 130, 171, 178

MMM Master Motor Map: Framework for perception, visualization, reproduc-
tion, and recognition of human motion. ix, 104, 105

MNG Merge Neural Gas: Extension of a NG that includes temporal context by
regarding previous learning progress. ix, xvi, 108, 109, 111, 113, 118, 178

MP Motion Primitive: Brain inspired method for dimension reduction, using
synergies between joint movements to adress correlated joints as one unit.
ix, xiv, 4, 97, 101

MPCNN Modified Pulse-Coupled Neural Network: Subtype of an SNN. ix, 94,
95

MSOM Merge Self-organizing Map: Extension of the SOM that includes tempo-
ral context by regarding previous learning progress. ix, 39, 40, 107–110, 113,
118–122, 130, 171

NEST NEural Simulation Tool, designed for large heterogeneous (spiking) net-
works of point neurons. ix, xvi, 53, 138–140, 142–145, 149–157, 160–162, 165,
176, 179, 181

NG Neural Gas: Alternative network structure to the SOM, without fixed neigh-
borhood relations and therefore the weight vector is used for adaptation. ix,
xv, xvi, xix, 36–38, 40, 41, 107, 108, 110, 111, 113, 118, 131

OMPL Open Motion Planning Library: Open source software for motion plan-
ning using sample-based algorithms. ix, 105

PCA Principal Component Analysis: Popular, widely used method for dimen-
sionality reduction. ix, 96, 102

PCL Point Cloud Library: Open source project for 2D/3D image and point cloud
processing. ix

PRM Probabilistic Road Map: Robotic planning algorithm that randomly sam-
ples the C-space. ix, 4, 6, 8, 89, 117, 128, 129, 164

PSP Postsynaptic Potential: Postsynaptic changes in the membrane potential of
a chemical synapse. ix, 14, 15, 26

xvi

Acronyms

PyNN Python package for neuronal networks: Designed for simulator indepen-
dent specification of ANN and especially SNN models. It supports the
neural simulator NEURON, NEST and Brian as well as neuromorphic plat-
forms SpiNNaker and BrainScaleS. ix, 53, 139, 140, 142, 144–146, 149, 150,
161, 162

PyNN GeNN PyNN interface for GeNN. ix, 153, 154, 161, 162

QE Quantization Error: Systematic error representing the difference between the
continuous input value and its quantized output. ix, 42, 110, 118, 120, 121,
181

RANSAC Random sample consensus: Iteration method for estimating a mathe-
matical model from a data set containing outliers. ix, 69, 77, 79

RDS Random-dot Stereogram: Stereo images of random dots which are used to
diagnoses various disorders of binocular vision. ix, 22, 23

RecSOM Recursive Self-organizing Map: Extension of the SOM that includes
temporal context by regarding previous learming progress. ix, 39, 108, 109

RL Reinforcement Learning: Umbrella term of methods in which an agent inde-
pendently learns a strategy by maximizing a reward. ix, 91, 97, 102

RMSE Root-mean-square error: Measure for differences between predicted model
values and experimental results. ix, 71, 72, 178

ROS Robot Operating System: Framework for robots also for applications in in-
dustrial robotics. ix, 105, 127, 172, 179

RRT Rapidly Exploring Random Tree: Sampling based extension of the A* algo-
rithm which allows the graph to be expanded at any point. ix, xvii, 4, 6, 8,
89, 91, 96, 100, 117, 128, 129, 164

RRT-C Rapidly Exploring Random Tree Connect: Extension of the RRT which
achieves a significant increase in speed through building up two tree struc-
tures. ix, 89, 105, 128, 129, 164

RSOM Recurrent Self-organizing Map: Extension of the SOM that includes tem-
poral context by regarding previous training samples. ix, 39, 40, 108, 109

RViz 3D visualization tool for ROS. ix, 73, 74, 105, 127

SARK SpiNNaker Application Runtime Kernel. ix, 136

SCAMP SpiNNaker Control And Monitor Program. ix, 136

SDP SpiNNaker datagram packages. ix, 136

SDRAM Synchronous dynamic random-access memory: Semiconductor-based
memory variant used as main memory in computers. ix, 135, 136, 141

xvii

Acronyms

SGNG Segment Growing Neural Gas: Variation of the GNG which uses seg-
ments as basic units. ix, xiii, 40, 107, 113, 114, 118–121, 130, 171, 178

SIFT Scale Invariant Feature Transform: Algorithm for detection and description
of local features in images. ix, 58

SIMD Single Instruction Multiple Data: type of parallel processing. ix, 137, 138

SLAM Simultaneous Localization and Mapping: Process in which a mobile robot
simultaneously creates a map of its environment and estimates its spatial
position within this map. ix, 59, 91

SM Streaming Multiprocessor: General purpose processors with a low clock rate
target and a small cache, used in GPU architectures. ix, 137

SNN Spiking Neural Network: Type of ANN which is distinctly closer to an ac-
tual brain and well auited to deal with time related data, as their neurons
communicate asynchronously with spikes. viii, ix, xv, xvi, xviii, 1, 2, 4–9,
25, 28–31, 33, 38, 52, 59, 67, 69, 91, 92, 94, 95, 101, 117, 131, 133–136, 138–141,
143–146, 148–150, 160, 162–166, 175, 179, 181

SOM Self-Organizing Map: Best-known candidate of the SONN, has a rigid neigh-
borhood structure. vii, ix, xvi–xix, 4, 9, 33–41, 58, 60–73, 76–82, 97–99, 102,
107–110, 113, 114, 118–124, 126, 130, 131, 164, 166, 171, 173, 177, 178, 181

γ-SOM γ Self-organizing Map: Variation of the SOM that includes a memory
structure with an adjustable depth. viii, ix, 39, 107, 109, 110, 113, 118–122,
124–126, 130, 171, 178

SOMSD SOM for structured data: Extension of the SOM that allows the mapping
of structured objects into a topological map using unsupervised learning.
ix, 39, 108

SONN Self-organizing Neural Network: Unsupervised learning method produc-
ing a low-dimensional representation of the input data while preserving its
topological properties. viii, ix, xiii, xiv, xviii, 8, 9, 33, 34, 36, 38–42, 61, 97,
102–108, 110, 111, 113–115, 117–123, 125, 126, 128–130, 163, 165, 171, 179, 181

SOS Self-Organizing System: Brain structures, already present before birth, that
apply self-organized processes. ix, 17

SpiN1API SpiNNaker1 API. ix, 136, 140

SpiNNaker Spiking neural network architecture: A representative of neuromor-
phic hardware, designed to support large scale simulations of SNN, built of
ARM microprocessors. ix, xvi, 32, 33, 57, 95, 101, 133–136, 138–140, 142–145,
149–162, 165, 176, 179, 181

SRAM Static Random Access Memory: Electronic volatile memory device. ix,
135

SRM Spike Response Model: Neuron model for SNN that is closely related to
LIF. ix, 27, 95

xviii

Acronyms

STDP Spike-Timing-Dependent-Plasticity: Synaptic learning rule in which weight
update depends on the temporal correlation of spikes between the pre- and
post-synaptic neuron. It has been observed in the brain and is commonly
used for training SNN. ix, xiii, xix, 2, 8, 29–31, 92, 93, 95, 140, 146, 148, 151,
152, 157, 160, 165, 177

SVF Synaptic Vector Field: Result of synaptic strength changes caused by STDP
in the course of a neural WFA. ix, 147, 148, 151, 157, 159, 161, 162, 179

SVM Support Vector Machine: Supervised learning method for classification and
regression analysis. ix, 100

TKM Temporal Kohonen Map: Biologically plausible variation of the SOM for
temporal data analysis. ix, 39, 40, 108, 109

TRN Topology Representing Network: Combination of NG and a competitive
Hebbian learning rule to define a synaptic structure. ix, xiv, xix, 36, 38, 111

UDP User Datagram Protocol: Communication protocol for low-latency, loss-
tolerant connections. ix, 136

UR Universal Robots: Danish manufacturer of industrial, collaborative lightweight
robots. ix, 106, 114–116, 127, 128

URDF Unified Robot Description Format: XML format for representing a robot
model. ix, 66

ViSOM Visualization Induced Self-Organizing Map: Extension of the SOM that
preserves inter-point distances allowing an effective visualization of data
structure and distribution. ix, 36, 40

VLSI Very Large Scale Integration: Complex digital circuits with several hun-
dred thousand transistors and up to several billion transistors. ix, 31

WFA Wavefront Algorithm: Path planner in a discretized robotic workspace us-
ing a BFS on the graph induced by the neighborhood connectivity. viii, ix,
xix, 4, 5, 9, 86–89, 91–93, 95, 100, 101, 117, 123, 124, 131, 145–152, 154, 157,
159, 161, 164–166, 178, 179, 181

WINN Weighted Incremental Representing Network: Subtyp of TRN. ix, 38

xix

1. Introduction

Industrial robots are fast, strong and precise, which makes them ideally suited
for automation processes in production lines. A historically significant control
architecture is the Sense-Plan-Act-cycle (SPA-cycle). This paradigm uses sensor
data to create a world model, on which planning is performed. The plan is subse-
quently executed without any direct link to the sensors [1]. Popular in the 80s, it is
considered bad design because all complexity is only in one module, the plan part
of the system. Good software design, however, encapsulates complexity in equal
amounts [2]. The SPA-cycle is only useful in case of a static environment and
a slow sensing process [2; 1]. However, as the need for product customization
has steadily increased in recent years and different types of tasks can be better
performed by humans and others by robots, application areas for Human–robot
Interaction (HRI) have been expanding. Collaborative workstations require flex-
ible and reactive robotic motion control to ensure human safety.

1.1. Motivation

As humans handle collaborative tasks with ease, the use of biologically inspired
technologies and methods is very promising. The brain processes information
sparsely and asynchronously by the use of neural activation pulses, referred to
as spikes. Spike trains, time-wise patterns of these fast depolarization impulses,
convey information about all sensory input. The information content is decoded
in the sequences of identical spikes and neural computation means to process
these spike trains [3]. The mechanics of the human brain serve as a model for Ar-
tificial Neural Networks (ANNs), which are applied to versatile machine learning
tasks. ANNs consist of analog neurons which are based on a differentiable acti-
vation function. An exemplary visualization of the intended use case is given in
Figure 1.1. Hereby, a robot and a human are shown in a shared workspace. It
visualizes which information is necessary to enable motion planning of the robot
and how this is represented in the case of a neuronal solution.
However, the source of the brain’s enormous flexibility, speed, power efficiency

and fault tolerance is spike-based communication. Inspired by this observation,
Spiking Neural Network (SNN) embody neurons with a membrane potential that
evolves in time depending on the input of weighted spikes. As spiking neurons,
unlike analog neurons, consider temporal dynamics, by encoding temporal in-
formation in their signals, they are in theory more powerful. Additionally SNN
emphasize the neurobiological aspects of neurons, making them distinctly closer

1

1. Introduction

Figure 1.1.: Simulated and neuronal representation of an exemplary realization
of the intended use case. The upper row visualizes a scene, per-
ceived on the left by the proprioception of the robot and in the mid-
dle by exteroception by an external vision component. The obstacle-
free workspace, thus the space in which the robot can move freely,
is shown on the right. How this could be represented in the neural
space is visualized in the lower row. Thereby, gray nodes represent
unoccupied space, red ones the robot and green ones the obstacles.
Image source: (Steffen et al. 2019a; Hauck 2019)

to an actual brain than their predecessor [4; 5; 6]. SNN, specially designed to
deal with time-related data, embody more complex structures than the clean lay-
ers of ANNs, also known as state-of-the-art deep learning networks. Thus, SNN
demand more complex learning algorithms, which, up until now, are predom-
inantly based on Spike-Timing-Dependent-Plasticity (STDP). The learning rule
STDP strengthens synapses locally in case of correlated activities and was orig-
inally formulated in [7; 8]. To exploit the benefits of spike-based computation,
its application on parallel hardware, mostly but not mandatory neuromorphic
chips, is needed [9; 10; 11; 12; 13; 14]. As event-based sensors, also referred to as
silicon retinas, utilize asynchronous and sparse communication like SNN, there
are interesting synergies. These bio-inspired models differ from conventional
frame-based cameras in their manner and frequency of image acquisition and
data transfer. The conventional way of imaging the entire frame at a given rate is
replaced by an independent per-pixel response to illumination changes in event-
based sensors. As a result of this procedure time location and polarity, the sign

2

1.1. Motivation

of change in brightness is encoded in the output event-stream [15]. The advan-
tages to being derived therefrom are energy efficiency, low redundancy and the
simultaneous realization of the contradictory features of high-speed processing
and high temporal resolution. The advantages resulting from these properties are
significant for robotics and computer vision. However, as a system for path plan-
ning is heavily dependent on a 3D representation of the environment and imag-
ing is in its nature planar, depth reconstruction is necessary. A popular method
is stereo vision, which obtains depth by matching several perspectives and com-
puting the disparities. While the interaction of both eyes and the brain seems
to compute disparities effortlessly, artificial techniques imply high latency and
power consumption. The root of the problem is to find the corresponding points
in perspectively deviating images of a scene, referred to as the correspondence
problem. Due to offering a new physical constraint –time– matching candidates
can be drastically reduced (Steffen et al. 2019c). Unfortunately, previous research

Figure 1.2.: Structural differences of frame-based and event-based vision algo-
rithms applied to asynchronous event streams. The former concept
integrates events in a certain time interval, discarding the precise tim-
ing information. The latter exploits data more sophistically, by using
each event’s exact timestamp. Graphic is inspired by [16]

in computer vision and its application in robotics is frame-based. This concept
does not exist for event-based sensors. Therefore, most conventional algorithms,
also about stereo reconstruction, cannot be used in this way. As visualized in
Figure 1.2 there are different approaches to deal with this problem. The obvious
but not very elegant method is to convert event streams into frames allowing the
use of many performant, matured algorithms. However, the advantages of bio-
inspired vision cannot be exploited in this way. Alternatively, new event-based

3

1. Introduction

algorithms must be found. A particularly good approach is to use SNN as they
are perfectly suited for event-based input. Furthermore, the combination of these
technologies results in promising synergies, based on their biological plausibility.
Robot motions can be either planned in the 3D Cartesian task space T or the
higher dimensional configuration space (C-space) of robots. For path planning,
most methods plan a trajectory in the Cartesian space and transfer them to the
C-space with Inverse Kinematic (IK) [17; 18]. Unfortunately, that may lead to re-
dundancies, as several solutions in the C-space are applicable for one point in the
task space. Planning in the C-space is generally more powerful than in the task
space, as it takes into account not only the end effector but all joints and therefore
also the robot’s "elbow". Consequently, arm movements are smoother and well-
validated, meaning no inherent collisions or sudden large changes in joint angles.
Although, as a rising number of Degree of freedom (DOF) increases the dimen-
sionality of the search space, for robots with advanced kinematics, planning in
the C-space becomes disproportionately more complicated and computationally
expensive. Traditionally, grid-based methods are often used for path planners in
2D as they are optimal and complete but do not scale well with higher dimen-
sions. Motion planning in a high dimensional C-space is usually achieved by
sampling-based planners like Probabilistic Road Map (PRM) [19] or Rapidly Ex-
ploring Random Tree (RRT) [20]. These techniques are more efficient but do not
always provide optimal solutions. The relevant literature knows several meth-
ods to reduce the search space either with Self-Organizing Map (SOM) or Motion
Primitives (MPs) [21; 22]. The biologically inspired MPs reduces the dimension-
ality by applying only a reduced set of adjustable MPs, commonly embodied
by splines or ANNs. Furthermore, the Wavefront Algorithm (WFA) which con-
sists of a Breadth-first Search (BFS) [23] is an effective method for path planning
with discrete grid maps [24]. On the other hand, the brain solves motion con-
trol through extreme parallelization [25; 26]. Hence, for neural path planning in
the C-space, discrete configurations can be represented by neurons and synapses
are consequently used for path planning. Due to its biological plausibility and
exploitation of parallel structures, this use case is well suited to be applied to
neuromorphic systems [27]. As precise motion planning requires a high resolu-
tion of the C-space many neurons and synapses are necessary. Unfortunately,
network computations are drastically slowed down by large amounts of neu-
rons and dedicated hardware only provides a limited amount of neurons. Con-
sequently reducing the search space through pruning superfluous neurons and
synapses is required.

4

1.2. Research Goal and Problem Statement

1.2. Research Goal and Problem Statement

Research goal 1. This work aims to develop a holistic neural system
for motion control of a 6 DOF robotic arm. The SPA-cycle which is
not suited for fast and dynamically changing environments, is to be re-
placed. As visualized in Figure 1.3, exteroception is generated by event-
based stereo vision, combined with the internal robot state. Thereby a
neural representation of the workspace is obtained which can be fur-
ther transferred into a representation of the C-space. Path planning is
subsequently performed via the WFA on neuromorphic hardware.

Figure 1.3.: Conceptual architecture of the proposed approach.

Several problems can be derived from these goals and are defined by the follow-
ing research questions:

Research question 1. How can asynchronous event streams be opti-
mally exploited for event-based stereo vision?

Research question 2. Is it feasible to use the high-dimensional C-space,
which requires huge amounts of neurons, for neural path planning?

Research question 3. How can parallel hardware help to exploit the
advantages of SNN?

5

1. Introduction

1.3. Thematic Classification and Scientific
Contribution

This is a biologically inspired thesis, thus, the underlying concepts are often
based on mechanisms observed in nature. With that in mind, it must be empha-
sized that this work does not try desperately to maintain biological plausibility.
On the contrary, attempts were made to implement brain-inspired techniques for
industrial applications. This applies in particular to robotic motion planning for
HRI.

State-of-the-art The generation of collision-free motions for robots has always
been a fundamental challenge. Accordingly, the literature regarding reactive
planning in a dynamic environment including collision detection is extensive.
Complete and optimal methods guarantee finding the shortest path if one ex-
ists [28; 29], even regarding dynamic obstacles [30]. However, these techniques
are computationally complex and even their modern extensions [31; 32], struggle
with many DOF. On the other hand, sampling based algorithms, like PRM [19],
RRT [20] and especially their extensions [33; 34], are very fast and efficient. How-
ever, these algorithms are not deterministic. This does not only mean that the
generated path is not necessarily the shortest one, but that different paths are
found if executed multiple times under identical conditions. So far there have
only been a few convincing approaches to path planning in high dimensions. An
example that is already widely used in practice, is Dynamical Movement Prim-
itives (DMP) [35]. This method was explicitly developed to learn from demon-
stration, limiting their generalization. The original version, for example, is not
able to derive common behavior from multiple observations, although this prob-
lem was recently addressed in [36]. Regarding neural algorithms, especially with
SNN, there is very little research for path planning in 3D. Up until recently meth-
ods for path planning using SNN have been predominantly applied to 2D [37;
38; 39]. Many of them are based on research about spatial perception and naviga-
tion in nature [40; 41]. In particular, the discovery of place cells [42] has inspired
many respective approaches [38; 39; 43; 44]. These methods represent interesting
candidates for generating robotic motion if extended to 3D, as done in [45; 46],
particularly when applied to neuromorphic hardware [47; 48; 49].
To make path planning possible, even in a constantly changing environment, a
type of 3D sensing is required. 3D information can be obtained in multiple ways.
On the one hand in an active manner, like radar, LIDAR, ultrasonic sensors, light
section and structured light. On the other hand passive methods like structure
from motion, shape from shading and stereopsis. These methods are mostly ei-
ther slow, very resource and respectively computationally intensive or have an
extremely high information output that is difficult to process further. For appli-
cations such as navigation and robotic motion control, therefore predominantly
cameras are used, as they generate dense data in real-time. However, two is-
sues exist regarding cameras. Firstly, frame-based visual sensors generate highly

6

1.3. Thematic Classification and Scientific Contribution

redundant data whose temporal resolution cannot capture fast movements. Con-
sequently, simultaneous over and under-sampling is the result. Secondly, since
cameras only generate 2D data, information about the depth is lost. The devel-
opment of event-based visual sensors [15] enables the circumvention of the first
problem. The second issue can be tackled by fusing image data from two, or
more, slightly shifted perspectives. This has been intensively investigated [50;
51], as a large proportion of research in the field of computer vision deals with 3D
reconstruction. However, this research solely focuses on frame-based cameras,
and as visualized in Figure 1.2, it is not purposeful to shift respective techniques
to event-based data. Hence, there is still a gap in the state-of-the-art regarding
the 3D reconstruction of event-based data. A few methods have already been
presented. The best known are cooperative algorithms [52; 53; 54; 55; Kaiser et
al. 2018], implementing the basic research about binocular vision by Poggio and
Marr [56]. While very strong in terms of biological plausibility, these methods
are often limited in terms of practical applicability. Convincing approaches, that
exploit the full potential of event cameras, are still missing. In addition, there are
no methods to evaluate the existing techniques.
Although SNN are theoretically far superior to conventional ANN, their applica-
tions are still often outperformed by methods based on deep learning. There is
an urgent need for hardware/software co-design, regarding SNN. The issue that
SNN simulation is very slow on conventional hardware can be circumvented by
parallel hardware solutions. A plenitude of neuromorphic chips and neurosimu-
lators exist, but, many of them are designed for specific use cases. There are only
a few comprehensive benchmarks for these systems. Also, many of these relate
to neuroscience scenarios [57; 58] or vision [59; 60]. There is very little research
that relates to a robotic use case, and that available [61; 62], neglects Graphics
Processing Unit (GPU)-based SNN simulation.

Contribution This thesis approaches the issue of reactive and flexible path plan-
ning, which is necessary to allow HRI, from various directions. Its primary scien-
tific contributions are:

• A comprehensive literature survey, for each of the three topics resulting
from the research questions in section 1.2. Of particularly large impact is
the overview of event-based depth reconstruction, an extensive collection
regarding the historic development as well as the latest achievements of
respective algorithms.

• Co-development on a new biologically inspired method for stereo recon-
struction which is very well suited for event-based data. A special achieve-
ment of the approach is that it is not strongly dependent on calibration.

• Further development and transfer of path planning algorithms with SNN
from 2D to 3D, based on two different models.

7

1. Introduction

• A biologically inspired novel concept for high-reactive path planning in
real-time. The dimensionality of a robot’s C-space is reduced by a Self-
organizing Neural Network (SONN), whose neurons correspond to place
cells, found in the hippocampus of mammalian brains. Consequently, path
planning is done by Dijkstra’s algorithm, a complete and optimal graph
search that would be exhausting in the full C-space.

• Extensive investigation of six different network architectures for C-space
reduction. The generated networks as well as subsequently generated paths
were analyzed. The Growing Neural Gas (GNG) showed the best results
and was successfully implemented on a real robot.

• Integration of static, and more importantly, dynamic obstacles using Lookup
Table (LUT), enabling the fast and efficient transformation from task space
to C-space. This allowed the successful implementation of path planning
with reactive collision avoiding using a real robot. The proposed system
outperforms common sample-based planners like the RRT or PRM show-
ing real-time capability.

• Realization of a benchmark for parallel hardware solutions and respective
software tools for simulating SNN. Scientifically interesting is the focus on
a robotic use case and the fact that neuromorphic chips, GPU-based solu-
tions and neurostimulators are considered. An approach, developed in the
course of this thesis was used. It implements learning by STDP.

The aim of safe and reactive motion planning is thereby not implemented in an
all-encompassing system. However, it is addressed on different levels and each
of the achievements mentioned above brings science a little step closer to that
goal. A special focus of this work is on the development of neural, biologically
plausible methods. However, this is complemented by the transfer of these theo-
retical concepts to real hardware and the analysis of different solutions regarding
hardware/software co-design. Thus, this thesis pushes basic research from neu-
roscience closer to an industrial context with robotic applications.

1.4. Outline

After the introduction, which mainly motivates, classifies and differentiates the
thesis from the state-of-the-art research, follows chapter 2, Foundations. This
chapter is divided into two parts. Firstly, the brain is considered here as a model.
Its structure and basic functioning are investigated, followed by a more detailed
description of the human visual complex and a consideration of how spatial per-
ception and navigation occur in mammals. Secondly, an introduction to technical
concepts is given which apply the principles observed in nature. In particular,
the three topics SNN, SONN and event cameras are presented, which all form
the basis of this thesis. The main part consists of three chapters, each focusing
on one of the research questions from section 1.2. These chapters all embody the

8

1.4. Outline

same structure, Initially, the state-of-the-art in the respective area is considered,
which is concluded with a discussion. Then, an approach to this problem is pro-
posed, which is evaluated in a further section. Each of the three main chapters
ends with its conclusion. The chapter 3, Event-based Stereo Vision, builds on
research question 1. Regarding related work, monocular and stereo techniques
are considered separately. However, the focus here is on the latter. The approach
presented in this chapter tackles the correspondence problem in stereo vision us-
ing event-based data and SOM. A biological motivation, a formalism and some
suggestions to extend the basic algorithm are provided. One part of the evalua-
tion takes place in simulation. This includes the qualitative investigation and the
proof-of-concept, that the method is suited to solve the correspondence problem.
The second part of the experiments was carried out on event-based data from a
stereo setup with two Asynchronous Time-Based Image Sensor (ATIS). In chap-
ter 4, Reactive Neural Path Planning, the research question 2 is investigated.
The state-of-the-art includes both, conventional and brain-inspired methods for
path and motion planning. Regarding conventional methods, primarily optimal
and sample-based planners are presented. For brain-inspired techniques, a fo-
cus is on solutions with SNN. Whereby, there are also two own approaches as
part of the related work. Finally, a review of the relevant literature to path plan-
ning in the reduced C-space is given. The main part of this chapter embodies
three sections. Firstly, a presentation of the basic concept, which includes appro-
priate training data and learning to represent the effectively used subspace by a
SONN. Secondly, a consideration of different network types for SONN is given.
These versions have individual advantages and are therefore suited to the task
to a varying degree. Thirdly, it depicts how the trained network can be adapted
to enable dynamic obstacle avoidance. For evaluation, the different SONN styles
are examined first, followed by a comparison of the presented method using a
WFA in contrast to Dijkstra’s. Then the obstacle avoidance is tested for the most
suitable network candidates. The evaluation is completed by a comparative anal-
ysis of the presented approach with sample-based planners. In chapter 5, Neu-
romorphic Technologies for Neural Algorithms, research question 3 is looked
at in more detail. Different hardware solutions and simulation tools for SNN are
presented here first. Followed by a consideration of respective benchmarks in
the literature. The core part of this chapter initially introduces the test candidate,
an own implementation for a neural WFA using SNN. Subsequently, details re-
garding the realization of the benchmark and the metrics used are laid out. The
evaluation is strongly based on the presented metrics. However, the discussion
of this chapter is two-part and includes a context analysis of the presented results
as well as a consideration regarding limitations. The thesis ends in chapter 6
Conclusion, with a critical assessment of the entire work. The results are recapit-
ulated and contributions are highlighted. In the outlook, planned extensions and
possible additions to the work are discussed.

9

2. Foundations

The enormous progress that has been made in the field of AI has been driven by
the attempts and efforts of many scientists to answer the following two questions;
"how does the brain work?" and "how can we build intelligent machines?" [63].
Thus, brain theory is the foundation for Artificial Neural Network (ANN). A def-
inition for intelligence is not trivial as it is enormously versatile. Traditionally,
board games are seen as a good way to measure intelligence. Less obvious, on
the other hand, is motion control of the high-dimensional body. The brain must
solve very complex control problems to produce precise, error-tolerant, adap-
tive movements. It also excels at tasks that do not seem difficult, but are very
complex to solve technically, such as listening out one’s name in a noisy environ-
ment or recognizing emotions only at running patterns. AI has made remarkable
progress, especially through deep learning, in some of these fields. For example
in the case of alphaGo, the technical solution overtook the brain. However, in
many areas, the brain is still almost an unattainable model.
This thesis, while intended for readers with a strong computer science back-
ground, deals with a very interdisciplinary field. Therefore, this chapter provides
necessary knowledge in biology and computational neuroscience. The division
into section 2.1 and section 2.2 is intended to draw a parallel between the model
in nature and the technical replica.

2.1. Design and Functioning of the Human Brain

Even though impressive progress has been made in AI over the last decade, in
terms of energy efficiency technology is still lagging. The energy consumption of
the human brain can be very precisely determined, as its consumption of oxygen
and the associated burning of glucose can be measured exactly and converted
into an electrical power equivalent [64]. Under provoked limit load the power
consumption is estimated roughly between 15 and 20 watts. In comparison with
supercomputers, assuming an energy consumption of more than 10 megawatts,
this results in a factor of half a million. Hence, our brain requires about 500 000
times less power than such a high-performance computer.

11

2. Foundations

2.1.1. Neurons, Synapses and Plasticity

Most of the current knowledge of brain anatomy and neurophysiology has been
developed since about the middle of the 19th century. The cell theory, which is
still taught today, was able to establish itself mainly due to the scientific work
of Golgi [65] and Santiago Ramón y Cajal [66]. This also forms the basis for the
term "neuron", which was coined in 1891. Neurons are the structural elements
of the nervous system and thereby the main information processing units. The
term "neuron" refers to the nerve cell as well as its processes [67]. According
to recent studies, the human brain possesses an average of about 95-100 billion
neurons [68]. Neurons are anatomically independent of one another and their
processes only interfere with other neurons through impulses transmitted by
synapses. This structural isolation has the advantage that if degenerative changes
occur in nervous tissue, such as diseases, they are effectively prevented from
spreading [67]. In the cortex, there is a multitude of neurons that differ strongly

Figure 2.1.: A drawing from Ramón y Cajal depicting the anatomy of a neuron is
shown at the left. An exemplary representation of a neural signal, also
called action potential or spike, is shown in the center. At the right, a
schematic visualization of signal transmission from a presynaptic to
a postsynaptic neuron is given. The synapse is marked by a dashed
circle. Image source: [69]

in their functionality, but the basic structure is uniform. As shown in Figure 2.1,
a neuron consists of three components, the cell body called soma, the dendrites
and the axon [69]. The processing of incoming stimuli takes place in the soma.
While the dendrites receive incoming signals and transmit them to the soma, the
axon is used to transmit signals leaving the neuron. The synapse is the connec-
tion to other cells, thus the junction between two neurons [70]. The soma only
generates an output signal if the membrane potential exceeds a certain threshold.

12

2.1. Design and Functioning of the Human Brain

In each signal transmission between two neurons, there is always a presynap-
tic cell sending the signal, and a postsynaptic one receiving it. However, this is
not a 1-to-1 relationship, on the contrary, a single neuron of the vertebrate cor-
tex can address up to 104 postsynaptic neurons. The majority of the receiving
cells are located close to the sending neuron, but in some cases, the axon can also
reach more distant brain regions, or even the entire body [71; 69]. In contrast,
dendrites, even though they have a complex and highly branched architecture,
affect only the immediate vicinity of the neuron [72]. The neuron is separated
from its surroundings by the cell membrane. Due to specific channels, the mem-
brane is permeable to special types of ions, electrically charged particles, most
prominent sodium (Na+), potassium (K+), calcium (Ca +

2), and chloride (Cl–). In-
formation processing by neurons occurs mainly through electrical and chemical
signals [71]. To produce electrical signals, neurons change their membrane per-
meability to certain ions. The delta of certain ion concentrations between the
neuron and its environment creates a polarization, called the membrane poten-
tial. Whenever a neuron is not signaling, its membrane potential is at its resting
state. Thus, its potential difference to the cell’s surroundings is between -30 mV
to -90 mV, which is referred to as polarized. The membrane potential can now
change in two directions, due to signals from other neurons. When it becomes
more positive it is called depolarization and when it becomes more negative it
is called hyperpolarization [73]. The neural membrane potential is under the in-
fluence of the ion channels, which, by their opening, allow certain ions to enter
the cell. However, as these channels are ion-specific and also voltage-gated, the
membrane potential, along with both internal and external signals, affects their
opening [71]. For sodium-specific channels, that means that if the membrane
potential surpasses a threshold they will open, allowing even more sodium to
enter the cell, which causes the membrane potential to increase further. In con-
trast, potassium-specific channels, which open at a very high membrane potential
lead to an outflow of potassium ions and consequently to a strong decrease of the
membrane potential. Hence, sodium-specific channels reinforce an existing depo-
larization through a positive feedback process while potassium-specific channels
reverse a strong depolarization into a hyperpolarization [71; 73]. Both mecha-
nisms together lead to short electrical pulses called action potentials or spikes,
as shown in the dashed circle in the center of Figure 2.1. Spikes are the basic
communication mechanism of neurons. Their duration of 1-2 ms and amplitude
of ca. 100 mV remain consistent when propagating along the axon to other neu-
rons [69]. Immediately after the neuron has initiated a spike, it is unable to do so
again. These few milliseconds are called the absolute refractory period, followed
by the relative refractory period, which can last up to 10 ms and makes it difficult,
but not impossible, to generate action potential [71]. A series of spikes, emitted
by one single neuron in a short period, is called a spike train. As action poten-
tials are in principle binary, a spike is either generated or not, but it does not vary
in its duration or amplitude, the informational value lies in the number and the
exact time of occurrence. Due to the refractory period, spikes are prevented from
overlapping or merging into each other [69].
A synapse is a point where the axon of a presynaptic neuron interfaces with sev-

13

2. Foundations

eral dendrites of a postsynaptic neuron [69]. As the brain is a highly connected
structure, each neuron has 5,000 – 10,000 synapses which transmit spikes between
neurons and thereby affect their membrane potential [74]. Usually, synapses
form the middle structure between a presynaptic axon and a postsynaptic den-
drite [72], however, it can also occur that an axon is connected directly to a
soma or another axon by a synapse [73]. The brain has approximately 100 tril-
lion synapses which only forward nervous impulses in one direction [67]. Even

Figure 2.2.: Schematic drawing of a biological synapse. At the top, the axon termi-
nal of the presynaptic neuron, holding several synaptic vesicles filled
with neurotransmitters, is shown. At the bottom is the dendritic spine
of the postsynaptic neuron which is separated from the axon termi-
nal by the synaptic cleft. If a spike from the presynaptic neuron is
propagated through the axon, the neurotransmitter is released and
surpasses the synaptic cleft to bind to receptors of the dendritic spine.
Image source: [71]

though electrical synapses, directly transmitting action potential, exist [73], by
far the most common type in the human brain is the chemical synapse, visual-
ized in Figure 2.2. Thereby the axon terminal is only separated from the signal-
receiving or presynaptic neuron by a small gap, the synaptic cleft. When a spike
from the axon reaches the synapse a chain reaction of biochemical processes is
initiated resulting in the release of neurotransmitters into the synaptic cleft. Spe-
cialized receptors of the postsynaptic cell membrane recognize these transmitter
molecules and initiate the opening of ion channels, thereby allowing ions from
the surrounding to enter the postsynaptic neuron. This causes a change in the
membrane potential of the postsynaptic cell triggering an electric reaction, which
is called the Postsynaptic Potential (PSP) [71; 69]. Depending on the neurotrans-
mitter released, the PSP differs. If the transmitter opens sodium channels, the
inflowing ion increases the membrane potential (depolarization), called excita-
tory PSP. However, if potassium-specific channels are opened by the transmitter,

14

2.1. Design and Functioning of the Human Brain

the membrane potential is lowered by the potassium leaving the cell (hyperpo-
larization), called inhibitory PSP [73].
The amplitude of a postsynaptic response to a presynaptic action potential is de-
termined by two factors. On the one hand, the number of neurotransmitters of the
synaptic vesicles that are released into the synaptic cleft. On the other hand, the
number of receptors that the postsynaptic neuron holds. Both parameters, collec-
tively referred to as synaptic strength or synaptic efficacy, can change over time
and depending on external influences. A modification of the synaptic strength
is called synaptic plasticity [75; 76]. Hence, synaptic plasticity modulates how
neurons communicate via synaptic transmission by changing the transmission
efficacy of existing synapses. Concerning its temporal effect, synaptic plasticity is
differentiated. First, short-term plasticity with a usual duration of action ranging
from milliseconds to, in exceptional cases, a few minutes [77]. It directly affects
neural computations and essentially relates to stimulus-driven activity [78]. Sec-
ond, long-term plasticity, lasting for 10 minutes or more, is the neural process
underlying learning and memory. It also plays an important role in the devel-
opment and structure of the nervous system of adolescents [79]. There are two

Figure 2.3.: Hippocampal occurrences of LTP and LTD in a rat. After five minutes
(see arrow), a 100 Hz stimulation applied for one second induces a big
change in the potentiation level. As it remains for about 15 minutes, it
is considered LTP. Subsequently, 2 Hz is applied for about 10 minutes,
causing an amplitude reduction of the response. The level of reduced
potentiation is referred to as LTD. Image source: [71]

kinds of short-term synaptic plasticity. First, synaptic depression is the progres-
sively stronger decline of a postsynaptic response to ongoing presynaptic activa-
tion. And second, synaptic facilitation increases the postsynaptic response with
repetition [78]. However, both mechanisms do not cancel each other out but
rather are modeled in a superimposed manner [80]. Short-term synaptic plas-
ticity functions in the mammalian brain as a kind of filter, as it alters temporar-
ily the way synapses process information [76]. Synapses that only receive low-

15

2. Foundations

frequency input act as high-pass filters. Therefore, high-frequency spike trains
are transmitted with higher efficacy. Respectively, synapses that originally re-
ceived at high-frequency function as low pass filters, transmitting low frequent
activity unaffected, while inhibiting high-frequency spike trains [81]. The ma-
jority of processes regarding short-term synaptic plasticity have a fundamentally
similar sequence of events. They are initially triggered by short frequent spike
trains that increase the calcium level in the presynaptic axon terminal. This raises
the probability of neurotransmitter release [76]. Both depression and facilitation
appear in two forms, paired-pulse plasticity, particularly short-lived, and trains
of stimuli, a slightly more long-lived form [77]. Regarding long-lasting plasticity,
a distinction is also made as to whether the effect on the synapses is excitatory
or inhibitory. Long Term Potentiation (LTP) increases synaptic strength over time
while Long Term Depression (LTD) decreases it. For an illustrative example of the
biological occurrence of LTP, and LTD see Figure 2.3. Both forms of plasticity can
be extremely persistent and may even last for several years. This differs greatly
in individual cases, but in general, as long as experience and training are retriev-
able [71]. Already in 1949, Donald Hebb found that synaptic strength changes
according to the temporal relationship of the fire behavior of different cells. He
stated that "when one cell repeatedly assists in firing another, the axon of the first cell
develops synaptic knobs (or enlarges them if they already exist) in contact with the soma
of the second cell." [82]. Thus, Hebb found that synapses become more effective

Figure 2.4.: Asymmetric temporal window for effective spike occurrences. Ex-
citatory postsynaptic current is plotted against precise spike timing.
The graph shows a curve representing LTD on the left and LTP on the
right, generated by the temporal correlation of pre-and postsynaptic
spikes of synapses in the hippocampus. At the top, the respective
windows for LTP and LTD are visualized. Image source: [83]

16

2.1. Design and Functioning of the Human Brain

when the presynaptic neuron spikes often just before the postsynaptic one. In lit-
erature the popular phrase “fire together wire together” is often used in this context.
However, as Hebb was a psychologist his concept of learning is rather vague and
his transcripts lack precise approaches and formulas. In [84] Hebbian learning is
defined by two underlying assumptions:

1. Learning is strongly modulated by local information of the pre- and postsy-
naptic neurons.

2. Learning depends on the correlation between the processes of these neu-
rons, which is reflected in their weights.

Even though Hebb’s original postulate only includes LTP, learning can only be
achieved through a combination of strengthening and weakening synapses, to
prevent saturation [85; 83]. The exact nature of the mechanisms involved in
synaptic plasticity is not yet fully understood, and still an active field of research.
A relatively new observation, which emerged in the late 90s, is, that for synap-
tic plasticity the precise timing of spikes is very important [86; 8; 7; 87]. This is
further emphasized by the discovery that stringent windows, in which the oc-
currence of a spike induces a certain reaction, exist [88]. As shown in Figure 2.4,
these temporal windows are usually, but not always, asymmetric [83]. However,
in [89; 90] experiments are presented suggesting that the precise spike-timing and
its effect on synaptic plasticity are part of a bigger picture.

2.1.2. Self-Organization in the Brain

Neurobiological learning paradigms apply self-organized processes. These are
based on observations by scientists that in some cognitive processes learning is
controlled unsupervised by experience and external input [91]. Respective brain
structures, referred to as Self-Organizing Systems (SOSs) [92], are already present
before birth [93; 94], but detailed self-organized areas are educated through-
out life [95]. Thereby, feature maps of the mammalian cortices which are estab-
lished as synapses build up the neighborhood- or topology-preserving maps [96].
Within the sensory cortex, this form of topographic organization of adjacent nerve
cells is often triggered by neighboring cells within the sensory input space [97].
An SOS is a self-containing, internally regulated structure that emerged through
evolutionary processes such as mutation and selection. A very interesting prop-
erty of an SOS is the ability to react to external influences and still restabilize
itself [92]. The underlying architectures of SOSs are referred to as brain maps
in literature [98; 99], describing the brain’s self-organization regarding spatial
representations. Hence, mappings in the sense of topologically ordered rep-
resentations of features [96]. Besides Penfield’s and Rasmussen’s well-known
Homunculus [99] examples include the tonotopic map discovered in cats’ audi-
tory cortex [100], the gustotopic map located in the primary taste cortex [101],
the whisker map found in rodents’ barrel cortex [102] and a map of the same
name in the somatosensory cortex of primates [103]. By artificially visualizing

17

2. Foundations

the blood flow, oxygen uptake, electric current or phosphate metabolism, for ex-
ample, using gamma cameras or magneto-encephalography, brain maps can be
observed [98]. Malsburg [104] and Willshaw [94], used the ordered projection
of the retina to the visual cortex as a template. In their prototypical design, the
retina and the cortex are each represented as a sheet of cells. Thereby, neighboring
presynaptic cells within the sheet representing the retina project on neighboring
postsynaptic cells of the sheet representing the cortex. Connections of the postsy-
naptic sheet are excitatory between closely neighbored cells to strengthen the ac-
tivity additionally. Respectively, inhibitory connections join cells farther apart, to
prevent neural activity. These two mechanisms generate continuous mapping.

2.1.3. Human Vision

The Retina

The human retina, the brain’s source of visual information, is a multi-layered
neuronal network located in the back of the eye. The retina is not only respon-
sible for data acquisition but also for encoding and transmitting information to
the brain [105]. It achieves that by converting spatiotemporal illumination in-
formation into pulses [106]. Of the many layers of the retina, the photoreceptor,
the outer plexiform and the inner plexiform layer are mainly responsible for the
processing [105; 107]. As visualized in Figure 2.5, each layer contains special cell
types, crucial for the function of the layer. Photoreceptors, the light-sensitive cell
types, build up the photoreceptor layer while bipolar cells are located in the outer
plexiform layer and ganglion cells in the inner plexiform layer. Photoreceptors,
which absorb light and convert it into an electrical signal that triggers the release
of neurotransmitters [106], can be divided regarding which wavelengths of light
they react. Cones are responsible for color vision and specialized sub-types for
the different frequencies of red, green and blue light exist [108]. The other pho-
toreceptor of the retina, the rod, is responsible for motion detection, night vision
and peripheral vision. This cell type is much more prevalent in the retina with
120 million rods as opposed to 6 million cones [105]. Both types of photoreceptors
are at their resting potential, the non-excited normal state, if no light penetrates
the eye. These cell types are connected to bipolar and horizontal cells which are
further connected to amacrine cells and ganglion cells. While at their resting po-
tential photoreceptors release neurotransmitters exciting bipolar cells in the outer
plexiform layer, which subsequently inhibit ganglion cells in the outer plexiform
layer also through neurotransmitters. Hence, in darkness, photoreceptors and
bipolar cells are active while ganglion cells are inactive. If light enters the eye,
however, the process just described causes ganglion cells to be excited and, by
increasing their action potential, stimulate the visual center of the brain via the
optic nerve [109]. The components visualized in Figure 2.5 build up a pipeline for
visual preprocessing, transforming simple dots to more complex visual elements
embodying shapes and motions [110]. In this context, photoreceptors can be seen

18

2.1. Design and Functioning of the Human Brain

Figure 2.5.: Simplified sketch of the human retina reduced to three layers, the
photoreceptor layer, the outer plexiform layer and the inner plexiform
layer. The outer plexiform layer embodies bipolar cells and the in-
ner plexiform layer embodies ganglion cells. Supplemented with the
layer-connecting horizontal and amacrine cells. Image source: (Stef-
fen et al. 2019c)

as pixels generating input for neural pathways. Particularly important for human
vision is the parvocellular and the magnocellular pathway. As neurons of the par-
vocellular pathway are sophisticated regarding high spatial resolution but have a
relatively low temporal resolution, they are responsible for details and color per-
ception. Neurons within the magnocellular pathway are oppositely specialized,
with low spatial resolution and a high temporal resolution, which make them
well-suited for detecting motion and depths. Although such specializations ex-
ist, there is not, as originally assumed, a clear division of responsibility. Instead,
an integrated projection from all pathways into the visual cortex is responsible
for all visual sub-tasks [111; 110; 105].
As well bipolar cells as ganglion cells can be divided into two classes, the neu-
rons that code for a positive light difference, the ON-types, and those that code
for a negative one, the OFF-types. If the illumination is uniform over some time,
the membrane potential of both neuron types is at their resting state, however,
an increase in lightening stimulates ON-types while a decrease stimulates OFF-
types [108]. This effect is handled by horizontal cells which connect photore-
ceptors and bipolar cells laterally. Thereby, horizontal cells compare each new
signal from the photoreceptors to a representative value that represents a mean.
Amacrine cells are inhibitory interneurons that transmit signals between bipolar
and ganglion cells [106]. The retina implements multiple design principles [107;
112; 113; 106] to increase the quality and flexibility of signal processing while
guaranteeing efficient coding with as little information loss as possible. The fol-

19

2. Foundations

lowing list is taken from (Steffen et al. 2019c):

? ???

Design Principal 1. Local automatic gain control
The accuracy is flexibly adapted to the scene instead of measuring
changes in lightning in terms of absolute values. This is realized
through time-space bandpass filtering and adaptive sampling at the
photoreceptor level. As a consequence, a larger dynamic range is
achieved, thus, the ratio between maximum processable signal and
background noise increases.

? ???

Design Principal 2. Bandpass spatiotemporal filtering
Suppressing outliers in the frequency in the outer plexiform layer has
two beneficial effects. Redundancies caused by low frequencies are dis-
carded and motion blur caused by high frequencies is suppressed. This
is further enhanced by high-pass filters located in the inner plexiform
layer.

? ???

Design Principal 3. The equalization of the signal
Distinguishing bipolar and ganglion cells in ON- and OFF-types lowers
the spike rate and thus, decreases the data throughput. This represents
a very sparse coding form.

? ???

Design Principal 4. High spatial and temporal resolution
The retinal pathways of sustainable neurons, the parvo cells, and
volatile neurons, the magno cells, induce a spatially high and tempo-
rally low resolution in the center of the visual field. The reverse effect
is true for its corners.

Depth Perception

The human eye projects the 3D environment onto a 2D image and the exact posi-
tion of objects in space is lost. Estimating distances, which is essential for various
manipulation tasks and safe navigation in unknown environments, is only pos-
sible for us as humans because we can reconstruct depth information from 2D
images, and are thus capable of 3D perception [109; 114]. There are many mech-
anisms involved in human depth perception which can be roughly divided into
oculomotor and visual depth stimuli [115; 116], as shown in Figure 2.6(a). For
oculomotor depth stimuli, which are useful for viewing at close distances, the
position of the eyes and the tension of eye muscles is crucial. For close objects,
the muscles are tense, while for more distant objects they are relaxed. Thereby,
two techniques are distinguished, convergence for distances up to 600 cm, and
accommodation used for ca. 20-300 cm, as shown in Figure 2.6(b). Convergence

20

2.1. Design and Functioning of the Human Brain

Depth
perception

Oculomotor Visual

ConvergenceAccommodation BinocularMonocular

Dynamic Static

FusionSimultaneous
Vision Stereopsis

(a) (b)

Figure 2.6.: (a) An overview of the different mechanisms involved in human
depth perception, which can be divided roughly into oculomotor and
visual depth criteria. (b) Oculomotor or physiological stimuli are ob-
tained by accommodation and convergence. Image source for (b)
is [117].

consists of the movement of the eyes toward the center when viewing nearby ob-
jects, however, only two-thirds of the population use it as a cue to depth [118].
Neural mechanisms for depth perception vary for individual humans. Accom-
modation results from the change in the shape of the crystalline lens when ob-
jects at different distances are focused [119]. Visual stimuli, which can be divided
into monocular and binocular, make a far greater contribution than oculomotor
depth stimuli in human 3D reconstruction [109]. Monocular vision refers to all
the information we can extract from a simple 2D image to understand a scene.
First, static cues like the knowledge about the common shape and size of an
object as well as texture and shadows. Also, occlusions can be used to deter-
mine the arrangement of objects. In addition to static monocular vision, there is
dynamic monocular vision. It arises from motion-induced depth stimuli gener-
ated by head and eye movements. Besides objects being covered and uncovered
due to the observer’s motion, this also includes parallax, which occurs if an ob-
server moves in parallel to several objects that are located at different distances.
Thereby the observer perceives objects to move slower if they are located fur-
ther away [120; 109; 121]. Binocular vision is the ability to obtain the 3D shape
of an object through the interaction of both eyes. It is caused by the differences
between the images of both eyes of the same scene and comprises simultaneous
vision, fusion and stereopsis. As the sensitivity is higher [122] and latencies are
shorter [123] for binocular vision, compared to monocular, this method is more
robust and precise. Simultaneous vision, inhibiting false visual sensations and
disturbing artifacts as well as fusion, necessary to avoid double vision [120; 109],
only plays a minor role. In contrast, stereopsis also referred to as stereoscopic
depth perception, is especially powerful because two perspectives allow a more
precise computation of the distance to objects [126]. The correspondence prob-
lem, shown graphically in Figure 2.7(a), poses the issue of which points of the left
and right eye refer to the same point in the real world. A horizontal displacement

21

2. Foundations

(a)

(b) left

(c) right

(d)

Figure 2.7.: (a) Ambiguities in retinal projection cause the correspondence prob-
lem. Four objects are captured by the eyes from two slightly different
perspectives, shifted laterally. L1 − L4 represents how the objects are
perceived by the left eye andR1−R4 by the right eye respectively. The
dots on the rays mark all possible matches, but only the red dots are
correct. (b) & (c) almost identical images with random dots. (b) is cre-
ated from (c) by cutting out a square of dots and shifting it to the side,
the size of the shift determines the perceived depth. The empty space
is refilled with random dots. (d) Participants perceived the shifted
square as if it was higher above the rest of the image. (a) is adapted
from [124]. Image source for (b) & (c) is [125] & for (d) is [117].

is created by the ca. 6 cm shift regarding the view angle of both eyes. The result-
ing difference in image location perceived by the left and right eye is known as
disparity. Since disparity, is inversely proportional to the depth it can be used
to reconstruct 3D objects from two 2D images, thus solving the correspondence
problem. Thereby, the corresponding dots of both images must be determined
to obtain disparity [120; 109; 125]. Even though binocular vision is a very old
research topic, the association between spatial depth and disparity is relatively
new. As stated in [127], two developments in research regarding binocular vision
have contributed significantly to that. First, the invention of the stereoscope by
Wheatstone [128], opened up new possibilities for experimental research. Sec-
ond, Julesz’s separation of depth perception and object recognition by the use
of a Random-dot Stereogram (RDS). Humans solve the correspondence problem,
shown in Figure 2.7(a), reliably. However, Julesz was able to prove that the per-
ception of spatial depth takes place in the brain and not in the eyes [125; 114].
Before, the common scientific understanding was that the images of both retinas
were processed separately by the visual system. Hence, the theory was that depth
reconstruction only follows scene segmentation and object recognition which was
allegedly executed individually for each eye. The breakthrough revelation Julesz
made was that stereopsis works perfectly well with an RDS, which proved that
it does not use object recognition as a basis. In [125; 114] it is presented, how the

22

2.1. Design and Functioning of the Human Brain

human brain solves the correspondence problem. In experiments, Julesz showed
RDSs, identical images of dots with a shifted square, to his participants, as shown
in Figure 2.7(b) and (c). The test participants were able to recognize a depth map
as shown in Figure 2.7(d). This effect is caused as the brain tries to reconcile the
two images, but there is a height difference. That humans can see depth in an
RDS shows also that binocular disparity is an especially strong depth stimulus,
as it does not require any monocular cue. Research, based on the invention of
RDSs, led to one of the most influential books in cognitive science and the foun-
dational work for stereo vision [129]. However, the exact mechanisms of how the
brain establishes connections between two dots, thus solving the correspondence
problem, is still an active field of research.

2.1.4. Spatial Awareness in the Brain

For achieving a deeper understanding of the sense of orientation, present in hu-
mans and animals, researchers have conducted a great variety of experiments
and presented several theories [41]. Behavioral research on spatial navigation
has shown that besides navigating great distances, mammals and also smaller
species, navigate flexibly and very efficiently in cluttered surroundings. An in-
ternal spatial representation of the environment is somehow present in the brain.
Edward Tolman supported this observation with experimental evidence on spa-
tial navigation in rats and introduced the name "cognitive map" in this context [40].
A widespread brain network is involved in spatial representation, direction and
orientation, but, spatially modulated neurons, located in the hippocampus, play
a major role [42; 41]. A variety of different cells interact here, however, place cells,
head direction cells and grid cells have been identified as particularly important
and therefore the cognitive map’s neural basis [41]. Even though many other cell
types have been discovered, their functionality is not as well understood and in
some cases intertwined with other parts of the brain. However, many details re-
garding the form and structure of this hippocampal spatial map, such as distance
metrics, landmark construction and the applied coordinate system, are still un-
der discussion. Furthermore, some voices in the scientific community still doubt
the assumption of a map because, according to their findings, place cells are ar-
ranged as a memory. Hence, instead of marking a specific spatial point within
a map like a brain structure, previous events are recalled [131]. A place cell is
a specialized cell whose activation depends on spatial location. It encodes for
specific spatial areas referred to as place fields, thus its spiking intensifies in case
the animal enters its respective place field in the real world [132]. A Gaussian
function can be applied to approximate place fields [133], whose size can be in
the range of 20 cm to several meters, depending on where their representation
is located in the brain [130]. Place cells do not represent space topographically,
thus, neighboring cells can encode for distant regions of the environment and
a location may be represented by a group of non-adjacent neurons [134]. Even
though place cells have first been discovered in rats [132; 42], similar cell types

23

2. Foundations

(a) Grid pattern

P1
,P5

P2,P5

P2,P3

P2,
P3

P1,
P4P3,

P4
P4,
P5

P2,
P4

(b) Interaction of grid and place cells

Figure 2.8.: (a) The most common pattern of grid cells is the hexagonal blue struc-
ture. However, as the space in between these cells can be approx-
imated by a triangle, this is also used as a description in literature.
(b) Simplified relationship between grid and place cells as explained
in [130]. The place cells P1-P5 are related to grid cells which be-
long to several grids varying in resolution and orientation. Adapted
from: (Augenstein 2021)

were also found in other animals [135]. As place cells by themself do not ex-
plain a spatial cognitive map, their existence in the hippocampus was doubted
by many researchers [136]. Thus, the interaction of place cells with other neuron
types was studied extensively and led 2004 to the discovery of grid cells as they
showed comparable spike patterns [137]. While place cells are located in the hip-
pocampus, grid cells are part of the medial entorhinal cortex [138; 130]. They are
arranged in a regular, grid-like pattern mosaic representing any 2D surrounding
the animal has previously entered. In literature, two ways to describe the pattern
are used a periodic triangular grid [138], or a hexagonal pattern depending on
the perspective, as visualized in Figure 2.8(a). Grid cells are generally active in all
environments, the information concerning the spatial representation is obtained
by which ones are activated simultaneously [138]. In contrast to visual sensory
processing, place cells do not spike for one specific input cue, instead, they can
only be triggered if several different cues are associated [42]. Based on neuro-
physiological research and anatomical connectivity it is assumed that grid cells
are the main input source of place cells [130]. Thereby, 10-50 grid cells’ summed
activity builds up one single-place field. However, each grid cell might be the
input source of several place fields. Grid cells originate from several overlaid
grids with diverse orientations, resolutions and spatial displacement, as shown
in Figure 2.8(a). The movement of the animal is thus followed in several grids
at the same time [138]. A symbolic representation of this theory of how place
and grid cells are connected is visualized in Figure 2.8(b). Preliminary results
imply many constraints on how grid and place cells are connected, however, re-
spective research is still very much at the beginning [130]. A scientific consensus
is reached that place cells are not autonomous, but combine signals of several

24

2.2. Modeling the Human Brain

different grid cells from grids with different specifications. Hence, an animal’s
position is encoded in multiple layered grids and the connection to place cells
decodes this relationship. Finally, head direction cells work similarly to a com-
pass and provide information about an animal’s orientation without additional
sensory input [139].

2.2. Modeling the Human Brain

No matter how powerful an algorithm is, it must be implemented on hardware
and many applications like mobile robots, cars, phones and drones have limited
energy resources. In addition, the ever-increasing global energy consumption
and its consequences for the climate also require more resource-friendly solu-
tions. The question remains, how to implement algorithms in an energy-efficient
way for versatile applications. While algorithms often mimic the brain, up until
recently, hardware was developed without considering the design of nature. To-
day’s hardware is mostly sequential, in contrast to the highly parallel brain which
solves dynamic processing through action potentials.

2.2.1. Networks of Spiking Neurons

Spiking Neural Network (SNN) are biologically more accurate as they supple-
ment ANN with a temporal component [4; 5; 6]. This brings new challenges and
thus new solutions to neural learning as well for software and hardware. The
technical development of SNN can be roughly divided into three phases, as visu-
alized in Figure 2.9. The logical building blocks, referred to as the neuron model,
and the mode of information transmission as well as the network structure dif-
fer significantly for each. The 1st generation is based on McCulloch-Pitts neurons

Figure 2.9.: The computational units and the mode of information transmis-
sion for the three generations of ANN. The 1st generation applies
McCulloch-Pitts neurons in a multi-layer perceptron only transmit-
ting binary values. While neurons of the 2nd generation use a contin-
uous activation function and can handle numerical data. The 3rd gen-
eration processes temporal information of individual spikes, making
it most similar to the biological model.

25

2. Foundations

which are also referred to as perceptrons or threshold gates [4]. They are orga-
nized in a multi-layer perceptron only transmitting binary values. Neurons of
the 2nd generation use a continuous activation function and can handle numeri-
cal data. The 3rd generation processes temporal information of individual spikes,
making it most similar to the biological model. SNN are specially designed to
deal with time-related data, thus, spiking neurons unlike analogs, consider the
temporal dynamics. While neurons of a traditional ANN are based on a differen-
tiable activation function, in spiking neurons the membrane potential evolves in
time depending on the input of weighted spikes. This causes complex network
structures instead of clean layers, leading to very powerful systems but requiring
more complex learning algorithms.

Neuron Models

Neuron models are an abstraction of the biophysical properties and processes of
neurons introduced in subsection 2.1.1, strictly speaking, an equivalent circuit for
the selective ion channels. In the electrical circuit, all channels of one ion type are
combined into one conductance, referred to as leak. The conductivity is recorded
as an invariant ohmic resistance R and the electromotive force E is modeled by a
battery in series [64]. However, the different neuron models differ greatly from
each other, both in terms of biological plausibility and performance. The most
commonly applied neuron model is the Integrate-and-Fire (IF). Surprisingly, this
model was developed in 1907 [140], long before neuronal mechanisms responsi-
ble for the action potential were explored. Hence, Lapicque modeled this phe-
nomenon without any deeper knowledge about the biophysical basis [141]. As a
result, the shape of the spikes or even processes like the refractory period are not
represented in the model [142]. This neuron model is characterized by a simple
electrical circuit and a focus on precise spike time. The electric circuit, shown in

(a) (b) (c)

Figure 2.10.: (a) electric circuit of an IF model consisting of a parallel capacitor
and a resistor. (b) An action potential generated by charging the ca-
pacitor over a threshold. (c) The system’s reaction to a time-varying
input current. Image source: [141]

26

2.2. Modeling the Human Brain

A in Figure 2.10, only embodies a capacitor and a resistor in parallel. They are to
artificially reproduce the capacitance and leakage resistance of the cell membrane
respectively. A simple circuit like this is not able to reproduce action potentials,
however, Lapicque argued that when the capacitor is charged above a threshold
an action potential is generated and the capacitor is discharged as shown in B
in Figure 2.10. The IF has received numerous extensions and variations over the
years [143] for example concerning the role of inhibition or PSP. The simplest
form, is the Leaky-Integrate-and-Fire (LIF), formalized as [143; 69]:

τm
du

dt
= −Ileak(t) + Isyn(t),

Ileak(t) = u(t)− urest,
Isyn(t) = RI(t),

(2.1)

whereby, the neuron’s membrane time constant is τm, the membrane potential u,
the resting potential at equilibrium urest. Thus, the LIF is given by Isyn, a current
representing incoming spikes, from which the leakage Ileak is deducted. Hence,
input currents are integrated by the membrane potential and part of it is leaked
by the leak conductance and finally an idealized action potential is emitted by a
threshold mechanism [69]. Even though it ignores the morphology of neurons
completely [143] is widely used [69]. A powerful but simple and general model
is the Spike Response Model (SRM) introduced in [144]. It is a generalization of
the LIF model, giving a simple description of the generation of action potentials
while reproducing neuron activity on a purely mathematical basis. For the LIF
model voltage is formulated through differential equations. In contrast, the SRM
is formalized by the use of filters. The biggest difference in practical use, how-
ever, is that the SRM maps the biological refractory period. An extremely realistic
model that requires great computing times is the Hodgkin-Huxley (HH) model,
presented in [145]. It is an artificially quite accurate replica of the giant axon of a
squid neuron. It includes complex physiological features like the three ion chan-
nels discovered in experiments. Thus, it generated action potentials with shape,
amplitude and duration similar to the ones emitted by biological neurons. The
HH model is also based on an electrical circuit, however, this depicts the mem-
brane potential in a more detailed manner and takes into account the dynamic
nature of the different ion channels found in the soma and dendrites. The current
I(t) embodies the capacitive current IC and additional components IK which are
summed up over all ion channels formalized as [69]

I(t) = IC(t) +
∑
k

IK(t). (2.2)

In the original version, this includes three types, sodium (Na+), potassium (K+)
and a leakage channel L. Thereby, the currents regarding the three types are
formulated as [145]:∑

k

Ik = gNa+m3h(u− ENa+) + gK+n4(u− EK+) + gL(u− EL) (2.3)

27

2. Foundations

As the availability of computational resources has improved greatly in recent
years, efficient simulation of such a complex computational model is no longer
impossible. Nevertheless, this model is rarely used. Reasons include its diffi-
cult handling as it is not easy to develop an intuitive understanding of its neu-
ronal dynamics. Furthermore, the enormously large parameter space and the fact
that such models cannot be analytically explored pose major problems in prac-
tice [143]. The Izhikevitch [146] neuron model is a compromise between biologi-
cal plausibility and computational efficiency. It is, like the IF, a phenomenological
model, meaning it only depicts a neuron’s input in terms of currents and its out-
put in terms of spikes. Any electrochemical reactions or characteristics of the
action potential, as described in subsection 2.1.1, are hereby neglected. However,
the Izhikevitch model is a reduced derivation of the HH-model, but it should be
noted that it is closer to the LIF in terms of biological realism. Its simulation is
very performant and it can reproduce some naturally occurring spike behavior,
but not as comprehensively as the HH model. For modeling it applies a differ-
ential equation in 2-dimensions. Researchers concluded that the characteristics
of an action potential, like its shape, are irrelevant. This is motivated by the ob-
servation that spikes do not differ and the information lies solely in their precise
timing. Therefore, it is not surprising that many scientists get by with simple phe-
nomenological neuron models since the exact spike, times which hold all relevant
information, is also well implemented here.

Learning with Spiking Neurons

Learning in ANN and a sense also in SNN is just adjusting connection weights
in a large graph [147]. Despite great efforts by scientists to find performant and
biologically plausible algorithms, there are only a few candidates that meet these
requirements [84]. The two methods that have received the most attention, are
the back-propagation [148; 149] and Hebbian learning [82]. Interestingly, they
have an opposite principle of operation as learning in Hebbian learning takes
place locally and in backpropagation globally, through the back transport of the
error. Also, Hebbian learning is biologically plausible, as introduced in subsec-
tion 2.1.1 including a graphical representation of its biological occurrence in Fig-
ure 2.4. With the local properties, post-synaptic activity yi, presynaptic activity yj
and synaptic strength between these neurons wij it can be formalized as:

∆wij ∝ yiyj (2.4)

Regarding supervised learning, no method has as many successful applications
in the most diverse areas as the stochastic gradient descent back-propagation [84].
It is formalized as

∆wij ∝ Biyj, (2.5)

whereby, Bi is the error that is back-propagated through the network to the neu-
ron i [149]. In stark contrast to Hebbian learning, back-propagation is not bi-
ologically plausible. Hence, at least its original version is not applicable for

28

2.2. Modeling the Human Brain

Figure 2.11.: The learning rule STDP and Anti-STDP strengthen synapses accord-
ing to precise spike timing. Exactly opposite events lead to the same
result in both rules.

SNN [150]. That back-propagation originally could not be applied to SNN is
caused by the non-linearity of spike-based communication making the neurons
non-differentiable. Moreover, this is because the continuous updates, that are
part of standard SNN dynamics interfere with alternating forward and backward
phases. Also, the history of neuronal activity cannot be stored in the neuron due
to memory constraints [151]. However, in a step-wise evolution, several of the is-
sues, regarding the back-propagation algorithm for SNN discussed in [151] have
been gradually solved. This development moves from the SpikeProp [152] via the
eRBP [153] and the SuperSpike [154] to DECOLLE (Kaiser, Mostafa, and Neftci
2020).
Even though it is inferior to back-propagation in terms of performance, Heb-
bian learning forms the basis of many learning theories. While back-propagation
is a precisely defined algorithm, Hebbian learning is a somewhat soft concep-
tual term, for example, no equations are used in Hebb’s original work [84]. As
LTD and LTP build the basis for learning and memory and short-term plasticity
only deals with sensor-related reactions, as presented in subsection 2.1.1, long-
term plasticity is the more interesting biological process for artificial learning
algorithms [71; 69]. Hence, especially biologically plausible algorithms are of-
ten related to LTD and LTP. The 3rd generation of SNN is extremely power-
ful but requires more complex learning algorithms. The most common one is
Spike-Timing-Dependent-Plasticity (STDP) [155; 141], which locally strengthens
connections based on correlated activities as shown in Figure 2.11. When used
for ANN, Hebb’s principle defines how synaptic weights between artificial neu-

29

2. Foundations

Learning Pro Con

Conversion

• ANN to SNN conversion is eas-
ily applicable

• experience in training tradi-
tional networks can be used

• conversion causes performance
loss

• restrictions due to previous net-
work architecture

• spike timing neglected

STDP

• close to the biological model

• different neuron models

• spike timing incorporated

• allows online learning

• usually applies the external
non-spiking classifier

• not as performant as ANN-
training

Backprop

• very performant

• spike timing is considered

• SNN specific parameters are
part of training

• adaptation of LIF model neces-
sary

• no scientific consensus about
technique yet

Table 2.1.: Benefits and drawbacks of different learning methods for SNN.

rons are adapted. Thereby, if neurons are stimulated simultaneously, the weight
of their connecting synapse increases and if they are activated separately it de-
creases. Hence, synapses are strengthened if a presynaptic spike occurs shortly
before a post-synaptic one and respectively, weakened if a postsynaptic one hap-
pens right before a presynaptic spike. The learning rule STDP captures accurately
this biological process and thereby increases the sensitivity of the post-synaptic
neuron to presynaptic spike timing. It is often formalized as

∆wij ∝ f(w)× e
−|∆t|
τ , (2.6)

with the difference in time between the post- and presynaptic spike ∆t = yi − yj ,
the time constant τ and the function f [87]. Besides the common form of STDP,
Anti-Spike-Timing-Dependent-Plasticity (Anti-STDP), also called Anti-STDP, was
observed in the human brain. Anti-STDP strengthens synapses in case a post-
synaptic spike is emitted directly before a presynaptic one, hence, the synapses
are strengthened in the opposite direction in contrast to standard STDP [155; 141;
156; 157] as visualized in Figure 2.11.

30

2.2. Modeling the Human Brain

Learning with SNN is essentially a problem that has not yet been fully solved
because there is no such general and performant solution as bb for deep learning.
Therefore, some scientists resort to the method of training a conventional ANN
and then covert it into an SNN. Thereby, the benefits of having a performant train-
ing algorithm are combined with the advantage of using energy-efficient hard-
ware. The advantages and disadvantages of all three presented alternatives for
training SNN are shown in Table 2.1. For an in-depth discussion about learning
in SNN, refer to [147; 158; 159].

Parallel Hardware and Neuromorphic Chips

SNN are in theory very powerful, however, their simulation on Central Process-
ing Unit (CPU), especially for large networks, is not performant [14]. CPU are
based on the von Neumann architecture, thus, data and instructions are stored
separately, resulting in sequential process execution [160]. SNN simulation is a
parallel problem because three steps must be executed continuously for all neu-
rons, 1) neuron state update, 2) synapse state update and 3) weight adaptation,
thus the actual learning [161]. Two parallel hardware architectures process SNN
more efficiently than CPUs. First, neuromorphic hardware, specially developed
for the simulation of SNN and based on Mead’s analysis of processing in the
brain [162] and secondly, the easily accessible and widely used Graphics Process-
ing Unit (GPU).
The development of AI algorithms in recent years has been rapid and their suc-
cess, especially regarding the application of neural networks and deep learning
is highly impressive. To achieve this power, however, massive amounts of data
and computing resources are necessary. The induced energy consumption is not
sustainable and fit for the future. This problem is due to the enormous discrep-
ancy between the processing methods of neural networks and the classical von
Neumann architecture. Furthermore, biological brains are sophisticated regard-
ing energy and data requirements, not only but in particular for tasks that are
generally better solvable by humans than machines [163]. The research field neu-
romorphic computing and engineering aims to overcome the mentioned discrepancy
caused by using sequential processors for parallel processes [163]. At its emer-
gence the term neuromorphic referred solely to the artificial imitation of neurobi-
ological structures and processes of the nervous system employing Very Large
Scale Integration (VLSI). Today, the term is used more openly, describing a wide
range of systems capable of simulating SNNs as well as resource-saving and bi-
ologically detectable algorithms and techniques regarding spiking neurons and
their learning principles [163]. As shown in Figure 2.12, the motivation for neu-
romorphic engineering is two-fold. Firstly, to better understand neural processes
through implementing physical emulations and secondly to conceive low-power
innovative devices that strongly deviate from the conventional systems for sen-
sory processing [163; 164]. Design decisions are hereby strongly influenced by
the model given by the nervous system regarding not only neurons, synapses
and network structures but also sensory systems. Even though neuromorphic

31

2. Foundations

Figure 2.12.: Different perspectives on neuromorphic technologies. The bottom-
up approach, replicating natural intelligence, is opposed to the top-
down approach of applied research. Graphic is inspired by [164]

systems have a unique motivation and origin, in practice there are no precise def-
initions of what neuromorphic hardware must contain or achieve. However, pro-
cesses and memory in a neuromorphic system tend to be analog and distributed
while communication is usually time-dependent, direct and asynchronous [165].
There is a high-level distinction between neuromorphic systems whereby neu-
rons are either implemented as digital or analog components, whereby analog is
the more complex method [166]. The scalability of a neuromorphic system de-
pends highly on its power consumption and space requirements. Hence, analog
neurons are regarded as the more promising method as these are more efficient
in both areas. A quantitative evaluation [166], comparing an analog implemen-
tation of a LIF neuron model with a digital one, showed that the digital imple-
mentation needs about 20 times more energy and 5 times more space. The use
of analog boards is further supported by their ability to update continuous states
without discretization errors [158]. However, as analog computations are less ro-
bust to noise and are temperature sensitive exact quantitative simulations and
reproducible results are achieved better using digital circuitry [163]. Neverthe-
less, several analogs, as well as digital boards, have been developed in recent
years. While basic design principles like Address Event Representation (AER)
are shared, each board pursues different design goals [158]. Examples for analog
neuromorphic boards are Neuromimetic ICs [167], Neurogrid [168] and Brain-
ScaleS [169; 170; 171] and for digital ones TrueNorth [172], Loihi [11] and spiking
neural network architecture (SpiNNaker) [10].
BrainScaleS’s inter-chip communication is asynchronous [173]. It is designed
to achieve maximum flexibility and runs 105 times faster than biological real-
time, which makes it perfect for extensive experimental studies [158]. In con-
trast, Neurogrid runs in biological real-time, making it ideal for neurorobotics,
and is optimized towards energy efficiency. However, this results in signifi-

32

2.2. Modeling the Human Brain

cantly less configuration flexibility [158]. Regarding digital boards, Loihi and
TrueNorth are both fully custom Application Specific Integrated Circuit (ASIC)
realizations [174]. As TrueNorth was developed targeting commercial applica-
tions the implemented neuron and synapse models are relatively high-level and
abstract [158]. Moreover, a system clock exists but is not used globally, which al-
lows a partially asynchronous and partially synchronous device. Even though the
system is deterministic, stochastic behavior is possible by using a pseudo-random
source [173]. Unlike TrueNorth the Loihi design is mostly asynchronous. It aims
at the integration of learning rules which are distributed over the whole network
to allow more efficient learning without transporting data over long routes. Fur-
thermore, this chip has no of-chip memory, thus computation and storage are
integrated. In strong contrast to the systems presented so far, SpiNNaker uses
standard Advanced RISC Machines (ARM) microprocessors to manage neural
dynamics. On the one hand, it enables more flexibility as well for neuron models
as network topologies [158]. On the other hand, it leads to a less efficient architec-
ture, as the control memory and unit become an overhead [175]. SpiNNaker uses
a hierarchical implementation of AER as the communication framework allow-
ing for great scalability regarding network size [173]. Comprehensive overviews
about the design and applicability of neuromorphic hardware are given in [158;
173; 174].
GPUs are well suited for parallel computations, but not per se suitable for sparse
communication, as necessary for simulating SNN. To overcome this issue, and
thereby harness the computational power of a parallel hardware architecture
that is more accessible and cheaper than neuromorphic hardware GPU-enhanced
Neuronal Networks (GeNN) was designed [12]. It is a code-generating C++ li-
brary enabling users to run neuron models and learning rules efficiently on GPU,
without having expert knowledge of low-level Compute Unified Device Archi-
tecture (CUDA) programming.

2.2.2. Self-organizing Neural Networks

A popular algorithm to create a spatially organized representation of large quan-
tities of unstructured data to disclose correlations between data items is the Self-
organizing Neural Network (SONN) and especially its most famous represen-
tative the Self-Organizing Map (SOM) [97]. In contrast to ANN, or related ML
methods, SONN are unsupervised. SONN provide an efficient way to reduce the
dimensions of presented high dimensional data while preserving similarity rela-
tions and inducing a topological structure and parameterization [176; 177]. Even
though many deviations and extensions of the standard SOM exist, the most com-
mon is a 2D, non-linear approximation of a high-dimensional data manifold [97].
Ideally, the mapping should function in such a way that all instances of the in-
put space are represented by a smaller number of neurons so that similar input
data is represented by neurons that are close to each other [176]. The SOM’s suc-
cess story is largely based on the straightforward definition and relatively simple

33

2. Foundations

practical handling. Its interesting clustering properties and visualization abilities
led to a wide range of application possibilities in the most diverse fields [91]. An
important cornerstone for SONN was laid in 1980 by the Finish Professor Tuevo
Kohonen [178] who invented the SOM. The SOM is an extension of the k-means
algorithm, whose peculiarity is that it preserves well topological structures of the
data [91]. Historically, the formation of topographic maps began with two types
of self-organizing processes as well as two types of network architectures [97]. Be-
sides the well-known competitive learning, used in many SOM related algorithms,
gradient-based learning forms an alternative learning process for self-organization.
Regarding network architectures, the Willshaw-von-der-Malsburg model [94] con-
sists of two sets of neurons, the input space is therefore also discretized. The Ko-
honen model [178] includes only one set of neurons, the output space, while the
input space is continuously valued. Nowadays SOM apply almost exclusively
competitive learning and the Kohonen architecture. In the early eighties, SOM
were primarily used for neuro-biology modeling [91]. However, this changed
drastically after a short time. In [179] a variety of the algorithm’s application
areas are listed, emphasizing its versatility despite the actual simplicity of the
method. This includes but is not limited to, vision, speech and language [180;
181], musical studies, process control, robotic motion control [182], design of
electronic circuits, chemistry [183; 184; 185], medicine, biology, economics and
mathematics. A comprehensive compilation of the various application areas has
been renewed several times [186; 187; 188]. A SOM has also been used for stereo
vision, more precisely to solve the correspondence problem, thus to match the
corresponding dots of two images from the same scene. Early approaches are
presented in [189; 190], while [191] uses self-organization for 3D hand pose esti-
mation and [192] generates 3D face models from stereo images. Comprehensive
overviews, each including the latest developments at the time, have been pro-
posed in [97; 177]. A review regarding the application of SOM for robot motion
control is given in [182]. A big step towards the biological model, introduced in
section 2.1, was made in [96; 193; 194] by implementing self-organizing networks
with spiking neurons (see subsection 2.2.1).

Learning through Adaptation

The learning process is divided into two phases [97]. Firstly, within the compet-
itive stage, the winning neuron, referred to as the Best Matching Unit (BMU), is
selected. This is achieved by a “Winner-Takes-All”-approach, also referred to as
lateral inhibition, thus only one neuron is fired at any time. Therefore, each neu-
ron a ∈ A of the output layer competes to determine the neuron whose synaptic
weight has the smallest Euclidean distance d to the input x. This can be formal-
ized as:

BMU = min
∀a∈A

d(x,wa) (2.7)

By use of the Euclidean distance, a Voronoi diagram of the input space is ob-
tained. Thereby each neuron of the map represents an input space region, bounded

34

2.2. Modeling the Human Brain

by perpendicular bisectors connecting pairs of weight vectors. Secondly, in the
cooperative stage the BMU synaptic weights, and to a lesser extent also those of
its directly neighboring units, are updated. After the presentation of each input
vector, the network’s weight vectors are updated by [195]:

∆wa(t+ 1) = η(t) · θ(t)||x(t)− wa(t)||. (2.8)

Thereby, the continuously decreasing learning rate is given by

η = η
i

#samples

0 (2.9)

and θ(t) is the SOM’s neighborhood function, which defines the BMU’s shrinking
radius. Equation 2.8 adapts the weight vectors of the BMU and topologically-
related units, as it is centered at the BMU and its impact decreases with distance.
The neighborhood function θ for each neuron a is thus computed for every learn-
ing cycle by

θ(a) = exp−
δ(a,aBMU)

2σ2 (2.10)

by which, neurons located topologically close to each other learn to respond to
similar inputs [97]. The extent to which the radius of influence on neighboring
neurons decreases is given by the neighborhood rate

σ = σ
i

#samples

0 . (2.11)

Due to the drop regarding the learning rate η and neighborhood rate σ, the influ-
ence of new training samples falls drastically during learning. This allows strong
exploitation in early iterations and exploration at a later stage.
The distance between a neuron a and the current BMU is given by δ(a, aBMU).

This value is meant topographically, in contrast to the weight distance in Equa-
tion 2.13. How a learning step impacts the BMU, colored in red, and its less
colored topological neighbors, is visualized in Figure 2.13(a). The graphic shows
the difference in the output space before and after a learning step.

Weak Points and Further Developments

Since its invention, the SOM algorithm has been used in many different fields
and with many different extensions. According to [196], this is because "its imple-
mentation on a computer is straightforward and numerically robust" and in [197] it is
stated that it is "very easy to define and to use, and a lot of practical studies confirm that
it works". Also, it is a major speedup compared to conventional algorithms using
one thread and additionally, it does not require any dedicated hardware [198].
Even though its many beneficial and interesting features made the SOM a popu-
lar algorithm in many fields, there are disadvantages worth mentioning. Many of
these drawbacks are encountered by specific versions of SONN, however, there
is no perfect solution that solves all problems [176]. In Table 2.2 some of these
weaknesses are listed. However, it should be noted that some of the weaknesses

35

2. Foundations

(a) SOM (b) Neural Gas (NG)

Figure 2.13.: (a) features the output space of the SOM and (b) of the NG. The left
part of each image shows the network before, while the right part
displays it after learning. The BMU is colored red and its neigh-
bors are colored in a graduated hue, depending on their distance.
However, distance is defined topologically in (a), thus, it is notice-
able that neighboring neurons are pulled towards the BMU. In con-
trast to that, the similarity of the neurons’ weight vector to the input
vector is crucial in (b). Hence, the colored neurons adapting to the
BMU are not necessarily neighbors in a topological manner. Image
source: (Steffen et al. 2021c; Glueck 2021)

are only defined as such for certain applications and are not necessarily general
disadvantages. The original version of the SOM, the online SOM, is not deter-
ministic, thus diverging maps might occur in different runs [91]. Depending on
the target application, however, this property may have disadvantages. To over-
come this problem, Kohonen himself introduced the Batch SOM [199] which gets
reproducible results with the same initialization. The downside of this version
is that it neglects the observation that not all matches are based on a significant
association of its pair. Meaning that if two data points are within the same cluster
it might be due to being closely located in the input space but it might also be
coincidental [91]. As the BMU search is quite complicated and time-consuming
in [200] “boosted” versions are introduced, which decreases the training time.
This is achieved by a hierarchical approach and sub-optimal solutions of the near-
est neighbor problem [176].
Due to its winner-takes-all approach, applied by the competitive learning algo-
rithm, neurons are only adapted if they are the selected BMU in a certain learning
step. Even if the weights of several neurons are very similar, and the BMU is only
determined by a slim margin, the second and third-best neurons are not adapted
regarding the input vector. Local learning may lead to local minima [210] and is
not very performant. Thus, many researchers developed methods to speed up
the original SOM [210; 211; 212]. The NG [201] was introduced by Martinetz and
Schulten and its name is inspired by the gaseous way it covers its regions. It
differs from the SOM fundamentally, as it has no rigid structure, as visualized in
Figure 2.13(b). Thus, learning is not local and the neurons that are adapted beside
the BMU are chosen regarding their weight vectors’ similarity to the input vec-
tor. For NG, competitive learning is thereby applied to all neurons, instead of the
SOM’s winner-takes-all approach, as shown in Figure 2.13. Therefore, for the NG

36

2.2. Modeling the Human Brain

Issue Solutions

visualization of clusters Kohonen Maps [178]

non-deterministic [91] Batch Self-organizing Map (Batch SOM) [199]

complex BMU search [176] “boosted” versions [200]

winner-takes-all-approach Neural Gas [201]

topological mismatch [202] Topology Representing Network [202]

complex previous sizing [176] Growing Neural Gas [203]

time-series analysis [204; 182] Merge Growing Neural Gas [205]

spatiotemporal quantization Segment-GNG [206; 207]

relative distances not visible [208] Visualization Induced SOM [209]

Table 2.2.: Overview of issues regarding SONN and subforms that address them.

the weight update is like for the SOM as given in Equation 2.8. What changes,
however, is the neighborhood function from Equation 2.10 that becomes

θ(a) = exp−
δ(rank(a))

2σ2 . (2.12)

The topographical distance is replaced by a ranking system, based on the neu-
rons’ weight distance to the training sample x, given by

d(x,wa) = ||x− wa||. (2.13)

Hence, a neuron a is more strongly adapted the higher its value θ(a) is, as it indi-
cates a high similarity of the weight vector of a to the training sample x.
Techniques for dimensionality reduction often struggle with a high dimensional
space holding low dimensional data structures that are non-linearly embedded [208].
SOMs preserve the topology of the input data during learning, thus, adjacent
neurons in the output space are also neighbored in the input space [178]. How-
ever, neighboring neurons in the input space are not necessarily adjacent in the
output space. The only exception is if the topological structures of input and out-
put space match each other [202]. Only if the mapping between a manifold M
and graph G is neighborhood preserving in both directions, G forms a topology-
preserving map of M . And only then, do adjacent neurons on G correspond to
features neighboring on M and vice versa [202]. In Figure 2.14(a) & (b) graphs
are depicted of the 2D manifold M which is formed by a SOM. In (a) the graph
G1 is 2D, it forms a lattice with the same topology as M . Neighboring nodes of
G1 are also neighbored by M and vice versa, thus, G1 is topology-preserving.
In contrast the 1D-graph G2 in (b) forms a string, therefore, adjacent neurons
on G2 are also neighbored on M but the opposite does not hold. As the map-
ping from G2 to M preserves the topology but not from M to G2, G2 is folded
in M . Hence, this network has good quantization but no topological preserva-
tion. The NG [201] also quantizes a given manifold but it does not provide a

37

2. Foundations

(a) topological
match

(b) topological
missmatch

(c) Voronoi Di-
agram

(d) Delaunay
Tri.

(e) Induced
Delaunay

Figure 2.14.: (a) & (b) show graphs of the 2D-manifold M formed by Kohonen’s
SOM algorithm. As graph G1 in (a) is also 2D, it forms a lattice
with the same topology as M . In contrast the 1D graph G2 in (b)
forms a string. Both graphs have a good quantization of M , but only
G1 can achieve a topology-preserving mapping. Sources: (a) & (b)
from [202], (c) from [201], (d) & (e) from [203]

defined topology between the units. Thus, the developer of NG, Martinetz and
Schulten, introduced Topology Representing Network (TRN) [202]. Hereby, vec-
tor quantization of the NG algorithm is complemented by a competitive Hebbian
learning rule forming a synaptic structure. The Hebbian rule [82], stating that
repetitive stimulation strengthens a synaptic link, is also a foundation for learn-
ing with spiking neurons [155] as introduced in subsection 2.2.1. Therefore, the
TRN is remotely related to SNNs. In literature, the term "topology representing
networks" also refers to a group of SONN, able to generate an optimal topology-
preserving map for diverse data structures [208]. This also includes Dynamic
Topology Representing Network (DTRN) [213], an incrementally growing TRN
and Weighted Incremental Representing Network (WINN) [214]. The algorithms
TRN, DTRN and WINN are very alike, however, the most robust data represen-
tation is achieved by the TRN [208]. A major inconvenience in practice is that the
appropriate configuration of the map must be determined by intelligent guessing
and testing. Thus, a suitable lattice setup and size are usually not easy to de-
termine and can only be determined by test runs of the network. However, it is
very important for a good performance and convergence of the map, as a wrong
configuration or lattice size may lead to falsely represented data [176; 215; 216].
An incremental version of NG, capable of detecting the required grid size during
learning, was proposed by Fritzke [203; 217] as the Growing Neural Gas (GNG).
The network is an undirected graph that does not have rigid connections and an
unrestricted topology [218]. It is initialized with two neurons and grows itself
by adding nodes incrementally using competitive Hebbian learning [219]. The
graph is altered by adding and deleting neurons and synapses to minimize an
error function [218]. Thereby, every node has a local error which is only updated
if the neuron is chosen as the BMU. New nodes are inserted in areas with a high
accumulated error.

Time plays an important role in input data like robotic sensor streams as well as
medical recordings like Electroencephalography and Magnetoencephalography
or for speech recognition. Thus, considering temporal structures while learning is
crucial. The original SOM, like most unsupervised learning models, only consid-

38

2.2. Modeling the Human Brain

ers vectorial data, disregarding temporal structures altogether, therefore unable
to use the powerful tool of self-organization for data with temporal characteris-
tics [204]. In other words, the SOM performs a static mapping, which is unsuited
for real-world data as it is often dynamic [182]. The authors of [182] even claim
that processing spatiotemporal patterns is among the most important features of
any intelligent system. In [204] a review of SOM for temporal structures is pro-
vided. Additionally, a very comprehensive article on the subject, which is sup-
plemented with a table of all SOM models on time sequences, is given in [182].
SONN models for clustering and analyzing large time series can be roughly put
into five categories [204; 97]:

1. fixed-length windows [220; 221; 222]

2. specific sequence metrics [179; 223]

3. statistical modeling, integrating generative models for sequences [224; 225]

4. mapping of temporal dependencies to spatial correlation [226; 227; 228]

5. integration of previous states

a) own past activation [229; 230]

b) past states of other neurons [231; 232; 233; 234; 235]

The 5th category, SONN which integrate previous activation, includes for (5a)
the Temporal Kohonen Map (TKM) [229] and the Recurrent Self-organizing Map
(RSOM) [230]. Both extend the SOM architecture by recurrent synapses allow-
ing one to take a neuron’s previous states into account, for calculating the BMU.
Hence, TKM and RSOM use temporal context implicitly, meaning they do not
consider previous learning progress but instead previous training samples. This
technique uses fractal encoding and is also referred to as Cantor sets. The TKM
is more closely related to the biological model. Thus, it increases the chance of
a previous BMU to be selected again by adding a decaying activation potential
to each winning neuron. The working principle of the RSOM is more simple,
thereby the previous input vector is used in each learning cycle in addition to the
current training sample. In contrast to that the Recursive Self-organizing Map
(RecSOM) [231] and the SOM for structured data (SOMSD) [232] in (5b) integrate
past states of other neurons. This is also the case for the Merge Self-organizing
Map (MSOM) [233], its extension the γ Self-organizing Map (γ-SOM) [234] and
the respective extension of the GNG, the γ Growing Neural Gas (γ-GNG) [235].
Hence, these models have an explicit temporal context by applying an additional
context vector, which integrates previous learning progress instead of old train-
ing samples. The recurrent feedback connections of the RecSOM combine the
current input vector with a previous state of the network. Therefore, each neu-
ron is equipped, besides the weight vector, with a context vector representing
temporal context as past network activation. However, as the context vectors’
dimension is the map’s number of neurons, this form of temporal context is very
computationally expensive. This problem, however, does not exist with the more
compact MSOM, whereby the context vector, that each neuron has in addition to

39

2. Foundations

the weight vector, is of the same dimension as the weight vector. Here the context
vector is a linear combination of a neuron’s current weight vector and the context
vector of the last BMU. As an interesting side note, the weight representation of
the MSOM, TKM and RSOM is very similar, however, due to the explicit context
vector, the MSOM is more stable.
A recent extension of the GNG is the Segment Growing Neural Gas (SGNG) [206;
207]. It is a growing network model which also takes temporal context into ac-
count. However, it differs greatly from all versions introduced, as its input is not
joint angles, but instead, parts of the trajectory, referred to as segments. This en-
ables a whole new approach to spatiotemporal quantization. As SOM map the in-
put vector on an ordered grid, local distance information between data points on
the map are not visualized [208]. The Visualization Induced SOM (ViSOM) [209]
extends the SOM to preserve the topology of data as well as inter-point distances.
This information about relative distances between data points allows an effective
visualization of how data is structured and distributed [208]. In Table 2.3 the ad-

Version Pro Con

SOM Simplicity, topology-
preserving [178], no adaptation
parameter to tune

Static learning & dimension,
many iterations necessary, a
priori knowledge needed to pre-
define size and parameters [215;
216; 178; 176], topological mis-
match [202]

Neural
Gas

dynamic learning parameters,
continuous training, good for de-
picting topological relations [236]

strong dependence on initially set
lattice size [216], static dimen-
sion [215]

GNG dynamic dimension [215], low
computation time [205], continu-
ous error reduction [215], good
adaptation to data structure

small number of initial neurons
may cause information loss [205],
very sensitive to parameter set-
ting [216]

MGNG recursive temporal dynamics,
very performant [205]

bad adaptation for small changes,
input data cannot be random-
ized, information loss in the be-
ginning

Table 2.3.: Advantages and disadvantages of different SONN. The original
SOM [178], NG [201], the iterative GNG [203], and a model with tem-
poral context, the MGNG [205].

vantages and disadvantages of different SONN versions are summarized. For
clarity, the table is limited to 4 versions, the original SOM [178] and NG [201] are
complemented by a growing network, the GNG [203], and a model with tempo-
ral context, the Merge Growing Neural Gas (MGNG) [205]. The original SOM
impresses by simplicity and its ability to preserve topology [178]. However,

40

2.2. Modeling the Human Brain

due to rigid interconnections between adjacent neurons, learning is static and
connections may exist between unrelated nodes [178]. Also, many iterations are
necessary for learning due to a separate train and test phase. A priori knowl-
edge of the data is crucial as a bad choice of the number of neurons makes it lose
capacity [216]. Connections cannot be removed or added during learning [178],
therefore, the number of neighbors [216] must also be set initially. To predefine
lattice size and parameters, the number of clusters should be estimated before-
hand [215]. In contrast to that, for the NG prior knowledge of the data structure
is not as crucial. This model can form node clusters, delete connections between
unrelated nodes and adapt neighboring nodes flexibly [236]. Hence, the NG fits
various topologies and is well suited for depicting topological relation [236]. Fur-
thermore, training can be continued during test phases, which speeds up the
process significantly [236]. However, its performance is still highly dependent
on the initially set lattice size as the number of neurons is fixed [216]. Growing
networks [203] cannot only add and delete connections but also neurons flexibly
where needed. Hence, nodes and edges are pruned continuously and the amount
of neighboring neurons is flexible [216]. This enables them to adapt well to any
given data structure without prior knowledge [236], enhances continuous error
reduction and also allows a dynamic dimension [215]. GNG are very popular
due to their ability to dynamically adjust to any data structure and a relatively
simple network structure [236]. Finally, these networks show a lower time com-
plexity than SOM or NG, causing a run time advantage and better computation
times [205]. However, as GNG are very small at the start of the training phase
they are not able to represent data yet which may cause information loss [205].
Also, these networks are very sensitive to training parameters, thus, a good set-
ting is crucial [216]. The last model of Table 2.3, MGNG, introduces recursive
temporal dynamic and was developed specifically for time series analysis [205].
Hereby, subgraphs can be seen as clusters. MGNG include all benefits of GNG
and are even more performant. As with GNG, there is also a risk of the initial
loss of information. Furthermore, input data cannot be randomized. Finally, if
the differences between succeeding steps are small, the context vector will not be
able to represent the difference.

Quality Measure

As training a SONN is an unsupervised learning process, it cannot be evaluated
against ground truth, unlike supervised learning methods. To evaluate how well
a SONN performs clustering, a quantitative evaluation can be done [237]. It is
important to choose an indicator that also considers the topology of the map. Two
much-used metrics are the Quantization Error (QE) and the C-Measure (CM). The
QE sums up the differences of allN training vectors x and their determined BMU,

41

2. Foundations

which can be formalized to

QE =
N∑
i=1

||xi −BMUi||2 (2.14)

as adapted from [237; 199; 238]. A good input space approximation is thereby
indicated by a low QE.
The CM was first introduced in [239] and has since become a standard for eval-
uation of SONNs [237]. This value provides information about how well the
neighborhood structures between neurons are maintained from the input to the
output space. To calculate the CM, the element-wise products between pairwise
distances of input vectors x and their BMUs are summed up, as formalized by

CM =
N∑
i=1

∑
j<i

d(xi − xj)δ(BMUi, BMUj). (2.15)

For a comprehensive overview of quality measures for SONNs see [237].

2.2.3. Event Cameras

As frame-based cameras existed longer than computer vision, up until recently
vision algorithms did not only use but, heavily rely on this synchronous mode of
action, which has some adverse effects on performance and accuracy. Responsi-

(a) (b) (c) (d)

Figure 2.15.: Event frames of fast moving objects. A ball moving (a) towards and
(b) in parallel to the sensor. (c) A pendulum and a (d) rolling cylin-
der, also moving in parallel to the sensor. Each white dot is an ON-
event and each black dot is an OFF-event. Image source: (Ehrlinspiel
2019)

ble for this are characteristics of conventional cameras such as high latency, low
dynamic range, and – to some extent – high power consumption. The classic
example of what frame-based sensors are not suitable for is high-speed move-
ments. The inevitable motion blur either prevents image processing, severely im-
pairs accuracy, or requires computationally intensive post-processing [240]. From
a hardware point of view, there is a need to increase the frame rate, however, this
increases energy consumption and leads to enormous amounts of redundant data

42

2.2. Modeling the Human Brain

due to synchronous image generation. In contrast, as shown in Figure 2.15, event
cameras’ asynchronous mode of operation allows an extremely high temporal
resolution for dynamically changing scenes. At the same time, no unnecessary
data is generated, for static scenes. Thereby, Figure 2.15 shows nicely that the
static scene is completely ignored and only the moving part is perceived by the
event camera. Thus, these sensors solve both the under and over-sampling prob-
lem, with extremely low power consumption [241]. Event cameras, or silicon reti-
nas, are inspired by the visual system and, thus, modeled on the retina (see Fig-
ure 2.5). These sensors technically implement neurobiological principles, as intro-
duced in subsection 2.1.3. By asynchronously measuring brightness changes for
individual pixels, these sensors differ greatly from conventional cameras which
transmit data synchronously as frames [15]. A very early model of a silicon retina

(a) (b)

Figure 2.16.: Artificial building blocks and their biological counterparts of early
prototypes for Event Cameras. (a) The silicon retina designed by
Mahowald and Mead embodies three components inspired by pho-
toreceptor, bipolar and horizontal cells. (b) Zaghloul and Boahen’s
prototype additionally models ganglion and amacrine cells. The left
circuit models the outer retinal layer with the photoreceptor (P) and
horizontal cells (H). The amacrine cell modulation is represented by
the central circuit. Wide-field (WA) and narrow-field (NA) amacrine
cells are stimulated by a bipolar terminal (B) while simultaneously
inhibiting B. The circuit at the right embodies ganglion cells (G) as
a membrane capacitor which can emit spikes and is subsequently
discharged. Image source: (Steffen et al. 2019c)

was developed at Caltech by Mahowald and Mead [242; 243] in 1991. This pro-
totype, including the biological association of its components, is shown in Fig-
ure 2.16(a). Even though Mahowald’s sensor [242] was exclusively applied for
test and demonstration purposes, event cameras, developed in the last 30 years,
are based upon its conceptual architecture [244]. The Parvo-Magno Retina from
Zaghloul and Boahen [113; 245] imitated biological principles even more realis-
tically, as shown in Figure 2.16(b), but was not superior to Mahowald’s model
in terms of application technology. In contrast, the developments of Ruedi and

43

2. Foundations

Mallik [246; 247] were convincing due to their technical maturity, however, they
used a synchronous mode of action, which strongly limits the biological plausi-
bility.
Instead of generating images at a fixed rate, event cameras output event streams.
For a digital representation events are formalized as tuples, Event(x, y, t, p), with
x and y referencing the pixel location, t the timestamp and p the polarity or sign
of the brightness change. The polarity indicates whether the lighting intensity
has increased, for an ON-event, or decreased for an OFF-event. In Figure 2.15
each white dot is an ON-event and each black dot an OFF-event, as the record-
ings are carried out on an Asynchronous Time-Based Image Sensor (ATIS). The
colors show that (a) is moving towards the viewer, while the direction of move-
ment in (b) and (c) is from left to right and in (d) from right to left. Biological data

Figure 2.17.: Simplified schematic drawing of the AER-bus-system. (I) Neurons
of the sending chip generate several spikes, (II) which are interpreted
as events for which the address encoder (AE) generates a binary ad-
dress. (III) The bus system transmits the address which is subse-
quently decoded by the receiving chip’s address decoder (AD). (IV)
The decoded event address triggers a spike of the respective neuron.
Image source: (Steffen et al. 2019c)

transfer from the eyes to the respective neural regions involves one million ax-
ons of 366 ganglion cells. A realistic artificial approach would require a separate
cable for each pixel [106]. A lightweight form to transmit the digital representa-
tion of events is the AER protocol, which was initially introduced in [248]. It is a
hardware protocol widely used for spike-based and event-based communication
up until today. A simplified visualization of the AER-bus-system is depicted in
Figure 2.17. The graphic shows how three neurons of the sending chip generate
spikes which are encoded by the address encoder, transmitted via the AER-bus,
decoded by the address decoder and finally occur on the receiving chip. While
the polarity is encoded with one bit (OFF/ON) and the timestamp usually by 32
bits, how many bits are used for the event’s address is dependent on the resolu-
tion of the event camera [240].

Recently, event cameras have become quite popular, not only in academic cir-
cles but also in commercial spaces. This is mainly because their performance is
continuously increasing and frame-based sensors have been exponentially over-

44

2.2. Modeling the Human Brain

Figure 2.18.: Technical pixel circuit of the DVS divided into three parts which
are assigned to their biological model. The photoreceptor, the light-
sensitive component, models biological cones, while the differential
circuit is based on bipolar cells and the comparator on ganglion cells.
Image source: (Steffen et al. 2019c)

taken in terms of speed [240]. Compared to frame-based visual sensors, event
cameras have several attractive properties, especially for application in robotics
or computer vision tasks [15]:

• high temporal resolution in the order of µs

• very high dynamic range ca. 140 dB

• low energy demand

• high pixel bandwidth, on the order of kHz

These advantages stem from three fundamental design decisions, inspired by the
biological vision, of these sensors: First sparse event streams, second encoding
luminance changes, third signal rectification and third the separate display of
positive and negative illumination changes by OFF- and ON-signals. The biggest
difference this makes for event-based sensors compared to conventional cam-
eras is that imaging is no longer dependent on an external clock but takes place
autonomously and individually at the pixel level [106]. The first practical and
commercially available event camera, Dynamic Vision Sensor (DVS) presented
in [244], was developed by a team of researchers of ETH Zürich. As shown
in Figure 2.18, its pixel circuit replicates an abstraction of three components of
the biological retina, creating a photoreceptor-bipolar-ganglion cell information

45

2. Foundations

flow [106]. This mechanism enables the sensor to be sensitive to the scene dy-
namics, thus, responding to each pixel in real-time to changes. Unlike the proto-
types of Mahowald and its team, shown in Figure 2.16(a), the DVS has modeled
the comparator on the ganglion, not the horizontal cells. Compared to standard
frame-based cameras, the DVS suffers from a relatively big pixel size of 40 µm
and a low resolution of 128 × 128 pixels. However, technical development made
great strides since the release of the DVS in 2008, which can be seen by examples
like Dynamic and Active-pixel Vision Sensor (DAVIS)240 [249; 250], ATIS [251;
252] and Samsung DVS-Gen4 [253]. For technical details refer to Table 2.4 and for
a comprehensive list to table I in [15]. It is noticeable that researchers and man-

model resolution pixel size power consumption year

DVS [244] 128× 128 40 µm 23 mW 2008

DAVIS [250] 240× 180 18.5 µm 5 - 14 mW 2014

ATIS [252] 480× 360 20 µm 25 - 87 mW 2017

Samsung DVS [253] 1280× 960 4.95 µm 130 mW 2020

Table 2.4.: Overview of the technical development of event cameras over the
years. Thereby well-known representatives were chosen that went
hand in hand with major innovations. The DVS refers to the first
commercially available event camera, DVS128. Additionally, the
DAVIS240, Gen3 ATIS and Samsung DVS-Gen4 are presented. For a
more comprehensive table see [15].

ufacturers focus particularly on the improvement of certain characteristics. Not
surprisingly, spatial resolution plays a major role, which was often mentioned
as a major disadvantage in the DVS. Nevertheless, even the event camera with
the largest pixel array [253], as of today, has a spatial resolution of only 1Mpixel
(1280 × 960). The low spatial resolution is of course a limitation in terms of ap-
plications. However, increased readout speed and since recently reduced pixel
size are heavily targeted [15]. In particular, pixel size is an interesting problem as
event cameras have a mixed-signal circuit. As can be seen in Table 2.4, the most
common event cameras, DVS (40 µm), DAVIS (18.5 µm) and ATIS (20 µm), have
large pixel sizes compared to standard conventional Active Pixel Sensor (APS)
with about 2-4 µm. However, the table also shows that event cameras are far
ahead of frame-based cameras in terms of power consumption. This is possi-
ble because no redundant data is transferred, instead only brightness changes on
pixel level [15]. A significant reduction of pixel size will most likely only be possi-
ble if the purely asynchronous circuit design is abandoned in return [254]. Some
manufacturers also provide new features as gray level output (DAVIS, ATIS), In-
ertial Measurement Unit (IMU) integration [255] and synchronization between
cameras [256]. The pixel design of the DAVIS [249; 250] is based on the DVS
(see Figure 2.18)), however, the circuit responsible for Change Detection (CD),
generating event streams, is extended by an APS [257], as shown in Figure 2.19.

46

2.2. Modeling the Human Brain

Figure 2.19.: Circuit of an DAVIS-pixel extending the asynchronous generation
of event streams with synchronously generated gray level images
using an APS. Thereby the DAVIS combines frame-based and event-
based data acquisition on the pixel level. Image source: (Steffen et al.
2019c)

As this extension is done on a pixel level, the frame-based APS and the CD cir-
cuit share a photodiode for each pixel. APS capture the scene’s illumination,
thereby generating gray-level images as frames. Thus, DAVIS combines proper-
ties of frame-based with event cameras on a pixel level processing information
both synchronously and asynchronously.

Like for the DAVIS, each pixel of the ATIS includes two circuits, the basic circuit
of the DVS, the CD triggering event streams and Exposure Measurement (EM)
generating grayscale images. However, very different from the DAVIS, both cir-
cuits operate completely asynchronously and are biologically inspired. While the
CD, inspired by the magnocellular pathways, is responsible for the "where" ((this
is also true for DVS and DAVIS), the EM, inspired by the parvocellular pathways,
is responsible for the "what". For the ATIS grayscale information is also transmit-
ted via AER and consists of two events, EM integration start and EM integration
end event [258]. Thus, grayscale information is reconstructed using luminance in-
formation which is calculated as the inverse of the time difference between those
events:

I =
1

te+ − te−
(2.16)

As visualized in Figure 2.20, the circuits for CD and EM within the ATIS are
mostly detached, and therefore have separate output channels. The only inter-
action is that the CD triggers the EM circuit. Thus, whenever the CD circuit emits
an event, the EM circuit starts to accumulate incoming light until the accumula-
tor is saturated. Also, if another event is registered for the respective pixel before
the integration is finished, the CD circuit triggers an abort and restart of EM, as
the previous EM is already obsolete [251]. This also implies that if the frequency

47

2. Foundations

Figure 2.20.: Circuit of an ATIS-pixel, extending the basic circuit for CD to create
event streams with a second circuit for EM to obtain grayscale im-
ages with entirely asynchronous image acquisition. The upper part
shows that CD & EM are detached circuits, however, CD triggers
EM to ensure that a pixel’s gray value is updated for each event.
The lower part visualizes how gray values are determined by Equa-
tion 2.16. Thus, small temporal differences imply brighter grayscale
values than big differences. Image source: (Steffen et al. 2019c)

of events is higher than the EM integration time, involved pixels will not gen-
erate grayscale values. However, a frame-based camera, or the APS circuitry of
the DAVIS, could not produce usable images under these conditions. In terms
of biological plausibility, the ATIS is ahead of the other representatives due to its
completely asynchronous pixel design. It is also very good in terms of temporal
resolution and dynamic range. However, the asynchronous operating principle
leads to uneven exposure times, causing motion artifacts and issues with slow,
close objects [259]. An advantage results from the synchronous design principle
regarding the pixel size as the photodiode is shared for the DAVIS. However, APS
limits the dynamic range to 55 dB and generates redundant data [15]. For a com-
prehensive description of the biological and technical aspects of event cameras,
especially DVS, DAVIS and ATIS, see [106; Steffen et al. 2019c].

48

3. Event-based Stereo Vision

For human stereo vision, all the depth stimuli presented in section 2.1.3 are used
in combination. However, most of the sub-types depicted in Figure 2.6(a) only
lead to relative values and are not very potent for themselves, thus they are more
of a supportive nature. By far the strongest depth criterion, due to producing ab-
solute values and providing relatively high accuracy, is binocular perception [126;
120; 109]. As it is extremely complex to implement all or even only a few of the
depth criteria in a meaningful combination, most approaches focus on mimick-
ing natural binocular depth perception using a stereo mount of two identical sen-
sors. Due to their high temporal resolution and high dynamic range [15], event
cameras, like the Dynamic Vision Sensor (DVS) [244] or the Asynchronous Time-
Based Image Sensor (ATIS) [251], have great potential for depth reconstruction
(see subsection 2.2.3). As stated in section 2.1.3, depth is inversely proportional
to disparity δ, the difference in image position. This can be formalized as

δ = XL −XR =
bf

Z
, (3.1)

whereby depth Z refers to the vertical distance from the observed point. b is the
distance from the center of the left camera to the center of the right one and f
is the shared focal length of each camera. To obtain disparity, and therefore in-
directly to regain the observable information about image depth, events of both
sensors within a stereo mount must be assigned to each other. However, noise,
faulty calibration, and possibly slightly deviating contrast sensitivity of the differ-
ent sensors, lead to distortions and inaccuracies. Thus, despite the high temporal
resolution, a purely temporal assignment of events would be almost utopian even
with a perfect, ideal sensor. Hence, an exclusively time-based matching method,
as visualized in Figure 3.1, produces a plethora of false positive matches.
Research in the field of computer vision, including depth reconstruction, has been
frame-based for decades. As depicted in Figure 1.2, one can either transfer events
to a frame-based representation, where the technical achievements of these sen-
sors are largely lost or develop new algorithms that take their properties into
account and thus profit from their advantages. This chapter addresses research
question 1 defined in chapter 1: "How can asynchronous event streams be optimally
exploited for event-based stereo vision?".
A state-of-the-art for event-based 3D reconstruction is provided in section 3.1.
Then, the core of this chapter is presented. A new approach for 3D reconstruc-
tion of event-based data using neural self-organization. For this purpose, the
theoretical foundations of the approach are given in subsection 3.2.1 and 3.2.2.
Subsequently, in subsection 3.2.3, 3.2.4 and 3.2.5, insights are given into additions

49

3. Event-based Stereo Vision

Figure 3.1.: Purely temporal matching of two event streams recording the same
point in space. Exposure differences of corresponding pixels of both
sensors are shown at the top. The second row shows the ON and
OFF events for the first sensor and the third row respectively for the
second sensor. At the bottom, it is illustrated that events within the
time δ may be correct as well as false matches. Image source: (Steffen
et al. 2019c)

to the basic approach that were necessary to improve speed and accuracy. This
is accompanied by a qualitative evaluation of the basic approach without any
extensions in subsection 3.3.1. In subsection 3.3.2, an introduction to data acqui-
sition and sensor calibration is given. This is necessary to apply the method on
an online demonstrator with real event cameras, as done in subsection 3.3.2. A
comprehensive conclusion is given in section 3.4. Some of the material covered in
this chapter was originally published by the author in (Steffen et al. 2019b). This
concerns subsection 3.2.1, 3.2.2 and 3.3.1.

3.1. State-of-the-art

Even though event cameras have great potential for depth estimation, respec-
tive implementations are still relatively sparse [240]. One possible reason for this
is that event cameras are a new field of research, while 3D reconstruction with
frame-based cameras is decades ahead of the field. The most common form of
event-based depth estimation is instantaneous stereo, whereby depth maps are
created from short series of event streams recorded by multiple, but mostly two,
rigidly mounted and synchronized sensors [15].

50

3.1. State-of-the-art

To transfer conventional approaches to event-based sensors, events can be con-
verted to frames [260; 261; 262; 263]. As pre-processing consists of reconstructing
gray values, disregarding the temporal correlation of events, the advantages of
event cameras are lost in the process. Thus, these methods perform worse than al-
gorithms processing events directly, due to a loss of temporal accuracy [264; 265].
Alternatively, researchers tried to apply handcrafted transformations from event
sequences to frame-based representations, to enable the use of well-researched al-
gorithms using deep learning and/or convolutional network types [266; 267; 268;
269; 270; 271]. Regarding the second option, to create new algorithms capable of
processing events directly, first attempts comparing events by their timestamps
and polarity [264] suffered from matching ambiguities. Another quite intuitive
idea is to exploit epipolar geometry for 3D reconstruction [272; 273; 274; 258; 275],
which is often also integrated into more sophisticated methods. Apart from the
techniques of monocular and binocular vision, which are based on human vi-
sion, two other interesting methods implement completely different ideas. First,
in (Schraml, Belbachir, and Bischof 2016; 276) stereoscopic panoramic imaging
is proposed, whereby depth maps are generated using two rotating event cam-
eras. Events are matched using temporal metrics in [276] and traditional stereo
reconstruction is applied on intensity images in [276]. Second, an active approach
using structured light is presented in [277; 250; 278]. These works differ in that
all the works mentioned so far have passive methods of action, meaning, they
do not interact with the scene. In contrast, [277; 250; 278] use a method in which
light is emitted and the reflections are recorded by event cameras. In the follow-
ing, first some monocular algorithms and then several stereo event-based stereo
algorithms, mostly based on epipolar geometry, are introduced. Comprehensive
surveys about event-based depth perception are provided in (Steffen et al. 2019c;
240).

3.1.1. Monocular Techniques

The first to tackle event-based depth estimation using only one camera is Re-
becq et al. In [279], a method using Event-based Multi-View Stereo (EMVS) is
applied, whereby the different viewpoints are created by moving the sensor, as
visualized in Figure 3.2. The authors transfer the method for frame-based cam-
eras using a space-sweep voting and maximization strategy [280] to event-based
data. Thereby, exploiting the sparsity of the event stream without detours via
event assignment or the generation of intensity images. The technique generates
ray density volumes by back-projecting events into 3D. Structural properties of
the recorded scene are given as the maxima of ray density. This idea seems very
promising as event streams are well suited as input for the space-sweep algo-
rithm due to highlighting edges by itself and triggering events from many closely
spaced perspectives, far more than usually applied by a frame-based method. In
EMVS the finalized 3D models are created by generating semi-dense depth maps
from several viewpoints and merging them. In [281], a technique for monocular

51

3. Event-based Stereo Vision

Figure 3.2.: Comparison of the conventional space-sweep approach using frame-
based cameras at the left, with the event-based method at the right.
In both images, two points are marked and rays represent back pro-
jection from these points. As frame-based sensors only provide a
fixed number of views, only a small amount of rays is generated.
The event-based sensor is moved along the dotted line and the ar-
eas of high ray density indicate the position of the points. Image
source: [279]

3D reconstruction in real-time from solely a hand-held sensor is introduced. For
this, three decoupled probabilistic filters are applied in parallel. To estimate the
camera motion, a 3D map of the scene and an intensity image, only using event
streams, are generated. The intensity image is hereby necessary to reconstruct
depth. The generation of intensity images – grayscale values – only using event
streams is unique. Integrated methods for grayscale reconstruction within event
cameras usually rely on external data. Thus, ATIS uses per-event intensity mea-
surement [251] and Dynamic and Active-pixel Vision Sensor (DAVIS) common
intensity frames [250]. A simple but elegant framework to solve motion, depth
and optical flow estimation using event cameras is proposed in [282]. Therefore,
data association between the single events is regarded through maximizing the
contrast of an image of warped events. Thereby events are warped regarding
point trajectories which are described by motion parameters. This approach is
the first in the field of event-based vision to tackle such a diverse range of vi-
sion tasks. In [283], a very different technique for event-based monocular depth
estimation is introduced, whereby depth is obtained through focus and defocus.
Using post-processing by a Spiking Neural Network (SNN), a depth map is cal-
culated. It is assumed that an object with a uniformly changing focal length is
initially out of focus. Thus, it has low exposure and becomes sharper over time,
with the exposure increasing steadily. The applied event camera continuously
triggers ON-events until the time of the best focus is reached and the exposure has
reached its peak. In the further course, the focus and thus the exposure steadily
decreases, which is why OFF-events are now triggered. This mechanism is vi-
sualized in Figure 3.3. The time of the best focus is determined as the average
between two consecutive ON and OFF events. This calculation is done for each
pixel individually. For this purpose, an SNN is created that contains five neurons
per pixel. One neuron pair for triggering ON and OFF events and one neuron
pair for suppressing the non-activated neuron of the first pair. For example, if an
ON event is triggered, the matching suppressing neuron prevents the OFF event

52

3.1. State-of-the-art

Figure 3.3.: The graph shows the change in exposure while focusing on a point.
The point of best focus is directed at the high point of the graph. It
can be seen that ON-events are triggered before this extreme point
and OFF-events afterward. Image source: [283]

neuron from firing at the same time. Finally, an output neuron fires if two ON-
events are followed by an OFF-event. The position of the object in space can be
calculated by two timestamps. First when the focal length starts to change and
second when the output is triggered. The authors claim that their algorithm is
20 times faster than real-time and very energy efficient. The Python package for
neuronal networks (PyNN) framework and NEural Simulation Tool (NEST) are
used for the simulation. A lens with motorized focal length control is needed for
the setup. The author recommends a focusable liquid lens.

3.1.2. Stereo Techniques

For event-based stereo techniques, usually a hardware setup of two, or more,
rigidly attached sensors is used. The sensor setup requires a shared clock, as
temporal correlations can only be exploited if the events from both image planes
are synchronized. Only then, the classical method of stereo reconstruction con-
sisting of two parts is feasible. Firstly, epipolar geometry is applied to solve the
correspondence problem and secondly, the location of the 3D point is triangu-
lated [15]. However, the challenging and computationally expensive part is to
find correspondences between events.

Cooperative Algorithms

Techniques inspired by human depth reconstruction are often based on the re-
search regarding binocular vision by Poggio and Marr [124; 284; 285]. Their
theoretical work was first implemented as cooperative algorithms with event-
based sensors by Mahowald [286]. As these sensors do not create frames but
event streams, they allow the exploitation of spatiotemporal information. Over a

53

3. Event-based Stereo Vision

decade later, this work was continued independently by [52] and [53; 287]. The

Figure 3.4.: Network architecture of a cooperative algorithm. Each retina is re-
presented by five pixels observing a scene with two objects at 0 dis-
parity. Additionally, a false target is shown at disparity -1. At the
bottom, the circles represent correlator arrays, thereby, false matches
are colored gray and matches black. Inhibitory interactions between
these units, as defined by the matching constraints, are represented by
dotted lines and stimulated once by solid lines. Image source: [286]

naming "cooperative algorithms" alludes to the fact that the neurons of the net-
work, referred to as disparity sensitive neuron (DSN), communicate with each
other and calculate disparity through cooperation. To add spatiotemporal rela-
tions to the temporal similarity the network dynamics of cooperative algorithms
implement constraints that are derived from two assumptions postulated in [124].
Uniqueness, of each point in place at a given time and Continuity, thus that mat-
ter is continuous and divided into objects. For the technical implementation,
DSN are fed with synchronized events from two sensors and extract disparity

54

3.1. State-of-the-art

through inhibiting or exciting compounds, as shown in Figure 3.4, according to
these matching constraints:

1. Inhibition between the communication of DSN in a vertical and horizontal
direction, as each point from one sensor can only correspond to one point
in the other sensor.

2. Stimulation of communication in a diagonal direction with the same dis-
parity, as the matter is smooth and cohesive. Thus, the same disparity of
neighboring neurons is amplified.

3. ON-and OFF-events inhibit each other if they occur at the same time in
the same neighborhood because changes in lighting are less common for
spatially and temporally close events.

These principles are implemented with spiking neurons, which process event-
based data ideally, in [54; 55]. Three components build up the network in [54],
OFF- and ON-neurons (retina coordinates), coincidence detectors and disparity
detectors. Due to their cell arrangement, by emitting spikes, coincidence detec-
tors encode positions of a possible disparity caused by simultaneous spikes of
retina coordinates. The matching candidates gathered by coincidence detectors
are subsequently evaluated by disparity detectors which implement C2 and C3
by respective stimulation and inhibition and C1, by the disparity detectors’ re-
current, inhibiting synapses. Hence, retina coordinates encode changes in light-
ing, coincidence detectors detect temporal correlation and disparity detectors im-
plement biologically plausible matching constraints. In [54], it is reported that
high-frequent stimuli generate false correspondences, due to DSN simply accu-
mulating signals of both retina coordinates and spiking if a threshold is exceeded.
Micro-ensembles, realizing a logical ’AND’ are introduced in [55] which suppress
spikes if the input is unbalanced, therefore only from one side. Due to the prin-
ciple of action of event cameras, in [54; 55], disparities is merely detected from
dynamic scenes. This is extended to static scenes in (Kaiser et al. 2018) by ap-
plying microsaccades, small high-speed panning or tilting motions of the stereo
setup.
Cooperative algorithms were extended using Gabor filters [288; 289] and belief
propagation [290; 291; 292; 293]. In [288; 289] Gabor filters are applied to the
raw event streams before passing them as input to the cooperative network, al-
lowing exploitation of matching edge orientations of sensors as a supplementary
criterion. The methods introduced in [290; 291; 292; 293] using belief propaga-
tion, transform the correspondence problem into a labeling issue, whereby labels
represent disparities.

Generalized Time-Based Stereo

A spike-based method that uses a four-step algorithm to compute the probability
for two events to be triggered by the same 3D point is introduced in [258]. As
visualized by the flowchart in Figure 3.5(a), the algorithm uses criteria such as

55

3. Event-based Stereo Vision

energy functionals. The final probability is determined as the minimized sum of
the energy functionals. Before the energy functionals are calculated, event pairs
must first surpass two thresholds; Each possible match of events must be no fur-
ther apart in time than εT and cannot deviate more from the geometric constraints
than εS pixels. For the (1) temporal criteria and the (2) spatial criteria, the energy

(a)

0.3

0.57

0.84

1.11

1.38

1.65

1.92

2.19

2.46

2.73

3

(b)

0.3

0.57

0.84

1.11

1.38

1.65

1.92

2.19

2.46

2.73

3

(c)

Figure 3.5.: Flowchart and depth maps of the method "Generalized Time-Based
Stereo". (a) Four criteria are used in [258] to establish correspon-
dences: (1) events’ timestamp, (2) epipolar geometrical properties,
(3) luminance values and (4) motion fields. (b) & (c) Corresponding
depth charts, distances are represented by colors as stated by the color
bar. Image source: (Steffen et al. 2021a; Elfgen 2020)

functional is 0 for perfect matches and 1 for differences that are within tolerance.
The first criterion simply compares timestamps, while the second one makes use
of techniques presented in previous algorithms [272; 274; 273] exploiting epipo-
lar geometry. For the (3) motion criteria, a motion surface of previous adjacent
events is generated for each of the possible matches. The corresponding energy
functional is lower the more similar these motion surfaces are. Lastly, the (4)

56

3.1. State-of-the-art

luminance criteria compares the respective changes in gray values that are associ-
ated with both events. This criterion is only applicable to an ATIS, as it utilizes
its asynchronous mechanism to generate gray values. The ATIS sensor, as visu-
alized in Figure 2.20 has two circuits for each pixel, one generating a transient
response in the form of an event stream (Change Detection (CD)) and one obtain-
ing a sustainable response in form of grayscale images (Exposure Measurement
(EM)). This algorithm [258] was implemented and evaluated in the course of this
thesis. Its application on a stereo setup of two ATIS generated the depth maps
shown in Figure 3.5(b) & (c).

Implementations on Dedicated Hardware Solutions

Mots presented algorithms make use of standard processors, more precisely CPUs.
This applies to early methods as [260], which uses a simple frame-based algo-
rithm to generate disparity maps, and [273], solving the correspondence problem
with two time-windows implemented with the "Java tools for AER (jAER)" soft-
ware. However, Central Processing Unit (CPU)s are also common among more
biologically plausible and advanced methods as cooperative algorithms [53; 287;
52; 289; 291] and spiking techniques as [283; 290; 54]. However, some rare im-
plementations for neuromorphic processors [55; 294], Graphics Processing Unit
(GPU) [295] and Field Programmable Gate Array (FPGA) [296] exist. As event
streams, generated by event cameras and sent by Address Event Representation
(AER), are well suited as direct input for an FPGA, an integrated setup does not
bring any additional latency thus maintaining the extremely high temporal reso-
lution [240]. Hence, this combination might become common shortly. However,
an implementation for event-based depth reconstruction on FPGA, as presented
in [296], is so far still very rare. The proposed method uses a stereo setup of
two ATIS and solves the correspondence problem for image blocks of 1616 pixels
instead of individual pixels. In [295], an approach, based on [279; 282], for space-
sweep on GPU is introduced. This work applies sensor motion for synchronizing
the events of both event cameras, to create an event disparity volume which rep-
resents correct disparities in focus and false once blurred. This method is a brute-
force variant of space-sweep with a new technique for a relatively low matching
cost. Implementation of cooperative algorithms, as introduced in section 3.1.2,
using a neuromorphic chip is presented in [55] for spiking neural network ar-
chitecture (SpiNNaker) and in [294] for TrueNorth. The system in [55] estimates
depth with a latency of 2 ms but its power consumption of 90 W makes the SpiN-
Naker implementation not applicable for real-world scenarios [240]. In [294] nine
TrueNorth chips are applied and the low-power system achieves an average of
400 disparity maps per second.

57

3. Event-based Stereo Vision

Related Frame-based Methods

In stereo vision, 4D data (2x2D) is mapped to a 3D representation. As the Self-
Organizing Map (SOM) is often used for dimension reduction, it can be applied
to solve the correspondence problem. This idea was first implemented on frame-
based data in the ’90s by [189; 190]. The method proposed in [190] is based on
the theory of Marr and Poggio [285] that true correspondences satisfy three con-
straints, derived from properties of physical objects: similarity, smoothness and
uniqueness. Hence, this work is related in its theory with techniques presented
in section 3.1.2. However, in [190] the correspondence problem is solved by a
learning strategy based on the SOM algorithm. Thereby edge segments are used
as features and similarity constraints, determined by the minimum squared Ma-
halanobis distance, for establishing correspondences. In [189] a quite different
approach is taken, depth maps are generated as the current state of a dynamic
process. Possible disparity values are attributed to every point, subsequently the
correct disparities are selected with competitive learning via a SOM. The authors
claim that their idea has strong analogies to the human visual system and can
be implemented with massive parallelization. For stereo vision on frame-based
data Scale Invariant Feature Transform (SIFT) is a popular method that is incor-
porated in many respective algorithms. In [297] the authors propose to apply a
SOM to perform the matching of SIFT more efficiently. The result is lower cal-
culation times and a doubling of the matched features. Stereo vision through
self-organization was also used for estimating 3D hand poses [191] and generat-
ing 3D face models [192], both from stereo images. Furthermore, learning-based
approaches are successfully used in frame-based depth estimation, especially ap-
plying Convolutional Neural Network (CNN) [298; 299; 300]. A very potent deep
learning method for stereo vision was presented in [301]. The authors claim that
this method only requires very few images to reconstruct the geometry of an ob-
ject either as a depth map or as an occupancy grid. The architecture is built on
CNN and internally represents the environment as a discretized 3D grid. Thereby
differentiable operations are used for projecting and unprojecting, which enables
end-to-end learning. In this way, the underlying 3D geometry is learned in a
metrically accurate manner.

3.1.3. Discussion

In recent years, many different methods for event-based depth perception have
been presented. A fair comparison is difficult because these techniques are not
evaluated on a uniform data set. Such a data set would be very difficult to cre-
ate as the different methods – monocular, stereo, structured light, and multi-
perspective panoramas – differ greatly from each other in terms of data acqui-
sition. However, one conclusion is uncontroversial; for event-based data conven-
tional algorithms, created for frame-based cameras, perform significantly worse
than time-based algorithms [264]. Although interesting, stereoscopic panoramic

58

3.1. State-of-the-art

imaging and methods applying structured light are not well suited for this use
case. The former is well applicable if a 360° view is needed, but less suitable for
reconstructing a defined work cell. The latter, active techniques, show problems
with different reflection properties of materials, which is critical when used with
robots. Regarding monocular techniques, the method of Rebecq et al. [279] and
Kim et al. [281] are quite potent, and especially [279] also quite efficient, but the
setup is not ideal for the use case intended here. With EMVS and also the hand-
held camera in [281], a static scene is captured by a constantly moving sensor.
However, the work presented here attempts to capture motion and changes in
a defined workspace through a fixed camera mount. Also, the techniques pre-
sented in [283] and [282] are interesting, however, monocular depth estimation
suffers from occlusion much more than stereo vision, as two viewing angles cap-
ture the space better. Additionally, depth by defocus [283] requires additional
hardware. In general, monocular methods solve a fundamentally different prob-
lem than stereo techniques, as one cannot leverage temporal correlation between
events of multiple images. The methods [279; 281; 282] create a 3D edge map,
hence, a semi-dense 3D scene reconstruction. To obtain information from events
of one moving camera, these methods require knowledge of camera motion and
generally more time, a longer interval, than stereo methods [15]. Due to this, they
are often applied for Simultaneous Localization and Mapping (SLAM) [302; 303;
304; 282] but do not perform well for use cases requiring instantaneous depth es-
timation.
A comparison of different stereo depth estimation techniques, regarding their
characteristics and performance, is provided in [294] even if very new methods
are not considered here. The technique introduced in [258] looked extremely
promising. For one, it systematically builds on many previous algorithms [272;
274; 273] that make good use of epipolar geometry. Also, besides making use
of a technical realization of magnocellular pathways, using event streams, the
approach in [258] uses a technical implementation of parvocellular pathways
through using the ATIS’ EM circuit for obtaining gray-scale images. The lumi-
nance criteria which is based on EM restricts the algorithm so that it can only
be used on a stereo setup of ATIS. EM to generate gray values has not been im-
plemented for DVS or DAVIS, and to the author’s knowledge, no other sensor.
However, the authors of [258] state that this fourth criterion has very little im-
pact on the overall performance. As the algorithm was implemented and tested
(see Figure 3.5(b) & (c)) during this thesis, it could be determined that it is not
optimally suited for this use case. The performance was satisfactory, but, the ac-
curacy was not sufficient to represent a robot’s working cell for subsequent path
planning. As event streams are processed efficiently and in a way that preserves
data well by SNN, and the strengths of SNN can only be fully exploited on ded-
icated hardware, solutions presented in section 3.1.2 were of particular interest.
The advantages of this pipeline are shown in [296], a method solving stereo vision
with an event camera and FPGA. It minimizes the computational load as well as
the necessary memory access [240]. Although neuromorphic chips are currently
making extreme strides in development, and are now also supported by the in-
dustry, prototypes were used in the methods presented. Its implementation on

59

3. Event-based Stereo Vision

neuromorphic hardware is very promising but also brings great challenges. That
is why there are only a few such implementations as of today. These are mostly
very specialized for difficult-to-access one-purpose hardware. Furthermore, in
terms of performance, these techniques are still far away from what is achieved
by conventional methods. This can and very likely will change significantly in
the coming years.
All work presented in section 3.1.2 is based on frame-based image acquisition.
However, both, the learning-based approach of [301] and the general idea to see
the correspondence problem as a dimension reduction issue that can be solved
using SOM, are very promising. As known for stochastic algorithms, the SOM is
especially well suited for data streams [91], which makes it a great fit for event
cameras. Furthermore, the ability of [301] to create a voxel occupancy grid, is very
interesting for the research goal discussed in section 1.2. However, since the work
of [301] is based on CNN, its network architecture embodies many layers. Also,
the method requires relatively large quantities of training samples. To the best
of the author’s knowledge, there is no approach using a SOM which is similar
to the work presented here. In particular, no methods are mentioned in litera-
ture applying a SOM for event-based data streams to solve the correspondence
problem.

3.2. 3D Reconstruction through Self-organization

Most potent techniques for frame-based stereo vision apply a learning-based rep-
resentation. However, the majority of event-based methods in section 3.1, which
are not transferred from a traditional frame-based approach, either use grid-
based models or a simple form of event representation [305; 268]. Although it is
of course not feasible to transfer a conventional learning approach, it is promising
to develop a suitable learning approach for neuromorphic data. A huge disad-
vantage of stereo vision is the need for calibration, as shown in subsection 3.3.2
in the paragraph regarding data acquisition and calibration. Most techniques re-
quire precise calibration of intrinsic as well as extrinsic parameters [306], thus
creating a source of error [240], and negatively and often strongly affecting the
quality of the reconstruction. Many of the methods presented in subsection 3.3.2
regarding calibration are quite complex as they implement multiple complemen-
tary constraints, such as [258; 54; 55]. Thus, the introduced systems are difficult
to reconstruct and maintain, and often also require very specific hardware. In
contrast to related works, this research focuses on a learning-based method for
event-based stereo representation without the requirement of before-hand cali-
bration.
The system is trained with random data points from within a defined 3D space.
After training, the SOM has adapted to represent the entire 3D space evenly. The
individual neurons of the SOM are sensitized during training to simultaneous
activation of pixels or even areas on the sensor. Thereby, the neurons of the SOM

60

3.2. 3D Reconstruction through Self-organization

learn which pixels in the left and right sensors belong to which voxel, represent-
ing a cubic subspace in the defined workspace.

3.2.1. Biological Derivation and Rationale

Even though, artificial stereo vision is very successfully applied, in terms of en-
ergy consumption and latency it is far inferior to the biological model. Therefore,
a bio-inspired argument explaining 3D reconstruction in the cortex is used here to
tackle artificial stereo vision. Using fMRI data of macaque monkeys two cell types
in the ventral premotor cortex (F5) could be related to the viewing and grasping
objects, canonical neurons and mirror neurons [307]. First, canonical neurons are
activated when looking as well as grasping an object, thus the same brain ar-
eas are responsible for observing a specific object as for executing movements in
response to this object. However, if no grasping is performed, the canonical neu-
rons will only fire for objects within the peripersonal space [308]. Second, mirror
neurons fire equally when the monkey itself grabs an object and when it watches
another monkey doing so. The better known mirror neurons refers to the neu-
ronal execution of movement, by watching, a new movement can be learned. In
contrast, canonical neurons are activated while observing an action-related object
in reach. They are involved in the recognition of an object’s 3D shape but do not
play a role in object identification. Further insights, also regarding the extent to
which this can be transferred to humans, are given in [307]. Another aspect of
this approach modeled on nature is the application to event-based data (see sub-
section 2.2.3). Thereby, a new physical constraint – time – is exploitable, to solve
the matching problem in stereo vision. Furthermore, a biologically plausible, yet
simple, self-organizing network structure (see subsection 2.1.2 & 2.2.2) is imple-
mented through a SOM. In general, Self-organizing Neural Network (SONN) are
inspired by neural self-organizing structures, so-called feature maps which are
located in human and animal cortices [96]. In section 3.1.2 it was shown that self-
organization was used to solve the correspondence problem on frame-based data
already in the ’90s.
As the SOM functions as a dimension reduction, it can be applied to stereo imag-
ing, consisting of 4D (2x2D) or higher, to recover the underlying latent 3D rep-
resentation corresponding with the real-world spatial coordinates. The SOM’s
weights impose a topology that can be applied to learn a mapping to the Carte-
sian space. The dimensionality of the input data depends on the number of cam-
eras used as image coordinates are concatenated. Formalized, the dimension is
2 · k cameras with k > 2. Thus, the input space is 4D for stereo and 6D in case
a third camera is used. How the proposed system implements these biological
aspects in its architecture, thus realizing a structure with analogies to the human
visual processing system, is visualized in Figure 3.6. Thereby, the input data is
rasterized into pixels and the network uses this division as one neuron represents
a single pixel or a group of adjacent pixels. Each node of the 3D grid, the SOM’s
neurons, connects to one or several of the retina neurons, representing the pixels

61

3. Event-based Stereo Vision

L

R

x

y

z

Ganglion cell Canonical neuron

3D object 2 x 2D image 3D SOM

Figure 3.6.: Concept sketch of the biological motivation to use self-organization
for solving the correspondence problem. A cube is recorded from two
slightly shifted perspectives. The corresponding points of both 2D
images are determined by the use of a 3D SOM, which maps the 4D
image data to a 3D representation. The inspiration, therefore, comes
from the canonical neurons populations and their object depiction.
Image source: (Steffen et al. 2019b)

of each sensor. These connections are encoded in the weights of the traditional
SOM pointing to pixel coordinates. Respective retina neurons are activated if the
pixel, or group of pixels, they encode is active. A 3D cube is perceived as slightly
shifted 2D squares by two sensors, which mimics ganglion cells, as introduced in
section 2.1.3. The method learns how to reconstruct a 3D representation from 2D
data recorded from multiple viewpoints by using a Kohonen SOM, which subse-
quently can be applied for correspondence detection. Thereby, the learned SOM
functions, in an abstract way without precise biological conversion, similar to
how canonical neurons are assumed to behave, by obtaining an object’s 3D space
occupancy. The SOM is a multidimensional grid structure in which each vertex is
a neuron embodying a weight vector in the high dimensional feature space [178].
For each learning sample, a Best Matching Unit (BMU) is chosen, and the weight
vector that is closest to the sample. Hereby, the most similar weight vectors, and,
with less intensity, also their neighbors, are shifted in the direction of the input.
To implement a transition from exploration to exploitation, the BMU’s sphere of
influence is continuously reduced during the learning process. This is realized in
the basic SOM algorithm, as discussed in section 2.2.2. Two parameters can be

62

3.2. 3D Reconstruction through Self-organization

rotated SOM

correct orientation

Figure 3.7.: A learned SOM samples the workspace, which it represents. The neu-
rons are organized in a 3D grid and thereby a voxel space is created.
Each neuron corresponds to one tiny cube in the 3D space, as visual-
ized here through colors. To map the Cartesian space the topology of
the SOM’s weights is used. However, the orientation of the trained
SOM is not stable, it might change after each training run. The dis-
oriented SOM shown is only an example, theoretically any form of
mirroring and rotation can be present. But, as can be seen here, the
neighborhood relations remain intact.

adjusted to manipulate this effect, the learning rate η and the neighborhood rate
σ, see Equation 2.9 and 2.11 respectively.
The proposed approach interprets the stereo correspondence problem as a dimen-
sion reduction, whereby the SOM induces a topological structure and parametriza-
tion from unlabeled data sampled from a latent manifold. The neurons within
the network each correspond to an area within an abstract 3D occupancy grid.
Thereby, each neuron is sensitive to a specific combination of camera coordinates
and represents a segment of the 3D space. In Figure 3.7, the workspace to be
sampled is seen in the form of a cube. Each voxel in the workspace volume cor-
responds to a neuron of the trained SOM. The coordinates of the grid can be
translated into 3D coordinates of the real world. That works since SOMs are well
suited to find properties with the same dimensionality as the SOM but embedded
in a higher dimension. However, it is not possible to influence how the neurons
of the SOM map the manifold, that is, which neuron corresponds to which point
in 3D space. Thus, the orientation of the SOM is not stable, as formally derived in
subsection 3.2.2, meaning it can be rotated and mirrored. If the SOM is trained,

63

3. Event-based Stereo Vision

there are eight neurons which could be each corner of the 3D space. Yet, this does
not pose a problem for most applications, for example regarding collision check-
ing the orientation is irrelevant. This is only a major problem concerning visual-
ization and evaluation. Thus, relevant methods are not directly affected, but their
experimental validation is more difficult. The neurons’ neighborhood relations
represent connections on the manifold. Therefore, if no topological mismatch is
created, see Table 2.2 & Figure 2.14, the manifold’s parameters are represented
by the neurons’ indices. The underlying manifold parameterization, which is
created through feature mapping by self-organization, makes this technique ag-
nostic to calibration parameters. Hence, extrinsic and intrinsic camera calibration
as well as lens distortion are implicitly learned and therefore encoded in the final
mapping. This method, as it is quite computationally expensive, achieves good
performance through massive parallelization. However, this has to be considered
in relation as it is not a gigantic Artificial Neural Network (ANN) with many pa-
rameters and billions of neurons. The memory requirements are O(n3). Finally,
that most involved operations can be easily parallelized is also the prerequisite
for further acceleration through dedicated technologies such as neuromorphic
hardware or GPUs.

3.2.2. Formalism of Topology Induction

The formalization of the approach is to be done by employing an example. If
random samples are generated from the surface of a sphere and used as input for
a 2D SOM, the SOM’s weight vectors are uniformly distributed over the surface of
the sphere after learning. This can be interpreted as the surface being unwrapped
by the neural map and parametrized by the indices of its neurons. The definition
of the sphere, more generally the topological space or 2D manifold, can be done
by a set of points:

M = {(x, y, z) : f ((x, y, z)) = 0} (3.2)

given the implicit form f(·) of the manifold. In case the SOM converges, it maps
an ordered pair, referred to as indices, to points on the manifold:

(u, v) 7→ ωu,v, such that f(ωu,v) ≈ 0 (3.3)

and

g(ωu,v, ωa,b) ≤ g(ωu,v, ωc,d)⇔ ‖(u, v)− (a, b)‖ ≤ ‖(u, v)− (c, d)‖ (3.4)

thereby each pair of points on the surface is connected by g(·, ·). The discrete pa-
rameterization of the manifold, or more specifically sphere, is consequently given
by the coordinates (u, v) and the vectors ~u,~v. Even though the algorithm does not
necessarily converge, in almost all cases it does eventually converge on a set of

64

3.2. 3D Reconstruction through Self-organization

neurons, reflecting the underlying distribution of the input vectors stem (Tatoian
and Hamel 2018; 309). In this context, convergence is seen as a stability crite-
rion. If a SOM converges, this means that after a certain number of training runs,
new samples are inserted at the same position, even if training is continued. A
proof of convergence for the majority of the neighborhood functions is also pro-
vided in [196]. It is noteworthy that the orientation of the map can change during
each training run, which does not violate the convergence as long as the cluster
arrangement is stable. However, that means that SOMs by their nature are non-
deterministic in the sense that the directions ~u and ~v may swap as well as the
signs may change. The impact of this on the present use case is shown in Fig-
ure 3.7, including the resulting consequences for this approach. This is true for
the original SOM version by Kohonen, which is stochastic, but, the Batch Self-
organizing Map (Batch SOM) and its derivatives are deterministic [197], as stated
in Table 2.2.
The dimension of the example presented above must be increased for the ap-
proach to 3D reconstruction. As stated in subsection 3.2.1, the number of cameras
k determines the dimension of the input space which is 2 · k, thus 4D in the case
of stereo vision. The latent manifold which is to be recovered is the Cartesian
space:

MCartesian =
{

(x1, y1, . . . xk, yk) ∈ R2k : f(x1, y1, . . . , xk, yk) = 0
}

(3.5)

If the pair of image points in question corresponds to the same point in the real
world, the following equation for the indicator function is true: f(·) = 0. The
properties of the 2D case stated in Equation 3.3 & 3.4 become for 3D:

(u, v, w) 7→ ωu,v,w, such that f(ωu,v,w) ≈ 0 (3.6)

and

g(ωu,v,w, ωa,b,c) ≤ g(ωu,v,w, ωd,e,f)⇔ ‖(u, v, w)−(a, b, c)‖ ≤ ‖(u, v, w)−(d, e, f) (3.7)

Using simulated data, an example is given in Figure 3.8, to illustrate the method
vividly. 3D points of a cube and their corresponding image points are used as
training input. The lattice of the SOM is also a cube with an edge length of 10,
embodying 1000 neurons. The graphic shows how after learning, when the SOM
has converged, its weights represent the Cartesian space and a parametrization
is induced by the neural weights. In Figure 3.8(a) the first 1K samples of the
input space are visualized. The input data are randomized samples of a 1 m3

cube. The target representation of the weight vectors, thus the ground truth for
evaluation purposes, is visualized in Figure 3.8(b) and the actual weight vectors
are shown in (c). To make the exact contours of the neuronal lattice visible, only
the edges were visualized in Figure 3.8(d). The color coding reveals that the axes
have not remained stable but have swapped, exactly as expected. However, it
is not complicated to determine the correct transformation in case orientation is
needed, as done in subsection 3.3.1. At this point, it should again be emphasized
that no calibration is necessary for the 3D reconstruction. Calibration is only used

65

3. Event-based Stereo Vision

(a) samples (b) ground truth

(c) weight vetcors (d) Edges of neural hypercube

Figure 3.8.: The weights of a converged SOM represent an evenly sampled Carte-
sian space and the neural coordinates induce a parameterization. (a)
The first 1K samples (from a total of 10k) of the input space represent
a cube from two slightly shifted perspectives. (b) Target representa-
tion showing a color coded 3D lattice. (c), (d) The actual weights in
the SOM’s feature space. Image source: (Steffen et al. 2019b)

to obtain the camera model in simulation and as ground truth. The number of
neurons grows inO(n3) and is crucial as the resolution and therefore the accuracy
of the results depends directly on. In the case of a workspace with 1m3, as could
be used for the scenario in Figure 1.3 of section 1.2, it is sufficient if the neurons
cover a voxel with edge length 5cm of the 3D space.

3.2.3. Detachment of Learning by a Prelearned SOM

A SOM embodies two processing steps, or modes, training and matching. One
way to significantly speed up the algorithm on a real-life application is to use
a network that was pre-learned in simulation, with a continuously decreasing
learning rate. Hence a learning phase in simulation is very beneficial before
applying the algorithm to real hardware. For this purpose, the size of the ac-
tual workspace of the intended use case is required. For training the SOM, ran-
dom samples of a cubic space serve as input. The cube has to be well visible
from the perspective of both sensors and its size must correspond to the targeted
workspace. To do this, in practice, the work cell and stereo setup is replicated
in simulation using a Unified Robot Description Format (URDF), as shown in
Figure 3.15(a). Thus, the work cell’s size and pose in respect to the sensors can
be extracted from the URDF. The samples are projected into camera coordinates
of the left and right sensor by use of the calibration matrix, which embodies the
camera parameters of each sensor individually and also a stereo calibration. The
parameters encode the orientation and position of the sensor setup in space. Con-
sequently, changes in orientation or position can make the prelearned results ob-

66

3.2. 3D Reconstruction through Self-organization

solete. This is especially true if the cameras are shifted in relation to each other but
may also occur if the workspace changes in size or, even worse, shape strongly.
Prelearning has to be repeated with the correct calibration matrix for the new
setup. However, including the camera setup into the system allows for rapid
pre-learning with a conventional SOM. This alleviates the difficulties often en-
countered with setting up event cameras and removes the need to implement
more complex training solutions involving SNN, which reduces the time needed
to get the system running.
The neurons’ weights represent the image coordinates for both cameras, thus all
neurons hold weight vectors wi = (x1, y1, x2, y2). These weights are trained to
represent the specific reactivity to camera events for individual neurons which
makes the SOM approximate the sampled space, in short, it "matches" the cube.
In Figure 3.9 a training succession is shown explanatory for a 6× 6× 6 SOM and

(a) (b) (c)

(d) (e) (f)

Figure 3.9.: Development of a SOM during prelearning. The gray x are the input
samples and the development of the SOM is shown in color. The im-
age series was taken with the interval of 4 seconds and (a) is the very
start of the training phase.

correspondingly small workspace. Like for Figure 3.8 two perspectives of the
cube are recorded. However, the visualization is limited to the left one because a
second viewpoint does not provide any additional information here.
It would not be necessary to retrain a SOM which was pre-learned on simulated
data drawn from a cube on the actual application, thus the applied stereo setup
and the real-life work cell. However, this is strongly dependent on the quality of
the calibration, which was obtained from the actual camera setup and applied to
the simulated camera model. As calibration for event-based sensors is not trivial,
it is safe to assume that retraining is very beneficial, as shown in the paragraphs

67

3. Event-based Stereo Vision

regarding calibration in subsection 3.3.2. However, training on the actual appli-
cation, with real cameras and a real scene is far from trivial. To preserve the shape
of the workspace, the cube representing the robot’s work cell would have to be
sampled evenly from this area. The lattice of the SOM will otherwise adapt to the
environment. Therefore, if the cameras detect movement outside the workspace,
an adjustment would take place for this and the SOM would change its shape.
Furthermore, in the case of normal distributed data points for the training phase,
the SOM will shrink, as everything will be drawn closer to the center.

3.2.4. Receptive Fields

The method proposed in subsection 3.2.2, which is evaluated in subsection 3.3.1,
uses all neurons as possible matching candidates. Hence, matching is performed
all-to-all and the BMU is selected from all neurons of the network, which harms
the performance. To narrow down possible candidates synaptic fields are gener-

(a) (b)

Figure 3.10.: Gaussian kernels acting as receptive fields for increased matching
speed. (a) A sketch to illustrate the concept. (b) Exemplary repre-
sentation in the retina space. The original neurons are visualized at
the top and their associated receptive fields at the bottom, for the
left and right viewpoints. As a SOM with edge length 20 was used
and the data fit an ATIS with resolution 480× 360, the resulting data
format is 20× 20× 20× 480× 360.

ated for each neuron. By applying a function for back transformation, weights
for the connection of each neuron in the SOM to each pixel in each camera can
be determined. Instead of a 4D element, like the input weights of form wi =
(x1, y1, x2, y2), hereby arises a 5D data format. The 3D coordinate of the SOM’s
neural grid is supplemented by each axis of the image plane. In the case of the
ATIS, the resulting data format is X ×X ×X × 480× 360, whereby X is the edge
length of the SOM. This function can generate a one-to-one mapping between

68

3.2. 3D Reconstruction through Self-organization

pixels and neurons. However, by applying a Gaussian "filter" around the pixel
with the strongest influence towards each neuron, a more sophisticated connec-
tion matrix is applied. These connection matrices called "receptive fields" from
now on, connect the pixels of both event cameras to neurons of the SOM in a
natural fashion. Thereby, every neuron could be connected to all pixels, albeit
most connections have a weight vector of 0. However, this depends heavily on
the chosen size of the receptive fields. In case a reasonable size is chosen for the
Gaussian kernel, as visualized in Figure 3.10(a), neurons are matched only locally.
Furthermore, matching with synaptic fields generalizes the approach. For one, it
becomes more suitable for application to SNN, as it is more in line with their
sparse concepts. Also, it allows the processing of frame-based data for which
comparing each pixel of one image with the other would be necessary without
this method. The receptive fields are placed over the field of view, similar to a
CNN, as shown in Figure 3.10(b).

3.2.5. Bootstrapping by Shape Segmentation

The concept of bootstrapping is inspired by human ontogenesis [310]. It is the
process of how children learn to resolve correspondences and thereby slowly gain
the ability to see sharp images. This includes several procedures such as shape
segmentation or the slow increase of resolution of the eyes over months. The for-

Figure 3.11.: Finding correspondences through shape segmentation, in case of a
circle. Image source: (Azanov 2022)

mer refers to the mechanism that the human visual complex can infer correspon-
dences from related forms, as previously discussed in subsection 2.1.3. The latter
allows learning initially with reduced complexity, due to a very low resolution,
to simplify the search for correspondences. The resolution is gradually increased
and thus the complexity of learning. Bootstrapping can be applied to deal with
the problem that SOM depend on resolved correspondences during training, as
shape segmentation can speed up the learning process. Regarding shape segmen-
tation, the initial SOM implementation, which only recognizes dots in the view
fields of both sensors, is extended to recognize 2D shapes. As an easy entry point,
exclusively circles are used as shapes, as visualized in Figure 3.11. Circle centers
can be recognized by the random sample consensus (RANSAC) algorithm [311]
or Hough transformation [312]. The explicit 3D position of the circles is therefore

69

3. Event-based Stereo Vision

appended to the SOM vector, resulting in [xL, yL, xR, yR, rL, rR, x, y, z]. Thereby,
xL, yL and xR, yR refer to the centers of the circle perceived by the left and right
sensors and the radius is respectively given by rL and rR. This extension does not
require an adaptation of the learning algorithm as only the vector size is changed.
Furthermore, all points belonging to a recognized circle are reduced to a xy po-
sition and a radius of this circle. Subsequently, the circle centers can be used to
train SOM without complex calibration.

3.3. Experiments and Results

The transfer of this method from artificially created event-based data to an event
camera is rather trivial. However, it is a lot harder to obtain the required in-
formation for quality analysis on real hardware. Consequently, in addition to
the evaluation on real hardware in subsection 3.3.2, experiments have also been
carried out in simulation in subsection 3.3.1. By using ray tracing, enough real-
ism is assumed while having absolute measures to make a qualitative analysis.
The sensor placement and calculation of the camera parameters are implemented
with the open-source software Blender. Calibration regarding intrinsic and ex-
trinsic camera parameters of both sensors is necessary for simulation. Moreover,
to obtain a good error metric, back projecting the SOM’s 4D weights to 3D space
also requires calibration. However, calibration is neither used for learning nor to
solve the correspondence problem.

3.3.1. Simulated Event-based Data

The evaluation of simulated data embodies two parts. Firstly, the performance
of learning is evaluated by a qualitative analysis of how a SOM matches the 3D
space it was trained in. Secondly, a proof-of-concept is provided that demon-
strates that the correspondence problem on event-based data can be solved by a
pre-trained SOM.

A Qualitative Analysis

The workspace regarding the target application of a reactive planning system is
constrained to 2m3 for the experiments within this section. As visualized in Fig-
ure 3.7, the SOM discretizes the workspace and thereby creates something like a
voxel grid, which was also used within Figure 3.8.
As feature weights are presented in 4D, their error, thus the SOM’s error, is dif-

ficult to measure. 4D feature weights can be projected back to a 3D space for
evaluation, as seen in Figure 3.8. However, an error is also generated by the back
projection and it is not trivial to determine how large its proportion is to the total
error. Thus, while Figure 3.8 is an informative visualization it does not serve well

70

3.3. Experiments and Results

neurons # samples run time mean Cartesian mean neural max

103 2000 0.2 0.177 0.13 2.24

103 5000 0.6 0.204 0.10 3.16

143 20000 4.1 0.152 0.11 4.47

143 50000 10.4 0.159 0.07 4.47

163 100000 28.2 0.149 0.07 4.47

163 200000 57.2 0.152 0.06 4.58

163 500000 141.4 0.140 0.09 5.00

203 100000 49.9 0.151 0.03 5.92

203 200000 100.4 0.157 0.03 5.92

203 500000 257.6 0.162 0.02 5.92

Table 3.1.: Convergence quality concerning the number of training samples and
the number of neurons. Thereby, the Cartesian workspace is referred
to as ‘Cartesian’ while the space induced by the neuron’s indices is
referred to as ‘neural’. The time of a training run is given in seconds.
Table source: (Steffen et al. 2019b)

for evaluation purposes. Consequently, in Table 3.1 a convergence quality of the
trained SOM concerning the number of training samples and the number of neu-
rons is given. Thereby, it is investigated if the vertices of a grid that is regularly

(a) (b) (c) (d)

Figure 3.12.: Plots of the root-mean-square error (RMSE), the distance between
weight vectors and target representation. (a) Feature weights, (b)
target representation (c) RMSE and (d) RMSE but without the neu-
rons on the outer layers. Image source: (Steffen et al. 2019b)

distributed over the workspace can activate the neurons with the same index.
This requires prior axis alignment and finding the BMU, as described by the used
learning rule, to allow a comparison of the winning neuron and the ground truth.
It can be seen nicely in Table 3.1 that the error regarding the space induced by the
neuron’s indices declines constantly during the upscale of the neuron number
and training samples. Even though, the error in the Cartesian space is quite large

71

3. Event-based Stereo Vision

the neural mean error is also overall relatively small, proofing convergence and
the functionality of the trained SOM. The fact that the error in the Cartesian space
is larger does not change that. The table also shows how the run time for training
increases for larger networks and more training samples when run on an AMD
Ryzen 5 1600x six-core processor with 16 GB RAM.
In Figure 3.12 the RMSE, a measure for differences between predicted model val-
ues and experimental results [313], is given for the trained SOM. Thereby, for the
RMSE plot in (d), the outer layer was discarded, as SOMs are known to obtain
significantly worse results for the rims. As can be seen well by comparing (c)
to (d), the average distance is reduced significantly by removing the outer neu-
rons. However, this does not pose a big issue as the workspace for training can
be inflated slightly, allowing the removal of the outer neurons.

Solving the Correspondence Problem

Figure 3.13.: A trained SOM finding correspondences on event-based data. In
the first row, every 15th corresponding pair is shown. The center
row shows all neurons without connecting lines and the bottom row
features the original frames of the simulated object, a moving cube.
Thereby, ON-events are marked in red and OFF-events in blue. The
green lines connect corresponding neurons and green squares visu-
alize the neurons’ regions of activity. Image source: (Steffen et al.
2019b)

72

3.3. Experiments and Results

This section is a proof-of-concept that a SOM can be successfully applied to solve
the correspondence problem as introduced in section 2.1.3. Hereby, a very naive
way of matching potential candidates is applied, as all events are matched se-
quentially with each other, and the polarity is ignored. The process can be accel-

Figure 3.14.: Activity regions of neurons, thus the area of possible matches.
Thereby, a wireframe of a rotating cube is recorded in simulation
by two event cameras. For an explanation of the elements see Fig-
ure 3.13. Image source: (Steffen et al. 2019b)

erated significantly, for example by eliminating candidates through temporary
pre-processing. For example, a slowly increasing time interval can be used for
this purpose. However, an examination of the algorithm as unadulterated as pos-
sible is targeted, thus, run times of 30 s per frame using an 20× 20× 20 SOM are
tolerated. How correspondences between two slightly shifted perspectives of a
moving cube are detected is visualized in Figure 3.13. It is important to note that
the sole determination of the BMU is not sufficient to solve the problem of corre-
spondence. Additionally, the distance is used to ensure that potential candidates
are located within the activity regions of the respective neurons, thus, the area of
possible matches. The size of this region changes with depth. This investigation
was also carried out with a more complex object, a wireframe as can be seen in
Figure 3.14.

3.3.2. A Stereo Setup of Two Event Cameras

The method is applied to an online demonstrator, as shown in Figure 3.15. Thereby
a stereo setup of two event cameras of the type Gen3 ATIS, as introduced in Ta-
ble 2.4, is mounted approximately 1.2 m above the floor. Specifications about the
sensor are given in Table A.1 of Appendix A. The scene to be reconstructed is,
in line with the research goal in section 1.2, a moving robot arm, mounted on a
table. In (a), a live virtual representation of the sensor setup and the robot in a 3D

73

3. Event-based Stereo Vision

(a)

(b)

(c)

Figure 3.15.: Demonstrator for the execution of the 3D reconstruction on event
streams of robot motions. (a) live virtual representation of the sensor
setup of two ATIS, the robot and the defined work cell in RViz. Event
frames of the scene from the viewpoint of the (b) left and (c) right
sensor.

visualization tool for ROS (RViz), is shown. A cube with an edge length of 1.3m
is defined, as the work cell which covers the robot’s motion space. A frame of the
event streams, displaying how the scene is perceived by the left and right ATIS,
is shown in (b) and (c).

Data Acquisition and Calibration

To extract depth information from a stereo setup, two steps are necessary. Firstly,
solving the correspondence problem and secondly, triangulating the obtained
correspondences to reconstruct the depth of a real-world point. The triangula-
tion step requires knowledge about the geometrical relations between the two
sensors as well as their characteristics. Calibrating a stereo setup, as shown in
Figure 3.16(a) & (b), embodies two steps; Firstly a separate mono-calibration of
each sensor and secondly the stereo calibration. The first step aims to find in-
trinsic and extrinsic parameters that describe how the cameras map real-world
points to their respective image plane. The second step is necessary to determine
how the two sensors are located relative to each other, which is especially impor-
tant for stereo depth estimation as discussed in subsection 3.1.2. As the correct
calibration of event cameras is crucial and at the same time quite complex, many
methods and best-practice advice have been published on the subject in the last
few years [314; 315; 316; 317]. Traditional calibration methods for frame-based
sensors apply a so-called calibration pattern with known geometry. Usually, a

74

3.3. Experiments and Results

(a) (b) (c)

(d)

1

2
3

(e)

Figure 3.16.: Hardware setup for mono and stereo calibration of an ATIS. (a) Two
ATIS fixed on a 3D-printed sensor mount. The three-colored cables,
on top of the setup, connect the clock pins, necessary for synchro-
nization. (b) Design of the 3D-printed sensor mount. (c) Recon-
structed frame of the flickering checkerboard. Additionally, the de-
tected pattern points (green circles), the coordinate systems for the
checkerboard and the re-projected points after the calibration pro-
cess are shown. (d): Visualization of different perspectives of the
checkerboard. (e) Photo is taken during the calibration process. A
static monitor displays a GIF of the flickering checkerboard (high-
lighted in green). The sensor setup’s position is altered for each pair
of images (highlighted in green). The calibration software is running
on a connected laptop (highlighted in red).

checkerboard pattern is used for this purpose. There are, however, other possi-
bilities with more complex geometries. The core of the calibration process is the
re-identification of these features in each image, thus the detection of checker-
board corners. Subsequently, an optimization problem is solved to optimize the
intrinsic as well as extrinsic parameters [316]. For a printed checkerboard pat-
tern, the known image points will be co-planar and therefore not sufficient to
define a 3D space. Hence, the checkerboard needs to be recorded from different
viewpoints as shown in Figure 3.16(d). In the special case of event-based sensors,
the calibration process becomes slightly more complex, as the sensors only react
to changes in illumination and are not able to detect a stationary checkerboard.
Thus, due to the asynchronous mode of action of event cameras, this technique is
not directly applicable. Hence, to transfer the technique to event cameras, either

75

3. Event-based Stereo Vision

the camera or the pattern must move [317]. Therefore, many methods for cal-
ibrating event cameras use actively illuminated patterns. Either a custom-built
LED array [315] or electronically displayed flashing checkerboards [318; 319].
Both methods allow feature detection due to the fast illumination changes and
subsequently enable the use of standard optimization-based calibration tools. A
blinking LED board implements the possibility of designing a calibration pattern
with non-co-planar points. However, it has the disadvantage that they cannot be
reliably detected by frame-based cameras, which excludes them for use with a
multi-sensor setup that includes event-based and frame-based cameras as used
in (Elfgen 2020; Steffen et al. 2021a). Furthermore, due to the need for precision,
the production of such boards is neither easy nor cheap. Faulty boards lead to
poor calibration results which can severely affect the stereo reconstruction. Quite
recently, alternatives like ANN-based image reconstruction [316; 320] have been
proposed, which do not need actively illuminated devices. Furthermore, in [317]
calibration is performed directly on events that are triggered by relative motions
between the pattern and sensors.

Verification of the Calibration by Using Groundtruth

(a) (b)

Figure 3.17.: Validation of the calibration result through sensor fusion. (a) The
multi-sensor setup embodies two ATIS and an Intel RealSense D435.
(b) Calibration error over time for Figure 3.18(a) & (c) in orange and
for Figure 3.18(b) & (d) in blue. Image source: (Azanov 2022)

A successful application of any method for 3D reconstruction requires a suitable,
accurate calibration of the sensors. In this case, this concerns the mono calibra-
tion of both ATIS and their stereo calibration. The calibration process of event
cameras is error-prone and in addition, their finished calibration is not very ro-
bust. To overcome this issue a method was developed to validate the calibration
result using sensor fusion and shape segmentation. By using the RealSense RGB
ground truth, 3D points that are suitable for comparison with the results of the
calibration, are generated. Specifications about the depth sensor are given in Ta-
ble A.2 of Appendix A. As an example, a bad calibration of event-based sensors is

76

3.3. Experiments and Results

compared with a good one in Figure 3.18. For this purpose, shape segmentation

(a) (b)

(c) (d)

Figure 3.18.: Investigation of calibration quality using sensor fusion. (a) & (c)
poor calibration results of event-based sensors compared with
(b) & (d) significantly better ones. In (a) & (b), the difference in the
quality of the calibration can be seen by the distance of the two de-
tected circles. In (c) & (d), the error is visualized by orange arrows,
pointing from the triangulated circle centers acquired with RANSAC
on event streams to the circle centers received by the Hough trans-
formation on data from the depth sensor. Image source: (Azanov
2022)

is used, more precisely, circles are compared. In the case of event-based sensors,
circles are detected by a RANSAC algorithm [311] and for RGB data through a
Hough transformation [312], as visualized in Figure 3.18(a) & (b). The circles
in the event-based case are not so easy to see with a Hough transformation, as
there are not always enough events to form a complete circle. Thereby, the red
circle is triangulated with different calibrations. It is visible that the calibration
in (b) is superior. Additionally, in Figure 3.18(c) & (d) 502 circles are detected
and plotted. The arrows point from the triangulated positions of circle centers,
obtained by event-based data, to the 3D positions acquired using a RealSense.
The lengths of these arrows, representing the calibration error, are plotted over
time in Figure 3.17(b), in blue for (d) and in orange for (c) respectively. The er-
ror is the absolute distance of the circle centers, hence, the calibration quality is
well-measurable.

77

3. Event-based Stereo Vision

Evaluation of the Pre-learning Process

To allow a transfer of the proposed method from simulation to event streams of
the ATIS, the SOM is pre-trained on a geometry that corresponds exactly to the di-
mensions of the intended workspace. The workspace is visualized in Figure 3.15,

(a) (b)

Figure 3.19.: Training samples were drawn from a cubic space, corresponding to
the dimensions of the intended workspace of the application. In (a),
it is only sampled in the vicinity of the workspace, while in (b), train-
ing samples that are located up to 10 cm outside the cell are included.
Image source: (Azanov 2022)

except that the cameras and the robot have been neglected for visualization pur-
poses. In Figure 3.19, the workspace and the generated training examples are
visualized. However, SOM are known to perform poorly regarding their outer

(a) (b) (c)

Figure 3.20.: Evaluation of a pre-learned SOM. A SOM with size 8×8×8 is trained
in (a), while a SOM with size 16 × 16 × 16 in (b) & (c). Samples are
drawn from within the work cell for (a) & (b) and up to 10 cm outside
the workspace for (c). Image source: (Azanov 2022)

layers, as discussed in subsection 3.2.3. Thus, in addition to creating the training
examples within the borders of the workspace as seen in Figure 3.19(a), in (b) the
workspace was extended by 10 cm in all directions. The size of a SOM required

78

3.3. Experiments and Results

to represent a workspace well must be tested, as visualized in Figure 3.20. It can
be seen that the SOM of size 16× 16× 16 depict the workspace much better than
the SOM of size 8 × 8 × 8. All SOMs in Figure 3.20 are trained with 10 k sam-
ples, whereby the samples are exclusively drawn from within the work cell for
(a) & (b), as shown in Figure 3.19(a). In contrast for (c), samples are drawn up to
10 cm outside the workspace, as visualized in Figure 3.19(b). As expected, due to
the weakness of SOMs concerning their edge regions, a much better representa-
tion of the work cell is produced when it is slightly inflated before sampling.

Evaluation of Receptive Fields for Local Matching

The approach with the improvements as described in subsection 3.2.4 was evalu-
ated on simulated data. In this way, errors and inaccuracies that inevitably arise
from the sensor calibration are prevented. In Figure 3.21 results of the evaluation

(a) (b)

(c) (d)

Figure 3.21.: Evaluation of triangulated 3D positions by a SOM from simulated
event-based data. The arrows indicate the difference between recon-
structed 3D positions and ground truth at the (a) start and (b) after
a completed learning process. (d) How the error decreases during
learning is plotted in (c), supplemented with a zoom in (d). Image
source: (Azanov 2022)

in simulation can be seen. The neurons used for this purpose have a combination
of 4D and 3D values, [xL, yL, xR, yR, x, y, z]. The network is trained with samples

79

3. Event-based Stereo Vision

of this data format, whereby the first four values indicate the pixel coordinates
on both event cameras and the last three indicate the ground truth. This is visual-
ized in Figure 3.21(a) & (b), where the arrows indicate the difference between the
reconstructed positions by the SOM and the ground truth. In (a) the SOM was
trained with only 10 samples beforehand thus, the graphic represents the situa-
tion before learning, or very much at the beginning. Since the initialization of the

(a) (b)

Figure 3.22.: Sensor fusion for the evaluation of triangulated 3D positions by a
SOM from event-based data. (a) Two-color image of the ATIS where
the reconstructed circle is marked in cyan. (b) Visualization of a 15×
15 × 15 SOM after learning, the orange arrows indicate the error, as
the distance of the triangulated values to the ground truth. Image
source: (Azanov 2022)

SOM’s weights is random, the initial state is quite chaotic. In contrast, in (b) 2000
samples have been presented to the SOM, so this is a post-learning shot. How the
error develops during learning is plotted in Figure 3.21(c) and Figure 3.21(d). It
can be seen that the SOM converges after only 500 training cycles and afterward
the mean error stays below 4 cm. The distances between triangulated and ground
truth 3D positions were used as the error measure, thereby, the maximum, min-
imum and mean value is given. The graph in Figure 3.21(c) shows the whole
process and (d) a zoom-in where the first 30 samples are skipped. It can be seen
that the mean error, visualized in green, remains below 4 cm in the last half of
the training time. The large error at the beginning implies unfavorable random
initialization of the neuron weights, which is however the norm.
The ground truth obtained by sensor fusion can also be used for an evaluation of
the stereo reconstruction on real event-based data, as shown in Figure 3.22. A cir-
cle was chosen as the object to be shown to the cameras, as seen in Figure 3.22(a)
perceived by the ATIS. For training a SOM with the lattice size 15 × 15 × 15 is
used, as shown in Figure 3.22(b). Subsequently, circles are detected in the event-
based data by a RANSAC algorithm and for data of the RealSense through a
Hough transformation. The error is the distance of the circles which resulted
from the reconstruction of the respective sensor data. Meaning, the triangulated
3D positions generated by the SOM from event-based data are compared with

80

3.4. Discussion

Figure 3.23.: Evaluation results obtained by using sensor fusion. The plot visu-
alizes the error regarding the 3D reconstruction and how it evolves,
thereby the maximum, minimum and average of the error are visu-
alized. Image source: (Azanov 2022)

the ground truth obtained from the RealSense. The calibration of the combined
sensor setup, shown in Figure 3.17(a), is difficult, which harms the results. Sam-
ples from RealSense differ strongly from the triangulated values, as can be seen
in Figure 3.22(b) and the error is correspondingly large. The results are plotted
in Figure 3.22. The plot in Figure 3.23 shows that the evaluation on real data is
far behind the results obtained in simulation, the difference between the results
is almost 20 cm.

3.4. Discussion

As state-of-the-art is quite thin, at least concerning algorithms dealing with both,
stereo reconstruction and event cameras, a more profound review of related work
is provided for this chapter. Furthermore, this chapter is very exploratory, as a
new method was developed. This method was tested both in simulation and
on real event-based data, which could prove its general suitability. As it dealt
with a relatively new technology, event cameras, new ground was broken. It
was shown that the method works, but especially in terms of accuracy, it is not
directly concordant with stereo vision methods regarding classical computer vi-
sion. In comparison to similar work based on self-organization [190; 189], no fea-
ture matching was done here. In contrast, a neural representation whereby each
node corresponds to a 3D occupancy region is created. A powerful feature of the
approach is that the 3D reconstruction implicitly contains extrinsic and intrinsic

81

3. Event-based Stereo Vision

camera calibration. These parameters as well as the lens distortion are learned
implicitly by the SOM. Moreover, event-based techniques for depth reconstruc-
tion often embody complex complementary constraints [55; 258; 54]. In contrast,
the system presented here differs regarding its simplicity. The accuracy of the
depth reconstruction is highly dependent on the size of the neural grid, which
grows withO(n3). The network’s size and complexity are therefore not exponen-
tial but only cubic. Nevertheless, it causes the classical trade-off between speed
and memory consumption. A workspace of 1m3 and a voxel size of 5 cm, how-
ever, is considered sufficient for the intended use case, presented in section 1.2,
which generates a network of size 20×20×20 with the reasonable amount of 8 000
neurons. As a consequence, the relatively small voxel grid enables the method to
be a comparatively memory-friendly solution, despite the relatively high compu-
tational complexity.
Biological plausibility, which explains 3D reconstruction in the cortex, is a very
desirable property of a stereo vision method. However, even though biologi-
cally inspired methods, such as event cameras (see subsection 2.2.3) and SOM
(see subsection 2.1.2) are used, the presented approach does not claim to be bi-
ologically plausible. To some extent, the algorithm presented can be considered
to generalize well. It has been used here for event-based data, but adaptation to
RGB cameras would only require a prior color or feature matching. However,
this is only a theoretical consideration and has not been tested. The extensions,
see subsection 3.2.4 and 3.2.3, already represent an enormous improvement of the
algorithm. However, many possibilities to optimize the processing further, both
in terms of speed and accuracy, are still possible. An interesting example, in this
respect, is the employment of sparse matrices [321] either together with receptive
fields or even as a substitute. Moreover, a more sophisticated method than inflat-
ing the workspace, as presented in subsection 3.2.3, could be developed to ensure
correct learning of the rims.
A major problem, however, is the relatively poor results on the event-based data
in Figure 3.23 compared to the evaluation in simulation in Figure 3.21. While the
results in simulation show only a relatively small error after training, a relatively
large error remains when using real data. One reason for this are remaining cal-
ibration problems, as can be seen in Figure 3.18. It is further assumed that the
ground truth obtained with the multi-sensor setup, shown in Figure 3.17, also in-
duces further inaccuracies. It is not easy to evaluate the 3D reconstruction on real
data, therefore in the previous chapter, a lot of the experiments were done with
simulated data.
During this thesis, it became clear that a stereo setup of two event cameras is not
sufficient to capture the work cell shown in Figure 1.1. Furthermore, event cam-
eras are comparatively expensive. Thus, the integration of additional ones would
be a costly, albeit interesting, undertaking. In the case of sensor fusion, integrat-
ing a conventional camera into the system, the cost factor could be circumvented.
However, the implementation involves an enormous complexity. In addition, the
correlation between resolution and network size also posed a certain problem for
practical use. Therefore, an existing vision system was used in chapter 4, to not
influence the results.

82

4. Reactive Neural Path Planning

As the role of Human–robot Interaction (HRI) constantly and drastically increases,
robots need to act safely and flexibly in a shared workspace with a human. To
enable a safe and cooperative collaboration, it is necessary to perform a goal-
directed motion while taking a dynamically changing environment into account.
This requires reactive path planning with dynamic obstacle avoidance [322; 323;
324]. There are two fundamentally different approaches for robotic motion plan-
ning [325; 326]. First, in the task space T , requiring Inverse Kinematic (IK) for the
calculation of joint angles afterward. Second, in the N-dimensional configuration
space (C-space), where N is the Degree of freedom (DOF). While planning in the
task space is significantly less computationally intensive, it faces redundancies
and may even lead to unpleasant joint angle jumps [18; 17]. Motion planning in

left arm
(8 DOF)

right arm
(8 DOF)

left arm
(6 DOF)

right arm
(6 DOF)

left arm
(7 DOF)

right arm
(7 DOF)

torso
(1 DOF)

torso
(2 DOF)

arm
(6 DOF)

arm
(6 DOF)

UR10
Universal Robots

HoLLIE
FZI

PRBT
PILZ

Baxter
Rethink Robotics

Armar
KIT

Figure 4.1.: Overview of the DOF of industrial robot arms and humanoids. The
DOF of the neck, hands and mobile platforms are not regarded for
collision-free arm movements. Data and images: UR10 1, PRBT 2, HoL-
LiE [327], Baxter [328], Armar [329].

the high-dimensional C-space is more elegant as it becomes a pure path planning
problem. The robot is represented as a point, which has benefits, especially for ob-
stacle avoidance. Many techniques for path planning, like the grid-based search
A* [28], bug algorithms [330], visibility graphs [331], Voronoi diagrams [332; 333]
and cell decompositions [322; 326] have been proposed. They are all complete
and work well in lower dimensions and with static obstacles [334], however, they
do not scale well to high dimensions [322; 323; 326]. HRI requires real-time plan-
ning to ensure the safety of humans. Related algorithms are still not performant
enough, especially in unpredictable surroundings [335] and for robots with many
DOF. An exemplary representation of a typical number of DOF of robots in a sci-
entific and industrial context is given in Figure 4.1. This chapter addresses re-

83

4. Reactive Neural Path Planning

search question 2 defined in chapter 1: "Is it feasible to use the high-dimensional con-
figuration space, which requires huge amounts of neurons, for neural path planning?".
The remainder of this chapter is structured as follows. The relevant related work
is covered in section 4.1. The theoretical basis of the developed method is given
in section 4.2. First, the initial idea is presented in subsection 4.2.1, the reduction
of the C-space to allow fast and efficient path planning. Then, different network
models are introduced which are considered for the reduction of the complex-
ity in subsection 4.2.2. Subsequently, it is depicted how obstacles can be trans-
formed into the reduced subspace in subsection 4.2.3 which is concluded by path
planning in a cognitive map in subsection 4.2.4. An evaluation of the presented
method is shown in section 4.3, starting with a comprehensive comparison of
network models in subsection 4.3.1. Different algorithms for subsequent path
planning are tested in subsection 4.3.2 and obstacle avoidance of the most suited
network models is tested in subsection 4.3.3. Finally, the most important compo-
nent of the evaluation is shown in subsection 4.3.4, a comparison of the presented
approach to modern sample-based planners. The chapter is completed with an
in-depth discussion in section 4.4. The material covered in this chapter was orig-
inally published by the author in (Steffen et al. 2021c; Steffen et al. 2022a; Steffen
et al. 2022b).

4.1. State-of-the-art

Path planning in robotics is by no means a new problem, so the respective state-
of-the-art is very extensive, an overview of the most important methods is given
in subsection 4.1.1. In subsection 2.1.4 an introduction was given to how the
brain solves spatial navigation and path finding through extreme parallelization.
Brain-inspired methods for path planning, based on these neurological findings,
are introduced in subsection 4.1.2. In the course of this thesis, my neural im-
plementation for a 3D Wavefront Algorithm (WFA) was developed (Steffen et
al. 2020b). As it is well suited for execution on parallel hardware it serves as
a basis for the respective performance analysis presented in chapter 5, and is
therefore introduced in subsection 5.2.1. However, motion planning, computing
a collision-free path from a start to a goal configuration in a dynamic environ-
ment requires very fast and flexible planning algorithms. As the methods pre-
sented in subsection 4.1.1 were mostly developed for 2D, or sometimes 3D, they
are not well suited for planning in the C-space of a robot with many DOF. The
same is true for many of the neural applications in subsection 4.1.2. The imple-
mentation introduced in (Steffen et al. 2020b) was not performant enough for an
online demonstrator for highly reactive path planning. Furthermore, only the
end-effector was considered here, thus, the joint angle position of the robot is
not reliably determined by the algorithm, which poses a safety problem for the
intended application. As a result, a biologically inspired method has been de-
veloped that reduces the computational burden by dimensionality reduction and

84

4.1. State-of-the-art

efficient C-space creation. Related work regarding these topics is given in subsec-
tion 4.1.3.

4.1.1. Conventional Methods for Path and Motion Planning

Research on robot motion planning started in the ’60s, however, it was not un-
til the end of the ’70s with the work of Lozano-Pérez’s [331] that it received
greater attention. As path planning algorithms are often applied for robotic arm
motion control this section also covers 2D and 3D navigation. In this context
path planning is regarded as the association of a system’s start to its goal con-
figuration [336]. Comprehensive surveys on path planning algorithms for mo-
bile robots were published relatively recently in [337; 336]. A corresponding
work regarding 3D navigation is [338]. However, as the planning complexity
increases with the number of DOF [336], many of the planning algorithms that
work quickly and reliably in 2D are very slow to the point of unusability in higher
dimensional search spaces. In addition, both robots and the environments they
operate in, have become much more complex. This increases further the need
for efficient high-dimensional motion planning [334]. In particular, dynamic en-
vironments that require constant replanning place high demands on processing
times. A review that is unfortunately not quite as up to date but has the focus
on actual motion planning in the C-space was published in [339]. The algorithms
are thereby divided into classic and heuristic methods, including analysis of their
frequency of use over time. Until 1982 only classical approaches were used, how-
ever, since 1993 more than 50 % robotic applications use heuristic techniques. A
more recent paper regarding planning in high-dimensional spaces was presented
in [334]. In general, path planning algorithms are often divided into categories,
(1) grid based, (2) sampling based, (3) Artificial Potential Field (APF), (4) mathematical
optimization models and (5) bio-inspired algorithms. However, slightly different di-
visions are known in the literature [338; 334; 339].
Category (1) is either referred to as grid based [334] or node based optimal [338].
Here, the search space is divided into discrete cells that are either occupied by
an obstacle or free. The shortest path that does not collide with any occupied
cells is to be found between the cells defined as start and target. A very straight-
forward method, which since the ’90s is becoming increasingly widespread [340;
341], is the WFA, also called grassfire. It uses a Breadth-first Search (BFS), an un-
informed search algorithm, which is used to traverse the nodes of a graph. All
nodes that can be reached from the current node are always considered first, in-
stead of descending directly into the depths. The algorithm encodes the distance
of any map location regarding the start cell, called the source, through propa-
gating waves through the network. Thereby, all cells with the same distance to
the source are passed synchronously and the designated values, with which the
cells are marked, increase with each wave. To determine the shortest path from
any point on the map to the source the highest descent of wavefronts is traced
back [24; 342]. The BFS applied for the WFA is formalized in algorithm 1. The

85

4. Reactive Neural Path Planning

Algorithm 1 Breadth First Search adapted from: [29]

procedure BFS(G : graph, s: start vertex)
Q : queue
Q.enqueue(s)
mark s as visited
parent dictionary . node→ parent node
parent[s]← s
while Q not empty do

v = Q.dequeue()
for all neighbors w of v in G do

if w is not visited then Q.enqueue(w)
parent[w]← v
mark w as visited

end if
end for

end while
end procedure

algorithm is very simple, efficient and resource-saving. Furthermore, it is not
affected by complex shaped objects and only to a very small extent by the map
resolution [24]. Improved versions that avoid unnecessary explorations, thus in-
creasing the efficiency, have been presented in [343] with the focused WFA and
in [344] with the optimally focused WFA. However, this method only generates
a near-optimal path regarding distance and traversal costs [47], while Dijkstra’s
algorithm and its famous derivative the A* are optimal. Furthermore, the algo-
rithm uses a graph search that does not take edge weights into account, which
is a disadvantage for some applications. In contrast, Dijkstra’s and the A* re-
present the workspace with a graph of weighted edges between adjacent cells,
by computing a value at each node with an estimator function. The weights in-
dicate specific travel costs from one cell to another. In a way, the WFA can be
seen as a special case of Dijkstra’s algorithm with equal costs for all edges. How
this affects a practical path planning application is visualized in Figure 4.2. In
terms of searching the shortest path in a graph, Dijkstra’s algorithm is seen not
only as a classic representative but also as the most mature one [31]. However,
it is quite time-consuming and memory-consuming [31]. The A*, developed in
1968 by Peter Hart et al. [28], reduces the time complexity of the search through
an additional heuristic function to the traversing costs, which leads more effi-
ciently to the goal. In [32], an efficient A* algorithm is presented. The authors
claim to achieve a reduction in computation time of up to 95 %. This tremendous
progress is achieved by computing the heuristic function for a node not at the be-
ginning but just before a collision. This avoids many unnecessary computations
which has a positive impact on performance. An extension specialized for han-
dling dynamic obstacles was introduced as the D* [30]. It was designed to create
collision-free paths in dynamically changing surroundings. This informed incre-

86

4.1. State-of-the-art

Figure 4.2.: Even though the shortest path from start to goal is the green one
when considering edge weight, the WFA that ignores weighted edges,
would choose the blue path. As Dijkstra’s algorithm takes edge
weights into account it would select the green path as the shortest
one. Image source: (Weyer 2021)

mental search algorithm massively reduces calculation times, but also has major
problems in terms of storage space [336]. Grid-based methods are complete and
optimal, thus the shortest path is found if there is one. However, grid-based
techniques have high computational complexity, therefore even the newest most
sophisticated extensions suffer from the curse of dimensionality, which makes
them unsuitable for systems with many DOF.
The second category (2) sampling based algorithms sample the space randomly,
whereby they check for each sample if it is in the free space and connect new
samples to existing ones. The Probabilistic Road Map (PRM) [19] samples the
space evenly and subsequently uses a grid-based method for pathfinding. In con-
trast, the Rapidly Exploring Random Tree (RRT) is a sampling-based extension of
the A*, complementing it by using a Voronoi bias to divide the search space into
uniform regions. In addition, the RRT allows the graph to be expanded at any
point. Its founder, LaValle [20], calls it a randomized data structure designed
for a wide range of path planning problems but particularly good at handling
non-holonomic constraints and many DOF. The RRT is preferable to the A* in
the case of a high-dimensional search space. Many optimization of the RRT ex-
ist [345; 33; 34]. A well-known representative is the Rapidly Exploring Random
Tree Connect (RRT-C) [34]. It uses two incremental RRTs that are initialized at
the start and destination points of the motion, respectively. Dual search can sig-
nificantly increase performance which the authors demonstrate using a PUMA
robot arm with 6 DOF as an example. In general, as sampling-based techniques
are more efficient than grid-based methods they are better suited for motion plan-
ning for robots with many DOF. But, as they are only probabilistically complete
and cannot determine if no solution exists they offer weaker guarantees than
grid-based methods and often produce only sub-optimal solutions [334]. Also,
online applications with narrow passages pose a problem as probabilistic com-
pleteness also implies that an existing path is eventually found for, however, un-
der circumstances only for infinite time [346]. Furthermore, this means that the
resulting paths may vary for different executions with identical circumstances, as
sampling-based methods are not deterministic. Nonetheless, due to their great

87

4. Reactive Neural Path Planning

efficiency, sampling-based algorithms are now mainstream for motion control
with robots with many DOF [347]. A comprehensive survey for sample-based
methods for robot motion control is provided in [348]. In [349] a more recent
benchmark is given, however, the authors focus on outdoor navigation.
Within category (3) APF [350], the robot is represented as a point, a sort of parti-
cle that is under the influence of a potential field. Thereby, two forces act on the
robot, an attracting potential that goes out from the goal and a repelling potential
from obstacles [322; 339]. APF are fast and effective but might lead to sub-optimal
solutions as they may get stuck in local minima, especially for cluttered maps.
For category (4) mathematical optimization models, factors like time, acceleration
profile and energy effort are optimized by use of differential equations and dy-
namic constraints. Thereby, finding a path between the start and end configura-
tion is interpreted as a mathematical optimization problem [339]. Even though,
these methods handle dynamical obstacles well, being complex they suffer from
high computational costs and are thus only suitable for off-line applications [338].
Lastly, category (5) bio-inspired algorithms, is often divided into evolutionary algo-
rithms and Artificial Neural Network (ANN). Evolutionary algorithms optimize
a given path through an evolutionary process whereby new generations are gen-
erated with random mutations and a fitness function steers the development. It
handles complex and dynamically unstructured constraints very well but suffers
from slow convergence which makes it unfit for online applications. As the field
of research regarding motion control with ANN is highly topical and very com-
prehensive, it will be dealt with in greater depth in subsection 4.1.2.

4.1.2. Brain-inspired Methods for Path and Motion Planning

Methods using ANN are fundamentally similar to category (3) [338]. They use
their neural space to represent a robot’s C-space [339]. The neural network en-
ables real-time planning as motions are generated online by the network’s dy-
namics. This is possible as neither prior knowledge, local collision checks in the
task space nor optimizing a cost function is necessary [339]. Which makes this
method very efficient and computationally lightweight.

Deep Learning for Motion Planning

Many recent methods for path planning with ANN for robots with many DOF
in the C-space combine conventional methods with deep learning [351; 352; 353;
354; 355; 356]. In [356] a method to tackle the IK problem with an ANN is in-
troduced. Thereby, Cartesian coordinates of the end-effector are used as train-
ing input and joint angles are generated as output. This method seems to be
more sophisticated than analytic IK solutions. In [355] an approach for 3D nav-
igation of the end-effector using APF is presented. The authors provide proof
of the real-time capability of their algorithm, however, detours are still some-
times generated due to local minima. The proposed Motion Planning Network

88

4.1. State-of-the-art

in [351] embodies two networks, one for encoding and a feed-forward multi-layer
network for planning. The former generates offline a feature space representing
static obstacles out of a point cloud. The latter uses the feature space, a goal con-
figuration and the robot’s current joint angles as input and performs online path
planning. The authors include the RRT to their framework and thus achieve prob-
abilistic completeness. But, this goes hand in hand with the withdrawal of con-
ventional path planning algorithms like slow convergence in high-dimensional
spaces [352]. One problem with many of these approaches [351; 352; 353; 354],
however, is that they work with known maps and a fixed goal. Therefore, reac-
tive, flexible motion planning in a dynamically changing environment is not con-
sidered. Nevertheless, the method in [356] is evaluated on a 5 DOF and in [355;
352] on a 7 DOF robot arm. Furthermore, the real-time capability is explicitly
claimed in [352; 355]. Several methods for path planning based on Reinforce-
ment Learning (RL) have been proposed [357; 358; 359; 360], as RL lends itself to
the task due to its good generalization properties. However, it has been shown
that these approaches are very difficult to train and also require great simplifica-
tions [361]. That RL is not well suited for this task was also confirmed in [362].
The authors report that they could not achieve any good results even with great
effort concerning parameter tuning, architecture, and reward signal and have
therefore turned away thematically from RL. Moreover, most of the proposed
techniques are targeted at the navigation of mobile robots [359; 358; 360; 362].

Planning with SNN for Mobile Robots

Due to their optimality and completeness grid-based methods, presented in sub-
section 4.1.1, are superior to other methods in terms of the quality of the gen-
erated path. However, they suffer strongly from the curse of dimensionality,
which is why they are not suitable for high-dimensional search spaces, at least
not on conventional hardware. Developments in the field of Spiking Neural Net-
work (SNN) (subsection 2.2.1) and neuromorphic hardware (section 2.2.1) open
up new possibilities to apply optimal planners in higher dimensions through ex-
ternal parallelization. By imitating sparsity and parallel asynchronous computa-
tion known from the brain, these technologies have proven to have the potential
for many real-time applications [363] like, stereo vision [294], real-time evalua-
tion of medical data [364], energy efficient unidimensional Simultaneous Local-
ization and Mapping (SLAM) [365] and keyword spotting [366]. An especially
good fit for spiking and neuromorphic applications in terms of planning algo-
rithms is the WFA [47; 49], due to utilizing massive parallelization. A common
feature of many methods presented in this section is that they are based on the
WFA and are strongly inspired by navigation techniques of the brain, introduced
in subsection 2.1.4. Derived from biological place cells, a network of an artificial
replication of this cell type is used in [39; 43] as a representation of the environ-
ment. Thereby, the search space is divided by a 2D grid. In the neural space, each
neuron is associated with one grid cell and connected to its neighbors. In con-
trast, for a neural implementation within the C-space, neurons represent discrete

89

4. Reactive Neural Path Planning

configurations and path planning is executed on the synapses. The size of such
a network depends on both the DOF of the robot and the resolution concerning
the joint angles but quickly becomes extremely large. Consequently, path plan-
ning with SNN in literature is mostly applied to mobile robots [39; 367; 43; 37;
47; 49]. In [47; 48; 49] axonal delays are altered as a reaction to environmental
changes. Axon conductance velocities between neurons can thus be learned to
simulate costs for traversing the environment. Subsequently, neurons’ spike time
is recorded with Address Event Representation (AER) and the generated list of
spikes is used for path planning, by searching the most recent spike of the ad-
jacent neurons. The work of [47; 48; 49] is based on [367]. The correlated work
of [367; 47; 48; 49] stands out as it was tested on neuromorphic hardware. While
a custom chip is used in [367], in [48; 49] IBM’s TrueNorth is used.
The methods [37; 39; 43] all use a neural lattice with similar functionality; it is
topologically representative of the navigation space. Here, neighboring neurons
are interconnected, and neurons representing obstacles occur in isolation. A WFA
is applied on the 2D grid in all papers, thus, the activation of the neuron corre-
sponding to the starting cell triggers a wave moving through the network. Re-
garding the neuron model, it can be noted that all methods use spiking neurons,
but beyond that, they differ, sometimes significantly. Both methods [39; 43] are
very similar as they both mimic biological place cells. Regarding two things [43]
differs, firstly the use of the Hodgkin-Huxley (HH) neuron model and its robust-
ness against noise [43]. In [43] the frequency of the target neuron, the neuron that
triggers the wave, is higher than that of all other neurons. Gradually, first neigh-
boring and then distant neurons adapt to the frequency and the network becomes
increasingly synchronized. Now, when a wave triggered by the target neuron
travels through the network, the frequency shift of a small area around a neuron
is compared. The neural network consists of two layers, the readout layer and the
planning layer. The readout layer assigns four basic movement directions to each
location in the planning layer. It reads the local phase differences of the neurons
in the planning layer and translates the readings into a sequence of movements in
the direction of the target. To generate the correct path, these frequency shifts are
used to calculate the direction back to the target neuron. The authors of [43] note
that their approach is slow for large environments but can handle moving obsta-
cles and realistic noise. In [39] synapses are strengthened through STDP in the
direction of the wave. Thereby, tracking the strongest synapses yields the short-
est path from the start to the goal cell. A preliminary method to this approach
was presented in [38]. As well the method in [38] as in [39] are based on research
describing navigation and orientation in the brain. Thereby, spatial awareness is
realized with a moving cluster of neural activity and the resulting adaptations
of the synapses, as described in detail in subsection 2.1.4. The used network is
supposed to reproduce the hippocampus and spatial locations are mapped by
cluster-like activation of the place cells. This method requires an initial orienta-
tion phase, whereby the agent moves through the entire environment while neu-
ronal plasticity, more precisely STDP, ensures that synaptic connections of those
neurons that are simultaneously active are strongly stimulated. This creates a net-
work with synaptic connections corresponding to a map of the environment. The

90

4.1. State-of-the-art

Figure 4.3.: Synaptic vector fields generated by Ponulak’s neural WFA im-
plementation [39]. The wave is initiated at the target, marked
with T, subsequently propagating through the 2D network whereby
the synapse weights are strengthened via Spike-Timing-Dependent-
Plasticity (STDP), as shown in A-D. The resulting vector fields are
used to generate trajectories in E and F, whereby S indicates the start-
ing point. Image source: [39]

strengthening caused by STDP is interpreted as a vector that points orthogonally
to the wavefront. The resulting vector field can subsequently be used for finding
a path. In contrast, to [38; 39; 43], a very mathematical neural WFA with less
biological relevance dispensing with neural plasticity and the concept of place
cells is introduced in [37]. Thereby, each synaptic connection is given a prede-
fined value. To initiate the wave, the place cell representing the target location is
stimulated. In the process, this impulse is transmitted to synaptically connected
neurons. These topological neighbors are also stimulated, thus, a chain reaction
occurs and the circular pattern of a wave develops. Whether the neuron spikes
has a dual dependency on the connection type to its parent neuron. Whether it is
transverse or diagonal affects the differential equation for calculating a neuron’s
voltage as well as the threshold function for emitting a spike. Calculation of the
internal voltage and the threshold still change during the simulation. Until the
neuron spikes, potential parent neurons can still change. After spiking, the neu-
ron receives an increased threshold value, so that it cannot spike again during
the entire further simulation; this is not a refractory period and is actually against
biological premise [44]. However, the approach [37] also implements a refractory
period to prevent destructive chain reactions, such as the extinction of the initial
impulse by a backtracking wave or periodic mutual excitation of two neighboring

91

4. Reactive Neural Path Planning

neurons. The applied neuron type is referred to as Modified Pulse-Coupled Neu-
ral Network (MPCNN) and is somewhat similar to the well-known HH model.
For path finding the wave’s impulse originates in the target neuron and when
the start neuron spikes the simulation terminates. Since all parent-child pairs
are stored, the shortest path is obtained by running the pairs of spiking neurons
and their parents from the target to the start neuron in reverse order. The retrace
is like following a gradient in a kind of vector field as visualized in Figure 4.4.
The voltage equation of the two methods [43; 37] differs significantly. The neu-

0 2 4 6 8 10

0

2

4

6

8

10

(a) t =
√
2

0 2 4 6 8 10

0

2

4

6

8

10

(b) t = 1 + 2
√
2

0 2 4 6 8 10

0

2

4

6

8

10

(c) t = 5

0 2 4 6 8 10

0

2

4

6

8

10

(d) t = 2 + 4
√
2

Figure 4.4.: The network introduced in [37] during a neural wave from the initia-
tion in (a) to the termination in (d). The start neuron is at the center of
the map. The target neuron as well as the path found are colored in
blue while obstacles are marked by an x. The time steps passed since
the wave’s initiation is given by t. Image source: (Steffen et al. 2020a;
Liebert 2019)

rons from [43] have a randomized input and a built-in exponential current loss
such that the internal current extinguishes over time without constant input. The
model from [37] does not have these two components, thus, if a neuron is acti-
vated, this subsequently determines the rest of the voltage equations without any
further external influence. There are no random influences, nor is there any loss
of current or noise as the voltages of all neurons that were not activated rest at 0.
Furthermore, the neurons in [43] fire continuously while that from [37] rest unless
externally excited. The approaches also differ concerning pathfinding. In [43] the
path is found throughout several wave pulses and in [37] within a single wave.
Accordingly, the methodology of calculating the path is also completely differ-
ent. In [43], one shimmies along the phase shift of the increased frequency, while
in [37] each parent neuron is stored by each excited neuron. This parent chain
is eventually walked along, provided that the signal can hit the start neuron. A
common feature of [37; 43] is that the direction of the path in a circular environ-
ment of a neuron points to the neighboring neuron that fires first after it.

Planning with SNN For Robotic Arms

In [45; 46] a SNN-based method for path planning of a 6 or 7 DOF robot in an
approximated C-space is presented. The approximation is achieved by coupling
the task space and C-space through bidirectional feedback. To scale to the high

92

4.1. State-of-the-art

dimensional C-space, a three-layered network model learns motions from hu-
man demonstration. The network includes, first, a fully-connected 2D net, for

Method Dim Model Neuromorph STDP Place cells

[38; 39] 2D LIF (Loihi) 3 3

[37] 2D MPCNN 7 7 7

[43] 2D HH 7 7 3

[44] 2D Izhikevitch 7 3 3

[47; 48; 49] 2D custom TrueNorth 7 (3)

[45; 46] 2D + SRM 7 7 3

(Steffen et al. 2020a) 3D MPCNN 7 7 7

(Steffen et al. 2020b) 3D LIF SpiNNaker 3 3

Table 4.1.: Implementations of a neural WFA with SNN for 2D and 3D. Thereby,
the neuron model (see section 2.2.1), and biological characteristics like
the implementation of STDP (see subsection 2.1.1) and place cells (see
subsection 2.1.4) are considered.

planning in a Cartesian x-y-plane spanning the reachable area of a robot’s end-
effector, which is based on [368]. As this network encodes the state of the robot
the neurons are referred to as state neurons, which are connected to context neu-
rons representing obstacles and the start and goal positions. Second, a 1D net
for each DOF planning the trajectory of one joint, without sharing information
during planning among each other. Third, a hierarchical network integrates the
first two parts. Hence, 2D path planning is combined with the robot’s kinematics.
Thereby, the spikes of the 2D network are used as input to the IK models map-
ping motions into C-space. The authors state that the state neurons are capable
of representing the surroundings as a cognitive map and thus function as a sim-
plified abstraction of place cells.
In the course of this thesis, extensions (Steffen et al. 2020b; Steffen et al. 2020a),
for motion planning of a robot arm in the task space were developed. Firstly, the
neural implementation of a 3D WFA in (Steffen et al. 2020b) is based on [39] and is
described in more detail in subsection 5.2.1. Secondly, the approach (Steffen et al.
2020a) is based on [37]. In (Steffen et al. 2020a) an SNN is applied, which equals a
topologically organized map of the task space allowing execution of the WFA in
3D space. The approach was evaluated for 2D and 3D maps in simulation. Even
though the basic functionality of this algorithm could be demonstrated, for 3D
maps, there are problems regarding performance. Furthermore, as planning is
done in the task space, the method suffers from redundancies and only the end
effector is considered regarding collision avoidance.

93

4. Reactive Neural Path Planning

4.1.3. Path Planning in a Reduced C-space

As path planning in the N-dimensional C-space is superior, due to being more
efficient and direct, this alternative is preferable. The main reason why this is
not chosen by default is the high dimensionality of this search space and the as-
sociated complexity of path planning. To avoid the "curse of dimensionality",
the C-space can be reduced, as presented in the following. Furthermore, meth-
ods to construct a subspace that represents relevant portions of the C-space are
presented. The next two sections investigate methods that approach the same
problem oppositely.

Dimensionality Reduction

The human hand is often used as a model for dimension reduction [369; 370], as
it has 25 DOF, significantly more than needed for grasping and many of them
are redundant. A very general, widely used approach to dimension reduction
is Principal Component Analysis (PCA). In [369] it was shown that the high di-
mensional planning space of a human hand can be mapped to a 2D space. In
mimicking this process with a robotic hand, PCA was used to generate the sub-
space in which the robotic hand is controlled directly. However, since this is a
linear method, the relationship of the sub-space to the original C-space is also
linear. In [371] a non-linear method, referred to as autoencoder, is used to reduce
the C-space of anthropomorphic dual-arm robots to a low-dimensional space, the
"hidden space". Therefore, the twelve joint angles of the two 6 DOF arms are used
as input and transferred into the hidden features h(x) by

h(x) = f(W1x+ b1). (4.1)

Thereby b1 is a bias vector and W1 is the weight matrix which describes how the
neurons of the original C-space are associated with the neurons of the hidden
space. Path planning is subsequently performed by RRT-connect in the hidden
space, in case a path is found it is mapped back into the complete C-space. The
authors claim that applying RRT-connect in the hidden space results in a signifi-
cant reduction of computational load and memory usage. However, the method
requires a lot of training data and decoding is needed to check if generated mo-
tions are kinematically reachable and collision-free.
Scientists observed that the brain can group muscles and joints to use synergies
and address these groups as one unit. The extremely high-dimensional C-space
of the human body is reduced very efficiently through an unsupervised process,
whereby a co-evolving structure and functional organization are established. Bi-
ologists claim that synergies are used by the brain to reduce the dimension and
facilitate the determination of joint position for a specific task. Hence, the con-
trol and coordination of the human body with more than 790 muscles and 100
joints, is managed through the organization via spatiotemporal synergies which
allow the use of many correlated muscles and joints as one unit [370]. A popular

94

4.1. State-of-the-art

method to reduce the C-space, using correlations between joint movements and
thereby artificially imitating the concept of synergies between joints and mus-
cles, are Motion Primitives (MPs) [372]. In contrast to many alternatives to over-
come the curse of dimension, MPs are self-organized, and thus do not require
feedback for path validation. They allow more efficient motion planning by of-
fering a set of adjustable, "building blocks" of basic motions. Those units are
represented either as splines or ANNs. They map a meaningful subset of all
possible configurations and can be combined to constitute more complex motion
sequences. An extension of MPs, often used in practice, is Dynamical Movement
Primitivess (DMPs) [35], which can be trained by learning from demonstration.
Thereby, autonomous non-linear differential equations are applied to express the
motion units. As this method got a lot of attention from other scientists there are
many extensions and improvements. A relevant survey is given in [373]. How-
ever, a huge drawback of this technique is that meaningful trajectories can only
be achieved through excessive parameter tuning, which requires experience, is
computationally intensive and time-consuming. Furthermore, learning DMPs
requires a cost- or reward-function for which usually RL is applied. A huge prob-
lem is that this method also examines many meaningless movements involving
cost-intensive calculations and the computational complexity increases with the
number of DOF [372].
Finally, the possibility of reducing the C-space employing Self-organizing Neural

(a) (b)

Figure 4.5.: (a) Associating the position of a 2D robot’s end-effector and its joint
angles using a SOM. (b) Learning the position map is achieved by
merging the information of the C-space and with visual data about
the . Image source: (a) [374], (b) [375]

Network (SONN) is introduced. In striking contrast to the hidden feature space
created by autoencoders, SONN can reduce an input space while conserving its
topology. As a consequence, the topological connectivity of two adjacent configu-
rations is guaranteed. Hence, it is possible to execute motions that were planned
in the reduced subspace without the necessity of additional checks regarding the
kinematic reachability or potential collisions. This advantage is given as topo-
logically neighbored neurons in the reduced space are also adjacent neurons in
the high dimensional C-space [202; 376]. Furthermore, no decoding is necessary
because the SONN’s neurons all contain a full set of configurations [375]. Even
though there is relatively little related work in this area, a few approaches in the

95

4. Reactive Neural Path Planning

’90s [375; 377; 378; 379] and ’00s [380; 381] are worth mentioning. In [375] a 2D
Self-Organizing Map (SOM) is applied to learn the association between C-space
and task space, for a robot with 2 DOF as shown in Figure 4.5. Thereby, the system
learns how a robot’s joint angles are associated with its end effector position. The
training data, used as input for the SOM, includes both joint angles θ1, θ2 and the
x and y coordinates of the end-effector which is obtained through a visual com-
ponent. Hence, the SOM maps 4D input onto a 2D search space, whereby each
neuron represents a point in the C-space and task space. This creates a direct
association between the robot’s joint angle configuration and the end effector po-
sition. Thus Forward Kinematics (FK) and IK are learned implicitly without the
need for any transformation equation. Path planning can be applied using a grid
search in the 2D SOM and obstacle avoidance is implemented by blocking neu-
rons with the task space coordinates of an obstacle. However, thereby only the
end effector and not the whole robot arm is considered. In [383] a SOM is used

Figure 4.6.: Robotic work cell from Martinetz & Schulten, displaying the robot
and vision system in simulation. A vision system with two cameras
is applied and a robot with redundant DOF. The 5 DOF robot uses one
joint for rotating around the vertical axis while the other four allow
movements in the vertical plane. Image sources: [382]

to learn visuomotor coordination, taking advantage of the topology-preserving
properties of this network architecture. Building on this, in [377] a hierarchical
structure of several SOMs is used to learn positioning movements of a 3 DOF
robot arm and its end effector. The visual system includes two cameras and the
network architecture is a 3D SOM whereby each node is in its own a 2D SOM.
As input for the 3D SOM visual 4D data is combined from both cameras and the
system is supposed to form 3D joint angle configurations by using the hierarchi-
cal SOM-structure. Thereby a mapping is achieved from an object’s 3D position
to the joint configuration required for manipulation. However, only cylindrical
objects are tested and evaluation is only done in simulation. The approach suc-
cessfully maps 4D data on a 3D SOM, but it requires static visual feedback and

96

4.1. State-of-the-art

does not generate trajectories in the true sense, only arm positioning for a given
object. Also, it does not consider dynamic but only static obstacles. Finally, [377]
is not applicable for robots with redundant kinematics since exactly one joint an-
gle node is always associated with an object position. An improved version for
a 5 DOF robotic arm was published in [378]. The system, shown in Figure 4.6,
proves that the extended method can also handle redundancies.
In [380] a SOM is used to plan state trajectories, which include additional con-
straints like velocities, accelerations or torques. The network topology used here,
State Trajectory Generator (STRAGEN), is very similar to that of a Growing Neu-
ral Gas (GNG). However, the network architecture is extended by a pre-selection
process of the input and a final pruning phase. This leads to good results but
due to the additional complexity and the associated computing time, prevents an
online application. A review about controlling a robot arm using SOMs, which
does not include the newer approaches, is given in [376]. Thereby, different as-
pects like obstacle avoidance, hand-eye coordination and computation of IK are
considered.

C-space Construction

A representation of the C-space, which allows collision-free path planning can
be modeled in three ways [384]. First, as the free C-space (Cfree) of a robot A,
representing all collision-free configurations, by

q : A(q) ∩B = ∅. (4.2)

Second, as the occupied C-space (Cobst), including all configurations which cause
a collision, by

q : A(q) ∩B 6= ∅. (4.3)

Or last, as the contact surface (Ccont), representing all configurations for which A
and B are touching, by

∂Cobst. (4.4)

Thereby, B represents all obstacles geometrically and A(q) corresponds to the
robot A with the configuration q [384; 346]. Cfree and Cobst jointly form the C-
space and the contact surface is defined as the boundary between them. To gen-
erate these spaces, it is necessary to transfer obstacles from the task space to the C-
space, which is a complicated and memory-requiring process. In the worst case,
the amount of memory required increases exponentially with the DOF [384].
There are several methods of mapping an object’s Cartesian to a C-space repre-
sentation. Geometrical methods, try to reduce an object to geometrical features
while preserving its shape. As the theoretical and implementational complexity
increases exponentially with the DOF, these methods only work well for robots
with 3 DOF and less [385]. In [386] the robot’s C-space is constructed by use

97

4. Reactive Neural Path Planning

of kinematic constraints. The authors introduce a variation on IK, which they
refer to as "inverse pseudo kinematic", to analytically describe the C-space by
a set of parametric equations. These equations are obtained by discretizing the
task space into a grid and mapping the obstacles’ boundaries to C-space using
inverse pseudo kinematics. Even though this method deals better with more
DOF, it struggles with an increasing number of obstacles, as the necessary checks
accumulate, preventing online planning. The presented geometrical [385; 387]
and analytical [386] methods construct a Cobst. However, the authors of [388] ar-
gue that this requires much computation time as well as memory to guarantee
the completeness of Cobst, which is necessary for safe motion planning. Hence,
in [388] the Cfree is mapped, or more precisely areas of the C-space that are safely
collision-free. By not ensuring completeness, not all collision-free configurations
are captured, and computing time and memory are saved. The authors state that
this method handles dynamically changing environments especially well, but,
it was only tested on a 2 DOF planar manipulator. Another technique to map
the Cfree is introduced in [389], where a sample-based planer is used to build an
approximation of the free C-space. The building blocks are samples generated
by the RRT which have been checked regarding collisions. It is evaluated on a
6 DOF robotic platform. The method proposed in [346] uses Support Vector Ma-
chine (SVM) combined with a form of geometric approximation. Here, too, the
room is sampled first, and then the samples are assigned to either Cfree or Cobst
through point-by-point collision checks in the task space. The algorithm based on
SVMs subsequently approximates the Ccont, which converges quickly, also due to
massive GPU-parallelization. The approach was tested on the PR2, whose arms
have 7 DOF and achieve real-time capability. However, this method also does not
achieve an exact representation. Lastly, bidirectional Lookup Tables (LUTs) [390;
391; 392] offer a very efficient obstacle mapping, to build up the Cobst. Here, both
the task space and the C-space are discretized. Then, for every point pT ∈ task
space all corresponding points pC ∈ C-space for which the robot would touch pT
are stored. Now, FK can be used to associate cells of the task space, representing
Cartesian points with cells in the C-space, representing robot configurations. This
technique is very fast, but, the memory requirements increase exponentially with
the DOF. Furthermore, the memory storage is linked to the level of discretization
of the bidirectional LUTs [390; 391; 392]

4.1.4. Discussion

While motion planning can also be executed in the task space, the more elegant
variant is direct path planning in the robot’s C-space. Hereby the robot is reduced
to a point and motion planning becomes a pure path planning problem. The op-
timal path is deterministically provided by complete and optimal path planners
like the WFA, Dijkstra’s or the A* [31; 336]. In comparison, Dijkstra’s and its ex-
tension the A* require more memory and calculation time than the WFA. This
is due to the WFA’s simplicity which can also deal well with unusual maps and

98

4.1. State-of-the-art

obstacle shapes [24].
However, obstacles must be transferred into the C-space and the obtained search
space’s dimension is related to the DOF. Thus, for this use case, complete and
optimal path planners are inefficient, as they suffer strongly from the curse of di-
mensionality [334]. In contrast, probabilistic sample-based planners sample the
C-space randomly and use connections between the samples for a graph search.
In general, they are more efficient and thus better suited for high-dimensional
motion planning than grid-based methods. However, due to abandoning the
concept of explicitly when characterizing the C-space, they are only probabilisti-
cally complete, thus offering weaker guarantees than grid-based methods [338].
Thus, a path is non-optimal, not deterministic and not guaranteed to be found. In
practice, sample-based planners have problems in cluttered scenes [346] and may
lead to redundant and jerky motions which require additional smoothing [334].
Despite these drawbacks, sample-based planners are the mainstream method in
a high-dimensional search space due to their far superior performance [347].
In Table 4.1, a comparison of methods for SNN-based implementations of the
WFA for 2D and 3D, is given. The last column should not be taken too strictly,
as it is more of a theoretical reference to the concept of place cells. Also in [47;
48; 49], the strongly biologically inspired concept is more related to other mech-
anisms in the brain, however, the network structure resembles place cells. Even
though, the presented planning algorithms for 2D and 3D in subsection 4.1.2 all
use SNN, only a small proportion makes use of neuromorphic hardware. While a
self-designed neuromorphic board is applied in [367], in [48; 49] IBM’s TrueNorth
is used. Furthermore, the work of [38; 39], although not implemented on neu-
romorphic hardware in the original papers, was subsequently tested for Loihi
as part of the Intel Neuromorphic Research Community (INRC) [393]. Further-
more, the method presented in (Steffen et al. 2020b) has not been implemented on
neuromorphic hardware in the original paper either, however, it was realized on
spiking neural network architecture (SpiNNaker) and GPU-enhanced Neuronal
Networks (GeNN) as part of the performance analyses in (Steffen et al. 2021b)
(see chapter 5). While most related work for SNN-based WFAs [38; 39; 37; 43;
44] is for mobile robots, thus, 2D environments, the work presented in [45; 46;
Steffen et al. 2020a; Steffen et al. 2020b] differs strongly, as it is targeted to path
planning for robotic arms. However, while the work presented in (Steffen et al.
2020a) & (Steffen et al. 2020b) operates in the 3D task space, the authors of [45;
46] couple the task to the C-space through bidirectional feedback. Besides the
fact that [45; 46; Steffen et al. 2020a; Steffen et al. 2020b] rely heavily on the use
of neuromorphic hardware to allow online application, there is another problem,
regarding obstacle avoidance. In [45; 46], separate nets plan trajectories for single
joints. These are combined subsequently and can only be executed in an obstacle-
free map. In (Steffen et al. 2020a; Steffen et al. 2020b) path planning is performed
in the Cartesian task space, hence, obstacle avoidance is not done for the robot
arm but only the end effector.
Several attempts to overcome the curse of dimension by finding correlations bet-
ween joint movements have been proposed, however, most techniques are not
ideally suited for an online application for various reasons. For MP and DMP

99

4. Reactive Neural Path Planning

several parameters need tuning, RL is necessary requiring costly explorations
and most importantly, calculation efforts relate to the DOF [372]. PCA suffers
from a linear relationship between the input data and reduced subspace and its
extension kernel-PCA is impractical for operating on large data sets [394]. The
non-linear technique autoencoder [371] offers a significant reduction of computa-
tional load and memory usage. But, the necessary decoding and collision checks,
must be performed for each sample, which makes this method ineffective for on-
line usage. Moreover, autoencoder need a huge amount of training data.
In contrast, SONNs do not require decoding of the joint angles as a full set of con-
figurations is stored directly in each neuron. Also, SONNs can reduce a search
space without disrupting its topology. Thus, neighboring neurons of the output
space are topologically related in the input space. Hence, when path planning in
a SONN’s output space it is guaranteed that adjacent configurations are located
close to each other, eliminating the need for an additional reachability check [202;
376] as necessary for autoencoder [371]. Much related work for dimension re-
duction of a C-space by self-organization does not exist, however, some methods
have been presented. In [375] a 4D hypersurface consisting of a 2D coordinate x, y
and two joint angles θ1 & θ2 is mapped onto a 2D space. In [377] & [378] visual
4D data from two cameras is mapped on a 3D SOM. However, these methods are
mostly limited to a few DOF, 2 DOF in [375], 3 DOF in [377], 5 DOF in [378]. Fur-
thermore, they lack an evaluation regarding real hardware. To take static and dy-
namic obstacles into account, a C-space construction is necessary. Cobst and Ccont
require completeness for path planning, which is not the case for Cfree. There-
fore, constructing the Cfree is computationally less costly and has lower memory
requirements, which is very beneficial for joint-based motion planning. In [388]
a memory-friendly and fast approach for C-space mapping is introduced, but, it
does not guarantee completeness, hence, even when using an optimal path plan-
ner as the Dijkstra, it is not guaranteed that the best path is found, which makes it
impractical for cluttered environments. Furthermore, [388] was only tested on a
2 DOF robot. In contrast, [389] tested on a 6 DOF and [346] on a 7 DOF robot arm,
are fast techniques for Cfree construction, achieving real-time capability. How-
ever, as neither [389] nor [346] provide an exact obstacle representation they also
struggle with cluttered scenes and narrow passages. Bidirectional LUTs [390; 391;
392] are very performant, but, for robots with many DOF, the memory require-
ments demand a sparse discretization. Fortunately, this is exactly what is given
by a reduction of the search space using SONNs.
Lastly, it is noteworthy that, even though [375] supports obstacle avoidance, just
like in (Steffen et al. 2020b) not the whole robot arm but only the end effector is
thereby taken into account.

4.2. A Reduced C-space for Efficient Path Planning

For modern robot applications, more and more emphasis is being placed on in-
tegration into dynamic environments. While it is easy for humans to perform

100

4.2. A Reduced C-space for Efficient Path Planning

goal-directed motions, while considering dynamically changing surroundings,
reactive and collision-free motion planning for robots is extremely challenging.
The main objective of the approach presented is, therefore, to develop and im-
plement a reactive and collision-free path planning for robot arms with multiple
DOF, inspired by the principles of biological models. As stated in [334], as robots
and their applications are becoming increasingly complex, high-dimensional mo-
tion planning in the C-space is necessary to allow low processing times and fast
re-planning in dynamic environments. The core idea of the proposed method

Figure 4.7.: Pipeline of the proposed neural planner which handles the high-
dimensional C-space with neural self-organization. A SONN is
trained by sample trajectories to represent a reduced C-space. LUT
allow a fast association between cells of the and C-space, providing
a real-time capable obstacle mapping that leads to an artificial cogni-
tive map. An optimal path planner is subsequently applied. Image
adapted from: (Steffen et al. 2022b)

is inspired by self-organizing brain structures, as introduced in subsection 2.1.2
and the concept of cognitive maps and place cells subsection 2.1.4. Arm move-
ments — both artificial and human movements — are executed with high kine-
matic redundancies. This consideration allows, clustering of similar arm move-
ments to obtain a lower-dimensional search space for motion planning, as in-
troduced in subsection 4.1.3. Thereby, the complexity of the n-dimensional C-
space, the search space embodying all configurations of the robot, is reduced by
a SONN, taking advantage of non-linear mapping. The trained SONN’s output
space builds up a cognitive map, thus a neural representation of the robot’s C-
space. Subsequently, trajectories can be searched in this reduced space, instead of
the original C-space. This makes kinematic or inverse kinematic calculations dur-
ing run time unnecessary. The reduced search space allows the use of a complete
and optimal path planner, a graph search algorithm, which would not be perfor-
mant and practicable in the high dimensional C-space. As static and dynamic

101

4. Reactive Neural Path Planning

obstacles must be transformed, a LUT is used. As analyzed in subsection 4.1.3,
this allows a very efficient mapping from voxelized obstacles from the Cartesian
task space to SONN’s output space, the reduced C-space.
The pipeline of the approach is visualized in Figure 4.7. Initially, trajectories are
generated by pick-and-place movements as training data. The trajectories are
used as input to teach a SONN to represent a reduced sub-space of a robot’s C-
space which is covered by the training data. By use of bidirectional LUT, static
as well as dynamic obstacles are subsequently mapped in the output space of the
SONN, a neural C-space representation. Thus, neurons represent specific config-
urations, and if a configuration would cause a collision its respective neuron is
blocked. The result a reduced Cfree, can be interpreted as a cognitive map and
enables the use of complete and optimal search algorithms. How SONN can be
used to reduce the high dimensional C-space, preserving its topology while en-
abling performant path planning, is described in subsection 4.2.1. A comprehen-
sive analysis regarding the suitability of different SONN versions, as introduced
in section 2.2.2, is given in subsection 4.2.2. Lastly, how the method is extended
to allow dynamical obstacle avoidance is depicted in subsection 4.2.3.

4.2.1. Reducing the Complexity of the C-space

The material covered in this section was originally published by the author in (Stef-
fen et al. 2021c). However, in (Steffen et al. 2021c) only recorded human motions
were used as training data, which is extended to robot trajectories here.
As depicted in subsection 2.2.2, SONNs can reduce a given input space’s dimen-
sionality while preserving its topological structure. The neurons of a SONN all
have a weight vector w = 〈w1, w2, ..., wn〉, whereby n is defined by the dimension
of the input space. Generally, different input and output dimensions can be used.
In the presented method for generating a reduced C-space, w corresponds to a
joint configuration of the robot, thus, n is the robot’s DOF. For a 6 DOF robot this
lead to w = 〈w1, w2, w3, w4, w5w6〉. The SONN’s output space is often 2D [179;
201]. However, mapping from a 6D input space to a 2D output space entails a
great loss of information. Therefore, a higher dimensional output space is used
for the presented approach. One possibility is to map arm motions to a subset of
the joints, e.g. the shoulder joints or the elbow joints. The joint values of the train-
ing trajectories are given in radians. Before training, the SONN’s initial weights
are assigned randomly with rational values. These values are limited by the max-
imum and minimum joint angle values.

Generating Training Data

There are several ways to generate training data for the presented approach.
Firstly, (1) Recorded human motions, thereby human arm poses from recorded mo-
tion trajectories are extracted and subsequently converted to input vectors for
the network. Joint angles φ1 − φn are stored for every time step t. The Master

102

4.2. A Reduced C-space for Efficient Path Planning

Motor Map (MMM) reference model [395] offers trajectories from a database of
recorded human motions, as visualized in Figure 4.8(a). The data is normalized
in the MMM to the height and weight of the subjects. The normalized motions

(a) (b)

Figure 4.8.: (a) Kinematic representation of the human body by the MMM ref-
erence model, which embodies 104 DOF. (b) The seven joint angles
φ1 − φ7 of the left arm are extracted for every time step t and used as
input data for the neurons of the SONN. Image source: (a) [395], (b)
adapted from (Glueck 2021)

are accessible in several formats including XML. The MMM consists of 104 DOF,
thus representing the human body, however, only the left arm’s seven DOF are
considered in this work (LSx, LSy, LSz, LEx, LEz, LWx, LWy). In Figure 4.8(b), it
is visualized how the seven joints φ1−φ7 of the left arm make up the input vector
x.
Secondly, training data can be generated with (2) Simulated robot trajectories. The
robot model is a UR3 controlled with the universal robotic driver package3 and
MoveIt2 4 [396] in ROS 2 [397]. This is visualized in the 3D visualization tool for
ROS (RViz) [398], in Figure 4.9. To create useful training data for general reach-
ing motions a simple pick and place task is used. The start and end positions are
randomly distributed on a surface that is parallel to the tabletop at a distance of
approximately 5 cm. Additionally, the base joint’s angle is constrained to ensure
that the robot moves over and not around the barrier by simply rotating around
the base’s z-axis. For planning a probabilistic sample-based planner, the RRT-C
of the Open Motion Planning Library (OMPL) [399; 400], is used. The generated
data set embodies 1230 trajectories which contain 50 728 sample points.
The third possibility to generate training data is to record hand-guided robot mo-
tions, thus creating (3) manually guided robot trajectories. The advantage of this
method is that very intuitive movements are created. Furthermore, one has a
great influence on the exact nature of the trained trajectories.
What type of training data is advisable depends strongly on the intended use
case. In particular, it is important to ensure that the dimensionality of the train-

3https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
4https://moveit.ros.org/

103

https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
https://moveit.ros.org/

4. Reactive Neural Path Planning

Figure 4.9.: To generate robot trajectories a UR3 is used in simulation, and mo-
tions are generated using MoveIt2. The robot is mounted on a table
with a barrier. Multiple random start and goal positions are defined
5 cm above the table. The points are visualized in the picture by their
coordinate systems. Image source: (Steffen et al. 2022a)

ing data is appropriate for the execution system. For training data generation
according to method (2) and (3) a 6 DOF UR3e robot is used, hence the input data
is 6D while the input data generated through option (1) is 7D. Option (3) is help-
ful to create smooth trajectories with a high level of intuition. However, to learn
meaningful trajectories, a large amount of input data is necessary, which is easier
achievable in simulation by method (1) or (2).

Learning the Effectively used Subspace

In contrast to sample-based methods, which randomly sample the entire C-space,
the approach learns a representation of the effectively used subspace of the robot’s
C-space. A second fundamental difference to sample-based planners is that the
topology of the input data is implicitly learned. The trajectory is learned as a
whole, thus, the course of its waypoints. This causes neurons that often occur
together in a trajectory to have stronger connections. As a consequence, dur-
ing path planning not only the closest points are connected, instead samples that
often belonged together in the training data. This characteristic is strongly rem-
iniscent of the cognitive maps that the brain generates during navigation, see
subsection 2.1.4. The SONN’s neurons represent place cells that are associated
with a specific point in the 3D space and its synapses control the activation in a
topologically reasonable manner.
In each cycle during learning, a configuration vector x is presented to the net-
work. x has the same dimension as w and is drawn from one of the trajectories
used as input data. The update step is then executed in each cycle, influenced by
the neighborhood factor σ and the learning rate η, as outlined in subsection 2.2.2.
Thereby, the Best Matching Unit (BMU) and its neighbors are pulled towards x,
thus, in each step, the BMU, and to a lesser extent, its neighbors become a bit

104

4.2. A Reduced C-space for Efficient Path Planning

more similar to the input vector, as visualized in Figure 2.13(a). The BMU is se-
lected in each iteration by determining the lowest distance di between x and the
neurons’ weights di, by the normalized delta

di(x) = ||wi − x|| (4.5)

and its neighbors are chosen depending on the structure of the network model.
In Figure 2.13(b) it is visualized how a gaseous network structure influences
learning differently than a rigid one. In short, for a rigid network structure, the
topological neighbors are matched during learning, and for a gaseous one, the
neurons whose weight vectors most resemble x. For a trained network, the out-
put space’s neurons which are connected, represent neighbored samples in the
original C-space. The original C-space is reduced as the neurons’ weights of the
SONN, are adapted by each learning cycle to eventually depict the sub-manifold
of the C-space which is used by the robot in the training data. While generating
a robot’s reduced subspace, obstacles are neglected, thus colliding configurations
are not regarded differently for now.

4.2.2. SONN-versions and their Characteristics

The material covered in this section was originally published by the author in (Stef-
fen et al. 2022a). As presented in section 2.2.2 there is an abundance of extensions
to the basic SOM. In Table 2.2 general issues for the practical application and so-
lutions therefore are stated. However, some aspects are more relevant for the tar-
geted use case than others. Thus, an investigation of several SONN models with
respect to their applicability to reduce a robot’s C-space is carried out in subsec-
tion 4.3.1. In particular, the quantization behavior and path preservation capa-
bilities for the different SONN models are thereby considered. Which network
types are used for the analysis in subsection 4.3.1 and the justification therefore,
is discussed below. The theoretical basics and formulas of the two basic network
types, SOM and Neural Gas (NG), are already included in section 2.2.2. How-
ever, only a rough outline of the more specialized network types evaluated in
subsection 4.3.1 is given in section 2.2.2. In this section, on the other hand, the
reasons for the model selection and the theoretical foundations of the selected
networks are shown. The networks evaluated in subsection 4.3.1 are Merge Self-
organizing Map (MSOM) [233], Growing Neural Gas (GNG) [203], Merge Grow-
ing Neural Gas (MGNG) [205], Segment Growing Neural Gas (SGNG) [206], γ
Self-organizing Map (γ-SOM) [234] and γ Growing Neural Gas (γ-GNG) [235]. In
Table 4.2 an overview is given of the nature of the parameters of these models.
The SGNG is disregarded, as it is not a related network and a direct comparison
is not possible.

105

4. Reactive Neural Path Planning

SONN with temporal context

To represent trajectories in a meaningful way the consideration of preceding joint
configurations is evident. However, as the basic SOM and NG have no mem-
ory structure these networks are unable to grasp a temporal context. In con-
trast, several SONN models regarding time sequences, as the Temporal Koho-
nen Map (TKM) [229], Recurrent Self-organizing Map (RSOM) [230], Recursive
Self-organizing Map (RecSOM) [231], SOM for structured data (SOMSD) [232],
MSOM [233], Merge Neural Gas (MNG) [401] and MGNG [205], supplement the
basic networks with a merge or memory structure. These network types can store
previous data in the form of preceding BMUs which makes them well-suited for
time series analysis. There are multiple SONN models regarding time sequences,
as summed up by the five categories given in section 2.2.2. However, mod-

(a) (b)

Figure 4.10.: The output space of the MNG during a learning cycle. (a) The input
vector xi embodies n joint angles xn and a local context vector cn,
which is influenced by the BMU of i−1. The coloring of the neurons
in red indicates which ones are affected by the update step, so the
more similar a neuron’s weight vector is to the BMU, the more red
the corresponding neuron is. (b) The same network after the update
step, the neurons in red adapted to the input and the context vector.
Image adapted from: (Glueck 2021)

els which consider temporal context implicitly, like RSOM [230] and TKM [229]
are considered inferior to SONN types with explicit temporal context like Rec-
SOM [231] and MSOM [233]. The reason for this is that implicit temporal context
only considers past training samples, whereas explicit context vectors integrate
past learning progress. The RecSOM, while giving the most extensive representa-
tion of the temporal context, has the major disadvantage of extremely high com-
putation times due to its highly dimensional context vector. The MSOM has an
especially compact representation of explicit temporal context and is very stable.
Furthermore, the weight representation is similar to the TKM and RSOM, thus,
the MSOM represents a "correct" implementation of them. Due to this, RSOM,

106

4.2. A Reduced C-space for Efficient Path Planning

TKM and RecSOM was omitted as a candidate with temporal context and instead
the MSOM and its extensions MGNG and γ-SOM and γ-GNG were investigated.
For the MSOM, this changes the formulas of the SOM from section 2.2.2. In par-
ticular, the selection of the BMU given in Equation 2.7 now uses as the distance
measure

d(xi, a) = (1− α) · ||xi − wa||2 + α · ||Ci − ca||2. (4.6)

Thereby, α ∈ [0, 1] is responsible for balancing present input data with the past
context descriptor. Ci is a global context descriptor, a merge of the weight and
context vector from the previous BMU:

Ci := (1− β) · wBMUi−1 + β · cBMUi−1 (4.7)

The parameter β ∈ [0, 1] is responsible for controlling different stages of the past,
thus balancing the ratio of more recent and already longer past events. It is usu-
ally set to β = 0.5. The global context descriptor is typically set Ci = 0 at the start
of learning. Learning consists in drawing the weight vector wBMUi and context
vector cBMUi of the current BMU and its neighbors, as well as the global context
Ci, closer to the input xi, with the learning rate η, through

∆wa = η · θ(a) · ||xi − wBMU || (4.8)

and
∆ca = η · θ(a) · ||Ci − cBMU ||. (4.9)

The MSOM and MNG work very similarly, however, the neighborhood function
θ(i) differs. For the MSOM topological neighbors are adapted as formalized in
Equation 2.10 while neurons with similar weight vectors are updated for the
MNG, see Equation 2.12. The learning phase is shown in Figure 4.10 exemplary
for MNG. As this is a simpler neural structure, it is better suited for visualization
purposes.
The γ-SOM [234] adds an adjustable memory depth, based on the γ-memory fil-
ter, to the MSOM. While each neuron i has exactly one context vector ci for the
MSOM and MNG, for the γ-SOM a set of contexts C = {ca1, ..., caK}, cak ∈ Rn ,
k = 1, ..., K is assigned to every neuron. The memory depth is set by K, the
γ-filter order. The neuron with the smallest distance

d(xi, a) = αw||xi − wa||2 +
k∑
k=1

αk||Ci
k − cak||2 (4.10)

in regard to the input vector xi, is chosen as the BMU. The contribution of the
weight vector is balanced by αw and respectively the context vector by αk, k ∈
[1−K]. K also defines the depth of the global context descriptor, which has to be
calculated in each step and is defined as

Ci
k = β · cBMUi−1

k + (1− β) · cBMUi−1

k−1 , ∀ ∈ [1−K] (4.11)

for the current step i. Thereby the context vector cBMU0
k is initially set to 0. In

order to prevent Quantization Error (QE) caused by the recursive nature of the

107

4. Reactive Neural Path Planning

context vectors αw > α1 > α2 > ... > αK > 0 is recommended. The weight and
context vector of the current BMU as well as its topological neighbors, is updated
by:

∆wa = η · θ(a) · ||xi − wa|| (4.12)

and
∆cak = η · θ(a) · ||Ci

k − cak||. (4.13)

This multi-layered memory structure is visualized in Figure 4.13(a). While the
neighborhood function θ(a) for the γ-SOM is Equation 2.10, the above derivation
of the memory structure can be transferred to the γ-GNG, however, hereby θ(a) is
given by Equation 2.12. Furthermore, it is noteworthy that the MSOM is a special
case of the γ-SOM with K = 1, same is true for MGNG and the γ-GNG.

Growing SONN

To guarantee that the input data is represented well, the SOM as the NG require
a beforehand definition of the network size. This is a big theoretical problem as
it has a great influence on the QE and thus also on the topology preservation. As
stated in section 2.2.2, growing networks like the GNG [203] overcome this issue
by inserting neurons successively until a stop criterion is met. The learning rule

(a) (b)

Figure 4.11.: (a) The GNG’s output space during learning, whereby in each iter-
ation a synapse is established between the 1st and 2nd BMU. A new
neuron r is inserted between the neuron q, which has the highest
error and its neighbor with the highest error f . If the edge age of
a synapse exceeds a threshold it is deleted, just like unconnected
nodes. (b) the output space after a learning step where a new neu-
ron r has been inserted and neurons with a similar weight vector
have been drawn to the input x. Image adapted from: (Glueck 2021)

of the GNG is closely related to the Topology Representing Network (TRN), espe-
cially regarding the simultaneous Delaunay triangulation. Hence, the GNG, like

108

4.2. A Reduced C-space for Efficient Path Planning

the TRN, is path preserving by obtaining optimal topology preservation. Learn-
ing differs for the GNG, in respect to the NG, in two major aspects. First, a Hebb-
like learning rule within the adaptation step enables learning of topological rela-
tions with a static learning rate η. Therefore, the neighborhood rate σ of the NG
is hereby obsolete. As a consequence, besides a self-adapting neuron number, the
GNG has no parameters that change over time, which enables continuous learn-
ing until a performance criterion is met. Second, the network starts with two
connected neurons which are extended through learning, thus the map ideally
adapts to the data set. As visualized in Figure 4.11, in every learning cycle a 1st

and 2nd BMU is chosen and the edge age γ is increased for all synapses which
are associated with the BMU. If the 1st and 2nd BMU are not connected a synapse
is established between them, otherwise for the existing synapse γ is set to 0. If a
synapse’s age exceeds a certain threshold it is deleted as well as all neurons which
become thereby unconnected. This process ensures that the network adapts ide-
ally to the data set as it grows neural structures where the representation is too
sparse and prunes them in regions where the data is overrepresented. For the
GNG a local error is added to each neuron and updated whenever the node is
selected as the BMU by:

∆error(BMU) = ||w − x||2. (4.14)

When Λ learning cycles are completed, a neuron r is added to the population. It
is inserted between q, the neuron with the highest accumulated error and f , the
neighboring neuron of q with the highest accumulated error. The average of q
and f weight vectors is taken as the new neuron’s weight:

wr = 0.5(wq + qf). (4.15)

This type of neuron insertion makes the GNG highly adaptive to different sizes
and dimensions of data. Furthermore, it ensures that the map grows in regions
that are badly quantized, improving its overall performance. Two additional pos-
itive effects result from the GNG’s structure and learning process. First, due to
fixed learning parameters, the number of learning cycles is not limited. Second,
incremental growth reduces the time required for learning, since not all neurons
of the final network have to be completely updated in each iteration step.
The MGNG [205] combines the incremental GNG [203] with SONNs with tempo-
ral context in section 4.2.2, more precisely the MNG [401]. Thereby, a model is cre-
ated that has the benefits of self-adapting map size and constant learning param-
eters from growing versions, as well as an explicit temporal context of merging
versions. The BMU is chosen, as for the MNG, by Equation 4.6. Thus, the distance
of its weight vectorwa to the current sample xi as well as the distance of its context
vector ca to the current global context descriptor Ci are regarded. The winning
neuron has the smallest merged distance, which is balanced by α. For adaptation
of the BMUs, a competitive Hebbian learning approach is used. Thereby, wa is
drawn towards xi and ca towards Ci. This updates the synapses between the 1st

and 2nd BMU. Simultaneously, connections between all other neurons are weak-
ened, rarely used synapses are discarded and neurons without connections are

109

4. Reactive Neural Path Planning

(a) (b)

Figure 4.12.: The output space of the MGNG during and post learning. (a) The
MGNG’s training vector x includes, beside the joint angles xn, the
context vector cn. Thus, all neurons combined consist of their weight
and context information. While learning, a connection is established
between the 1st and 2nd BMU in each iteration. A new neuron r
is inserted between the neuron q, which has the highest error and
its neighbor with the highest error f . If the edge age of a synapse
exceeds a threshold it is deleted, just like unconnected nodes. (b)
After a learning cycle weights of the winning neurons have been
drawn closer to xi and a new neuron r emerged. Image adapted
from: (Glueck 2021)

deleted. This is realized, like for the GNG, with the parameter γ indicating when
to delete edges and λ when to increase the map size. New neurons are inserted
based on an entropy maximization regulated by Φ which differs from the GNG
algorithm. For the MGNG, a map’s entropy is highest in areas of a balanced ac-
tivation of all neurons, thus where many neurons are stimulated frequently. This
causes new neurons to be inserted in areas of frequent and evenly distributed ac-
tivation. While the GNG uses an accumulation error to express the entropy, for
the MGNG a counter e is introduced to each neuron, which tracks how often it
was selected as the BMU. New neurons l are inserted between the most active
neuron q and its most frequently activated topological neighbor f and eq and ef
is reduced by a factor δ. Subsequently, like for the GNG, the average of wq and wf
is used as wl. A combination of the activation of q and f is multiplied by δ is used
as the initial activation of l. Additionally, more recent changes have a stronger
impact, due to decreasing all counters with the factor eta exponentially.

Matching linear segments

The SONN version that differs most from the other candidates is SGNG [206;
207], as it takes parts of the trajectory as input data instead of joint angles. Con-
sequently, the basic units of quantization in the SGNG are segments, linear lines

110

4.2. A Reduced C-space for Efficient Path Planning

SOM NG GNG MSOM
γ-SOM

MNG MGNG
γ-GNG

η decaying decaying constant decaying decaying constant

σ decaying decaying constant decaying decaying constant

β - - - variable variable variable

α - - - variable variable variable

λ - - variable - - variable

γ - - 1 -∞ - - 1 -∞

Table 4.2.: A comparison of the parameters learning rate η, neighborhood rate σ,
merge factor β, merge strength α, growing step λ and edge age γ which
are used in the different SONN models selected for the evaluation in
subsection 4.3.1. Adapted from: (Glueck 2021)

between two neurons, instead of the neurons themselves. Thus, the focus of the

(a) γ-SOM (b) SGNG

Figure 4.13.: γ-SOM and SGNG. (a) The depth of the γ-memory is 4, thus the three
previous steps are stored as temporal context. (b) The learning phase
of a SGNG. A temporal connection is established between the BMLS
chosen at t and t− 1 as well as a topological one between the 1st and
2nd BMLS. Image source: (Steffen et al. 2022a)

adjustment step is no longer on the weight vector. The network considers partial
trajectories in the place of the joint angles meaning that part of the trajectories
are approximated by segments, which makes it a very good network for learn-
ing trajectories. Training samples are defined by a trajectory portion ϕt−τi and the
component that wins the competitive process of the learning cycle is called Best
Matching Linear Segment (BMLS), which replaces the BMU. A two-step distance
measure is applied to all segments Si to determine the BMLS. It considers, first,
the spatial closeness dclose between the input ϕt−τi and each segment in Si, in re-

111

4. Reactive Neural Path Planning

spect to their center points. Secondly, dparallel is calculated by the cosine similarity.
It provides information about how parallel φt − τφt is regarding Si. This SONN
model also considers temporal context by establishing additional temporal con-
nections between the BMLS of two consecutive learning cycles, as visualized in
Figure 4.13(b). In each step, also a connection between the 1st and 2nd BMLS is
created. As the network is based on the GNG, it can grow, thus its size does not
have to be predefined as for SOM-based models. The SGNG is included in the
study as it is said to be good in terms of adaptation as well as temporary context
representation. Furthermore, it represents a strong contrast to the other models,
some of which are very similar, due to its strongly divergent structure and func-
tionality.

4.2.3. Obstacle Avoidance

The material covered in this section was originally published by the author in (Stef-
fen et al. 2022b). To allow path planning by use of the SONN representing the re-
duced C-space, the robot and the obstacles have to be transformed from the Carte-
sian task space into the learned network. As depicted in subsection 4.1.3, LUTs
allow such a mapping efficiently, even for dynamic obstacles. Usually, the enor-
mous memory requirements of a LUT, when used for high-dimensional spaces,
is a major disadvantage. But, as only a subspace of the C-space is associated with
the task space, the problem is elegantly circumvented. Hence, a considerably
smaller number of joint configurations needs to be associated with the robot’s
task space coverage. However, as the effectively used C-space is given by the
SONN, the discretization approximates the set of all required joint states for path
planning. In Figure 4.14 it is visualized how an LUT is used to associate a robot’s
task space to its reduced C-space, for a 2D example. The task space is divided
into cells, and the robot pose is determined for each learned configuration, which
is contained in the individual neurons of the SONN. In Figure 4.14, this is illus-
trated using two neurons, marked in blue and red. Afterward, all cells in the task
space, which are occupied by the robot for a certain configuration, are assigned
to the corresponding neuron and this association is stored in the LUT. Now, a cell
of the task space is occupied by an obstacle, in this case marked green. The asso-
ciation stored in the LUT can be used to immediately identify the neuron whose
configuration would cause a collision, here marked red. Consequently, this neu-
ron is then blocked for path planning in the graph structure.
The kinematic computations required for generating a LUT, refer to the used
robot model, in this case the Universal Robots (UR)3 with 6 DOF. Robots essen-
tially comprise links, basically rigid bodies, which are connected by joints [1].
The kinematics of a robot model describe the relationships of the links’ position
as well as velocity and acceleration, whereby forces and torques are explicitly dis-
regarded. Robotic arms, the UR3 used here and virtually any other, are an open
kinematic chain. The coordinate system of the robot arm’s base represents the
starting point and that of the end effector the endpoint. The kinematic chain is

112

4.2. A Reduced C-space for Efficient Path Planning

Figure 4.14.: Associating the Cartesian task space with the reduced C-space by
an LUT for a two-link robot. The trained SONN is visualized at the
upper left, whereby each neuron represents the joint angle config-
uration for a specific robot pose. The association to the task space
is visualized for the blue neuron in the upper right and for the red
neuron in the lower right corner. The blue and red colorations in the
task space mark which cells are occupied by the robot for the joint
configuration c1 = (φ1, φ2). The lower left rectangle visualizes how
a bidirectional LUT stores the association of the occupied task space
cells ti with the joint configurations ci, color-coded for the respective
neurons. The task space cells ti are associated with all configurations
ci occupying the respective task space cell by the robot. In green an
obstacle is marked in the task space, and the stored association al-
lows to immediately identify the neuron potentially causing a colli-
sion. Here, the red neuron would be blocked in the graph structure
to allow collision-free path planning. Image adapted from: (Weyer
2021) & [391]

represented by equations that limit the range of motion of the links. Each link
has a coordinate system and their position and orientation to each other can be
described in homogeneous coordinates by transformation matrices iTk, from the

113

4. Reactive Neural Path Planning

coordinate system i to k, as

T (θ) =

[
R(θ) t

0 1

]
Thereby, R is the rotation matrix referring to θ in the shape 3 × 3, followed by
the translations vector t of the form 3 × 1. To determine the pose of any link, the
corresponding transformations are appended. For a kinematic chain with n links
this would result in the kinematic equation:

0Tn(θ1, θ2, ..., θn) = 0T1(θ1)1T2(θ2)... n−1Tn(θn), (4.16)

whereby θn is the joint angle vector of joint n, for the UR3 used here n = 6. In
this context, FK is the use of Equation 4.16 to determine the end effector position
from specific joint angles. The backward operation, IK, determines joint angle po-
sitions for a given pose of the end effector. In contrast to FK, IK is the significantly
more computationally intensive process, also struggling with redundancies [402;
1]. In this work, however, due to the use of LUTs, only the comparatively favor-
able calculations of the FK are used.
The process of creating a LUT involves four steps

1. Voxelization of all single parts of the robot.

2. Individual parts of the robot are combined in a kinematic model.

3. The weight vector of all neurons, after learning, represents a joint angle
configuration. The associated positions and orientations must be calculated
for each link and joint by FK, see Equation 4.16.

4. Determination of all positions of the voxels representing the robot in the
task space and storage of these in the LUT with the association to the corre-
sponding neuron, representing a certain joint angle configuration.

To integrate a safety distance between the obstacles and the robot, the individ-
ual robot parts can be slightly inflated during voxelization. The bi-directional
character of the LUT is important for the application. During the creation of the
LUT neurons are associated with the appropriate coverage in the task space. In
contrast, during run time, each cell of the task space is associated with several
neurons. For each cell representing an obstacle, all neurons and thus the configu-
rations for which they code, are determined and excluded from path planning.

4.2.4. Path Planning in a Cognitive Map

The network is trained by robot input data and after learning its nodes contain
a learned joint configuration that corresponds to a specific point of the C-space.
Thus, the neurons can be seen as samples of a submanifold of the C-space, in par-
ticular, the used C-space of the robot from which the training data originates. This

114

4.2. A Reduced C-space for Efficient Path Planning

differentiates the learned C-space representation from random sampling meth-
ods such as RRT or PRM. Instead of randomly sampled states which are spread
over the whole space and need to be checked to be collision-free, the samples
represented by the SONN neurons are learned in the free C-space and are only
distributed in the effectively used space of the robot. Furthermore, while prob-
abilistic planners just connect the closest samples, in the presented method, the
training trajectory progression is learned implicitly by the topology of the input
samples. In this sense, the trained SONN can be seen as a cognitive map (see
subsection 2.1.4) learned by the robot. Thus, the output space of the SONN rep-
resents a reduced C-space of the robot.
By corresponding to certain locations in the environment, place cells allow self-
localization. Additionally, as place cells can represent the current, past and future
locations these brain structures allow planning the path to future positions. The
newly developed method for neural path planning, presented here, transfers the
biological 2D navigational concept, regarding place cells and cognitive maps, to
the n-dimensional C-space of a robotic arm. Thereby, the SONN’s output space
forms a cognitive map and its neurons represent place cells.
Animals entering a specific location are marked by an activation pattern of place
cells in the hippocampus. This is mimicked here by BMUs referencing the ini-
tial joint configuration in the SONN. The goal configuration is given by BMUg,
and path planning is performed by a graph search algorithm. A path between
BMUs and BMUg is found along the topological connections between the nodes.
To avoid collisions with potential obstacles, neurons whose configuration would
cause a collision are blocked, as outlined in subsection 4.2.3. Now, the big ad-
vantage of the method used here is that, because the C-space is not completely
mapped and thus not unnecessarily inflated, an optimal algorithm (see section 4.1)
can be used for path planning. Such an algorithm would be computationally too
expensive for the full C-space, thus sample-based planners are usually applied.
They are far more performant but not deterministic and therefore do not pro-
vide an optimal path. As the WFA, due to its parallel mode of operation, gives
the prospect of rapid implementation with SNN on neuromorphic hardware, it
was the first choice for an optimal path planner in (Steffen et al. 2021c; Steffen
et al. 2022a). However, it has been found that a breadth-first search, like the
WFA, is better suited for a grid-like search space. As the C-space corresponds
more to a weighted graph than a grid, its use here is not ideal. The graph-like
structure is caused by the fact that neurons have different distances to their re-
spective neighbors because their learned weights are not evenly distributed in
the C-space. As visualized in Figure 4.2, Dijkstra’s algorithm considers weighted
edges between nodes [403], thus its performance is evaluated against the WFA in
subsection 4.3.2.

115

4. Reactive Neural Path Planning

4.3. Experiments and Results

To evaluate the dimensionality reduction with the different SONN models in
subsection 4.3.1, different quality measures are applied, like the QE and the C-
Measure (CM). Subsequently, coverage plots as well as the generated paths are
examined. This is complemented by an investigation of the suitable path-finding
algorithm in the reduced C-space in subsection 4.3.2. In subsection 4.3.3 the abil-
ity to reactively avoid obstacles is tested, including a real robot demonstrator and
an investigation of memory requirements. Finally, the suitability of the overall
approach against popular sample-based path planning algorithms is shown in
subsection 4.3.4.

4.3.1. Comparing SONN-types for Path Planning

All networks considered for the evaluation are either SOM- or NG-based ver-
sions. Preliminary tests, published in (Steffen et al. 2021c), showed that the out-
put space of NGs and MNGs do not enable path planning, due to poor coverage
of the input space. Thus they have been excluded from an in-depth investiga-
tion. Furthermore, it was established that the SOM and MSOM show very sim-
ilar results. However, the MSOM was slightly superior in all aspects. Thus, the
SOM was also excluded as no added value was seen in its examination. Conse-
quently, MSOM [233], GNG [203], MGNG [205], SGNG [206], γ-SOM [234] and
γ-GNG [235] are chosen for the analysis.
The study is divided into three parts. First, a qualitative visual analysis of the
quantization behavior and path preservation abilities for the different SONN
models. Thereby, only 15 random training trajectories are used for visualization
purposes and the input comprises just three joint angles; two shoulder joints and
the elbow joint. Second, a quantitative analysis of the quantization and C-space
coverage of the different SONNs types, using all training trajectories. Third, an
analysis of the generated 3D paths for the end effector in an obstacle-free task
space.

Qualitative analysis – learning behavior and path preservation

The learned output spaces of the investigated SONN models, trained with only
15 trajectories, are visualized in Figure 4.15. Based on the literature research, it
was expected that models that take the temporal context into account, would
represent the input space better than the basic GNG, especially concerning path
preservation. However, as shown in Figure 4.15, all GNG-based models represent
the input space in a fundamentally reasonable way. However, the evaluation was
quite disappointing regarding the SGNG, as it shows several splits along individ-
ual trajectories. Contrary to expectations, the basic GNG, in (a), showed similar
or even better path preservation than all models with temporal context, like the

116

4.3. Experiments and Results

(a) GNG (b) SGNG (c) MGNG

(d) γ-GNG (e) MSOM (f) γ-SOM

Figure 4.15.: Comparison of SONN models regarding learning behavior and path
preservation. For this visualization, only 15 training trajectories and
3 DOF were used. The trained weight vectors are visualized by the
red scatter dots and the synapses by the lines. The only exception
is the SGNG in (b), green lines indicate the topological connections
between the segments and the segments are visualized through red
lines between two nodes. Image source: (Steffen et al. 2022a)

MGNG in (c), γ-GNG in (d) and even the SGNG in (b). Furthermore, it was ob-
served that all GNG-based models established connections between topologically
close neurons even if they originated from different trajectories. These incorrect
spatio-temporal connections were expected from the GNG, but not from the more
advanced models.
It is noticeable that the tested SOM-based models perform significantly worse
than the GNG-based ones. This can be reasoned by two things, firstly, the high
dimensional input space is not ideally mapped by low dimensional SOM struc-
tures. Secondly, SOMs are folded in space due to their topological mismatch, see
Figure 2.14. This mismatch, consisting of a 2D plane that is folded to represent
a 3D space, leads to points that are close together in 3D possibly being far apart
concerning the folded plane. Hence, the input data is interpolated for the SOM-
based models in Figure 4.15(e) & (f), illustrating their mismatch between input
samples and learned weights as well as the wrongly established connections bet-
ween some nodes. Lastly, a striking difference between the two basic models is
that all SOM form longer connections than the GNG variations.

117

4. Reactive Neural Path Planning

Quantitative analysis – C-space coverage and QE

The quantitative evaluation of all SONN versions makes use of the quality mea-
sures QE and CM, introduced in section 2.2.2. In Figure 4.16 a comparison of
different SONN types regarding the C-space coverage and the QE is given. In

(a) GNG (b) SGNG (c) MGNG

(d) γ-GNG (e) MSOM (f) γ-SOM

Figure 4.16.: Comparison of SONN models regarding C-space coverage. The neu-
rons’ weights are visualized by red dots and the synapses by lines.
The SOM-based models are connected to their topological neigh-
bors while GNG types establish connections while learning. Image
source: (Steffen et al. 2022a)

contrast to Figure 4.15, not only 15 trajectories are used, instead the evaluated
networks are fully trained. Also, as all 6 DOF are regarded, the input data is 6D.
The applied parameters are provided in section B.1 for a more in-depth discus-
sion see (Steffen et al. 2021c; Steffen et al. 2022a).
An observation, which also agrees with the results from section 4.3.1, is that
GNGs distribute better in space. Respectively, as a result of their rigid 2D struc-
ture, SOM-based network types are not capable of mapping trajectories topolog-
ically in an ideal manner. The statistical results from Table 4.3 also speak against
the SOM models as they have a relatively bad QE. Furthermore, for both SOM
models, many nodes are located between input trajectories without clearly iden-
tifiable affiliation. As a consequence, wide distances are linked by the synapses.
Also, it is noteworthy that the topological mismatch becomes an even bigger is-
sue for 6D, compared to the 3D scenario in section 4.3.1. In line with the previous
results, there is only very little variation between different GNG types. How-

118

4.3. Experiments and Results

type #N QE # Con. / CM # Red. / CM

GNG 10149 0.0436 24303 / 13.9 23310 / 15.38

MGNG 10149 0.0623 54571 / 7.25 46608 / 9.88

γ-GNG 10149 0.0458 29006 / 12.34 27902 / 13.75

SGNG 8968 0.0501 24589 / 8.973 22884 / 12.29

MSOM 10000 0.1149 19800 / 61.006 –

γ-SOM 10000 0.0575 19800 / 61.737 –

Table 4.3.: SONN comparison regarding their QE and CM. #N is the number of
neurons and #Con. is the number of synapses in the fully trained net-
work. #Red. refers to the number of synapses after a reduction is ap-
plied within the GNG-based nets. Table source: (Steffen et al. 2022a)

ever, the MGNG has the worst QE from all GNG-based models. If looking at the
results from Figure 4.16 & Table 4.3 together, it becomes obvious that QE and C-
space coverage are related. So nets like GNG, γ-GNG and SGNG where the QE
is relatively low, are also superior in terms of coverage. Respectively, the SOM
models, which are clustered around the center, also have a high QE.
A consideration of the size of the trained network and the number of connections,
as stated in Table 4.3, only makes sense for GNG-based models. The size of the
SOM types is set and the number of synapses is indirectly also firmly defined,
as the SOM cannot add and delete connections during training. The network
size for the SOM types is chosen, as their rigid structure requires a fixed num-
ber of neurons. The number of 10000 neurons was chosen to correspond to the
net size of the GNG-based networks to increase the significance of the compari-
son. The smallest net is generated by the SGNG, which is probably because in this
case many connections were deleted again during the learning process. However,
there is an even greater deviation in the number of synapses of the MGNG, which
forms twice as many as all other models. This type of net also has the poorest CM,
which suggests a causal relationship between the CM and the amount of gener-
ated connections. However, many long connections result in large joint angle
jumps which impacts the path resolution badly. Furthermore, the GNG and the
γ-GNG show good topology-preserving properties and also mostly short connec-
tions which are located along the input trajectories. While the other GNG models
have longer synapses and more false connections, which originate from different
input trajectories.

119

4. Reactive Neural Path Planning

Path analysis

To complete the analysis of the different network types, a survey of the generated
3D paths for the end effector in the task space is performed. An obstacle-free
task space and identical start and target configurations are used for this purpose.
Therefore, in Figure 4.17 a comparison of motions generated in a subspace pro-
duced by the GNG, MSOM and γ-SOM is given. It was deliberately decided

(a) GNG (b) MSOM (c) γ-SOM

Figure 4.17.: Comparing trajectories generated in the reduced C-space by differ-
ent SONN types. For all tests, identical start and target configura-
tions are used. The path of the end effector in 3D is marked in blue.
For the GNG in (a), a comparison of the networks with all connec-
tions (pink) after learning to a network with reduced connections
(blue) is given. Image source: (Steffen et al. 2022a)

not to show all GNG-models as the resulting path is very similar for all net-
works. However, from the GNG-based networks the MGNG performs the worst,
which is in line with its lower CM compared to the GNG and γ-GNG. Regard-
ing the path generated with the SOM-types, loops and detours are particularly
noticeable. A usable valid path is generated, but this is usually not an optimal
path. This is caused by the topological mismatch (see Figure 2.14) between the
SOM’s output space in 2D and the input space in 6D. Hence, SOMs are some-
what "folded" in space and as a consequence joint states closely located in the
input space are not always topologically close in the output space. However, it is
noteworthy that this problem occurs less with the γ-SOM in Figure 4.17(c) than
with the MSOM in (b).
For the GNG networks, an investigation was also carried out on how a subse-
quent reduction of the synapses using the Chebyshev distance affects path plan-
ning. This idea arose from the observation that even in GNG-based types there
are sometimes paths with detours and large joint angle jumps, especially in net-
works with long connections. Hence, a set of reduced connections was created
by use of the Chebyshev distance: maxi|xi − yi|. Thereby, long synapses link-
ing neurons whose distance is higher than 10° are deleted. However, to prevent
fragmenting the C-space, this only applies if those neurons are still connected
otherwise. The longer original connections lead to a lower resolution of the gen-
erated path. The path in Figure 4.17(a) consists of 27 neurons for the original
connections in pink and 32 neurons for the reduced connections in blue. This,

120

4.3. Experiments and Results

together with the fact that networks with original connections also create paths
with more detours, means that the path quality in networks with reduced connec-
tions is significantly better. This is supported by the results of Table 4.3, showing
that the CM improves for the network with reduced connections. How reducing
connections affects the network quality is discussed in more depth in (Steffen et
al. 2022a), also including an additional parameter study.

4.3.2. Wavefront vs. Dijkstra’s

It was shown in subsection 4.3.1, that the spatial coverage of GNG-based is su-
perior to that of SOM-based types, which leads to paths with loops and detours
while GNG- based models produce nicely targeted motions. Furthermore, the ba-
sic GNG has been able to assert itself against its extensions and is therefore used
for the investigation of the appropriate algorithm for path planning.
In terms of performance, the algorithms do not differ much as can be seen in Ta-
ble 4.4. Even though Dijkstra’s algorithm is computationally more expensive, the
results show that this is negligible in practice, as the run time is less than 0.02 s
in both cases, which shows the real-time capability of the approach. The main
difference between the two algorithms is the way they measure distances, which
has a big impact on the generated paths. WFA chooses the path with the fewest
connections while Dijkstra’s algorithm takes the weights of the connections into
account, thus selecting the path with the lowest cost, by using the Euclidean dis-
tance. The path generation is both deterministic and reproducible, for the WFA
as well as for Dijkstra’s. However, a difference was noticed during evaluation,
as visualized in Figure 4.18. When using Dijkstra the path remains identical if
swapping the start and end points, this is not the case for the WFA. The reason

(a) Wavefront (original) (b) Wavefront (reduced) (c) Dijkstra’s

Figure 4.18.: In (a) & (b) the WFA and in (c) Dijkstra is used for path planning.
Additionally, in (b) the connections have been reduced before exe-
cution. Thereby, all synapses that cause joint angle jumps of more
than 10° are deleted. The path for the WFA changes when the start
is swapped with the endpoint, as can be seen from the two different
colored paths in (a) & (b). This effect does not occur for the Dijkstra
in (c). Image source: (Weyer 2021)

for this is the different distance metrics. Both methods choose always the shortest
possible path, and if there are several candidates of equal merit, the first on the

121

4. Reactive Neural Path Planning

list is elected. The sorting of the list is deterministic but can differ if the start and
end points are exchanged. As the distance measure of the Dijkstra is more accu-
rate, the probability of a tie is significantly lower. The difference, however, which
is much more serious in practice, is path quality, which is also seen in Figure 4.18.
It is visible that the Dijkstra is superior to the WFA in terms of the generation of
targeted and direct paths. In the SONN there are pathways with relatively long
connections and few neurons that are preferred by the WFA due to its distance
measure. As in chapter subsection 4.3.1 in the path analysis, a network with re-
duced connections was also tested in Figure 4.18(b), for comparison purposes.
The path thus generated is very similar to that of the Dijkstra in Figure 4.18(c).
This shows that an additional reduction of the connections significantly improves

algorithm RC #N time

Wavefront no 28 0.0124 s
Wavefront yes 33 0.0091 s
Dijkstra no 48 0.0131 s

Table 4.4.: Comparison of paths generated by the WFA and Dijkstra’s algorithm.
For the WFA a net with the original connections is tested against one
with reduced connections (RC).

the result of the WFA. However, the problem remains that due to the less precise
distance measure, the best path is not chosen, which is emphasized by the devi-
ating paths when the start and the endpoint are swapped in Figure 4.18(b). How
many neurons the generated paths, shown in Figure 4.18, include, is stated in
Table 4.4. Hereby more neurons are good because they mean a higher resolu-
tion. The results of the visual path analysis are confirmed as the Dijkstra has the
highest path resolution followed by WFA with reduced connections.

4.3.3. Obstacle Avoidance with γ-SOM and GNG

As stated before, GNG-based can generate more targeted motions than SOM-
based models, due to the folding in space, of SOMs. However, the SOM’s rigid
2D structure makes it very suitable for visualizing the generated path in the re-
duced C-space, also referred to as the cognitive map. Furthermore, it is scientifi-
cally very interesting how this fundamentally different network type deals with
obstacle avoidance, due to which the most performant SOM-type, the γ-SOM, is
included in this evaluation.
In Figure 4.19 on the left side of each graphic, the end effector’s path of a trajec-

tory is shown in simulation that avoids an obstacle in the task space for the GNG
and the γ-SOM. As shown in Figure 4.19(b) and (d), the generated trajectories in
the task space can be significantly enhanced through additional smoothing. For
smoothing non-uniform rational B-splines (NURBS) [404] are applied as the last
step in the planning pipeline. This increases planning times, as stated in Table 4.5,

122

4.3. Experiments and Results

(a) γ-SOM (b) γ-SOM, smoothed path

(c) GNG (d) GNG, smoothed path

Figure 4.19.: Comparing the paths of an end effector in the task space and the
cognitive map with and without smoothing. For the cognitive map,
shown on the right side of each sub-figure, obstacles are marked in
red and the path in blue. Image source: (Steffen et al. 2022b)

but only to a small extent.
In subsection 4.3.1 it was pointed out that a high number of neurons in a path

SONN smoothed #N µ σ

γ-SOM no 76 0.007 (0.006) 0.0004
yes 0.088 (0.085) 0.0028

GNG no 39 0.013 (0.013) 0.0006
yes 0.037 (0.037) 0.0012

Table 4.5.: Comparing planning times and path resolution with and without
smoothing. Planning times are given with mean µ and standard devia-
tion σ for 20 runs in seconds. The planning time of the runs that are vi-
sualized in Figure 4.19 are stated in brackets. Table adapted from: (Stef-
fen et al. 2022b)

indicates a high path resolution and only small jumps in joint angles. This is a de-
sirable property as sections in between two configurations are only guaranteed to
be collision-free if the distances between these configurations are smaller than all
possible obstacles. This is put into perspective, as the γ-SOM struggled occasion-
ally to find a path through larger obstacles as too many neurons are blocked. The
GNG performed significantly better in maps with many large obstacles. Thus, a
task space that is as cluttered, as shown in Figure B.2(a) of Appendix B, is not
usable with the γ-SOM but with the GNG.

123

4. Reactive Neural Path Planning

Cognitive Map

In the presented method, path planning is executed in the SONN’s output space.
This search space also referred to as the cognitive map, is stored in a 2D array
with an additional dimension for joint configurations. Using bitmaps the cogni-
tive map can be visualized, as shown at the right side of each sub-graphic in Fig-
ure 4.19. Thereby, the bitmap’s pixel represents neurons that hold joint config-
uration vectors. Blocked neurons, holding vectors that would cause a collision,
are marked red in the image. The cognitive map of the γ-SOM is fundamentally
different from that of the GNG, as can be seen when comparing Figure 4.19(a)
& (b) versus Figure 4.19(c) & (d). Adjacent neurons in the visualized cognitive
map are topologically connected in the output space of the SOM. Thus, obstacles
are shown as contiguous areas and the path as a recognizable line. In contrast,
two neighbored pixels in the cognitive map of the GNG do not represent neurons
that are topologically connected, hence its output space is scattered and neither
obstacles nor a path is identifiable. The reason for this difference is that the rigid
2D structure of the SOM retains neighborhoods during learning. In contrast, the
topology of GNG is given by the learning of synapses. Due to this, blocked neu-
rons of an obstacle and neurons belonging to the path do not necessarily lie next
to each other in the output space. However, this is only evidence of the different
structure due to the different learning algorithms, Equation 4.6 for the γ-SOM
and Equation 2.13 for the GNG, and not an expression of a superior output space
of the SOM. The opposite is true, as the SOM’s 2D rigid structure, which allows
clear visualization of the output space induces a topological mismatch with the
multi-dimensional C-space. As the GNG synapses are learned explicitly they can
match every topological dimensionality. So, it can be seen in Figure 4.19 that the
path of the end effector in the task space is purposeful and direct for the GNG
while the γ-SOM produces more twisted trajectories.
Interestingly, smoothing impairs the cognitive map as displayed in Figure 4.19(b).
Hereby, gaps arise in the path and more distant neurons are added to the path.
This suggests that smoothing deletes neurons that cause the strongest trajectory
twists and is in line with the previous observation that path quality in the cogni-
tive map is not related to path quality in the task space.

Demonstrator

The goal of the approach is for a robot to share a workspace with a human safely
and without much downtime. To fully prove its capability, especially regarding
obstacle avoidance, it was evaluated on a demonstrator which is shown in Fig-
ure 4.20.5 This also allows the testing of realistic dynamic obstacles, such as a
moving human arm. The setup is similar to the 2nd method presented for the
generation of training data in subsection 4.2.1. Hence, a UR3 is operated with the
UR driver package in Robot Operating System (ROS) 2 [397] which is visualized

5A video of the demonstrator is published at https://youtu.be/CEkVDDg9ORw

124

https://youtu.be/CEkVDDg9ORw

4.3. Experiments and Results

(a) (b)

Figure 4.20.: (a) Photo and (b) visualization in RViz of the demonstrator. It in-
cludes a UR3 robot and a visual system containing four Intel Re-
alSense.

in a RViz [398]. For the vision system four Intel RealSense D435 are mounted on
each corner of a counter top and GPU-Voxels [405] is used for environment detec-
tion and voxelization. The visual processing, GPU-Voxels, is implemented with
ROS1 [406] and the path planning with ROS 2, as depicted in-depth in section B.2.
Therefore, the ROS 1 to ROS 2 bridge6 was applied for communication. The vi-
sual component is executed on another PC than the planner and the ROS bridge.
How a dynamic obstacle is recognized and circumvented by the demonstrator is

Figure 4.21.: Photo series of the reactive collision-free online motion planning. In
the 1st row photos of a robot and human sharing a workspace are
shown. The 2nd row displays a visualization of the scene in RViz. The
human arm is captured by the visual system which is represented
by yellow voxels. In green the currently planned path of the end
effector is shown and in cyan the executed one.

shown step by step in Figure 4.21. Initially, a path from the start to the endpoint
is planned in an empty task space. Then a hand enters the work cell and is rec-
ognized and voxelized by the vision system. The system re-plans its trajectory in
less than 0.02 s and avoids the obstacle successfully.

6https://index.ros.org/p/ros1_bridge/

125

https://index.ros.org/p/ros1_bridge/

4. Reactive Neural Path Planning

Memory Usage

The need for storage space in this approach is determined by the use of the LUT.
The LUT has a list of neuron sets and a key vector, whose size is given by the
number of cells in the task space. The key vector contains the index of a specific
neuron set and is itself indexed by the cell number of the flattened task space.
Therefore, the memory requirements of the LUT depend on both the size of the
task space and the number of neurons in the used SONN. However, similar to the
basic idea of this approach the complete C-space does not have to be learned, only
the areas of the task space that are used by the training data have to be covered by
the LUT. This creates an extreme difference between a theoretical worst-case sce-
nario and an average use case in terms of memory requirements. In the scenario
used for the evaluation, the task space of a UR3 was discretized to 160×160×160
cells, which gives the key vector the size of 4 096 000. However, since the train-
ing data only actively uses 338 731 cells of the task space, this is also the actual
number of the neuron setlist. Now, in the case of using a GNG with 10 000 nodes,
446 neurons build up a set. Hence, the theoretical memory requirement is ap-
proximately 620 MB and is made up of 4096000× 4 bytes for the key vectors and
338731 × 446 × 4 bytes for the neuron setlist. However, the actual memory re-
quirement in practice was 668 MB for this particular use case, which was traced
back to the overhead of the lookup class.

4.3.4. Comparisons with Modern Sample-based Planners

To prove the capability of the presented planner it is tested here against proba-
bilistic sample-based planners, as these are the best performing in the field, see
subsection 4.1.1. Trajectories of a Dijkstra executed in reduced C-space by a GNG
are evaluated against a PRM, RRT and RRT-C. The mean value µ and the stan-

Planner µ σ

GNG (Dijkstra’s + path smoothing) 0.037 0.0012
PRM 0.115 0.1161
RRT 2.876 1.0126
RRT-C 0.023 0.0045

Table 4.6.: Evaluation of the proposed approach against sample-based planners
regarding the mean value µ and standard deviation σ. The results are
for 20 runs and the planning time is in seconds. Table source: (Steffen
et al. 2022b)

dard deviation σ of all tested planers are given in Table 4.6 and a visualization of
the generated paths for the end effector in Figure 4.22. The sample-based plan-
ners are not generated in the reduced C-space but instead carried out MoveIt2.

126

4.4. Discussion

To emphasize the probabilistic character of sample-based planners, several gen-
erated paths are displayed. This is not possible for the presented approach, as the
Dijkstra is deterministic and provides the optimal path. These results emphasize

(a) PRM (b) RRT (c) RRT-C

Figure 4.22.: Evaluation against sample-based planners. The smoothed trajectory
generated with a Dijkstra in a trained GNG, colored in red, is com-
pared with three popular sample-based planners. As sample-based
planners, in contrast to the Dijkstra, are not deterministic, several
trajectories are displayed. Image source: (Steffen et al. 2022b)

the real-time capability of the proposed method and show that its planning times,
including subsequent smoothing, are better than the PRM and RRT and compara-
ble to the RRT-C. The visualization in Figure 4.22 shows that although the RRT-C
is also able to generate relatively good, direct paths, none of the sample-based
planners can match the approach shown in terms of path quality.

4.4. Discussion

In subsection 4.3.1 it was shown that SONN are well suited to generate a re-
duced C-space for path planning, as they reproduce the effectively used subspace
properly. When comparing the presented approach to dimension reduction us-
ing SONNs with related work, like autoencoder [371], its advantages are readily
apparent. Because the topology of the input space is maintained, kinematically
reachable neighbor states are present in the output space. Also, each neuron’s
weight represents a full configuration state and can therefore be forwarded to the
robot controller without costly post-processing. The approach presented here is
comparable to sample-based planners in terms of planning time, but it can de-
terministically generate an optimal path, by using the Dijkstra algorithm, which
would not be executable in the complete C-space. The reason for this is that only
a part of the robot’s task space is included in the training data and thus only a
submanifold of the C-space is sampled. In contrast to probabilistic sample-based
planners, these samples are not random but contain the effectively used motion
space. Through self-organization, these samples are learned together with the
connections, which represent the topology of the training data. Additionally,

127

4. Reactive Neural Path Planning

the evaluation revealed that this approach handles cluttered scenes, with many
obstacles and narrow passages quite well and it is very easy to realize specific
constraints regarding joint angles through the selection of training data. The ap-
proach is evaluated as well with 7D training data, generated from human mo-
tions (Steffen et al. 2021c), as also 6D training data, from a 6 DOF robot (Steffen
et al. 2022a; Steffen et al. 2022b). Thereby, it was shown that the method is easily
transferable to other kinematics.
Regarding the generation of training data in section 4.2.1, (3) manually guided robot
trajectories was implemented in this work to show that it is generally feasible, but
this kind of data generation is extremely time-consuming, hence it is not included
into the evaluation in section 4.3. The time needed to generate a data set large
enough to represent the configuration space in a meaningful way is very high.
However, it can be shortened by supplementing a general set of simulated train-
ing data with hand-guided motions. When generating training data, it is note-
worthy that if a part of the C-space is not included, no trajectories can be planned
here. In practice, this means that if a use case is not exactly clear, it makes sense to
use training data that is as general as possible. However, if the intended use case
is clearly defined and uses only a small part of the task space, it is very advanta-
geous to limit training data respectively. In this way, the memory requirements
can be reduced and the quality of the generated solutions increased.
In subsection 4.2.2 different SONN versions are introduced. The MSOM [233],
GNG [203], MGNG [205], SGNG [206], γ-SOM [234] and γ-GNG [235] are tested
regarding their suitability for the presented approach in subsection 4.3.1. The
best representatives in terms of C-space coverage are the γ-SOM and surpris-
ingly the basic GNG, without any temporal context. Moreover, it was found
that GNG-based are significantly superior regarding topology preservation than
SOM-based versions, due to their topological mismatch. This problem also oc-
curs in the path analysis, so the γ-SOM has generated paths that lead from the
start to the end point without collisions, but there are often unnecessary detours
and loops. However, since there are often large joint angle jumps between neigh-
boring neurons in the GNG, generated trajectories are not always usable. The
solution to successfully avoid large jumps in joint angles is deleting long connec-
tions in GNGs. Due to the structure of the GNG developing during the learning
process, a trained network can be learned further by additional training trajec-
tories. Thus, it is possible to pre-learn a GNG with general data covering the
general workspace of the robot and then specify it for a new use case with task-
related motions. This can reduce training time, but even more interesting, it al-
lows to have in a network different areas specialized for different tasks, similar
to the brain. This is not feasible for SOM-based models, since their size etc. must
be well chosen in advance, therefore, a new network must always be trained for
an additional task.
Unfortunately, there was no clear answer in the literature to the question of which
network structure, is biologically more plausible. However, the assumption is
that it is likely to apply to the GNG. In the NG neurons do not have real synapses
with each other which is very different from the biological model introduced in
subsection 2.1.1. Also SOMs do not have any explicit synapses either, but one

128

4.4. Discussion

can imagine the synapses based on their position in the structure. In contrast, the
GNG have explicit synapses that are strengthened and weakened in time, thus
old connections are forgotten or refreshed. In addition, the flexible n-dimensional
connection structure of the GNG seems more plausible than the rigid 2D or 3D
structure of SOMs.
As discussed in subsection 4.1.2, SNN have been already used successfully for
path planning in 2D. Their application to neuromorphic hardware allows asyn-
chronous execution, increasing performance significantly in contrast to running
on conventional hardware. However, the state of development as well as the
availability of neuromorphic hardware currently hinders SNN-based algorithms
from developing their full potential. In the course of this thesis, two methods
for a neural WFA [39; 37] have been extended to a 3D environment, as published
in (Steffen et al. 2020b; Steffen et al. 2020a). Apart from the fact that this is only
path planning in the Cartesian task space, the implementations regarding neuro
simulators on conventional hardware could not achieve satisfactory performance.
Hence, an implementation on different parallel hardware architectures is done in
chapter 5, to investigate the extent to which this technology affects a specific SNN
implementation. For this purpose, the approach presented in (Steffen et al. 2020b)
is applied, as it appears to be the more promising candidate.

129

5. Neuromorphic Technologies for
Neural Algorithms

While analog networks are based on a differentiable activation function, Spik-
ing Neural Network (SNN) have a membrane potential that evolves in time de-
pending on the input of weighted spikes [6; 4]. Since these networks consider
temporal dynamics they are closer to the biological model and well-suited to
deal with time-related data. Instead of clean layers, they have complex struc-
tures which makes them very powerful but require complex learning algorithms.
As SNN simulation requires updating the neuron state, the synapse state and
the synapse’s weight repetitively for each neuron, it is a highly parallel prob-
lem [161]. Their potential cannot be fully exploited when executed on a sequen-
tial von Neumann architecture [160]. Their simulation on conventional Central
Processing Unit (CPU) is very expensive, however, two parallel hardware archi-
tectures exist that process SNN more efficiently, due to their ability to highly
parallelize. As artificial methods are significantly less effective than their bio-
logical counterpart, neuromorphic chips, a biologically inspired dedicated hard-
ware was developed. This technology is based on Mead’s analysis of process-
ing in the brain [162] and implements biologically plausible memory and com-
putational elements [407]. Representatives of neuromorphic hardware are IBMs
TrueNorth [172], Intel’s Loihi [11], the spiking neural network architecture (SpiN-
Naker) system of the University of Manchester [10] and BrainScaleS developed
in Heidelberg [408]. Second, Graphics Processing Unit (GPU) are also capable of
parallelization [161; 160], and GPU-enhanced Neuronal Networks (GeNN) [12], a
code generation library uses this feature to simulate SNN. A major benefit is that
this technique is based on more accessible parallel hardware, thus it shows great
potential for various applications but is still in the early stages of development.
Also, neuromorphic systems are still very much in their infancy, thus, the execu-
tion of this technique is non-trivial and investigating their applicability to specific
use cases is crucial, as systems may be well suited for some, but inapplicable for
others [409]. Several benchmarks [59; 57; 58; 60; 62] that attempt to evaluate these
differences, mainly for vision [59; 60] and from a neuro-scientific perspective [57;
58] have been introduced. However, to develop efficient SNN implementations
for robotics, an application-oriented robotic scenario is necessary to investigate
specification- and performance-related details of parallel systems. In [27], the
Wavefront Algorithm (WFA) was suggested as a candidate as it might contribute
to the greater field of neuromorphic benchmarks. This chapter addresses research
question 3, defined in chapter 1: "How can parallel hardware help to exploit the ad-
vantages of SNN?".

131

5. Neuromorphic Technologies for Neural Algorithms

The remainder of this chapter is structured as follows. In section 3.1, an investi-
gation of the state-of-the-art for parallel hardware is presented. Subsequently, a
discussion is provided in subsection 5.1.4, which forms the basis for the follow-
ing sections. In section 5.2, the core of this chapter, a performance analysis on
parallel hardware is carried out for a robotic scenario. The use case for this is
presented in subsection 5.2.1, followed by the technical details of the benchmark
in subsection 5.2.2 and the metrics used in subsection 5.2.3. The result of the
benchmark is presented in section 5.3. Derived from the presented metrics the
experiments concern simulation time in subsection 5.3.1, path length in subsec-
tion 5.3.3 and finally, the consumption of hardware resources in subsection 5.3.4.
The chapter is concluded in section 5.4, whereby a contextual analysis, regarding
the significance of the results, is provided in subsection 5.4.1, whereupon an in-
depth discussion about the limitations builds up in subsection 5.4.2.
The material covered in subsection 5.2.1 was originally published by the author
in (Steffen et al. 2020b) and the rest of section 5.2 & section 5.3 was published
in (Steffen et al. 2021b).

5.1. State-of-the-art

The applied systems and relevant software tools are covered in subsection 5.1.1,
but the focus regarding state-of-the-art is on benchmarks for SNN simulations in
literature, presented in subsection 5.1.3.

5.1.1. Parallel Hardware

As SNN simulation is a highly parallel problem [161], CPU, which process se-
quentially, is not the optimal choice. Nevertheless, many neural simulators run
on traditional hardware, scaling from a single processor core to High Perfor-
mance Computing (HPC) cluster. Thus, fast simulation of SNN can only be
achieved with high energy requirements. In this section, two alternatives un-
der the collective term, parallel hardware are considered. Neuromorphic hardware
in general and SpiNNaker as a well-known representative, are looked at more
closely, followed by a contemplation of GPU processing.

The Neuromorphic Hardware SpiNNaker

Neuromorphic chips, inspired by the brain and designed for a special purpose,
differ significantly from traditional hardware, . A well-known scientific repre-
sentative of a neuromorphic board is the SpiNNaker platform [10]. As it uses
Advanced RISC Machines (ARM) microprocessors neuron and synapse models
can be defined in a flexible manner using the software. The SpiNNaker board
uses a custom-designed chip consisting of 18 ARM968 processors, connected via

132

5.1. State-of-the-art

network on chip. All 18 processors share synchronous dynamic random-access
memory (SDRAM) and each one embodies additionally a Static Random Access
Memory (SRAM). The data on SDRAM is accessed less frequently. Each SpiN-
Naker board has a router that is connected to all ARM microprocessors, to enable
spike communication. Furthermore, the router has additional interfaces for con-
nections to the routers of six other SpiNNaker boards. Different components of
a board, like a router and a processor, have individual clock speeds. Thus, it is
possible to increase only the frequencies of the respective parts in case of a tem-
porary increase in activity, which helps to reduce power consumption. However,
by default, only 16 of the 18 processors run simulation code. One of the other
two is spare and the last one carries out monitoring functions like maintaining
the routing tables for spike communication. Even though, SpiNNaker can be ap-
plied to a wide range of problems that are solved with graphs, it is specifically
designed to support large scale SNN simulation, hence, huge populations of neu-
rons [410]. As a simple data bus would not meet the speed requirements of such a
large system regarding spike transmission, an adapted version of Address Event
Representation (AER) is applied.

SpiNNaker comes in two versions, a small SpiNN-3 board, the development

Figure 5.1.: SpiNNaker software stacks. Image source: [410]

board with four chips and a larger SpiNN-5 board, the production board with
48 chips arranged in a hexagonal mesh. SpiNN-5 can be connected together and
offer to attach peripheral devices, like an Event camera directly to the board. Ad-
ditionally, a SpiNNaker cluster is located at the University of Manchester. The
cluster, SpiNNaker1M, connects SpiNN-5 in a hexagonal mesh and embodies

133

5. Neuromorphic Technologies for Neural Algorithms

1,036,800 cores.
As shown in Figure 5.1, the board is connected via Ethernet to a host machine,
necessary to initialize a simulation. Figure 5.1 also visualizes that the SNN sim-
ulation on the board uses a multi-layered software stack. This modularity sim-
plifies maintenance and as the code is open source, users can implement their
code at every system level. The software stack on the host side embodies the
event-based operating system SpiNNaker1 API (SpiN1API), SpiNNaker Appli-
cation Runtime Kernel (SARK) enabling communication with the hardware on
the chips [410]. Part of SpiN1API is SpiNNaker Control And Monitor Program
(SCAMP), identifying faulty SpiNNaker cores. Before each boot-up, every core
performs a self-check and the first processor successfully finishing the internal
checks automatically becomes the monitor processor performing global checks
on the chip. Subsequently, SCAMP instructions are loaded from the host sys-
tem via the Ethernet. SCAMP is responsible to obtain a grid with all functioning
cores for the simulation [411]. SpiNNTools was developed to make the load-
ing of an application on the board user-friendly. It is used to determine which
parts of the code are executed on which core, by mapping out the SpiNNaker
system as a graph. This is referred to as the MachineGraph, whereby, cores are
represented as vertices and their connections as edges. Furthermore, the time
step is obtained. As the MachineGraph provides an abstraction of the hardware,
it enables software to be distributed across cores. The MachineGraph is supple-
mented by an ApplicationGraph, whereby vertices represent applications with
multiple atoms, the basic computation unit performed by a core. As application
vertices are mapped onto the machine vertices software can be distributed effi-
ciently between the cores. Both, Application- and MachineGraph, are created on
the host by SpiNNTools. Users can adapt the ApplicationGraph which is sub-
sequently converted into a MachineGraph, before being loaded on the physical
board. Furthermore, SpiNNTools is provided information about the available
hardware resources by SCAMP, so it can adjust the MachineGraph, if necessary
to the available cores. It is also responsible for creating routing tables, defining
the placement of vertices on physical cores and setting up IP tags for commu-
nication between host and SpiNNaker. After mapping, data is generated and
loaded to the SDRAM of each core, before the simulation can be run. After a run,
SpiNNTools generates a log file from data logged by the vertices during the sim-
ulation. The SpiNNaker board and the host PC communicate using SpiNNaker
datagram packages (SDP), a protocol based on User Datagram Protocol (UDP).
Also, a SpiNNaker system cannot be used standalone, it needs a host system and
even though the SpiNNaker can be simulated on a pc, this is extremely ineffi-
cient.

Graphical Processing Unit

Originally developed for 3D image processing, GPUs have developed into very
potent general-purpose processors for highly parallel computations in the last
two decades. Parallel computations are performed on the GPU through the Single

134

5.1. State-of-the-art

Instruction Multiple Data (SIMD) programming paradigm [412]. Thus, as single
instructions are carried out in parallel on different data, the GPU is optimized for
handling high throughput. The latency is higher, especially regarding memory
access, when compared with the CPU and performance is achieved by extreme
parallelization. Figure 5.2(a) shows a simplified example of a modern GPU ar-
chitecture. It visualizes that SIMD instructions are scheduled by Streaming Mul-
tiprocessor (SM) on the Arithmetic Logic Unit (ALU). In NVIDIA’s terminology,

(a) (b)

Figure 5.2.: (a) Simplification of a GPU architecture including three SM. (b)
Schematic of a CUDA grid. Image Source: (a) [58] & (b) [413]

which confusingly is manufacturer specific, an ALU is referred to as a Compute
Unified Device Architecture (CUDA) core, a function is a CUDA kernel and a
SIMD instruction is a warp. A warp executes only one instruction, but on up to
32 threads simultaneously, however, if not needed some might stay inactive [413].
The warp scheduler is responsible for their time-wise execution and a warp’s con-
text is stored by a register file. There are two kinds, a big one that is shared by all
SM (L2) and another one as an individual cache (L1 in Figure 5.2(a)). As GPU pro-
cesses are very complex and also hardware specific, NVIDIA released the CUDA
API. This enables programmers to make use of the great potential of parallelized
code, without requiring expert knowledge of the underlying hardware. More-
over, it allows reusing implementations on different GPUs hardware [58]. Ker-
nels, functions in NVIDIA’s terminology, are carried out in parallel by multiple
threads, which are organized in thread blocks. Each block is processed by an SM,
it creates threads and manages and schedules them. The amount of threads per
block is constrained by the SM’s capacity. However, one SM can process multiple
blocks and in case two blocks are arranged identically they can process the same
kernel. Blocks are grouped into 1D, 2D or 3D grids, as shown in Figure 5.2(b),
and are independent, thus, can be executed in any order [413]. The CUDA mem-
ory is a hierarchical multi-layer construct. Firstly, global memory can be accessed
by all threads from all blocks on all grids. Secondly, per-block shared memory
is accessible by all threads from one block and thirdly, local per-thread memory.
In practice it does not happen that all code is executed on the GPU, but parts on
the CPU. Most architectures have individual memory for GPU and CPU, hence,

135

5. Neuromorphic Technologies for Neural Algorithms

data is transferred between them. For embedded GPUs, this transfer is between
the memory of the host and the device, which is quite slow. Consequently, the
amount of memory transfers should be kept to a minimum. CPU memory is only
accessible by 32, 64 or 128 byte transactions. Therefore, independent data trans-
fers from neighboring units are pooled to limit the number of accesses [413].
As a consequence of the SIMD paradigm, additions on GPU are often performed
separately by different threads in parallel. Due to the standard binary floating-
point arithmetic (IEEE 754), which is supported by NVIDIA’s GPU, floating-point
numbers are non-associative. Hence, rounding errors can cause different results
with additions. For example, the sum of A+B +C may differ as calculations are
done in parallel on different threads and (A+B)+C might not equalA+(B+C),
due to inaccuracies caused by rounding [414]. This circumstance makes the com-
parison of calculations on GPU and CPU very difficult.

5.1.2. Simulation Tools for SNN

SNN simulations can be realized either synchronously, updating neuron and
synapse states as well as weights at every time step, or asynchronous, updating
only neurons and synapses if they received a spike. The former can be imple-
mented through a simple matrix product, the latter, which creates greater chal-
lenges in implementation. A matrix product does not suffice here as updates do
not include all state variables of the system and are not at a fixed time step [415].
Examples of synchronous SNN simulation are Brian [416] or Norse [417] which
extend the machine learning framework PyTorch [418] with biologically-inspired
neural components. However, many like Auryn [14], NEURON [419] and NEu-
ral Simulation Tool (NEST) [420] prefer a hybrid, where neurons are adjusted
synchronously and synapses asynchronously.
An overview of tools regarding code generation for SNN simulation on neuro-

NEST SpiNNaker GeNN
neuron
update synchronous

asynchronous
& synchronous synchronous

update
method

exact
integration

exponential
integration

numeric
integration

protocol custom AER custom

format - multi cast packet several matrices

Table 5.1.: Overview of specific mechanisms in NEST, SpiNNaker and GeNN re-
garding neuron, spike and synapse processing. The first two rows give
information about how the systems realize neuron state update, both
time-wise and regarding the method. The lower two lines refer to the
transmission of the spikes.

136

5.1. State-of-the-art

morphic hardware, neurosimulators, as well as for execution on GPU is provided
in [160]. The authors cover a variety of modeling languages and frameworks. Re-
garding simulators running on CPU, GENESIS [421], NEURON [419], NEST [420]
and Brian [422] are introduced. Furthermore, software solutions for SNN simu-
lation on NVIDIA GPU, like Myriad [423] and GeNN [12], and also for SpiN-
Naker [10] are included.
In the next paragraphs, all tools used within the benchmark are described briefly
and an overview of differences regarding specific mechanisms related to the sim-
ulation of neurons, spikes and synapses is provided in Table 5.1. With regard
to the timing of the neuron update, meaning how synchronous or asynchronous
these individual systems are, there are certain differences. A hybrid method for
simulation is used in NEST, whereby only synapses are updated asynchronously
while neurons are updated at a fixed time step. In contrast, neuron updates in the
SpiNNaker system are synchronous as well as asynchronous. This is realized by
a individual clock for each core, while neurons updates initially start out synchro-
nized. For GeNN, neuron and synapse dynamics are simulated continuously in
the neuron kernel, thus updates are according to their model definition executed
in every time step [12]. The question of the format for data transfer only arises for
systems where host and device need to communicate. The asynchronous trans-
mission protocol AER, which is also used for spike transfer in event cameras
(see subsection 2.2.3), uses multi cast packets as the standard transmission for-
mat. For SpiNNaker, an adapted version of AER is employed. Using multi cast
packets ensures that spikes are only sent to the chip with the target neuron, thus
reducing unnecessary transmissions.

PyNN

The number of simulators and hardware solutions for SNN simulation is already
high but is also constantly increasing. Many of them follow different design goals
and have different strengths and weaknesses, as well as a programming language
or API. From a scientific point of view, this high degree of diversity is valuable, as
it allows, both, biologically more plausible and application-oriented implemen-
tations. Moreover, models can be executed and compared on different systems.
However, this variety causes issues as models usually have to be translated be-
fore execution on a different system. This is a time-consuming and error-prone
task, which most likely will not provide a replica, complicating evaluation. This
is addressed by Python package for neuronal networks (PyNN), as models for
neurons and networks can thereby be defined in a high-level language. Subse-
quently, PyNN models can be ported to several simulator backends or hardware
solutions. Currently, supported back ends of PyNN include NEST, NEURON,
Brain, BrainScaleS and SpiNNaker [424]. Moreover, a wrapper bridging PyNN
with GeNN was introduced [58]. PyNN allows grouped definition as well for
neurons as synapses which are of the same type. A group of neurons is called a
population, whereby all neurons share their type, the postsynaptic decay, mem-
brane time constant and resting potentials. Synapses that are defined as a group is

137

5. Neuromorphic Technologies for Neural Algorithms

called projections, whereby the entire construct is either excitatory or inhibitory.
While PyNN allows the definition of new models, several standard types for neu-
rons and synapses are provided. Besides modeling and execution PyNN allows
the recording of parameters [424], a powerful tool for analysis purposes.

NEST

The neural simulator NEST is executable on a PC or a HPC-cluster [420]. Its
native simulation language is the PostScript-based SLI and it can be interfaced
through Python by PyNest [425] or with PyNN [424]. An SNN in NEST embodies
two components, nodes and connections. A node is either a neuron, a population
of neurons (sub-nets) or a device, thus a simulated tool for recording parameters,
like the membrane potential. Connections, linking the nodes, contain optionally
a weight and a delay. As weights are changeable during run time, the connections
support learning rules like Spike-Timing-Dependent-Plasticity (STDP). Commu-
nication between nodes is realized through the transmission of time-stamped
events, via connections. Nodes determine when to process an event by com-
bining timestamps and delays. Several classes for events exist. The SpikeEvent
for spike transmission based on time steps and the PreciseSpikeEvent which is less
constrained. Furthermore, the CurrentEvent carries information about AC/DC
and the PotentialEvent about membrane potential [420]. Neurons possess an ID
and synapses use the ID of their post-synaptic neuron [426]. For neural process-
ing, thus to update neuron and synapse states, exact integration [427] is used
here. This has the advantage that differential equations do not have to be solved
explicitly in each step. Instead the neuron state update is based on the previous
step by using a propagator matrix [426].

sPyNNaker

The SpiN1API, introduced in subsection 5.1.1, is the SpiNNaker back end for
PyNN. Models defined in PyNN can be transferred on a SpiNNaker board through
the SpiN1API. Thus, PyNN models are translated into MachineGraph through
the SpiNNTools, visualized in Figure 5.1. Thereby vertices represent populations
in PyNN and edges represent the connections between them. When the simula-
tion is completed on the board, the results are transferred back onto a host PC and
retranslated by sPyNNaker code. The mapping from populations to vertices is re-
alized so one vertex embodies the number of neurons which can be simulated by
one SpiNNaker core. Neuron and synapse states are updated with exponential
integration [428], meaning that incoming synaptic currents are treated as piece
wise constant. The initiation of neuron updates is synchronized but they evolve
asynchronously, due to independent clocks on each core. As spike processing
is prioritized over neuron state updates, time drifts may occur, causing cores to
get out of synchronization. The frequency of neuron updates can be specified
by users, allowing them to adapt the degree of accuracy. In contrast, synapse

138

5.1. State-of-the-art

states are only updated if a spike arrives. Spike trains are transmitted as multi-
cast packets and stored in a spike queue, from which they are accessed through
user callback functions. Hence, the ID of the sender presynaptic neuron is read
from the SDRAM and then processed locally.

GeNN

The C++ library GeNN enables users to create models and generates CUDA
code which runs efficiently on GPU. This opens SNN simulation on GPU with-
out expert knowledge of low-level CUDA programming [12]. A special feature
of GeNN, compared to the similar ANNarchy [429] and Myriad [423], is that
users can create neuron models in C++ and are not limited to those specified
as Hodgkin-Huxley (HH) or Leaky-Integrate-and-Fire (LIF). This is also the case
for synapses and learning rules, whereby several common representatives are
already specified. After model definition, CUDA and C++ code is generated
and subsequently compiled. Then, GeNN detects the available GPU and deter-
mines a suitable CUDA block size. In case the device supports more than one
GPU, GeNN performs an analysis regarding expected performance results before
choosing [27]. SNN simulation is done employing three kernels, a neuron kernel,
a synapse kernel and a learning kernel, which are updated at a fixed time step.
To update neural states, numeric integration of the differential equation, which
describes the neuron at this specific time step, is carried out. Thereby, differen-
tial equations describing the dynamics of for neurons and synapses are separated
and solved individually [59]. By allowing the user to choose the exact method of
numeric integration, through the exchange of code snippets, maximum flexibility
is ensured [12].

5.1.3. Benchmarking Hardware and Software for SNN

Several comparisons for parallel hardware have been presented over the last
few years. These benchmarks differ mainly in the selection of the systems to be
tested and the benchmark scenario. An overview of the state-of-the-art regard-
ing benchmarks is given in Table 5.2. The table includes information about the
tested platforms as well as the applied use cases. The last columns states what
meta language was used for implementation. The benchmarks-[59; 58; 62] chose
a different path. To not be limited by a meta language that is supported by all
platforms, the model was transferred to each platform.

A Use Case From Neuroscience

Benchmarks focusing on a neuroscience scenario with large network simulations
are given in [57; 58]. Both, [57] and [58] use the cortical microcircuit model which
is introduced in [430] and visualized in Figure 5.3(a), as a test use case. It models

139

5. Neuromorphic Technologies for Neural Algorithms

platforms use case model

[59] GeNN, Spikey, SpiNNaker olfactory model for image
classification

-

[57] NEST, SpiNNaker micro-column network
model [430]

PyNN

[58] GeNN, SpiNNaker, NEST micro-column network
model [430]

-

[60] GeNN, Spikey, SpiN-
Naker, BrainscaleS, NEST

converted CNN for image
classification

Cypress

[61] Loihi control of rover & force-
based control of robot arm

Nengo

[62] Loihi, SpiNNaker 2 keyword spotting & adap-
tive control

-

Table 5.2.: Overview of related benchmarks in literature, their target platforms
and use cases. In addition, it is indicated whether a meta language
was used for the implementation of the model or whether the model
was implemented individually.

a slice of the cortical surface and was very likely chosen for being the smallest
model that still contains a realistic number of neurons and synapses. It applies
the LIF model and, due to using fixed weight synapses, learning with plasticity
rules is not considered in [57; 58]. [57] evaluates the performance of NEST run-
ning on a HPC cluster and SpiNNaker running six SpiNN-5 boards. In [58], the
evaluation of GeNN on different hardware is the focus while NEST and SpiN-
Naker are used as reference systems. Consequently, the model in [57] has been
implemented in PyNN while C++ was used in [58]. Simulations in a neuroscience
context, targeting a high degree of plausibility, are commonly run at a time step of
0.1 ms. The SpiNNaker supports only simulations of 1ms in real-time, it is, how-
ever, capable to decrease the simulation step to 0.1ms but this causes a slowdown
by factor 20. Thus, the authors of [57] evaluate a 1 ms and an 0.1 ms time step
on both systems. However, in [58] all tests are simulated with a 0.1 ms time step.
The simulations regarding GeNN are carried out on several GPUs, as well as an
embedded system, the Jetson TX2. Since [58] builds on [57], the same metrics
were used in both papers. Simulation time and energy consumption are con-
sidered, but the focus is on accuracy, which makes sense for a neuroscience use
case. In regards to the NEST simulation, the energy consumption is measured
approximately once per second using the power distribution units of the HPC
cluster. For SpiNNaker this is estimated by connecting a rack with 24 SpiNN-
5 to a power socket, whereby only six boards are turned on and the consumed
power by the rack itself is deducted. As power consumption is measured with
a consumer-grade power measuring device, that does not store data at a high
enough frequency, a camera is used to take a snapshot at approximately every

140

5.1. State-of-the-art

(a) (b)

Figure 5.3.: SNN models used for benchmarks in literature. The network of (a)
is trained for a use case in the context of neuroscience, while image
classification is targeted with the olfactory model in (b). The olfac-
tory system consists of three layers, 1 virtual receptors with associ-
ated receptor neurons, 2 projection neurons & lateral inhibitory pop-
ulations, 3 a winner-takes-all-circuit of association neurons. Image
source: (a) [57] & (b) [59].

simulated time step. In similar technique is used for [58] as the power draw is
filmed and image recognition software is used to read out values. For determin-
ing the simulation time, both [57; 58], implement functions inside the simulation
code. The tests regarding accuracy in [57], show that NEST and SpiNNaker pro-
duce very similar results, which is generalized to GeNN in [58]. For GeNN, the
results regarding simulation time depend heavily on the hardware used. In the
case of a high-end system, the simulation in GeNN is faster than the fastest using
NEST on a HPC cluster. SpiNNaker, however, is only able to beat GeNN on the
Jetson TX2.

A Use Case Regarding Image Recognition

The work in [59; 60] differs significantly from the presented papers, especially
concerning the use case. The test scenario is more generally applicable, closer to
a real-world application and thus, of more relevance outside the neuroscience
community. Their use case focuses on image classification using the MNIST
database of handwritten digits1. This is realized in [59] with an olfactory model,
introduced in [431; 432] and visualized in Figure 5.3(b), while [60] applies a pre-
trained Convolutional Neural Network (CNN). In [59] two neuromorphic plat-
forms, Spikey and SpiNNaker, as well as the CUDA and CPU-only version of
GeNN is considered. the benchmark in [60] compares three neuromorphic sys-
tems; SpiNNaker, Spikey and BrainScaleS together. It also includes NEST and
GeNN on CPU and GPU. The issue that PyNN may not take all the strengths
of a platform into account, is overcome in [60] by using the wrapper library Cy-

1http://yann.lecun.com/exdb/mnist/

141

http://yann.lecun.com/exdb/mnist/

5. Neuromorphic Technologies for Neural Algorithms

press2. This C++ framework uses PyNN for NEST, Spikey and SpiNNaker while
for BrainScaleS and GeNN a lower-level C++ interface is used. As [60] compares
a multitude of systems with varying capabilities and scalability, it applies five
different networks. Thereby, CNN are trained and subsequently converted into
SNNs.
Also, for [59; 60] speed, accuracy and energy consumption are used as metrics.
However, in [59] power consumption is measured only for the smallest network,
thereby an external device is used and measurements are taken at 30 s intervals
for 2 minutes. Regarding simulation time, the learning and testing phase are con-
sidered separately. However, in [60] the energy consumption of the BrainScaleS
is estimated, as it was allegedly not feasible. According to [59] the level of ac-
curacy achieved by GeNN and SpiNNaker is quite high, while Spikey struggles
in this regard, probably due to its small network size. The surprising winner re-
garding simulation time in [59] is the CPU-only mode of GeNN. However, this
only stands for small amounts of neurons, in large networks GeNN on GPU out-
performs GeNN on CPU. Both GeNN implementations have shorter simulation
times than SpiNNaker for all network sizes. The highest power consumption is
recorded for GeNN on CPU, followed by GeNN on GPU and SpiNNaker, while
Spikey requires the least amount of energy. The results regarding accuracy in [60]
are in line with previous works, however, it is stated that analog systems achieve
less accuracy than digital ones. Nevertheless, regarding energy efficiency analog
systems are superior and the SpiNN-3 board and NEST occupied the last places
in this category. Moreover, in [60] it is stated that GeNN on CPU is more energy
efficient than GeNN on GPU for all networks. Lastly, for large networks GeNN
on GPU is the fastest one, and also it outperforms SpiNNaker for all network
sizes.

A Use Case Regarding Robot Control

Relatively new work related to very modern hardware is presented in [61; 62].
The work in [61] builds up on preliminary work with Nengo and embodies two
robotic use cases. Firstly, control of a rover in simulation and secondly, force-
based control of a robotic arm on real hardware. In [62] two use cases, keyword
spotting and adaptive robotic control, are considered for evaluation. As metrics,
power consumption and computation time are applied. However, the results are
rather inconclusive, as the authors state that it is highly dependent on the number
of input dimensions. SpiNNaker 2 performed better regarding high-dimensional
vector matrices as necessary for keyword spotting while Loihi achieved better re-
sults for vector-matrix multiplication. The authors in [61] aim to provide a foun-
dation for benchmarking robotic applications implemented in Nengo on conven-
tional and neuromorphic architectures.

2https://github.com/hbp-unibi/cypress

142

https://github.com/hbp-unibi/cypress

5.2. Performance Analysis of a Robotic Use Case on Parallel Hardware

5.1.4. Discussion

Robotic motion control using SNN-based implementations is an active and promis-
ing field of research. However, benchmarks are required to determine a suit-
able hardware solution for simulating SNN resource-friendly and performant.
As system requirements are very use-case dependent, hardware comparisons, es-
pecially targeting robotics are required. The benchmarks presented in [57; 58; 59;
60], although dealing with very similar software and hardware solutions as in the
presented work, apply a use case that is thematically so far that the results have
no great value. Furthermore in [57; 58] learning is not considered, which is an
important aspect of SNN simulation. The work in [60] embodies a plenitude of
systems and applies a very elegant way to overcome the issue regarding PyNN
not considering special features of some systems by using Cypress. However, as
CNNs are trained and subsequently converted into SNNs, learning in SNN is not
considered here either. In [58], comparing NEST, SpiNNaker and GeNN, a Jetson
board is included, however, it only uses the Jetson TX2, which has been over-
hauled by newer boards of the Jetson series in terms of performance and thus,
has no great significance.
The thematically closest to the presented benchmark of this work is [61; 62], as
the use case here, is also in the research field of adaptive robotic motion control.
However, [61; 62] do not include SNN simulation on GPU and focus completely
on neuromorphic platforms. Furthermore, in [27], the authors propose a neural
WFA, as introduced by [39], as a candidate with great impact for benchmarking
parallel hardware.

5.2. Performance Analysis of a Robotic Use Case
on Parallel Hardware

As the architecture of parallel hardware solutions, differs greatly from the von
Neumann architecture impacting the simulation of SNN, traditional benchmarks
which are designed for conventional hardware cannot be transferred. Further-
more, the comparison of internal system metrics, such as processor clock speed,
is not purposeful as it does not give any indication about performance under real-
istic workload [409]. Thus, the evaluation must be carried out with a realistic task.
This conclusion is also reached by [59; 60]. As the implementation of the simula-
tion environments differs so greatly it is discouraged to test only basic functions
but instead analyze a suitable use case. The test scenario has been chosen to fit
well with the research question 3 and still allows some generalization. Therefore,
a typical robotic use case, such as path planning, is a good choice. Furthermore, it
must of course be an algorithm implemented with SNN and ideally not be bound
to a specific robot platform. The test scenario, hence, the algorithm to be evalu-
ated on different parallel hardware solutions, is a neural 3D WFA (Steffen et al.
2020b) as presented in subsection 5.2.1.

143

5. Neuromorphic Technologies for Neural Algorithms

The performance analysis, meaning the evaluation of the method on different
software and hardware solutions, requires the test scenario from subsection 5.2.1
to be implemented in different software tools, suitable for the respective hard-
ware solution. Related technical details are described in subsection 5.2.2. As the
technical realization of the simulators differs quite strongly [59; 60] a transfer of
the model is not trivial. It is desirable to influence the performance of the al-
gorithm in the respective implementation as little as possible, to not affect the re-
sults. Consequently, a high-level modeling language is chosen, as it can be imple-
mented on different hardware platforms with only minor adjustments. Here, the
algorithm is implemented in the simulator agnostic modeling language PyNN
and subsequently transferred to the respective implementations for each hard-
ware solution. Minor adjustments remain necessary, since different neural sim-
ulators and neuromorphic hardware support different subsets of PyNN. Finally,
in subsection 5.2.3, purposeful metrics for a benchmark of parallel hardware in a
robotic context are defined.

5.2.1. A Neural 3D Wavefront Algorithm

The approach for a neural WFA in 3D, published in (Steffen et al. 2020b) is based
on the work of [39]. As [39] is targeted at 2D environments, hence, for path plan-
ning of mobile robots, the method needs to be extended to operate in a 3D task
space T . However, the dimensionality of the search space is not the only distinc-
tion between (Steffen et al. 2020b) and [39], which are shown in Figure 5.4 for a 2D
map. Both methods retrieve a vector field from the synaptic weights, which have

(a) (b)

Figure 5.4.: Execution on 2D maps of the neural WFA from [39] in (a) and (Steffen
et al. 2020b) in (b). Image source for (a): [39]

been learned through STDP, however, in (Steffen et al. 2020b) standard STDP and
in [39] Anti-Spike-Timing-Dependent-Plasticity (Anti-STDP) is applied. For the
3D execution in a robot’s task space the exploration step is skipped, as it is sup-
posed to be provided by an external vision component. Consequently, it was also
omitted in the evaluation in section 5.3. Instead, pre-existing maps have been
used in simulation. Furthermore, due to the topology induced by creating an ex-
act representation of the environment, the network’s connections in (Steffen et al.
2020b) are more local than in [39]. This means that neurons have predominantly

144

5.2. Performance Analysis of a Robotic Use Case on Parallel Hardware

strong connections to neurons in their immediate vicinity. Also, in (Steffen et al.
2020b) LIF neurons with a fixed threshold and α-function-shaped post-synaptic
current are applied while [39] uses adaptive-integrate-and-fire neurons. The most
striking derivation, except the dimensionality, is the method used to determine
the resulting path. In [39] the place cell representing the start is stimulated and
excites its neighbors. As Anti-STDP strengthened the synapses in the direction
of the goal, place cells of the optimal path are spiking significantly stronger than
other neurons. In contrast, for path finding in (Steffen et al. 2020b) the agent fol-
lows the forces corresponding to the synaptic weights around the place cell which
represents the agent’s current position. Hence, the network’s synaptic weights
are interpreted as forces of a potential field. Hereby, the weight between two un-
occupied neurons is stronger than between an occupied and an unoccupied one.
As a result, the agent is pushed away from obstacles. The course of the WFA for

Figure 5.5.: The SVF of a map with three static obstacles and its flow, thus, the ori-
entation and strength of its synapses, is shown on the left side in 3D
and on the right side as a bird’s-eye view. The view from above bet-
ter illustrates the movements around the obstacles. In both graphics,
the start neuron is marked cyan and the goal green. To prevent over-
loading the picture and allow an interpretation, a random subset of
5 % of the vectors is included and all vectors are doubled in size. The
graphic shows that the vectors are oriented toward the start. Image
source: (Steffen et al. 2020b)

3D presented in (Steffen et al. 2020b) can be divided into three phases, generation
of a map by place cells, development of a Synaptic Vector Field (SVF) and finally
the pathfinding. The SNN is a neural representation of the voxelized environ-
ment, and thereby a natural discretization of the task space. In that, each voxel
is embodied by one neuron, namely, its place cell. The bidirectional synapses

145

5. Neuromorphic Technologies for Neural Algorithms

connect the neurons via the Manhattan method, thus, only lateral connections
are supported and synapses are not symmetrical. In this manner, each neuron is
associated with the six adjacent ones. The task space is divided into free and oc-
cupied areas through the kind of applied synapses. Neurons that represent free
space are connected by excitatory and neurons represent obstacles by inhibitory
synapses.
To create a SVF, the WFA is used. It is initiated at the target position, by rais-
ing the membrane potential of the respective place cell, by applying an electrical
current. The resulting spike stimulates the adjacent nodes, thereby initiating a
neural wave that surpasses the network. As STDP is used the synaptic weights
of the network are changed through the activation in the direction of the wave.
Now, for each place cell ni the subset Nij is defined which contains all neurons nj
on which ni projects directly. Furthermore, the vectors ri(t) is defined as

ri(t) =

∑
j

wij(t)(xi − xj)∑
j

wij(t)
. (5.1)

Thereby, xi is the vector’s tip and xj its origin and ni’s preferred position is given
by xi while xj defines the center of gravity regarding the preferred space of its
neighbors nj . Equation 5.1 is adapted from [39], but the neuron representing the
start is switched with one of the target locations, as Anti-STDP is applied in [39].
However, for visualization purposes in Figure 5.4 and Figure 5.5 the direction of
the vectors’ is adapted to the presentation in [39]. The visualization in Figure 5.5
shows the local direction of the wave as vectors are aligned – due to noise only
almost – perpendicular to it. The vectors are additionally color-coded to allow
one to easily see their strength.
Subsequently, to establish a path, the network’s synapse weights are interpreted
as forces locally. An agent follows the potential field from the start to the target
location, thereby, the local synaptic weight vectors are averaged continuously
to determine the direction of motion. In each step, the locally generated vector,
which acts like a force on the agent, is added to the previous motion vector, which
is then normalized before the agent moves further in the new direction. Since
synapses between occupied neurons are inhibitory, the generated path naturally
leads around obstacles. As the direction of movement is created locally by an
average, local minima are more likely to be bypassed.

5.2.2. Technical and Implementational Details

Regarding SNN simulation, hardware and software design are closely intercon-
nected. Thus, to select suitable candidates for the performance analysis, hard-
ware and software solutions are considered together. Three candidates, repre-
senting strongly deviating techniques for SNN simulation, are chosen.

146

5.2. Performance Analysis of a Robotic Use Case on Parallel Hardware

Simulators, Tools and Hardware

NEST is selected as the representative of an actual simulator running on con-
ventional von Neumann hardware. The candidate for neuromorphic hardware
is SpiNNaker. More specifically, the SpiNN-5 board, which can simulate signif-
icantly larger networks than the SpiNN-3 board, is applied in this benchmark.
For using PyNN on SpiNNaker, sPyNNaker its PyNN interface is required [433].

Figure 5.6.: Overview regarding the systems tested by the benchmark. The test
scenario, the WFA, is modeled in PyNN. The bottom row shows
Which PyNN interface is used for each backend to translate the model
to the respective simulators and hardware solutions.

Lastly, to allow a comparison of neuromorphic chips to easily available hardware,
GeNN is included, allowing to run SNN on GPU. For the GeNN implementation
the PyNN interface for GeNN3 is used. Nvidia’s Jetson series includes several
embedded GPU systems, all designed for AI applications4. Their small form fac-
tor enables easy integration in mobile units and the Jetson boards are therefore
well suited for robotics [434]. In this benchmark, the Jetson Tx2, the Jetson AGX
Xavier and the Jetson Xavier Nx are used as the hardware backend for GeNN on
GPU. As an CPU-only mode is supported in GeNN, this particular implementa-
tion can be tested on a variety of hardware solutions, such as desktop PCs and
embedded systems. GeNN on CPU is additionally included to enable a fair com-
parison to the performance of the NEST simulator, which are both run on a single
processor core of an AMD Ryzen3700x. This PC has 32 GB of RAM and contains
an Nvidia RTX2070 GPU. How the different hardware solutions and simulators
of this benchmark are related to PyNN by custom interfaces is visualized in Fig-
ure 5.6. The WFA, described in subsection 5.2.1 is used as a test scenario which is
modeled using the respective PyNN interfaces for each tested system.

3https://github.com/genn-team/pynn_genn
4For a comparison of the Jetson boards see: https://www.fastcompression.com/blog/
jetson-benchmark-comparison.htm

147

https://github.com/genn-team/pynn_genn
https://www.fastcompression.com/blog/jetson-benchmark-comparison.htm
https://www.fastcompression.com/blog/jetson-benchmark-comparison.htm

5. Neuromorphic Technologies for Neural Algorithms

Differences Regarding the Hardware-related Implementations

The implementation via PyNN enables the use of the same model for all simula-
tors. However, this means that it may not be possible to exploit all the strengths
and unique features of the simulators, as also mentioned in [59]. It would prob-
ably be possible to develop an implementation in each of the systems that make
optimal use of the specific strengths and thus produces better results than gen-
eral modeling using PyNN. In the end, modeling in PyNN as well as in the native
language of the backend has advantages and disadvantages. However, a central
goal of this benchmark is a comparison of different technologies for simulating
SNN, that is as fair as possible. Based on this, it was decided to use a uniform
model through PyNN. Although, due to PyNN, basically the same model is used,
the simulations are slightly adapted to the respective systems. This is necessary
as the back ends implement slightly different subsets of functions and models
supported by PyNN and the code could not be run on all systems without minor
modifications. Furthermore, the use of an identical model on all systems leads to
the problem that some technical specifications do not fit at all. To ensure a high
degree of comparability, these considerations lead to two opposing design goals
of the benchmark; using a similar model if possible, and exploiting the individual
features of each system. Hence, an important design decision is to what extent
the models may differ from each other.
Most simulators and hardware solutions for simulating SNN update the neu-
rons’ states at a fixed time step [427]. A big difference in the implementation of
the simulators is thus the step size. Both GeNN and NEST run the simulations
with the step size 0.1 ms, as it is common in a neuro-scientific context [57], but
for SpiNNaker 1 ms is used. Adjusting the step size, no matter in which direc-
tion, would strongly distort the results. The use case used, described in subsec-
tion 5.2.1, is to solve path planning in a reactive and fast way, so slowing down
NEST and GeNN would have an extreme impact. Consequently, all simulations
in this benchmark are carried out at the default time step of the respective sys-
tem. The different step sizes also require an adjustment of total simulation times,
so that the simulations, the wave traversing the network as outlined in subsec-
tion 5.2.1, can run on the different platforms all the way through. The implemen-
tation of SpiNNaker requires a longer simulation time as NEST and GeNN, thus,
different simulation times were chosen for the systems. The model implementa-

NEST SpiNNaker GeNN

step size 0.1 ms 1 ms 0.1 ms
neuron model IF_cond_exp IF_cond_exp IF_cond_exp
weights unscaled scaled unscaled
spike source DC source SpikeSourceArray DC source

Table 5.3.: Differences of the model implemented for NEST, SpiNNaker and
GeNN. Table adapted from: (Steffen et al. 2021b; Koch 2020)

148

5.2. Performance Analysis of a Robotic Use Case on Parallel Hardware

tion is based on the work of (Steffen et al. 2020b), which was originally written
for NEST. In Table 5.3, all system-specific adaptations are listed. The NEST model
used for the benchmark differs slightly from the original implementation regard-
ing the neuron model. In (Steffen et al. 2020b) the neural WFA is realized with
IF_cond_alpha a LIF model which embodies an α-function to characterize the
postsynaptic potential of the neuron. As this model is, at least at the time of per-
forming the benchmark, not supported in sPyNNaker, it was replaced by another
LIF neuron, IF_cond_exp, where the postsynaptic potential is described as ex-
ponentially decreasing.
Since SpiNNaker represents synaptic weights by 16-bit integers the weights have
to be converted by a bit shift [57]. The method used for the bit shift does not
allow the maximum weight used in the original implementation. Therefore, the
original w_max = 4000.0 µS is replaced by the highest possible value in SpiN-
Naker, w_max = 63.0 µS. But this change creates consequential issues, as STDP
with additive weight dependence is used for the learning phase of the WFA and
w_max = 63.0 µS is too low to induce the necessary adaptation of synaptic weight
required to generate a purposeful SVF. As a workaround, the previously down-
scaled weight is scaled up by a factor of fscale = 4000.0/63.0 post-simulation. This
type of re-scaling introduces a small error into the system, as a term introduced
by the STDP rule cannot be correctly displayed. It is also possible to sample the
weights before and after the simulation and thus calculate ∆w and scale it inde-
pendently. It would allow a correct weight scaling but add significant overhead
in the last phase of the algorithm, the pathfinding. However, as the results are
only minimally distorted by the re-scaling it has been used here.
Lastly, the NEST implementation in (Steffen et al. 2020b) applies a DC to the target
neuron to initiate the neural wave. Thereby the membrane potential is increased
and the respective neuron emits an action potential, a spike. As sPyNNaker
does not support DC sources the generation of the initial spike is implemented
by SpikeSourceArray, a neural population that is connected to the respective
nodes through projections. With this realization, the membrane potential is not
increased, but a spike is triggered directly. This has the benefit that the algorithm
can be started directly at the beginning of the simulation time. To get a similar
behavior when using the DC source, it is set to 1000 mV.

5.2.3. Metrics

As it is not purposeful to compare parallel architectures, like GPU and neuro-
morphic hardware, with metrics used for benchmarking von Neumann architec-
tures [409], metrics better suited for this use case are introduced. The metrics
were chosen to emphasize the benefits and drawbacks of the platforms and give
an indication of their usability for a robotics use case:

• The simulation time gives information about the performance of the system
under a realistic workload. In particular, in path planning, where calcula-
tion speed is crucial, this indicator is of great significance. However, not

149

5. Neuromorphic Technologies for Neural Algorithms

only the time required for execution is measured, but also for loading and
compiling.

• The average energy needed for a run is used to determine the energy con-
sumption, which is becoming an important factor in robotics, especially for
mobile robots. The data generation regarding the energy consumption is
done externally and is performed by a consumer-grade power meter, more
precisely an energy meter of type Voltcraft 4000. The logger has a resolu-
tion of > 0.1 W and an accuracy of +/- 1 % and enables the local storage of
timestamped data.

• The path length is an interesting indicator as it gives information about the
different STDP implementations. It is investigated whether the simulators
when given the same initial weights have different weights after learning.
Since all neurons that are part of the path are stored in a list, the list’s length
can be used to determine the path’s length. Furthermore, it is investigated
whether the path length varies for the same map on a simulator and the
errors that are caused by the bit shifting and the scale-up on SpiNNaker are
observed here.

• The allocation of hardware resources, in particular memory usage and CPU
as well as GPU allocation of the Desktop PC and the Jetson boards. Logging
software5 is used for this purpose and it applies, in addition to the memory
usage in the case of the Jetson boards and the PC also to CPU and GPU.

5.3. Experiments and Results

The evaluation of the WFA on NEST, SpiNNaker and GeNN is strongly based
on the metrics introduced in subsection 5.2.3. To examine the different hardware
solutions in terms of their ability to scale up, the maps of the original imple-
mentation of (Steffen et al. 2020b), of size 20 × 20 × 20, are enlarged. Because
the network is a representation of the environment, as the maps are enlarged the
number of neurons increases cubically and the number of synapses exponentially.
The maximum map size of the systems is limited by the available memory of the
used hardware. For the SpiNN-5 board, the SDRAM constrains the number of
simulated neurons. A maximum map size of 40× 40× 40 can be reached, which
corresponds to a network with 64 000 neurons and 374 400 synapses. In the case
of the SpiNNaker, the extremely increasing simulation time is another limiting
factor. Regarding GeNN, its simulation on GPU, only supports a map size up to
30 × 30 × 30, using 27 000 neurons and 156 600 synapses. This holds as well for

5For the Desktop PC CPU and memory data is logged with glances (https://nicolargo.
github.io/glances/) and GPU data with nvidia-smi(https://developer.nvidia.
com/nvidia-system-management-interface). For the memory usage of the jet-
son boards a logging script based on jetson-stats(https://github.com/topics/
jetson-stats) is used.

150

https://nicolargo.github.io/glances/
https://nicolargo.github.io/glances/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/topics/jetson-stats
https://github.com/topics/jetson-stats

5.3. Experiments and Results

Jetson TX2 and Jetson Xavier Nx, which both have roughly 8 GB shared memory
between GPU and CPU. In contrast, Jetson AGX Xavier has a shared memory of
16 GB, thus, maps can be scaled up to 33× 33× 33, with 35 937 neurons and 209
088 synapses. The CPU-only version of GeNN, as well as NEST, supports theo-
retically map sizes up to 55 × 55 × 55, by using the PC’s 32 GB RAM. For NEST,
however, this implies unrealistically long simulation times for maps larger than
35× 35× 35.
Due to the low frequency of the power meter, described in subsection 5.2.3, the
power draw is under-sampled and consequently the measurements regarding
energy consumption are imprecise. This was counteracted by redundant mea-
surements with subsequent averaging of the readings, which, however, cannot
fully compensate for the poor temporal resolution. Hence, these results must be
interpreted with caution, and conclusions about the systems are thereby compro-
mised.
All experiments performed in this section, are simulated on the map IV from (Stef-
fen et al. 2020b), as this is the most complex one.

5.3.1. Simulation Time

For the evaluation regarding simulation time, the median, as it is quite robust
in case of outliers, and the standard deviation is used. This is done by wrap-
pers for the functions create neurons, create synapses, simulation,
build SVF, compilation, load simulation and finding path. Thereby,
the timestamp is saved at the start and end of each function and the delta is its
execution time. To determine the total time, the individual times of the func-
tions are summed up for every run. There are significant deviations regarding

GeNN SpiNNaker NEST

Tx2 Xavier Nx AGX Xavier RTX 2070 CPU SpiNN-5 Board CPU
353.64 227.51 143.63 36.76 29.77 162.46 35.20

Table 5.4.: Simulation times in seconds for all hardware and software solutions
for map size 30 × 30 × 30. Table adapted from: (Steffen et al. 2021b;
Koch 2020)

the initialization of neurons and synapses, within the simulation software of the
three systems. While they are initialized at the definition for all three systems.
In sPyNNaker and PyNN interface for GeNN (PyNN GeNN) synapses are in-
stantiated again in the run() function, due to execution in C++ or CUDA and
placement onto the vertices of the MachineGraph respectively. Furthermore, for
sPyNNaker, the function run() includes loading and running of the simulation
while in PyNN GeNN, compilation and running of the simulation. Hence, the
time interval for the individual functions cannot be determined solely by the
wrapper. However, if a simulation is run for 0 seconds, loading is triggered in

151

5. Neuromorphic Technologies for Neural Algorithms

sPyNNaker and compilation in PyNN GeNN. In the case of sPyNNaker, loading
is restarted when the simulation of the WFA is carried out. Thus, to avoid count-
ing the loading time twice, timestamps of the sPyNNaker logs are used.

By comparing the simulation time on the largest map supported by all sys-

(a) SpiNNaker (b) GeNN on CPU (c) NEST

Figure 5.7.: Simulation time broken down for individual functions on (a) SpiN-
Naker, (b) GeNN on CPU and (c) NEST. The individual functions are
colored. In blue create synapses, in green load simulation,
in orange simulation and in gray build SVF. The functions,
create neurons, compilation and finding path, have such
a small share that they are not visible in the diagram. Image
source: (Steffen et al. 2021b)

tems (30 × 30 × 30), as shown in Table 5.4, major differences can be determined
directly. Contrary to all expectations, the implementations for the desktop PC
were the most successful, concerning simulation time. The fastest execution time
is achieved by GeNN on CPU, followed by NEST and GeNN for GPU on the
Desktop PC. However, it is a relatively large difference of more than 5 s between
GeNN on CPU and NEST, which in turn is very close to GeNN for GPU. Overall,
GeNN on a Tx2 came off as the slowest with SpiNNaker in the second last place.
However, the entire Jetson boards series performed surprisingly poorly, which
can be seen in more detail for different map sizes in Table C.1 in Appendix C. In
Figure 5.7 and 5.8 the share of individual functions in the total simulation time is

(a) Jetson Xavier AGX (b) Jetson Tx2 (c) Jetson Xavier Nx

Figure 5.8.: Simulation time broken down for individual functions on (a) Jetson
AGX Xavier, (b) Jetson Tx2 and (c) Jetson Xavier Nx. Colors refer to
the same functions as in Figure 5.7. Image source: (Steffen et al. 2021b)

152

5.3. Experiments and Results

visualized. While Figure 5.7 deals with a cross-simulator comparison, Figure 5.8
compares GeNN on different Jetson solutions. In Figure 5.7 SpiNNaker, NEST
and GeNN on CPU are included. GeNN is shown on CPU, as this allows a larger
map size which increases the visibility of trends. The most striking observation is
that in NEST the synapse creation (Create synapses) accounts for the largest
share by far. This is also true for GeNN on CPU in the case of large maps, but
for smaller maps the time portion of Compilation is predominant. Regarding
SpiNNaker, the creation of synapses is only a small portion of the total time, as
Simulation, Load Simulation and Build SVF make up most of the time.
For SpiNNaker this delay can be explained by communication overhead with
the host, as several graphs need to be built and validated, and also it needs to
be checked that all cores are ready. This communication between the Host and
the SpiNNaker board, as visualized in Figure 5.1, is quite elaborate. The board
needs to map the chips, the host creates an application- and machine graph, and
subsequently the machine graph is loaded onto the board [410]. The biggest sur-
prise of the benchmark was probably that GeNN performed relatively poorly on
the Jetson boards. This discrepancy becomes very clear when observing that the
simulation time of the map size 30 × 30 × 30 on the RTX2070 is still significantly
shorter than on each of the Jetson boards. It is, however, quite obvious, when

(a) SpiNNaker (b) GeNN on CPU (c) NEST

Figure 5.9.: Scaling Properties for SpiNNaker, GeNN & NEST. The median of the
simulation time broken down for different functions is plotted in s for
map sizes from 20× 20× 20 to 55× 55× 55 except for SpiNNaker, as
the map size is limited to 40 × 40 × 40. Image source: (Steffen et al.
2021b)

looking at the distribution of the simulation time on the individual functions and
considering which of them are processed on CPU and GPU. From the functions
shown in the diagrams in Figure 5.8, only Simulation, shown in orange, is pro-
cessed on the GPU. Both Create synapses (blue), Load Simulation (green)
and Build SVF (gray), are processed on CPU. Unsurprisingly, however, from
the Jetson boards the AGX Xavier has the best total simulation times, followed
by the Xavier NX. The only one of the Jetson boards that beats the simulation
time of the SpiNNaker is AGX Xavier. The diagrams in Figure 5.9 visualize the
scalability of SpiNNaker in (a), GeNN in (b) & NEST in (c). The simulation time
of NEST increases exponentially with the map size, thus the number of neurons

153

5. Neuromorphic Technologies for Neural Algorithms

and synapses within the network. This is also true for the CPU-only implementa-
tion of GeNN and AGX Xavier and Tx2. However, for the GeNN implementation
on the Xavier NX and the RTX2070, simulation time increases linearly. Regarding
SpiNNaker, scalability is less clear. There are indeed linearly increasing segments
here, but there are also large jumps such as between from map size 28×28×28 to
30×30×30. It is thereby important to note that, as well for NEST and GeNN, net-
work construction (create neurons & create synapses) takes up a large
part of the total time, as seen in Figure 5.7. For SpiNNaker, however, this is not
a big factor and is overshadowed by loading (load simulation) and learning
(Build SVF).

5.3.2. Energy Consumption

Due to the low frequent logging of the power meter, very few data points are
available, thus an estimate of the total energy consumption is obtained by lin-
ear interpolation. To compensate for inaccuracies, several runs are measured and
an average is taken. Results of all map sizes can be found again in Table C.1 in
Appendix C. Additionally Table 5.5 shows an extract of the results for the map
size 30 × 30 × 30. The energy consumption of a system depends on two factors,

GeNN SpiNNaker NEST

Tx2 Xavier Nx AGX Xavier RTX 2070 CPU SpiNN-5 Board CPU
16762.27 24054.32 7169.49 3817.19 3125.71 13593.85 3089.95

Table 5.5.: Average energy consumption in J per run for all hardware and soft-
ware solutions for map size 30× 30× 30. Table adapted from: (Steffen
et al. 2021b; Koch 2020)

total simulation time and energy efficiency. As can be seen in Figure 5.9, the to-
tal time per run increase with an upscaled map size for GeNN, SpiNNaker and
NEST. Consequently, energy consumption is indirectly influenced in compara-
ble dimensions. At first glance, the execution on the desktop seems to achieve
good results, but this is deceptive when the simulation times are taken into ac-
count. About energy efficiency, the Jetson boards are the most efficient realization
and NEST by far the worst. However, this is not reflected in the total energy con-
sumption, thus, when evaluating Table 5.5 the high simulation times of the Jetson
boards must be taken into account. A similar effect occurs when comparing the
results for RTX 2070 and GeNN’s CPU-only version, although the former is more
energy efficient its energy consumption is higher. The results of the SpiNNaker
are also strongly affected by large simulation times.

154

5.3. Experiments and Results

5.3.3. Path Length

The length of a resulting path depends on the network’s synaptic weights after
STDP takes place, as the WFA finds a path by traversing the SVF, which is an
interpretation of the network’s weights. To assure comparability, the same initial
values should be used for the weights within each implementation. However,
this was only feasible for NEST and GeNN, as the bit shifting leads to round-
ing errors in the SpiNNaker platform, which is further amplified by the subse-
quent upscale. As a consequence, a fair comparison is only possible for NEST

GeNN SpiNNaker NEST

Tx2 Xavier Nx AGX Xavier RTX 2070 CPU SpiNN-5 Board CPU
49 48 49 46 49 50 48

Table 5.6.: Path length for all hardware and software solutions for map size 30 ×
30× 30. Table adapted from: (Steffen et al. 2021b; Koch 2020)

and GeNN.
During the simulation a list is generated containing all nodes of the path, con-
sequently, its length is the length of the path. The values stated in Table 5.6, are
medians of the path lengths taken over all runs on a particular map and system.
By also considering the standard deviation, it is investigated if the path length dif-
fers between individual runs for identical conditions. As expected the path length
generated by the SpiNNaker board varies from the other implementations. Also,
it can be seen that for NEST and GeNN the final weights after learning are quite
similar, as for the Xavier Nx the resulted path length is identical to the NEST
implementation. Nevertheless, a major inconsistency is noticeable between the
Jetson boards, this is even more visible in Table C.1 in Appendix C. Another ir-
regularity is shown in Figure 5.10. As discussed in (Steffen et al. 2020b) the WFA
does not guarantee an optimal path and therefore surprising results can arise.
The path generated on a map of size 20 × 20 × 20 as shown in Figure 5.10(a) has
more detours than for the map with size 25× 25× 25, thus the path is shorter on
the larger but otherwise identical map.
Furthermore, on the same maps diverging path lengths are sometimes generated
not only across boards but also for different runs on the same board. Since this
behavior was very unexpected, it was ensured that weights were not compro-
mised during compilation or initialization on the GPU, by checking them during
run time. Consequently, the diverging path lengths are caused during the sim-
ulation of the WFA. A possible explanation for this odd behavior is that float-
ing point numbers are non-associative. Hence, during parallelized additions on
GPU, rounding occurs slightly differently depending on the termination order of
the threads included.

155

5. Neuromorphic Technologies for Neural Algorithms

(a) (b)

Figure 5.10.: Visualization of the path generated with GeNN on CPU, in (a) for
map size 20×20×20 and in (b) for 25×25×25. The path is colored in
orange, the start neuron in green and the target in cyan. It is visible
that the path on the larger map is shorter than on the smaller one.
Image source: (Steffen et al. 2021b)

5.3.4. Hardware Resources

As the resource consumption, both in terms of memory and CPU usage, for the
respective solutions is very constant on different maps and map sizes, one was
used as an example for the investigation, provided regarding the memory usage
in Figure 5.11 and CPU usage in Figure 5.12. The graph in Figure 5.11(a) shows

(a) AGX Xavier (b) SpiNNaker

Figure 5.11.: Memory requirements for (a) AGX Xavier as an example of GeNN
and (b) SpiNNaker as neuromorphic hardware. Tests are performed
on the map IV from (Steffen et al. 2020b) with the map size 33× 33×
33. Image source: (Steffen et al. 2021b)

the memory usage in percent for the AGX Xavier as an example for all GeNN im-
plementations, as they have shown very similar trends. During loading and com-

156

5.4. Discussion

piling, the plot shows a very slow and steady upward trend regarding memory
usage. This is followed by a dramatic jump at the start of the simulation, which is
succeeded by another slow and steady increase during the simulation, but with
a larger slope than before. The development of memory usage on the SpiN-
Naker is in stark contrast to that of the GeNN implementations. A major leap
in memory usage occurs very early on, during the generation of the synapses. A
smaller jump is also present when loading the simulation. In general, the graph
shows more ups and downs. In Figure 5.12 the development of the CPU usage

(a) GeNN on GPU (b) SpiNNaker (c) GeNN on CPU

Figure 5.12.: CPU utilization for GeNN on (a) GPU, (c) CPU and (b) SpiNNaker.
Tests are performed on the map IV from (Steffen et al. 2020b) with
the map size 30× 30× 30. Image source: (Steffen et al. 2021b)

is plotted in percent for (c) GeNN on CPU, (a) GeNN on the RTX2070 and for
(b) SpiNNaker. The plot in Figure 5.12(a) shows that the memory requirement
on the RTX2070 is constantly low during most of the run time, this is only inter-
rupted by a single pronounced spike between the loading and compiling of the
simulation. For the CPU-only implementation of GeNN, in (c), the CPU usage
is consistently higher than for the GPU implementation in Figure 5.12(a). This
was expected as the simulation runs on a single-threaded CPU backend. More-
over, the plot in Figure 5.12(a) shows a strong increase at the beginning of the run
time and a relatively large spike shortly before the end. The large spike occurs
during the simulation of the WFA itself. Furthermore, the CPU consumption in
Figure 5.12(a) and (c), is similar for most of the time in both systems. However, it
is very noticeable and surprising, that the spike has a much higher increase on the
CUDA backend in (a), to almost 23 % compared to less than 10 % on the single-
threaded CPU in (c). The plot regarding the SpiNNaker version in Figure 5.12(b),
shows a significant increase in memory consumption while the creation of the
synapses as well as the generation of the SVF by the function Build SVF.

5.4. Discussion

In subsection 5.2.3, metrics are defined as suitable for a purposeful benchmark
of parallel hardware. It introduces four indicators as the basis of evaluation in

157

5. Neuromorphic Technologies for Neural Algorithms

section 5.3. Thus, simulation time is investigated in subsection 5.3.1, energy con-
sumption in subsection 5.3.2, path length in subsection 5.3.3 and lastly hardware
resources in subsection 5.3.4. The path length is of relevance as it provides infor-
mation about how learning through STDP is realized in the different realizations.
As path length only varies slightly between the NEST, GeNN and SpiNNaker
implementation, it is assumed that there are no major differences regarding the
underlying processes of STDP. In general, this mechanism also seems to produce
consistent results, as the implementations of NEST, SpiNNaker and also GeNN,
in regards to the CPU-only implementation or on RTX2070, produce identical
path length when run multiple times. This observation is consistent with the re-
sults of [57; 58] that NEST, SpiNNaker and GeNN produce very similar results.
However, in [57; 58] only static synaptic weights are used, hence, this thesis is
generalized to learning with STDP in the presented benchmark. Similar observa-
tions are also made in [59] for GeNN and SpiNNaker, however only for CNNs
which were transformed to SNN after learning took place.
GeNN executed on all Jetson boards generates different path lengths for multiple
runs under identical circumstances. This result is justified by the non-associative
floating point numbers used for GPU, which may cause varying results when ad-
ditions are parallelized, as introduced in subsection 5.1.1. As stated in [414], this
makes it very difficult to compare calculations from CPU and GPU. Similar ob-
servations, that results may differ between simulation runs in GeNN, have been
reported in [12]. It is also noteworthy that this benchmark only simulates a single
spike-wave. Hence, the model is more susceptible and even small deviations can
have a big impact.
Furthermore, it is very interesting that the good performance regarding simula-
tion time for GeNN on CPU, as stated in [59], are reproduced in this benchmark.
Also, in [57; 58; 59] it was stated that neuromorphic hardware has a hard time ef-
ficiently initializing and loading networks. This observation was confirmed here
for SpiNNaker and is explained by the communication overhead.

5.4.1. Context Analysis

As well the SpiNNaker as the GeNN implementation, when executed on the Jet-
son boards, induce a communication overhead, as stated for SpiNNaker in sub-
section 5.1.1. In contrast NEST and GeNN, run on the PC, are compiled locally,
thereby eliminating the need for communication between host and device. While
this fact is obvious, its implications are significant. This section discusses the af-
tereffects of the communication overhead as well as other factors that affect the
validity of the results presented in section 5.3.

Assignment of Tasks to CPU and GPU

The relatively poor results achieved by GeNN on GPU, especially when exe-
cuted on the Jetson boards, are mainly because many of the functions used to

158

5.4. Discussion

simulate the WFA are performed by the CPU. This concerns, compiling, loading
and synapse creation. Only the actual simulation is run on CPU. As the Jetson
boards are designed for GPU heavy applications, they only include a compar-
atively lightweight ARM-based CPU cluster. The maximum frequency that the
CPUs of the Jetson boards can achieve, varies between 1.9 GHz for the Xavier
Nx and 2.26 GHz for the AGX Xavier. In contrast, consumer CPU have a higher
maximum frequency than embedded systems. Consequently, the results reflect a
large discrepancy between the simulation times for GeNN on desktop PC and the
Jetson boards. Furthermore, the comparatively good results of the CPU-only im-
plementation are reasoned by the fact that neither additional transfer is necessary
between host RAM and GPU, nor the generation of CUDA code.

Complex Synapse Creation Prevents Scaling Up

The NEST implementation is completely unaffected by communication overheads,
as no data is compiled or loaded on an external device. However, the time re-
quired to generate the synapses and neurons is significant and exceeds the CPU-
only version of GeNN. Consequently, NEST scales particularly poorly, as larger
maps require more neurons and synapses to be created. Synapse creation is per-
formed on CPU for all software solutions. In GeNN, PyNN projections need to
be instantiated for this, once for the initial creation and also during simulation.
Hence, when comparing the generation of synapses between NEST and GeNN,
the compilation time of GeNN must also be considered. However, despite tak-
ing the compilation time into account, synapses and neurons are generated faster
than in NEST. This is crucial for large networks, where NEST needs up to 20 sec-
onds longer to generate synapses, compared to GeNN’s CPU-only version. This
advantage of GeNN has a big impact, as although NEST has shorter simulation
times than GeNN for all map sizes, the total time of GeNN is better, especially
for large networks. Furthermore, for GeNN scaling up the network size increases
significantly the run time for synapse creation and not for compilation and simu-
lation. This implies that large networks are handled better on the native frontend
than with PyNN GeNN and is not surprising as the compiler language C++ is
generally faster than the interpreter language Python [435].

Weight Transfer Between Host and Device

On closer inspection, it becomes apparent that synapse generation on the SpiNN-
5 board takes a similar amount of time as for GeNN on CPU. This is only over-
shadowed by the extremely long times for loading, simulating and generating
the SVF. However, delay times regarding loading and simulation are due to the
communication overhead [410], outlined in subsection 5.1.1. Moreover, building
up the SVF takes place on the CPU and requires extracting the synaptic weights
from the simulation. For SpiNNaker, this means that the weights are transferred
from the local memory of the SpiNNaker board to the host’s RAM via a 100 Mbit

159

5. Neuromorphic Technologies for Neural Algorithms

Ethernet cable. In contrast, for NEST and GeNN on CPU, weights can be loaded
directly from the system RAM. Thus, generating the SVF requires significantly
more time for the SpiNNaker implementation than NEST and GeNN on CPU, as
the weight transfer on SpiNNaker is about 10 times slower than on the internal
data buses. In case of local execution of GeNN on GPU, the times for building the
SVF increase slightly, since weights are loaded from the memory of the GPU.

5.4.2. Limitations and Implications

The biggest limitation of the presented results is regarding the measurement of
energy consumption in subsection 5.3.2. As shown in subsection 5.1.3, some
works in literature, such as [57; 58] use more sophisticated types of energy mea-
surement. For example, system-integrated power draws or data evaluation using
image recognition software. Since these possibilities are not so easily accessible
here, the results regarding energy consumption are less meaningful. However,
energy consumption was measured in a similar way in [59], as done within this
chapter.
The benchmark emphasized that memory is a big factor, by limiting the number
of neurons an SNN can include. Adding to this problem, memory on GPU is usu-
ally less than the RAM on a PC. For the Jetson boards memory is shared between
CPU and GPU. Consequently, the boards enable only a relatively small maximum
map size. As indicated in the sections before, the comparison of embedded sys-
tems and high-performance GPU on a PC is somewhat problematic. It was clear
from the beginning that the GeNN implementation on the RTX2070 is faster and
consumes more energy than on the Jetson boards. However, the investigation is
purposeful as the exact difference between the two is not clear, and provides in-
formation about the state of development of embedded systems. In general, the
analysis of GeNN is also somewhat impaired. As outlined in subsection 5.4.1,
choosing PyNN GeNNfor implementation instead of GeNN’s native frontend in-
troduces an overhead, as synapses and neurons have to be instantiated costly in
PyNN, before simulation.

160

6. Conclusion

In this thesis, a neural system was aimed to combine perception, motion control,
obstacle detection and path adaptation. For this purpose, new brain-inspired
technologies are used, which exploit the advantages that nature has over tech-
nology. The research questions 1, 2 and 3 were derived from this abstract goal,
the exploration of which represents the core of this work. Therefore, the focus
was not on creating a holistic system that solves the objective perfectly, but on
developing meaningful answers to the proposed research questions. The thesis is
highly motivated by neural processes and mechanisms such as the human visual
system and general research in neuroscience. Thus, it seems appropriate to note
that strict compliance with biological principles was deliberately neglected. In-
stead, the motivation was to make findings from these theoretical research fields
accessible for robotic applications, especially in an industrial context.

6.1. Summary

As this thesis is interdisciplinary, but intended for readers with a strong back-
ground in computer science the foundation in chapter 2 focuses on concepts
within the field of biology and computational neuroscience. Thereby, Spiking
Neural Network (SNN), Self-organizing Neural Network (SONN) and event cam-
eras are motivated by their biological model in section 2.1, followed by their in-
troduction in section 2.2. In section 2.1 biological navigation is also depicted,
however, as there is not a well-established realization therefore yet it was ne-
glected in section 2.2.
The challenges posed by the research questions in section 1.2 have all been ad-
dressed in the following chapters. In chapter 3, research question 1 is inves-
tigated, "How can asynchronous event streams be optimally exploited for event-based
stereo vision?". After consideration of monocular and stereo techniques for depth
reconstruction, it is concluded that stereo vision is superior, also for technical ap-
plications and especially in the case of a static visual system. Furthermore, the
research on the state-of-the-art confirms that for the processing of event-based
data, no algorithms from the field of frame-based computer vision should be
transferred. However, it is also clear that there is still a lot of potential concern-
ing event-based processing. Subsequently, a method using self-organization, a
brain-inspired technique introduced in subsection 2.1.2 and 2.2.2, is explored for
event cameras. Thereby, the correspondence problem related to stereo vision is
considered as a dimension reduction. The 4D data, which consists of the 2D data

161

6. Conclusion

of two event streams, embodies depth information about the recorded objects.
This underlying 3D structure can be recovered by the use of a Self-Organizing
Map (SOM), a topology-protecting technique for dimension reduction. The basic
method is initially evaluated in simulation and was then transferred to an event
camera, the Asynchronous Time-Based Image Sensor (ATIS). The initial technique
suffered a few weaknesses. Firstly, the actual matching was very slow, as it con-
sidered all neurons when determining a Best Matching Unit (BMU) and secondly,
the outer layers of the SOM performed poorly. Lastly, a time-intensive learning
phase was necessary, whereby movements should take place evenly distributed
over the work cell, so neurons may learn their respective association. Conse-
quently, the integration of several improvements was necessary before a success-
ful application on an event-based stereo setup was obtained. This includes re-
ceptive fields and pre-learning of an enlarged work cell which was generated by
a simulated version of the workspace and sensor setup. The chapter closes with
a discussion, whereby attention is drawn to the fact that, despite the promising
results in simulation, the results on the event cameras could still be improved.
In chapter 4, research question 2 is investigated, "Is it feasible to use the high-
dimensional configuration space, which requires huge amounts of neurons, for neural
path planning?". Hereby, the state-of-the-art is divided into three parts. Conven-
tional path-planning methods are discussed as they are on the one hand part of
the proposed method and on the other hand applied for evaluation. The former
regards the Wavefront Algorithm (WFA) and Dijkstra and the latter sample-based
methods as Probabilistic Road Map (PRM) and Rapidly Exploring Random Tree
(RRT). Subsequently, brain-inspired methods for robotic control are investigated.
However, most SNN-based approaches operate in 2D. As a consequence, one ex-
ample [39] has been transferred to 3D environments. As the results were not
sufficient for an online demonstrator an alternative using self-organization was
developed. However, the 3D path planner using spiking neurons was applied as
the test candidate of the benchmark in chapter 5. The state-of-the-art is concluded
with a section on path planning in a reduced configuration space (C-space). This
forms the basis for the core part of this chapter. Path planning is thereby per-
formed in a subspace of the robots C-space. It is generated by a Growing Neural
Gas (GNG) trained on simulated robot trajectories. A preliminary in-depth anal-
ysis of several network types was carried out, to ensure a good network structure
for this approach. To allow dynamic obstacle avoidance bidirectional Lookup Ta-
ble (LUT) are used to map objects from the task space T into the output space
of the trained GNG. The thereby created cognitive map is a representation of a
subspace of the robot’s C-space. As it is significantly smaller than the complete
C-space, it allows the application of an optimal planner. For this purpose, the
WFA and Dijkstra have been tested. Because Dijkstra considered edge weights, it
was superior in the evaluation. As the approach was very performant it was suc-
cessfully applied to an online demonstrator. The most important part of its evalu-
ation is the comparison to sample-based planners. While sample-based planners
generate non-deterministic trajectories, the proposed method creates an optimal
path. It could be shown that it is faster than RRT and PRM and comparable to the
Rapidly Exploring Random Tree Connect (RRT-C).

162

6.2. Discussion and Outlook

In chapter 5, research question 3 is investigated,"How can parallel hardware help to
exploit the advantages of SNN?". Therefore, state-of-the-art parallel hardware solu-
tions and simulation tools for SNN are presented. Afterward, related benchmarks
are discussed and a lack of benchmarks considering robotic use cases especially
regarding Graphics Processing Unit (GPU)-based SNN simulation is observed.
For the benchmark, a neural implementation of a 3D WFA is used. On the one
hand, this reflects a very typical robotic use case and on the other hand the widely
used Spike-Timing-Dependent-Plasticity (STDP) is used for learning in the SNN.
Both of these factors increase the significance and generalizability of the bench-
mark. Thereby, the simulator NEural Simulation Tool (NEST), the neuromorphic
hardware spiking neural network architecture (SpiNNaker) and the GPU-based
representative GPU-enhanced Neuronal Networks (GeNN) were used to cover
a wide field of possible candidates. Four metrics were used for evaluation pur-
poses, the relevance of which is derived from related work. The evaluation of
this benchmark is based precisely on these metrics. The GPU library GeNN al-
lows a variety of GPU-based technologies to be tested, however, there have been
no major surprises in the comparison of GPU-based technologies. In contrast to
the previous chapters, there is a greater need to deal with the limitations of the
benchmark and its implications. Thus, the final section is supplemented by sub-
section 5.4.2, which handles them, in particular regarding the measurement of
energy consumption. Moreover, it is also necessary to evaluate the results and
their significance in the context of the intended applications, which is done in
subsection 5.4.1.

6.2. Discussion and Outlook

As shown in Figure 1.3, it would be very interesting to integrate the isolated parts
of this thesis. The stereo vision method described in chapter 3 could be used for
proprioception and replace the vision component of the path planner in chap-
ter 4. However, the main problem with this and the reason that has prevented this
is that the stereo vision setup has an occlusion problem when used in a shared
workspace as done for the demonstrator of the path planning method. Depend-
ing on the orientation, either the robot could hide potential obstacles or the other
way around. This issue, that concealment hinders the use of the stereo vision ap-
proach for the path planning demonstrator, could be overcome by extending the
vision setup. Therefore, two options could be explored. Firstly, a setup of three
event cameras, as the method in chapter 3 is not limited to a stereo input. Sec-
ondly, the application of sensor fusion for event-based sensors with, for example,
point clouds opens great opportunities. This type of setup allows to combine the
accuracy of point clouds with the reactivity of event cameras.
In regards to neural path planning, the method introduced in chapter 4 could
be extended to include velocities, accelerations or torques similarly to [380]. Fur-
thermore, continuous online learning regarding the SONN could further enhance

163

6. Conclusion

path quality and lead to shorter and smoother trajectories. This could be real-
ized by continuing learning during execution. Hence, while path planning is
already performed, synaptic weights are still updated and new neurons are in-
serted. However, this might cause previously learned information to get lost, as
neurons and synapses are also deleted. Consequently, after some time a gener-
ally trained SOM would adapt to a specific task and likely not be able to perform
trajectories initially. It would be interesting to investigate whether parts of the
network can be frozen, to prevent overwriting.
It is noteworthy that the work of [377; 378] has a few similarities with the concept
presented in this thesis. The authors apply a SOM to discretize an underlying 3D
submanifold of a 4D input space adaptively, as described in chapter 3. As well
in [377] as in [378] shown in Figure 4.6 a stereo setup of two cameras is used. In
contrast, the presented approach, Figure 4.20, uses four stereo cameras. Another
big difference between these methods and the approach presented here concerns
the evaluation, as [377] and [378] are only tested in simulation.
Work in the field of spiking neurons, as (Steffen et al. 2019a; Steffen et al. 2020b;
Steffen et al. 2020a), has been developed in the course of this dissertation. Un-
fortunately, there are not yet hardware solutions that allow their simulation in a
reliable and performant way. Nevertheless, there has been a trend recently for
these processors to be more accessible for research purposes and academia. As
stated, for example, in [240], their optimization and further development are ex-
pected to have a significant impact on the research related to event cameras. A
similar effect can be expected for spiking algorithms for robotic motion control.
Complete and optimal planners like WFA, Dijkstra or A* are not yet valid op-
tions for path planning in the high-dimensional C-space. However, this might
change over time. Their execution, in the case of many Degree of freedom (DOF),
is not feasible on conventional hardware, but, development in the field of neu-
romorphic computing and edge devices is rapid. If future research in SNN and
neuromorphic hardware live up to the current expectations, optimal planners
might apply to a full C-space, even for many DOF [407]. Apart from the level
of development regarding neuromorphic hardware, their availability is currently
an issue. Nevertheless, this is already starting to change, with neuromorphic
solutions becoming more accessible for academic and research purposes. The
approach presented in chapter 4 could also be transferred to SNN and neuromor-
phic hardware. As this was the original plan, the WFA was initially applied, as
published in (Steffen et al. 2021c). The motivation was the parallelizability of a
Breadth-first Search (BFS), which promised a fast and efficient future implemen-
tation with SNN. However, subsection 4.3.2 proved that the presented method
benefits greatly from using Dijkstra’s algorithm. Consequently, an SNN-based
implementation realizing weighted connections, would be an interesting alterna-
tive. A respective example is provided in [47] by introducing axonal delays.

164

Appendix

165

A. Appendix for chapter 3

A.1. Sensor Specifications

(a) (b)

Figure A.1.: Photos of the used sensors. (a) Prophesee Evaluation Kit Gen3
HVGA-EM [436] with ATIS architecture [251]. (b) RealSenseTM Depth
Camera D435 [437].

Resolution 480× 360
Pixel Pitch 20µm

Optical Format 3/4inch
Latency 200µs

Temporal Resolution 1µs
Field of view (H×V) 56.3◦ × 43.7◦

Dynamic Range 120dB
Interface USB 3.0

Table A.1.: Specifications of the event camera Gen3 ATIS from Prophesee. Table
source: [436]

167

A. Appendix for chapter 3

Depth technology Stereoscopic
Resolution of depth sensor 1280× 720

Resolution of color RGB camera 1920× 1080
Operating distance 0.2m− 4.5m

Depth Field of View (H×V) 87◦ × 58◦

Depth frame rate Up to 90fps
RGB frame rate 30fps

Interface USB 3.0

Table A.2.: Specifications of the Intel® RealSenseTM Depth Camera D435. Table
source: [437]

168

B. Appendix for chapter 4

B.1. Constant Parameters for the SONN Analysis

The parameters are used for evaluating different SONN models, especially the
quantitative analysis, in subsection 4.3.1 for 6D input. In Table B.1 the constant

#Ns ηBMU ηn λ ζ δ ε α β d τmax AEmax

4 0.06 0.005 20 0.995 0.3 100 0.3 0.7 3 50 0.1

Table B.1.: ns and ne are the net’ start & end size. The winner neuron’s learning
rate is ηn and its neighbors ηn. λ sets the amount of steps until a new
node is inserted, ζ decreases the error counter and δ sets its ratio. The
temporal context is balanced by α& β and the depth that indicates how
many steps into the past are considered is defined by d. The number of
samples considered for a segment is limited by τmax andAEmax defines
the maximum of the enclosed area. Table source: (Weyer 2021)

parameters for GNG-based models are given. The parameters,#Ns-ε, are relevant
for the GNG, MGNG, γ-GNG & SGNG. However, α & β are set only for MGNG
& γ-GNG, and d only for γ-GNG. Lastly, τmax & AEmax are only set for the SGNG.
Respectively, in Table B.2 the parameters for SOM models are provided. Except

#N dim λ η α β d

85x85 (7225) 2D 5.0 0.2 0.3 0.7 3

Table B.2.: #N is the pre-selected network size and dim the output dimension.
The neighborhood radius is given by λ and the start value for the de-
caying learning rate is defined through η. How strongly temporal con-
text is merged is balanced through α & β and the context depth by d.
Table source: (Weyer 2021)

the context depth d, which is only relevant for the γ-SOM, all parameters are
given for the MSOM & γ-SOM.

169

B. Appendix for chapter 4

B.2. ROS 2 Components for Online Motion Control

Mainly responsible for the online control of the robot are the ROS 2 components
/trajectory_execution_action_server as well as /trajectory_execution_action_client, as
shown in Figure B.1. The server requests the trajectories from the client and for-
ward them to the /joint_trajectory_controller, which executes movement control.
The point at which the information converges is the action client. For one, it re-

Figure B.1.: Overview of the ROS components responsible for online control of
the robot. Image source: (Weyer 2021)

ceives information about current execution steps as well as the result from the
server. Furthermore it obtains live data of the robot’s joint states, and addition-
ally, live environment coordinates of obstacles in form of voxel data from the
ROS bridge. Lastly, the goal configuration, which can be set externally, is also
known here. This information allows the client to plan a collision-free trajectory
and transmit it to the controller via the server. During execution, collision checks
are repeated regularly to ensure that the trajectory remains collision-free. If a
collision would occur, the trajectory is aborted immediately, via a cancellation
message, and a new collision-free trajectory is sent to the server.

170

B.3. Special Features of the Path Planning Method

B.3. Special Features of the Path Planning Method

(a)

(b)

(c)

Figure B.2.: Photos and visualization of the demonstrator highlighting special
features of the path planning method. (a) Path finding in a cluttered
scene using the GNG. A with many big obstacles is a particular chal-
lenge with which sample-based planners as well as this approach us-
ing a SOM struggle with. (b) & (c) examples of applications that re-
quire the maintenance of certain configurations. In (b) a specific posi-
tion of the wrist is necessary and in (c) an obstacle is circumvented
at the same height without driving over it with the robot. Image
source: https://youtu.be/CEkVDDg9ORw

171

https://youtu.be/CEkVDDg9ORw

C. Appendix for chapter 5

C.1. Additional Benchmark Results

In Table C.1 a complete listing of the results of Appendix C is given, regarding the
benchmark for hardware solutions for simulating SNN. Simulation time is given
in seconds, energy as an average per run in joules and the path length in amount
of included neurons. All experiments are performed on map IV of (Steffen et al.
2020b). The source for Table C.1 is the supplementary material of (Steffen et al.
2021b).

173

C. Appendix for chapter 5

system map size total time [s] path length energy [J]

GeNN on RTX2070 20 14.46 41.0 1201.82
25 22.67 38.0 1376.56
28 30.26 47.0 2728.85
30 36.76 46.0 3817.19

GeNN on CPU 20 7.20 41.0 526.98
25 15.15 35.0 1107.74
28 23.11 47.0 2347.31
30 29.77 49.0 3125.71
33 43.29 46.0 4370.87
35 63.59 55.0 5777.70
40 98.67 58.0 10155.23
45 163.36 60.0 16355.57
50 262.22 69.0 24766.49
55 409.27 79.0 39065.35

Jetson Tx2 20 114.22 41.0 143.54
25 199.65 35.0 5213.75
28 285.93 47.0 12894.51
30 353.64 49.0 16762.27

Jetson Xavier Nx 20 86.86 34.0 3018.58
25 137.98 37.0 5280.65
28 186.83 46.0 1762.93
30 227.51 48.0 24054.32

Jetson AGX Xavier 20 54.13 36.0 2254.65
25 85.38 40.0 4358.44
28 116.33 46.0 5521.26
30 143.63 49.0 7169.49
33 201.29 50.0 2347.63

SpiNNaker 20 64.62 32.0 13132.09
25 128.50 49.0 23881.05
28 171.26 44.0 14484.20
30 162.46 50.0 13593.85
33 259.03 53.0 21046.42
35 324.96 55.0 24599.44
40 368.47 72.0 30573.19

NEST 20 8.39 38.0 1861.54
25 18.34 42.0 1908.04
28 26.76 41.0 2453.65
30 35.20 48.0 3089.95
33 50.28 48.0 4294.51
35 72.84 58.0 6126.01
40 114.15 65.0 7641.54
45 180.23 66.0 12266.63
55 421.65 81.0 50946.67

Table C.1.

174

List of Figures

1.1. Simulated and neuronal representation of an exemplary realization
of the intended use case. 2

1.2. Structural differences of frame-based and event-based vision algo-
rithms. 3

1.3. Conceptual architecture of the proposed approach. 5

2.1. Anatomy and processing of a neuron. 12
2.2. Schematic drawing of a biological synapse. 14
2.3. Hippocampal occurrences of LTP and LTD in a rat. 15
2.4. Asymmetric temporal window for effective spike occurrences. . . . 16
2.5. Simplified sketch of the human retina. 19
2.6. An overview of human depth perception and oculomotor depth

stimuli. 21
2.7. The correspondence problem and random-dot stereograms 22
2.8. Simplified relationship between grid and place cells. 24
2.9. Three generations of ANN. 25
2.10. Circuit of an IF model and its action potential. 26
2.11. STDP and Anti-STDP. 29
2.12. Different perspectives on neuromorphic technologies. 32
2.13. The output space of the SOM and the NG. 36
2.14. Topological Mismatch and Delaunay Triangulation 38
2.15. Event frames of fast moving objects. 42
2.16. The silicon retina - early prototypes. 43
2.17. The AER-bus-system. 44
2.18. Pixel circuit of the DVS and its components biological counterparts. 45
2.19. Circuit of an DAVIS-pixel able to generate gray level images. 47
2.20. Circuit of an ATIS-pixel and representation of the asynchronous

gray value generation. 48

3.1. Purely temporal matching of the streams of two event cameras. . . 50
3.2. Comparison of the conventional space-sweep approach with the

event-based method . 52
3.3. How the point of best focus is determined through distinguishing

ON- and OFF-events. 53
3.4. Network architecture of a cooperative algorithm. 54
3.5. Flowchart and depth maps of the method "Generalized Time-Based

Stereo". 56

175

List of Figures

3.6. Concept sketch of the biological motivation to use self-organization
for solving the correspondence problem. 62

3.7. SOM representing a workspace with swapped axes. 63
3.8. A converged SOM represents an evenly sampled Cartesian space. . 66
3.9. Development of a SOM during prelearning. 67
3.10. Gaussian kernels acting as receptive fields for increased matching

speed. 68
3.11. Finding correspondences through shape segmentation. 69
3.12. Plots of the RMSE, the distance between weight vectors and target

representation. 71
3.13. A trained SOM finding correspondences on event-based data. . . . 72
3.14. Activity regions of neurons representing the wireframe of a rotat-

ing cube. 73
3.15. Demonstrator for the execution of the 3D reconstruction on event

streams of robot motions. 74
3.16. Hardware setup for mono and stereo calibration of an ATIS. 75
3.17. Validation of the calibration result through sensor fusion. 76
3.18. Investigation of calibration quality using sensor fusion. 77
3.19. Training samples drawn from a cubic space. 78
3.20. Evaluation of a pre-learned SOM. 78
3.21. Evaluation of triangulated 3D positions by a SOM from simulated

event-based data. 79
3.22. Sensor fusion for the evaluation of triangulated 3D positions by a

SOM from event-based data. 80
3.23. Evaluation results obtained by using sensor fusion. 81

4.1. Overview of the DOF of industrial robot arms and humanoids. . . 83
4.2. WFA and Dijkstra’s handling weighted edges in a search graph. . . 87
4.3. Synaptic vector fields generated by a neural WFA. 91
4.4. Expansion of a neural wave at different stages. 92
4.5. Associating the position of a 2D robot’s end-effector and its joint

angles. 95
4.6. Robotic work cell from Martinetz & Schulten, displaying the robot

and vision system. 96
4.7. Pipeline of the proposed neural planners. 101
4.8. Kinematic representation of the human body and extraction of joint

angles for input vectors. 103
4.9. Simulated robot trajectories as training data. 104
4.10. The output space of the MNG during a learning cycle. 106
4.11. The output space of the GNG during and post learning. 108
4.12. The output space of the MGNG during and post learning. 110
4.13. γ-SOM and SGNG. 111
4.14. Associating the Cartesian task space with the reduced C-space by

an LUT for a two-link robot . 113
4.15. Comparison of SONN models regarding learning behavior and

path preservation. 117

176

List of Figures

4.16. Comparison of SONN models regarding C-space coverage. 118
4.17. Comparing trajectories generated in the reduced C-space by differ-

ent SONN types. 120
4.18. Differences of the paths generated with WFA and Dijkstra. 121
4.19. Comparing the paths of an end effector in the task space and the

cognitive map with and without smoothing. 123
4.20. Photo and visualization of the demonstrator; a robot and a visual

system. 125
4.21. Photo series of the reactive collision-free online motion planning. . 125
4.22. Evaluation against sample-based planners regarding path quality. . 127

5.1. Overview of SpiNNaker software stacks. 133
5.2. Simplification of a GPU architecture and schematic of a CUDA grid. 135
5.3. SNN models used for benchmarks in literature. 141
5.4. Execution of the neural WFA on 2D maps. 144
5.5. A SVF from two perspectives. 145
5.6. Overview regarding the systems tested by the benchmark. 147
5.7. Simulation time broken down for individual functions on SpiN-

Naker, GeNN on CPU and NEST. 152
5.8. Simulation time broken down for individual functions on Jetson

AGX Xavier, Jetson Tx2 and Jetson Xavier Nx. 152
5.9. Scaling Properties for SpiNNaker, GeNN & NEST. 153
5.10. Visualization of the path generated with GeNN on CPU. 156
5.11. Memory requirements for GeNN and SpiNNaker. 156
5.12. CPU utilization for GeNN and SpiNNaker. 157

A.1. Photos of the event camera Gen3 ATIS from Prophesee and the
depth camera RealSense D435 from Intel. 167

B.1. Overview of the ROS components responsible for online control of
the robot. 170

B.2. Photos and visualization of the demonstrator highlighting special
features of the path planning method. 171

177

List of Tables

2.1. Benefits and drawbacks of different learning methods for SNN. . . 30
2.2. Overview of issues regarding SONN and subforms that address

them. 37
2.3. Advantages and disadvantages of different SONN versions. 40
2.4. Overview of the technical development of event cameras. 46

3.1. Convergence quality concerning the number of training samples
and the number of neurons. 71

4.1. Implementations of a neural WFA with SNN for 2D and 3D. 93
4.2. Parameters used in SONN models selected for the evaluation. . . . 111
4.3. SONN comparison regarding their QE and CM 119
4.4. Comparison of paths generated by the WFA and Dijkstra’s algorithm.122
4.5. Comparing planning times and path resolution with and without

smoothing. 123
4.6. Evaluation against sample-based planners regarding the mean value

and standard deviation. 126

5.1. Overview of specific update mechanisms in NEST, SpiNNaker and
GeNN. 136

5.2. Overview of related benchmarks regarding platforms and use cases. 140
5.3. Differences of the model implemented for NEST, SpiNNaker and

GeNN. 148
5.4. Simulation times for all hardware and software solutions for map

size 30. 151
5.5. Energy consumption for all hardware and software solutions for

map size 30. 154
5.6. Path length for all hardware and software solutions for map size 30. 155

A.1. Specifications of the event camera Gen3 ATIS from Prophesee. . . . 167
A.2. Specifications of the Intel® RealSenseTM Depth Camera D435. 168

B.1. Parameters of GNG-based models for the SONN Analysis. 169
B.2. Parameters of SOM-based models for the SONN Analysis. 169

C.1. Complete listing of the results of the benchmark for hardware so-
lutions for simulating SNN. 174

179

Bibliography

[1] Kortenkamp, David and Reid Simmons (2008). “Robotic Systems Archi-
tectures and Programming”. In: Springer Handbook of Robotics. Springer
Berlin Heidelberg, pp. 187–206.

[2] Gat, Erann (1997). On Three-Layer Architectures. Tech. rep.
[3] Rieke, F. et al. (1999). Spikes: exploring the neural code.
[4] Maass, Wolfgang (1997). Networks of Spiking Neurons: The Third Generation

of Neural Network Models. Tech. rep. 9, pp. 1659–1671.
[5] Grüning, A. and S. Bohte (2014). “Spiking neural networks: Principles and

challenges”. In: ESANN 2014, pp. 1–10.
[6] Vreeken, Jilles (2003). Spiking neural networks, an introduction.
[7] Bi, Guo Qiang and Mu Ming Poo (1998). “Synaptic modifications in cul-

tured hippocampal neurons: dependence on spike timing, synaptic strength,
and postsynaptic cell type”. In: The Journal of neuroscience 18.24, pp. 10464–
10472.

[8] Markram, Henry et al. (1997). “Regulation of synaptic efficacy by coinci-
dence of postsynaptic APs and EPSPs”. In: Science 275.5297, pp. 213–215.

[9] Neftci, Emre O. (2018). Data and Power Efficient Intelligence with Neuromor-
phic Learning Machines.

[10] Furber, S. et al. (2014). “The SpiNNaker project”. In: Proc. of the IEEE 102.5,
pp. 652–665.

[11] Davies, M. et al. (2018). “Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning”. In: IEEE Micro 38.1, pp. 82–99.

[12] Yavuz, Esin, James Turner, and Thomas Nowotny (2016). “GeNN: A code
generation framework for accelerated brain simulations”. In: Scientific Re-
ports 6.1, pp. 1–14.

[13] Furber, Steve and Steve Temple (2007). Neural systems engineering.
[14] Zenke, Friedemann and Wulfram Gerstner (2014). “Limits to high-speed

simulations of spiking neural networks using general-purpose comput-
ers”. In: Frontiers in Neuroinformatics 8.SEP, pp. 1–15.

[15] Gallego, Guillermo et al. (2019). “Event-based Vision: A Survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence abs/1904.0.

[16] Kaiser, Jacques (2020). “Synaptic Learning for Neuromorphic Vision – Pro-
cessing Address Events with Spiking Neural Networks”. PhD thesis. Karl-
sruher Instituts für Technologie.

[17] Kelemen, Michal et al. (2018). “A novel approach for a inverse kinemat-
ics solution of a redundant manipulator”. In: Applied Sciences (Switzerland)
8.11.

181

Bibliography

[18] Koganezawa, K. (1994). “A fast method of solving inverse kinematics of
redundant manipulators”. In: IFAC Proceedings Volumes 27.14, pp. 369–374.

[19] Kavraki, Lydia E. et al. (1996). “Probabilistic roadmaps for path planning
in high-dimensional configuration spaces”. In: IEEE Transactions on Robo-
tics and Automation 12.4, pp. 566–580.

[20] LaValle, S. (1998). Rapidly-exploring random trees : a new tool for path plan-
ning. Tech. rep. Computer Science Department, Iowa State University.

[21] Schaal, Stefan, Christopher G. Atkeson, and Sethu Vijayakumar (2002).
“Scalable Techniques from Nonparametric Statistics for Real Time Robot
Learning”. In: Applied Intelligence 17.1, pp. 49–60.

[22] Schaal, Stefan (2006). “Dynamic Movement Primitives -A Framework for
Motor Control in Humans and Humanoid Robotics”. In: Adaptive Motion
of Animals and Machines. Tokyo: Springer, pp. 261–280.

[23] Naumov, V. et al. (2015). “Robot path planning algorithm”. In: Int. J. Com-
put. Commun. 9, pp. 96–99.

[24] Al-Jumaily, Adel and Cindy Leung (2005). “Wavefront Propagation and
Fuzzy Based Autonomous Navigation”. In: Int. J. of Adv. Robotic Sys. 2.2,
p. 10.

[25] Sakai, Katsuyuki et al. (2000). “What and when: Parallel and convergent
processing in motor control”. In: Journal of Neuroscience 20.7, pp. 2691–
2700.

[26] Sigman, Mariano and Stanislas Dehaene (2008). “Brain mechanisms of se-
rial and parallel processing during dual-task performance”. In: Journal of
Neuroscience 28.30, pp. 7585–7598.

[27] Davies, Mike (2019b). “Benchmarks for progress in neuromorphic com-
puting”. In: Nature Machine Intelligence 1.9, pp. 386–388.

[28] Hart, Peter, Nils Nilsson, and Bertram Raphael (1968). “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”. In: IEEE Trans-
actions on Systems Science and Cybernetics 4.2, pp. 100–107.

[29] Cormen, Thomas H et al. (1990). Introduction to Algorithms. 3rd ed.
[30] Stentz, Anthony (1994). “Optimal and efficient path planning for partially-

known environments”. In: Int. Conf. on Robotics and Automation, pp. 3310–
3317.

[31] Fan, Dong Kai and Ping Shi (2010). “Improvement of Dijkstraa’s algorithm
and its application in route planning”. In: Int. Conf. on Fuzzy Systems and
Knowledge Discovery (FSKD) 4, pp. 1901–1904.

[32] Guruji, Akshay Kumar, Himansh Agarwal, and D.K. Parsediya (2016).
“Time-efficient A* Algorithm for Robot Path Planning”. In: Procedia Tech-
nology 23, pp. 144–149.

[33] Naderi, Kourosh, Joose Rajamäki, and Perttu Hämäläinen (2015). “RT-
RRT*: a real-time path planning algorithm based on RRT*”. In: ACM SIG-
GRAPH Conf. on Motion in Games 8, pp. 113–118.

[34] Kuffner, J.J. and S.M. LaValle (2000). “RRT-connect: An efficient approach
to single-query path planning”. In: Int. Conf. on Robotics and Automation 2,
pp. 995–1001.

182

Bibliography

[35] Ijspeert, A.J., J. Nakanishi, and S. Schaal (2001). “Trajectory formation for
imitation with nonlinear dynamical systems”. In: Int. Conf. on Intelligent
Robots and Systems. Vol. 2. IEEE, pp. 752–757.

[36] Ginesi, Michele, Nicola Sansonetto, and Paolo Fiorini (2021). “Overcom-
ing Some Drawbacks of Dynamic Movement Primitives”. In: Robotics and
Autonomous Systems 144, p. 103844.

[37] Hong Qu et al. (2009). “Real-Time Robot Path Planning Based on a Modi-
fied Pulse-Coupled Neural Network Model”. In: IEEE Trans. on NN 20.11,
pp. 1724–1739.

[38] Hopfield, J. J. (2010). “Neurodynamics of mental exploration”. In: Proc. of
the National Academy of Sciences 107.4, pp. 1648–1653.

[39] Ponulak, F. and J. Hopfield (2013). “Rapid, parallel path planning by prop-
agating wavefronts of spiking neural activity”. In: Front. in Comp. Neuro-
science 7, p. 98.

[40] Tolman, Edward C. (1948). “Cognitive maps in rats and men”. In: Psycho-
logical Review 55.4, pp. 189–208.

[41] Grieves, Roddy M. and Kate J. Jeffery (2017). “The representation of space
in the brain”. In: Behavioural Processes 135, pp. 113–131.

[42] O’Keefe, John. and Dulcie H. Conway (1978). “Hippocampal place units
in the freely moving rat: why they fire where they fire”. In: Experimental
brain research 31.4, pp. 573–590.

[43] Khajeh-Alijani, A., R. Urbanczik, and W. Senn (2015). “Scale-Free Naviga-
tional Planning by Neuronal Traveling Waves”. In: PLOS ONE 10.7. Ed. by
William W Lytton, e0127269.

[44] Zennir, M., M. Benmohammed, and R. Boudjadja (2015). “Spike-time de-
pendant plasticity in a spiking neural network for robot path planning”.
In: CEUR Workshop Proc. Vol. 1539, pp. 2–13.

[45] Tanneberg, Daniel, J. Peters, and E. Rueckert (2015). “Spiking neural net-
works solve robot planning problems”. Master thesis.

[46] Tanneberg, Daniel et al. (2016). “Deep Spiking Networks for Model-based
Planning in Humanoids”. In: Int. Conf. on Humanoid Robots (HUMANOIDS).

[47] Krichmar, Jeffrey L. (2016). “Path planning using a spiking neuron algo-
rithm with axonal delays”. In: ICEC, pp. 1219–1226.

[48] Hwu, Tiffany, Jeffrey Krichmar, and Xinyun Zou (2017). “A complete neu-
romorphic solution to outdoor navigation and path planning”. In: Int.
Symp. Circuits Syst. (ISCAS).

[49] Hwu, Tiffany et al. (2018). “Adaptive robot path planning using a spiking
neuron algorithm with axonal delays”. In: IEEE Transactions on Cognitive
and Developmental Systems 10.2, pp. 126–137.

[50] Scharstein, Daniel and Richard Szeliski (2002). “A taxonomy and evalu-
ation of dense two-frame stereo correspondence algorithms”. In: Int. J. of
Computer Vision 47.1-3, pp. 7–42.

[51] Seitz, Steven M. et al. (2006). “A comparison and evaluation of multi-view
stereo reconstruction algorithms”. In: Conf. on Computer Vision and Pattern
Recognition (CVPR) 1, pp. 519–526.

183

Bibliography

[52] Firouzi, Mohsen and Jörg Conradt (2016). “Asynchronous Event-based
Cooperative Stereo Matching Using Neuromorphic Silicon Retinas”. In:
Neural Processing Letters 43.2, pp. 311–326.

[53] Piatkowska, Ewa, Ahmed Nabil Belbachir, and Margrit Gelautz (2013).
“Asynchronous stereo vision for event-driven dynamic stereo sensor us-
ing an adaptive cooperative approach”. In: Int. Conf. on Computer Vision,
pp. 45–50.

[54] Osswald, Marc et al. (2017). “A spiking neural network model of 3D per-
ception for event-based neuromorphic stereo vision systems”. In: Scientific
Reports 7.

[55] Dikov, Georgi et al. (2017). “Spiking Cooperative Stereo-Matching at 2 ms
Latency with Neuromorphic Hardware”. In: Living Machines, pp. 119–137.

[56] Poggio, Gian F. et al. (1985). “Responses of neurons in visual cortex (V1
and V2) of the alert macaque to dynamic random-dot stereograms”. In:
Vision Research 25.3, pp. 397–406.

[57] Albada, Sacha J. van et al. (2018). “Performance comparison of the digital
neuromorphic hardware SpiNNaker and the neural network simulation
software NEST for a full-scale cortical microcircuit model”. In: Frontiers in
Neuroscience 12.MAY.

[58] Knight, James C. and Thomas Nowotny (2018). “GPUs Outperform Cur-
rent HPC and Neuromorphic Solutions in Terms of Speed and Energy
When Simulating a Highly-Connected Cortical Model”. In: Frontiers in
Neuroscience 12, p. 941.

[59] Diamond, Alan, Thomas Nowotny, and Michael Schmuker (2016). “Com-
paring Neuromorphic Solutions in Action: Implementing a Bio-Inspired
Solution to a Benchmark Classification Task on Three Parallel-Computing
Platforms”. In: Frontiers in Neuroscience 9.JAN, p. 491.

[60] Ostrau, Christoph et al. (2020). “Benchmarking Deep Spiking Neural Net-
works on Neuromorphic Hardware”. In: Artificial Neural Networks and Ma-
chine Learning.

[61] DeWolf, Travis, Pawel Jaworski, and Chris Eliasmith (2020). “Nengo and
Low-Power AI Hardware for Robust, Embedded Neurorobotics”. In: Fron-
tiers in Neurorobotics 14.

[62] Yan, Yexin et al. (2021). “Comparing Loihi with a SpiNNaker 2 prototype
on low-latency keyword spotting and adaptive robotic control”. In: Neu-
romorphic Computing and Engineering.

[63] Arbib, Michael (1995). The Handbook of Brain Theory and Neural Networks.
[64] Kandel, Eric R., James H. Schwartz, and Thomas M. Jessell (1999). Princi-

ples of neural science. 4th ed. New York: Elsevier, pp. 317–330.
[65] Dröscher, Ariane (1998). “Camillo Golgi and the discovery of the Golgi

apparatus”. In: Histochemistry and Cell Biology 1998 109:5 109.5, pp. 425–
430.

[66] Cajal, Santiago Ramón y (1967). Nobel Lectures: Physiology or Medicine.
[67] Gray, Henry and Warren H Lewis (1918). Anatomy of the Human Body.

20th ed. Philadelphia.

184

Bibliography

[68] Pakkenberg, B and H.J. Gundersen (1997). “Neocortical neuron number in
humans: effect of sex and age”. In: J. of comparative neurology 384.2, pp. 312–
20.

[69] Gerstner, Wulfram et al. (2014). Neuronal Dynamics - From Single Neurons to
Networks and Models of Cognition. Cambridge University Press.

[70] Dharani, Krishnagopal (2015). “Physiology of the Neuron”. In: The Biology
of Thought, pp. 31–52.

[71] Dayan, Peter. and L. F. Abbott (2001). Theoretical neuroscience: Computa-
tional and mathematical modeling of neural systems. Massachusetts Institute
of Technology Press, p. 460.

[72] Fiala, John C., Josef Spacek, and Kristen M. Harris (2012). “Dendrite struc-
ture”. In: Dendrites.

[73] Khan, Salman (2010). The membrane potential - How the resting membrane
potential is established in a neuron. Tech. rep.

[74] Herculano-Houzel, Suzana (2009). “The human brain in numbers: A lin-
early scaled-up primate brain”. In: Frontiers in Human Neuroscience 3, p. 31.

[75] Voglis, Giannis and Nektarios Tavernarakis (2006). “The role of synaptic
ion channels in synaptic plasticity”. In: EMBO Reports 7.11, p. 1104.

[76] Citri, Ami and R. Malenka (2007). “Synaptic Plasticity: Multiple Forms,
Functions, and Mechanisms”. In: Neuropsychopharmacology 33.1, pp. 18–41.

[77] Zucker, Robert S. and Wade G. Regehr (2002). “Short-term synaptic plas-
ticity”. In: Annual review of physiology 64, pp. 355–405.

[78] Hennig, Matthias H. (2013). “Theoretical models of synaptic short term
plasticity”. In: Frontiers in Computational Neuroscience 7.

[79] Morris, Richard G.M. (2003). “Long-term potentiation and memory”. In:
Philosophical transactions of the Royal Society of London. Series B, Biological
sciences 358.1432, pp. 643–647.

[80] Wang, Yun et al. (2006). “Heterogeneity in the pyramidal network of the
medial prefrontal cortex”. In: Nature neuroscience 9.4, pp. 534–542.

[81] Abbott, L. F. and Wade G. Regehr (2004). “Synaptic computation”. In: Na-
ture 431.7010, pp. 796–803.

[82] Hebb, D. (1949). The organization of behavior: A neuropsychological theory.
New York: L. Erlbaum Associates.

[83] Bi, G. Q. and M. M. Poo (2001). “Synaptic Modification by Correlated Ac-
tivity: Hebb’s Postulate Revisited”. In: Ann. Rev. Neurosci. 24, pp. 139–166.

[84] Baldi, Pierre and Peter Sadowski (2016). “A theory of local learning, the
learning channel, and the optimality of backpropagation”. In: Neural Net-
works 83, pp. 51–74.

[85] Stevens, C F (1996). “Strengths and weaknesses in memory”. In: Nature
381, pp. 471–472.

[86] Carr, C. E. and M. Konishi (1990). “A circuit for detection of interaural time
differences in the brain stem of the barn owl”. In: Journal of Neuroscience 10,
pp. 3227–3246.

[87] Gütig, R. et al. (2003). “Learning input correlations through nonlinear tem-
porally asymmetric Hebbian plasticity”. In: Journal of Neuroscience 23.9,
pp. 3697–3714.

185

Bibliography

[88] D J Linden (1999). “The return of the spike: postsynaptic action potentials
and the induction of LTP and LTD”. In: Neuron.

[89] Frégnac, Yves et al. (2010). “A re-examination of Hebbian-covariance rules
and spike timing-dependent plasticity in cat visual cortex in vivo”. In:
Frontiers in Synaptic Neuroscience 0.DEC, p. 147.

[90] Lisman, John and Nelson Spruston (2010). “Questions about STDP as a
general model of synaptic plasticity”. In: Frontiers in Synaptic Neuroscience
0.OCT, pp. 1–5.

[91] Cottrell, Marie et al. (2016). “Theoretical and applied aspects of the self-
organizing maps”. In: WSOM 11, pp. 3–26.

[92] Banzhaf, Wolfgang (2009). “Self-organizing Systems”. In: Encyclopedia of
Complexity and Systems Science. Ed. by R. A. Meyers, pp. 8040–8050.

[93] Kohonen, Teuvo (1989). “Self-Organization and Associative Memory”. In:
Springer Series in Information Sciences 8.

[94] Willshaw, D. J. and C. Von Der Malsburg (1976). “How Patterned Neural
Connections Can Be Set Up by Self-Organization on JSTOR”. In: Proc. R.
Soc. Lond. B Series B, Biological Sciences 194.1117, pp. 431–445.

[95] Kohonen, Teuvo, Kohonen, and Teuvo (1986). “Representation Of Sen-
sory Information In Self-Organizing Feature Maps, And Relation Of These
Maps To Distributed Memory Networks”. In: SPIE 634, pp. 248–259.

[96] Rumbell, Timothy, Susan L. Denham, and Thomas Wennekers (2014). “A
spiking self-organizing map combining STDP, oscillations, and continu-
ous learning”. In: IEEE Transactions on Neural Networks and Learning Sys-
tems 25.5, pp. 894–907.

[97] Van Hulle, Marc M (2012). Self-Organizing Maps. Tech. rep.
[98] T, Kohonen (1990). “The self-organizing map”. In: Proceedings of the IEEE

78.9, pp. 1464–1480.
[99] Schott, G. D. (1993). “Penfield’s homunculus: A note on cerebral cartog-

raphy”. In: Journal of Neurology Neurosurgery and Psychiatry 56.4, pp. 329–
333.

[100] Merzenich, M. M., P. L. Knight, and G. L. Roth (1975). “Representation of
cochlea within primary auditory cortex in the cat”. In: Journal of Experi-
mental Psychology 38.2, pp. 231–249.

[101] Chen, X et al. (2011). “A gustotopic map of taste qualities in the mam-
malian brain”. In: Science 333, pp. 1262–1266.

[102] Woolsey, Thomas A., Carol Welker, and Richard H. Schwartz (1975). “Com-
parative anatomical studies of the Sml face cortex with special reference
to the occurrence of “barrels” in layer IV”. In: Journal of Comparative Neu-
rology 164.1, pp. 79–94.

[103] Friedman, Robert M., Li Min Chen, and Anna Wang Roe (2004). “Modal-
ity maps within primate somatosensory cortex”. In: Proc. of the National
Academy of Sciences of the USA 101.34, pp. 12724–12729.

[104] Malsburg, Chr von der (1973). “Self-organization of orientation sensitive
cells in the striate cortex”. In: Kybernetik 14.2, pp. 85–100.

[105] Millodot, Michel (2009). Dictionary of optometry and vision science, p. 388.

186

Bibliography

[106] Posch, Christoph et al. (2014). “Retinomorphic event-based vision sen-
sors: Bioinspired cameras with spiking output”. In: Proceedings of the IEEE
102.10, pp. 1470–1484.

[107] Boahen, K. (1996). “Retinomorphic vision systems”. In: Microelectronics for
Neural Networks, pp. 2–14.

[108] Rodieck, R. W. (1998). The First Steps in Seeing.
[109] Goldstein, E. Bruce. (2015). Wahrnehmungspsychologie : der Grundkurs.
[110] Nassi, Jonathan J. and Edward M. Callaway (2009). “Parallel processing

strategies of the primate visual system”. In: Nature Reviews Neuroscience
10.5, pp. 360–372.

[111] Sincich, Lawrence C. and Jonathan C. Horton (2005). “The circuitry of V1
and V2: Integration of color, form, and motion”. In: Annual Review of Neu-
roscience 28, pp. 303–326.

[112] Boahen, Kwabena A. (1998). “Communicating Neuronal Ensembles bet-
ween Neuromorphic Chips”. In: Neuromorphic Systems Engineering, pp. 229–
259.

[113] Boahen, Kwabena (2005). “Neuromorphic Microchips”. In: Scientific Amer-
ican 16.3s, pp. 20–27.

[114] Julesz, Bela (1964). “Binocular Depth Perception without Familiarity Cues”.
In: Science.

[115] Walk, Richard D. (1966). “The Development of Depth Perception in Ani-
mals and Human Infants”. In: Monographs of the Society for Research in Child
Development 31.5, p. 82.

[116] Timney, Brian (1985). “Visual Experience and the Development of Depth
Perception”. In: Brain Mechanisms and Spatial Vision, pp. 147–174.

[117] Hauser, L. (2016). Depth perception - lecture notes. Tech. rep. University of
Calgary.

[118] Richards, Whitman and John F. Miller (1969). “Convergence as a cue to
depth”. In: Perception & Psychophysics 5.5, pp. 317–320.

[119] Ciuffreda, Kenneth J. (2006). “Accommodation, the Pupil, and Presbyopia”.
In: Borish’s Clinical Refraction, pp. 93–144.

[120] Ganong, William F. (1971). Medizinische Physiologie. Springer Berlin Hei-
delberg.

[121] Cutting, J. (1997). “High-performance Computing and Human Vision”. In:
Behavior Research Methods, Instruments & Computers 29, pp. 27–36.

[122] Rose, D. (1980). “The binocular: monocular sensitivity ratio for movement
detection varies with temporal frequency”. In: Perception 9.5, pp. 577–580.

[123] Adachi-Usami, E. and D. Lehmann (1983). “Monocular and binocular ev-
oked average potential field topography: Upper and lower hemiretinal
stimuli”. In: Experimental Brain Research 50.2, pp. 341–346.

[124] Marr, D. and T. Poggio (1976). “Cooperative computation of stereo dispar-
ity”. In: Science 194.4262, pp. 283–287.

[125] Julesz, Bela (1960). “Binocular depth perception of computer-generated
patterns”. In: Bell System Technical Journal 39, pp. 1125–1162.

187

Bibliography

[126] Granrud, Carl E., Albert Yonas, and Linda Pettersen (1984). “A compari-
son of monocular and binocular depth perception in 5- and 7-month-old
infants”. In: Journal of Experimental Child Psychology 38.1, pp. 19–32.

[127] Papathomas, Thomas V., Kazunori Morikawa, and Nicholas Wade (2019).
“Bela julesz in depth”. In: Vision (Switzerland) 3.2.

[128] Wheatstone, C. (1838). “Contributions to the physiology of vision. —Part
the first. On some remarkable, and hitherto unobserved, phenomena of
binocular vision”. In: Philosophical Transactions of the Royal Society of London
128, pp. 371–394.

[129] Julesz, Bela. (1971). Foundations of cyclopean perception. The University of
Chicago Press, p. 406.

[130] Solstad, Trygve, Edvard I. Moser, and Gaute T. Einevoll (2006). “From
grid cells to place cells: A mathematical model”. In: Hippocampus 16.12,
pp. 1026–1031.

[131] Eichenbaum, H. et al. (1999). The Hippocampus , Memory , Review and Place
Cells : Is It Spatial Memory or a Memory Space ?

[132] O’Keefe, J. and J. Dostrovsky (1971). “The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat”. In: Brain
Research 34.1, pp. 171–175.

[133] Muller, R. U., J. L. Kubie, and J. B. Ranck (1987). “Spatial firing patterns
of hippocampal complex-spike cells in a fixed environment”. In: Journal of
Neuroscience 7, pp. 1935–1950.

[134] Wilson, Matthew A. and Bruce L. McNaughton (1993). “Dynamics of the
hippocampal ensemble code for space”. In: Science 261.5124, pp. 1055–
1058.

[135] Ekstrom, Arne D. et al. (2003). “Cellular networks underlying human spa-
tial navigation”. In: Nature 425.6954, pp. 184–187.

[136] Alme, Charlotte B. et al. (2014). “Place cells in the hippocampus: Eleven
maps for eleven rooms”. In: Proc. of the National Academy of Sciences 111.52,
pp. 18428–18435.

[137] Fyhn, M. et al. (2004). “Spatial Representation in the Entorhinal Cortex”.
In: Science 305.5688, pp. 1258–1264.

[138] Hafting, Torkel et al. (2005). “Microstructure of a spatial map in the en-
torhinal cortex”. In: Nature 436.7052, pp. 801–806.

[139] Taube, J. S., R. U. Muller, and J. B. Ranck (1990). “Head-direction cells
recorded from the postsubiculum in freely moving rats.” In: Journal of Neu-
roscience 10.2, pp. 420–435.

[140] Lapicque, Louis (1907). “Recherches quantitatives sur l’excitation électrique
des nerfs traitée comme une polarisation”. In: J. Physiol. Pathol. Gen.

[141] Abbott, L F (1999). “Lapicque’s introduction of the integrate-and-fire model
neuron (1907)”. In: Brain Research Bulletin 50.6, pp. 303–304.

[142] Brunel, N. and M. Van Rossum (2007). “Lapicque’s 1907 paper: From frogs
to integrate-and-fire”. In: Biological Cybernetics 97.5-6, pp. 337–339.

[143] Burkitt, A. N. (2006). “A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input”. In: Biological Cybernetics 95.1, pp. 1–19.

188

Bibliography

[144] Gerstner, Wulfram (1995). “Time structure of the activity in neural net-
work models”. In: Physical Review E 51.1, p. 738.

[145] Hodgkin, A. L. and A. F. Huxley (1952). “A quantitative description of
membrane current and its application to conduction and excitation in nerve”.
In: J. of Physiology 117.4, pp. 500–544.

[146] Izhikevich, Eugene M (2003). “Simple Model of Spiking Neurons”. In:
Trans. on ANN 14.6.

[147] Schmidhuber, J. (2015). “Deep learning in neural networks: An overview”.
In: Neural Networks 61, pp. 85–117.

[148] Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985).
Learning Internal Representations by Error Propagation.

[149] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986).
“Learning representations by back-propagating errors”. In: Nature 1986
323:6088 323.6088, pp. 533–536.

[150] Bartunov, Sergey et al. (2018). “Assessing the scalability of biologically-
motivated deep learning algorithms and architectures”. In: Neural Infor-
mation Processing Systems ((NeurIPS) 32, pp. 9368–9378.

[151] Bengio, Yoshua et al. (2015). “Towards Biologically Plausible Deep Learn-
ing”. In: arXiv:1502.04156.

[152] Bohte, S., J. Kok, and H. La Poutré (2002). “Error-backpropagation in tem-
porally encoded networks of spiking neurons”. In: Neurocomputing 48,
pp. 17–37.

[153] Neftci, Emre et al. (2016). “Neuromorphic Deep Learning Machines”. In:
Frontiers in Neuroscience 11.JUN, p. 324.

[154] Zenke, Friedemann and Surya Ganguli (2018). “SuperSpike: Supervised
Learning in Multilayer Spiking Neural Networks”. In: Neural Computation
30.6, pp. 1514–1541.

[155] Kempter, Richard, Wulfram Gerstner, and J. Leo van Hemmen (1999). “Heb-
bian learning and spiking neurons”. In: Physical Review E - Statistical Physics,
Plasmas, Fluids, and Related Interdisciplinary Topics 59.4, pp. 4498–4514.

[156] Song, Sen, Kenneth Miller, and L. Abbott (2000). “Competitive Hebbian
Learning Through Spike-Timing-Dependent Synaptic Plasticity”. In: Na-
ture Neuroscience 3, pp. 919–26.

[157] Koch, Giacomo et al. (2013). “Hebbian and anti-Hebbian spike-timing-
dependent plasticity of human cortico-cortical connections”. In: Journal of
Neuroscience 33.23, pp. 9725–9733.

[158] Walter, Florian, Florian Röhrbein, and Alois Knoll (2015). “Neuromorphic
implementations of neurobiological learning algorithms for spiking neu-
ral networks”. In: Neural Networks 72, pp. 152–167.

[159] Tavanaei, Amirhossein et al. (2019). “Deep Learning in Spiking Neural
Networks”. In: Neural Networks 111, pp. 47–63.

[160] Blundell, Inga et al. (2018). “Code Generation in Computational Neuro-
science: A Review of Tools and Techniques”. In: Frontiers in Neuroinformat-
ics 12, p. 68.

189

Bibliography

[161] Brette, Romain and Dan F.M. Goodman (2012). “Simulating spiking neu-
ral networks on GPU”. In: Network: Computation in Neural Systems 23.4,
pp. 167–182.

[162] Mead, Carver (1990). “Neuromorphic Electronic Systems”. In: Proceedings
of the IEEE 78.10, pp. 1629–1636.

[163] Indiveri, Giacomo. Introducing "Neuromorphic Computing and Engineering".
Tech. rep.

[164] Frenkel, Charlotte et al. (2021). Bottom-Up and Top-Down Neural Processing
Systems Design: Neuromorphic Intelligence as the Convergence of Natural and
Artificial Intelligence. Tech. rep.

[165] Bains, Sunny (2020). “The Promise and Pitfalls of Neuromorphic Comput-
ers”. In: EE Times.

[166] Joubert, A. et al. (2012). “Hardware spiking neurons design: Analog or
digital?” In: Int. Joint Conf. on Neural Networks.

[167] Renaud, Sylvie et al. (2007). “Neuromimetic ICs with analog cores: An
alternative for simulating spiking neural networks”. In: Int. Symp. Circuits
Syst. (ISCAS), pp. 3355–3358.

[168] Benjamin, Ben Varkey et al. (2014). “Neurogrid: A mixed-analog-digital
multichip system for large-scale neural simulations”. In: Proceedings of the
IEEE 102.5, pp. 699–716.

[169] Müller, Eric et al. (2020a). “Extending BrainScaleS OS for BrainScaleS-2”.
In: arXiv:2003.13750.

[170] Schemmel, Johannes et al. (2022). “Accelerated Analog Neuromorphic Com-
puting”. In: Analog Circuits for Machine Learning, Current/Voltage/Tempera-
ture Sensors, and High-speed Communication, pp. 83–102.

[171] Müller, Eric et al. (2020b). “The Operating System of the Neuromorphic
BrainScaleS-1 System”. In: Neurocomputing 501, pp. 790 –810.

[172] Merolla, P. A. et al. (2014). “A million spiking-neuron integrated circuit
with a scalable communication network and interface”. In: Science 345.6197,
pp. 668–673.

[173] Schuman, Catherine D et al. (2017). “A Survey of Neuromorphic Comput-
ing and Neural Networks in Hardware”. In: ArXiv.

[174] Shrestha, Amar et al. (2022). “A survey on neuromorphic computing: Mod-
els and hardware”. In: IEEE Circuits and Systems Magazine 22.2, pp. 6–35.

[175] Oltra-Oltra, J. et al. (2021). “Hardware-software co-design for efficient and
scalable real-time emulation of SNNs on the edge”. In: Int. Symp. Circuits
Syst. (ISCAS), pp. 1–5.

[176] Astudillo, C. and B. Oommen (2014). “Topology-oriented self-organizing
maps: A survey”. In: Pattern Analysis and Applications 17.2, pp. 223–248.

[177] Miljkovic, Dubravko (2017). “Brief review of self-organizing maps”. In:
MIPRO, pp. 1061–1066.

[178] Kohonen, Teuvo (1982). “Self-organized formation of topologically correct
feature maps”. In: Biological Cybernetics 43.1, pp. 59–69.

[179] — (1997). Self-Organizing Maps.
[180] — (1988). “The “Neural” Phonetic Typewriter”. In: Computer 21.3.

190

Bibliography

[181] Liu, Yuan-Chao, Ming Liu, and Xiao-Long Wang (2012). “Application of
Self-Organizing Maps in Text Clustering: A Review”. In: Applications of
Self-Organizing Maps.

[182] Barreto, G. and A. Araújo (2001). “Time in self-organizing maps: An over-
view of models”. In: Int. J. of Computer Research 10.2, pp. 139–179.

[183] Himmelblau, David M (2000). “Applications of Artificial Neural Networks
in Chemical Engineering”. In: Korean J. Chem. Eng 17.4, pp. 373–392.

[184] Dondi, Daniele, Armando Buttafava, and Angelo Albini (2011). “Applica-
tion of Self-Organizing Maps in Chemistry. The Case of Phenyl Cations”.
In: Self Organizing Maps - Applications and Novel Algorithm Design. Ed. by
Josphat Igadwa Mwasiagi. InTech. Chap. 21.

[185] Aldrich, C., D. Moolman, and J. van Deventer (1995). “Monitoring and
control of hydrometallurgical processes with self-organizing and adaptive
neural net systems”. In: Computers and Chemical Engineering 19, pp. 803–
808.

[186] Kaski, Samuel, J. Kangas, and T. Kohonen (1998). “Bibliography of Self-
Organizing Map (SOM) Papers: 1981-1997”. In: Neural Computing Surveys
1.3 & 4, pp. 1–176.

[187] Oja, Merja, Samuel Kaski, and Tuevo Kohonen (2003). “Bibliography of
Self-Organizing Map (SOM) Papers: 1998-2001 Addendum”. In: CiteSeer
3, pp. 1–156.

[188] Polla, Matti, Timo Honkela, and Tuevo Kohonen (2006). “Bibliography of
self-organizing map (SOM) papers: 2002–2005”. In: TKK Reports in Infor-
mation and Computer Science.

[189] Reimann, D. and H. Haken (1994). “Stereo vision by self-organization”. In:
Biological Cybernetics 1994 71:1 71.1, pp. 17–26.

[190] Pajares, G., J. M. Cruz, and J. Aranda (1998). “Stereo matching based on the
self-organizing feature-mapping algorithm”. In: Pattern Recognition Letters
19.3-4, pp. 319–330.

[191] Guan, Haiying, Rogerio S. Feris, and Matthew Turk (2006). “The Isomet-
ric Self-Organizing Map for 3D hand pose estimation”. In: Proceedings of
the 7th International Conference on Automatic Face and Gesture Recognition,
pp. 263–268.

[192] Sajó, Levente, Miklós Hoffmann, and Attila Fazekas (2009). “A 3D head
model from stereo images by a self-organizing neural network”. In: Journal
for Geometry and Graphics 13.2, pp. 1–12.

[193] Yusob, B., S. Shamsuddin, and H. Hamed (2013). “Spiking Self-organizing
Maps for Classification Problem”. In: Procedia Technology 11, pp. 57–64.

[194] Hazan, Hananel et al. (2018). “Unsupervised Learning with Self-Organizing
Spiking Neural Networks”. In: Proc. of the Int. Joint Conf. on Neural Net-
works 2018-July.

[195] Asan, Umut and Secil Ercan (2012). “An Introduction to Self-Organizing
Maps”. In: Computational Intelligence Systems in Industrial Engineering: with
Recent Theory and Applications. Ed. by C. Kahraman. Atlantis Press. Chap. 14,
pp. 295–315.

191

Bibliography

[196] Fort, Jean-Claude and Gilles Pagès (1994). “About the convergence of the
generalized Kohonen algorithm”. In: ICANN, pp. 318–321.

[197] Cottrell, Marie et al. (2018). “Self-Organizing Maps, theory and applica-
tions”. In: Revista de Investigacion Operacional 39.1, pp. 1–22.

[198] Hamel, Lutz (2018). “Vsom: Efficient, stochastic self-organizing map train-
ing”. In: Advances in Intelligent Systems and Computing 869, pp. 805–821.

[199] Kohonen, Tuevo (1999). “Comparison of SOM point densities based on
different criteria”. In: Neural computation 11.8, pp. 2081–2095.

[200] Koikkalainen, Pasi and Erkki Oja (1990). “Self-organizing hierarchical fea-
ture maps”. In: IJCNN. International Joint Conference on Neural Networks,
pp. 279–284.

[201] Martinetz, T. and K. Schulten (1991). “A Neural-Gas Network Learns Topolo-
gies”. In: Artificial Neural Networks, pp. 397–402.

[202] Martinetz, Thomas and Klaus Schulten (1994). “Topology representing
networks”. In: Neural Networks 7.3, pp. 507–522.

[203] Fritzke, B. (1995). “A Growing Neural Gas Network Learns Topologies”.
In: Adv. in Neural Information Processing Systems.

[204] Hammer, B. et al. (2005). “Self organizing maps for time series”. In: WSOM,
pp. 115–122.

[205] Andreakis, A., N. Hoyningen-Huene, and M. Beetz (2009). “Incremental
unsupervised time series analysis using merge growing neural gas”. In:
Lecture Notes in Computer Science 5629, pp. 10–18.

[206] Vergara, Jorge R., Pablo A. Estévez, and Álvaro Serrano (2016). “Segment
growing neural gas for nonlinear time series analysis”. In: Adv. Intell. Syst.
Comput. 428, pp. 107–117.

[207] Vergara, Jorge R. and Pablo A. Estévez (2017). “A strategy for time series
prediction using segment growing neural gas”. In: WSOM.

[208] Vathy-Fogarassy, Agnes et al. (2007). “Visualization of topology represent-
ing networks”. In: Lecture Notes in Computer Science 4881 LNCS, pp. 557–
566.

[209] Yin, Hujun (2002). “ViSOM-a novel method for multivariate data projec-
tion and structure visualization”. In: IEEE Transactions on Neural Networks
13.1, pp. 237–243.

[210] Fiannaca, Antonino et al. (2007). “Improved SOM learning using simu-
lated annealing”. In: Lecture Notes in Computer Science 4668, pp. 279–288.

[211] Berglund, Erik and Joaquin Sitte (2006). “The parameterless self-organizing
map algorithm”. In: IEEE Transactions on Neural Networks 17.2, pp. 305–316.

[212] Karin Haese (2001). “Auto-SOM: Recursive Parameter Estimation for Guid-
ance of Self-Organizing Feature Maps”. In: Neural Computation 13, pp. 595–
619.

[213] Si, J., S. Lin, and M. Vuong (2000). Dynamic topology representing networks.
[214] Muhammed, Hamed Hamid (2003). “Unsupervised fuzzy clustering and

image segmentation using weighted neural networks”. In: Int. Conf. on
Image Analysis and Processing 12, pp. 308–313.

192

Bibliography

[215] Costa, José Alfredo F. and Ricardo S. Oliveira (2007). “Cluster analysis us-
ing growing neural gas and graph partitioning”. In: Int. Conf. on Neural
Networks, pp. 3051–3056.

[216] Canales, Fernando and Max Chacón (2007). “Modification of the Growing
Neural Gas Algorithm for Cluster Analysis”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 4756 LNCS, pp. 684–693.

[217] Fritzke, Bernd (1997). “Unsupervised Ontogenic Networks”. In: Handbook
of Neural Computation C2.4.

[218] Vojáček, Lukáš et al. (2016). “Optimization of Combining of Self Organi-
zing Maps and Growing Neural Gas”. In: Lecture Notes in Computer Science,
pp. 277–286.

[219] Prudent, Yann and Abdellatif Ennaji (2005). “An incremental growing neu-
ral gas learns topologies”. In: Int. J. Conf. on Neural Networks 2, pp. 1211–
1216.

[220] Martinetz, Thomas (1993). “Competitive Hebbian Learning Rule Forms
Perfectly Topology Preserving Maps”. In: ICANN, pp. 427–434.

[221] Simon, Geoffroy et al. (2003). “Double SOM for long-term time series pre-
diction”. In: WSOM, pp. 35–40.

[222] Vesanto, Juha (1997). “Using the SOM and Local Models in Time Series
Prediction”. In: WSOM, pp. 209–214.

[223] Somervuo, Panu J. (2004). “Online algorithm for the self-organizing map
of symbol strings”. In: Neural Networks 17.8-9, pp. 1231–1239.

[224] Bishop, Christopher M., Geoffrey E. Hinton, and Iain G. D. Strachan (1997).
“GTM through time — Aston Research Explorer”. In: ICANN, pp. 111–116.

[225] Tino, Peter et al. (2004). “A Generative Probabilistic Approach to Visual-
izing Sets of Symbolic Sequences”. In: Int. conf. on Knowledge discovery and
data mining 4, pp. 701–706.

[226] Euliano, Neil R. and Jose C. Principe (1999). “A Spatio-Temporal Mem-
ory Based on SOMs with Activity Diffusion”. In: Kohonen Maps. Elsevier
Science B.V., pp. 253–265.

[227] Schulz, Reiner and James A. Reggia (2004). “Temporally Asymmetric Learn-
ing Supports Sequence Processing in Multi-Winner Self-Organizing Maps”.
In: Neural Computation 16.3, pp. 535–561.

[228] Wiemer, Jan C (2003). “The Time-Organized Map Algorithm: Extending
the Self-Organizing Map to Spatiotemporal Signals”. In: Neural Computa-
tion 15, pp. 1143–1171.

[229] Chappell, Geoffrey J. and John G. Taylor (1993). “The temporal Kohønen
map”. In: Neural Networks 6.3, pp. 441–445.

[230] Koskela, Timo et al. (1998). “Temporal sequence processing using recur-
rent SOM”. In: Int. Conf. on Knowledge-Based Intelligent Electronic Systems
(KES) 2, pp. 290–297.

[231] Voegtlin, Thomas and Peter F. Dominey (2001). “Recursive Self-Organizing
Maps”. In: Adv. in SOM. Springer London, pp. 210–215.

193

Bibliography

[232] Hagenbuchner, Markus, Alessandro Sperduti, and Ah Chung Tsoi (2003).
“A self-organizing map for adaptive processing of structured data”. In:
Trans. on ANN 14.3, pp. 491–505.

[233] Strickert, Marc and Barbara Hammer (2005). “Merge SOM for temporal
data”. In: Neurocomputing 64, pp. 39–71.

[234] Estévez, Pablo A. and Rodrigo Hernández (2009). “Gamma SOM for tem-
poral sequence processing”. In: Lect. Notes Comput. Sci. 5629, pp. 63–71.

[235] Estévez, Pablo A. and Jorge R. Vergara (2013). “Nonlinear Time Series
Analysis by Using Gamma Growing Neural Gas”. In: Adv. Intell. Syst.
Comput. 198, pp. 205–214.

[236] Graham, James and Janusz A. Starzyk (2008). “A hybrid self-organizing
neural gas based network”. In: Proc. of the Int. J. Conf. on NN, pp. 3806–
3813.

[237] Forest, Florent et al. (2020). “A Survey and Implementation of Performance
Metrics for Self-Organized Maps”. In: CoRR.

[238] Cabanes, Guénaël and Younès Bennani (2010). “Learning topological con-
straints in Self-Organizing Map”. In: Int. Conf. on Neural Information Pro-
cessing 17, pp. 367–374.

[239] Goodhill, Geoffrey and Terrence Sejnowski (1996). “Quantifying neigh-
bourhood preservation in topographic mappings”. In: Joint Sympostium on
Neural Computation 6.3, pp. 61–69.

[240] Furmonas, Justas, John Liobe, and Vaidotas Barzdenas (2022). “Analytical
Review of Event-Based Camera Depth Estimation Methods and Systems”.
In: Sensors 22.3, p. 1201.

[241] Etienne-Cummings, R. and J. Van Der Spiegel (1996). “Neuromorphic vi-
sion sensors”. In: Sensors and Actuators 56.1-2, pp. 19–29.

[242] Mahowald, M. and C. Mead (1991). “The silicon retina”. In: Scientific Amer-
ican 264.5, pp. 76–83.

[243] Mahowald, Misha (1994). An Analog VLSI System for Stereoscopic Vision.
Springer US.

[244] Lichtsteiner, Patrick, Christoph Posch, and Tobi Delbruck (2008). “A 128 ×
128 120 dB 15 µs latency asynchronous temporal contrast vision sensor”.
In: IEEE Journal of Solid-State Circuits 43.2, pp. 566–576.

[245] Zaghloul, Kareem A. and Kwabena Boahen (2006). “A silicon retina that
reproduces signals in the optic nerve”. In: Journal of Neural Engineering 3.4.

[246] Ruedi, Pierre François et al. (2003). “A 128 × 128 pixel 120dB dynamic
range vision sensor chip for image contrast and orientation extraction”.
In: Int. Solid-State Circuits Conf.

[247] Mallik, Udayan et al. (2005). “Temporal change threshold detection im-
ager”. In: Int. Solid-State Circuits Conf. 48, pp. 298–299.

[248] Lazzaro, John et al. (1993). “Silicon Auditory Processors as Computer Pe-
ripherals”. In: IEEE Transactions on Neural Networks 4.3, pp. 523 –528.

[249] Berner, R. et al. (2013). “A 240x180 120dB 10mW 12us-latency sparse out-
put vision sensor for mobile applications”. In: Symposium on VLSI Circuits.

194

Bibliography

[250] Brandli, Christian et al. (2014). “A 240 × 180 130 dB 3 µs latency global
shutter spatiotemporal vision sensor”. In: IEEE Journal of Solid-State Cir-
cuits 49.10, pp. 2333–2341.

[251] Posch, Christoph, Daniel Matolin, and Rainer Wohlgenannt (2011). “A
QVGA 143 dB dynamic range frame-free PWM image sensor with lossless
pixel-level video compression and time-domain CDS”. In: IEEE Journal of
Solid-State Circuits 46.1, pp. 259–275.

[252] Prophesee Evaluation Kits (2020).
[253] Suh, Yunjae et al. (2020). “A 1280x960 dynamic vision sensor with a 4.95-

µm pixel pitch and motion artifact minimization”. In: Int. Symp. Circuits
Syst. (ISCAS).

[254] IniVation (2020). Understanding the Performance of Neuromorphic Event-based
Vision Sensors.

[255] Delbruck, T., V. Villanueva, and L. Longinotti (2014). “Integration of dy-
namic vision sensor with inertial measurement unit for electronically sta-
bilized event-based vision”. In: Int. Symp. Circuits Syst. (ISCAS), pp. 2636–
2639.

[256] Berner, Raphael (2006). “Highspeed USB2.0 AER Interfaces”. doctoral the-
sis. ETH Zurich.

[257] Fossum, Eric (1997). “CMOS lmagc Sensors: Electronic Camera on A Chip”.
In: IEEE Transactions on Electron Devices.

[258] Ieng, Sio-Hoi et al. (2018). “Neuromorphic Event-Based Generalized Time-
Based Stereovision”. In: Frontiers in Neuroscience 12, p. 442.

[259] Orchard, Garrick et al. (2014). “Accelerated frame-free time-encoded multi-
step imaging”. In: Int. Symp. Circuits Syst. (ISCAS), pp. 2644–2647.

[260] Schraml, S., P. Schön, and N. Milosevic (2007). “Smartcam for real-time
stereo vision - address-event based embedded system.” In: Int. Conf. on
Computer Vision Theory and Applications 2.

[261] Kogler, Jürgen, Christoph Sulzbachner, and Wilfried Kubinger (2009). “Bio-
inspired stereo vision system with silicon retina imagers”. In: Lecture Notes
in Computer Science 5815, pp. 174–183.

[262] Belbachir, A. N. et al. (2012). “CARE: A dynamic stereo vision sensor sys-
tem for fall detection”. In: Int. Symp. Circuits Syst. (ISCAS), pp. 731–734.

[263] Dominguez-Morales, M. Cerezuela-Escudero, E. et al. (2011). Image Match-
ing Algorithms in Stereo Vision using Address-event-representation - A Theoret-
ical Study and Evaluation of the Different Algorithms.

[264] Kogler, Jürgen, Martin Humenberger, and Christoph Sulzbachner (2011).
“Event-Based Stereo Matching Approaches for Frameless Address Event
Stereo Data”. In: Advances in Visual Computing 7.

[265] Kogler, Juergen et al. (2011). “Address-Event Based Stereo Vision with Bio-
Inspired Silicon Retina Imagers”. In: Advances in Theory and Applications of
Stereo Vision.

[266] Ye, Chengxi et al. (2018). “Unsupervised Learning of Dense Optical Flow,
Depth and Egomotion from Sparse Event Data”. In: Int. Conf. on Intelligent
Robots and Systems (IROS), pp. 5831–5838.

195

Bibliography

[267] Maqueda, Ana I. et al. (2018). “Event-Based Vision Meets Deep Learning
on Steering Prediction for Self-Driving Cars”. In: Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 5419–5427.

[268] Tulyakov, Stepan et al. (2019). “Learning an Event Sequence Embedding
for Dense Event-Based Deep Stereo”. In: Int. Conf. on Computer Vision,
pp. 1527–1537.

[269] Nguyen, Anh et al. (2019). “Real-time 6DOF pose relocalization for event
cameras with stacked spatial LSTM networks”. In: Workshop in Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 1638–1645.

[270] Moeys, Diederik Paul et al. (2016). “Steering a predator robot using a
mixed frame/event-driven convolutional neural network”. In: Int. Conf.
on Event-Based Control, Communication, and Signal Processing 2.

[271] Wang, Lin et al. (2019). “Event-based high dynamic range image and very
high frame rate video generation using conditional generative adversarial
networks”. In: Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 10073–10082.

[272] Benosman, Ryad et al. (2011). “Asynchronous event-based Hebbian epipo-
lar geometry”. In: Neural Networks 22.11, pp. 1723–1734.

[273] Rogister, Paul et al. (2012). “Asynchronous event-based binocular stereo
matching”. In: Neural Networks and Learning Systems 23.2, pp. 347–353.

[274] Carneiro, João et al. (2013). “Event-based 3D reconstruction from neuro-
morphic retinas”. In: Neural Networks 45, pp. 27–38.

[275] Benosman, Ryad et al. (2014). “Event-based visual flow”. In: Neural Net-
works and Learning Systems 25.2, pp. 407–417.

[276] Schraml, Stephan, Ahmed Nabil Belbachir, and Horst Bischof (2015). “Event-
driven stereo matching for real-time 3D panoramic vision”. In: Conf. on
Computer Vision and Pattern Recognition (CVPR) 07-12-June, pp. 466–474.

[277] Matsuda, Nathan, Oliver Cossairt, and Mohit Gupta (2015). “MC3D: Mo-
tion Contrast 3D Scanning”. In: Int. Conf. on Computational Photography
(ICCP).

[278] Martel, Julien N P et al. (2018). “An Active Approach to Solving the Stereo
Matching Problem using Event-Based Sensors”. In: Int. Symp. Circuits Syst.
(ISCAS).

[279] Rebecq, Henri et al. (2018). “EMVS: Event-Based Multi-View Stereo—3D
Reconstruction with an Event Camera in Real-Time”. In: Int. J. of Computer
Vision 126.12, pp. 1394–1414.

[280] Collins, Robert T (1996). “A Space-Sweep Approach t o T rue Multi-Image
Matching”. In: Conf. on Computer Vision and Pattern Recognition, pp. 358–
363.

[281] Kim, Hanme, Stefan Leutenegger, and Andrew J. Davison (2016). “Real-
time 3D reconstruction and 6-DoF tracking with an event camera”. In:
Lecture Notes in Computer Science 9910 LNCS, pp. 349–364.

[282] Gallego, Guillermo, Henri Rebecq, and Davide Scaramuzza (2018). “A
Unifying Contrast Maximization Framework for Event Cameras, with Ap-
plications to Motion, Depth, and Optical Flow Estimation”. In: Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 3867–3876.

196

Bibliography

[283] Haessig, Germain et al. (2019). “A Spiking Neural Network Model of Depth
from Defocus for Event-based Neuromorphic Vision”. In: Scientific Reports
9.1.

[284] Marr, D. and T. Poggio (1977). “A Theory of Human Stereo Vision”. In:
Tech. rep., Cambridge.

[285] — (1979). “A computational theory of human stereo vision”. In: Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences 204.1156,
pp. 301–328.

[286] Mahowald, Misha (1992). VLSI analogs of neuronal visual processing : a syn-
thesis of form and function. Pasadena.

[287] Piatkowska, Ewa et al. (2017). “Improved Cooperative Stereo Matching
for Dynamic Vision Sensors with Ground Truth Evaluation”. In: Workshop
in Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 370–377.

[288] Camunas-Mesa, L. A. et al. (2014). “Event-driven stereo vision with orien-
tation filters”. In: Int. Symp. Circuits Syst. (ISCAS), pp. 257–260.

[289] Valeiras, David Reverter et al. (2016). “Neuromorphic Event-Based 3D
Pose Estimation”. In: Frontiers in Neuroscience 9.

[290] Xie, Zhen, Shengyong Chen, and Garrick Orchard (2017). “Event-based
stereo depth estimation using belief propagation”. In: Frontiers in Neuro-
science 11, p. 535.

[291] Xie, Zhen, Jianhua Zhang, and Pengfei Wang (2018). “Event-based stereo
matching using semiglobal matching”. In: International Journal of Advanced
Robotic Systems 15.1.

[292] Felzenszwalb, Pedro F. and Daniel P. Huttenlocher (2004). “Efficient be-
lief propagation for early vision”. In: Conf. on Computer Vision and Pattern
Recognition (CVPR) 1.

[293] Kogler, Jürgen et al. (2014). “Enhancement of sparse silicon retina-based
stereo matching using belief propagation and two-stage postfiltering”. In:
Journal of Electronic Imaging 23.4, p. 043011.

[294] Andreopoulos, Alexander et al. (2018). “A Low Power, High Throughput,
Fully Event-Based Stereo System”. In: Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 7532–7542.

[295] Zhu, Alex Zihao, Yibo Chen, and Kostas Daniilidis (2018). “Realtime Time
Synchronized Event-based Stereo”. In: ECCV.

[296] Eibensteiner, Florian, Jürgen Kogler, and Josef Scharinger (2014). “A High-
Performance Hardware Architecture for a Frameless Stereo Vision Algo-
rithm Implemented on a FPGA Platform”. In: Workshop in CVPR, pp. 637–
644.

[297] Sharma, Kajal, Sung Gaun Kim, and Manu Pratap Singh (2012). “An im-
proved feature matching technique for stereo vision applications with the
use of self-organizing map”. In: Int. J. of Precision Engineering and Manufac-
turing 13.8, pp. 1359–1368.

[298] Han, Xufeng et al. (2015). “MatchNet: Unifying feature and metric learn-
ing for patch-based matching”. In: Conf. on Computer Vision and Pattern
Recognition (CVPR) 07-12-June, pp. 3279–3286.

197

Bibliography

[299] Hartmann, Wilfried et al. (2017). “Learned Multi-Patch Similarity”. In: Int.
Conf. on Computer Vision (ICCV), pp. 1595–1603.

[300] Zbontar, Jurě and Yann Lecun (2016). “Stereo Matching by Training a Con-
volutional Neural Network to Compare Image Patches”. In: Journal of Ma-
chine Learning Research 17, pp. 1–32.

[301] Kar, Abhishek, Christian Häne, and Jitendra Malik (2017). “Learning a
Multi-View Stereo Machine”. In: NIPS.

[302] Weikersdorfer, David, Raoul Hoffmann, and Jörg Conradt (2013). “Simul-
taneous localization and mapping for event-based vision systems”. In: Lec-
ture Notes in Computer Science 7963 LNCS, pp. 133–142.

[303] Kim, Hanme et al. (2014). “Simultaneous mosaicing and tracking with an
event camera”. In: British Machine Vision Conf.

[304] Milford, Michael et al. (2015). “Towards Visual SLAM with Event-based
Cameras”. In: Robotics Science and Systems conference.

[305] Zbontar, Jurě and Yann Lecun (2015). “Computing the Stereo Matching
Cost with a Convolutional Neural Network”. In: Conf. on Computer Vision
and Pattern Recognition (CVPR).

[306] Longuet-Higgins, H.C. (1987). “A computer algorithm for reconstructing
a scene from two projections”. In: Readings in Computer Vision, pp. 61–62.

[307] Grèzes, J. et al. (2003). “Activations related to "mirror" and "canonical"
neurones in the human brain: An fMRI study”. In: NeuroImage 18.4, pp. 928–
937.

[308] Bonini, Luca et al. (2014). “Space-Dependent Representation of Objects
and Other’s Action in Monkey Ventral Premotor Grasping Neurons”. In:
Journal of Neuroscience 34.11, pp. 4108–4119.

[309] Ott, Benjamin H (2012). “A Convergence Criterion For Self-Organizing
Maps”. Master of Science. University of Rhode Island.

[310] Carey, Susan (2004). “Bootstrapping and the origin of concepts”. In: Daedalus
133.1, pp. 59–66.

[311] Fischler, Martin A and Robert C Bolles (1981). “Random Sample Consen-
sus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis
and Automated Cartography”. In: Graphics and Image Processing 24.6. Ed.
by J.D. Foley, pp. 381–395.

[312] Yuen, HK et al. (1990). “Comparative study of Hough Transform methods
for circle finding”. In: Image and Vision Computing 8.1, pp. 71–77.

[313] Hyndman, Rob J. and Anne B. Koehler (2006). “Another look at measures
of forecast accuracy”. In: International Journal of Forecasting 22.4, pp. 679–
688.

[314] Song, Rihui et al. (2018). “Calibration of Event-based Camera and 3D Li-
DAR”. In: Symp. on Advanced Robotics and Automation, pp. 102–107.

[315] Dominguez-Morales, Manuel J. et al. (2019). “Bio-Inspired Stereo Vision
Calibration for Dynamic Vision Sensors”. In: IEEE Access 7, pp. 138415–
138425.

[316] Muglikar, Manasi et al. (2021). “How to Calibrate Your Event Camera”. In:
Workshop in Conf. on Computer Vision and Pattern Recognition (CVPR).

198

Bibliography

[317] Huang, Kun, Yifu Wang, and Laurent Kneip (2021). “Dynamic Event Cam-
era Calibration”. In: Int. Conf. on Intelligent Robots and Systems (IROS).

[318] Mueggler, Elias, Basil Huber, and Davide Scaramuzza (2014). “Event-based,
6-DOF pose tracking for high-speed maneuvers”. In: Int. Conf. on Intelli-
gent Robots and Systems (IROS), pp. 2761–2768.

[319] Prophesee. Calibration — Metavision Intelligence Docs 3.0.2.
[320] Gehrig, Mathias et al. (2021). “DSEC: A Stereo Event Camera Dataset for

Driving Scenarios”. In: IEEE Robotics and Automation Letters 6.3, pp. 4947–
4954.

[321] Yan, Di et al. (2018). “An efficient sparse-dense matrix multiplication on
a multicore system”. In: Int. Conf. on Communication Technology, pp. 1880–
1883.

[322] Latombe, Jean-Claude (1991). Robot Motion Planning. Boston, MA: Springer
US.

[323] LaValle, Steven (2006). Planning Algorithms. Ed. by University of Illinois.
Cambridge University Press.

[324] LaValle, S M (2011). “Motion Planning”. In: IEEE Robotics & Automation
Magazine 18.1, pp. 79–89.

[325] Lynch, Kevin (Kevin M.) and Frank C. Park (2017). Modern robotics : me-
chanics, planning, and control, p. 528.

[326] Choset, Howie M. (2005). Principles of robot motion : theory, algorithms, and
implementation. MIT Press, p. 603.

[327] Hermann, A. et al. (2013). “Hardware and software architecture of the bi-
manual mobile manipulation robot HoLLiE and its actuated upper body”.
In: Int. Conf. on Advanced Intelligent Mechatronics. IEEE, pp. 286–292.

[328] Ju, Zhangfeng, Chenguang Yang, and Hongbin Ma (2014). “Kinematics
modeling and experimental verification of baxter robot”. In: Proceedings of
the 33rd Chinese Control Conference. IEEE, pp. 8518–8523.

[329] Asfour, Tamim et al. (2018). “ARMAR-6: A Collaborative Humanoid Robot
for Industrial Environments”. In: 2018 IEEE-RAS 18th International Confer-
ence on Humanoid Robots (Humanoids). IEEE, pp. 447–454.

[330] Ng, James and Thomas Bräunl (2007). “Performance comparison of Bug
navigation algorithms”. In: Journal of Intelligent and Robotic Systems: Theory
and Applications 50.1, pp. 73–84.

[331] Lozano-Perez, Tomfis and Michael A Wesley (1979). “An Algorithm for
Planning Collision-Free Paths Among Polyhedral Obstacles”. In: Scientific
Applications.

[332] Ó’Dúnlaing, Colm and Chee K. Yap (1985). “A "retraction" method for
planning the motion of a disc”. In: Journal of Algorithms 6.1, pp. 104–111.

[333] Takahashi, Osamu and R. J. Schilling (1989). “Motion Planning in a Plane
Using Generalized Voronoi Diagrams”. In: IEEE Transactions on Robotics
and Automation 5.2, pp. 143–150.

[334] Petrovic, Luka (2018). “Motion planning in high-dimensional spaces”. In:
ArXiv abs/1806.0.

199

Bibliography

[335] Brock, Oliver and Lydia E. Kavraki (2000). “Towards Real-Time Motion
Planning in High Dimensional Spaces”. In: Int. Symp. on Robotics and Au-
tomation.

[336] Karur, Karthik et al. (2021). “A Survey of Path Planning Algorithms for
Mobile Robots”. In: Vehicles 3.3, pp. 448–468.

[337] Costa, Márcia M. and Manuel F. Silva (2019). “A Survey on Path Planning
Algorithms for Mobile Robots”. In: Int. Conf. on Autonomous Robot Systems
and Competitions (ICARSC) 19.

[338] Yang, Liang et al. (2016). “Survey of Robot 3D Path Planning Algorithms”.
In: J. of Control Science and Engineering.

[339] Masehian, Ellips and Davoud Sedighizadeh (2007). “Classic and Heuristic
Approaches in Robot Motion Planning-A Chronological Review”. In: Int.
J. of Mechanical and Mechatronics Engineering 1.5, pp. 228 –233.

[340] Lengyel, Jed et al. (1990). “Real-Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware”. In: ACM SIGGRAPH Computer
Graphics 24.4, pp. 327–335.

[341] Murray, Don and Cullen Jennings (1997). “Stereo vision based mapping
and navigation for mobile robots”. In: Int. Conf. on Robotics and Automation
2, pp. 1694–1699.

[342] Zidane, Issa Mtanos and Khalil Ibrahim (2018). “Wavefront and a-star al-
gorithms for mobile robot path planning”. In: Advances in Intelligent Sys-
tems and Computing 639, pp. 69–80.

[343] Pal, Anshika, Ritu Tiwari, and Anupam Shukla (2011). “A focused wave
front algorithm for mobile robot path planning”. In: Lecture Notes in Com-
puter Science 6678 LNAI.PART 1, pp. 190–197.

[344] Ghai, Bhavya and Anupam Shukla (2016). “Wave Front Method Based
Path Planning Algorithm for Mobile Robots”. In: Int. Conf. on Information
and Communication Technology for Intelligent Systems: 1, pp. 279–286.

[345] Barry, Jennifer L. (2013). “Manipulation with Diverse Actions”. PhD the-
sis.

[346] Pan, Jia and Dinesh Manocha (2015). “Efficient Configuration Space Con-
struction and Optimization for Motion Planning”. In: Engineering 1, pp. 046–
057.

[347] Liu, Yizhou et al. (2021). “Creating Better Collision-Free Trajectory for Robot
Motion Planning by Linearly Constrained Quadratic Programming”. In:
Frontiers in Neurorobotics 15, p. 104.

[348] Elbanhawi, Mohamed and Milan Simic (2014). “Sampling-based robot mo-
tion planning: A review”. In: IEEE Access 2, pp. 56–77.

[349] Atas, Fetullah, Lars Grimstad, and Grzegorz Cielniak (2021). “Evaluation
of Sampling-Based Optimizing Planners for Outdoor Robot Navigation”.
In: Int. Conf. on Intelligent Autonomous Systems (IAS) 17.

[350] Khatib, O. (1985). “Real-time obstacle avoidance for manipulators and mo-
bile robots”. In: Int. Conf. on Robotics and Automation, pp. 500–505.

[351] Qureshi, A. et al. (2018). “Motion Planning Networks”. In: Int. Conf. on
Robotics and Automation (ICRA).

200

Bibliography

[352] Qureshi, Ahmed Hussain et al. (2021). “Motion Planning Networks: Bridg-
ing the Gap Between Learning-Based and Classical Motion Planners”. In:
IEEE Transactions on Robotics 37.1, pp. 48–66.

[353] Chen, Binghong et al. (2020). “Learning to Plan in High Dimensions via
Neural Exploration-Exploitation Trees”. In: Int. Conf. on Learning Represen-
tations 11.

[354] Wang, Jiankun et al. (2020). “Neural RRT: Learning-Based Optimal Path
Planning”. In: IEEE Transactions on Automation Science and Engineering 17.4,
pp. 1748–1758.

[355] Park, Sun Oh, Min Cheol Lee, and Jaehyung Kim (2020). “Trajectory Plan-
ning with Collision Avoidance for Redundant Robots Using Jacobian and
Artificial Potential Field-based Real-time Inverse Kinematics”. In: Int. J. of
Control, Automation and Systems 18.8, pp. 2095–2107.

[356] Adar, Nurettin Gökhan (2021). “Real Time Control Application of the Robotic
Arm Using Neural Network Based Inverse Kinematics Solution”. In: Sakarya
University Journal of Science 25.3, pp. 849–857.

[357] Zhu, Delong et al. (2018). “Deep Reinforcement Learning Supervised Au-
tonomous Exploration in Office Environments”. In: Int. Conf. on Robotics
and Automation (ICRA), pp. 7548–7555.

[358] Niroui, Farzad et al. (2019). “Deep Reinforcement Learning Robot for Search
and Rescue Applications: Exploration in Unknown Cluttered Environments”.
In: IEEE Robotics and Automation Letters 4.2, pp. 610–617.

[359] Chen, Fanfei et al. (2019). “Self-learning exploration and mapping for mo-
bile robots via deep reinforcement learning”. In: AIAA Scitech Forum.

[360] Li, Haoran and Qichao Zhang (2020). “Deep Reinforcement Learning based
Automatic Exploration for Navigation in Unknown Environment”. In: IEEE
Transactions on Neural Networks and Learning Systems 31, pp. 2064–2076.

[361] Henderson, Peter et al. (2018). “Deep reinforcement learning that mat-
ters”. In: Conf. on Artificial Intelligence (AAAI), pp. 3207–3214.

[362] Schmid, Lukas et al. (2022). “Fast and Compute-Efficient Sampling-Based
Local Exploration Planning via Distribution Learning”. In: IEEE Robotics
and Automation Letters 7.3.

[363] Christensen, Dennis V et al. (2022). “2022 roadmap on neuromorphic com-
puting and engineering”. In: Neuromorphic Computing and Engineering 2.2,
p. 022501.

[364] Sharifshazileh, Mohammadali et al. (2021). “An electronic neuromorphic
system for real-time detection of high frequency oscillations (HFO) in in-
tracranial EEG”. In: Nature Communications 12.1, pp. 1–14.

[365] Tang, Guangzhi, Arpit Shah, and Konstantinos P. Michmizos (2019). “Spik-
ing Neural Network on Neuromorphic Hardware for Energy-Efficient Uni-
dimensional SLAM”. In: Int. Conf. on Intelligent Robots and Systems, pp. 4176–
4181.

[366] Blouw, Peter et al. (2018). “Benchmarking Keyword Spotting Efficiency
on Neuromorphic Hardware”. In: Annual Neuro-inspired Computational El-
ements Workshop 7, pp. 1–8.

201

Bibliography

[367] Koziol, Scott, Stephen Brink, and Jennifer Hasler (2014). “A neuromor-
phic approach to path planning using a reconfigurable neuron array IC”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22.12,
pp. 2724–2737.

[368] Rueckert, Elmar et al. (2016). “Recurrent Spiking Networks Solve Planning
Tasks”. In: Scientific Reports 6.February, p. 21142.

[369] Ficuciello, Fanny et al. (2014). “Postural synergies of the UB Hand IV for
human-like grasping”. In: Robotics and Autonomous Systems 62.4, pp. 515–
527.

[370] D’Avella, Andrea, Philippe Saltiel, and Emilio Bizzi (2003). “Combinations
of muscle synergies in the construction of a natural motor behavior”. In:
Nature Neuroscience 6.3, pp. 300–308.

[371] Chen, Pengfei et al. (2018). “Dimensionality Reduction for Motion Plan-
ning of Dual-arm Robots”. In: Int. Conf. on Mechatronics and Automation
(ICMA), pp. 718–723.

[372] Schaal, Stefan et al. (2005). “Learning movement primitives”. In: Springer
Tracts in Advanced Robotics 15, pp. 561–572.

[373] Ijspeert, Auke Jan et al. (2013). “Dynamical Movement Primitives: Learn-
ing Attractor Models for Motor Behaviors”. In: Neural Computation 25.2,
pp. 328–373.

[374] Sayers, Craig (1991). Self Organizing Feature Maps and Their Applications to
Robotics. Tech. rep. The University of Pennsylvania.

[375] Saxon, James Bennett and Amitabha Mukerjee (1990). “Learning the mo-
tion map of a robot arm with neural networks”. In: IJCNN, pp. 777–782.

[376] Barreto, Guilherme de A., Aluizio F. R. Araújo, and Helge J. Ritter (2003).
“Self-Organizing Feature Maps for Modeling and Control of Robotic Ma-
nipulators”. In: J. Intell. Robot. Syst 36.4, pp. 407–450.

[377] Martinetz, Thomas M. and Klaus J. Schulten (1990). “Hierarchical neural
net for learning control of a robot’s arm and gripper”. In: Int. Joint Conf. on
Neural Networks, pp. 747–752.

[378] Martinetz, Thomas, Helge J. Ritter, and Klaus J. Schulten (1990). “Learning
of Visuomotor Coordination of a Robot Arm with Redundant Degrees of
Freedom”. In: Parallel Processing in Neural Systems and Computers.

[379] Behera, L., M. Gopal, and S. Chaudhury (1995). “Self-organizing neural
networks for learning inverse dynamics of robot manipulator”. In: Int.
Conf. on Industrial Automation and Control, pp. 457–460.

[380] Benante, Ruben C. and Aluizio F.R. Araújo (2007). “Self-organizing maps
to generate state trajectories of manipulators”. In: Int. Conf. on Systems,
Man and Cybernetics, pp. 1590–1595.

[381] Kumar, Swagat et al. (2010). “Visual motor control of a 7DOF redundant
manipulator using redundancy preserving learning network”. In: Robotica
28.6, pp. 795–810.

[382] Ritter, Helge, Thomas Martinetz, and Klaus Schulten (1992). “Visuomotor
Coordination of a Robot Arm”. In: Neural Computation and Self-Organizing
Maps - An Introduction. New York. Chap. 11, pp. 156–187.

202

Bibliography

[383] Ritter, Helge J., Thomas M. Martinetz, and Klaus J. Schulten (1989). “Topolo-
gy conserving maps for learning visuo-motor-coordination”. In: Neural
Networks 2.3, pp. 159–168.

[384] Wise, K. D. and A. Bowyer (2000). “A survey of global configuration-space
mapping techniques for a single robot in a static environment”. In: Int. J.
of Robotics Research 19.8, pp. 762–779.

[385] Brost, R.C. (1989). “Computing metric and topological properties of config-
uration space obstacles.” In: Int. Conf. on Robotics and Automation (ICRA),
pp. 170–176.

[386] Zhao, C. S., M. Farooq, and M. M. Bayoumi (1995). “Analytical solution
for configuration space obstacle computation and representation”. In: In-
dustrial Electronics Conference (IECON) 2, pp. 1278–1283.

[387] Varadhan, Gokul et al. (2006). “Topology preserving approximation of free
configuration space”. In: Int. Conf. on Robotics and Automation, pp. 3041–
3048.

[388] Ward, James and Jayantha Katupitiya (2007). “Free space mapping and
motion planning in configuration space for mobile manipulators”. In: Int.
Conf. on Robotics and Automation (ICRA), pp. 4981–4986.

[389] Han, Baoling et al. (2021). “Research on Obstacle Avoidance Motion Plan-
ning Technology of 6-DOF Manipulator”. In: Adv. Intell. Syst. Comput. 1296,
pp. 604–614.

[390] Wu, Xiaojun, Qing Lit, and K. H. Heng (2005). “A new algorithm for con-
struction of discretized configuration space obstacle and collision detec-
tion of manipulators”. In: ICAR, pp. 90–95.

[391] Xie, Yangmin, Rui Zhou, and Yusheng Yang (2020). “Improved distorted
configuration space path planning and its application to robot manipula-
tors”. In: Sensors 20.21, pp. 1–23.

[392] Huerta-Chua, Jesus et al. (2021). “Exploring a Novel Multiple-Query Re-
sistive Grid-Based Planning Method Applied to High-DOF Robotic Ma-
nipulators”. In: Sensors 21.9.

[393] Davies, Mike (2019a). “Advancing neuromorphic computing From promise
to Competitive technology Neuro-Inspired Computational Elements Work-
shop”. In: Neuro-Inspired Computational Elements (NICE) Workshop.

[394] Cordel, Macario O. and Arnulfo P. Azcarraga (2015). “Fast Emulation of
Self-organizing Maps for Large Datasets”. In: Procedia Computer Science
52.1, pp. 381–388.

[395] Terlemez, Ömer et al. (2015). “Master Motor Map (MMM) - Framework
and toolkit for capturing, representing, and reproducing human motion
on humanoid robots”. In: Int. Conf. Humanoid Robots, pp. 894–901.

[396] Coleman, David et al. (2014). “Reducing the Barrier to Entry of Complex
Robotic Software: a MoveIt! Case Study”. In: arXiv.

[397] Thomas, Dirk, William Woodall, and Esteve Fernandez (2014). “Next gener-
ation ROS: Building on DDS”. In: ROSCon.

[398] Kam, Hyeong Ryeol et al. (2015). “RViz: a toolkit for real domain data
visualization”. In: Telecommunication Systems 60.2, pp. 337–345.

203

Bibliography

[399] Şucan, Ioan A., Mark Moll, and Lydia Kavraki (2012). “The open motion
planning library”. In: IEEE Robot Autom Mag 19.4, pp. 72–82.

[400] Kingston, Zachary, Mark Moll, and Lydia E. Kavraki (2019). “Exploring
implicit spaces for constrained sampling-based planning”. In: Int. J. of Ro-
botics Research 38.10-11, pp. 1151–1178.

[401] Strickert, Marc and Barbara Hammer (2003). “Neural Gas for Sequences”.
In: WSOM, pp. 53–57.

[402] Kucuk, Serdar and Zafer Bingul (2006). “Robot Kinematics: Forward and
Inverse Kinematics”. In: IndustrialRobotics: Theory, Modelling and Control.
Ed. by Sam Cubero.

[403] Huang, Chung Yang, Chao Yue Lai, and Kwang Ting Cheng (2009). “Fun-
damentals of Algorithms”. In: Electronic Design Automation, pp. 173–234.

[404] Ravankar, Abhijeet et al. (2018). “Path smoothing techniques in robot nav-
igation: State-of-the-art, current and future challenges”. In: Sensors 18.9.

[405] Hermann, Andreas et al. (2014). “Unified GPU voxel collision detection
for mobile manipulation planning”. In: Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 4154–4160.

[406] Quigley, Morgan et al. (2009). “ROS: An open-source Robot Operating Sys-
tem”. In: Int. Conf. on Robotics and Automation (ICRA).

[407] Bing, Z. et al. (2018). “A Survey of Robotics Control Based on Learning-
Inspired Spiking Neural Networks”. In: Front. in Neurorobotics 12.

[408] Friedmann, Simon et al. (2016). “Demonstrating Hybrid Learning in a
Flexible Neuromorphic Hardware System”. In: Trans. Biomed. Circuits Syst.
11.1, pp. 128–142.

[409] Vineyard, Craig M. et al. (2019). “Benchmarking event-driven neuromor-
phic architectures”. In: ACM International Conference Proceeding Series.

[410] Rowley, A. et al. (2020). “Stacks of Software Stacks”. In: SpiNNaker – A
Spiking Neural Network Architecture. Ed. by Steve Furber and Petruţ Bog-
dan. Now Publishers Inc., pp. 79–128.

[411] Garside, James and Luis A. Plana (2020). “The SpiNNaker chip”. In: SpiN-
Naker – a spiking neural network architecture, pp. 17–52.

[412] Owens, John D. et al. (2008). “GPU computing”. In: Proceedings of the IEEE
96.5, pp. 879–899.

[413] Molla, Md Mamun et al. (2018). “GPU Accelerated Multiple-Relaxation-
Time Lattice Boltzmann Simulation of Convective Flows in a Porous Me-
dia”. In: Frontiers in Mechanical Engineering 4.

[414] Whitehead, Nathan (2011). Precision & Performance: Floating Point and IEEE
754 Compliance for NVIDIA GPUs. Tech. rep.

[415] Brette, Romain et al. (2007). “Simulation of networks of spiking neurons:
A review of tools and strategies”. In: Journal of Computational Neuroscience
23.3, pp. 349–398.

[416] Goodman, Dan F.M. and Romain Brette (2009). “The brian simulator”. In:
Frontiers in Neuroscience 3.SEP, pp. 192–197.

[417] Pehle, Christian and Jens Egholm Pedersen. Norse - A deep learning library
for spiking neural networks.

204

Bibliography

[418] Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High Perfor-
mance Deep Learning Library”. In: Int. Conf. on Neural Information Process-
ing Systems (NIPS) 721, pp. 8026–8037.

[419] Carnevale, N. T. and Hines M. L. (2006). The NEURON Book | NEURON.
Cambridge University Press.

[420] Gewaltig, Marc-Oliver and Markus Diesmann (2007). “NEST (NEural Sim-
ulation Tool)”. In: Scholarpedia 2.4, p. 1430.

[421] Bower, James M. et al. (1998). “Introduction”. In: The Book of GENESIS.
Springer New York, pp. 3–5.

[422] Stimberg, Marcel, Romain Brette, and Dan F.M. Goodman (2019). “Brian
2, an intuitive and efficient neural simulator”. In: eLife 8.

[423] Rittner, Pedro and Thomas A Cleland (2014). Myriad : a transparently paral-
lel GPU-based simulator for densely integrated biophysical models Implementa-
tional Details Planned Extensions Why another simulator? Tech. rep.

[424] Davison, Andrew P et al. (2008). “PyNN: A Common Interface for Neu-
ronal Network Simulators.” In: Frontiers in neuroinformatics 2, p. 11.

[425] Eppler, Jochen Martin et al. (2009). “PyNEST: A Convenient Interface to
the NEST Simulator”. In: Frontiers in neuroinformatics 2.

[426] Morrison, Abigail et al. (2005). “Advancing the boundaries of high connec-
tivity network simulation with distributed computing”. In: Neural compu-
tation 17.8, pp. 1776–1801.

[427] Rotter, Stefan and Markus Diesmann (1999). “Exact digital simulation of
time-invariant linear systems with applications to neuronal modeling”. In:
Biological Cybernetics 81.5-6, pp. 381–402.

[428] MacGregor, Ronald J. (1987). Neural and brain modeling. Academic Press,
p. 643.

[429] Vitay, Julien, Helge Dinkelbach, and Fred H. Hamker (2015). “ANNarchy:
A code generation approach to neural simulations on parallel hardware”.
In: Frontiers in Neuroinformatics 9, p. 19.

[430] Potjans, Tobias C. and Markus Diesmann (2014). “The Cell-Type Specific
Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spik-
ing Network Model”. In: Cerebral Cortex 24.3, pp. 785–806.

[431] Schmuker, Michael and Gisbert Schneider (2007). “Processing and clas-
sification of chemical data inspired by insect olfaction”. In: Proceedings
of the National Academy of Sciences of the United States of America 104.51,
pp. 20285–20289.

[432] Diamond, Alan et al. (2014). “Classifying chemical sensor data using GPU-
accelerated bio-mimetic neuronal networks based on the insect olfactory
system”. In: BMC Neuroscience 15.S1, pp. 1–2.

[433] Rhodes, Oliver et al. (2018). “Spynnaker: A software package for running
pynn simulations on spinnaker”. In: Frontiers in Neuroscience 12, p. 816.

[434] Franklin, Dustin (2018). NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for
New Era of AI in Robotics.

[435] Zehra, Farzeen et al. (2020). “Comparative Analysis of C++ and Python in
Terms of Memory and Time”.

[436] EVALUATION KIT - Gen3 HVGA-EM (2022).

205

Bibliography

[437] RealSense Depth Camera D435 (2022).

206

Publications by the author et al.

Steffen, Lea et al. (2019a). “Creating an obstacle memory through event-based
stereo vision and robotic proprioception”. In: Int. Conf. on Automation Science
and Engineering (CASE) 15, pp. 1829–1836.

Steffen, Lea et al. (2019c). “Neuromorphic Stereo Vision: A Survey of Bio-Inspired
Sensors and Algorithms”. In: Frontiers in Neurorobotics 13, p. 28.

Kaiser, Jacques et al. (2018). “Microsaccades for neuromorphic stereo vision”. In:
Lecture Notes in Computer Science 11139, pp. 244–252.

Steffen, Lea et al. (2021c). “Reducing the Dimension of the Configuration Space
with Self Organizing Neural Networks”. In: Int. Conf. on Advanced Robotics and
Mechatronics (ICARM).

Steffen, Lea et al. (2019b). “Multi-view 3D reconstruction with self-organizing
maps on event-based data”. In: Int. Conf. on Advanced Robotics, (ICAR) 19.

Steffen, Lea et al. (2021a). “A Benchmark Environment for Neuromorphic Stereo
Vision”. In: Frontiers in Robotics and AI, section Robot and Machine Vision.

Steffen, Lea et al. (2022a). “Comparing SONN Types for Efficient Robot Motion
Planning in the Configuration Space”. In: Int. Conf. on Intelligent Autonomous
Systems (IAS) 17.

Steffen, Lea et al. (2022b). “Reactive Neural Path Planning with Dynamic Obstacle
Avoidance in a Condensed Configuration Space”. In: Int. Conf. on Intelligent
Robots and Systems (IROS).

Steffen, Lea et al. (2020b). “Networks of Place Cells for Representing 3D Environ-
ments and Path Planning”. In: Int. Conf. on Biomedical Robotics and Biomechatron-
ics (BioRob) 7.

Steffen, Lea et al. (2020a). “Adaptive, Neural Robot Control –Path Planning on 3D
Spiking Neural Networks”. In: Int. Conf. on Artificial Neural Networks (ICANN)
29.

Steffen, Lea et al. (2021b). “Benchmarking Highly Parallel Hardware for Spiking
Neural Networks in Robotics”. In: Frontiers in Neuroscience 15, p. 790.

207

Related student work

Hauck, Bendikt (2019). “Towards an obstacle memory: A voxel-based approach
to model a robot’s proprioception using spiking neurons”. Master. Karlsruher
Institut für Technologie.

Augenstein, Philipp (2021). “Configuration aware Neural Path Planning in the
Task Space”. Master. Hochschule Karlsruhe University of Applied Sciences.

Glueck, Katharina (2021). “Reducing the Dimensionality of the Configuration
Space with Self Organizing Neural Networks”. Master. Karlsruher Institut für
Technologie.

Ehrlinspiel, Björn (2019). “Ereignisbasierte Tiefenwahrnehmung mit Hilfe einer
Self-Organizing Map”. Bachelor. Karlsruher Institut für Technologie.

Elfgen, Max (2020). “A Benchmark Environment for Stereo Vision on Event-Based
Data”. Master. Karlsruher Institut für Technologie.

Azanov, Daniel (2022). “A Plausible Computational Model for Emulating Early
Stereo Vision Development through Self-Organization and Bootstrapping”. Mas-
ter. Karlsruher Institut für Technologie.

Weyer, Tobias J. (2021). “Collision-Free Path Planning in the Reduced Configura-
tion Space of Robots by Self-Organizing Neural Networks”. Master. Karlsruher
Institut für Technologie.

Liebert, Artur (2019). “Der Wavefrontalgorithmus auf Modifizierten Puls-Gekopp-
elten Neuronalen Netzen”. Master. Karlsruher Institut für Technologie.

Koch, Robin (2020). “Benchmarking High-Performance Parallel Architectures us-
ing Robotic Applications”. Bachelor. Karlsruher Institut für Technologie.

209

	Glossary
	Acronyms
	Introduction
	Motivation
	Research Goal and Problem Statement
	Thematic Classification and Scientific Contribution
	Outline

	Foundations
	Design and Functioning of the Human Brain
	Neurons, Synapses and Plasticity
	Self-Organization in the Brain
	Human Vision
	Spatial Awareness in the Brain

	Modeling the Human Brain
	Networks of Spiking Neurons
	Self-organizing Neural Networks
	Event Cameras

	Event-based Stereo Vision
	State-of-the-art
	Monocular Techniques
	Stereo Techniques
	Discussion

	3D Reconstruction through Self-organization
	Biological Derivation and Rationale
	Formalism of Topology Induction
	Detachment of Learning by a Prelearned SOM
	Receptive Fields
	Bootstrapping by Shape Segmentation

	Experiments and Results
	Simulated Event-based Data
	A Stereo Setup of Two Event Cameras

	Discussion

	Reactive Neural Path Planning
	State-of-the-art
	Conventional Methods for Path and Motion Planning
	Brain-inspired Methods for Path and Motion Planning
	Path Planning in a Reduced cspace
	Discussion

	A Reduced cspace for Efficient Path Planning
	Reducing the Complexity of the cspace
	SONN-versions and their Characteristics
	Obstacle Avoidance
	Path Planning in a Cognitive Map

	Experiments and Results
	Comparing SONN-types for Path Planning
	Wavefront vs. Dijkstra’s
	Obstacle Avoidance with gSOM and GNG
	Comparisons with Modern Sample-based Planners

	Discussion

	Neuromorphic Technologies for Neural Algorithms
	State-of-the-art
	Parallel Hardware
	Simulation Tools for SNN
	Benchmarking Hardware and Software for SNN
	Discussion

	Performance Analysis of a Robotic Use Case on Parallel Hardware
	A Neural 3D WFA
	Technical and Implementational Details
	Metrics

	Experiments and Results
	Simulation Time
	Energy Consumption
	Path Length
	Hardware Resources

	Discussion
	Context Analysis
	Limitations and Implications

	Conclusion
	Summary
	Discussion and Outlook

	Appendix
	Appendix for chapter 3
	Sensor Specifications

	Appendix for chapter 4
	Constant Parameters for the SONN Analysis
	ROS 2 Components for Online Motion Control
	Special Features of the Path Planning Method

	Appendix for chapter 5
	Additional Benchmark Results

