
Towards� understanding� the�perceptionT� of������
warmth� and�competence�in�synthetic�speech

�WPSHFMFHU�WPO
��.�4D�

4BJ�4JSJTIB�3BMMBCBOEJ

an�EFS�'BLVMUÊU�*7���&MFLUSPUFDIOJL VOE�*OGPSNBUJL
EFS�5FDIOJTDIFO�6OJWFSTJUÊU�#FSMJO

[VS�&SMBOHVOH�EFT�BLBEFNJTDIFO�(SBEFT

%PLUPS�EFS�*OHFOJFVSXJTTFOTDIBGUFO
�%S��*OH��

�5BH�EFS�XJTTFOTDIBGUMJDIFO�"VTTQSBDIF��29��März����3

genehmigte Dissertation

Promotionsausschuss:
Vorsitzende: Prof. Dr. Marianne Maertens
Gutachter: Prof. Dr.-Ing. Sebastian Möller
Gutachter: Prof. Dr. Simon King
Gutachter: Prof. Dr. Yannis Stylianou 
Gutachter: Prof. Dr. Oliver Niebuhr

Berlin 2023





Abstract

Artificial Intelligence (AI) can already supersede humans in many tasks like playing
ATARI, GO, chess, and many more. Apart from playing games, these AI models
can also be used in Natural Language Processing (NLP) tasks such as language
modeling (BERT). However, the applications of AI should also be directed toward
solving much harder problems that would benefit mankind in situations like COVID.
In my thesis, I describe the usage of AI for social good through its applications
of synthetic speech. Artificial speech generation has achieved human-like-sounding
speech by leveraging Neural models such as Tacotron and Wavenet. Even though
the speech generation has evolved so much in the last decade, the evaluation of
synthetic voices is still in its infancy. Much of the Text-to-Speech (TTS) and Voice
Conversion (VC) research still evaluates the systems on naturalness, speech quality,
and speaker similarity. In my thesis, I propose additional dimensions to be included
in the evaluation of synthetic speech. I posit that these additional dimensions would
aid in building socially acceptable synthetic voices. These additional dimensions are
various speaker attributes that are relevant to different application domains.

The main contributions of my thesis are provided below.

• The perceptual dimensions representing various speaker attributes have been
evaluated for synthetic speech. A factor analysis of these perceptual dimensions
has provided 2 social speaker characteristics namely, warmth, and competence;
and a personality trait, Extraversion.

• The acoustic analysis of the synthetic voices has provided the vocal cues ofwarmth
(spectral flux, F1 mean, F2 mean for female speakers; F1 mean, loudness, the
slope for male TTS voices) and competence (slope, flux for female synthetic
voices; F0, voiced segment length for male TTS voices) in synthetic speech.

• Various VC and TTS experiments were carried out to enable the positive percep-
tions (highly warm/competent) of synthetic voices. The results of subjective tests
display that achieving socially acceptable synthetic voices is possible.
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Zusammenfassung

Künstliche Intelligenz (KI) kann denMenschen bereits bei vielen Aufgaben ersetzen,
z. B. beim Spielen von ATARI, GO, Schach und vielen anderen. Abgesehen vom
Spielen können diese KI-Modelle auch bei der Verarbeitung natürlicher Sprache
(NLP) eingesetzt werden, etwa bei der Sprachmodellierung (BERT). Die Anwen-
dungen der KI sollten jedoch auch auf die Lösung viel schwierigerer Probleme
ausgerichtet sein, die der Menschheit in Situationen wie COVID zugute kommen
würden. Inmeiner Dissertation beschreibe ich den Einsatz vonKI für soziale Zwecke
durch die Anwendung von synthetischer Sprache. Die künstliche Spracherzeugung
hat durch den Einsatz von neuronalenModellenwie Tacotron undWavenet einemen-
schlich klingende Sprache hervorgebracht. Obwohl sich die Spracherzeugung in den
letzten zehn Jahren stark weiterentwickelt hat, steckt die Bewertung synthetischer
Stimmen noch in den Kinderschuhen. Ein Großteil der Forschung im Bereich Text-
to-Speech (TTS) und Sprachumwandlung (VC) bewertet die Systeme immer noch
nach Natürlichkeit, Sprachqualität und Sprecherähnlichkeit. In meiner Dissertation
schlage ich zusätzliche Dimensionen vor, die in die Bewertung von synthetischer
Sprache einbezogen werden sollten. Ich gehe davon aus, dass diese zusätzlichen
Dimensionen bei der Entwicklung sozial akzeptabler synthetischer Stimmen helfen
würden. Bei diesen zusätzlichen Dimensionen handelt es sich um verschiedene
Sprechereigenschaften, die für verschiedene Anwendungsbereiche relevant sind.

Die wichtigsten Beiträge meiner Dissertation sind im Folgenden aufgeführt.

• DieWahrnehmungsdimensionen, die verschiedeneSprechereigenschaften darstellen,
wurden für synthetische Sprache ausgewertet. Eine Faktorenanalyse dieser
Wahrnehmungsdimensionen ergab 2 soziale Sprechereigenschaften, nämlich
Wärme und Kompetenz, sowie eine Persönlichkeitseigenschaft, Extraversion.

• Die akustische Analyse der synthetischen Stimmen hat die stimmlichen Anhalt-
spunkte für Wärme (spektraler Fluss, F1-Mittelwert, F2-Mittelwert für Frauen;
F1-Mittelwert, Lautheit, Steigung für Männer) und Kompetenz (Steigung, Fluss
für Frauen; F0, Länge des stimmhaften Segments für Männer) in synthetischer
Sprache geliefert.
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viii Zusammenfassung

• Es wurden verschiedene VC- und TTS-Experimente durchgeführt, um die pos-
itive Wahrnehmung (sehr warm/kompetent) von synthetischen Stimmen zu
ermöglichen. Die Ergebnisse der subjektiven Tests zeigen, dass es möglich ist,
sozialverträgliche synthetische Stimmen zu erzeugen.
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Chapter 1
Introduction

”AGI speaks to something deeply human—the idea that we can become more
than we are, by building tools that propel us to greatness. And that’s really nice,
except it also is a way to distract us from the fact that we have real problems
that face us today that we should be trying to address using AI.”

Vilas Dhar, president of the Patrick J. McGovern Foundation.

Artificial General Intelligence (AGI) or “general” AI is a branch of AI that focuses
on the intellectual capabilities of humans. AI targets outperforming humans in every
task. AGI aims at the human level of interpreting and solving problems even under
uncertain scenarios. For instance, a machine translation task requires the machine
to, a) understand both languages equally, b) possess the ability to translate the
content and the intentions of the writer, and c) have adequate knowledge of the
topic being discussed. All these tasks need to be performed simultaneously by the
machine in order to achieve human-level intelligence or general intelligence. GATO
- A generalist AI model has been recently developed by Deepmind1[1] that could
achieve this human-level performance (in executing multiple tasks). The model was
designed to handle 604 distinctive tasks without requiring a change in the network
and its weights. The tasks performed by the network are language modeling, playing
ATARI, GO, chess, image captioning, chatting, and many more. Some of these tasks
have already been performed by AI algorithms like MuZero [2], and AlphaGo Zero
[3]. AlphaGo Zero solely depends on reinforcement learning without any human
interventions in playing and mastering tabula rasa. [2] is designed and investigated
in real-world scenarios without defining game rules and any human intervention.
The algorithm achieves comparable performance to that of the AlphaGo Zero that
was trained with rules (in a simulated environment). Other than vision and text, these

1 https://venturebeat.com/datadecisionmakers/is-deepminds-gato-the-worlds-first-agi/
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AI algorithms have also excelled in generating speech that is as close as possible to
that of human speech [4, 5, 6, 7, 8, 9].

1.1 Motivation

With the improvements in AI, once prescient Human Computer Interactions (HCI)
have now become part and the parcel of our lives. We are in the wonderful phase of
AI, where most of the tasks are accomplished by just voice commands. For example,
from, “Alexa! set the temperature in the living room to 27 degrees” to “Alexa! order
a pizza from XX restaurant”, voice assistants like Amazon’s Echo, Apple’s SIRI,
and Google home are available to make our lives much easier. Additionally, these
conversational agents are also used for various customer needs such as booking
appointments over a phone call [7], navigation [8], language learning applications
[9], and many more. Google’s Duplex [7] can handle conversations over a phone call
for specific tasks such as booking appointments, reserving a table at a restaurant, or
ordering food. The model also inserts the fillers such as “hmm”, and “uh” which
makes the conversations even more lively and natural. Nevertheless, general human
intelligence is yet to be achieved by these conversational agents in different appli-
cation domains. This is because telling a personal assistant that “I am sad!” would
result in the following,

Human: Alexa! I am sad!
Alexa: I am sorry to hear that. Please try talking to a friend or listening to
music or taking a walk. Hope you will be fine soon.

On the other hand, saying the same to a human would result in a completely
different response. The COVID-19 pandemic has affected most of our lives in the
last couple of years. The employees/industries that were high in demand during
the situation were the front-line workers in health care and customer service. The
motivation of my thesis is derived from the predominant need of these two industries
during the pandemic situation. The best way to reduce the overwork on the employees
was through employing conversational agents (chatbots or personal assistants) in
the loop. However, while doing so, it is indispensable that these agents express
empathy and compassion during the conversations. Even though the application
domains health care and customer service, require much more than just warmth and
competence, in my thesis, I focus only on these two aspects of social perception.
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1.1.1 Why warmth and competence?

Framing impressions of others (animals or humans) have been performed effortlessly
and involuntarily by humans for ages. Since, the era of the hunter-gatherer, (when
humans feared wild predators like lions and tigers) till today of human-computer
interactions (when we fear the dangerous effects of AI in the future), we have been
making social judgments in our day-to-day lives. However, these judgments are
mostly based on our first impressions and they may or may not be true. For example,
we love babies and tend to like and trust people with cute faces more than someone
with a heavily built body [10]. Similarly, women for ages are considered as caregivers,
and men were seen as the breadwinners 2 3 [11].

Decades of research on these social judgments through interpersonal relations
have provided that the social perceptions of humans are based on two criteria:
a) is the person warm/friendly enough? (are his/her intentions good?), b) is the
person competent enough? (can he/she achieve those intentions?) [12, 13, 14]. These
studies depict that both dimensions (warmth and competence) are equally important.
The person with good intentions and incapable of achieving those is of no use.
Accordingly, one who is capable of achieving anything but does not have good
intentions is a threat to society. Therefore, finally, these two criteria were termed as
“universal dimensions of social perception” [15, 16, 17].

Human beings unintentionally associate these dimensions of social perception
with trustworthiness. Individuals who are warm and competent are found to be
more trustworthy than others [10, 18]. In the domains like health care and customer
service, the agents would require the patients/customers to trust them with their
problems/queries. An individual who is in severe pain (either physical or mental)
would benefit froma caring response froma trustworthy person. Similarly, a customer
vexed with the poor service of a product would need a problem solver who is also
reliable and understanding. In [19], the researchers posit that healthcare workers
should not only possess expertise in the field but also exhibit compassion and empathy
towards the patients they are dealing with. Further, empathetic agents are considered
to be both warm and competent [20]. Humans tend to be comfortable in articulating
their thoughts with others who exhibit similar levels of empathy and behavior as
theirs [21]. Alternatively, people tend to “like” the individuals who are warm and
“respect” those who are competent [10]. [22] presents that the universal dimension,
competence has a significant impact in driving the attention of the customers towards
the product or the company. Correspondingly, the dimension, warmth is essential
in maintaining relationships with customers over longer periods of time. This thesis
aims at studying the perceptions of these universal dimensions from various Text-
to-Speech (TTS) voices.

2 https://arborsassistedliving.com/the-gender-gap-women-predominate-among-caregivers-of-the-
elderly/
3 https://blogs.koolkanya.com/we-need-more-breadwinning-women-and-caregiving-men/
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1.1.2 Evaluation of synthetic voices

The advent of end-to-end neural models facilitated the fidelity of human-like
speech generation [5, 4, 6]. With this development, the current TTS research
is focused on the generation of expressive speech [23, 24, 25] and the gener-
ation speed of the existing models [26, 27]. However, the parallel evolution of
the evaluation of these synthetic voices is also crucial. Much of the TTS eval-
uations were found similar to the measures proposed in the Blizzard challenges
[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Contrary to
these evaluation setups, authors in [45] investigate the effect of speech quality and
naturalness on the intelligibility of synthetic voices through the use of pupillometry.
They study the cognitive load on the listeners perceiving human speech vs different
model-based TTS voices obtained from the Blizzard Challenges. Not until recently
have Neural Network-based evaluation metrics been introduced for synthetic speech
[46, 47, 48]. [46] presents an automatic evaluation of speaker similarity in an unsu-
pervised setting (human ratings are not known during the training of the models).
Authors report that the automatically predicted similarity scores are correlated with
the subjective responses while displaying accuracy of 96%. The speaker classifi-
cation is carried out using a 2-dimensional Convolutional Neural Network (CNN)
followed by a Gated Recurrent Unit (GRU) combined with two fully connected linear
layers. Similarly, [47] employs a Convolutional Net and a Long-Short Term-Memory
Units (CNN-LSTM) network for the prediction of naturalness on the synthetic speech
and the Voice Conversion (VC) data. Also, they report better predictions through
the transfer of knowledge from the speech quality ratings collected from humans.
[48] discusses the VoiceMOS challenge introduced this year. The challenge encour-
ages the automatic evaluation of Mean Opinion Scores (MOS) of naturalness from
Blizzard and Voice Conversion challenges collected over a decade. [49] presents
an objective evaluation of naturalness and speaker similarity in VC voices using a
CNN-Bidirectional LSTM (CNN-BiLTSM). Further, the research team developed
an end-to-end evaluation setup for speaker similarity in [50] which leverages the
attention mechanism. Additionally, perceptions of various traits and the likability of
synthetic speech by humans have also been investigated [51, 52, 53]. [51] presents the
studies on the paralinguistic traits such as age (scales provided were as follows, 1-10,
11-20, 21-30, and so on till 91-100), gender (the choices were: male, female, both,
neither), accents (listeners can choose from 249 options the origin of the speaker),
and the human-likeness (on a 5-point Likert scale) from the voices derived from the
IBM Watson’s Text-to-Speech (TTS) synthesizer. Correspondingly, [52] reports the
evaluation of likability (“howmuch does the listener like the voice on a 5-point Likert
scale”) and the human-likeness (“how close is the voice to that of a human voice”).
These studies were carried out on German speech generated from male TTS voices.
[53] discuss the importance of forming first impressions (warmth and competence)
of virtual agents by humans. Their studies also detail the change of first impressions
by humans of the agents in a prolonged human-agent interaction. The study presents
two visual conversational agents (one similar to a robot and one similar to a human).
The participants of the study could rate their impressions of the agent based on per-
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ceived speech, non-verbal behaviors, and interaction time. However, these studies
were carried out on intelligent virtual agents, and in the current work, we plan to
investigate these social aspects from the synthetic voices (speech-alone scenarios)
alone. In the course of this work, these aspects of social perception are termed as the
desired Social Speaker Characteristics (SSC).

1.2 Thesis objectives and Research questions

In this section, I provide the objectives of my work and the corresponding research
questions that are addressed in this thesis.

• Objective 1: Postulate the significance of investigating the social perceptions of
synthetic speech.

Through this thesis, we emphasize the need for studying and analyzing the percep-
tual dimensions contributing to socially acceptable synthetic voices. The charac-
teristics of interest are the fundamental dimensions of social perception, warmth,
and competence. These first impressions are essential in the case of both HCI and
also human-human interactions. These two dimensions aid in building long-term
relationships between the agents and the users along with their trust.

• Objective 2:Transform the negatively perceived synthetic voices to positive ones.

The analysis of the subjective evaluations of the synthetic voices provides three
different clusters: socially acceptable voices (positively perceived), neutral voices,
and socially unacceptable (negatively perceived) voices. The goal is to employ
various modeling techniques to alter the acoustic features of negatively perceived
voices so as to manifest them as socially acceptable (positively perceived) voices.

• Research question 1: What social speaker characteristics do people perceive in
synthetic speech?

• Research question 2:Which acoustic features of synthetic speech affect the sub-
jective perceptions of social speaker characteristics?

• Research question 3:Which alterations of the synthetic voices or synthetic pro-
cedure would lead to positive perceptions of speakers?

The focus of this thesis is not to propose new frameworks for TTS/VC but rather
to examine if the existing methods enable the positive perceptions of synthetic
voices.
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1.3 Publications

Most of the important scientific contributions of this thesis were published in con-
ferences (or workshops). The details of the publications are provided below.

• Sai Sirisha Rallabandi, Abhinav Bharadwaj, Babak Naderi, SebastianMöller. Per-
ception of social speaker characteristics in synthetic speech. In Proc. Interspeech,
Brno, Czechia, 2021.

This paper studies the social perceptions of synthetic voices. The study was car-
ried out on two commercial Text-to-Speech (TTS) systems namely, Google TTS
and Amazon Polly. The social perceptions of these synthetic voices were studied
using continuous 100-point scales with adjective-antonym pairs at the extremes of
the scales. The factor analysis on the subjective responses has provided three factors
among which two were the social speaker characteristics, warmth, and competence,
and the third factor was the personality trait, extraversion.

The design of the experiments and the organization of the paper were prepared by
Sai Sirisha Rallabandi. The discussion of the dataset (text) to be used for speech gen-
eration was done between Sai Sirisha Rallabandi, Benjamin Weiss, Babak Naderi,
and Sebastian Möller. The integration of the subjective evaluation setup on Amazon
Mechanical Turk (AMT) was done by Babak Naderi. The pre-processing of the sub-
jective data was carried out by Abhinav Bharadwaj.

Chapter 4 provides the basis for this work. A brief description of the scientific
details contained in this paper is also provided in the chapter.

• Sai Sirisha Rallabandi, Babak Naderi and Sebastian Möller. Identifying the vocal
cues of likeability, friendliness, and skillfulness in synthetic speech. In Proc.
Speech Synthesis Workshop (SSW11), Gárdony, Hungary, 2021.

This paper aims at deriving the vocal cues of social speaker characteristics (SSC),
warmth, and competence from synthetic speech. The study consists of two parts, a)
prediction of acoustic correlates of SSC, and b) automatic prediction of SSC from the
vocal cues of SSC. The acoustic features used in these studies were 88-dimensional
OpenSMILE features extracted using the eGeMAPS configuration. Further, the auto-
matic prediction (regression) of SSC is performed using twomodels, Linear regressor
and Support Vector regressor.

The background and motivation for this work, experimental setup, and the orga-
nization of the paper were designed by Sai Sirisha Rallabandi. A discussion on the
limitations of the study was done between Sai Sirisha Rallabandi and Babak Naderi.

The motivation and the experimental procedure employed in this work were
derived from the studies provided in chapter 5.
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• Sai Sirisha Rallabandi, and Sebastian Möller. On incorporating social speaker
characteristics in synthetic speech. arXiv, 2022.

In this paper, we investigate the modification of the synthesis procedure for the
generation of positively perceived synthetic voices. This was enabled using the con-
ditioning of the end-to-end TTS model, Tacotron using quantized acoustic 
correlates of SSC. Further, the evaluation of the generated speech was carried out 
using the adjectives derived from studies on social perceptions of synthetic voices 
(from the work presented in ”Perception of social speaker characteristics in synthetic 
speech”).

The motivation for this work and the organization of the paper were planned 
by Sai Sirisha Rallabandi. The suggestions on the subjective evaluation setup were 
delivered by Sebastian Möller. The discussion on the experimental setup was done 
between Sai Sirisha Rallabandi and Sai Krishna Rallabandi (Carnegie Mellon Uni-
versity).

This paper presents the alterations employed in the synthesis procedure for the 
perception of warmth and competence in the generated speech. Some of the experi-
mental details of the study are provided in chapter 7.

1.4 Thesis outline

• Chapter 2 provides the distinction between speaker characteristics, emotions,
and personality traits. It also presents the works previously carried out on un-
derstanding the perceptions of various human behaviors from speech. Further, a
brief description of machine learning approaches employed in various studies in
this thesis is provided followed by the literature review on the conventional ap-
proaches for Voice Conversion and Text-to-Speech synthesis. Finally, the chapter
concludes with an overview of perceptual studies prevalent through in-lab and
crowd-sourcing experimental setups.

• In chapter 3, the challenges encountered in deciding on the datasets and the
questionnaire to be included during the subjective evaluations of synthetic speech
are discussed. Later on, the datasets and the adjectives used in different studies
of this thesis are presented.

• Chapter 4 aids in answering the first research question discussed in this chap-
ter. The chapter details the studies conducted on social perceptions of synthetic
voices. Two different studies were carried out on multiple TTS voices for this
analysis namely, a) studies on a wide variety of TTS systems, and b) studies on
2 commercial TTS systems. In this chapter, we can also observe the extraction
of ground truth information from the current studies. This ground truth informa-
tion is used throughout the thesis for the positive perceptions of synthetic voices
(discussed in chapter 6 and 7).
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• Chapter 5 addresses the second research question discussed in this chapter. This
chapter is two-fold, a) analysis of acoustic correlates of SSC in synthetic speech,
b) automatic prediction of SSC from synthetic speech. The first part of the chapter
discusses the analysis of vocal cues responsible for various speaker attributes (
or SSC) in synthetic speech using the OpenSMILE features. The second part
presents the automatic prediction of those speaker attributes using the relevant
vocal cues ( derived from the previous step). Finally, the chapter concludes with
a comparison of the current results with the results of similar studies provided in
the literature (studies on both natural and synthetic speech).

• Chapter 6 is designed in such a way that it can address the first part of the third
question (which alterations of synthetic speech would lead to positive perceptions
of synthetic speech?) and also addresses the second objective presented in this
chapter. In chapter 6, we find the alteration of negatively perceived TTS voices for
their positive perceptions using Voice Conversion. Further, a detailed description
of the subjective evaluations of the converted speech with different evaluation
setups that were not utilized before is presented (scales/adjectives used in the
evaluation setup were not used before to the best of my knowledge). Finally, a
comparison of the subjective responses derived from different evaluation setups
is presented.

• Chapter 7 deals with the second part of the third research question (which
alterations of synthetic procedure would lead to positive perceptions of synthetic
speech?). This chapter presents multiple TTS experiments carried out (separately
for warmth and competence) using the Tacotron model. The acoustic correlates of
SSC derived using the procedure described in chapter 5 were utilized in order to
condition the Tacotron model in each of those experiments. Finally, the subjective
evaluation of the generated speech is performed using the adjectives derived from
the ground truth information defined in chapter 4.

• Chapter 8 This chapter presents the synopsis of the thesis. Here, we find the
summary of various scientific studies and the evidence gathered to achieve the
objectives and address the research questions discussed in chapter 1. Further, the
follow-up work for this thesis is discussed by detailing the challenges encountered
during the course of this work.



Chapter 2
Background

This chapter presents the difference between speaker characteristics, emotions, and
personality traits followed by the literature review on the perception of each of these
from speech. Later on, an overview of the Machine Learning algorithms utilized in
various studies of this thesis is presented. Finally, the chapter concludes with the
details of the evaluation approaches employed in the analysis of various perceptual
dimensions of speech.

2.1 Distinguishing characteristics, emotions and personality
traits

The study of human behavior was not so easy and has been performed for decades.
These studies were carried out by different research groups throughout the years
[54, 55, 12, 56, 57, 58]. Nevertheless, the analysis of these behaviors has been
studied in a similar fashion [58, 59]. Most of the studies on human behavior employ
a semantic differential scaling test with the bi-polar adjectives at the extremes of the
scale (kind vs unkind, attractive vs unattractive, etc.,). The subjective evaluations are
carried out through peer-rating or self-rating of a list of adjectives. Correspondingly,
the factor analysis of the subjective data is performed using any of the dimensionality
reduction techniques such as Principal Component Analysis (PCA) (reduces the high
dimensional data while retaining the most essential information), Exploratory Factor
Analysis (EFA) (used when the number of factors to be determined is unknown),
Confirmatory Factor Analysis (CFA) (used to confirm the number and type of the
factors underlying the data) [59]. Each of the derived factors is named after the term
that would best represent its factor loadings.

[54] presents the studies evaluated by undergraduates in psychology. The students
were provided with two lists of adjectives in a specific order and were asked to form
impressions of the person. Among the two lists, all the adjectives were the same
except for one. The first list consisted of the characteristic, “warm” and the second
one had “cold”. The study shows that the impressions formed based on the first

9
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list were more positive and socially acceptable than those from the second. Through
these studies, the social dimension, warmwas proposed as the central trait in forming
impressions of a person. However, a subsequent study involved a multidimensional
scaling for the clustering of 64 adjectives [55]. This study has provided two orthog-
onal dimensions namely, social good/bad and intellectual good/bad. Using these
two dimensions, a hypothesis was carried out to verify the effect of one dimension
on another [12]. The results showed that the social dimension, warm as previously
thought to be the central dimension [54] is not completely true as the intellectual
dimensions are not affected by the manipulations in the social dimension and vice
versa. Only after several years of research by Bales and his students at Harvard
University, it has been confirmed that the two primary dimensions of social percep-
tion are based on social interactions (warmth) and task accomplishment (competent)
[56, 57]. Thus, these two dimensions are considered the fundamental dimensions
of social perception that are long-lasting and constant [15]. Further, the researchers
propose that a different combination of these characteristics/dimensions (upward or
downward movements in the dimensions/longitudinal study of social perceptions)
would contribute to different emotions and behaviors of people [60].

I present an example to provide the slight difference between emotions and
characteristics (social speaker characteristics). We all remember the dialogue of
Wanda Maximoff from Doctor Strange, Multiverse of Madness.

“You break the rules and become a hero, I do it and I become the enemy!!!
That does not seem fair.”

Wanda Maximoff, Doctor Strange, Multiverse of Madness, MCU.

In the first part of the dialogue, the actor seems angry and disgusted (emotions).
Emotions are feelings that are controlled by external stimuli and can be either
temporary (fear or anger) or long-lived (grief) [61, 13]. The basic emotions are
anger, fear, shame, contempt, disgust, surprise, joy, etc., [62]. As suggested by
Plato in his philosophy, the human soul can be categorized into three partitions:
emotions, cognition, and motivation. Emotions can affect motivations and cognitive
abilities such as perception, memory, and decision-making. Accordingly, humans
with positive emotions exhibit decisiveness, and responsibility in their actions and
can lead a peaceful life. On the other hand, when negative emotions are dominant,
humans tend to be depressed and make bad choices in their lives. This theory
of emotion-cognition interdependence was further supported by numerous studies
throughout the literature [13, 14, 63]. Such varying human behaviors based on their
emotions are also associated with the term, instincts [63]. Authors in [63] detail such
associations in the case of four basic emotions namely, anger, happy, sad and fear.
Those associations are as follows: happiness is tied to the human actions of rewarding
(either others or oneself), sadness is linked to punishment, and stress is associated
with two emotions, fear and anger. These human actions (reward, punishment and
stress) are termed as core effects and are also associated with different colors, blue,
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red and yellow. A different combinations of these core effects can further give rise
to complex emotions such as love and other feelings in humans.

The last part of the sentence (in bold) shows the character’s real characteristics
(cynical). “Cynical” is a negative characteristic and its antonym/positive attribute is
trust or belief. People with this characteristic (cynicism) are less likely to participate
in group activities or collaborate with others [64] as they fear of being deceived. Lit-
erature shows that due to this disbelief, people with cynical behavior may also lose a
lot of opportunities. Researchers have also explored the relationship between cynical
behavior and competence in individuals [65]. The study presents that cynicism has a
negative impact on social well-being, task accomplishment, and cognitive abilities.
Thus, cynicism does not contribute to the success of an individual.

In the example, we also observe a sudden difference in the facial expressions
and also the tone of the actor. Emotions vary based on different situations but
as mentioned before, the characteristics remain constant in humans. Hence, this
property of the social characteristics would facilitate the data collection (without the
need for enacted speech).

Apart from forming first impressions (warmth, competence) and temporary feel-
ings (emotions), there are also other stable characteristics that human beings possess
(or perceive) [66]. All those adjectives (or characteristics) that describe an individual
were grouped together (into 5 orthogonal dimensions) and were termed personal-
ity traits. Robert R. McCrae proposes the most commonly used personality traits
and Paul T. Costa Jr in their FIVE FACTOR Theory of personality [67]. The uni-
versal dimensions of personality that they proposed were Openness to Experience
(O), Conscientiousness (C), Extraversion (E), Agreeableness (A), and Neuroticism
(N). Over the years, these are termed the BIG FIVE personality traits and are em-
ployed in various personality assessment tests. Among these five dimensions of
human personality, we can further categorize them based on their perceptions of
humans. All the traits can be referred to as interpersonal (obtained through peer
ratings and self-ratings). However, the traits, Conscientiousness, Neuroticism, and
Openness are not only identified through the interpersonal relationships of humans
but also through different attitudes exhibited by humans under different and difficult
circumstances (similar to varied emotions and behaviors in humans, these traits can
also vary with the external stimuli). But, the traits Extraversion and Agreeableness
are perceived only through social interactions [68]. Initial behavioral studies uti-
lized high-dimensional (128-item Interpersonal Adjective Scales (IAS)) circumplex
models (circular ordering of dimensions) for various behavioral studies on humans.
However, [69] propose a reduced version termed IAR-R with 64 items (64 adjec-
tives) for various personality assessments. Some of the adjectives used in this thesis
are derived from the ones proposed in [69, 70]. These studies include the questions
(adjectives) required for the personality judgments accumulated from studies carried
out on personality (prior to this work) along with the adjectives in general (which
can define various human qualities).



12 2 Background

2.2 Perception of various characteristics, emotions, and
personalities from speech

Studies show that it is possible to interpret different characteristics, mental states,
traits, and emotions of a person based on auditory cues [71, 72]. In [71] researchers
examined the perception of the speaker’s age, weight, and height from the speech
samples of unknown speakers. Additionally, the study provides a comparison of the
visual cues and the vocal cues in determining these characteristics of an unknown per-
son. The study displays comparable results in person identification from both speech
perception as well as visual perception (from the photographs of unknown people).
Similarly, the assessment of personality has also been carried out for human voices
as well as machine-generated voices [72]. The study shows that the participants were
attracted to and believed the machine-generated voice when its personality matched
with their own personality (extrovert Vs introvert). Additionally, akin to personality
studies on humans (studies based on overall behaviors), interpreting the personality
from speech-alone scenarios has also been investigated. The personality studies on
speech data were carried out using the datasets, SSPNet Speaker Personality Cor-
pus (SPC) and the Electronically Activated Recorded (EAR) corpus. A subset of
the BIG FIVE Inventory (BFI-44, a questionnaire with 44 items [73]), a BFI-10 (a
questionnaire with 10 items)) was prepared for the personality analysis of English
and German samples [74]. Correspondingly, [75, 76] examined the speaker charac-
teristics of 300 German speakers from semi-spontaneous conversations. The authors
propose five perceptual factors that can be perceived in zero-acquaintance scenar-
ios. The derived perceptual factors were both social (apathy, serenity, confidence,
incompetence) and physical (attractiveness). There have also been some works on
analyzing the social speaker characteristics from speech [77, 78, 79, 80, 81]. In [77],
the speaker characteristics were examined in telephone communications through an
agent-customer conversation. The speaker characteristics considered were the age,
gender, emotions of the speakers, accents, etc., The study provides a three-class
taxonomy for speaker characterization namely, online, mirroring, and critical. In
[78], the authors investigate the perceptual dimensions (speaker characteristics) of
charismatic speech. The proposed dimensions were, enthusiastic, charming, per-
suasive, passionate, and convincing. Additionally, they report the negation of the
negative attribute, boring (not boring) to be one of the responsible speaker char-
acteristics responsible for the perception of charisma in speech. They also report
the acoustic correlates of charismatic speech to be the speaking rate, loudness, and
f0, and its dynamics (mean, standard deviations). Some other works on charismatic
speech include, [82, 83]. In [83] authors investigate the influence and the degree of
influence of the charismatic voice in an unusual experimental setting (mock drive
with a highly charismatic voice Vs less charismatic voice guiding the driver). The
study displays that the participants obey the navigator and still continue to listen to
the instructions even after a couple of mistakes in the case of a highly charismatic
voice. [80] study the speaker characteristics, insecure, hesitant, monotonous, aggres-
sive, accusing, agitating, objective, trustworthy, humble, expressive, powerful, and
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involved using a 5-point Likert scale. The study proposes that the speakers with the
highest ratings on the adjectives, expressive, powerful, involved, and trustworthy are
regarded as “good speakers”. Additionally, they suggest that the acoustic correlates
of good speakers are the F0 peak height and F0 range. Similarly, [84] investigate
the association of the vocal cues, F0, jitter, and shimmer with the perception of
emotions from natural speech. The study examines the hypothesis that the acoustic
parameters are the external and visible cues of internal emotional states and moods
of a person. The experimental results propose that the relevant vocal parameters
are triggered by the intensity of the speaker’s emotional state, which in turn gives
rise to various expressions in their speech. In line with the dimensional approach
previously discussed in speaker characterization and personality assessment, emo-
tions have also been analyzed on multiple dimensions such as valence, activation,
potency, and emotional intensity [85]. Authors in [85] study the above-mentioned
dimensions in the following emotional states: anger, sadness, disgust, happiness,
and fear. The acoustic features responsible for multiple emotions and dimensions
are speaking rate, pitch, voice intensity, and spectral energy distribution. Apart from
emotions and various speaker characteristics, personality has also been found to be
perceived from speech. In [86], authors examine the automatic prediction of the
personality of the speaker on 60 different prepositions ( prepositions representing
different personality traits). The subjective analysis consisted of a 5-point scale in
the range of 0-4. Each point on this scale is defined as follows: 0 = strongly disagree,
1 = disagree, 2 = neutral , 3 = agree, 4 = strongly agree. The experimental results
display high accuracy in the automatic classification (accuracy = 60% on a 10-class
classification task) of various personality traits in enacted speech. [87] investigate the
automatic perceptions of personality by non-native speakers. The study utilizes the
news bulletin available in French from SSPNet Speaker Personality Corpus. The per-
ceptual studies were carried out by 11 non-native speakers. The idea was to inspect
the personality from non-verbal cues in speech. Further, the automatic classification
of these personality traits through logistic regression (classification) resulted in the
perception of the traits, extraversion, and consciousness with higher accuracy over
others. The perceptions of fundamental dimensions, warmth, and competence were
previously performed between visually impaired and sighted individuals [88]. The
speech data used in the study consisted of a series of vowel pronunciations by both
genders. In addition to the vowel pronunciations, the questionnaire also consisted of
the varied pronunciations of these vowel samples (raise and lowering of the voice
pitch). The study displays that the social perceptions in both the categories of test
participants (visually impaired and sighted individuals) were similar. The voices
with lowered pitch were perceived as trustworthy and competent irrespective of the
gender of the speaker. Nevertheless, the raised pitch in females contributed to an
improved perception of warmth.

However, to the best of my knowledge, the analysis of the social speaker charac-
teristics such as warmth and competence in synthetic speech (alone) has not been
performed before. Therefore, through my thesis, I provide a) an analysis of the social
perceptions (warmth and competence) of synthetic voices, b) acoustic correlates of
warmth and competence in female and male TTS voices, c) automatic prediction
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of warmth and competence from synthetic speech, and d) modeling of synthetic
voices and modification of synthesis procedure for the generation of warmth and
competence from the TTS voices.

2.3 Machine Learning approaches

This section details various machine-learning approaches utilized in this thesis.

2.3.1 Decision Trees

A decision tree is a non-parametric supervised machine learning algorithm used
for both classification and regression tasks [89]. Based on these functionalities, it
is also termed a CART Tree (Classification and Regression Tree). The components
of a tree are leaves and nodes. The main node is called the root node and the data
split is enabled at different layers of the tree based on decision criteria (conditions).
The data split follows a greedy approach and the best split is determined based on
the cost function (the data split with the lowest cost or loss is chosen). The final
node which does not split anymore is called the leaf and the intermediate layers are
called branches. Figure 2.1 displays an example of a decision tree and data split. The
example displays a classification tree to determine if a person could step out of the
house. Similarly, a regression task would determine the continuous values such as
population, pricing (houses, groceries, properties), etc.,

Fig. 2.1: Schematic of Decision Tree
.
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The cost functions for each classification and regression task are provided below.
Equation 2.1 represents the loss function calculated due to the classification using a
decision tree. Here p8 represents the probability of a data point being in the class, i,
and c is the total possible classes. Similarly, equation 2.2 represents the loss function
calculated due to the regression costs, where y is the actual (target) outcome and f(x)
is the predicted outcome, N is the total number of data points. The decision trees
have been widely used in unit selection based TTS for Diphone synthesis [90], [91],
[92]. In this thesis, decision trees are employed in the modeling of acoustic features
of the synthetic voices, in the prediction of vocal cues of warmth and competence
(in chapter 5).

2 ;>BB =
2’
8=1

?8 ⇤ (1 � (?8)) (2.1)

A ;>BB =
#’
8=1

(H � 5 (G8))2)/# (2.2)

2.3.2 Support Vector Machines

Support Vector Machines (SVMs) were pioneered by Boser, Guyon, and Vapnik
through their work in [93]. SVMs employ a supervised learning algorithm that can
perform both classification and regression tasks [94, 95]. They perform well with
limited training data as opposed to Neural Networks. The model predictions are
carried out through a hyperplane or a decision boundary. For 2-dimensional data,
the decision boundary is a line and for 3-dimensional data, it is a plane, and the data
points that lie close to/or on the decision boundary are called the support vectors.
The corresponding mathematical representations are provided below. The equation
of a line for a regression task is presented in equation 2.3, where y denotes the
predicted values, W and b are weights and biases respectively and x represents the
input data points. The equation for the hyperplane in the case of classification is
provided in the equation 2.4. x denotes the input data points, w is the weights and
b represents the bias added to the model. The model optimization is carried out
by calculating the loss functions such as hinge loss (classification loss) or mean
squared error (regression loss function) followed by weight updates to maximize the
margin (distance between the support vectors or the width of the hyperplane). SVMs
can also perform non-linear tasks by moving the lower dimensional data into high
dimensional space. This non-linear transformation is enabled by the functions such as
the polynomial function, and radial basis function. These kernel functions calculate
the relationships between the data points in the higher dimensional space without
actually transforming the data into a high dimensional space. This mechanism is
called the Kernel trick. In this thesis, SVMs are utilized for both classification and
regression tasks in chapter 5. These models are used for a) the automatic prediction
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of acoustic correlates of warmth and competence, followed by b) the automatic
prediction of social speaker characteristics provided the derived acoustic correlates.

H = ,G + 1 (2.3)

H =

(
+1, if G ⇤ F + 1 � 0
�1, if G ⇤ F + 1 < 0

(2.4)

2.3.3 Feed-forward neural networks

A feed-forward NN is a network in which the data/feature processing is directed from
the input layer to the output layer through the hidden layers (layers between the input
layer and output layer) without any feedback connections (the output of the network
is not fed to itself during training). The basic architecture of a feedforward network
is provided in figure 2.2. A typical neural network comprises of multiple processing
units called nodes organized in a sequence of layers. The nodes in each layer of
the NN are fed with the outputs of the previous layer (except the input layer). The
objective of a NN is to approximate the function, y0 = fn(x;w), where y0 is the output,
fn is the activation function, x is the input, w represents weights and biases. Further,
we can find the mathematical representations of the layer-wise forward propagation.
Equation 2.5 represents the output of the first hidden layer when mapped with the
input x at time t. In the equation, h1 stands for the first hidden layer of the network,
a is the activation function, W1 is the weight matrix between the input and the first
hidden layer and b1 is the bias for the first hidden layer. Correspondingly, the equation
for the other hidden layers can be represented as shown in equation 2.6. h= is the
=
C⌘ hidden layer, h=�1 is the previous hidden layer or = � 1C⌘ hidden layer,,= is the

weight matrix between the =C⌘ and = � 1C⌘ hidden layer, 1= is the bias vector for the
=
C⌘ hidden layer. The final predictions of the network at the output layer are mathe-

matically represented as presented in equation 2.7. In the equation, H0 is the output of
the final layer/output layer of the network,,> represents the weight matrix between
the output layer and the previous hidden layer, 1> is the bias vector corresponding
to the output layer. The choice of activation function varies depending on the task
the model is being used for. For instance, a linear classification or regression is
performed by a linear activation function. Similarly, non-linear tasks are handled by
non-linear functions such as sigmoid (generally used for binary classification), soft-
max ( performs multi-class classification), tanh (both classification and regression),
ReLU (rectified linear unit), and SeLU (scaled exponential linear unit). Feedforward
NNs are powerful machine-learning models that can perform frame-wise modeling.
However, they have also been explored for sequential tasks such as TTS and VC
[96, 97, 98]. This thesis uses basic NN architecture in chapter 5 for the classification
task.

⌘1 = 0(,1G8 + 11) (2.5)
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Fig. 2.2: Schematic of Neural Network
.

⌘= = 0(,=⌘=�1 + 1=) (2.6)
H
0 = 0(,>⌘= + 1>) (2.7)

2.3.4 Recurrent Neural Networks

Artificial speech generation requires the temporal modeling of the speech data. Re-
current neural networks (RNNs) can effectively model the sequential information
[99]. In a recurrent neural network, the output at each timestep (hidden state) is fed
as feedback to the network. This feedback loop helps the network to model the infor-
mation sequentially while using the memory (hidden state). However, conventional
RNNs suffer from vanishing gradient [100]. Therefore, the long-term dependency
in sequential data is studied using the RNN cells called, Long Short-Term Memory
units (LSTM) [101, 102]. LSTM consists of 3 inputs and 3 outputs. The three inputs
are -C (current input), ⌘C�1 (previous hidden state) and⇠C�1 (previous cell state). The
three outputs are $C (current output), ⌘C (current hidden state ) and ⇠C (current cell
state). Additionally, it consists of four fully connected layers and four gates namely,
input gate (I/p), forget gate (FC ), cell state gate (C0) and output gate (O/p).

The mathematical expressions for each of input gate, forget gate, output gate,
and the cell state gate are provided in the equations 2.8, 2.9, 2.10, 2.11 respectively
where w* are weights and b* are biases, f represents sigmoid activation function.
The mathematical expressions for the current cell state (CC ) and the output (ht/Ot)
of the LSTM are shown in the Equations 2.12, 2.13 respectively.

�/? = f(F8 [⌘C�1, GC ] + 18) (2.8)
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Fig. 2.3: Schematic of an LSTM cell. FC=fully connected gates, Ft = forget gate, I/p
= input gate, ⇠ 0 = Cell state gate, O/p = output gate
.

Fig. 2.4: Schematic of a GRU cell. Ut = Update gate, Rt = Reset gate, Xt = input, h
(t-1) = previous hidden state, ht= output of the GRU cell
.

�C = f(F 5 [⌘C�1, GC ] + 1 5 ) (2.9)
$/? = f(F> [⌘C�1, GC ] + 1>) (2.10)
⇠

0
= C0=⌘(F2 [⌘C�1, GC ] + 12) (2.11)

⇠C = �C ⇤ ⇠C�1 + �/? ⇤ ⇠ 0
(2.12)

⌘C = $/? ⇤ C0=⌘(⇠C ) (2.13)
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Even thoughLSTMs can address thememory issue seen in basicRNNs, they suffer
from long training times and complex structures. As an alternative, a variation of
LSTMs, calledGatedRecurrentUnit (GRUs)were introduced [103]. A diagrammatic
representation of GRU units is presented in figure 2.4. A GRU unit consists of 2
additional gates namely, the update gate and a reset gate. These gates would enable
the network to retain long-termmemory by updating (the amount of information from
the past that has to be used) and resetting (which information should the network
forget) the hidden state information when needed. The forget gate and the input gate
in the LSTM are combined to form an update gate. The mathematical representations
for the update gate (*C ), reset gate ('AC ), output of the current memory state ⌘0

C , the
output of the GRU cell (⌘C ) are provided in the equations, 2.14, 2.15, 2.16, 2.17
respectively.

*C = f(FD [⌘C�1, GC ] + 1D) (2.14)
'AC = f(FAC [⌘C�1, GC ] + 1AC ) (2.15)
⌘

0
C = C0=⌘(F.['C ⇤ ⌘C�1, GC ]) (2.16)

⌘C = (1 �*C) ⇤ ⌘C�1 +*C ⇤ ⌘0
C (2.17)

2.3.5 Convolutional Neural Networks

Convolutional Neural Networks or ConvNets (CNNs) is a variant of artificial Neural
Networks that are prevalent in computer vision and image analysis [104]. As the
name suggests, the model uses the “convolution” operation to learn the complex
data representations. The essential components of a CNN are a) the convolution
layer, b) the pooling layer, c) the fully connected layer (FC), d) the dropout layer
and e) the activation function. The convolutional layers consist of filters (kernels)
that can extract the features from the input image or speech or text. The feature
extraction is carried out by computing the dot product while sliding the filter (of
size (N*N)), over the specific portions of the image. The pooling layer aids in
reducing computational costs through dimensionality reduction. The derived features
are then connected to the FC layer before deriving the predictions. The FC layer
might contribute to overfitting during the training phase therefore, a dropout layer
is included in a CNN. The choice of the activation function to be used depends on
the task to be accomplished using the network. Due to their tremendous benefits
in modeling sequential information, the convolutional layers are also employed in
speech generation [4, 5] and speech quality prediction [105].
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2.3.6 Training mechanism

The difference between the actual outputs and the predictions made by the NN is
provided in terms of the cost functions. Different cost functions or loss functions
can be utilized depending on the task. For instance, the most commonly used loss
functions for classification tasks are cross-entropy loss, and the one for regression
is the mean squared error (MSE). The mathematical equations for the binary clas-
sification in terms of binary cross entropy are provided in the equation 2.18, where
y is the actual output, y0 is the predicted output. Correspondingly, the mathematical
representation of MSE is presented in equation 2.19, where N represents the total
number of examples or data points, y is the actual output, and the function, f(x,w) is
the predicted output. Eventually, training of these networks for model optimization is
carried out using the gradient descent approach. In this approach, the model weights
and biases are updated iteratively in order to minimize the cost function and reach
a local minimum. This process begins by calculating the partial derivatives of the
cost function with respect to the network’s weights and biases. Another important
parameter to be considered while performing the model optimization is the learning
rate. The learning rate value determines the size of the steps to be taken during the
model optimization in order to reach the local minimum. Lower learning rate values
can lead to slower convergence, while higher learning rates can cause overshooting
(the model might miss the local minima). An optimizer such as Adam (AdaptiveMo-
ment Estimation) can be used while performing such model optimizations. Adam
enables an adaptive learning rate and also provides a faster convergence. This entire
optimization is carried out on multiple subsets of the input data. Each subset is
called a mini-batch. The optimization finished on the entire data (once on all the
mini-batches) is termed as one training epoch.

124 = �(H;>6(H0) + (1 � H);>6(1 � H
0)) (2.18)
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2.4 Text-to-Speech and Voice Conversion

In this section, I provide the conventional TTS and VC frameworks in practice.

2.4.1 Voice Conversion

Voice conversion (VC) is a technique used to convert the source speaker’s voice
to that of a target speaker without affecting the linguistic content in the speech
sample [106, 107]. There are various applications for VC such as anonymization of
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Fig. 2.5: A schematic of a traditional Voice Conversion framework
.

the speakers (especially in the health care domain for the privacy of the patients), 
personalization of synthetic voices, and movie dubbings, etc., There are three types 
of VC namely, parallel VC [108, 109], non-parallel VC [110], cross-lingual VC 
[111, 112, 113]. In a parallel VC, the speaker transformation is carried out for the 
same set of sentences being delivered by the source speaker and the target speaker. 
In non-parallel VC, the source and the target deliver a different set of sentences. 
Cross-lingual VC is a special type of non-parallel VC where the source and target 
deliver the speech samples in two different languages. Traditional VC techniques 
consist of the following steps: alignment of the source and target speech samples 
[114], spectral conversion, F0 transformation, and resynthesis of speech. Figure 2.5 
displays the schematic of a traditional VC framework.

Initial VC research consisted of codebook-based spectrum conversion between 
the source and the target speakers using various vector quantization techniques 
[115, 116]. This is achieved in two steps, firstly the codebook for the source and the 
target speakers is prepared, secondly, a mapping of these codebooks (mapping of 
source features to the corresponding target features) is performed followed by the 
speech generation. The studies display that a decent conversion quality and speaker 
individuality can be achieved even with limited training data. In addition to  
quantized mapping of spectral features, authors in [116] also employ the speaker 
adaptation while performing the fuzzy mapping of codebooks derived from multiple 
speakers. The evaluation results presented the effectiveness of the technique in cross-
gender conversion. Especially, in the male-to-female conversion (the converted voice 
in male-to-female conversion was recognized as the female voice most frequently). 
Later on, statistical models such as Gaussian Mixture Models (GMMs) and Hidden 
Markov Models (HMMs) were employed for speaker conversion [117, 118, 119].
[117] leverage the maximum likelihood estimation in achieving high-quality frame-
based spectral conversion. Further, the over-smoothing of the converted speech is 
addressed by utilizing the global variance derived from the target’s utterances. Con-
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sequently, [118] describes the voice conversion system submitted to the Voice Con-
version Challenge (VCC 2016). The authors deal with the over-smoothing (which 
leads to poor-quality speech) and parameterization errors through waveform mod-
ification enabled by a differential filtering of the spectral features. The evaluation 
results report higher speaker conversion accuracy and the generated speech’s nat-
uralness. Even though GMMs and HMMs can produce speaker individuality (a 
similar voice to that of the target speaker) in the converted speech, the conversion 
quality is affected due to their frame-based conversion. In order to address this prob-
lem, the authors in [119], proposed the probabilistic feature mapping that enables 
sequence-wise identity (speaker) conversion. The proposed method can effectively 
handle the inconsistencies that arise due to the use of dynamic features during the 
speaker conversion. The evaluation results display a better quality conversion than 
the (then) prevalent VC methods. Furthermore, [120] presents a survey on various 
VC techniques (then prevalent techniques) starting from the quantized map-ping to 
the probabilistic models such as GMMs and HMMs. The main limitation of the 
prevalent techniques as mentioned in this survey was the poor quality conversion 
(muffled voices) due to the frame-based mapping. On the other hand, [98] presents 
the speaker transformation using Artificial Neural Networks. The authors present 
six different experiments carried out with various NN architectures. Finally, the 4-
layer architecture (25L, 50N, 50N, 25L) presents good conversion quality (based 
on the objective metric, Mel Cepstral Distortion, MCD). Comparing the objective, 
subjective evaluations performed for the converted voices with ANNs and GMM-
Maximum Likelihood Parameter Generation (GMM with MLPG) displays a better 
speaker conversion through ANNs. Though NNs can outperform GMMs and HMMs 
in quality of conversion, due to the frame-based modeling they still suffer from re-
stricted quality and loss of temporal information in the speech. Therefore, sequential 
networks have been investigated in [121] along with their counterparts, DNNs. The 
authors employ a deep bidirectional LSTM for a cross-gender conversion (male-to-
female conversion). The study reports a significant improvement in the naturalness 
of the converted speech. Recently, Generative Adversarial Networks (GAN) have 
been explored for speaker conversion [122]. A GAN consists of 2 networks, a gener-
ator, and a discriminator. The generator is a neural network (it could be an RNN or 
CNN or DNN). It takes input speech frames and generates the possibly transformed 
output frames (produces new data or realistic predictions). The discriminator is also 
a NN that tries to classify if the generated frames belong to the target speaker. These 
are called the adversarial networks as they compete with each other. The generator 
network produces as realistic predictions as possible to fool the discriminator, while 
the discriminator aims at correctly distinguishing between the real and fake predic-
tions. The model training and optimization are enabled by comparing the expected 
targets and the predicted targets. There have also been variants of GANs that were 
introduced such as STAR-GAN [123] and Cycle GAN [124]. GANs were efficient in 
addressing the over-smoothing problem encountered previously in VC voices. There-
fore, different variants of GANs are widely used in Voice Conversion experiments 
for emotion conversion [125], limited data conversion [126], non-parallel conversion
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[123], and many more. In this, thesis, the Star-GANmodel has been explored for VC
experiments presented in chapter 6.

2.4.2 Vocoders

Waveform synthesis (or speech signal reconstruction) in both TTS and VC is han-
dled by the source-filter vocoder models such as STRAIGHT [127], WORLD [128].
STRAIGHT stands for Speech Transformation and Representation using Adaptive
Interpolation of weiGHTed spectrum. STRAIGHT is used for both speech feature
extraction and also high-quality speech reconstruction. WORLD is another source-
filter model that enables speech analysis, manipulation, and reconstruction. In this
thesis, we utilize the WORLD vocoder for the speech reconstruction of VC voices
presented in chapter 6. The speech features extracted using the STRAIGHT or
WORLD vocoders are spectrograms (spectral envelope), aperiodicities, and funda-
mental frequency.

Additionally, neural vocoders have gained much attention in the recent past [5].
Wavenet [5] is an efficient generativemodel that employs probabilistic autoregression
for the generation of high-quality human-like sounding speech. Wavenet uses dilated
causal convolutions and generates speech on a sample basis [129]. Even though
wavenet uses the convolutional layers for training, the speech generation is slow
due to its sequential processing. The network can also learn the speaker-specific
characteristics by conditioning the model on the speaker labels (speaker IDs) when
provided with a multi-speaker database. Apart from its sequential processing of
speech samples (processes sample-by-sample), the wavenet needs to be trained using
additional features like linguistic features, fundamental frequency, and durations for
speech generation. Another commonly used speech signal reconstruction technique
is the griffin-lim algorithm [130]. In this approach, the signal generation is carried
out by phase reconstruction from the spectrograms without requiring the previous
knowledge of the target signal to be synthesized. In this thesis, we utilize wavenet
in chapter 7 for the TTS experiments and the griffin-lim reconstruction for the TTS
experiments presented in chapters 3 and 4.

2.4.3 Text-to-Speech

Text-to-Speech synthesis (TTS) as the name suggests is a mechanism that generates
speech when provided an input text. Typical TTS systems consist of the following
components, a) text processing module, b) grapheme-to-phoneme conversion, c)
acoustic modeling, duration modeling, and d) waveform generation. Text processing
involves text normalization, tokenization, parts-of-Speech tagging, punctuations, and
letter-to-sound rules. Festival [131], the speech synthesis toolkit is mostly preferred
as the front-end for the text processing tasks in a conventional TTS setup. In this
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thesis, Festival generated voices have been evaluated for their social perceptions (in
chapter 4).

The evolution of TTS research over the years can be presented as a) rule-based
synthesis [132], b) formant synthesizers [133], c) articulatory synthesis [134], d)
concatenative synthesis [135, 136], e) HMM-based synthesis [137], f) DNNs [97],
g) end-to-end TTS [4, 6, 23]. In rule-based speech synthesis, as the name suggests
the speech generation is carried out by the rules designed by the experts. Formant
synthesizer and articulatory synthesis are also rule-based synthesis techniques de-
fined by the formants, formant frequencies, the vocal tract shape, and the speech
articulators like tongue, lips, and jaws.

In concatenative speech synthesis, speech generation is achieved by concatenating
smaller units of pre-recorded speech segments. Since the speech generation is carried
out from the original speech segments, the perceived speech sounds natural. These
small chunks of speech could be phones or diphones or syllables. Unit Selection
Synthesis (USS) is a concatenative speech generation approach that utilizes a large
data inventory for concatenative speech synthesis. The choice of appropriate units
from a large inventory is carried out using a Viterbi search algorithm [138]. Further,
speech generation is enabled through signal processing techniques such as Overlap
Addition over the target units [139].

The speech synthesis carried out based on HMMs and NNs is called the statistical
parametric speech synthesis (SPSS) as it utilizes the parametric representation of
speech. The advantage of parametric models over concatenative synthesis is that
they enable the modeling of acoustic parameters during the synthesis procedure. The
traditional HMM-based speech synthesis techniques employ decision trees for the
mapping of linguistic information onto acoustic space [137, 140, 141]. HMMs and
DNNs as observed in VC literature, do not perform well for speech synthesis due to
their frame-based modeling. This was handled to some extent by the use of dynamic
features in a DNN-based speech synthesis [97]. However, eventually, sequence-to-
sequence-based speech generation has been found to render better quality speech
over the other parametric models [142].

Current TTS research employs end-to-end models such as Tacotron, and Tacotron
2 [4, 6]. The tacotron network can generate speech when provided with the charac-
ters as the input. It was introduced in 2017 to replace multiple blocks in the TTS
framework (text processing block, acoustic modeling, duration modeling, speech
generation) that were prevalent. Thus, the temporal modeling of speech sentences
was enabled through the use of sequence-to-sequence networks. The network lever-
ages the convolutional layers and the bi-directional GRUs and the attention-based
decoding for the generation of raw spectrograms. Figure 2.6 displays the flowchart of
a traditional tacotron. The speech signal reconstruction is carried out by the Griffin-
Lim algorithm [130]. Later, a modification to the Tacotron network, was proposed
which was eventually called, Tacotron2. This network eliminates the complex struc-
ture of Tacotron by the use of vanilla LSTM layers. Further, the waveform generation
in Tacotron2 unlike in Tacotron is carried out by the Wavenet vocoder. In this thesis,
the speech samples generated using the tacotron model were utilized for the subjec-
tive evaluations presented in chapters 3, 4. Further, the TTS experiments in chapter
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Fig. 2.6: Flowchart of the Tacotron.
.

7 were carried out on the tacotron model along with the wavenet vocoder for speech
signal reconstruction.

On the other hand, several toolkits have been developed by various research
institutes for speech synthesis across the world. Merlin is a speech synthesis toolkit
developed at CSTR, (by the speech group at the University of Edinburgh) [143].
This toolkit performs a DNN-based speech generation which is trained using Theano
[144]. Another DNN-based TTS open-source platform is IBM Watson. An online
demo version is also available that supports 9 different languages1. The current
demo version provides expressive neural voices. MARY TTS is an open-source TTS
platform developed by the Language Technology Lab at the DFKI in association with
the Phonetics department at Saarland University2. The platform supports USS and
HMM-based speech generation. The Google TTS engine 3 supports more than 200
voices and more than 40 languages. Speech generation is available in three different
voice types namely, standard, wavenet, and neural2. Amazon Polly 4 provides the
TTS speech samples with two voice types, neural and standard. It supports 29
languages and around 61 voices. The API versions of the commercial TTS systems
are also available for research purposes. One can generate and also download speech
samples for one’s research using these platforms. In this thesis, I have utilized the
speech samples generated fromMary TTS, IBMWatson, Google, and Amazon Polly
for the subjective tests presented in chapter 4.

1 https://www.ibm.com/demos/live/tts-demo/self-service/home
2 http://mary.dfki.de/
3 https://cloud.google.com/text-to-speech
4 https://eu-central-1.console.aws.amazon.com/polly/home/SynthesizeSpeech
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2.5 Evaluation of TTS and VC

This section details the traditional evaluation setups prevalent inTTS andVC research
followed by the details of the evaluation metrics included in this thesis. Further,
details of in-lab and crowd-sourcing subjective tests are also provided.

Even though objectivemeasures are also commonly used in TTS andVC research,
in the scope of this thesis, only subjective evaluations of the generated voices are
presented. The subjective perceptions are standard, and much more reliable than ob-
jective measures as they include human judgments [145]. Further, we are interested
in understanding the social perceptions of synthetic voices. There have not been
any prior works on the assessment of warmth, and competence in synthetic speech.
Therefore, as an initial attempt, we explore the subjective perceptions of these char-
acteristics from the generated speech. The well-known and widely used subjective
assessment tests on the generated speech are a) intelligibility (how clearly one can
comprehend the speech), b) naturalness, c) speech quality, and d) speaker similarity
[146, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Intelligibility
is measured by calculating the number of words that are correctly identified from
the generated speech. Speech quality, as the name suggests evaluates the quality
of the perceived speech. Naturalness provides information on how close (natural)
the listeners perceive the voice to be to that of human speech. Speaker similarity is
calculated to interpret the similarity of the converted (in the case of VC) or generated
(in a TTS setup) voice to that of the target/original speaker. In the current thesis,
we discuss the evaluation of synthetic speech using naturalness, speech quality, and
speaker similarity. All these metrics can be measured using absolute 5-point scales.
ITU-T Recommendation P.85 [147] was developed in 1994 for the evaluation of syn-
thetic voices on various scales such as pleasantness, listening effort, overall quality,
etc., The quality labels as provided in the ITU-T Rec P.800 [148] are presented in
table 2.1 along with the naturalness and speaker similarity. The subjective ratings
collected for each utterance from different individuals (participants) are averaged
and correspondingly Mean Opinion Scores (MOS) are derived for each test condi-
tion. These tests can also be called direct scaling tests as they define the questions
(naturalness, quality, similarity) and also each point on the scale.

Table 2.1: The labels for each point on the 5-point absolute scale as used in the
evaluation of speech quality, and naturalness.

Score Speech quality Naturalness Speaker similarity
5 Excellent Highly natural Sounds very similar
4 Good Sounds natural Sounds similar
3 Fair Somewhat natural Sounds somewhat similar
2 Poor Not natural Does not sound similar
1 Bad Completely unnatural Not at all similar
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Another commonly used subjective test for the generated speech is the AB pref-
erence test [149]. In this test, the participants are provided with two speech samples
(A, B) and are free to choose any of those based on the questionnaire (naturalness or
speech quality). Some experimenters also provide another option, “No preference”
during this test. If the listeners are not provided with the third option then it’s called
the forced preference test (as they are compelled to choose between A or B). There is
also another test called, the ABX preference test. An ABX test additionally consists
of a reference speech sample. The participants listen to three speech samples, sample
A generated from system 1, and sample B generated from system 2, sample X from
the original target speaker. The participants should choose which among A or B is
closer to that of the target speaker. In this thesis, along with speech quality, natural-
ness, and speaker similarity, an AB (with an option for No preference) preference
test is carried out for the perception of warmth, and competence from the converted
voices, ABX test for speaker similarity of the converted and the target speaker’s
speech (VC experiments in chapter 6). Additionally, there are also semantic differen-
tial scales that measure different perceptions of the participants of a speech sample
over the bipolar scales (adjective-antonym pairs at the extremes) [150]. These scales
as described previously, are widely used in behavioral research to evaluate various
personalities or speaker characteristics. In this thesis, we utilize semantic differential
scaling tests for the evaluation of warmth and competence from synthetic speech (in
chapters 4, 6, 7).

2.5.1 In-lab and crowdsourcing-based subjective evaluation

The in-lab subjective evaluations are conducted in noise-free and acoustically
damped room settings where the listening environment is in the control of the
experimenters. In comparison, crowd-sourcing-based assessments are carried out on
publicly available platforms like Amazon Mechanical Turk (AMT). In these stud-
ies, the listening environment of the participants is not under the control of the
experimenter. The number of participants to take part in the study, nativity of the
participants, age, gender, and the number of speech samples to be provided during
the test (for both in-lab and crowd-sourcing studies) are determined by the exper-
imenter. Even though an in-lab subjective test can create an ideal environment for
listening tests, there are some drawbacks, a) not a realistic listening environment, b)
costly when compared to crowd-sourcing-based studies, and c) difficulty in finding
participants that belong to a specific group. Also, during the pandemic situation,
performing subjective studies in an in-lab setting was practically not possible. Thus,
crowd-sourcing research and platforms have gained much attention in the last couple
of years. The ITU-T Rec. P.808 [151] presents the guidelines for conducting subjec-
tive evaluations through crowd-sourcing setups. This was further tested and shown
to be reliable through the studies presented in [152].

According to the ITU-T Rec. P.808, there are some considerations one must
not ignore while designing a crowd-sourcing-based evaluation. As per the ITU
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recommendations, the test duration should last only a few minutes. Therefore, it
is recommended to split the data into smaller chunks. The number of questions
(speech stimuli), to be provided during the subjective tests via crowd-sourcing (for
the crowd-worker to finish a task in a couple of minutes) should be limited to 5-15
[148, 151, 152]. As a result, each crowd-worker would take part in one or more tasks
but not all the tasks (the raters would rate only a subset of the entire study). However,
this would give rise to error variance because of the corpus effect in the collected
subjective data. Therefore, the experimenter must design multiple (adequate) test
conditions such that the raters in each pool would rate all the samples (one entire
condition) in the given subset of data (5-15 stimuli). Also, one can encourage the
crowd-workers to take part in multiple jobs by providing them with bonuses (extra
rewards).

Based on the ITU recommendations, the crowd-sourcing assessments should
consist of three jobs namely, a) qualification, b) training, and c) rating. Under the
qualification job, the experimenter verifies the eligibility of the participant for the
designed subjective test. It includes questions that would verify hearing impairments
(if any) among the registered participants. Also, if the participants are comfortable
they can also disclose their age and gender which would further aid the researcher
in the analysis of the collected subjective data. Depending on the requirement of the
experiment, the experimenter can then choose the group of participants for the study.
Also, one can choose the participants based on their previous performances in the
crowd-sourcing tasks (based on the number of approved tasks). The second job is
to train/familiarize the participants with the evaluation setup. This job must include
speech samples that are representative of both the best and worst quality speech
samples. The participants are not given any information about the data distribution
or the speech samples being provided in this job. This job would train the participants
for the actual rating job. In turn, if the participants fail to perform the rating jobwithin
24 hours of finishing the training job, they cannot perform the rating job and will be
redirected to the training job. The rating job consists of some initial steps. Firstly,
the participants are asked about the listening environment, system (headphones,
speakers, etc.,), and the option to adjust the sound level before the actual test begins.
The participants should be instructed to perform the task in a noise-free environment.
This can be further ensured based on their responses to the quality comparison tests.
If the frequency (number of occurrences) of correctly selected voice (voice with
good quality speech should be selected in a comparison test when provided with
two speech samples with a varied speech quality) is high then the experimenter
can interpret that the participant was indeed in a noise-free environment. Also, the
participants need to be informed to wear two-eared headphones. This condition can
also be verified by providing a small maths question, where the numbers are played
at random in the left and right (ear) headphones. Also, the participants should set the
volume to a level that’s most comfortable for them. They should be instructed to not
change this volume during the test after this step. [153] presents a study on including
a gold standard question (trapping question) during the subjective tests. This is an
additional question included in the test along with all the other speech stimuli. The
participants who pay attention during the test only can answer this correctly. The
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researcher can thus filter out the participants based on their responses to this trapping
question. Additionally, it is also recommended to include another trapping question
where the speaker (within the speech stimuli presented during the test) asks to select
an option from the given choices. The participants who play and listen to all the
speech samples alone can be retained through this mechanism. Further, the collected
subjective data is finally processed to verify if all the above-mentioned conditions
are met. The participant information can be discarded if a) they cannot answer one or
both the trapping questions correctly, b) listening environment conditions are not as
specified, and c) the listening system was not set up properly. Also, the experimenter
can remove the participants’ data if found any outliers or abnormal patterns in the
subjective responses.

In this thesis, the subjective evaluations were carried out through both in-lab (in
chapter 3, 4, 6, 7) as well as crowd-sourcing-based experiments (in chapter 4). The
evaluation of various perceptual dimensions of synthetic speech (except the speech
quality, naturalness, and speaker similarity) is performed using the continuous 100-
point scales available in TheFragebogen [154, 151, 152]. It is an open-source plat-
form that supports the assessment of speech samples through various questionnaires
related to Quality of Experience (QoE). The software is available in Javascript and
the scales, and questionnaires can be modified for different experiments in HTML.
The continuous 100-point scale displays the adjective-antonym pair at the extremes
of the scale. This would enable the participants to choose any point on the scale,
instead of restricting them to specific points as in absolute scales or Likert scales. The
evaluation of various adjectives was carried out using continuous 100-point scales in
chapter 4. The speech quality and naturalness assessments of the VC and TTS voices
in chapters 4, 6, 7 are performed using 5-point Likert scales. The VC experiments in
chapter 6 were evaluated using both the AB tests, and 5-point direct scaling tests for
each warmth, and competence. Finally, chapter 7 presents the evaluation of the TTS
for SSC on a 5-point scale.

2.6 Summary

This chapter presents the necessary background and relevant studies from the litera-
ture for the current work. All of this information is structured into four different parts.
The first part provides insights into understanding various behaviors, personalities,
characteristics, emotions, and the differences between each of these dimensions in
humans and machines. The second part deals with the machine-learning approaches
that could be utilized for the study of various aspects of SSC from the synthetic
speech (specific to this thesis). The third part details the evolution of VC and TTS
research. The experiments carried out in this thesis using TTS and VC setups are
derived from the state-of-the models discussed in this part. The last part of this chap-
ter presents information on various aspects of the subjective evaluation of synthetic
speech.





Chapter 3
Choice of datasets and adjectives

This chapter presents the datasets used for different studies carried out in this thesis
followed by the adjectives used in the subjective evaluation setup. These details are
provided while discussing the challenges encountered in the initial subjective tests.
Apart from the publicly available datasets, the others deployed in this thesis are hand-
picked by myself from various sources (corresponding links are provided). I have
alone done the collection and finalized the adjectives through different subjective
evaluations.

3.1 Related work

This section discusses the datasets previously used for the study of social speaker
characteristics in different experimental setups. The behavioral studies performed
on humans (discussed in the previous chapters) consisted of a complete assessment
of a person by a known acquaintance [56, 155]. Further, [156] provides warmth and
competence judgments based on non-verbal cues. They report the association of the
non-verbal cue, “smile” with an increased perception of warmth than competence.
In [157] authors present the effect of articulatory cues during the pronunciation
of the vowels, /i:/ and /u:/. The study claims that the speakers were perceived as
much warmer and more competent when they utter the usernames with the vowel,
/i:/ over the usernames with /u:/. This is due to the facial gestures created while
pronouncing the vowel, /i:/. The speaker characteristics such as age, gender, and
dialect [158] were previously studied from the phoneme sequences. Authors in
[75, 76] collect semi-spontaneous conversations (ordering a pizza over a phone call)
from 300 German speakers for the studies on speaker characterization. In their study,
perceptual analysis was carried out in zero-acquaintance scenarios. [159] investigate
the automatic prediction of personality traits from synthetic speech. The speech
samples used were 5 sentences among which two were nonsensical words in the
native language and the rest three were, ‘Thank you’, ‘How are you’, and ‘I love you’
(in the listener’s native language).
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Nevertheless, for this work, wewere interested in understanding the social percep-
tions of the generated speech (TTS). The goal was to further include these additional
dimensions in the evaluation of speech generation systems (TTS and VC). Accord-
ingly, the choice of datasets for our studies was dependent on three criteria, a)
utterances that would aid in the perception of warmth and competence from speech,
b) study of SSC in a speech-alone scenario (focus on acoustic features alone), and
c) perceptual studies on synthetic speech. Correspondingly, various datasets and
adjectives were investigated. The details of these studies are provided further.

3.2 Challenges

This section provides the challenges encountered in the selection of datasets and
the preparation of questionnaires (or scales or adjectives or speaker attributes) for
subjective tests. These challenges are discussed while providing the details of the
preliminary studies carried out for the social perceptions of synthetic voices. The
preliminary studies were therefore carried out to examine the following, a) choice of
datasets, and b) scales to be used in the subjective evaluation.

3.2.1 Choice of datasets

All the datasets used in this thesis are in English (speakers with a US accent). In
the initial studies, the utterances that displayed care, compassion, and assurance in
addressing the customer’s/patient’s problems were derived from different sources 1

2. The generated dataset was termed as WC dataset (WC = warmth, competence).
Further, a preliminary study was designed with this dataset for the scales to be used
in the evaluation (details provided in the section 3.2.2). The analysis of the subjective
responses (actual test), has shown that the content (text) has a significant influence
on the perception of warmth and competence (discussed in chapter 4). The primary
aim of this thesis was to examine the perception of warmth and competence from
synthetic speech and incorporate those using different acoustic featuremodification
techniques if necessary. Therefore, in order to narrow down the dependence of the
speech perception on the content, the subsequent perceptual studies were carried
out on neutral speech (Chapter 4, 5, 6). However, later on, perceptions of compas-
sionate speech have also been studied and presented in chapter 5 (presents a small
study on how duration affects the perception of warmth and competence in compas-
sionate speech), chapter 7 (investigates whether the acoustic correlates of warmth
and competence derived for neutral speech can be generalized for compassionate
speech).

1 https://www.fluentu.com/blog/business-english/how-to-talk-with-customer-in-english/
2 https://www.verywellmind.com/what-to-say-when-someone-is-depressed-1067474
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3.2.2 How to evaluate warmth and competence from synthetic speech?

A preliminary study was carried out for the perception of warmth and competence
from synthetic speech. The study consisted of 15 participants (male = 7, female =
8). Their ages ranged between 21-32 (mean = 24.5, std = 2.3). The speech samples
used for the subjective tests consisted of 2 male (bdl, rms) and 2 (slt, clb) female
voices from the CMU arctic database [160]. These voices were generated using
the traditional Tacotron model following a similar architecture as presented in [4].
The sentences produced from these four voices for the initial subjective tests were
from the WC dataset. During the evaluation, the participants were asked to rate the
speech samples on a scale of 5 for warmth and competence (1 = cold/incompetent, 5 =
warm/competent). The behavioral studies presented in [15] state that the impressions
of the intellectual dimension (competent) are made easily and also prior to the social
dimension, warmth. However, in our study, the questions provided to the participants
are randomized and the phenomena mentioned above cannot be observed based on
the design of the evaluation setup. Nevertheless, we made an observation that might
be in line with the above-mentioned study to some extent. The participants could
easily rate the speech samples on the scale of competence. But, in order to evaluate
the perceptual dimension, warmth, they required additional adjectives that would
best describe the characteristic. Based on the interactions with the participants and
the analysis of the subjective responses, it is understood that the evaluation of warmth
would require a different set of questions during the subjective evaluation.

3.3 Datasets

This section details the datasets used for different studies conducted in the thesis.
These studies can be divided into two parts, a) Perceptual studies (studies on social
perceptions of synthetic voices, and their acoustic analysis), and b) Modeling of the
synthetic speech (VC and TTS experiments). The datasets used for each of these
studies are further provided in detail.

3.3.1 Datasets for perpetual studies

The perceptual studies presented in chapter 4 included two different datasets namely,
a) WC dataset, and b) neutral speech. The WC dataset consists of 10 sentences. The
text used to generate synthetic speech is provided inAppendix (A.1). The experiments
on the neutral speech were carried out using two phonetically balanced datasets,
namely the Harvard database3 and CMU arctic database4 [160]. These are publicly

3 https://www.cs.columbia.edu/ hgs/audio/harvard.html
4 http://festvox.org/cmu arctic/
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available datasets and are widely used in speech research [121, 108]. The perceptual
analysis (on neutral speech) in chapter 4 and the acoustic analysis in chapter 5 were
carried out on the Harvard database (number of sentences used = 32). The perceptual
analysis of the generated speech has shown that the speaker characteristics remain
constant across different speech segments used in the study. Therefore, by leveraging
this advantage, in the latter experiments, CMU arctic database (same data type
= neutral speech, number of sentences = 1132) was used for training different NN
models. The NN-based classification of SSC (automatic prediction of SSC) using the
acoustic correlates of warmth and competence presented in chapter 5 was performed
on the arctic dataset.

3.3.2 Datasets for modeling of synthetic speech

This section presents the details of the datasets used for modeling of the synthetic
speech using VC in chapter 6 and, training and testing the TTS models employed in
chapter 7.

Chapter 6 presents the VC experiments carried out on the synthetic voices for
altering the negatively perceived voices into positive ones. The modeling of the
synthetic speech using VC techniques is carried out using the CMU arctic database.

Artificial speech generation through neural models requires abundant data for
synthesizing natural-sounding speech [4, 6, 5, 161]. The end-to-end TTS models,
Tacotron and Tacotron 2 were developed using 24.6 hours of female speaker’s speech
[4, 6]. The Deep Voice utilizes 20 hours of speech that comprises 13,079 utterances
[161]. Additionally, the model was trained on a subset of Blizzard 2013 data [36].
Wavenet vocoder [5] was built with 44 hours of speech data derived from the VCTK
corpus rendered by 109 speakers [162]. Further, in the TTS experiments (using
wavenet as the vocoder), the model was trained on single-speaker databases, which
were 24.6 hours of English speech, and 34.8 hours of Mandarin Chinese. Similarly,
the Tacotron model (used in this thesis in chapter 7) was trained on 24 hours of
speech data in the current work. The description of the dataset is provided below.

3.3.2.1 LJSpeech dataset

The LJSpeech dataset consists of approximately 24 hours of a single speaker’s speech
data rendered by a female speaker [163]. The speaker reads out passages from non-
fiction books which constitute about 13,100 speech samples (each sample duration
is approx. 10 seconds). This dataset is publicly available and is widely used in TTS
research [164, 165, 166]. The tacotron model employed in chapter 7 was trained on
this dataset.
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3.3.2.2 Twitter data

The evaluation of the generated speech samples using the TTS models presented in
chapter 7 was donewith the Twitter dataset (choice of the dataset for the experimental
setup is explained in detail in chapter 7). The sentences that expressed compassion,
empathy, and generosity were hand-picked from various Twitter posts and threads.
While doing so, the experimenter made sure that there were no sentences/words that
would stimulate any negative impressions on the listeners. The sentences used in the
evaluation are provided in Appendix (A.1).

3.4 Choice of adjectives

From the section 3.2.2, we have observed that the perception of warmth requires
additional adjectives during the subjective evaluation. Also, from the literature on
human behavior, it is evident that behaviors or characteristics, or personalities of a
person are determined based on multiple dimensions (through the assessment of a
person on various adjectives). Therefore, we employ a similar procedure for our line
of work. The adjectives to be included in the perceptual studies were determined
through a 2-step procedure. In the first step, an in-lab subjective evaluation was
carried out with 15 participants. Their ages ranged between 21 to 40 (mean = 29.3,
std = 5.3). In this study, the participants were asked to describe the speaker’s voice
using various adjectives. Later on, the participants were requested to provide the
adjectives they felt as essential for health care professionals and customer service
agents. In the second step, inspired by [69, 70, 75, 76], various adjectives employed in
the studies of human perception were accumulated. Some of the adjectives collected
from the first step correlated with the ones found in the literature. Finally, through
these two steps, a list of 66 adjectives has been derived. The finalized adjectives list
is further presented in Appendix (A.2). However, how many among these 66 can be
perceived from the synthetic speech is not known from this study (since some of
the adjectives were included a) that are specific to the desired application domains,
and b) some from the studies on understanding human behavior and personality).
Therefore, follow-up work on the current 2-step procedure is presented in chapter 4
to determine the list of adjectives that can be perceived from synthetic speech.

3.5 Summary

This chapter discusses the initial steps toward assessing the SSC from synthetic
speech. The chapter begins with a discussion of the datasets used previously for
various perceptual studies. Further, we provide some insights into the challenges
encountered in the preliminary studies which aided in the design choices of our
experimental setup. Later on, the datasets used for different experiments in this thesis
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are presented. Finally, the chapter concludes with a description of the questionnaire
preparation (adjectives) required for the subjective tests.



Chapter 4
Social perceptions of synthetic speech

This chapter details the studies performed on social perceptions of synthetic voices.
Two different studies are presented, a) perceptual studies on a wide range of TTS
systems, and b) two commercial TTS systems. A discussion on the experimental setup
was done between me, Benjamin Weiss, Sebastian Möller, and Babak Naderi. The
second half of the chapter (studies on two commercial systems) are from the work
published in [167]. Therefore the content outlined would be closely related to that
work.

4.1 Related work

This work was inspired by [75, 76] in speaker characterization through peer-ratings
on unknown speakers. The study was carried out on human speech in German. [76]
presents a 34-item semantic differential scaling test for interpersonal speaker charac-
terization from semi-spontaneous conversations. The first impressions of the listeners
as observed by the authors in the studywerewarmth, attractiveness, confidence, com-
pliance, and maturity. The motivation of the work was that it is not easy to provide
personality judgments (on BIG FIVE traits, O, C, E, A, N) when only confronted
with speech (zero-acquaintance scenarios) [75]. Therefore, the study includes mul-
tiple adjectives representing various behaviors and personality traits. According to
[66] the sample adjectives that represent different personality traits are as follows: a)
Openness to Experience = Artistic, Curious, Imaginative, Insightful, Original, Wide
interests, b) Conscientiousness= Efficient, Organized, Planful, Reliable, Responsi-
ble, Thorough, c) Extraversion = Active, Assertive, Energetic, Outgoing, Talkative,
d) Agreeableness = Appreciative, Kind, Generous, Forgiving, Sympathetic, Trust-
ing, e) Neuroticism = Anxious, Self-pitying, Tense, Touchy, Unstable, Worrying.
Further [168] presents the paralinguistic speaker challenge conducted for assessing
personalities from speech using these adjectives. The experiments were performed
on the SPC corpus. The study incorporates the BFI-10 (a subset of the BFI-44)
questionnaire for personality assessments. Similar to studies presented in [75, 76],
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authors in [86] assess the personality of the speaker in zero-acquaintance scenar-
ios. They present the automatic prediction of personality from a single speaker’s
speech followed by a comparison of the human evaluations. The study shows that the
trait, openness to experience cannot be understood from speech using the NEO-FFI
questionnaire. [169] also investigates the relationships between personality traits and
their perceptions from speech. The analysis shows that extroverted speakers speak
louder without any pauses or stalling in between. However, all these studies were
previously carried out on natural (human) speech.

[170] present the personality assessments of synthetic speech in the case of con-
catenative as well as parametric speech synthesizers. The study investigates the effect
of the content being said, the naturalness of the generated speech, and the voice type
(tensed voice, lax voice) on speech perceptions. The study displays a significant
impact of the voice quality and the synthesizer used, on the personality judgments.
In [171], authors investigate the perceptions of the brand personalities (sincerity,
excitement, competence, sophistication, ruggedness) from the synthetic speech. The
study presents the perceptions of these dimensions from German speech generated
through Mary TTS. The attributes that were representing the brand dimension com-
petence were reliability, intelligence, and success. These attributes were obtained
through factor analysis of the personality dimensions that associate with specific
brands in markets. This analysis was presented in [172]. In this work, the authors
present the study on customers’ behaviors and responses to specific brands analo-
gous to the studies on human personality. [173] presents the study on the multi-facet
nature of the fundamental dimensions. They propose to distinguish the social di-
mension into warmth and morality, and the intellectual dimension into assertiveness
and competence. The study also claims that the perceptions of these dimensions are
stable across different cultures and regions.

Overall, from these studies, we can conclude that a) the study of personality
(or any human behaviors) requires additional dimensions/adjectives in the case of
speech-alone scenarios (we have also observed this from our preliminary studies
presented in chapter 3. Therefore, this holds true even in the case of synthetic
voices.), and b) the first impressions made by humans are not limited to other
humans or animals (living beings) but also other domains (non-living things) such
as brands (also generated speech). Therefore, as a follow-work for these studies, in
the current work, we focus on the assessment of speech perceptions from synthetic
voices in English on multiple perceptual dimensions. Following the studies, [75, 76],
various adjectives were derived from the behavioral and personality research for the
same [69, 70]. Further, the first impressions (social dimensions) of synthetic speech
were obtained using Exploratory Factor Analysis (EFA) on the collected subjective
data. These studies aid in answering the following research question.

•? Research question: “What social speaker characteristics do people perceive

from synthetic speech?”
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4.2 Study A: A case study on wide-range TTS systems

This section provides the details of the preliminary research conducted with the
choice of speech data and the adjectives prepared so far.

4.2.1 Experimental setup

4.2.1.1 TTS voices

Although the research on the adjectives to be included in the subjective setup was
derived for the Neural TTS voices (Tacotron, as presented in chapter 3), in the current
study, the subjective perceptions of a wide variety of TTS systems were analyzed.
This was done to ensure that all the variations of synthetic speech perception could
be included in the study. The TTS systems that are available in both industry and
academia were researched for the same. Finally, the study consisted of five different
TTS systems. Among them, the academic systems used in the study were, Festival
(Clustergen) [131], Mary TTS 1 [174], Tacotron [4]. Correspondingly, the commer-
cial ones were, Google (Wavenet-A, B, C, D, E, F, standard = B, C, D, E)2, IBM
Watson3. A total of 41 voices (male = 23, female = 18) were collected from these
TTS systems. The list of the TTS systems and the number of voices collected from
each system are provided in table 4.1.

Table 4.1: List of the TTS voices used in the study.

TTS system Number of voices Male Female
Tacotron 5 3 2
Festival 5 3 2

Mary TTS 9 6 3
IBM Watson 6 2 4

Google 16 9 7

The academic systems, Tacotron and Festival were trained on the CMU arctic
database [160]. The 3 male voices from Tacotron and Festival were of bdl, rms, jmk.
The 2 female speakers are slt and clb. TheMary TTS voices were also from the arctic
database. The TTS system consisted of three speech generation mechanisms namely,
Unit Selection Synthesis (USS) [175], Hidden SemiMarkovModels (HSMM) [141],
and USS with prosody modification. The voices generated from these models were
as follows: 2 male voices (bdl, rms) * 3 models (USS, HSMM, USS with prosody

1 http://mary.dfki.de/
2 https://cloud.google.com/text-to-speech/
3 https://cloud.ibm.com/apidocs/text-to-speech
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modification), 1 female (slt) * 3 models. The commercial TTS IBM Watson, had 3
models namely, enhanced DNN, transformable TTS, and expressive TTS. The voices
generated from these models were as follows: 1 male * 2models (transformable TTS,
enhanced DNN), 1 female * 2 models (enhanced DNN, transformable TTS), and 1
female * 2 models (expressive TTS, transformable TTS). The Google voices used
were from the Wavenet. There were 6 voices (3 male, 3 female). Additionally, the
pitch variation and the speaking rate variation were also incorporated for 2 male
and 2 female voices (male = B, D; female = C, E). Thus, the total number of voices
derived from the Google TTS system was 16.

4.2.1.2 Questionnaire preparation

We have observed the list of adjectives that are derived from the 2-step procedure
employed for questionnaire preparation in chapter 3. However, the perception of
those adjectives from the synthetic speech is not known. Therefore, in the current
study, the number of adjectives among the list of 66 adjectives that can be perceived
from the synthetic speech is examined. The test was conducted with a new set of 15
participants. Their ages ranged between 25 to 48 (mean=31.8, std = 5.87). The speech
samples (2 male, 2 female) provided were the same as that in the study presented
in chapter 3. A final list of questionnaires was compiled based on the frequency of
the responses received (the adjectives that were selected as being perceived from
TTS voices by more than 10 participants were selected). This list consisted of 34
adjectives and is provided in Table 4.2.

Table 4.2: Attributes for 34-Dimensional Semantic Scaling Test

Attributes
Kind Confident Energetic Outgoing
Distant Talkative Proactive Tense
Empathetic Calm Introvert Unsympathetic
Trusting Worrying Not irritated Indecisive
Emotional Secure Old Friendly
Relaxed Reliable Hearty Arrogant
Assertive Agreeable Anxious Pleasant
Responsible Active Cynical
Enthusiastic non-likable Accessible

Apart from the speech perceptions, we have also examined the text perceptions
in this study. At the end of the listening test, the participants were provided with
the sentences used in the survey and are asked to rate the sentences on a scale of 5
for different adjectives. Additionally, ten speech samples from the Harvard database
(neutral speech) were included in the survey. The comparison of the subjective
responses between theWCdataset (10 sentences) and the neutral speech (comparison
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between speech as well as text separately) has shown that the text has a significant
(2-sample t-tests between texts and speech samples indicated statistically significant
differences, p<.05) influence on the perceptions of various speaker attributes.

4.2.1.3 Design of the survey

One of the challenges encountered while designing the actual survey was deciding
the number of questions to be included in the test. The total questions with the
current design choices would include, the number of TTS voices (41) * the number
of sentences (10 from the WC dataset defined in chapter 3) * and the number of
adjectives (34) = 13940 questions. The study was determined to be carried out in a
lab environment. And the list of questions was rather high for such an evaluation.
Even if we split the test into multiple parts each spanning for an hour it would
require around 6-7 appointments for the participants to complete the study. In order
to handle this situation, the number of sentences to be used in the study was reduced
to 2. This is because the study aimed at the analysis of a wide range of TTS voices
(so the number of voices could not be reduced). The sentences thus selected for the
perceptual studies are provided below.

• Is there anything I can do to help?
• I am sure we can reach a solution.

Therefore, finally, the study consisted of TTS voices (41) * sentences (2) * adjec-
tives (34) = 2788 questions. The evaluation setup was prepared using the publicly
available framework, TheFragebogen [154]. The survey consisted of continuous 100-
point scales prepared with the adjectives presented in table 4.2. The adjectives and
their antonyms are defined at the extremes of the scale (semantic differential scaling
test) [176]. The positive adjectives were at the extreme right and the negative ones
were on the left. A short example of the survey is provided in figure 4.1.

For the current study, the nativity of the listeners, age, and gender were not
considered as the deciding factors for their participation in the study. The number of
participants to take part in the study was decided to be 25.

4.2.1.4 Subjective test

Among the listeners who signed up for the study, there were 15 male and 10 female
participants. The age of the participants ranged from 20 to 56 (mean = 28.35,
std=9.5). The education status of all the participants varied between high school
and University degrees. The participants were provided with Sennheiser HD 449
headphones. The test was conducted in an acoustically damped room. On average,
the time taken by all the participants to complete the test was 54 minutes. They were
allowed to take a break during the test, every 10 minutes to avoid any fatigue. They
could listen to the speech samples multiple times during the test. All the participants
were compensated for participating in the test.
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Fig. 4.1: Sample of the semantic differential scaling test used during the subjective
evaluations
.

4.2.2 Analysis of subjective responses

4.2.2.1 Inter rater agreements

Intra-class correlation coefficient (ICC) is a reliable indicator and is highly recom-
mended in deriving the inter-rater reliability scores from the subjective responses.
The coefficient value provides the degree to which the raters concur with each other
on a specific choice of ratings. Generally, the higher the coefficient value, the more
closer and reliable the subjective responses (> 0.6 to a maximum of 1) [177, 178].
The ICC values were calculated for each of the adjectives used in the study. The
coefficient values were computed for male and female speakers separately. The ICC
range for female speakers was from 0.51 (for hearty) to 0.83 (for old) with an aver-
age of 0.72 (std = .08). The range for male speakers was from 0.35 (Secure) to 0.75
(Enthusiastic) with an average of 0.57 (std = 0.6).

4.2.2.2 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) as the name suggests, explores the complex
data and defines the underlying structures [179]. EFA is a form of dimensionality
reduction technique applied to a set of observed variables (factor loadings) in order
to determine underlying latent variables (factors)[180]. Researchers choose EFA
over other factor analysis approaches when the number of factors to be derived is
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unknown. The variables loading under each factor and their values (factor loading
values) would represent the amount of variation they have in that factor. If the value
of a variable is the highest in a specific factor compared to others, then it most likely
belongs to that factor. The number of factors to be derived is determined based
on how well the data is structured in each experiment (factors = 3,4,5). Once the
number of factors is determined, various rotations and a second-factor analysis are
implemented to interpret the belongingness of a variable under a specific factor.
There are different types of rotations such as Oblimin [181], Promax [182], Varimax
[183]. The rotation of factors is essential for a better factor representation and to
maximize the factor loading values. From the literature, we have observed that the
social dimensions are orthogonal [55] and independent of each other [12]. In order
to understand this phenomenon in the case of synthetic speech, in the current study,
we have examined both varimax and oblimin rotations with a minimum residual
factoring method ( varimax performs an orthogonal rotation of the factors, oblimin
is used when the factors are correlated). The factor analysis was carried out using
the ”factor analyzer” package available in python.

Table 4.3: Factor loadings for female speakers

Attributes Warmth Competence Extraversion
Hearty 0.79
Distant -0.78
Pleasant 0.81
Reliable 0.79
Trusting 0.79
Emotional 0.78
Agreeable 0.78
Energetic 0.75
Unlikable -0.83
Sympathetic 0.82
Enthusiastic 0.77
Calm 0.78
Tense -0.72
Relaxed 0.63
Anxious -0.6
Introvert -0.74
Outgoing 0.8
Talkative 0.67

A gender-dependent factor analysis was carried out on the collected subjective
data. The number of factors that could best represent the data as observed from mul-
tiple analyses is three (the best representation of factors was obtained with varimax
rotation). After the first analysis, the attributes were retained based on three criteria:
i) when the main loading of an attribute was greater than 0.5, ii) the difference
between the main loading and the cross-loading was at least 0.2, iii) the commu-
nality [184] (provides the variance information) values were higher than 0.4. The
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Table 4.4: Factor loadings for male speakers. (*) indicates the attributes that are
common for both male and female speakers under each of the derived factors.

Attributes Warmth Extraversion Competence
Kind 0.8
Hearty* 0.83
Arrogant -0.64
Friendly 0.83
Pleasant* 0.83
Trusting* 0.77
Agreeable* 0.75
Empathetic 0.75
Emotional* 0.71
unlikable* -0.79
Sympathetic* 0.81
Responsible 0.68
Active 0.7
Introvert* -0.76
Energetic 0.75
Outgoing* 0.79
Talkative* 0.75
Proactive 0.66
Calm* 0.73
Tense* -0.66
Secure 0.61
Relaxed* 0.74
Anxious* -0.68
Not irritated 0.57

communality values for all the attributes loaded under different factors were higher
than 0.4. Hence, none of the attributes were removed based on the third criterion.
Of over 34 attributes that are used in the subjective tests, 18 attributes for females
and 24 attributes for males were retained after the factor analysis. The attributes
retained in each of male and female voices are presented in tables 4.3, 4.4 respec-
tively. A second-factor analysis was performed on the remaining attributes which
explained the variance of 80% for female and 73% for male voices. In addition, we
have also verified the goodness-of-fit (p<.05) using the chi-squared test to examine
the three-factor model for the best representation of the subjective data. Further,
The factors were defined/named based on the items/adjectives they represent. The
derived factors were named warmth, competence (social speaker characteristics),
and extraversion, a personality trait. In table, 4.3 we find the factors and the factor
loadings of female speakers. The factor loading values range between -1 and 1. The
value indicates the amount of influence the factor has on the variable/attribute. The
negative sign indicates that the antonym of the adjective is the underlying speaker at-
tribute. For example, the attribute, “distant” has a negative loading of 0.78. Therefore,
the antonym of “distant” (friendly) is the underlying speaker attribute for the factor,
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warmth. Corrspondingly, a similar analysis was performed on the male speakers and
the results of the factor analysis are provided in table 4.4.

4.2.2.3 Discussion

• A reliability test was conducted to verify the internal consistency of the derived
factors (warmth, competence, and extraversion). This was estimated using Cron-
bach’s alphas [185]. Cronbach’s alpha values range between 0 and 1. The higher
the alpha value (> 0.5) themore reliable the factor analysis. TheCronbach’s alphas
calculated for each of the characteristics and the personality trait are provided in
table 4.5 separately for male and female speakers. The internal consistency values
of the subjective responses presented in the table are calculated irrespective of
the gender of the participants.

Table 4.5: Cronbach’s alphas

Factors Male speaker Female speaker
Warmth (12 adjectives) 0.83 (11 adjectives) 0.76
Competence (6 adjectives) 0.78 (4 adjectives) 0.87
Extraversion (6 adjectives) 0.71 (3 adjectives) 0.74

• The effect of listeners’ gender on the perception of various adjectives is interpreted
using the 2-sample t-test carried out separately for female andmale speakers (since
I have employed gender-dependent analysis throughout the study). Statistically,
significant differences are observed, when female listeners perceived the male
speakers to bemore relaxedwith p=0.029, energetic with p = 0.01, and responsible
with p = 0.012 (p<0.05). Correspondingly, the male listeners felt the female
speakers are more agreeable with p =0.00 and reliable with p = 0.02.

• The current studies propose that the derived factors are orthogonal to each other
(sincewe have finalized the varimax rotation for the factor analysis). This observa-
tion is in line with the theory proposed in [55] (social and intellectual dimensions
are orthogonal to each other). Also, the order of the derived factors is different
for male and female synthetic voices. Table 4.3 displays the factors derived for
female voices to be, warmth, competence, and extraversion. While in the male
voices, as shown in table 4.4 the order of the factors extraversion and competence
are reversed (warmth, extraversion, and competence).

• Warmth: The first identified factor or the first impressions of the participants as
observed from the factor analysis were related to the social dimension, warmth
[15, 186]. Therefore, the first factor was termed warmth. From the results of the
factor analysis, we can observe the number of adjectives contributing to warmth
in female and male synthetic voices to be slightly different. There are eleven and
twelve attributes accounting for the characteristic warmth in female and male
speech, respectively. Among them, seven attributes are commonly loaded in both
genders (hearty, pleasant, trusting, agreeable, emotional, unlikable, sympathetic).
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The attribute “energetic” was found under the trait warmth in female speakers.
While, it was found responsible for extraversion in male speech. The studies on
interpersonal relationships among humans [15, 186] displayed that the attributes,
friendliness, and trustworthiness are related to the characteristic, warmth. Similar
behavior is also observed in the current studies (friendly and trusting contribute
to male warmth; trusting related to female warmth).

• Competence: The second factor was termed competence because the speakers
who are calm and relaxed under pressure can come across as powerful, confident,
and competent individuals [187]. The targeted domains were health care and
customer service. Being calm and composed is therefore essential for the conver-
sational agents that are utilized in these application domains. There are four and
six attributes representing competence in female and male speech, respectively.
Among them, all four attributes identified in female speakers’ speech are found in
male speech too (calm, tensed, relaxed, anxious). Additionally, the male speakers
had the attributes “secure”, and “not-irritated” under competence.

• Extraversion: The third factor derived from the subjective responses was extraver-
sion. The goal of this study was to identify the first impressions of listeners from
the given synthetic voices. However, among the adjectives provided to the partici-
pants (collected from behavioral and personality studies), there were also the ones
that would describe the personality of a person (among the 66 adjectives). The par-
ticipants indicated that it is also possible to perceive personality-related attributes
from synthetic speech ( can be observed from the initial subjective test presented
in the questionnaire preparation (section 4.2.1.2) described in the experimental
setup (section 4.2.1)). From the current factor analysis, we can therefore interpret
that apart from the social and the intellectual dimensions, the listeners could also
perceive the personality trait, extraversion from the synthetic speech (from both
the genders). This supports the theory that extraversion can be easily predicted
from speech [169] and further validates its relevance in synthetic speech. There
are three and six attributes representing extraversion in female and male speech,
respectively. Among them, all three attributes identified in female speech are also
observed in male speech (introvert, outgoing, talkative). Further, there were three
more attributes underlying extraversion in male speech, “energetic”, “active”, and
“proactive”.

• Other interesting observations were that the attributes “hearty”, “sympathetic”,
and “non-likable” are commonly contributing to warmth in both natural [76]
and synthetic voices. The attribute “pleasant” was related to the physical factor,
“attractiveness” in natural speech [76, 75]. However, similar to research shown in
[188], attractiveness is associated with “warmth” in this work. Subsequently, the
attribute “secure” is observed to be related to the characteristic, competence in
synthetic speech, but it was found to contribute to the perception of “confidence”
in natural speech [76]. Further, we can see that the adjectives, “outgoing” and
“talkative” were commonly found (in both genders) responsible for the perception
of the personality trait, extraversion in natural as well as synthetic speech [168].
As outlined in the behavioral studies [15], the adjectives, “active” and “energetic”
were also contributors to extraversion in male synthetic voices.
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4.2.3 Perceptual analysis of TTS voices

This section presents the dissection of the experimental data in order to comprehend
the performance of TTS voices (speech quality, naturalness, perception of warmth,
competence, etc.,). In order to achieve the same, I present each TTS voice and its
corresponding analysis, instead of providing the system-level (TTS system) perfor-
mance. The details of the male and female voices and the TTS system they are
derived from, are provided in table 4.6. The speakers/voices that displayed an equal
amount of ratings for warm-cold (almost similar ratings for the bipolar adjectives)
and competent-incompetent judgments were removed. Finally, there were 18 male
and 18 female speakers (36 voices).

Initially, subjective evaluations were carried out for the perception of speech
quality and naturalness. The study was carried out with 20 participants with their
age ranges between 22-35 (mean = 24.4, std = 3.2, male = 13, female = 8). The
participantswere providedwith a 5-point Likert scalewhere 1 = not at all natural/poor
quality, 5 = very natural/Excellent. They could listen to the samples any number of
times during the test. The speech samples were randomized for all the participants
during the study.

Table 4.6: List of the TTS voices and the corresponding TTS systems used in the
study. USS = Unit Selection Synthesis, UPM = USS with prosody modification,
HSMM = Hidden Semi Markov Models, DNN = Deep Neural Networks, exp =
Expressive DNN, fest = Festival, taco = Tacotron. Bp0, Dp0, Dp2, Cp0, Cp2, Ep0,
Ep2 = pitch variations

TTS system Male voice Female voice
Mary TTS bdl hsmm slt hsmm
Mary TTS bdl Upm slt Upm
Mary TTS bdl USS slt USS
IBM Watson Michael transformable Allison dnn
IBM Watson Michael dnn Allison exp
IBM Watson - Lisa transformable
IBM Watson - Lisa dnn
Mary TTS rms hsmm -
Mary TTS rms Upm -
Google TTS A wavenet C wavenet
Google TTS B wavenet E wavenet
Google TTS D wavenet F wavenet
Festival bdl fest clb fest
Festival jmk fest slt fest
Festival rms fest -
Tacotron bdl taco clb taco
Tacotron jmk taco slt taco
Google TTS Bp0 standard Cp0 standard
Google TTS Dp0 standard Ep0 standard
Google TTS Dp2 standard Cp2 standard
Google TTS - Ep2 standard
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Figure 4.2 displays theMOS scores calculated for the speech quality and the natu-
ralness of themale TTS voices used in the study.We can observe that the speech qual-
ity and naturalness scores for the parametric approaches (DNNs, Wavenet, Google
standard voices) were higher compared to other systems. Even though the Tacotron
model employs neural speech synthesis, the performance of the model (in terms
of speech quality and naturalness) was the least compared to other NN-based TTS
voices. This could be because of a) less training data (CMU arctic database), and
b) speech signal reconstruction by griffin-lim reconstruction. I have observed that
Google voices (wavenet and standard) had the highestMOS ratings for speech quality
(4.3 for wavenet voice D, 4.1 for standard voice D) and naturalness (4.5 for wavenet
voice D, 3.5 for standard D) among others. The voice generated from the Festival
TTS system trained on CMU arctic database (jmk) had the lowest MOS ratings for
speech quality (2.1) and naturalness (1.3). A similar observation was made from the
subjective responses of female TTS voices. The performance of female TTS voices
is presented in the figure, 4.3. The speech quality and naturalness ratings are the
highest for Google’s wavenet voice, F (4.3 and 4.5 respectively), and the standard
voice, E (4.1 and 3.5 respectively). Correspondingly, the voice generated from the
Mary TTS system trained on CMU arctic database (slt USS) had the lowest MOS
ratings for speech quality (1.9) and naturalness (1.3).

Fig. 4.2: TheMean Opinion Scores calculated for the male TTS voices for the scales,
speech quality and naturalness
.

Further, the perception of warmth, competence, and extraversion for each of the
male and female TTS voices is studied. In order to derive the perception of social
speaker characteristic, warmth, the subjective ratings of all the adjectives (commonly
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Fig. 4.3: The Mean Opinion Scores calculated for the female TTS voices for the
scales, speech quality and naturalness
.

found in both male and female voices) loaded under the factor were averaged.
Therefore, the warmth ratings for male and female TTS voices were derived by
averaging the subjective ratings of the adjectives, hearty, pleasant, trusting, agreeable,
unlikable, emotional, and sympathetic (for the negative adjectives, like unlikable,
tensed their antonyms are considered). Similarly, the competence ratings are obtained
from the subjective ratings of the adjectives, calm, tensed, relaxed, and anxious, the
extraversion from the ratings of, introvert, outgoing, and talkative.

Figure 4.4 displays the perception of warmth from the male TTS voices along
with the 95% confidence intervals. Correspondingly, the warmth ratings for female
speech are presented in figure 4.5. The TTS voices which displayed a better speech
quality and naturalness also received the highest ratings on warmth. We can observe
that among the male voices, the Google Wavenet voice, D is perceived to be highly
warm (with an averaged warmth rating, wavenet =77, Google standard = 76). The
bdl voice generated from the Festival (clustergen) had the lowest perception of
warmth (29.25) among the male voices. Among female TTS voices, there were
two speakers with the highest perception of warmth. One was developed with IBM
watson (Allison expressive = 78) and the other with Google TTS (C wavenet = 78).
While clb voice generated from the Festival (clustergen) had the lowest perception
of warmth (21) among others. We can also observe that warmth rating among highly
warm voices (male voice D = 77, female voices, Allison, C = 78) are close to each
other, while there is a significant difference in the perception of warmth from the
voices, bdl (warmth rating = 29.25, male), and slt (warmth rating = 21, female)
(voices with lowest ratings of warmth).
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Fig. 4.4: Perception of warmth from male TTS voices. The subjective ratings of
the speaker attributes loaded under the characteristic warmth were averaged for the
analysis.
.

Figure 4.6 shows the perception of competence from the male TTS voices along
with the 95% confidence intervals. The perception of competence has also been
found to be affected by speech quality. Once again, Google Wavenet voice, D has the
highest averaged competence ratings (Wavenet = 75, google standard = 74).While the
bdl (Festival, clustergen) was again the voice with the lowest ratings for competence
(34). Even among the female voices, we can find the similar pattern as in the case of
warmth. Figure 4.7 depicts the competence ratings of female TTS voices. TheGoogle
Wavenet voice, C has the highest averaged competence ratings (81). The clb voice
generated from the Festival (clustergen) had the lowest perception of competence
(45) among the female voices. However, the perception of competence from clb is
still higher than the bdl. We can observe that the warmth and the competence ratings
aligned with each other (to some extent) in the current studies. Nevertheless, if these
characteristics are independent of each other as proposed in [12] is not obvious from
this study.

Figure 4.8 displays the perception of extraversion from the male TTS voices along
with the 95% confidence intervals. Similar to the analysis seen in the perception of
warmth and competence, Google voice D exhibited the highest ratings on extraver-
sion. However, the voice with the highest rating was from Google standard model
with a pitch variation (Google standard voice with the pitch set to 2 = 79). Unlike in
the studies on warmth and competence, the voice with the lowest extraversion ratings
was rms, generated from the Mary TTS with HMM-based synthesis. On the other
hand, the female voice with the highest extraversion ratings was F, from Google’s
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Fig. 4.5: Perception of warmth from female TTS voices. The subjective ratings of
the speaker attributes loaded under the characteristic warmth were averaged for the
analysis.
.

wavenet (74) which is different from the results seen in the studies on female voices
for warmth and competence (voice, C had the highest warmth and competence rat-
ings). The obvious difference between the voices, C and F is the pitch (F has a higher
pitch when compared to C). The TTS voice with the lowest extraversion ratings as
observed from the results was, clb generated using Festival. Figure 4.9 displays these
perceptions of extraversion from the female TTS voices.

In contrast to the findings presented in [170], the perceptual analysis of the factors
derived in the current study displays a similar response to that of the subjective data
of speech quality and naturalness (speech quality and naturalness have an impact on
the social perceptions). However, there were some primary differences in both the
experimental setups a) the choice of the TTS voices used in the studies, b) the speech
data (content and also the length of the utterances) used in the studies, and c) the type
of evaluation employed in each of the studies. Apart from these observations, we have
not performed any extensive analysis on the relationship between the perceptions of
speech quality/naturalness and the SSC from the synthetic speech in our study.

4.3 Study B: Deriving the ground truth information

The observationsmade from studyA are as follows: a) speech quality and naturalness
of the TTS voices have a significant impact on the perception of the social speaker
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Fig. 4.6: Perception of competence from male TTS voices. The subjective ratings of
the speaker attributes loaded under the characteristic competence were averaged for
the analysis.
.

characteristics, warmth, and competence, b) the content has an impact on the social
perceptions of the speakers (based on the feedback received from the participants
obtained through the preliminary test conducted for questionnaire preparation (in
section 4.2.1.2)), c) the subjective evaluation was carried out only with two sentences
(the results might not be reliable or can be generalized), and d) too many adjectives
used in the study (also contains adjectives with similar meaning). A subsequent study
was designed considering these observations [167]. In order to handle the first task,
the TTS systems that could deliver good-quality speech were researched further.
Since, the commercial TTS system, Google has displayed the highest subjective
response for both quality and naturalness, the idea was to examine publicly available
commercial TTS systems which could produce good-quality speech. In order to
achieve this, the TTS engine that supports neural voices (Amazon Polly) similar
to the Google TTS engine (voice type = Wavenet) was chosen. Therefore, finally,
two commercial TTS systems, Google Wavenet4 and Amazon Polly5 were used in
the current study. Secondly, in order to avoid the effect of the content on speech
perception, neutral speech was utilized in the study. The speech data used in this
studywas generated using the Harvard database 6. Later on, a fewmodifications were
made to the evaluation setup in order to a) include multiple sentences in the study,

4 https://cloud.google.com/text-to-speech/
5 https://aws.amazon.com/polly/
6 https://www.cs.columbia.edu/ hgs/audio/harvard.html



4.3 Study B: Deriving the ground truth information 53

Fig. 4.7: Perception of competence from female TTS voices. The subjective ratings
of the speaker attributes loaded under the characteristic competence were averaged
for the analysis.
.

and b) recompiled the adjectives list. Firstly, multiple speech files were combined
to form the speech segments of duration approx. 20sec (each speech segment had
7-8 sentences). Also, the sentences generated by each TTS voice were randomized
(Those 8 sentences were in a different order for each voice). Secondly, the attributes
that have a similar meanings have been removed. The finalized list consisted of 15
adjectives and the details are provided in table 4.7.

Another modification to the previous experimental setup is the platform chosen
to conduct the subjective tests. The subjective tests were again carried out using
TheFragebogen [154] but are handled using the Amazon Mechanical Turk (AMT)
[189]. Also, the participants of the subjective tests were all native English speakers
(US English). A detailed description of the study is presented in [167]. Table 4.8 and
4.9 display the derived factors and the speaker attributes loaded under each of the
factors for female and male synthetic voices respectively. Similar to the study on the
wide range of TTS voices, the current study has also provided three factors namely,
warmth, competence, and extraversion.

4.3.1 Comparison of the studies

This section provides the similarities and differences found in both the studies, a)
wide-range TTS systems, and b) two commercial TTS systems.
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Fig. 4.8: Perception of extraversion from male TTS voices. The subjective ratings
of the speaker attributes loaded under the factor (personality trait) extraversion were
averaged for the analysis.
.

• The number of factors and the type of factors derived from both studies are the
same. The derived factors were warmth, competence (social speaker characteris-
tics), and extraversion (personality trait).

Table 4.7: Adjectives used in the study with Google Wavenet and Amazon Polly
voices

Adjectives
relaxed not relaxed
confident not confident
enthusiastic unenthusiastic
energetic not energetic
friendly unfriendly
arrogant not arrogant
pleasant unpleasant
likable unlikable
responsible irresponsible
reliable unreliable
accessible inaccessible
sympathetic not sympathetic
skilful not skilful
kind unkind
extrovert introvert
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Fig. 4.9: Perception of extraversion from female TTS voices. The subjective ratings
of the speaker attributes loaded under the factor/personality trait extraversion were
averaged for the analysis.
.

Table 4.8: Factor loading for female speakers

Attributes Warmth Competence Extraversion
friendly 0.72
kind 0.82
likeable 0.79
pleasant 0.77
sympathetic 0.78
confident 0.79
reliable 0.87
responsible 0.89
skillful 0.88
energetic 0.89
enthusiastic 0.83
extrovert 0.71

• Warmth: The adjectives, friendly, kind, likable, pleasant, and sympathetic were
observed to be contributing to warmth in both male and female synthetic voices
(from the study on 2 commercial TTS systems). Among these, the adjectives,
pleasant, likable, and sympathetic are commonly found to be contributing to
warmth in synthetic speech (found in both studies).

• Competence: The factor loadings responsible for competence in synthetic voices
are confident, reliable, responsible, and skillful. These results are in line with the
dimensions proposed for themulti-facet study presented in [173]. Additionally, we
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Table 4.9: Factor loading for Male speakers

Attributes Warmth Competence Extraversion
accessible 0.63
friendly 0.72
kind 0.75
likeable 0.71
pleasant 0.67
sympathetic 0.77
confident 0.65
reliable 0.81
responsible 0.93
skillful 0.84
energetic 0.81
enthusiastic 0.81
extrovert 0.79

find that the adjectives that would best represent competence in the case of a) wide
range TTS systems and b) 2 commercial TTS systems are completely different.
The attributes derived from a wide range of TTS systems under competence were
calm, anxious, tense, and relaxed. This phenomenon could be because of the
datasets used in both the studies (wide-range TTS = WC dataset, 2 commercial
TTS = neutral speech). Another reason could be that, with the inclusion of a
wide variety of voices, there were certain vocal cues that contributed to varied
perceptions of different speaker attributes in the first study (wide-range TTS). We
further provide the acoustic analysis of a wide range of TTS voices (in chapter 5)
and the voices from 2 commercial TTS systems (in chapter 7) to understand the
acoustic correlates of SSC in each of these studies.

• Extraversion: The personality trait extraversion was found to be a combination
of the adjectives, energetic, enthusiastic, and extrovert in the study with the
commercial TTS systems. On the other hand, the adjectives contributing to the
perception of extraversion as observed from both studies were, energetic and
introvert (negative adjective).

4.3.2 Defining the ground truth voices

There has not been any previous work on synthetic speech’s perception of warmth
or competence (in speech-alone scenarios). Correspondingly, there are no standard
databases for warm/cold or competent/incompetent synthetic voices. In our work,
we are interested in studying these characteristics from synthetic speech and further
analyzing the speech features, and later on, investigating the modifications of the
synthetic speech for the positive perceptions of the voices. In this regard, we intend
to define the standard voices for our studies in this thesis. The current study was
designed while considering the shortcomings of the previous study on a wide variety
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of TTS voices. Considering the above-mentioned line of work, in this thesis, I define
the voices derived from these two commercial TTS systems as the reference voices
or the “ground truth voices”. Accordingly, throughout the thesis, these voices are
hereafter referred to as ground truth TTS voices, and any information derived from
these voices is called ground truth information.

4.4 Limitations

This section details the limitations of the work based on the conclusions drawn from
the analysis.

• Adjectives list: The aim of this thesis is to understand the perceptions of warmth
and competence and later on derive the acoustic correlates and further model
the speech generation mechanism for positive perceptions of synthetic speech.
However, through the preliminary studies, we have observed that perception of
the desired speaker characteristics required the inclusion of multiple adjectives
in the subjective evaluation. In other words, forming the first impressions of
synthetic speech (in speech-alone scenarios) has thus required an analysis of the
synthetic speech in various perceptual dimensions. In this regard, an analysis of a
different set of speaker characteristics might require a similar analysis (collection
of adjectives, subjective tests, factor analysis). This means that the results of the
current study cannot be directly used for multiple application domains or SSC.
Since the experimental results cannot be generalized for multiple application
domains, we consider this to be a limitation of such an analysis of speaker
characteristics from synthetic speech.

4.5 Summary

This chapter outlines the analysis of the subjective tests carried out to interpret social
perceptions of synthetic voices. In order to address the research question posed at the
beginning of this chapter, two studies were provided, a) perception of SSC from a
wide variety of TTS voices, and b) two commercial TTS voices. From the behavioral
studies [15, 54, 56, 60, 173], it is evident that the characteristics, warmth and
competence are considered the “universal dimensions of social perception”. These
studies were performed on human behavior (known humans). In the current work,
similar studies were performed in a speech-alone (unknown voices) scenario in the
case of synthetic voices. Through these studies, it is apparent that the characteristics,
warmth, and competence can also be perceived from synthetic voices (US English).
In this work, we also define the ground truth TTS voices that are further used
throughout this thesis for various studies. Apart from the social dimensions, the
current study has also provided us with the personality trait, extraversion. Moreover,
we have observed that females with high-pitched voices are interpreted as extroverts.





Chapter 5
Acoustic correlates

This chapter details the studies carried out for the prediction of vocal cues contribut-
ing to warmth and competence in synthetic voices. Feature extraction employed in
the experiments was using the publicly available OpenSMILE toolkit [190]. The sug-
gestions and discussion on the prediction of acoustic correlates were done between
me, Benjamin Weiss, and Sebastian Möller. Further, automatic prediction of the
social speaker characteristics is presented using the derived vocal cues of warmth
and competence in male and female synthetic voices.

5.1 Related work

A considerable amount of research has been previously performed on the analysis of
acoustic correlates of various behaviors, personalities, and characteristics of speech
(natural as well as synthetic speech). These works can be broadly classified into two
types, a) works that directly investigate the impact of F0 (and its dynamics), loudness,
and speaking rate of various speech perceptions [78, 82], and b) works that derive the
acoustic correlates of various characteristics or personalities. [78, 82] presents that
the speaking rate, durations (longer speech, fewer pauses, shorter-phrase durations),
and intonation are highly correlated with the charismatic speech of celebrities. High
pitch (high standard deviation of pitch) not only contributes to charismatic speech
but also contributes to being a “good speaker” (increases the perception of the
attributes, expressive, powerful, involved, and trustworthy) [80]. In [191] authors
present the acoustic feature prediction and feature importance in emotion estimation
from speech. They derive 46 acoustic features using pitch and energy contours. Along
with the pitch, speaking rate, and intensity as seen previously, this study provides the
relevance of spectral features (mfccs) in understanding emotions from speech. The
order of importance for these features in deriving various emotions according to their
work is as follows, 1) mfcc, 2) energy, 3) pitch, and 4) duration. Correspondingly,
the authors in [192] also perform the classification of emotions using acoustic fea-
tures, pitch, spectral features, and energy. [193] employ the OpenSMILE features for
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studying emotion recognition in the case of virtual agents [190]. OpenSMILE fea-
tures can capture various speaker characteristics present in the speech signal. Hence,
these are widely used in paralinguistic studies on speech signals [194]. Accordingly,
[75] utilize the openSMILE features for understanding various social and physical
factors in the speech in case of zero acquaintance scenarios. Their work proposes the
dependence of the perceptual dimensions, confidence, apathy, and serenity on the
fundamental frequency. Previously, voice likability and attractiveness have also been
found to be correlated with F0 [195]. The study shows that lower F0 values result in
more pleasant and attractive voices. Additionally, [196] investigates the effect of the
feature, Harmonics-to-Noise ratio (HNR) as a reliable indicator for attractiveness
in the perceived speech. HNR is generally associated with the voice quality in the
speech signal (nature of voice, hoarseness). Through their work, they state that the
regular vocal fold vibrations contributed to the attractiveness of the voice irrespec-
tive of gender. Also, the speaking rate was proposed to be a reliable indicator of the
characteristic, competence [197]. While the speakers with lower speaking rates were
considered less truthful, and less empathetic. Consequently, the male voices with
high pitch were found to be less believable and less truthful [198].

5.2 Overview

This chapter presents the acoustic analysis carried out on the wide range of TTS
systems employed previously in chapter 4. The goal is to identify the acoustic
correlates of warmth and competence from various voices that involved different
synthesis procedures. In this work, we employ the second approach discussed in the
previous section to interpret the vocal cues of SSC. Figure 5.1 displays the overview
of the work carried out in this chapter. We extract the OpenSMILE features for each
of the speech samples collected over the wide range of TTS systems and further
compute the feature relevance using various dimensionality reduction techniques.
Finally, we also present the automatic prediction of SSC from the derived acoustic
correlates. This chapter addresses the following research question.

•? Research question: “What are the acoustic features that contribute to the

social speaker characteristics?”
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Fig. 5.1: Flowchart of the current workflow.
.

5.3 Preparation of the experimental setup

So far, we have examined a) various speaker attributes that can be perceived from syn-
thetic speech b) the attributes that can contribute to each of warmth and competence
in synthetic speech, and c) the synthetic voices with the highest and lowest subjective
ratings of warmth and competence (from chapter 4). The follow-up work is towards
understanding the acoustic features contributing to different speaker attributes and
characteristics.

5.3.1 Input data: OpenSMILE features

[199] propose the parameter set that could capture the paralinguistic information
(extra information other than the content, for example, age, gender, mood, mental
states, etc.,) present in the speech. In the current study, we are interested in in-
terpreting the acoustic features contributing to various speaker characteristics and
social perceptions of synthetic speech. Therefore, inspired by the functionality of
the OpenSMILE features, in the current work, the Geneva Minimalistic Acoustic
Parameters Set (eGeMAPS) configuration has been explored [199]. The feature ex-
traction using eGeMAPS provided an 88-dimensional feature vector for each speech
file. These acoustic features can be categorized as Low-Level Descriptors (LLDs)
and functionals: loudness, 4 mfcc, alpha ratio, slope (0–500 Hz, 0.5–1.5 k Hz),
Hammerberg Index, Spectral Flux, F0 (semitones), formants F1, F2, F3 (frequency,
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mean, amplitude), log. HNR, Jitter, shimmer, Harmonic difference H1–H2, H1–A3.
A list of these acoustic features is further provided in the Appendix.

5.3.2 Output data: Subjective data for warmth and competence

Through the studies in chapter 4, the factors (warmth/competence) and the factor
loading (adjectives) information is obtained. A quick look into this information
(as it is relevant to the current experiments) is presented in this section. Table 5.1
presents the speaker attributes corresponding to warmth and competence in female
and male TTS voices. In order to derive the output features for the acoustic feature
prediction, the subjective ratings of the adjectives/factor loadings that are commonly
contributing to each of warmth and competence in both genders are averaged. Thus,
the output data for warmth is obtained from the average of 7 adjectives (Hearty,
Pleasant, Trusting, Agreeable, Emotional, Unlikable, Sympathetic) and competence
from 4 adjectives (calm, tensed, relaxed, anxious).

Table 5.1: The list of speaker attributes loaded under each of SSC for both genders.
(*) indicates the attributes are commonly found in both male and female voices.

Male Female
Warmth Competence Warmth Competence
Kind Calm* Hearty* Calm*
Hearty* Secure Distant Tensed*
Arrogant Tensed* Pleasant* Relaxed*
Trusting* Anxious* Reliable Anxious*
Friendly Relaxed* Trusting*
Pleasant* Not-irritated Agreeable*
Unlikable* Emotional*
Agreeable* Unlikable*
Empathetic Sympathetic*
Responsible Enthusiastic
Emotional* Energetic
Sympathetic*

5.3.3 Prediction of the vocal cues

In this section, we can find various experiments carried out for the a) prediction of
acoustic correlates, and b) automatic prediction of social speaker characteristics.
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5.3.3.1 Data

The number of training examples available for each formale (18 voices* 2 sentences*
2 characteristics = 72) and female (18 voices* 2 sentences* 2 characteristics = 72)
was less than the input dimensions (88 dimensional acoustic features). As a result,
feature processing and modeling the data were challenging.

5.3.3.2 Feature processing: Removal of redundant features

The first step in the data processing was to remove the redundant features. The
redundant features are those that either a) do not contribute to the perception of the
desired attributes or b) the ones that are not any different from the other significant
features. The first task was handled using Pearson’s Correlation Coefficient (r). The
correlation values were calculated between the normalised acoustic features and the
averaged, transformed subjective ratings of warmth and competence. The acoustic
features that exhibited a positive or negative correlation (|A | > .8) with the ratings
were retained.

The second task in the feature processing was to remove the multi-collinearity.
Principal Component Analysis (PCA) was employed to disentangle and remove the
collinearity between the features. PCA linearly reduces the high dimensional data
into principal components that are less correlated with each other. Dimensionality re-
duction is widely used in both statistics andmachine learning research [200]. It refers
to the projection of the high dimensional data onto a low dimensional space. This
is done while keeping the necessary information intact. Apart from EFA (as seen in
chapter 4), there are other techniques for dimensionality reduction such as: Principal
component Analysis (PCA), Linear Discriminant Analysis (LDA), Backward Feature
Elimination (linear regression technique), and many more. Besides, i) eliminating
the collinear features, and ii) dimensionality reduction, PCA can also deal with the
over-fitting caused by too many variables in the dataset. One can leverage all the
advantages of PCA by carefully choosing the number of principal components. The
first principal component holds the maximum amount of variability in the data, the
second component holds the second highest, and so on. The details of these feature
processing steps ( a) removal of redundant features, b) removal of multi-collinearity)
and the prediction of vocal cues of SSC from the remaining features are presented
in the sections below.

5.3.3.3 Feature modeling

After the initial pre-processing of the input acoustic feature vector, the data dis-
tribution was examined to verify the models that would best fit the feature-label
pairs. Since the dataset is limited, the models explored in the current studies include
Decision trees, Support Vector Regressor, and linear regressor.
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• Decision Trees: One of the approaches examined for the prediction of relevant
acoustic features was decision-tree-based regression. The modeling of the data
was handled using the decision tree regressor package available in the sklearn
library. Due to the limited amount of training examples, a leave-one(speaker)-out-
of-cross validation along with the mean squared error is employed in the current
experiments. There were 18 male and 18 female speakers and the experiments
were carried out separately for both genders. Therefore, for the cross-validation,
the data was divided into 18 equal parts (male and female separately). Among
these sets, 1 speaker set was held out at a time and the remaining 17 speakers
were used in the training. This step is repeated for all the speakers. The details of
the experiments (inputs fed to the model and the predictions) and the analysis of
results are provided in sections 5.3.3.4 and 5.3.3.5 respectively.

• Support Vector Regressor: Secondly, SVR was investigated for the relevant fea-
ture prediction from the input feature vector. Due to the availability of limited
data (88-dimensional input vector; fewer training examples per gender (female
voices = 18, male voices = 18, number of sentences =2)), in the current studies,
we choose Leave-One-Speaker-Out Cross Validation (LOSO-CV) with a linear
kernel. The values of C (regularisation parameter) and epsilon (no penalty for
the prediction loss in this limit) were set to 1 and 0.2 respectively. The input
and output data were normalized using the standard scaler available in the scikit-
learn. The regression was also carried out using the SVR package available in the
sklearn library.

• Linear Regressor: The model linearly transforms the independent variables
(acoustic features) into continuous dependent values (social speaker characteris-
tics). Additionally, there are multiple regression techniques that can be employed
for feature selection using linear regression in the case of multi-variate inputs. For
instance, a) forward step-wise regression or forward selection, and c) backward
step-wise regression or backward elimination. A step-wise regression iteratively
selects the features contributing to the desired task. In a forward selection method,
the predictions start with the model with no variables at the beginning and the
addition of the most reliable features at each step. While in a backward elimina-
tion, the model predictions at first are made with all the available input features.
Further, with each iteration, the least contributing variable is removed. This con-
tinues until the highly relevant features are retained. In this chapter, I have utilized
both a) a traditional linear regressor without any step-wise regression and b) a re-
gressor with a backward elimination technique. The implementation of the model
was enabled through the use of the LinearRegressor package from sklearn. The
model predictions were carried out using leave-one-speaker-out cross-validation.

5.3.3.4 Experimental setup

This section details various dimensionality reduction techniques employed in order
to achieve feature importance.
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• Experiment 1: In the first experiment, the acoustic feature processing involved
dimensionality reduction using PCA. The feature normalization was carried out
using the standard scaler available in the sklearn library. The principal components
were calculated on the normalized features. The number of principal components
employed in the experiments was 5 with an explained variance of 78%. These
principal componentswere then fed (input dim= 5) to threemodels namely, Linear
Regressor, Support Vector Regressor, and Decision Trees for the prediction of
warmth and competence.

• Experiment 2: This experiment consists of two steps. Firstly, a Pearson cor-
relation coefficient is computed between the acoustic features and the speaker
characteristics. Secondly, the acoustic features that had the highest correlation
(positive/negative) with the characteristics were normalized and principal com-
ponents were derived. The derived principal components were later trained with
the 3 models.

• Experiment 3: PCA not only does the dimensionality reduction but also finds
a combination between the derived components. Hence, in this experiment, I
calculate the Pearson correlation between the Principal components derived from
experiment 1 and the input acoustic features. The acoustic features that displayed
the highest correlations positive/negative with the principal components were
retained. These acoustic features were further passed through a PCA and the
derived principal components were fed to the three models. The diagrammatic
representation of experiments 1, 2, and 3 is presented in 5.2.

Fig. 5.2: The diagrammatic representation of experiments, 1, 2, and 3. In the figure,
Exp = experiment, PCA = Principal Component Analysis, SVM = Support Vector
Machines, Sub. Ratings = Subjective ratings, PCs = Principal Components



66 5 Acoustic correlates

• Experiment 4: Ablation study This study examines the impact of the principal
components on the performance of the models. Instead of feeding the principal
components to the three models, the acoustic features derived in experiments
1,2,3 are directly fed to the three models. This study was conducted to verify
the effect of the feature information (combination of different acoustic features)
present in the principal components to determine different speaker characteristics
(In other words, we examine the role of the PCA layer in the above-mentioned
experiments). The schematic of the studies carried out under this experiment is
further displayed in 5.3.

Fig. 5.3: The diagrammatic representation of experiment 4. In the figure, Exp =
experiment, SVM = Support Vector Machines, Sub. Ratings = Subjective ratings,
PCs = Principal Components

• Experiment 5: This experiment consists of the multi-variate linear regression
applied to the input features using a backward elimination algorithm. The study
was performed using the “statmodelsregression” available in the “linear model”
package of the sklearn library. The significance level was set to 0.05 (SL=0.05).
The p-values higher than this significance level were eliminated in each step.
The derived acoustic features and the explained variance for each warmth and
competence in the case of male and female speakers are provided in the section
5.3.3.5.
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5.3.3.5 Results and Observations

For experiments 1-4, (except for the backward elimination technique), the Mean
Squared Error (MSE) scores of the models were determined to be deciding factor
for the feature selection. The lower the MSE, the higher the reliability of the model
and the relevance of the corresponding acoustic features. Table 5.2 displays the
experimental results of experiments 1,2,3 for warmth in synthetic speech.

Table 5.2: Results of regression techniques implemented for the perception of
warmth in synthetic speech. IFs= number of input features fed to the models, PCs =
Principal Components, CFs = acoustic features correlated with the speaker charac-
teristics, CPs = acoustic features correlated with the principal components, DTree =
Decision Tree, LR = Linear Regression, SVR = Support Vector Regressor, MSE =
mean squared error

Model Male Female
IFs MSE IFs MSE

DTree PCs (5) 0.69 PCs (5) 0.63
SVR PCs (5) 0.34 PCs (5) 0.59
LR PCs (5) 0.26 PCs (5) 0.63

DTree CFs+PCs (5) 0.63 CFs+PCs (5) 0.52
SVR CFs+PCs (5) 0.32 CFs+PCs (5) 0.37
LR CFs+PCs (5) 0.36 CFs+PCs (5) 0.41

DTree CPs+PCs (5) 0.55 CPs+PCs (5) 0.63
SVR CPs+PCs (5) 0.32 CPs+PCs (5) 0.62
LR CPs+PCs (5) 0.24 CPs+PCs (5) 0.64

The first block in the table 5.2 consists of the details of the first experiment.
The principal components obtained from experiment 1, were the input features
provided to each of the three models. In this experiment, the 88-dimensional input
vector is reduced to 5 principal components. Further, the prediction of the SSC was
carried out with the derived principal components. The performance of the systems
for each gender is provided separately in terms of MSE scores. The second block
in the table represents the details of experiment 2. The correlations between the
88-dimensional acoustic features and the speaker characteristics were calculated.
This has resulted in a reduction of dimensions from 88 to 51 features in female
and 54 in male speakers. These dimensions were further reduced to 5 using PCA.
Further, the derived principal components were modeled by Decision trees, SVR,
and linear regression. The third block in the table displays the details of experiment
3. The correlation coefficient calculated between acoustic features and the principal
components (derived in experiment 1) provided 79 and 76 acoustic features for female
and male speakers respectively. A second dimensionality reduction was performed
using PCA on the derived features. Later on, the principal components were modeled
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for the prediction of SSC. From the results, we can observe that ( presented in bold
in table 5.2) the acoustic features that correlated with the speaker characteristics
(experiment 2) contribute to variations in the SSC in the case of female speakers (by
consideringMSE as a deciding factor). Similarly, the acoustic features that correlated
with the principal components were found to affect the speaker characteristics inmale
synthetic voices (experiment 3).

Table 5.3 represents the results of the ablation studies. Here instead of using
the principal components, the acoustic features either directly or after calculating
the correlation with the speaker characteristics and principal components (from
experiment 1) are alone examined. The first block shows the performance of the
models when they are directly provided with the input feature set (88-dimensional
vector). The second block in the table represents the details of experiment 2. The input
vector consists of the acoustic features that correlated with the speaker characteristics
(female = 51 features, male = 54 features). These were directly passed through the
three models by eliminating the PCA layer seen in the previous experiments. The
third block in the table displays the details of experiment 3. The acoustic features
correlated with the principal components were fed to the models by eliminating
the second stage of dimensionality reduction. From the table, we observe that the
acoustic features correlated with the speaker characteristics are acoustic correlates
(experiment 2 after eliminating the PCA layer) in the case of both genders (shown in
bold in table 5.3). Further, we can also observe that removing the PCA layer before
training these models has contributed to the model performance significantly. The
list of retained acoustic features (51 for female speakers, 54 for male speakers) are
provided in table 5.4 for female speakers (warmth) and table 5.5 for male speakers
(warmth).

Table 5.3: Results of ablation studies performed for the perception of warmth in
synthetic speech. AFs= the acoustic features fed to the models, CFs = acoustic
features correlatedwith the speaker characteristics, CPs = acoustic features correlated
with the principal components, DTree = Decision Tree, LR = Linear Regression,
SVR = Support Vector Regressor, MSE = mean squared error

Model Male Female
AFs MSE AFs MSE

DTree 88 0.45 CPs (79) 0.49
SVR 88 0.33 CPs (79) 0.36
LR 88 0.59 CPs (79) 0.69

DTree CFs(54) 0.29 CFs (51) 0.34
SVR CFs(54) 0.25 CFs (51) 0.31
LR CFs(54) 0.47 CFs (51) 0.59

DTree CPs (76) 0.34 CPs (79) 0.41
SVR CPs (76) 0.29 CPs (79) 0.35
LR CPs (76) 0.56 CPs (79) 0.71
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Therefore, from the above experiments, we can assume that the acoustic fea-
tures retained through experiment 4 (features correlated with subjective responses
of warmth) are the vocal cues of warmth in synthetic voices. However, tables 5.4,
5.5 provide a very long list of acoustic features, and the dependence of each acous-
tic feature on individual speaker characteristics is not obvious. Correspondingly, a
subsequent study was carried out for the relevant acoustic feature prediction using
the backward elimination-based linear regression (experiment 5).

The results of the linear regression are provided in the tables 5.6, 5.7, 5.8, 5.9.
Table 5.6 displays the list of acoustic features retained after step-wise regression
for the female warmth. The coefficient values represent the amount of change in the
perception of a particular speaker characteristic for a unit change in the corresponding
acoustic feature. For instance, one unit change in the F0 mean falling slope of
female speakers would increase the perception of warmth by the corresponding
coefficient value (0.4718). Correspondingly, the negative sign in the coefficient
value suggests that the acoustic feature would negatively affect the perception of the
specific characteristics in the generated speech. Accordingly, the acoustic features
contributing to female competence are provided in table 5.7. The acoustic features
accountable for male warmth and competence are presented in tables 5.8, and 5.9
respectively. The explained variance (R squared) values for each of those experiments
are also provided in the respective tables (table caption).

Table 5.4: Derived acoustic correlates of warmth in the female speech as obtained
from ablation studies.

Voicing specific LLDs, functionals Number of features
F0 7 (pitch, intonation contour,(mean falling slope),

dynamics, percentiles)
Jitter 1
Shimmer 2
Harmonic difference 3
Harmonics (F1,2,3) 12 (dynamics)
Voiced segment 1
HNR 2
Spectral LLDs, , functionals Number of features
mfcc [1-4] 8 (dynamics)
Hammerberg Index 2
Alpha ratio 2 (dynamics)
slope (UV, V) 3 (dynamics)
spectral flux 2
Energy specific LLDs, functionals Number of features
loudness 6 (dynamics, percentiles,loudness peaks per sec,

equivalent sound db)
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Table 5.5: Derived male acoustic features through the ablation study.

Voicing specific LLDs, functionals Number of features
F0 7 (pitch, intonation contour,(mean falling slope),

dynamics, percentiles)
Jitter 2
Shimmer 1
Harmonic difference 3
Harmonics (F1,2,3) 11 (dynamics)
Voiced segment 1 (voiced segment per sec, mean)
Spectral LLDs, functionals Number of features
mfcc [1-4] 8 (dynamics)
Spectral energy 2 (dynamics)
Hammerberg Index 2 (dynamics)
slope (UV, V) 5 (dynamics)
spectral flux 4 (dynamics)
Energy specific LLDs, functionals Number of features
loudness 8 (rising and falling slopes, dynamics, percentiles,

loudness peaks per sec, equivalent sound db)

5.3.3.6 Automatic prediction of warmth and competence

Now that the acoustic correlates of SSC for female and male TTS voices are known,
we performed automatic prediction of warmth and competence using the derived
acoustic features. These experiments were carried out using both classification and
regression algorithms.

• Regression: In this experiment, we predict the values corresponding to each of
warmth and competence using a linear regressor and a support vector regressor.
The results of this study are presented in table 5.10. The first block provides the
results of the regression models applied to the derived acoustic features (through
linear regression obtained from table 5.6 for female warmth and from table 5.8
for male warmth) and the subjective ratings of the characteristic, warmth. As
mentioned previously, the warmth ratings were obtained by combining all the
adjectives that were commonly found in both genders (7 adjectives commonly
found under the factor warmth). Similarly, the second block in table 5.10 provides
the details of regression experiments carried out on the characteristic, competence.
The acoustic features used for this experiment were derived from table 5.7 for
female competence and table 5.9 for male competence. MSE was used as the
metric to evaluate the performance of the models. As the number of speech
samples was limited (18 male voices and 18 female voices each uttering two
sentences), LOSO-CV (leave-one-speaker-out cross-validation) was devised. We
can observe that there is a significant improvement in the systems’ performance
when trained on acoustic correlates of warmth and competence as opposed to
high dimensional inputs (when compared to the MSE scores in the tables 5.2 and
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5.3). The number of acoustic features used in each of these experiments for male,
female, warmth, and competence is detailed in the table 5.10.

• Classification: Further, we classify the synthetic voices into warm/cold and com-
petent/incompetent. For this, we chose the voices that had highest and the lowest
ratings of warmth/competence. From the subjective ratings of a wide range of
TTS systems performed in the previous chapter (4), we can find that Google’s
voice, D (male) has the highest ratings for warmth and competence among the
male voices (from the figure, 4.4, 4.6 in chapter 3). The female voices, Google’s
voice C and F exhibit highest subjective ratings for warmth and competence
among others (from Figure, 4.5, 4.7 in chapter 4). Correspondingly, the voices
generated through Festival (male = bdl, rms, female = slt, clb) had lower sub-
jective ratings for warmth and competence. Therefore, we utilize these 8 voices
(4 male, 4 female) voices for the classification task. 1132 sentences were gen-
erated from each of these voices using the CMU arctic database. Further, the
gender-dependent classification of SSC was carried out by the models, SVM, and
Neural Networks. The input provided to the models for warmth was 5 acoustic
features from table 5.9 for male, table 5.6 for the female voices. Correspondingly,
four acoustic features for male competence (from table 5.9) and five features for
female competence (from table 5.7). The NN model used in this experiment was
a four-layered Neural Network with the architecture [(input nodes)R,12R,8R,1S]
(input nodes = 4 for male competence and 5 for the other experiments, R = relu,
S= Sigmoid). The model training was carried out using an Adam optimizer [201]
with a batch size of 16. The performance of the models was high in the case of
both the characteristics and the genders. I assume that the data size also signif-
icantly impacts this performance. The results with 10-fold cross-validation are
provided in table 5.11.

5.3.4 Observations

In the current study, we have examined the acoustic correlates of a wide range of TTS
voices. In [202], the acoustic analysis of the ground truth TTSvoices is presented. The
study is motivated by the current workflow and examines the acoustic correlates of
warmth and competence. However, the perception of warmth in [202] was examined
using the perceptual analysis of the adjectives, friendliness, and likability collected
from the two commercial TTS systems. Further, the analysis of competence was
carried out using the subjective responses for the adjective, skilfulness from the
ground truth TTS voices (obtained from chapter 4). Since the analysis was on TTS
voices for the acoustic correlates of SSC,we intend to compare the results of the study
presented in [202] with the current study. Also, we can observe that the adjective,
likable was the common contributor to warmth in both the studies. Further, we also
compare our results with the acoustic correlates of various emotions and speaker
characteristics as previously observed in the literature.



72 5 Acoustic correlates

• Female warmth: From table 5.6, we can observe that the acoustic features ac-
countable for female warmth (from awide range of TTS systems) are fundamental
frequency, (F0 mean falling slope), F2 dynamics (standard deviation), Hammer-
berg Index, loudness, and unvoiced segment length. The fundamental frequency
has also been previously found to contribute to the perception of different charac-
teristics and emotions in natural speech [191, 195]. [195] discuss the correlations
between voice likability, attractiveness, and fundamental frequency. As in the cur-
rent studies, “likable” is one of the adjectives contributing to warmth in synthetic
speech, our results are consistent with the studies presented in [195]. The acous-
tic correlates of SSC as derived from the two commercial systems (ground truth
voices) are spectral flux, F1 mean, and F2 mean. Similarly, the authors in [203]
show the dependence of the perception of the characteristic, warmth on F0 and
its formats, F1 and F2 in German female speech (human speech). Hammerberg
index provides information on the vocal quality based on the articulatory effort
involved in producing speech. The value is obtained by computing the energy
difference between the bands, 0-2kHz and 2-5kHz. Authors in [203] discuss the
influence of the Hammerberg Index in the case of male attractiveness (natural
german speech). In addition to the Hammerberg index, loudness has also been
found to be an indicator of female warmth in synthetic voices (our studies on wide
range TTS). [203] display the relevance of loudness in the perception of confi-
dence in female German speech. Also studies in [78, 82] display the dependence
of charismatic speech on speech intonation. [203] present the unvoiced segment
lengths as the reliable indicator of the perception of attractiveness in male speech
(human). In our studies, it was found to affect the perception of female warmth
of synthetic voices.

• Female competence:The acoustic correlates of female competence are presented
in table 5.7. The derived acoustic features accountable for female competence
(from a wide range of TTS systems) are F0 dynamics (standard deviation), mfcc
dynamics (mean), F1 amplitude, F3 dynamics (mean), and spectral flux. The
acoustic features derived from ground truth TTS voices are spectral flux, voiced
slope, mfcc. Apart from the previously observed features in female warmth,
female competence is also dependent on spectral features such as mfcc, spectral
flux, and slope. The mfccs were previously found to contribute to the perception
of maturity in female speech from the studies in [203]. Additionally, mfccs were
regarded as the first among other acoustic features to be contributing to various
emotions in speech [191]. The spectral flux was found to commonly contribute to
femalewarmth and competence in both studies (wide rangeTTS and 2 commercial
TTS).

• Male warmth: Table 5.8 displays the derived acoustic correlates of male warmth
in synthetic voices. The relevant acoustic features as presented in the table are
loudness, mfcc3 dynamics (mean), HNR, F3 bandwidth, and spectral flux. The
acoustic features derived from two commercial systems are the F1 mean, spectral
slope, and loudness. F3 bandwidth was previously displayed to be an indicator of
the characteristic, maturity in male German voices [203]. The spectral flux has
been found to be contributing to all three, female warmth, female competence,
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and male warmth in synthetic voices. HNR denotes the ratio of the energy of the
harmonic sound (periodic component) to the energy of the noise (non-periodic
components) in the speech signal. The higher the HNR, the lesser the noise in the
signal, and vice versa. As previously seen, it relates to the roughness or hoarseness
of the voice which would affect the perception of attractiveness in speech [196].
From our studies, we can observe that the HNR value is directly proportional to
the perception of warmth in male synthetic speech. The feature spectral slope was
commonly found to be contributing to male warmth in studies on natural as well
as synthetic speech [203].

• Male competence: The acoustic correlates of competence in male synthetic
voices are detailed in table 5.9. The derived acoustic features accountable for
male competence (from a wide range of TTS systems) are loudness, mfcc4
dynamics (mean), F1 dynamics (mean), and Hammerberg Index. The acoustic
features derived from ground truth TTS voices are F0 mean, voiced segment
length. As discussed before, the Hammarberg index was found to contribute to
male attractiveness in natural speech [203]. In the current studies, the value seems
to positively affect the perception of competence in male synthetic voices. We
have already observed that the lower pitch would affect the perception of trustwor-
thiness in male speech [198]. Correspondingly, the studies on two commercial
studies presented in [202] display negative correlations of the feature F0 semitone
in the perception of competence from synthetic speech.

• Additional observations on acoustic feature relevance: Other than the obser-
vations made from the derived OpenSMILE features, we have also found the
dependence of other acoustic features on different speech perceptions. From the
different sets of studies carried out, we found the significance of speech pauses
and speaking rate in the perception of warmth and competence from synthetic
speech. While the insertion of pauses in neutral speech has not provided any
notable differences in the perception of warmth, the participants could associate
the voices with high speaking rates and no speech pauses to be highly competent
over others. These observations are on par with the studies presented in [197].
Further, a similar survey was also conducted on compassionate speech (both WC
dataset and Twitter sentences). An example sentence (derived from Twitter data)
that displayed varied perceptions of warmth is presented below.

“Don’t put time on it. Relax! Maybe nap and get back to it when you get
up”

In the above sentence, a speech pause inserted in a TTS speech sample (with
lower F0) between the words, “Relax” and “Maybe nap” has been observed to be
highly warm compared to the voices that did not include this pause. However, a
systematic description of where to insert such pauses was not understood in the
current studies. Overall, we can conclude that the insertion of speech pauses and
lower F0 would positively affect the perceptions of warmth in synthetic speech.
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On the other hand, high speaking rates contribute to the perception of competence
in the generated speech.

5.4 Limitations

This section provides the limitations of the current studies.

• Limited data: Even though its captivating to understand the acoustic features
contributing to warmth and competence in synthetic speech, the availability of the
labeled datawas limited (obtained fromour previous studies in chapter 4). This has
further affected the acoustic feature prediction for the relevant vocal cues of SSC.
The input dimensions were higher than that of the number of training examples.
Thus, detecting the multi-collinearity and the feature selection were challenging.
The multi-collinearity was identified by the use of Pearson correlation between
the features and adjectives. The feature selection was enabled by the recursive
feature elimination approach. The availability of abundant data would have aided
in effective feature modeling and predictions.

• Acoustic features: In this chapter, we derive theOpenSMILE features and discuss
various dimensionality reduction techniques to predict the acoustic correlates of
SSC. Investigation of different sets of acoustic features for the task and a fusion of
different feature sets could have also been interesting. Therefore, one of our future
works would focus on examining varied feature representations for the prediction
of vocal cues of SSC.

5.5 Summary

In this chapter, we have examined the acoustic correlates of SSC in synthetic speech.
The studies were carried out on the wide range of TTS systems introduced previ-
ously in chapter 4. Further, the comparison of the results was done with the studies
previously performed on natural speech as well as the experiments carried out on two
commercial TTS systems in [202]. The acoustic feature relevancewas derived by em-
ploying various dimensionality reduction techniques on the derived 88-dimensional
OpenSMILE features. Finally, the features derived from the backward elimination
approach in linear regression were determined to be the acoustic correlates of SSC.
The approach has also provided information on the impact of each feature on the
perception of warmth and competence from synthetic speech. The study shows that
the f0 and formant frequencies along with spectral flux contribute to the warmth in
female speech (common features in wide-range TTS as well as ground truth TTS).
While, loudness, mfccs, formants (F1 mean, F3 bandwidth), slope, and spectral flux
contribute to male warmth (both wide-range and ground truth TTS). Correspond-
ingly, contributors of competence as observed from both wide-range and ground
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truth TTS for males are loudness, mfccs, F0 semitone, F1 mean, Hammarberg In-
dex, and voiced segment length. For females, the contributors are F0, its formats (F1
mean, F3 mean), voiced slope, flux, and mfccs. Additionally, we have also observed
that insertion of speech pauses associated with lower F0 would contribute to higher
warmth and a high speaking rate leads to the perception of competence in synthetic
speech.
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Table 5.6: Acoustic features contributing to female warmth and their corresponding
coefficients. The explained variance for female warmth (R squared) = 98%

Acoustic features Coefficients
F0 meanFallingSlope 0.4718

F2 stddevNorm 0.6379
hammarbergIndex stddevNorm -0.5254

loudnessPeaksPerSec 0.4224
StddevUnvoicedSegmentLength 0.1285

Table 5.7: Acoustic features contributing to female competence and their corre-
sponding coefficients. The explained variance for female competence (R squared) =
93.3%

Acoustic features Coefficients
F0 stddevNorm 1.1833
mfcc4 mean -0.7423

F1amplitudeLogRelF0 stddevNorm 0.8561
F3frequency mean -0.3834
spectralFlux amean 0.1285

Table 5.8: Acoustic features contributing to male warmth and their corresponding
coefficients. The explained variance for male warmth (R squared) = 96.7%

Acoustic features Coefficients
loudness mean -2.7000
mfcc3 amean 0.7069
HNRdBACF stddevNorm 0.4708
F3bandwidth amean -0.2639
spectralFlux amean 0.3586

Table 5.9: Acoustic features contributing to male competence and their correspond-
ing coefficients. The explained variance for male competence (R squared) = 93%

Acoustic features Coefficients
loudness stddevNorm -0.4453

mfcc4 mean 0.5610
F1frequency mean 0.2816

HammarbergIndex stddevNorm 0.3903
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Table 5.10: Results of regression techniques. AFs= number of acoustic features fed
to the model, At/Ch. = attributes/characteristic, (W) warmth, (C) Competence, LR
= Linear Regression, SVR = Support Vector Regressor, MSE = mean squared error

Model Male Female
AFs At/Ch MSE AFs At/Ch MSE

LR 5 1 (W) 0.08 5 1 (W) 0.11
SVR 5 1 (W) 0.35 5 1 (W) 0.08
LR 4 1 (C) 0.11 5 1 (C) 0.22
SVR 4 1 (C) 0.10 5 1 (C) 0.33

Table 5.11: Classification of low/high warm/competent voices. AFs= number of
acoustic features fed to the model, Ch=characteristic ((W) warmth in block 1 and (C)
competence in block 2), LC = Linear Classifier, SVM = Support Vector Machine,
Acc = Accuracy

Model Male Female
AFs Ch Acc AFs Ch Acc

LC 5 1 (W) 99.1 5 1 (W) 97.5
SVM 5 1 (W) 99.3 5 1 (W) 100
LC 4 1 (C) 98.4 5 1 (C) 98.8
SVM 4 1 (C) 99.3 5 1 (C) 100





Chapter 6
Modeling using Voice Conversion

This chapter presents the modeling of synthetic speech for the positive perceptions
(warm and competent) of negatively perceived (cold or incompetent) voices. Voice
Conversion experiments carried out for both intra and inter-gender transformations
are presented. The Star-GAN model utilized for the VC experiments detailed in this
chapter is adapted from [123]. A discussion on the subjective evaluations of the
converted speech was done between me and Sebastian Möller.

6.1 Related work

Besides their efficiency in generating images, GANs [122] have also displayed their
excellence in modeling speech data [124, 123]. Different variants of GANs have been
investigated for various Voice Conversion experiments and have proved to outper-
form the Variational Auto-encoders (VAEs) [204]. A Variational Autoencoder is a
modified version (a probabilistic model) of a basic autoencoder. The model consists
of an encoder and a decoder. The encoder takes the input speech data (let’s say, x)
and projects it onto a latent space. The sampled information from this latent space is
fed to the decoder and the decoder generates the samples that are as close as possible
to that of the x. The model optimization aims at reducing the distance between the
true posterior and the predicted variational posterior and the loss is estimated using
the Kullback-Leibler divergence (KL loss). Eventually, Conditional VAEs were pro-
posed which would consist of an additional label (an auxiliary attribute) provided
to accommodate different speech attributes (for example, speaker identity) [205].
This additional dimension (the auxiliary variable or speaker identity) in the encoder-
decoder models could further facilitate the speaker conversion based on the speaker
ID (or the relevant speech attribute) provided to the decoder during the conversion.
Also, due to their architecture, these networks do not require parallel data from
the source and the target speakers. However, the VAEs suffer from poor conversion
quality (generation of over-smoothed speech). GANs were reported to handle this

79
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drawback of VAEs in speaker conversion and have been found to produce better con-
version quality than VAEs. [124] employs a cycle-GAN for unpaired speech samples
of source and target speakers. Cycle-GAN is a variant of GAN which relies on the
consistency of the mappings between the pair of the unaligned speaker’s data. The
network consists of two generators G, F, where G tries to map the input features (I)
to a target’s voice (O), G: I! O for which the inverse mapping by F is represented
as F: O! I. The generator network in the cycle-GAN, therefore, ensures to produce
the predictions are as realistic as possible through this cycle consistency network.
Also, there is a discriminator D network that tries to differentiate between the real
and fake predictions of the target. The model optimization is therefore handled while
minimizing a) the adversarial loss due to the predictions made by the generator (G
tries to produce fake predictions and fool the discriminator (i.e., to maximize the
discriminator loss), D), and b) the adversarial loss calculated for the discriminator
network in classifying the real/fake targets (tries to maximize the generation loss).
In addition, the cycle-GAN also consists of cycle consistency loss computed from
the forward and the reverse mappings functions, G, F. Therefore, the training loss
is a combination of adversarial losses and cycle-consistency loss. Even though the
cycle-GANs were efficient compared to previously used VC approaches, they had
a major shortcoming in their applications for different speech domains (the use of
auxiliary variables) [124]. With the increase in the number of speech attributes,
the number of parameters to be learned would also increase while the number of
training examples is still the same. Therefore the model is limited to the one-to-one
mapping of speakers. Follow-up work by the same research group was proposed us-
ing Star-GANs for many-to-many voice conversion with non-parallel data from the
source and the target speakers [123]. The VC experiments presented in this chapter
are carried out following the work provided in [123].

6.1.1 Description of the Star-GAN model

The Star-GAN-based VC presented in [123] consists of multiple advantages over
the previously proposed Cycle-GAN VC [124]. Apart from the aforementioned
advantages ( does not require parallel utterances from source and target speakers,
and can carry out many-to-many VC), the Star-GAN model proposed in [123] also
leverages a) the transcription-free VC (text and speech alignment errors can be
avoided), b) no need for time alignment of the source and the target utterances
(time alignment techniques such as dynamic time warping and the errors due to
these warping of speech signals can be avoided), c) one generator network can learn
multiple tasks from the provided speech samples (such as speaker identity, speaker
characteristics, language information, style information, etc.,), and d) can generate
good quality speech with limited data ( speech data spanning less than an hour or
several minutes).

The generator (G) is an encoder-decoder type network with an auxiliary attribute,
s. This auxiliary attribute can hold multiple pieces of information present in the
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speech signal (as mentioned before, the speaker’s identity or speaker characteristics
or language information). This information can be stored in the form of one-hot
vectors and multiple tasks can be concatenated while training the network (for
instance, speaker id + speaker characteristics + language id). In the current study,
the auxiliary variable, s only consists of the speaker identity of the target speaker.
The generator performs mapping of the input features from the feature space (X) to
that of the target’s voice specified in the auxiliary variable or the target attribute s
(in one-hot representation), Y0 = G(X,s) where Y’ is the generated feature space.

The generator network should produce speech data that is as close as possible
to that of the target’s voice. Further, if the generated speech is close to that of the
target speaker, is verified by a real/fake discriminator network through its predicted
probabilities D(Y,s). Besides, the generator and the discriminator, the experimental
setup additionally consists of a domain classifier (C) to examine the class probabil-
ities of the generated speech ( class probability is represented as p2;(s/Y) ). Since
the current study involves only speaker identity as the auxiliary attribute, the class
probabilities are computed only for the belongingness of the given speech features to
a specific class/speaker. The loss functions for each of these networks are provided
further. The adversarial loss for the discriminator is provided in the equation 6.1,
where E is the expectation, . ⇠ ?(. |B) denotes the feature sequences in the acoustic
feature space, Y or of real speech with the attribute, s, and - ⇠ ?(-) represents it
with an arbitrary attribute. The generator training is carried out using the adversar-
ial loss defined as L03E⌧ and is computed as shown in equation 6.2. Further, the
classification losses computed from the domain classifier (L2;⇠ ) and the generator
network (L2;⌧) are provided in the equation 6.3 and 6.4. The loss values (L2;⇠ )
indicate the error in the predictions made by the classifier network in classifying
the acoustic feature sequences from Y, . ⇠ ?(. |B). Therefore, the training of the
classification aims at minimizing this error with respect to the domain classifier (C).
Correspondingly, (L2;⌧) represents the error in the predictions ofGwhile verifying
their belongingness to the speaker label as described in s. Therefore, (L2;⌧) is to be
minimized with respect to the generator network.

L0E3⇡ = �EB⇠? (B) ,.⇠? (. |B) [;>6(⇡ (. , B))]
�E-⇠? (-) ,B⇠? (B) [;>6(1 � ⇡ (⌧ (- , B), B))] (6.1)

L0E3⌧ = �E-⇠? (-) ,B⇠? (B) [;>6(⇡ (⌧ (- , B), B))] (6.2)

L2;⇠ = �EB⇠? (B) ,.⇠? (. |B) [;>6(?2; (B |. ))] (6.3)

L2;⌧ = �E-⇠? (-) ,B⇠? (B) [;>6(?2; (B |⌧ (- , B)))] (6.4)

All the networks used in the Star-GAN model (Generator, Discriminator, domain
classifier) are designed using CNNs. Therefore, the model leverages sequential pro-
cessing and learns the acoustic feature sequences for speaker conversion instead of
frame-to-frame mapping. Among these, the generator is an encoder-decoder model
where only the decoder is fed with the auxiliary attribute while training the model.
Unlike CVAEs and cycle-GAN VC, for the current star-GAN VC setup, there is no
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need to feed the generator with the auxiliary attribute (or the target attribute) at the
test time. In this chapter, we utilize the star-GANmodel proposed in [123] to examine
the positive perceptions of the converted speech.

6.2 Overview

This chapter addresses the following research question.

•? Research question: “What modifications of synthetic speech enable their

positive perceptions?”

The focus of this chapter is to alter the negatively perceived synthetic voices
into positive ones. In order to achieve the same, we employ voice conversion in the
current studies. The contributions of this chapter are detailed below.

• Why VC?: Spectral conversion has been found to impact the perceptions of
various emotions in speech [125, 206]. [125] provides a speaker-independent
emotion conversion using the Variational Autoencoding Wasserstein Generative
Adversarial Network (VAW-GAN). The study investigates two separate VAW-
GAN pipelines for each of spectral conversion and prosody conversion. The
conversion results display an improved emotion conversion performance when
conditioning the model on the Continuous Wavelet Transform (CWT) based
F0. Similarly, [206] utilizes a highway network to model the pitch, energy, and
spectral information of the source to that of the target’s emotion. The subjective
evaluations of the converted speech were performed for the classification of
perceived emotions. Also, the authors investigate this phenomenon in the case
of human speech as well as wavenet-generated speech. Inspired by the previous
works on emotion conversion, we examine VC for the transformation of SSC in
synthetic speech through this work.

• How to evaluate the generated speech?: In this work, we are interested in the
conversion of negatively perceived voices into positive ones. Therefore, the evalu-
ation of the converted samples must display a degree of variation in the perception
of SSC from that of the original voices. In order to do so, firstly we need to define
the highly warm/competent, and highly cold/incompetent voices. We show the
details of deriving the ground truth warm/cold, competent/incompetent voices in
the section 6.3. Secondly, our the converted speech was validated using the pre-
viously defined ground truth warm/cold, competent/incompetent (from section
6.3). Correspondingly, our evaluation setup included the AB preference test be-
tween the converted voice and the negatively perceived (highly cold/incompetent)
voices. We thus try to interpret how better/positive is the converted speech from
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that of the original voice (negative voice). Alternatively, we also evaluate the
converted speech on a 5-point scale for the social perceptions of the converted
speech. Finally, we provide a comparison of AB preference tests and the 5-point
scaling tests.

6.3 Experimental setup

This section provides the experimental details of VC studies performed using the
Star-GAN model. In order to investigate the perception of SSC in converted speech,
both intra-gender and inter-gender experiments were carried out. A traditional VC
setup requires a source speaker and a target speaker. The source and the target
speakers for each of the experiments presented in this section are derived using the
subjective ratings obtained for the ground truth TTS voices proposed in chapter 4.

6.3.1 Choice of speakers and adjectives

From the studies in chapter 4, it is evident that the speech quality and the naturalness
of the generated voice have a significant impact on the perception of SSC. Addition-
ally, performing VC over the synthetic speech would further alter the quality of the
converted speech. Therefore, in order to retain the speech quality, the experiments
were carried out on ground truth TTS voices alone.

6.3.1.1 Deriving ground truth adjectives for warmth and competence

The subjective evaluations provided in chapter 4 utilize a long list of adjectives.
As we have already seen previously, this would increase the number of questions
provided to the participants during the subjective tests. Therefore, considering the
relevance of the adjectives and the results obtained from the previous studies, in
this section, I derive two adjectives (from the long list provided in chapter 4) for
each of warmth and competence. These adjectives are derived by considering their
factor loading values. The factor loading value provides information on how well
the adjective fits under the particular factor. The higher the factor loading value, the
better it fits and represents the corresponding factor.

Table 6.1 presents the adjectives and the corresponding factor loadings for each
of male and female voices under the factor/characteristic, warmth [167] (from chap-
ter 4). The adjectives commonly found in both male and female voices are kind,
sympathetic, likable, and pleasant. Among these, the adjectives kind (male = 0.82,
female = 0.75), and sympathetic (male = 0.78, female = 0.77) display the highest
factor loadings for the characteristic, warmth. Here, even though, the adjective lik-
able displayed a slightly higher factor loading (0.79) than the adjective sympathetic
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Table 6.1: Results of the ground truth experiments from chapter 4 [167]. The
adjectives and the corresponding factor loadings of the characteristic/factor, warmth.
The adjectives in bold display the highest factor loadings among others under the
factor, warmth.

Female Male
Adjectives Factor loadings Adjectives Factor loadings

Kind 0.75 Kind 0.82
Sympathetic 0.77 Sympathetic 0.78

Likable 0.71 Likable 0.79
Pleasant 0.67 Pleasant 0.77
Accessible 0.63 Friendly 0.72

(0.75), we chose to use the adjective, sympathetic. This is in order to be in line with
that of the female voices and define common ground truth adjectives irrespective of
gender. Therefore, hereafter the adjectives, kind and sympathetic are determined to
be the metrics in the perception of warmth from synthetic speech.

Table 6.2: Results of the ground truth experiments from chapter 4 [167]. The
adjectives and the corresponding factor loadings of the factor, competence. The
adjectives in bold display the highest factor loadings among others under the factor,
competence.

Female Male
Adjectives Factor loadings Adjectives Factor loadings
Responsible 0.93 Responsible 0.89

Skilful 0.84 Skillful 0.88
Reliable 0.81 Reliable 0.87
Confident 0.65 Confident 0.79

Similarly, table 6.2 shows the factor loadings of competence for the ground truth
voices. Among the four adjectives commonly loaded under the factor, competence,
the adjectives responsible (male = 0.89, female = 0.93) and skillful (male = 0.84, fe-
male = 0.88) display the highest factor loadings. Hence, from now on, the perception
of competence from synthetic voices is evaluated through the scales, responsible and
skillful.
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Fig. 6.1: Averaged subjective ratings for ground truth TTS voices. C, E, H = Google
wavenet female voices, J = Google wavenet male voice, Joey = Amazon Polly male
voice.

6.3.1.2 Deriving ground TTS truth voices for the characteristics, warm/cold
and competent/incompetent

The ground truth voices for warm/cold and competent/incompetent are derived from
the averaged subjective ratings computed over the ground truth adjectives (warmth=
kind+sympathetic, competence = responsible+skilful) for both genders separately.
The ground truth TTS voices that displayed the highest averaged ratings among others
were considered the ground truth for highly warm/competent voices. Similarly, the
voices with the least averaged ratings among others were treated as ground truth for
cold/incompetent voices. The details of the male and female ground truth voices for
each of warmth and competence are provided below.

• Highly warm and highly competent TTS voices: Figure 6.1 presents the averaged
subjective ratings collected for the adjectives, kind, sympathetic, responsible and
skillful (from chapter 4). The figure shows the averaged subjective ratings of
three female (C, E, H) and two male (Joey, J) voices that displayed the highest
and the lowest ratings among other voices (5 voices out of 20 (Google =10+
Amazon Polly=10) were used in the current study). The TTS voice, E (Google
wavenet female) displays the highest averaged ratings for warmth (kind = 55.4,
sympathetic=60.3), and competence (responsible = 40, skillful = 40.6). Therefore,
E is considered the ground truth for highlywarmand highly competent femaleTTS
voices. Correspondingly, themale voice, Joey (male) exhibited the highest warmth
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(kind = 46.1, sympathetic = 52.2) and competence (responsible = 38.2, skillful =
44.6) among other male voices. Thus, the voice Joey was regarded as the ground
truth for a highly warm and highly competent male TTS voice. Additionally, the
TTS voice C (female, kind = 45.3, sympathetic = 58.7, responsible = 37, skillful
= 39.6), was also considered in the current studies as it displayed the highest
warmth and competence ratings in experiments with a wide range of TTS voices
(chapter 4).

• Highyly cold and highly incompetent TTS voices: Of all the female voices, H
displayed the lowest averaged ratings for warmth (kind (41) +sympathetic (44.1))
and competence (responsible (34)+skillful (33)). Accordingly, the voice H was
regarded as the ground truth female voice for cold and incompetent voices. Among
male voices, J displayed the lowest ratings for kind (33.4), sympathetic (39.9),
responsible (28.7), and skillful (26.3). Therefore, the TTS voice J was used as
representative of the cold and incompetent TTS male voice. The details of these
voices are further summarised in the table 6.3.

Table 6.3: Details of ground truth warm/cold/competent/incompetent voices

Female Male
TTS voice Characteristic TTS voice Characteristic

E Highly warm/competent Joey Highly warm/competent
C Highly warm/competent J Highly cold/incompetent
H Highly cold/incompetent - -

6.3.2 Data preparation for VC setup

The dataset used for theVC experimentswas the neutral speech, CMUarctic database
[160]. The goal is to achieve positive perceptions of the generated speech. Therefore,
the voices with the lowest warmth and competence ratings were to be transformed
into highly warm and highly competent voices. In a traditional VC setup (without
any feature-specific modeling), the converted voice sounds similar to the target
speaker but retains the speaking style of the source speaker. This property of the
conventional VC setup is leveraged for the perception of SSC in the generated speech
samples. In other words, instead of modifying the SSC of negatively perceived
voices, in our study, we focus on altering the voices of the highly warm/competent
speakers to sound like the target speakers (negatively perceived speakers) while
retaining the characteristics of positively perceived voices. The hypothesis is that the
conversion should render a voice that sounds as close as possible to that of the target
(cold/competent) speaker, but should contain the characteristics (SSC) of the highly
warm/competent voices (source speaker’s characteristics). That being the case, in
all of the VC experiments presented in this section, the ground truth voices for high
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warmth and competence (E, C, Joey = highly warm and competent voices) were
considered as the source speakers. Accordingly, the TTS voices, H and J (highly
cold and incompetent voices) were the target speakers for the different intra and
inter-gender experiments.

Even though the conversion was carried out only between the source and target
speakers, the training of the Star-GAN model was accomplished with all the ground
truth voices (except for the baseline. Baseline was trained only on 2 speakers, C and
H). This was done to a) improve the quality of the converted speech, and b) train
the VC model with the voices that displayed varied perceptions of social speaker
characteristics. The assumption was that including other TTS voices (voices with
different degrees of warm/competent ratings) in the study, apart from the source and
target voices alone (voices at opposite extremes, highly warm - highly cold; highly
competent - highly incompetent) would aid in bridging the gap between the social
perceptions of the converted voices. Thus, along with the source and target speakers,
the speech samples were also generated (for CMU arctic database) for the remaining
ground truth voices using Google and Amazon Polly TTS systems.

Further, all the speech samples were converted to ‘.wav’ format and are sam-
pled at 22.5kHz using the SOX command. The acoustic features were derived using
the WORLD vocoder [207]. Therefore, the feature vector consisted of the spec-
tral envelope (36-dimensional Mel Cepstral Coefficients), logarithmic fundamental
frequency (log F0), and aperiodicities (ap).

6.3.3 Experimental details

The experimental setup consists of seven different experiments, a) baseline, b) 3
intra-gender conversions, and c) 3 inter-gender conversions. The model used for all
the experiments is the same. The differentiation between the baseline and the other
conversions is only in terms of the number of speakers used in the training phase.
The baseline model was developed with two voices, C (source, female) and H (target,
female). The intra-gender conversion consisted of three experiments, a) E (highly
warm/competent female) as the source and H (highly cold/incompetent female) as
the target, b) C (highly warm/competent female) as the source speaker and H (highly
cold/incompetent female) as the target speaker, and c) Joey (highly warm/competent
male) as the source and J (highly cold/incompetent male) as the target. Simi-
larly, three experiments were carried out for inter-gender conversion, a) E (highly
warm/competent female) as the source speaker and J (highly cold/incompetent male)
as the target, b) C (highly warm/competent female) as the source and J (highly
cold/incompetent male) as the target, and c) Joey (highly warm/competent male) as
the source and H (highly cold/incompetent female) as the target. The experiments
were carried out on an NVIDIA 1080 Titan GPU 12GB. Each experiment mentioned
in this section took about 12 hours to complete the conversion process and synthesize
speech. The data split was as follows, training data = 80%, validation data = 10%,
and the test data = 10%. Except for the baseline model, all the other conversions con-
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sisted of 20 voices in the training phase. The generated speech samples are available
at 1.

6.4 Subjective evaluation

The subjective evaluation of the converted speech was threefold, a) speech quality,
naturalness, and speaker similarity, b) AB preference test (with an option for No
preference) for warmth and competence, and c) a 5-point scale (direct scaling test)
for warmth and competence. The number of participants took part in the subjective
tests were 28 (male = 18, female =10, age range = 23 to 33, mean =26.3, std =1.4).
The participants were university students and are compensated for their participation.

6.4.1 Speech quality, naturalness, and speaker similarity

The first step in the evaluation consists of two parts, a) collection of the subjective
ratings on an absolute 5-point scale for i) speech quality, ii) naturalness, and b) an
ABX preference test for speaker similarity. The 5-point scale description for the
evaluation of quality and naturalness is as follows, 1 = poor quality/not at all natural,
5 = high quality/ very natural. The speaker similarity test was carried out between
the baseline model and the intra-gender conversion (C H). Since the source and the
targets are the same in these experiments, we compare the baseline with this system’s
output (intra-gender conversion C H) throughout our studies. In the ABX preference
test (speaker similarity test), the participants were provided with the original target
speech sample (X) (in our study, its H) and the converted samples from the baseline
model, and the intra-gender conversion model (C H). They would listen to all three
speech samples and choose the voice (baseline converted voice or the voice from
inter-gender conversion (in ABX test, either A or B)) that is close to that of the
target’s voice (H). The participants can also select “No preference” if they cannot
decide between A or B. The speech samples provided in all three tests (quality,
naturalness, and similarity) were randomized to avoid any bias in the ratings. The
number of speech samples provided in this evaluation setup from each conversion
was 15 (CMU arctic database). Therefore, the number of responses collected was 15
(conversions) * 3 (speech quality, naturalness, speaker similarity) = 45.

6.4.2 AB preference test for warmth and competence

Similarly, to validate the social perceptions of the converted speech, the subjective
evaluation was carried out for the voices obtained from 7 VC systems ( baseline [C

1 https://saisirishar.github.io/VCsamplesforSSC.github.io/
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as the source, H as target], 3 inter-gender conversions, and 3 intra-gender conver-
sions). Accordingly, an AB preference test was designed. In order to perceive the
characteristic, warmth, the converted samples were evaluated on the metrics namely,
kindness and sympathy. Similarly, the characteristic, competence was evaluated on
the scales, responsible and skillful. The AB tests were carried out separately for
the target speakers, H (female), and J (male). In total, 12 comparisons (6 for male,
6 for female) were made for the perception of each metric in the voices, H and J.
Among these 12 comparisons, 6 were between the target speaker and the converted
voice from each of the intra-gender and inter-gender experiments (AB test on female
voice, 1) H Vs E H (E as the source, H as target), 2) H Vs C H, 3) H Vs Joey H;
AB test on male voice, 4) J Vs E J, 5) J Vs C J, 6) J Vs Joey J ). The other six were
comparisons within the converted speech samples (AB test on female voice, 1) E H,
Vs C H, 2) C H Vs Joey H, 3) Joey H Vs E H, AB test on male voice, 4) E J Vs
C J, 5) C J Vs Joey J, 6) E J Vs Joey J ). The voices A and B (in AB preference test)
for each comparison are different (provided in figures 6.4, 6.5, 6.6, 6.7, 6.8, 6.10,
6.9, 6.11). The participants were free to listen to the speech samples any number of
times during the study. They were also allowed to take breaks in between to avoid
any fatigue.

6.4.3 5-point direct scaling test

Apart from the preference tests, we have also carried out the direct scaling test in the
current study with the target speakers (H, J) and the converted voices. As opposed to
the AB preference test, in the current evaluation, the participants were provided with
scales that consist of adjective-antonym pairs. The metrics used for the evaluation
of warmth and competence are the same as seen in the previous AB preference test
(warmth = kind, sympathetic; competence = responsible, skillful). The converted
speech samples were rated on each of those metrics with the bipolar adjectives de-
fined at the extremes of the scale. The evaluation of warmth and competence using
the ground truth voices was previously performed in [167]. However, the study was
carried out on averaged speech samples (1 speech segment = 8 speech samples), and
on more variety of scales (warmth = friendly, kindness, likable, pleasant, sympa-
thetic; competence = confidence, reliable, responsible, skillful). Further, the current
evaluation is carried out on arctic speech samples (similar data type, neutral speech).

6.5 Observations

• Speech quality: Figure 6.2 presents the results of the subjective ratings collected
for speech quality and naturalness. One of the observations made through the
subjective tests was that the TTS speaker, Joey has a breathy voice. Therefore, the
conversion carried out using Joey as the source rendered a poor quality conversion
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Fig. 6.2: Mean Opinion Scores calculated for subjective ratings of speech quality,
and naturalness along with their 95% confidence intervals. Baseline = model trained
with only 2 speakers (C,H), intra-gender experiments = E H (female-to-female), C H
(female-to-female), Joey J (male-to-male), Inter-gender experiments = E J (female-
to-male), C J (female-to-male), Joey H (male-to-female).

over the other source speakers. The inter-gender conversion between Joey (source)
and H (target) has the lowest conversion quality (1.48) of all the systems (inter-
gender conversion systems). Similarly, the intra-gender conversion between Joey
(source) and J (target) has the lowest speech quality among the intra-gender system
performances (1.9). On the other hand, the intra-gender conversion between the
female voices, E (source) and H (target) displayed the highest speech quality (3.2)
over the other conversions. Since, the amount of data used for VC experiments
other than the baseline system, was much higher, the quality of the converted
speech was better than the baseline conversion (baseline = 2.4, C H = 2.9). We
can also observe that the speech quality in the case of inter-gender conversions is
bad when compared to intra-gender conversions.

• Naturalness: The subjective ratings of the metric, naturalness seemed to have
been influenced by the intelligibility of the perceived speech. The intelligibility
of the converted speech was good when the voice, C was used as the source
speaker compared to others. Therefore, from figure 6.2 we can observe that the
naturalness ratings were higher when C was the source speaker (C H = 2.6).
Accordingly, the inter-gender conversion between E (source) and J (target) had
the least MOS ratings for naturalness (1.23) (less intelligible speech). Among
the intra-gender experiments, the conversion between Joey (source) and J (target)
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(male-to-male) displayed the lowest ratings of naturalness (1.4). Among inter-
gender conversions, the conversion between Joey (source) and H (target) showed
the highest naturalness (1.5).

Fig. 6.3:Results ofABXpreference tests carried out for themetric, speaker similarity
for each of baseline (C H) and the intra-gender conversion (C H).)

• Speaker similarity: Figure 6.3 displays the results of the ABX preference test
collected to interpret the speaker similarity of the converted speech to that of
the target’s voice. We present the comparison between the baseline model (C H)
and the intra-gender conversion (C H) for better interpretability of the speaker
conversion. We can find the improved speaker similarity when the conversion
involved the training with additional data (baseline involves data only from the
desired source and the target voices; The system performance has enhanced
with the inclusion of additional data). The participants could identify the voice
generated from the intra-gender conversion (C H) to be close to that of the original
target’s voice (H).

6.5.1 AB preference test for warmth

• Perception of warmth and competence in the female voice, H: The Pearson
correlation coefficient (r=.62; p< 0.05) (person correlation values calculated on
the subjective responses collected for the perceptual studies presented previously
in chapter 4) displayed similarities between the ratings of the adjectives, kind
and sympathetic. Accordingly, the perception of warmth was directly correlated
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Fig. 6.4: Results of AB preference tests carried out for the metric, kindness for the
female voice, H.

Fig. 6.5: Results of AB preference tests carried out for the metric, kindness for the
male speaker, J.

with these subjective responses. Figure 6.4 and figure 6.6 present the results
of the AB preference test carried out for the adjectives, kind and sympathetic
respectively. Similarly figure 6.8, 6.9 present the results of subjective responses
for the metrics, responsible and skilful respectively. There are some observations
made from the speech samples of different speakers which have further influenced
the perception of SSC from these voices. The female voice, H displayed a higher
speaking rate, and high pitch than the female voice, C. Therefore, due to the
high speaking rate, the voice was perceived to be skillful (when the quality
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Fig. 6.6: Results of AB preference tests carried out for the metric, sympathetic for
the female speaker, H.

Fig. 6.7: Results of AB preference tests carried out for the metric, sympathetic for
the male speaker, J.

of the converted speech was good and the speech was intelligible). Similarly,
the pitch has also contributed to an increased perception of warmth. However,
this occurred only when voice, C was used as the source in the conversion.
As the speaking rate of C was less compared to H, the conversion resulted in
a reduced speaking rate and original pitch of H. Therefore, reduced speaking
rate and increased pitch in the intra-gender conversion (C H) have the highest
perception of warmth (on the scales, kind, sympathetic). The voice with high
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speaking rates though considered skillful (also from studies presented in chapter
5; high speaking rate=highly competent) was not found to be responsible. This
was also corroborated by the Pearson correlation (r= -.07; p<0.01) calculated
between the subjective responses of these adjectives. Further, we found that the
subjective responses for the adjective, responsible were found to be correlated
with the responses of warmth ratings (kind (r = .706; p<0.05)) and sympathetic (r
= .75; p<0.05)). The voices with moderate speaking rates were considered warm
(kind, sympathetic) and responsible. While the voices with high speaking rates
were considered competent (skillful) but less warm and have a lower perception of
responsibility. All the subjective results were found to be statistically significant
(p<0.05).

• Perception of warmth and competence in the male voice, J: The perception of
male warmth through AB tests is displayed in the figures 6.5 (Kind), 6.7 (Sym-
pathetic). The competence ratings are presented in the figures 6.10 (responsible)
and 6.11 (skillful). As opposed to studies on female voices, the male voices did
not exhibit a high speaking rate. However, we have observed that a moderate
speaking rate and lowered pitch have improved the positive perceptions of the
male-converted voices. Similar to that of the observations made in female voices,
the conversion with C as the source had the highest perception of the dimension,
kind. On the remaining dimensions (sympathetic, responsible, and skillful) we
can observe equal preference for the target voice, and converted voice (in com-
parisons between the target and the converted speech) and also the comparison
between the conversions. The explanations for this phenomenon are not very
obvious from the feedback from the listeners or through listening to the speech
samples.

Fig. 6.8: Results of AB preference tests carried out for the metric, responsible for
the female voice, H.
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Fig. 6.9: Results of AB preference tests carried out for the metric, skillful for the
female voice, H.

Fig. 6.10: Results of AB preference tests carried out for the metric, responsible for
the male voice, J.

6.5.2 Direct scaling test

Figure 6.12 displays the results of the 5-point scale-based evaluation of warmth in
a) the negatively perceived TTS voices ( ground truth cold voices = H, J), and b) the
converted voices (intra and inter-gender conversions). In this figure, we presented
the mean opinion scores collected for the target voices/cold ground truth voices (H,
J) to verify and compare their perceptions before and after the VC experiments. We
can observe that in the intra-gender conversion between C (source) and H (target),
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Fig. 6.11: Results of AB preference tests carried out for the metric, skillful for the
male voice, J.

Fig. 6.12: Results of the evaluation carried out for warmth on the 5-point continuous
scales, kindness, and sympathy.

the converted voice was perceived as more positive (kind = 4.2, sympathetic = 4.32)
than that of the original (target) voice (kind = 2.3, sympathetic = 2.34). Accordingly,
the male voice, J was perceived to be more sympathetic (sympathetic = 3.6) after
the conversion (C as the source and J as the target) than the original (target) voice
(sympathetic = 2.5). The other inter-gender conversions (E J, Joey H) did not fetch
positive perceptions of the converted voice. In the comparison between the target
voice, H, and the inter-gender conversion, Joey H displays almost similar perceptions
of the converted and the original target’s voice. However, the comparison between
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Fig. 6.13: Results of the evaluation performed for the characteristic, competence on
the 5-point continuous scales, responsible, skillful.

the target voice, J (kind = 3.5, sympathetic, 2.5), and the inter-gender conversion, E J
(kind = 2.94, sympathetic, 2.4) present negative perceptions of the converted voice.

Figure 6.13 depicts the competence ratings collected over the 5-point scales,
responsible and skillful. We observe that the target voice, H, was perceived to be
highly skillful (H = 4.2), and the voice, J was perceived as highly responsible
(4.1). The intra-gender conversion between C (source) and H (target) improved the
perception of the adjective, responsible (H = 2.1, C H = 4.3) in the voice, H. Also,
from the figure, we can observe that the converted voice, C Hwas the most positively
perceived voice over the scale, responsible when compared to other voices. However,
the perception of the adjective, skillful was negatively affected by the conversion (H
= 4.2, C H = 2.5). This could be because of the speaking rate of the source speaker.
Similarly, the conversion between Joey (source) and J (target) improved the positive
perceptions of the target speaker J over the scale, responsible (J = 4.1 Joey J = 4.2).
Nevertheless, the conversion has negatively affected the perception of the adjective,
skillful (J = 3.8, Joey J = 3.1). The remaining intra and inter-gender conversions
have also contributed to negative perceptions of the converted voices.

6.5.3 Comparison between the AB preference test and the direct
scaling test

This section summarises the comparison between the two subjective tests.

• Negative perceptions: Through the direct scaling test, we have discovered the
negative perceptions of the converted speech which were not evident from the
AB preference tests. The inter-gender VC experiment between the voices, E (as
the source) and J (target) yielded negative perceptions (less warm) of the J when
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compared to the original voice. Correspondingly, the perception of the adjective,
skillful in Hwas negatively affected due to the VC experiment between C (source)
and H (target). A similar observation has been made in intra-gender conversion
between Joey (source) and J (target). The conversion resulted in an improved
perception of the adjective, responsible, in the converted voice of J. However, this
conversion has reduced the perception of the adjective, skillful, in the converted
voice, J.

• Orthogonal attributes: Similar to the AB preference test, the 5-point direct
scaling test has also displayed the opposite effect on the converted speech in
the case of the adjectives, responsible and skillful (except for voice J in the AB
preference test). Therefore the negative correlations between these two adjectives
which were displayed from the AB preference tests were also corroborated by the
subjective responses of the direct scaling test.

6.6 Discussion

In this chapter, we focus on altering the negatively perceived TTS voices into positive
ones. For this, we have chosen VC and converted the voices of highly positive
(warm/competent) voices into the voices of the speakers who are perceived to be
less warm and less competent. Thus, we target only the transfer of voices and
not the transfer of characteristics. Further, in the training of the Star-GAN model
(other than the baseline model), we have included all the ground truth TTS voices
and not just the highly positive and negative ones. We have hypothesized that the
inclusion of voices that ranged from positive to negative on the scales of warmth and
competence could render a unique representation of speaker characteristics that could
be leveraged in the conversion process. However, the advantages or disadvantages of
such inclusion were not studied extensively in the current work. Nevertheless, from
the subjective responses, we can observe that there is definitely an improvement
in the positive perceptions of converted speech when trained on many speakers
(comparison between the baseline and intra-gender conversion, C H).

6.7 Limitations

This section highlights the points that would restrict the reliability of the interpreta-
tions made from the studies.

• VC Model: As mentioned before (in chapter 1), the aim of this thesis is not to
build new frameworks or propose new approaches for VC/TTS, but to investigate
the possibility of achieving the positive perceptions of the generated speech using
existingmodels. Thus, in the current study, we utilize a single VCmodel for all our
experiments. Also, we rely on spectral conversion alone and do not implement any
feature-specific modifications. Through this study, we only show that it is possible
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to achieve positive perceptions of synthetic voices through VC techniques and
further present the inclusion of various speaker attributes (kind, sympathetic,
responsible, skillful) in the evaluation of VC voices.

6.8 Summary

In this chapter, we have investigated the transformation of negatively perceived
synthetic voices into positive ones. A Star-GAN model was employed for both intra-
gender and inter-gender conversions. The conversions were carried out between the
ground truth warm/competent voices (as source) and ground truth cold/incompetent
voices (as target). The converted speech samples were further evaluated using both
AB preference tests as well as the direct scaling test. The evaluation of warmth
and competence was performed using the ground truth adjectives (warmth = kind,
sympathetic; competence = responsible, skillful). The evaluation results show that
it is indeed possible to alter the negative perceived synthetic voices for their positive
perceptions and vice versa. Some of the voice characteristics such as breathiness and
high speaking rate seem to affect the perception of the generated speech. Breathiness
in the male voice, Joey has negatively affected the speech quality of the VC voices
that had Joey as the source speaker. Further, speaking rate has positively contributed
to the perception of competence in synthetic speech.





Chapter 7
Modeling using TTS

This chapter presents the studies carried out on the modification of the synthesis
procedure for positive perceptions of the generated speech (female speech). The
studies were implemented using a conventional end-to-end TTS, Tacotron [4]. The
suggestions on the subjective evaluation setup were provided by Sebastian Möller.
The studies presented in this chapter (except the prediction of ground truth vocal
cues of warmth and competence in synthetic voices) are similar to the work presented
in [208]. Therefore, the content presented here is closely related to the experimental
setup presented in the paper.

7.1 Introduction

In the previous chapter, we observed the manipulation of synthetic speech using VC
techniques for the perception of SSC. In this chapter, we can examine the modifi-
cation of a traditional synthesis procedure for the perception of SSC. The current
end-to-end TTS mechanisms [4, 6] enable various alterations to the existing frame-
works. Hence, modeling acoustic features (especially prosody) for expressive speech
synthesis has been of high interest in the recent past [209, 210, 211, 23]. Prosody
includes the extra-linguistic information (intonation, stress, style, etc.,) present in the
speech signal. Modeling the prosody would therefore convey the person’s moods,
intentions, and mental states. [209] presents the prosody transfer in a traditional
TTS framework by conditioning the model on the latent representations of the input
acoustic features. Finally, they employ an AXY discrimination test for the subjective
assessments of prosody transfer. A is the reference speech sample and X, and Y are
two different prosody-modified speech signals. The participants could rate which
among X or Y was perceived to be close to that of A on a 7-point scale. In [210]
authors address the prosody transfer in case of an unseen speaker’s speech. This
was attained by combining the phonemic information with that of the corresponding
prosody variations while training the end-to-end TTS framework. In this work, the
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authors employ a Variation Autoencoder (VAE) for the latent representations of the
prosody which resulted in a stable prosody transfer. [211] introduce the style mod-
eling in a TTS framework using the unsupervised style tokens. In order to achieve
expressive speech synthesis, the authors employ an additional module called the
style attention network. This module captures and stores the weights necessary for
the generation of various styles of speech signals. However, this model captures only
the local variations in the F0 contour. Follow-up work was presented in [23] that
models the speed along with the speaking style of synthetic speech. The model uses
both the local and the Global style tokens through the use of a reference encoder.
Additionally, the decoder was also conditioned using the style embedding layer
which further improved the style control and transfer. [212] investigate the vector
quantization to disentangle the prosody features such as speaking velocity, style,
and pitch. The framework consists of Tacotron2 for text-to-spectrogram conversion,
a WaveRNN [27] for speech signal reconstruction, and an auxiliary encoder that
handles the Vector Quantization (VQ). The prosody transfer with the disentangled
vectors prepared using the auxiliary encoder seems to have performed better than the
model in [23]. Inspired by the line of the work on prosody modeling by conditioning
the TTS framework on a variety of acoustic feature spaces, in the current work, we
employ conditioning of a traditional TTS on vocal cues of warmth and competence.

7.2 Overview

This chapter addresses the following research question.

•? Research question: “What modifications of synthesis procedure contribute

to positive perceptions of generated voices?”

The above research question is further divided into the following sub-tasks.

• Step 1: What are the acoustic features that need to be conditioned during the
synthesis procedure?

Throughout the literature, various research groups have investigated the model-
ing of prosodic features for expressive speech synthesis. Nevertheless, modeling
warmth and competence in a TTS setup has not been done before. Therefore, the
first step towards synthesizing these social aspects would be to identify the vocal
cues of warmth and competence. In chapter 6, we find the ground truth adjectives
derived for each of warmth (kind, sympathetic) and competence (responsible,
skillful). An acoustic analysis similar to the studies presented in chapter 5 is car-
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ried out using the subjective responses of these adjectives (obtained from chapter
4) in the current studies for the prediction of vocal cues of SSC. Thus, the acoustic
features to be modeled for the perceptions of SSC is determined through this step.

• Step 2: How should one condition these acoustic correlates in an end-to-end TTS 
setup?
This sub-question is two-fold: a) dataset, and b) modeling techniques. Most of 
the earlier works on expressive speech generation have included datasets with a 
variety of speaking styles. However, in the current work, our primary goal was to 
investigate the acoustic correlates of SSC without the effect of the content on the 
speech. Accordingly, the studies presented in the previous chapters were car-ried 
out on neutral speech (studies on ground truth TTS voices). Nevertheless, the 
ground truth voices (2 commercial TTS systems; Google and Amazon Polly) 
have also been trained on a wide variety of datasets (their internal datasets). 
Hence, we hypothesize that acoustic feature conditioning of an end-to-end TTS 
framework on a different dataset (LJspeech, audiobook dataset) with the acoustic 
correlates of SSC derived from neutral speech would still be relevant. Secondly, 
the condi-tioning of the TTS setup (tacotron) was enabled through quantized 
vocal cues of SSC.

• Step 3: How to evaluate the generated speech for the positive perceptions of syn-
thetic voices?
In chapter 4, we have observed the evaluation of TTS voices on a direct scaling 
test (semantic differential scales). In the current work, we follow a similar 
approach for the evaluation of the generated speech. The evaluation of warmth 
and com-petence was carried out using a 5-point scale with the adjective-
antonym pairs at the extremes. The questionnaire provided during the evaluation 
was as follows:
a) kindness, sympathetic (to measure warmth), b) responsible, and skillful (for 
the perception of competence) (ground truth adjectives obtained from chapter 6). 
From the evaluations conducted on VC experiments, we learned that the partici-
pants found the sentences to be rather short (CMU arctic was presented in chapter6) to provide any judgments such as kindness/sympathetic/responsible/skillful.
This feedback from the listeners was also found to be in line with the studies in
the literature (the utterances presented previously in various expressive speech
generation research spanned around 20 seconds [23]). Further, we were inter-
ested in understanding the generalisability of the vocal cues of SSC to different
data types. Therefore, considering the above two points, the sentences provided
during the evaluation phase consisted of Twitter sentences (long sentences and
compassionate speech).
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7.3 Experimental setup

7.3.1 Which acoustic features should be conditioned?: Ground truth
vocal cues

This section discusses the vocal cues of warmth and competence derived from ground 
truth voices (Google and Amazon Polly). These acoustic correlates are further termed 
the ground truth vocal cues of SSC for synthetic speech. In chapter 5, the acoustic 
correlates of warmth and competence in the case of only the wide-range TTS were 
presented (acoustic feature prediction experiments). In the current work, a similar 
approach was employed to derive the vocal cues of ground truth TTS voices. The 
dataset chosen for training the TTS model is of a female speaker. Hence, for this 
study, the acoustic correlates of only female warmth and competence were derived 
using the backward elimination approach in linear regression. The input to the linear 
regression model was the 88-dimensional acoustic feature sequence obtained from 
the OpenSMILE toolkit. The output fed to the model was the subjective ratings of 
SSC as collected in chapter 4 for the ground truth TTS voices. The adjectives used 
for calculating the warmth and competence ratings are obtained from ground truth 
adjectives defined previously in chapter 5 (warmth = kind, sympathetic; competence 
= responsible, skillful). The ground truth vocal cues derived for SSC in female TTS 
voices are presented in Table 7.1. From the acoustic analysis, we can observe that 
the acoustic features contributing to female warmth are spectral flux, F1 mean and 
F2 mean. Correspondingly, the vocal cues of competence in female TTS voices are 
slope and spectral flux. These results seem to be in line with the studies presented in 
[202]. This phenomenon is due to the choice of adjectives used in the study [202]. 
The adjectives friendliness and likable were highly correlated with the ground truth 
adjectives, kindness (friendly r=.86, p<0.09, likable r=.91, p<0.01) and sympathetic 
(friendly r=.907, p<0.04, likable r=.908, p<0.05). Correspondingly, the correlation 
coefficient for the adjectives skillful and responsible was r=.89, p<0.01. We can 
observe that the formant frequencies (F1 mean, F2 mean), spectral features (flux, 
slope), and as seen previously (in chapter 5) durations (speaking rate and speech 
pauses) displayed dependence on the perception of SSC. Therefore, the modeling of 
these features in the case of expressive speech (LJSpeech) than in a neutral speech 
(neutral speech) would be more challenging and interesting at the same time. Hence, 
the choice of data (LJspeech and not neutral speech) seems to be consistent with the 
desired line of work. Further, the conditioning of these vocal cues in a TTS setup is 
performed using Quantisation technique.
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Table 7.1: The ground truth vocal cues of warmth and competence derived for the
ground truth TTS voices. The acoustic correlates of warmth are derived using the
subjective ratings of the adjectives kind and sympathetic. Similarly, the vocal cues of
competence are derived using the ground truth adjectives, responsible and skillful.

Female
Warmth Competence

Spectral flux Slope
F1 mean Spectral Flux
F2 mean -

7.3.2 Data preparation for feature conditioning (Quantisation of acoustic
features)

Quantisation is a well-known form of compression technique used in data 
transmission. It involves dividing a larger set of vectors into multiple smaller 
groups. Quantisation techniques have been widely used in TTS and VC for learning 
the latent representations through various neural models for more convincing 
quality, and expressivity in the generated speech. In our experiments, we chose to 
quantize the acoustic features into 3 different clusters which we refer to as, classes 
(class 0 = cold/incompetent, class 1 = Neutral, class 2 = warm/competent). The 
assumption is that this would enable the label-based training of SSC in an end-to-
end TTS setup. Figure 7.1 displays the flowchart of the experimental setup.

By now, the vocal cues to be controlled during the speech generation mechanism 
are known. The goal is to modify the acoustic correlates of SSC in the synthesis 
procedure for positive perceptions of generated speech. For this, each of the spectral 
flux, F1 mean, F2 mean and slope derived for the LJSpeech were quantized into three 
different classes. This segregation was performed based on their respective acoustic 
feature distributions. The acoustic feature values for all the speech samples in the 
LJspeech were calculated using OpenSMILE. Further details of the class distribution 
for each of the vocal cues representative of SSC in synthetic speech are provided 
below.

7.3.2.1 Experiment 1: Spectral flux

The spectral flux provides information on the variations in the spectrum within 
the speech signal (difference between frames of a speech signal) and also between 
different speech signals (spectral differences between two separate speech signals). 
The spectral flux values derived from the OpenSMILE for LJSpeech ranged between 
0.157-0.706. Feature quantization on the spectral flux values resulted in three classes. 
The class division and the number of examples obtained per class are provided in 
table 7.2.
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Fig. 7.1: A flowchart with the workflow of current TTS experiments.

Table 7.2: Feature quantization for spectral flux values of LJspeech

Class Range of spectral flux Number of speech samples
0 (less warm/cold) 0.15 - 0.30 3193
1 (Neutral) 0.31-0.44 5193
2 (warm) 0.45 and above 4714

7.3.2.2 Experiment 2: F1 mean

Formants provide the amount of acoustic energy contained in the frequency compo-
nent. In humans, the first formant, F1, is related to the height of the tongue while
generating speech. If the height of the tongue is elevated during the generation of
speech, then the content has a lower F1 and vice versa. From our acoustic analysis,
we have observed that the F1mean contributes to female warmth in synthetic speech.
Therefore, the F1 mean values obtained using the OpenSMILE toolkit are quantized
in the current experiment for our studies on TTS framework. The range of F1 mean
values calculated over the LJSpeech database and the number of speech samples
used for training per class are provided in table 7.3.
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Table 7.3: Feature quantization for F1 mean values of LJspeech

Class Range of F1 mean Number of speech samples
0 (less warm/cold) 400-515 4701
1 (Neutral) 516-540 3598
2 (warm) 541 and above 4801

7.3.2.3 Experiment 3: F2 mean

The formant F2 is directly proportional to the movement (forward) of the tongue.
F2 mean has also been considered one of the contributing factors of warmth in
female synthetic speech. The range of the F2 mean derived for LJspeech and the
class distribution is provided in table 7.4.

Table 7.4: Feature quantization for F2 mean values of LJspeech

Class Range of F2 mean Number of speech samples
0 (less warm/cold) 1280 - 1550 3410
1 (Neutral) 1551-1600 4431
2 (warm) 1601 and above 5259

7.3.2.4 Experiment 4: linear combination of spectral flux + F1 mean + F2
mean

Apart from investigating the effect of individual features on the positive perceptions
of the generated speech, we were inquisitive about knowing the combined effect
of these features. However, how to combine these features was obscure. Therefore,
as an initial attempt, we chose the linear combinations of the individual acoustic
correlates of warmth in this experiment. A linear combination is a linear equation
combining all the relevant vocal cues, with the individual coefficient values summed
to 1. The linear combinations of various MLmodels have been leveraged in different
fields previously for effective feature modeling [213, 214]. In [213], authors explore
the effectiveness of an ensemble of ranking algorithms in recommender systems.
Their research posits better recommendations by the proposed ensemble model over
the traditional stochastic optimization techniques. [214] presents the study on the
automatic selection of an ML model from a linear combination of models over man-
ually examining individual models for function approximation. The authors propose
a better choice of models through the use of this automatic selection that would
best address the research problem. Similarly, in our studies, we leverage the linear
combination of the acoustic correlates of warmth for the positive perceptions of
the generated speech. The class distribution over this linear combination of features
is provided in the table 7.5. The expression employed for the combination of the
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features is also displayed in equation 7.1.

!8=40A 2><1 F0A<C⌘ = 0.33⇤ (?42CA0; 5 ;DG +0.33⇤�1<40=+0.33⇤�2<40=

(7.1)

Table 7.5: Feature quantization for the linear combination of flux, F1 mean, and F2
mean

Class Combination of spectral flux+F1 mean+ F2 mean Number of speech samples
0 (less warm/cold) 569 - 690 5073
1 (Neutral) 691-715 4458
2 (warm) 715 and above 3569

7.3.2.5 Experiment 5: Slope

In this experiment, we quantize one of the acoustic correlates of competence as found
from ground truth TTS voices. The spectral slope provides information on the voice
quality of a speaker in the speech signal. The voice quality includes information such
as husky voice, creaky voice, etc., The class distribution over the quantized slope
values of LJspeech is provided in the table 7.6.

Table 7.6: Feature quantization for slope values of LJspeech

Class Slope Number of speech samples
0 (less warm/incompetent) 0.07 - 0.11 3193
1 (Neutral) 0.112-0.116 5193
2 (warm/competent) 0.1161 and above 4714

7.3.2.6 Experiment 6: Linear combination of spectral flux + slope

This experiment provides the linear combination of the ground truth vocal cues of
competence in synthetic speech. From table 7.1, we find the features contributing
to competence in female TTS voices are spectral flux and slope. In experiment 1,
we have already computed the spectral flux values of LJspeech. Therefore, in this
experiment, we combine the quantized spectral flux obtained from experiment 1
and slope values obtained from experiment 4. The class distribution over the linear
combination of features is provided in the table 7.7. The equation employed for the
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linear combination is provided in equation 7.2.

!8=40A 2><1 2><?4C4=24 = 0.5 ⇤ (?42CA0; 5 ;DG + 0.5 ⇤ (;>?4. (7.2)

Table 7.7: Feature quantization for linear combination of spectral flux and slope

Class Combination of spectral flux and slope Number of speech samples
0 (incompetent) 0.13 - 0.22 4882
1 (Neutral) 0.23-0.26 4365
2 (competent) 0.27 and above 3853

7.3.3 Model details

A traditional Tacotron model would take the character inputs and provide the raw
spectrograms [4]. Nevertheless, in the current framework, instead of character se-
quence, the model is fed with the phoneme sequences extracted using the EHMM
labeling available in the festvox [131]. Two losses were calculated from the acoustic
modeling namely, L1 divergence loss between a) predicted and original mels, and
b) predicted and original linear spectrograms. The loss values of the padded frames
were not masked which aided in the prediction of the sentence endings. The tacotron
model was trained on the LJSpeech dataset. The acoustic feature extraction consisted
of the speech frames spanning 50ms with a frameshift of 12.5 msec using hamming
windows. The features obtained were a 1025-dimensional linear spectrogram and
an 80-dimensional mel spectrogram. The speech signal reconstruction from mel
spectrograms employed the Wavenet vocoder [5]. Similar architecture to the one
provided in the [5] was employed in the current studies. The speech samples were
power normalized to a range between -1 and 1. The individual speech samples were
encoded using the 16-bit ` law quantization. The acoustic frames were upsampled
using linear interpolation instead of transparent convolutions. This upsampling has
enabled the correspondence between the acoustic frames and the time resolution of
the speech samples. Training of the models took around 10-16 hours (Tacotron = 10
hours, Wavenet = 16 hours) on an NVIDIA 1080 Titan GPU 12GB.

7.3.3.1 TTS experiments for warmth and competence

The study of warmth consisted of four experiments, a) spectral flux, b) F1 mean, c)
F2 mean, d) linear combination of flux, F1 mean and F2 mean. In these experiments,
the model training is performed by the conditioning of the TTS framework on each of
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the mentioned acoustic features, derived from the LJspeech. All the acoustic features
were conditioned independently except for the linear combination experiments. The
conditioning of these acoustic features is enabled by an additional embedding layer
introduced at the input. Further, the phoneme sequences are concatenated with the
acoustic feature information present in this additional embedding layer. Those addi-
tional embedding layers are created using the quantized acoustic features. Similarly,
for the perception of competence, the acoustic feature conditioning was implemented
using the slope and spectral flux values of the LJSpeech database. Further, a lin-
ear combination of spectral flux and slope was also investigated using the same
model configuration. A baseline model was developed without providing any class
information (no additional embedding layer) in the input.

7.4 Subjective evaluations

The subjective tests on the generated speech consisted of two stages: a) evaluation of
speech quality and naturalness from the baseline model, b) perception of SSC from
baseline, feature conditioned studies (4 experiments on warmth, and 3 experiments
for competence). 25 (male = 13, female = 12) university students were recruited for
the subjective tests. Their ages ranged between 24-43 (avg = 35.4, std = 1.32).

The evaluation of speech quality and naturalness of the generated speech was
carried out on a 5-point Likert scale (1=poor quality/not at all natural, 5 = very good
quality/natural). In this test, the participants rated 10 speech samples synthesized
from the baseline model. The duration of the speech samples ranged from 7 to 15
seconds (approximately avg =12sec). All the speech samples presented in the test
were randomized for each participant. Further, the listeners could play the speech
samples multiple times during the test. The subjective evaluations for the perception
of SSC in the generated speech are performed using 5-point scales with bipolar
adjectives at the extremes. The number of questions provided for each of warmth
and competence is as follows, 10 (speech samples) * 2 adjectives (kind, sympathetic
for warmth) * 4 (number of experiments carried out for warmth = 3 + baseline) = 80
questions for warmth; 10 (speech samples) * 2 adjectives (responsible, skillful for
competence) * 3 (number of experiments carried out for competence =2 + baseline) =
60 questions. The perception of warmth was obtained from the averaged subjective
ratings collected for the scales, kind and sympathetic. Similarly, the competence
ratings are the averaged subjective scores of the scales, responsible and skillful. The
generated speech samples are available at 1.

1 https://saisirishar.github.io/TTSforSSCspeechsamples/
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Fig. 7.2: Results of the subjective responses collected for the speech quality and the
naturalness of the generated speech (for the baseline model).

7.5 Observations

Figure 7.2 presents the Mean Opinion Scores calculated for the subjective responses
collected corresponding to the speech quality and the naturalness of the generated
speech. The plots also display the 95% confidence intervals for each of the metrics
evaluated on the baseline. The subjective responses displayed acceptable speech
generation quality, and naturalness (along with good intelligibility). Therefore, later
on, feature conditioning experiments were carried out using the current Tacotron
model.

Figure 7.3 displays the results of the subjective evaluation carried out for each of
the experiments on warmth. Since, the warmth ratings were computed by averaging
the subjective responses of the adjectives, kind and sympathetic, the correlation
between these two adjectives as observed from the subjective responses is calcu-
lated. The correlation between kind and sympathetic ratings was r =.93 (p<0.01).
Correspondingly, the correlation between the scales, responsible and skillful was
found to be, r=.85 (p<0.06). As opposed to the observations made in the VC ex-
periments provided in the previous chapter, in the current experimental setup, the
ratings of the adjectives skillful and responsible were correlated with each other
(this could be because of the nature of the voice used in the current studies). From
the subjective responses ( MOS for warmth shown in 7.3) it is evident that when
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Fig. 7.3:Results of the subjective evaluation carried out for the perception of warmth
in the generated speech (speech samples with class label 2 = warm).

compared to conditioning the model on individual acoustic features, conditioning
it on a linear combination of these acoustic features provided higher perceptions
of warmth from the generated speech. A similar observation was made even in the
case of competence ratings (shown in figure 7.4). We have also observed that even
though the TTS setup utilized in the current studies did not include any explicit
duration modeling, the generated speech displayed speech pauses which have also
contributed to the perception of warmth and competence (we drew this conclusion
based on the sentence-wise subjective analysis). An example sentence generated and
the observations made from each of the experiments are detailed below.

Following is the sentence provided during the subjective evaluation,

Suggestions for improvements means a person believes in your core idea and
thinks their comments will help your work.

In the following sentences, the highlighted parts represent the stressed (empha-
sized) words in the generated speech (as perceived and indicated by the listeners).
The speech pauses inserted in the generated speech in each of the experiments and
the corresponding effect on speech perception are also discussed. For this analysis,
the participants were provided with additional questions during the evaluation. They
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Fig. 7.4: Subjective responses collected for the perception of competence in the
generated speech (speech samples with class label 2 = competent.

were provided with text blocks to indicate the words that they found were empha-
sized. Similarly, they were asked to provide pairs of words that consisted of a speech
pause in between.

Baseline: Suggestions for improvements means a person believes in your core
idea [pause] and thinks their comments will help your work.

The generated speech sample consisted of pitch variations throughout the sen-
tence and the word, “means” was emphasized in the first part of the sentence. Further,
a speech pause was inserted between the words, “idea”, and “and”. Also, before the
insertion of the speech pause, the word, “idea” was emphasized along with a pitch
variation.

F1 mean: Suggestions for improvements means a person believes in your core
idea [pause] and thinks their comments will help your work.

The generated speech sample when the model was conditioned on F1 mean had
a neutral voice in the first part of the sentence. Similar to the baseline, an emphasis
and speech pause was inserted at the word, “idea”. However, due to the neutral voice,
the perception of warmth was less when compared to that of the baseline model.
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Feedback collected from the participants at the end of the test suggested that the
samples generated with this experiment were intimidating/dominating. This has also
resulted in a lower perception of warmth from the samples generated when the model
was conditioned on F1 mean.

F2 mean: Suggestions for improvements means a person believes in your core
idea [pause] and thinks their comments will help your work.

In the above example, even though there were no speech pauses inserted in the
first part of the sentence, due to the pitch variations throughout, the sentences gener-
ated in this experiment were considered warm compared to the previous experiment.
Additionally, in the above example, we could perceive the emphasis on the words,
“suggestions”, “person”, “in”, “idea”, and “work”.

Spectral Flux: Suggestions for improvements means [pause] a person believes
[small pause] in your core idea [pause] and thinks their comments will help your

work.

In this experiment, we could perceive multiple speech pauses in the generated
speech. This has further contributed to positive perceptions of the voice as the lis-
teners felt the person was “patient”. However, on the other hand, there were no
pitch variations (the voice was close to neutral speech). Therefore, the perception
of warmth was only slightly higher than in the previous experiments (speech pauses
contributed to warmth but neutral speech limited the positive perceptions). On the
other hand, the pauses have negatively influenced the perception of competence from
the generated speech.

linear combination for warmth: Suggestions for improvements means a person
believes in your core idea [pause] and thinks their comments will help your work.

This experiment combines all the properties of the previous experiments, as it is a
linear combination of F1 mean, F2 mean, and spectral flux. Therefore, the generated
speech had pitch variations (as in F2mean), there was only one speech pause (similar
to the F1 mean, F2 mean), and emphasis on the words, “comments”, “help”, and
“work” (as in spectral flux experiment) and the speech pause between ”idea”, and
”and” as in all the previous experiments. A combination of all these properties has
definitely contributed to higher perceptions of warmth in the generated speech.

Slope: Suggestions for improvements means a person believes in your core idea
[pause] and thinks their comments will help your work.

The generated speech samples did not have multiple speech pauses (as seen in
spectral flux experiments). Further emphasis was on the words, “idea”, “thinks” and
“help”. Also, there were pitch variations throughout the sentence. Moreover, the
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perception of competence has improved compared to the baseline model.

linear combination for competence:Suggestions for improvementsmeans [pause]
a person believes in your core idea [pause] and thinks their comments will help your
work.

The combination of spectral flux and the slope has resulted in combined properties
of conditioning the TTS model on these individual features. The speech pauses
were found next to the words, “means” (as in spectral flux) and “idea” (as in all
previous experiments). Further, there were pitch variations in the generated sample
(as seen in the experiments on the slope). Overall, reduced number of speech pauses
(improvement over spectral flux experiment) and improved pitch variations (from
the experiments on slope) have led to increased perception of competence from the
generated speech samples.

Overall, from the subjective analysis, we can declare that the positive perceptions
of the generated speech through the conditioning of the TTS model on the ground
truth vocal cues of SSC are possible.

7.6 Outlook on the dataset and the adjectives used in the study

The wide-range TTS systems (discussed in chapter 4) were trained on different
datasets. For example, the academic systems were trained on CMU arctic (neutral
speech), while the commercial systems such as Google’s voices were trained on inter-
nal datasets and the evaluations were carried out on the WC dataset. The WC dataset
was designed to display the characteristics such as care, compassion, and assurance
(described in chapter 3). Also, the 2 commercial systems (Google and Amazon
Polly) were trained on the internal dataset and evaluated on neutral speech (Harvard
sentences). Therefore, in the current study, the use of LJspeech (audiobook data,
prosodically rich sentences) seems in line with the previous studies. Further, we can
observe that the adjectives, pleasant, likable, and sympathetic were common among
the adjectives contributing to female warmth from both the studies (wide-range TTS
and 2 commercial TTS). However, the adjectives contributing to competence were
different. From the ground truth adjectives derived in chapter 6, we can find the
adjective, sympathetic to be commonly found in both the studies irrespective of the
TTS systems, and datasets used. Subsequently, in the current study, we also present
the correlation values between all the ground truth adjectives. From the correlation
values (presented in the section 7.3 (Experimental setup) before conducting the TTS
experiments, and also in the section 7.5 (Observations), evaluations of the generated
speech) we can presume that all the adjectives used in the study are correlated with
each other. Thus, from a) the correlation values between the adjectives, and b) the
adjectives commonly found in both datasets, we can state that the adjectives used
in the current study are relevant to both datasets (neutral speech and compassionate
speech).
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7.7 Limitations

Limitations of the study are as follows, a) the acoustic correlates of SSC derived for
neutral speech were used in this study, b) experiments on a single-speaker database,
c) only one experiment on the TTS framework.

• Acoustic correlates of neutral speech: The acoustic correlates of SSC used in
the current studies are derived using the subjective ratings of the adjectives, kind,
sympathetic, responsible, and skillful collected from the studies presented in
[167]. The experimental setup in [167] consists of the speech segments prepared
by combining 8 speech samples into one file (each speech segment spanning
approx. 20 seconds of speech). This implies that the subjective ratings were
collected for the averaged information present in the speech segments (as the
ratings were not collected for individual speech samples). Thus, even though the
current studies provide positive perceptions of the generated speech, the solidarity
of the derived acoustic correlates might be little.

• Single-speaker database: Another limitation of the study is that we utilize only
one female speaker in all the experiments presented. The choice of the dataset for
the current studies was highly inspired by the previous works on style generation
using a TTS framework. Thus, we opted prosodically rich dataset (audiobook
dataset = LJspeech) over a neutral speech (neutral speech). We propose to address
the generalisability of acoustic features (vocal cues of SSC derived from neutral
speech) to data types other than neutral speech but due to the use of a single-
speaker dataset, the results cannot be generalized with the current setup.

• Only one TTS experiment: Even though there has been a lot of research on
expressive speech generation in the TTS community, the features described in
the current studies have not been explicitly modeled before (to the best of our
knowledge). Our aim was to investigate the modifications of the derived acoustic
correlates of SSC in a TTS setup. Correspondingly, this was our initial attempt
toward incorporating positive perceptions of synthetic speech. Thus, we do not
present any comparisons of our study with other works on expressive speech gen-
eration. In our futureworks,we intend to design an experimental setup considering
all the limitations and further compare the results with the other state-of-the-art
models.

7.8 Summary and future works

In this chapter, we address the research question that focuses on the modifications 
of the synthesis procedure for positive perceptions of synthetic speech. A traditional 
TTS framework has been employed for feature conditioning. This feature condition-
ing was enabled by quantized vocal cues of warmth and competence derived from 
the female ground truth TTS voices. The acoustic features found to be con-tributing 
to warmth and competence are spectral flux, F1 mean, F2 mean; slope,
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and spectral flux respectively. The subjective evaluations of the generated speech
show that the linear combinations of the relevant acoustic features contribute to the
positive perceptions of the synthetic voices over the individual feature-based condi-
tioning of the TTS. Further, the acoustic feature and spectral flux have been found to
contribute to negative perceptions of synthetic speech on the intellectual dimension
(competence). Now that, we have observed that the combinations of relevant vocal
cues contribute to positive perceptions of generated speech, in our future works, we
intend to investigate different combinations of these acoustic features for socially ac-
ceptable synthetic voices. Also, from the studies on the wide range of TTS systems (
acoustic analysis on wide-range TTS systems provided in chapter 5), we can observe
that F0 contributes to female warmth and competence. However, in the current study,
we rely only on the ground truth vocal cues for the perceptions of SSC. Hence, we
are interested in investigating the modeling of F0 and other vocal cues derived from
previous studies (chapter 5) in female speech. A comparison of social perceptions
of the generated speech when the TTS model is conditioned on vocal cues of SSC
derived from ground truth TTS voices and the ones derived from the wide range
of TTS voices would be one interesting follow-up work. Correspondingly, a simi-
lar analysis of male TTS voices could also provide interesting findings and future
research directions.





Chapter 8
Summary, challenges and future work

8.1 Summary of contributions

The goal of this thesis is two-fold, a) understanding the social perceptions of synthetic
voices, and b) manifesting the positive perceptions of synthetic voices through the
acquired knowledge. We achieved these tasks through the following steps,

• Step 1: Interpreting the perception of warmth and competence (SSC) in different
synthetic voices.

• Step 2: Prediction of the vocal cues contributing to multiple speaker attributes or
SSC.

• Step 3: Manipulations over the synthetic voices using VC (spectral conversions)
for positive perceptions of negatively perceived voices.

• Step 4: Feature conditioning of an end-to-end TTS framework through quantized
vocal cues of SSC.

Steps 1 and 2 correspond to the first part of the goal (understanding the social
perceptions of synthetic speech), and the latter two address the last part of the goal
(manifesting positive perceptions). I dedicate the chapters, 4, 5, 6, 7 respectively for
each of the steps mentioned above. Chapter 1 provides the motivation for choosing
the social speaker characteristics, warmth, and competence in the current studies.
Our target domains are health care and customer service. Even though there are
many more characteristics that the agents in these domains should possess, in the
scope of this thesis, we address only warmth and competence.

119
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8.1.1 Addressing the objectives and research questions

Chapter 1 presents the objectives and the research questions we intend to address
through this thesis. This section provides a summary of the work presented corre-
sponding to each of the objectives and research questions along with the takeaways
from each of them.

Objective 1: Postulate the significance of investigating the social perceptions
of synthetic speech.

The conversational agents designed for different application domains still
lack humanness in many ways (such as social speaker characteristics). The
development of personal assistants/conversational agents that can outperform
humans in this aspect would require the study of their current social percep-
tions.

The above objective is addressed in chapters 1 and 2. With the development of
computing abilities, human-like natural-sounding speech has been achieved. How-
ever, these synthetic voices still lack humanness in many ways (“how” it is being
said). Hence, a lot of work has been performed focusing on the expressivity of the
generated speech in the recent past. Through this thesis, we propose to also consider
the perceptions of different speaker attributes/characteristics from the synthesized
speech via subjective evaluations. Chapter 2 provides the literature which shows
that the interpretation of various speaker characteristics from speech (human and
synthetic) is possible. Further, we employ similar techniques to understand warmth
and competence from the synthetic speech in this thesis.

Research question 1: What social speaker characteristics do people perceive
in synthetic speech?

Similar to the first impressions made in human-to-human interactions,
human-machine interactions can also render interesting observations. The uni-
versal dimensions of social perception which were prevalent from behavioral
studies have also been identified from the machine-generated voices. In ad-
dition to the social speaker characteristics, the studies show that personality
traits can also be perceived from machine-generated voices.

Chapter 4 deals with the social perceptions of synthetic voices. Here we find
two studies, perceptual analysis of a) a wide range of TTS systems, and b) two
commercial TTS systems. The initial experiment consists of 36 synthetic voices
evaluated on a 34-item semantic differential scaling test on two utterances. While
this study includes a variety of synthetic voices, they have been evaluated on only
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two utterances each spanning less than 5 seconds. Also, the speech quality and the
naturalness of the generated speech influenced the social perceptions of the voices.
Hence, a subsequent study was designed to overcome the shortcomings of this study.
Two commercial TTS systems (Goole and Amazon Polly) were chosen for the study.
The speech segments used in the subjective test were prepared by combining around
8 individual speech samples (4 speech segments= 4*8 =32 sentences). Further, we
define these voices to be the ground truth (reference) TTS voices and use them
throughout this thesis. The subjective analysis of both studies has provided us with
the factors, warmth, competence (social speaker characteristics), and additionally
the personality trait, extraversion.

Research question 2: Which acoustic features of synthetic speech affect the
subjective perceptions of social speaker characteristics?

The acoustic correlates of female warmth are spectral flux, F1 mean, and
F2 mean. While the male warmth is dependent on the vocal cues, F1 mean,
loudness, and unvoiced slope ( in the range of 500-1500). Correspondingly,
female competence is perceived through the acoustic features, voiced slope,
spectral flux, and mfccs. Similarly, male competence is influenced by F0 and
voiced segment lengths.

Chapter 5 presents the studies on deriving the acoustic correlates of SSC from
a wide variety of synthetic voices. The acoustic feature extraction was carried out
using the eGeMAPS configuration available in the OpenSMILE toolkit. The fea-
ture extraction was inspired by the previous studies on examining various speaker
characteristics and paralinguistic information from speech using this toolkit. The
acoustic correlates of female warmth were F0 falling slope, F2 (standard deviation),
Hammerberg Index, loudness, unvoiced segment length, spectral flux, F1 mean and
F2 mean (overall observations from studies on both wide-range as well as ground
truth TTS voices). The features, F0 standard deviation, mfcc4 mean, F1 amplitude,
F3 mean, spectral flux, and slope were found to be responsible for female compe-
tence. On the other hand, loudness mean, mfcc3 mean, HNR, F3 bandwidth, spectral
flux, F1 mean, slope, and F1 mean seem to affect the male warmth in synthetic
speech. Correspondingly, the contributors to male competence as observed from
the studies are, loudness, mfcc4 mean, F1 mean, Hammerberg Index, slope, and
spectral flux. We can also observe a similar behavior even in the case of natural
speech from studies presented in the literature. Further, the prediction of the SSC
from the derived acoustic correlates was performed using both classification and
regression techniques. The results of the automatic prediction support the relevance
of the derived vocal cues in the perception of SSC.

Objective 2: Transform the negatively perceived synthetic voices to positive
ones.
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Voice Conversion was devised for the transfer of negatively perceived voices
into positive ones. The transformation was enabled through the use of the
ground truth TTS voices.

Chapter 6 presents the VC experiments carried out on the TTS voices for the trans-
formation of negatively perceived voices into positive ones. The converted speech
was evaluated using different subjective evaluation metrics, speech quality, natu-
ralness, speaker similarity, warmth, and competence. The metrics, speech quality,
and naturalness are evaluated on 5-point Likert scales. Due to the breathy voice, the
conversion that involved Joey had lower quality compared to others. The speaker
similarity was evaluated using the ABX preference test between the baseline (C H,
model trained on 2 speakers, C (positive female), H (negative female) ) and the C H
(model trained on many speakers). The similarity scores were observed to be higher
in the case of the multi-speaker model than in the baseline model. Later on, the
perceptions of SSC from the converted speech were evaluated using two tests, a) AB
preference test, and b) direct scaling test ( 5-point scales with the adjective-antonym
pairs). The scales used for the evaluation of warmth are kind and sympathetic; adjec-
tives for competence are, responsible and skillful. The subjective responses display
that speaking rate has positively affected the perceptions of the adjective, skillful.
The responses for the adjectives, kind, sympathetic, and responsible are correlated
with each other. On the other hand, the adjective skillful was found to be orthogonal
(this observation might be because of the speaking rate) to the perception of the
adjectives, kind, sympathetic, and responsible. Additionally, the direct scaling test
has shown negative perceptions (conversion between E (positive female) and J (neg-
ative male) had negative perceptions of warmth; conversion between C ( positive
female) and H (negative female) negatively affected the perception of skillfulness in
H (negative female); similarly reduced perception of skillfulness was also seen in
the conversion between Joey (positive male) and J (negative male)) of the converted
speech which was not obvious from the analysis of the AB preference test.

Research question 3: Which alterations of the synthesis procedure lead to
positive perceptions of speakers?

The acoustic correlates of SSCwere quantized and are embedded alongwith
the input phoneme sequences in an end-to-end TTS framework. This feature
quantization provided the labels corresponding to the positive, negative, and
neutral perceptions of the synthetic voices as derived from the ground truthTTS
voices. The generation of positively perceived synthetic voices was therefore
controlled using the label information present in the additional embedding
layer in the input.



8.2 Challenges 123

Chapter 7 details the experiments carried out on a traditional end-to-end TTS 
framework for the positive perceptions of synthetic voices. The research question 
is divided into three parts namely, a) figuring out the acoustic correlates of the 
SSC from ground truth TTS voices, b) the dataset and the modeling technique to 
be employed for the task, and c) evaluation of the generated speech. Even though 
previously (in chapter 5) we have derived the vocal cues of synthetic speech, the 
study was conducted on a wide range of TTS voices. Also, due to the limitations 
of the study ( a) only 2 utterances were used in the study, b) the acoustic feature 
extraction was done from a pool of TTS voices with a varied speech quality), in 
the current work, we intend to investigate the acoustic correlates of ground truth 
TTS voices and conditioning the TTS model on the derived acoustic features. The 
derived acoustic correlates were spectral flux, F1 mean, F2 mean ( for warmth ); 
slope, and spectral flux ( for competence ). The experiments were carried out on a 
single-speaker database (female, LJspeech). In the current work, we condition the 
model only on the derived ground truth acoustic correlates of SSC. The 
conditioning of the TTS model was carried out using quantized acoustic features. 
Along with the individual features, a linear combination of these features was also 
examined for the positive perceptions of the synthetic voices. The evaluation results 
show that the convex combination of the acoustic correlates contributes to positive 
perceptions of the generated voices in the case of both warmth and competence. 
Additionally, we found that the spectral flux has negatively affected the perception 
of competence in the generated speech.

8.2 Challenges

In this section, I discuss the challenges we have encountered in the course of this 
work followed by possible future works.

Throughout this thesis, we conduct a wide range of subjective tests for the analysis 
of SSC from synthetic speech. The challenges in conducting such evaluations were 
three-fold, a) how many questions (adjectives, speech samples, number of TTS 
systems, number of male and female voices) should one include in the evaluation?, 
b) which datasets should we use? c) collecting a variety of subjective responses 
(native speakers, speech and NLP experts).

• Questions:Wewere interested in understanding the social perceptions of a variety
of synthetic systems and voices. However, with the increase in the number of
TTS systems, the number of voices (male, female) has also increased. Further,
evaluating the perceptions of warmth and competence was found difficult without
including the additional adjectives. As a result, the number of questions to be
included in the test setup has increased enormously. One approach to address
this would be to divide the task into multiple sub-tasks (division per gender or
TTS system type) and conduct multiple subjective tests. But, the aim of this
thesis was also to investigate methods for incorporation of SSC in the generated
speech (apart from understanding social perceptions of synthetic voices through
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subjective tests). Therefore, the speech samples were combined and evaluated for
the SSC. Further, the acoustic feature prediction and modeling of the synthetic
speech were performed on this averaged information (we assume that the acoustic
and the subjective information would have been averaged because of combining
the speech samples; this part is also discussed in the limitations of chapter 7).

• Dataset: Earlier works on understanding charisma from speech [83], warmth, and
competence judgments from the interactions with virtual agents [53], speaker
characterization from speech-alone scenarios [76, 75], personality judgments
from speech [86], consisted of rather long speech utterances (or long conver-
sations). However, in our work, we focus on understanding acoustic correlates
of SSC from speech alone ( perceptions without being affected by the content).
Hence, we chose neutral speech for our studies. Nevertheless, the commercial
TTS systems (Google’s Wavenet, Amazon Polly) used in the studies were previ-
ously trained on internal databases and the details of these databases (data type,
length of the speech utterances) are not known. As the variability of data was
evident, later on, we chose to stick to the nativity of the speakers (US natives)
for our studies. Since we were keen on modeling the acoustic correlates of SSC
in a TTS setup for the positive perceptions of the generated speech, the TTS
experiments in chapter 7 were performed on LJspeech (approx. 24 hours of data)
and were evaluated on compassionate speech following the works on expressive
speech synthesis [23].

• Listeners: Finding the participants (native speakers, speech experts) for the sub-
jective tests was another challenge. Since, the beginning of the COVID-19 pan-
demic, the use of crowd-sourcing studies has received much interest. This has
facilitated the availability of native US speakers through AMT. However, obtain-
ing speech experts (signal processing experts, TTS experts, NLP researchers)
would have provided a different perspective on the studies ( we carried out some
informal listening tests with the experts). Therefore, through this thesis, we would
propose to include different speaker attributes in the evaluation of TTS and VC
systems on the platforms like Blizzard Challenge and VC challenges. This would
provide the subjective responses (and additional insights on how to include such
attributes in subjective evaluations) of researchers from all over the world. I
hypothesize that the inclusion of area expertise (speech or NLP experts) and lan-
guage expertise ( we already included the native speakers in the current studies )
would provide a much more interesting analysis of the studies.

8.3 Future Work

This section provides some suggestions for future works while highlighting the
limitations of this thesis. The most important limitation of this work is the use
of subjective evaluation setups. This can be discussed in two different parts, a)
questionnaire, b) evaluation scales
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• Questionnaire: Our goal through this thesis was to investigate the perceptions
of SSC from synthetic speech. Through the initial subjective tests, we realized
that the evaluation of these characteristics would require us to provide multiple
adjectives. Thus, our evaluation setup was extensive with the inclusion of multiple
adjectives and synthetic voices. However, for future researchers, we propose to
investigate the perceptions of one or two speaker attributes/adjectives at a time
from synthetic voices rather than investigating the speaker characteristics (a com-
bination of different adjectives). This would reduce the number of adjectives to be
provided during the test. Further, this arrangement would facilitate the inclusion
of multiple speech samples. As a result, one can also handle the drawback of
modeling limited data as seen in this work. Finally, a series of such works ( when
all the adjectives can be grouped into one cluster) can be combined and utilized
for the analysis of different speaker characteristics or personalities, or emotions
from synthetic voices. In particular, the set of adjectives representing various
speaker characteristics or personalities would be different (may or may not be).
Thus, carrying out such an extensive evaluation setup (a long list of adjectives for
each characteristic or personality) constantly would be cumbersome and is also
not pragmatic. Thus, if interested in a similar line of work, we propose to study
the perceptions of one or two adjectives from the synthetic voices rather than a
long list of them.

• Evaluation setup:We employ different evaluation scales to understand the social
perceptions of synthetic voices throughout this thesis. Especially, in chapter 6,
we have used AB preference tests for VC voices. Since we were investigating
SSC from the converted voices, we have employed 4 scales, kind, sympathetic,
responsible, and skillful in these studies. However, this has increased the number
of comparisons carried out in the study. Generally, such an extensive setup of
comparisons is not preferred and also not practical. Therefore, as mentioned be-
fore, an analysis of one or two adjectives per study would be ideal. In addition, as
discussed before, the inclusion of additional perceptual dimensions in the evalua-
tions of TTS and VC systems through platforms like Blizzard and VC challenges
would provide adequate subjective data. This would further aid in developing
objective metrics for the evaluation of different speaker attributes/adjectives. The
introduction of objective metrics for social perceptions of synthetic voices can
also reduce the other challenges in conducting subjective evaluations such as
recruiting reliable participants, and investment of time and resources to conduct
the listening tests. Such objective metrics can be designed in multiple ways. Here,
we provide two approaches for each TTS and VC setup.
A typical end-to-end tacotron model utilizes the L1 loss function for model opti-
mization. In addition to it, one can include a classification loss obtained based on
the classification of the generated voice intowarm/cold, competence/incompetent.
Further, themodel training can be enabled through the cost function obtained from
the L1 loss and the classification loss (social perceptions). For this setup, the class
information (class labels) should be obtained prior to the TTS training or at least
for the baseline voices. Therefore preliminary work for this experimental setup
would be a) determine the scales/adjectives to be used in the evaluation, b) sub-
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jective evaluation for class information (or labels), c) train an additional network
or integrate the class information into the TTS setup. For instance, in this thesis,
we derive the ground truth adjectives for warmth as kind, and sympathetic; and
for competence, the adjectives are responsible and skillful.
A similar approach can also be included in the VC setup. Apart from feeding only
the speaker identity as an additional input, the speaker characteristics can also be
fed (use of labeled data) to the VC setup. Further, an additional classification loss
for social perceptions of the generated voice can be computed for the converted
speech (since we have used Star-GAN in our experimental setup and it allows
such a modification). However, we discuss these future works while considering
only the experimental setups employed in this thesis. On the other hand, other
future directions could be a) a different choice of source and target speakers (in
our study, the source was the highly warm/competent voice, the target was the
highly cold/incompetent voice), and b) modeling of acoustic correlates of SSC in
a VC setup (we rely on spectral conversion alone).
Nevertheless, such an inclusion of objective valuation for SSC into the training
mechanism of a TTS or VC setup would require abundant labels to train the
classifiers (as discussed in the case of TTS, this requires some preliminary work).
Therefore, in this respect, through this thesis, we would like to request the TTS
and VC community to not only include additional dimensions in the evaluation of
their systems, but also to open-source the subjective responses. This would enable
the availability of a large database of labeled information for different speaker
characteristics or emotions or personalities of synthetic voices (similar to the data
that is currently available for speech quality and naturalness of synthetic voices).

8.3.1 Other related works

In this thesis, we have only examined the social perceptions of synthetic voices
in the case of English speakers’ speech (in the US accent). Also, apart from the
listening tests conducted in the preliminary studies, all the remaining listening tests
presented in this thesis included only US native speakers (Overall, US speakers’
speech was evaluated by native US listeners). However, the speech perceptions can
vary with language, accent, speaking style, nativity, age, and gender of the speakers.
For instance, [215] discusses the differences in the perception of speech among
native English and Spanish speakers. The study examines such differences in the
perception of stop consonants, /ba/, /pa/. It consists of two tasks, a) identification task,
and b) discrimination task. The study reports significant differences in the speech
perceptions (identification and discrimination task) by the Spanish and English
speakers. Similarly, [216] explores the speech perceptions and perceptual mapping
of the language input (native) in infants. This mapping has further been found
to contribute to the language-specific knowledge (phonetic units, stress patterns,
prosodic cues, etc.,) in those infants before one year. In addition to age, authors in
[217] have also investigated the effect of gender on the speech perceptions (phonetics)
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of Persian speakers in the case of L2 language (English). The study claims that there
were no differences as observed in their studies between the speech perceptions of
children and adults. On the other hand, the study does not show any impact of gender
of the person in perceiving an L2 language (perception of English speech by native
Persians). [218] discuss the influence of the speaker’s age, dialect, and gender of the
listener in interpreting different speaker traits from speech. The traits analyzed in this
study are prestige, confidence, credibility, and pleasantness. The study was carried
out with a total of 48 participants with an equal number of New Zealanders and
Utahns. The study reveals the correlations between the dialect of the speaker and the
gender of the listener. They posit that the female listeners perceived higher confidence
and pleasantness from the speech of the New Zealanders. The study also shows that
the nativity of the listeners does not influence (negatively) the perception of the
traits such as confidence, prestige, and pleasantness. Utahns provided the highest
ratings to New Zealanders over native speakers on these perceptual dimensions.
A similar observation was reported in [219]. The study investigates the speech
perceptions (English) of New Zealanders, Americans, and Australians by around
400 students from these countries. The subjective responses display that American
speakers were unanimously preferred by all the listeners irrespective of their nativity.
The questionnaire of the study included 22 traits. The list was a combination of
personality traits (13 dimensions), voice quality dimensions (5 dimensions), and the
status index (4 dimensions). The factors derived from the subjective responses of
these speakers were clustered and labeled as power, solidarity, competence, status,
and voice quality. However, contrary to these studies, [220] put forward the negative
effects on speech perceptions by native listeners in the case of non-native speakers.
The survey involved perceptual analysis of Greek Australian English and the native
(standard) Australian English. The targeted perceptual dimensions were solidarity
and the status. The perceptual studies involved listening to three different passages
by each of the native and non-native speakers (goal oriented, social interactions
in public, and interactions in home (friendly and intimate)). The listeners of both
the groups (Greek-Australian listeners and Anglo-Australian listeners) have reported
lowest ratings on the status dimension for the Greek-Australian speakers.

Yet, we do not address all these elements in this thesis. However, a parallel analysis
of these components in the future works could provide interesting findings.

8.4 Conclusion remarks

Through this thesis, we provide a foundation for the investigation of the social
speaker characteristics, warmth, and competence from synthesis speech (speech
alone).Although the amount of datawas limited and the systembuilding or evaluation
methods are not highly efficient, we provide the groundwork and key insights for
the generation of socially acceptable voices. The contributions of this thesis are
four-fold. Firstly, our work proposes to include additional perceptual dimensions
in the evaluation of synthetic voices (TTS and VC). Secondly, we derive different



128 8 Summary, challenges and future work

mechanisms for determining the acoustic feature relevance in social perceptions of
synthetic speech. Then we present a rudimentary procedure for the transformation
of negatively perceived voices into positive ones. Finally, we show the modeling of
a TTS framework focusing on acoustic features other than the commonly used pitch
and durations. This thesis has thus highlighted and addressed the parts that were
not very prevalent in the TTS or VC research before. Hopefully, our work would
encourage the researchers and further pave a way for new future directions in these
research fields.
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A.1 Datasets

A.1.1 WC Dataset

• Is there anything I can do to help?
• Do you need someone to talk with?
• There is hope.
• Have you told your doctor how you are feeling?
• It is okay to feel this way.
• I am sure we can reach a solution
• I can remedy the situation.
• I understand that you feel upset.
• Feel free to call us anytime if you have questions.
• If you need any further assistance, I would be happy to help.

A.1.2 Twitter dataset

• Don’t put time on it. Relax! Maybe nap and get back to it when you get up.
• Suggestions for improvements means a person believes in your core idea and

thinks their comments will help your work.
• Don’t be disheartened, that’s normal. It’s part of the process.
• Maybe the lesson here is that it’s very hard to have a totally relaxed interpersonal

relationship!
• I have been exactly here. I am always ready if you ever need support. I’m here for

you!
• Feedback isn’t punishment. Your perspective shows you understand its purpose.
• I know I’m finding that self-care is more challenging than ever right now, but also

more important than ever.
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• When I’m out running and have a big hill to climb, I’m teaching myself to lean
into the discomfort. It’s helping me cope with things I can’t change in real life
also.

• Keep strong and find someone to help support you through. Take care of yourself;
keep your friends close - I’m sure there are many out there.

• I love this. I started telling people “don’t be sorry” when they apologize for things.
most often what’s necessary is gratitude rather than remorse!!!

A.2 Adjectives

Table A.1: List of adjectives derived from the 2-step procedure described in chapter
3.

Speaker attributes or adjectives
Kind Confident Energetic Outgoing
Distant Talkative Proactive Tense
Empathetic Calm Introvert Unsympathetic
Trusting Worrying Not irritated Indecisive
Emotional Secure Forgiving Friendly
Relaxed Reliable Hearty Arrogant
Assertive Agreeable Anxious Pleasant
Responsible Active Cynical Organised
Enthusiastic Unlikable Accessible Efficient
Affectionate Generous Trusting Intelligent
Insightful Active Dominant Curious
Thorough Attractive Benevolent Decisive
Bored Indifferent Competent Distant
Appreciative Planful Cynical Submissive
Extrovert Anxious Self-pitying Touchy
Stable Compassionate Imaginative Dependable
Cynical Approachable

A.3 OpenSMILE features used in the study

• Frequency specific parameters

– F0 semitone at 27.5Hz - mean, standard deviation (std dev), percentiles
(20,50,80), percentile range (0-2), mean rising slope, std dev rising slope,
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mean falling slope, std dev falling slope

– Jitter - mean, std dev

– Shimmer - mean std dev

– Formant F1 - mean, std dev, bandwidth mean, bandwidth std dev, amplitude
mean, amplitude std dev

– Formant F2 - mean, std dev, bandwidth mean, bandwidth std dev, amplitude
mean, amplitude std dev

– Formant F3 - mean, std dev, bandwidth mean, bandwidth std dev, amplitude
mean, amplitude std dev

• Energy/Amplitude specific parameters

– Loudness - mean, std dev, percentile (20, 50, 80), percentile range (0-2), mean
rising slope, std dev rising slope, mean falling slope, std dev falling slope

– HNR - mean, std dev

– Harmonic difference - H1-H2 mean, H1 - H2 std dev, H1 -A3 mean, H1 - A3
std dev

– Voiced segment length - mean, std dev

• Spectral parameters

– Spectral flux - mean, std dev

– mfcc1 - mean, std dev

– mfcc2 - mean, std dev

– mfcc3 - mean, std dev

– mfcc4 - mean, std dev

– Alpha Ratio - mean, std dev

– Hammarberg Index - mean, std dev
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– Slope 0-500Hz, 500-1500Hz - mean, std dev
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