Skip to main content
Log in

A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the proposal were greater than 90% in most of the experiments. In all cases, the proposed methodology significantly outperformed the results obtained by other algorithms recently presented in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, Y.; Song, H.; Ly, Z.: Deep learning in security of internet of things. IEEE Internet Things J. (2021). https://doi.org/10.1109/JIOT.2021.3106898

    Article  Google Scholar 

  2. Shahbazi, Z.; Byun, Y.: Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. Sensors 21, 1467 (2021). https://doi.org/10.3390/s21041467

    Article  Google Scholar 

  3. Karamti, H.; Lashin, M.M.A.; Alrowais, F.M.; Mahmoud, A.M.: A new deep stacked architecture for multi-fault machinery identification with imbalanced samples. IEEE Access 9, 58838–58851 (2021). https://doi.org/10.1109/ACCESS.2021.3071796

    Article  Google Scholar 

  4. Zhang, M.; Yi, Y.; Cheng, W.: Multistage condition monitoring of batch process based on multi-boundary hypersphere svdd with modified bat algorithm. Arab. J. Sci. Eng. 46, 1647–1661 (2021). https://doi.org/10.1007/s13369-020-04848-1

    Article  Google Scholar 

  5. Abid, A.; Khan, M.T.; Iqbal, J.A.: A review on fault detection and diagnosis techniques: basics and beyond. Artif. Intell. Rev. 54, 3639–3664 (2021). https://doi.org/10.1007/s10462-020-09934-2

    Article  Google Scholar 

  6. Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.; Gupta, M.K.; Kuntoglu, M.: Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review. J. Intell. Manuf. (2022). https://doi.org/10.1007/s10845-022-01923-2

    Article  Google Scholar 

  7. Camps-Echevarría, L.; Llanes-Santiago, O.; Fraga de Campos Velho, H.; Silva Neto, A.J.: Fault diagnosis inverse problems: solution with metaheuristics, 1st edn. Studies in Computational Intelligence. Springer, Berlin, Germany (2019). https://doi.org/10.1007/978-3-319-89978-7

  8. Zhang, P.; Wen, G.; Dong, S.; Lin, H.; Huang, X.; Tian, X.; Chen, X.: A novel multiscale lightweight fault diagnosis model based on the idea of adversarial learning. IEEE Trans. Instrum. Meas. 70(3518415), 1–15 (2021). https://doi.org/10.1109/TIM.2021.3076841

    Article  Google Scholar 

  9. Quiñones-Grueiro, M.; Ares-Milián, M.; Sánchez-Rivero, M.; Silva-Neto, A.J.; Llanes-Santiago, O.: Robust leak localization in water distribution networks using computational intelligence. Neurocomp 438, 195–208 (2021)

    Article  Google Scholar 

  10. Bernal-de-Lázaro, J.; Cruz-Corona, C.; Silva-Neto, A.J.; Llanes-Santiago, O.: Criteria for optimizing kernel methods in fault monitoring process: A survey. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.08.040

    Article  Google Scholar 

  11. Wu, B.; Cai, W.; Chen, H.; Zhang, X.: A hybrid data-driven simultaneous fault diagnosis model for air handling units. Energy Build. 245, 1–10 (2021). https://doi.org/10.1016/j.enbuild.2021.111069

    Article  Google Scholar 

  12. Efthymiou, K.; Mourtzis, A.; Pagoropoulos, A.; Papakostas, N.; Chryssolouris, G.: Manufacturing systems complexity analysis methods review. Int. J. Comp. Integ. M 29(9), 1025–1044 (2016). https://doi.org/10.1080/0951192X.2015.1130245

    Article  Google Scholar 

  13. Taqvi, S.A.A.; Zabiri, H.; Tufa, L.D.; Uddinn, F.; Fatima, S.A.; Maulud, A.S.: A review on data-driven learning approaches for fault detection and diagnosis in chemical process. ChemBioEng. Rev. 8(3), 239–259 (2021)

    Article  Google Scholar 

  14. Kumar, A.; Bansal, K.; Kumar, D.; Devrari, A.; Kumar, R.; Mani, P.: FPGA application for wireless monitoring in power plant. Nuclear Eng. Technol. 53, 1167–1175 (2021). https://doi.org/10.1016/j.net.2020.09.003

    Article  Google Scholar 

  15. Kumar, N.; Mohan Mishra, V.; Kumar, A.: Smart grid and nuclear power plant security by integrating cryptographic hardware chip. Nuclear Eng. Technol. 53, 3327–3334 (2021). https://doi.org/10.1016/j.net.2021.05.006

    Article  Google Scholar 

  16. Ompal, M.; Mishra, V.; Kumar, A.: FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation. Nuclear Eng. Technol. 54, 2444–2452 (2022). https://doi.org/10.1016/j.net.2022.01.011

    Article  Google Scholar 

  17. Rodríguez-Ramos, A.; Bernal de Lázaro, P.-M.A.J.M.; Silva Neto, A.J.; Llanes-Santiago, O.: An approach to robust fault diagnosis in mechanical systems using computational intelligence. J. Intell. Manuf. 30, 1601–1615 (2019). https://doi.org/10.1007/s10845-017-1343-1

    Article  Google Scholar 

  18. Mayadevi, N.; Mini, V.P.; Hari Kumar, R.; Prins, S.: Fuzzy-based intelligent algorithm for diagnosis of drive faults in induction motor drive system. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-019-03935-2

    Article  Google Scholar 

  19. Zhou, K.; Tang, J.: Harnessing fuzzy neural network for gear fault diagnosis with limited data labels. Int. J. Adv. Manuf. Tech. 115, 1005–1019 (2021). https://doi.org/10.1007/s00170-021-07253-6

    Article  Google Scholar 

  20. Fan, Y.; Ma, T.; Xiao, F.: An improved approach to generate generalized basic probability assignment based on fuzzy sets in the open world and its application in multi-source information fusion. Appl. Intell. 51, 3718–3735 (2021). https://doi.org/10.1007/s10489-020-01989-6

    Article  Google Scholar 

  21. Haiyang, P.; Haifeng, X.; Jin, S.; Jinyu, T.: Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis. Adv. Eng. Inf. 51, 3718–3735 (2021). https://doi.org/10.1016/j.aei.2021.101445

    Article  Google Scholar 

  22. Yupeng, G.; Ruixin, B.; Zhen, P.; Guiyang, M.; Jia, A.L.; Xiuquan, C.; Qiqiang, P.: Mechanical equipment health management method based on improved intuitionistic fuzzy entropy and case reasoning technology. Eng. Appl. Artif. Intell. (2022). https://doi.org/10.1016/j.engappai.2022.105372

    Article  Google Scholar 

  23. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory, 1st edn. Stud Fuzz Soft Comp. Springer, Berlin, Germany (2012). https://doi.org/10.1007/978-3-642-29127-2

  24. Mendel, J.M.; John, R.I.; Liu, F.: Interval type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006). https://doi.org/10.1109/TFUZZ.2006.879986

    Article  Google Scholar 

  25. Biswas, R.: On fuzzy sets and intuitionistic fuzzy sets. Notes IFS 3(1), 3–11 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Yager, R.R.; Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 28, 436–452 (2013). https://doi.org/10.1002/int.21584

    Article  Google Scholar 

  27. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014). https://doi.org/10.1109/TFUZZ.2013.2278989

    Article  Google Scholar 

  28. Mardani Shari, M.; Eshraghniaye Jahromi, A.; Houshmand, M.: Failure mode and effect analysis using an integrated approach of clustering and mcdm under pythagorean fuzzy environment. J. Loss Prev. Process Ind. 72, 104591 (2021). https://doi.org/10.1016/j.jlp.2021.104591

    Article  Google Scholar 

  29. Rodríguez-Ramos, A.; Verdegay, J.L.; Llanes-Santiago, O.: A robust fault diagnosis strategy in mechanical systems using Pythagorean fuzzy sets. In: Hernández-Heredia, Y., Milián Nu\(\tilde{n}\)ez, V., Ruiz Shulcloper, J. (Eds.) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lect Notes in Comput Sc, vol. 13055, pp. 1–12. Springer (2021). https://doi.org/10.1007/978-3-030-89691-1_20

  30. Swarup Kr, G.; Anupam, G.; Siddhartha, B.: Recognition of cáncer mediating biomarkers using rough approximations enabled intuitionistic fuzzy soft sets based similarity measure. Appl. Soft Comput. 124, 1052–1090 (2022). https://doi.org/10.1016/j.asoc.2022.109052

  31. Harish, G.; Dimple, R.: Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular fuzzy numbers and their applications. Expert Syst. Appl. 191, 1162–1190 (2022). https://doi.org/10.1016/j.eswa.2021.116228

    Article  Google Scholar 

  32. Gustafson, D.E.; Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766 (1979). https://doi.org/10.1109/CDC.1978.268028

  33. Onal, Y.: Gaussian kernel based svr model for short-term photovoltaic mpp power prediction. Comput. Syst. Sci. Eng. 41(1), 141–156 (2022). https://doi.org/10.32604/csse.2022.020367

    Article  Google Scholar 

  34. Prieto Moreno, A.; Llanes Santiago, O.: Principal components selection for dimensionality reduction using discriminat information applied to fault diagnosis. J. Process Contr. 33, 14–24 (2015). https://doi.org/10.1016/j.jprocont.2015.06.003

    Article  Google Scholar 

  35. Downs, J.J.; Vogel, E.F.: A plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993). https://doi.org/10.1016/0098-1354(93)80018-I

    Article  Google Scholar 

  36. Rodríguez-Ramos, A.; Silva Neto, A.J.; Lanes-Santiago, O.: An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools. Expert Syst. Appl. 113, 200–212 (2018). https://doi.org/10.1016/j.eswa.2018.06.055

    Article  Google Scholar 

  37. Ding, Y.; Fu, X.: Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188(5), 233–238 (2016). https://doi.org/10.1016/j.neucom.2015.01.106

    Article  Google Scholar 

  38. Zhou, J.; Chen, L.; Philip Chen, C.L.; Zhang, Y.; Li, H.L.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198(19), 125–134 (2016). https://doi.org/10.1016/j.neucom.2015.09.127

    Article  Google Scholar 

  39. Garcia, S.; Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  40. Quin, R.; Zhao, J.: High-Efficiency Generative Adversarial Network Model for Chemical Process Fault Diagnosis. IFAC Paper on Line 55, 732–737 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the International Funds and Projects Management Office (OGFPI) of the Ministry of Science, Technology and Environment (CITMA) of Cuba for the national project with code PN223LH004-023, and by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (Finance Code 001 and CAPES-PRINT Process No. 88881.311758/2018-01) from Brazil. Furthermore, the authors appreciate the support provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), both in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestes Llanes-Santiago.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ramos, A., Rivas Echeverría, F., Silva Neto, A. et al. A Robust Condition Monitoring Approach in Industrial Plants Based on the Pythagorean Membership Grades. Arab J Sci Eng 48, 14731–14744 (2023). https://doi.org/10.1007/s13369-023-07789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07789-7

Keywords

Navigation