Skip to main content
Log in

Natural Andrographolide Isolated from Andrographis paniculata as Potent Epileptic Agent: Spectroscopy, Molecular Structure, and Molecular Docking Investigation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this study, a comparative experimental and theoretical investigation of the isolation, characterization, and molecular electronic investigation of natural andrographolide is reported. The studied compound was isolated form the extracts of A. paniculata and characterized by spectroscopic technique and compared with theoretically simulated spectroscopic data. Also, in-silico molecular docking investigation of the anti-epileptic potency of natural andrographolide is appraised by assessing its efficacy to bind with 1R9O receptor. All computations were achieved  at the B3LYP/6-311++G(d,p) level of theory within the framework of density functional theory (DFT). A comprehensive study of the isomerization of natural andrographolide was also considered by conducting several potential energy surface scans for both ring and angle rotation. The results prompt that the cis-conformer is more unstable than the trans-conformer with energy barrier height of − 1156.603 kcal/mol lower than that obtained for the trans isomer. The molecular reactivity descriptors also divulged that natural andrographolide was considerably reactive and its reactivity and stability was observed to be influenced by different solvents polarity and permittivity. The molecular docking investigations also showed that natural andrographolide possesses substantial anti-epileptic activity in comparison with diazepam and thus, a potential pharmacophore for the development of efficient anti-epileptic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

All data are contained within the manuscript and manuscript supporting information document (ESI).

References

  1. Shu YZ (1998) Recent natural products-based drug development: a pharmaceutical industry perspective. J Nat Prod 61(8):1053–1071

    Article  CAS  PubMed  Google Scholar 

  2. Villa FA, Gerwick L (2010) Marine natural product drug discovery: leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 32(2):228–237

    Article  CAS  PubMed  Google Scholar 

  3. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43(1):218–227

    Article  CAS  PubMed  Google Scholar 

  5. Doak BC, Kihlberg J (2017) Drug discovery beyond the rule of 5-opportunities and challenges. Expert Opin Drug Discov 12(2):115–119

    Article  PubMed  Google Scholar 

  6. Doak BC, Zheng J, Dobritzsch D, Kihlberg J (2016) How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem 59(6):2312–2327

    Article  CAS  PubMed  Google Scholar 

  7. Roskoski R Jr (2020) Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res 152:104609

    Article  CAS  PubMed  Google Scholar 

  8. Vieyra-Lobato MR, Vela-Ojeda J, Montiel-Cervantes L, López-Santiago R, Moreno-Lafont MC (2018) Description of CD8+ regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity, and cancer. J Immunol Res

  9. López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17(13–14):718–726

    Article  PubMed  Google Scholar 

  10. Karageorgis G, Foley DJ, Laraia L, Waldmann H (2020) Principle and design of pseudo-natural products. Nat Chem 12(3):227–235

    Article  CAS  PubMed  Google Scholar 

  11. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 17(1):1–382

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pradhan D, Giridhar R (2021) Andrographolide: a review on its anti-inflammatory, antiviral, and antitumor properties. Bioorg Chem 109:104704. https://doi.org/10.1016/j.bioorg.2021.104704

    Article  CAS  Google Scholar 

  13. Choudhary MI, Yousuf S (2020) Andrographolide: potential lead molecule for new drug development against epilepsy. Curr Drug Targets 21(14):1492–1502. https://doi.org/10.2174/1389450121666200706120901

    Article  Google Scholar 

  14. de Sousa CN, Meneses LN, Vasconcelos FR, Fonteles MM (2019) Anticonvulsant and neuroprotective effects of andrographolide in pentylenetetrazole-induced seizures in zebrafish. Epilepsy Behav 97:146–152. https://doi.org/10.1016/j.yebeh.2019.06.037

    Article  Google Scholar 

  15. Wang Y, Zhao X, Chen L, Gao Y, Xu Y (2020) Andrographolide reduces seizure frequency and improves cognitive function in pentylenetetrazole-kindled rats. Epilepsy Res 168:106472. https://doi.org/10.1016/j.eplepsyres.2020.106472

    Article  CAS  Google Scholar 

  16. Bhushan S, Kakkar V (2019) Computational approach to design and development of novel antiepileptic drugs from natural products. In Silico Pharmacol 7(1):10. https://doi.org/10.1007/s40203-019-00027-3

    Article  Google Scholar 

  17. Chandra S et al (2021) Andrographolide as a neuroprotective agent against glutamate-induced excitotoxicity: in vitro and in silico studies. ACS Chem Neurosci 12(2):389–398

    Google Scholar 

  18. Li H et al (2020) Andrographolide alleviates epilepsy by inhibiting GABAA receptor antagonist-induced downregulation of TRESK. J Cell Mol Med 24(20):12018–12028

    Google Scholar 

  19. Łączkowski KZ, Biernasiuk A, Baranowska-Łączkowska A, Zielińska S, Sałat K, Furgała A, Misiura K, Malm A (2016) Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem 31(sup2):24–39

    Article  PubMed  Google Scholar 

  20. Yan RZ, Luo XD, Li Y, Guo YW, Zhou J (2010) Andrograpolide: a review of its pharmacological activities. Phytother Res 24(4):437–444. https://doi.org/10.1002/ptr.2977

    Article  CAS  Google Scholar 

  21. Chen L, Yang W, Kuo Y (2014) Cytotoxic activity and major constituents of Andrographis paniculata and Andrographis lineata. Nat Prod Commun 9(10):1433–1436

    Google Scholar 

  22. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc., Shawnee Mission

    Google Scholar 

  23. HyperChem T (2001) HyperChem 8.07, HyperChem professional program. Hypercube, Gainesville

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford

  25. BIOVIA Discovery Studio website. https://www.3ds.com/products-services/biovia/products/discovery-studio/. Accessed 2022

  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan JY, Wang JF, Wei DQ (2008) Interactions of CYP2C9 with different substrates and its implications for metabolic mechanism. In: 2008 2nd international conference on bioinformatics and biomedical engineering, Shanghai, China, pp 163–166

  28. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55(1):29–37

    Article  CAS  PubMed  Google Scholar 

  29. Manna U, Roy R, Dutta A, Roy N (2023) Phenylalanine conjugated supramolecular hydrogel developed from mafenide and flurbiprofen multidrug for biological applications. Org Biomol Chem 21(11):2375–2389

  30. Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö (2023) Human cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles. Int J Mol Sci 24(4):3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hussein Y, El-Fakharany EM, Kamoun EA, Loutfy SA, Amin R, Taha TH et al (2020) Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: nanofibers optimization and in vitro bioevaluation. Int J Biol Macromol 164:667–676

    Article  CAS  PubMed  Google Scholar 

  32. Udoikono AD, Agwamba EC, Louis H, Benjamin I, Ahmad I, Ejiofor EU et al (2022) Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J Biomol Struct Dyn 1–25

  33. Benjamin I, Louis H, Ekpen FO, Gber TE, Gideon ME, Ahmad I, et al (2022) Modeling the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of (E)-6-chloro-N2-phenyl-N4-(4-phenyl-5-(phenyl diazinyl)-2λ3, 3 λ2-thiazol-2-yl)-1, 3, 5-triazine-2, 4-diamine. Polycycl Aromat Compd 1–28

  34. Ugwu DI, Asogwa FC, Olisaeloka SG, Ezugwu JA, Ogbuke SC, Benjamin I et al (2023) Anti-hypertensive properties of 2-[N-(4-methylbenzenesulfonyl)-1-phenylformamido]-n-(4-nitrophenyl)-3-phenylpropenamide: experimental and theoretical studies. Chem Phys Impact 6:100158

    Article  Google Scholar 

  35. Gannouni A, Louis H, Roisnel T, Isang BB, Benjamin I, Kefi R (2023) X-ray crystallography, spectral analysis, DFT studies, and molecular docking of (C9H15N3)[CdCl4] hybrid material against methicillin-resistant Staphylococcus aureus (MRSA). Polycycl Aromat Compd 1–23

  36. Idante PS, Apebende GC, Louis H, Benjamin I, Undiandeye UJ, Ikot IJ (2023) Spectroscopic, DFT study, and molecular docking investigation of N-(3-methylcyclohexyl)-2-phenylcyclopropane-1-carbohydrazide as a potential antimicrobial drug. J Indian Chem Soc 100(2):100806

    Article  CAS  Google Scholar 

  37. Benjamin I, Louis H, Udoikono AD, Agwamba EC, Unimuke TO, Ahuekwe EF (2023) Hydrazineylidene‐3‐oxopropanal derivatives as antiviral agents for treatment of HBV and HCV: experimental, DFT, and molecular docking studies. Vietnam J Chem 61:109–125

  38. Ntui TN, Louis H, Isang BB, Imojara A, Amodu IO, Benjamin I et al (2023) Trapping of dichlorosilane (H2SiCl2) gas by transition metals doped fullerene nanostructured materials. J Indian Chem Soc 100(3):100940

  39. Gber TE, Louis H, Owen AE, Etinwa BE, Benjamin I, Asogwa FC et al (2022) Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS2 for NH3 gas detection. RSC Adv 12:25992–26010

  40. Benjamin I, Udoikono AD, Louis H, Agwamba EC, Unimuke TO, Owen AE, Adeyinka AS (2022) Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. J Mol Struct 1264:133298

    Article  CAS  Google Scholar 

  41. Agwamba EC, Benjamin I, Louis H, Udoikono AD, Igbalagh AT, Egemonye TC, Adeyinka AS (2022) Antitubercolusic potential of amino-(formylphenyl) diazenyl-hydroxyl and nitro-substituted naphthalene-sulfonic acid derivatives: experimental and theoretical investigations. Chem Afr 5(5):1451–1467

    Article  CAS  Google Scholar 

  42. Asogwa FC, Agwamba EC, Louis H, Muozie MC, Benjamin I, Gber TE et al (2022) Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent. Chem Phys Impact 5:100091

    Article  Google Scholar 

  43. Eno EA, Mbonu JI, Louis H, Patrick-Inezi FS, Gber TE, Unimuke TO et al (2022) Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: experimental, DFT studies, and molecular docking investigation. J Indian Chem Soc 99(7):100524

    Article  CAS  Google Scholar 

  44. Eno EA, Louis H, Ekoja P, Benjamin I, Adalikwu SA, Orosun MM et al (2022) Experimental and computational modeling of the biological activity of benzaldehyde sulphur trioxide as a potential drug for the treatment of Alzheimer disease. J Indian Chem Soc 99(7):100532

    Article  CAS  Google Scholar 

  45. Makhlouf J, Louis H, Benjamin I, Ukwenya E, Valkonen A, Smirani W (2023) Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex. J Mol Struct 1272:134223

    Article  CAS  Google Scholar 

  46. Ntui TN, Oyo-Ita EE, Agwupuye JA, Benjamin I, Eko IJ, Ubana EI et al (2022) Synthesis, spectroscopic, DFT study, and molecular modeling of thiophene-carbonitrile against enoyl-ACP reductase receptor. Chem Afr 1–22

  47. Miyan L, Khan IM, Ahmad A (2015) Synthesis, and spectroscopic studies of charge transfer complex of 1, 2-dimethylimidazole as an electron donor with π-acceptor 2, 4-dinitro-1-naphthol in different polar solvents. Spectrochim Acta Part A Mol Biomol Spectrosc 146:240–248

    Article  CAS  Google Scholar 

  48. Khan IM, Ahmad A (2010) Synthesis, spectral and thermal studies of the newly hydrogen bonded charge transfer complex of o-phenylenediamine with π acceptor picric acid. Spectrochim Acta Part A Mol Biomol Spectrosc 77(2):437–441

    Article  Google Scholar 

  49. Khan IM, Alam K, Afshan M, Shakya S, Islam M (2020) Thermodynamic and structural studies of newly prepared CT complex between pyrazole as a donor and salicylic acid as acceptor at various temperatures in ethanol. J Mol Struct 1206:127758

    Article  Google Scholar 

  50. Agwamba EC, Louis H, Benjamin I, Apebende CG, Unimuke TO, Edet HO et al (2022) (E)-2-((3-nitrophenyl) diazenyl)-3-oxo-3-phenylpropanal: experimental, DFT studies, and molecular docking investigations. Chem Africa 5:1–17

  51. Jayarajan R, Satheeshkumar R, Kottha T, Subbaramanian S, Sayin K, Vasuki G (2020) Water mediated synthesis of 6-amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1, 2′-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1, 2′-bipyridine]-3-carboxamide—an experimental and computational studies with non-linear optical (NLO) and molecular docking analyses. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117861

    Article  CAS  Google Scholar 

  52. Hosna S, Janzen DE, Mary YS, Resmi KS, Thomas R, Mohamed R, Wajda S (2018) Molecular structure, spectroscopic, dielectric and thermal study, nonlinear optical properties, natural bond orbital, HOMO-LUMO and molecular docking analysis of (C6Cl2O4)(C10H14N2F)2·2H2O. Spectrochim Acta Part A Mol Biomol Spectrosc 204:328–339

    Article  CAS  Google Scholar 

  53. Ibhazehiebo K, Gavrilovici C, de la Hoz CL, Ma SC, Rehak R, Kaushik G et al (2018) A novel metabolism-based phenotypic drug discovery platform in zebrafish uncovers HDACs 1 and 3 as a potential combined anti-seizure drug target. Brain 141(3):744–761

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khan IM, Ahmad A, Miyan L, Ahmad M, Azizc N (2017) Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: crystallographic, UV–visible spectrophotometric and antimicrobial studies. J Mol Struct 1141:687–697

    Article  Google Scholar 

  55. Khan IM, Islam M, Shakya S, Alam N, Imtiaz S, Islam MR (2022) Synthesis, spectroscopic characterization, antimicrobial activity, molecular docking and DFT studies of proton transfer (H-bonded) complex of 8-aminoquinoline (donor) with chloranilic acid (acceptor). J Biomol Struct Dyn 40(22):12194–12208

    Article  CAS  PubMed  Google Scholar 

  56. Benjamin I, Gber TE, Louis H, Ntui TN, Oyo-Ita EI, Unimuke TO et al (2022) Modelling of aminothiophene-carbonitrile derivatives as potential drug candidates for hepatitis B and C. Iran J Sci Technol Trans A: Sci 46(5):1399–1412

    Article  Google Scholar 

  57. Qader SW, Suvitha A, Ozdemir M, Benjamin I, Ram SA, Akem MU et al (2022) Investigating the physicochemical properties and pharmacokinetics of curcumin employing density functional theory and gastric protection. Chem Phys Impact 5:100130

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the center for high-performance computing (CHPC) in South Africa for providing the computational resources utilized in this work.

Funding

This study was supported by the Talent Introduction Funds of Sichuan University of Science and Engineering (no. 2018RCL13), Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (LZJ18202), the Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2019JXZ02), the Central Guidance on Local Science and Technology Development Fund of Sichuan Province (no. 2021ZYD0062). The center for high performance computing (CHPC) South Africa is acknowledged for providing the computational resources utilized in this work.

Author information

Authors and Affiliations

Authors

Contributions

HL: project conceptualization, design, supervision, and administration. AEO: resources, analysis, writing, and editing. EUE and WE: analysis, writing, and manuscript draft. TEG: writing and manuscript draft. IB: writing and visualization: analysis, validation, writing, editing. MMO: analysis, validation, review and editing. LL and MMO: writing, editing and proof reading. Writing, editing, and reviewing. ASA and C-RC: resources, methodology, and analysis.

Corresponding authors

Correspondence to Hitler Louis, Emmanuel U. Ejiofor, Wilfred Emori or Chun-Ru Cheng.

Ethics declarations

Conflict of interest

We declare no conflict of any sort.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1313 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, A.E., Louis, H., Ejiofor, E.U. et al. Natural Andrographolide Isolated from Andrographis paniculata as Potent Epileptic Agent: Spectroscopy, Molecular Structure, and Molecular Docking Investigation. Chemistry Africa 6, 2445–2461 (2023). https://doi.org/10.1007/s42250-023-00657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00657-9

Keywords

Navigation