Skip to main content
Log in

Experimental and theoretical characterization of Dy-doped hydroxyapatites

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The effects of adding Dy to the hydroxyapatite (HAp) structure were investigated experimentally and theoretically. The as-obtained experimental results with an increasing amount of Dy are as follows. X-ray diffraction, Raman, and Fourier transform infrared measurements verified the HAp structure for each specimen. The crystallinity, lattice parameters, lattice stress, strain, and anisotropic energy density were affected. Thermal stability and stoichiometry were not affected. It was observed that all the Dy-doped HAps have smaller crystallite size values compared to the un-doped HAp. The cell viability obtained from mouse fibroblast cell (L929) was higher than 82%, indicating all the samples were biocompatible. The theoretical findings, obtained from the density functional theory (DFT) calculations, exhibited a continuous decrease in the bandgap from 4.7109 to 3.7982 eV, an increase in the density from 3,155 to 3,189 kg m−3, and an increase in the linear absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References 

  1. Ates, T., Keser, S., Bulut, N., Kaygili, O.: The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. J. Phys. Chem. Funct. Mater. 5(2), 22–25 (2022)

    Google Scholar 

  2. Filip, D.G., Surdu, V.-A., Paduraru, A.V., Andronescu, E.: Current Development in Biomaterials—Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J. Funct. Biomater. 13(4), 248 (2022)

    Article  CAS  Google Scholar 

  3. Kaygili, O., Keser, S., Kom, M., Bulut, N., Dorozhkin, S.V.: The effect of simulating body fluid on the structural properties of hydroxyapatite synthesized in the presence of citric acid. Prog. Biomater. 5, 173–182 (2016)

    Article  CAS  Google Scholar 

  4. Prekajski, M., Mirković, M., Todorović, B., Matković, A., Marinović-Cincović, M., Luković, J., Matović, B.: Ouzo effect—New simple nanoemulsion method for synthesis of strontium hydroxyapatite nanospheres. J. Eur. Ceram. Soc. 36(5), 1293–1298 (2016)

    Article  CAS  Google Scholar 

  5. Shalini, B., Ruban Kumar, A.: Preparation and characterisation of gelatin blend pectin encapsulated hydroxyapatite (Ca10(OH)2(PO4)6) nanoparticles using precipitation method. Mater. Today: Proc. 8(1), 245–249 (2019)

    Article  CAS  Google Scholar 

  6. Shkir, M., Kilany, M., Yahia, I.S.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43(17), 14923–14931 (2017)

    Article  CAS  Google Scholar 

  7. Kaygili, O., Keser, S., Bulut, N., Ates, T.: Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B Condens. Matter. 537, 63–67 (2018)

    Article  CAS  Google Scholar 

  8. Osuchukwu, O.A., Salihi, A., Abdullahi, I., Obada, D.O.: Synthesis and characterization of sol–gel derived hydroxyapatite from a novel mix of two natural biowastes and their potentials for biomedical applications. Mater. Today: Proc. 62(6), 4182–4187 (2022)

    Article  CAS  Google Scholar 

  9. Matić, T., Zebić, M.L., Miletić, V., Cvijović-Alagić, I., Petrović, R., Janaćković, D.J., Veljović, D.J.: Sr, Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes. Ceram. Int. 48(5), 11155–11165 (2022)

    Article  Google Scholar 

  10. Krishna, E.S., Suresh, G.: Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Mater. Today: Proc. 56(2), 781–784 (2022)

    Article  CAS  Google Scholar 

  11. Zhong, Z., Qin, J., Ma, J.: Rapid synthesis of citrate-zinc substituted hydroxyapatite using the ultrasonication-microwave method. Ceram. Int. 43(16), 13308–13313 (2017)

    Article  CAS  Google Scholar 

  12. Montoya-Cisneros, K.L., Rendón-Ángeles, J.C., Matamoros-Veloza, Z., Yanagisawa, K.: Rapid synthesis and characterization of Zn substituted hydroxyapatite nanoparticles via a microwave-assisted hydrothermal method. Mater. Lett. 195, 5–9 (2017)

    Article  CAS  Google Scholar 

  13. Ali, J.M., Ali, H.A.J., Mohammed Tariq, N.P.M., Farjana, S., SenthilKannan, K., Rengarajan, R.: Characterizations, physio-chemical and biological evaluation of novel nanostructure hydroxyapatite synthesized by conventional method using egg shell and by green synthesis method using Melia dubia extract. Inorg. Chem. Commun. 140, 109480 (2022)

    Article  Google Scholar 

  14. Akyol, S., Ben Nissan, B., Karacan, I., Yetmez, M., Gokce, H., Suggett, D.J., Oktar, F.N.: Morphology, characterization, and conversion of the corals Goniopora spp. and Porites cylindrica to hydroxyapatite. J. Aust. Ceram. Soc. 55, 893–901 (2019)

    Article  CAS  Google Scholar 

  15. Wu, S.-C., Kao, Y.-L., Lu, Y.-C., Hsu, H.-C., Ho, W.-F.: Preparation and characterization of microrod hydroxyapatite bundles obtained from oyster shells through microwave irradiation. J. Aust. Ceram. Soc. 57, 1541–1551 (2021)

    Article  CAS  Google Scholar 

  16. Makshakova, O.N., Gafurov, M.R., Goldberg, M.A.: The Mutual Incorporation of Mg2+ and CO32− into Hydroxyapatite: A DFT Study. Materials. 15(24), 9046 (2022)

    Article  CAS  Google Scholar 

  17. Goldberg, M.A., Fomin, A.S., Murzakhanov, F.F., Makshakova, O.N., Donskaya, N.O., Antonova, O.S., Gnezdilov, O.I., Mikheev, I.V., Knotko, A.V., Kudryavtsev, E.A., Akhmedova, S.A., Sviridova, I.K., Sergeeva, N.S., Mamin, G.V., Barinov, S.M., Gafurov, M.R., Komlev, V.S.: The improved textural properties, thermal stability, and cytocompatibility of mesoporous hydroxyapatite by Mg2+ doping. Mater. Chem. Phys. 289, 126461 (2022)

    Article  CAS  Google Scholar 

  18. Keser, S., Efe, H.: Investigation of in vitro bioactivities of Zn-based hydroxyapatite samples doped with chitosan. J. Aust. Ceram. Soc. 57, 117–124 (2021)

    Article  CAS  Google Scholar 

  19. Cacciotti, I.: Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J. Mater. Sci. 52, 8812–8831 (2017)

    Article  CAS  Google Scholar 

  20. Goldberg, M.A., Akopyan, A.V., Gafurov, M.R., Makshakova, O.N., Donskaya, N.O., Fomin, A.S., Polikarpova, P.P., Anisimov, A.V., Murzakhanov, F.F., Leonov, A.V., Konovalov, A.A., Kudryavtsev, E.A., Barinov, S.M., Komlev, V.S.: Iron-Doped Mesoporous Powders of Hydroxyapatite as Molybdenum-Impregnated Catalysts for Deep Oxidative Desulfurization of Model Fuel: Synthesis and Experimental and Theoretical Studies. J. Phys. Chem. C. 125(21), 11604–11619 (2021)

    Article  CAS  Google Scholar 

  21. Lukić, M.J., Veselinović, Lj., Stevanović, M., Nunić, J., Dražič, G., Marković, S., Uskoković, D.: Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  Google Scholar 

  22. Kaygili, O., Vural, G., Keser, S., Yahia, I.S., Bulut, N., Ates, T., Koytepe, S., Temuz, M.M., Ercan, F., İnce, T.: Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. J. Aust. Ceram. Soc. 57, 305–317 (2021)

    Article  CAS  Google Scholar 

  23. Agid, R.S., Kaygili, O., Bulut, N., Dorozhkin, S.V., Ates, T., Koytepe, S., Ates, B., Ercan, I., İnce, T., Mahmood, B.K.: Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. J. Aust. Ceram. Soc. 56, 1501–1513 (2020)

    Article  Google Scholar 

  24. Fahami, A., Nasiri-Tabrizi, B., Beall, G.W., Tehrani, P.M., Basirun, W.J.: A top-down approach for the synthesis of nano-sized Ba-doped hydroxyapatite. J. Aust. Ceram. Soc. 53, 491–498 (2017)

    Article  CAS  Google Scholar 

  25. Erdem, U., Turkoz, M.B.: La3+ and F dual-doped multifunctional hydroxyapatite nanoparticles: Synthesis and characterization. Microsc. Res. Tech. 84(12), 3211–3220 (2021)

    Article  CAS  Google Scholar 

  26. Erdem, U., Bozer, B.M., Turkoz, M.B., Metin, A.U., Yıldırım, G., Turk, M., Nezir, S.: Spectral analysis and biological activity assessment of silver doped hydroxyapatite. J. Asian Ceram. Soc. 9(4), 1524–1545 (2021)

    Article  Google Scholar 

  27. Naqshbandi, A., Rahman, A.: Sodium doped hydroxyapatite: Synthesis, characterization and zeta potential studies. Mater. Lett. 312, 131698 (2022)

    Article  CAS  Google Scholar 

  28. Salam, N., Gibson, I.R.: Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro. Biomaterials Advances. 140, 213068 (2022)

    Article  CAS  Google Scholar 

  29. Nardi, M.V., Timpel, M., Biondani, E., Ceccato, R., Chiappini, A., Dirè, S.: Synthesis and characterization of Nd3+-Yb3+ doped hydroxyapatite nanoparticles. Opt. Mater. X 12, 100118 (2021)

    CAS  Google Scholar 

  30. Mondal, S., Nguyen, V.T., Park, S., Choi, J., Tran, L.H., Yi, M., Shin, J.H., Lee, C.-Y., Oh, J.: Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceram. Int. 46(10), 16020–16031 (2020)

    Article  CAS  Google Scholar 

  31. Bulcar, K., Oglakci, M., Yücel, A., Sezer, S., Madkhali, O., Depci, T., Topaksu, M., Can, N.: Thermoluminescence of hydroxyapatite from eggshell powders doped with Dy synthesized by the sonication chemical method: Effects of doping concentration and heating rate. J. Lumin. 255, 119619 (2023)

    Article  CAS  Google Scholar 

  32. Tesch, A., Wenisch, C., Herrmann, K.-H., Reichenbach, J.R., Warncke, P., Fischer, D., Müller, F.A.: Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging. Mater. Sci. Eng. C. 81, 422–431 (2017)

    Article  CAS  Google Scholar 

  33. Sánchez Lafarga, A.K., Pacheco Moisés, F.P., Gurinov, A., Ortiz, G.G., Carbajal Arízaga, G.G.: Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids. Mater. Sci. Eng. C. 48, 541–547 (2015)

    Article  Google Scholar 

  34. Gitty, P., Mani, K.P., Deepti, A., Baby Chakrapani, P.S., Prabeesh, P., Nampoori, V.P.N., Kailasnath, M.: Structural and optical properties of dysprosium-doped hydroxyapatite nanoparticles and the use as a bioimaging probe in human cells. Luminescence. 37(5), 758–765 (2022)

    Article  CAS  Google Scholar 

  35. Van, H.N., Tam, P.D., Pham, V.-H.: Red and Yellow Luminescence of Eu3+/Dy3+ Co-Doped Hydroxyapatite/β-Tricalcium Phosphate Single Phosphors Synthesized Using Coprecipitation Method. J. Appl. Spectrosc. 85, 738–742 (2018)

    Article  CAS  Google Scholar 

  36. Ziaie, F., Moein, N.F., Shafaei, M.: Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy. Kerntechnik 79(6), 500–503 (2014)

    Article  Google Scholar 

  37. Kareem, R.O., Kaygili, O., Ates, T., Bulut, N., Koytepe, S., Kuruçay, A., Ercan, F., Ercan, I.: Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceram. Int. 48(22), 33440–33454 (2022)

    Article  CAS  Google Scholar 

  38. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005)

    Article  CAS  Google Scholar 

  39. Luna-Zaragoza, D., Romero-Guzmán, E.T., Reyes-Gutiérrez, L.: Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite, Ca5(PO4)3OH. J. Miner. Mater. Charact. Eng. 08, 591–609 (2009)

    Google Scholar 

  40. Jiménez-Flores, Y., Suárez-Quezada, M., Rojas-Trigos, J.B., Lartundo-Rojas, L., Suárez, V., Mantilla, A.: Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination. J. Mater. Sci. 52, 9990–10000 (2017)

    Article  Google Scholar 

  41. Tsukada, M., Wakamura, M., Yoshida, N., Watanabe, T.: Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO2. J. Mol. Catal. A Chem. 338(1–2), 18–23 (2011)

    CAS  Google Scholar 

  42. Korkmaz, A.A., Ahmed, L.O., Kareem, R.O., Kebiroglu, H., Ates, T., Bulut, N., Kaygili, O., Ates, B.: Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. J. Aust. Ceram. Soc. 58, 803–815 (2022)

    Article  CAS  Google Scholar 

  43. Acar, S., Kaygili, O., Ates, T., Dorozhkin, S.V., Bulut, N., Ates, B., Koytepe, S., Ercan, F., Kebiroglu, H., Hssain, A.H.: Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Mater. Chem. Phys. 276, 125444 (2022)

    Article  CAS  Google Scholar 

  44. Shkir, M., AlFaify, S., Yahia, I.S., Ganesh, V., Shoukry, H.: Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications. Physica B Condens. Matter. 508, 41–46 (2017)

    Article  CAS  Google Scholar 

  45. Alsmadi, Z.Y., Bourham, M.: Shielding Properties of Alloy 709 Advanced Austenitic Stainless Steel as Candidate Canister Material in Spent Fuel Dry Casks. Int. J. Phys. Res. 10(2), 11–26 (2020)

    Article  Google Scholar 

  46. Gómez-Ros, J.M., Bedogni, R., Palermo, I., Esposito, A., Delgado, A., Angelone, M., Pillon, M.: Design and validation of a photon insensitive multidetector neutron spectrometer based on Dysprosium activation foils. Radiat. Meas. 46(12), 1712–1715 (2011)

    Article  Google Scholar 

  47. Cawthray, J.F., Creagh, A.L., Haynes, C.A., Orvig, C.: Ion Exchange in Hydroxyapatite with Lanthanides. Inorg. Chem. 54(4), 1440–1445 (2015)

    Article  CAS  Google Scholar 

  48. Yu, J., Wang, Y., Dai, Z., Yang, F., Fallahpour, A., Nasiri-Tabrizi, B.: Structural features modeling of substituted hydroxyapatite nanopowders as bone fillers via machine learning. Ceram. Int. 47(7), 9034–9047 (2021)

    Article  CAS  Google Scholar 

  49. Scheverin, V.N., Horst, M.F., Lassalle, V.L.: Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption. Results Eng. 16, 100648 (2022)

    Article  CAS  Google Scholar 

  50. Venkateswarlu, K., Bose, A.C., Rameshbabu, N.: X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys. B 405(20), 4256–4261 (2010)

    Article  CAS  Google Scholar 

  51. Zak, A.K., Majid, W.A., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nano-particles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  Google Scholar 

  52. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20(14–15), 2377–2387 (2000)

    Article  CAS  Google Scholar 

  53. El-Naggar, M.E., Abu Ali, O.A., Saleh, D.I., Abu-Saied, M.A., Ahmed, M.K., Abdel-Fattah, E., Mansour, S.F.: Microstructure, morphology and physicochemical properties of nanocomposites containing hydroxyapatite/vivianite/graphene oxide for biomedical applications. Luminescence 37(2), 290–301 (2022)

    Article  CAS  Google Scholar 

  54. Huang, S., Chen, C., Zhao, Z., Jia, L., Zhang, Y.: In situ synthesis of magnesium-doped hydroxyapatite aerogel for highly efficient U(VI) separation with ultra high adsorption capacity and excellent recyclability. Chemosphere 312(1), 137226 (2023)

    Article  CAS  Google Scholar 

  55. ; Kaygili, O.: Synthesis and characterization of Fe-containing biphasic calcium phosphate ceramics. J. Aust. Ceram. Soc. 55, 381–385 (2019)

    Article  Google Scholar 

  56. Jiang, X., Liu, X., Cai, J., Wei, S., Wang, Y., Duan, Z., Zhou, Z., Sun, R., Qu, X., Tang, Y.: Fabrication and properties of multi-functional polydopamine coated Cu/F-codoped hydroxyapatite hollow microspheres as drug carriers. Colloids Surf. B: Biointerfaces. 222, 113097 (2023)

    Article  CAS  Google Scholar 

  57. Erdem, U., Dogan, D., Bozer, B.M., Turkoz, M.B., Yıldırım, G., Metin, A.U.: Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation. J. Mech. Behav. Biomed. Mater. 136, 105517 (2022)

    Article  CAS  Google Scholar 

  58. Pecheva, E.V., Pramatarova, L.D., Maitz, M.F., Pham, M.T., Kondyuirin, A.V.: Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions. Appl. Surf. Sci. 235(1–2), 176–181 (2004)

    Article  CAS  Google Scholar 

  59. Ciobanu, C.S., Predoi, D., Chapon, P., Predoi, M.V., Iconaru, S.L.: Fabrication and Physico-Chemical Properties of Antifungal Samarium Doped Hydroxyapatite Thin Films. Coatings 11(12), 1466 (2021)

    Article  CAS  Google Scholar 

  60. Miculescu, F., Luță, C., Constantinescu, A.E., Maidaniuc, A., Mocanu, A.-C., Miculescu, M., Voicu, ȘI., Ciocan, L.T.: Considerations and Influencing Parameters in EDS Microanalysis of Biogenic Hydroxyapatite. J. Funct. Biomater. 11(4), 82 (2020)

    Article  CAS  Google Scholar 

  61. Lett, J.A., Sundareswari, M., Ravichandran, K., Latha, M.B., Sagadevan, S., Johan, Bin, Mohd, R.: Tailoring the morphological features of sol–gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Adv. 9(11), 6228–6240 (2019)

    Article  CAS  Google Scholar 

  62. Tõnsuaadu, K., Gross, K.A., Plūduma, L., Veiderma, M.: A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 110, 647–659 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of Scientific Research Projects of Firat University (FUBAP) (Project Numbers: FF.22.28 and FF.22.05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Kaygili.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İsen, F., Kaygili, O., Bulut, N. et al. Experimental and theoretical characterization of Dy-doped hydroxyapatites. J Aust Ceram Soc 59, 849–864 (2023). https://doi.org/10.1007/s41779-023-00878-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00878-8

Keywords

Navigation