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Abstract
Cryptographic protocols are widely used to protect real-world systems from
attacks. Paying for goods in a shop, withdrawing money or browsing the
Web; all these activities are backed by cryptographic protocols. However,
in recent years a potent threat became apparent. Malware is increasingly
used in attacks to bypass existing security mechanisms. Many cryptographic
protocols that are used in real-world systems today have been found to be
susceptible to malware attacks [56, 93, 129, 130]. One reason for this is that
most of these protocols were designed with respect to the Dolev-Yao attack
model that assumes an attacker to control the network between computer
systems but not the systems themselves. Furthermore, most real-world
protocols do not provide a formal proof of security and thus lack a precise
definition of the security goals the designers tried to achieve. This work
tackles the design of cryptographic protocols that are resilient to malware
attacks, applicable to real-world systems, and provably secure.

In this regard, we investigate three real-world use cases: electronic
payment, web authentication, and data aggregation. We analyze the security
of existing protocols and confirm results from prior work that most protocols
are not resilient to malware. Furthermore, we provide guidelines for the
design of malware-resistant protocols and propose such protocols. In addition,
we formalize security notions for malware-resistance and use a formal proof
of security to verify the security guarantees of our protocols.

In this work we show that designing malware-resistant protocols for real-
world systems is possible. We present a new security notion for electronic
payment and web authentication, called one-out-of-two security, that does
not require a single device to be trusted and ensures that a protocol stays
secure as long as one of two devices is not compromised. Furthermore,
we propose L-Pay, a cryptographic protocol for paying at the point of
sale (POS) or withdrawing money at an automated teller machine (ATM)
satisfying one-out-of-two security, FIDO2 With Two Displays (FIDO2D) a
cryptographic protocol to secure transactions in the Web with one-out-of-two
security and Secure Aggregation Grouped by Multiple Attributes (SAGMA),
a cryptographic protocol for secure data aggregation in encrypted databases.

In this work, we take important steps towards the use of malware-resistant
protocols in real-world systems. Our guidelines and protocols can serve as
templates to design new cryptographic protocols and improve security in
further use cases.
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Zusammenfassung
Kryptografische Protokolle sind weit verbreitet und werden oft dafür einge-
setzt Systeme in der echten Welt vor Angriffen zu schützen. Beim Bezahlen
von Waren in einem Geschäft, dem Geldabheben am Automaten und Surfen
im Internet laufen im Hintergrund kryptografische Protokolle ab. Jedoch
zeichnet sich in den letzten Jahren eine mächtige Bedrohung ab. Bei im-
mer mehr Angriffen kommt Malware zum Einsatz und wird genutzt, um
bestehende Sicherheitsmechanismen zu umgehen.

Viele heutzutage in der realen Welt eingesetzte kryptografische Protokolle
stellten sich in der Vergangenheit als anfällig für Malware-Angriffe heraus [56,
93, 129, 130]. Ein Grund dafür ist, dass viele dieser Protokolle auf Basis des
Dolev-Yao Angreifermodells entworfen wurden, das davon ausgeht, dass der
Angreifer das Netzwerk zwischen mehreren Computern kontrolliert, jedoch
nicht die Systeme selbst. Des Weiteren besitzen die meisten kryptografischen
Protokolle, die in der Realität eingesetzt werden, keinen formalen Sicherheits-
beweis und somit auch keine präzise Definition der Sicherheitsziele, auf die
die Entwickler des Protokolls abzielten. Diese Arbeit behandelt den Entwurf
kryptografischer Protokolle, die Schutz vor Malware bieten, in der Realität
anwendbar und beweisbar sicher sind.

Hierfür untersuchen wir drei realitätsnahe Anwendungsfälle: elektronische
Bezahlverfahren, die Authentifizierung im Web und die Aggregation von
Daten. Wir analysieren die Sicherheit existierender Protokolle und bestätigen
die Ergebnisse früherer Arbeiten, dass die meisten Protokolle anfällig für
Malware-Angriffe sind. Des Weiteren stellen wir Richtlinien für den Entwurf
kryptografischer Protokolle vor, die Schutz vor Malware-Angriffen bieten
und schlagen auf dieser Basis neue Protokolle mit dieser Eigenschaft vor.
Zusätzlich formalisieren wir Sicherheitsbegriffe für den Schutz gegen Malware
und verwenden formale Sicherheitsbeweise, um diese Sicherheitsgarantien
nachzuweisen.

In dieser Arbeit zeigen wir, dass es möglich ist kryptografische Protokolle
zu entwerfen, die einen Schutz vor Malware bieten und in der echten Welt
anwendbar sind. Wir führen einen neuen Sicherheitsbegriff für elektronische
Bezahlverfahren und zur Authentifizierung im Web ein, den wir one-out-
of-two security nennen. Dieser Sicherheitsbegriff erfordert nicht, dass ein
einzelnes System als vertrauenswürdig angenommen wird und stellt sicher,
dass ein Protokoll Schutz bietet, sofern eines von zwei Geräten nicht kom-
promittiert ist. Des Weiteren führen wir L-Pay ein, ein kryptografisches
Protokoll zum Bezahlen in Geschäften oder Geldabheben am Geldautomaten,
das one-out-of-two security erfüllt, FIDO2D ein kryptografisches Protokoll
zur Absicherung von Transaktionen im Web mit one-out-of-two security
und SAGMA, ein kryptografisches Protokoll für die sichere Aggregation von
Daten in verschlüsselten Datenbanken.
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In dieser Arbeit unternehmen wir wichtige Schritte in Richtung des
Einsatzes kryptografischer Protokolle, die Schutz vor Malware bieten, in der
echten Welt. Unsere Richtlinien und Protokolle dienen als Vorlagen, um
neue kryptografische Protokolle zu entwerfen und die Sicherheit in weiteren
Anwendungsfällen zu erhöhen.
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Chapter 1

Introduction

The proliferation of the Internet provided unimaginable opportunities for
society, people, and companies alike. Shopping online, connecting with people
in a distant country or paying for goods on the other side of the globe has
never been easier before. The interconnectedness of modern life also brings
new challenges. Many IT systems are now accessible via the Internet and
offer a huge potential for abuse.

Cryptography provides mechanisms to protect systems and data from
unauthorized access. This includes encryption schemes to protect the confi-
dentiality of data, digital signatures for authentication and many more. In
a cryptographic protocol, multiple cryptographic primitives are combined
to accomplish a specific goal. In the early days of cryptography, the design
of cryptographic primitives and protocols was considered an art [111]. It
was merely based on the experience of cryptographers as there was no es-
tablished definition of what it means for a protocol to be secure. The field
of cryptography evolved, and modern cryptographic protocols are designed
based on a precise security definition that states requirements for a protocol
to be secure and a formal proof of security that verifies that the protocol
fulfills the security definition. This approach revolutionized the design of
cryptographic protocols.

Nonetheless, provably secure schemes can be susceptible to attack when
deployed in the real world. A proof of security is always limited to the
aspects captured by the security notion and formal model. If the security
notion does not depict the real-world accurately, then a provably secure
protocol might be vulnerable to attack in practice. For example, the 4-way
handshake used in the wireless network protocol WPA2 has been found to
be susceptible to a devastating attack even though it was proven secure [156].
This was possible because the attack did not violate the security notion. The
key installation, the critical protocol step for the attack, was not part of
the formal model used for the security proof. Apart from weaknesses in the
protocol itself, implementation errors can cause serious vulnerabilities too.

1
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Protocols are usually modeled on an abstract level omitting implementation
details. Thus, bugs in the implementation of a protocol are usually not
captured by a security proof. Approaches that verify the correctness of the
implementation of a cryptographic protocol exist [18, 117, 17]. However,
they assume the correctness of the underlying hardware and thus verification
of the full hardware and software stack is not accomplished. Furthermore,
these approaches are very costly and are therefore not widely used [96]. Thus,
the correctness of an implementation of a cryptographic protocol is usually
considered a separate challenge that is tackled using automated and manual
code review. Despite these shortcomings, formally proving a protocol secure
provides a huge advantage. To analyze the security of a protocol in practice,
one can compare the security definition to the situation in the real world and
identify deviations [111]. These deviations might constitute possible ways to
attack the protocol. A particularly important piece of the security definition,
that we focus on in this work, is the attack model.

An attack model describes which capabilities an adversary is thought to
have. In the 1980s, the Dolev-Yao attack model [54] was introduced and
gained lots of popularity thereafter. This attack model assumes that the
attacker has complete control of the network between computer systems
and as such can read and manipulate all exchanged messages. However, the
attacker cannot break cryptographic mechanisms without knowing the key.

An important threat which is not considered by the Dolev-Yao attack
model is malware. When a device is infected by malware, it can be controlled
by the adversary remotely. An adversary can either program the desired
behavior into the malware and have it execute without manual intervention
or control the malware manually by sending predefined commands. In the
following, we use the terms compromising a device and infection by malware
synonymously. There are several possibilities how a device can be infected
by malware, e.g., drive-by downloads, malicious email attachments, and
vulnerabilities in public-facing systems - just to name a few. In this work,
we are not concerned with how an adversary gains access to a system and
installs malware. Instead, we assume that infections happen regularly which is
supported by related work. According to the 2022 Data Breach Investigations
Report, every third data breach involved the use of malware [157]. In a
surge of online banking malware in 2012, the European Union Agency for
Cybersecurity (ENISA) even recommended to assume every customer device
to be infected [64]. In our own research, we analyzed the security of multiple
embedded devices and found numerous vulnerabilities. For example, we
reviewed ten Battery Energy Storage Systems (BESS) and identified multiple
vulnerabilities that ultimately allowed us to compromise three of the systems
remotely over the network [16].

Modern operating systems provide protection mechanisms that isolate
applications running in different user contexts that have individual privileges
assigned to them. For example, only applications with administrative privi-



3 1.1. Research Question and Methodology

leges are allowed to change certain system settings or access restricted files.
Thus, depending on the context the malware is running in, these mechanisms
may limit the access the malware has on the system. However, malware
usually runs in the context of the currently logged in user which provides
various possibilities for malicious behavior. For example, in the Windows
operating system it is possible to inject code into other applications that run
in the same context such as browsers or password managers to manipulate
their behavior or dump sensitive information1. Furthermore, malware has
been found in the wild that contained privilege escalation exploits [68]. By
using these exploits, an attacker gains higher privileges on the system. In this
work, we do not differentiate between different user contexts on a system and
assume malware to run with the highest privileges available. The advantage
of this approach is that security guarantees are not invalidated by privilege
escalation attacks.

Many cryptographic protocols, such as those based on the Dolev-Yao
attack model, do not expect the adversary to install malware. This is
particularly problematic, as malware with high privileges grants the adversary
access to stored cryptographic keys and the ability to manipulate other
programs running on the system. Thus, by gaining access to a computer,
many security mechanisms can be rendered ineffective because they were
never designed to protect against a local attacker on the system. For example,
encrypting data in transit prevents an attacker controlling the network from
learning the underlying plaintext, however, an attacker with access to the
local system can just read the data before it is encrypted in the first place.

At a first glance, mechanisms used in online banking and electronic
payment such as smart cards and two-factor authentication should protect
against compromised systems. However, on closer inspection, many deficits
come to light. For example, compromising an ATM is enough to issue
fraudulent transactions and break the security of EMV, the world-wide
standard for electronic payment. Even though EMV uses a smart card and
an additional Personal Identification Number (PIN) to implement two-factor
authentication, the protocol is susceptible to malware. The goal of this thesis
is to improve the status quo and provide guidance for designers to create
cryptographic protocols with resilience to malware attacks.

1.1 Research Question and Methodology

The main research question of this thesis is as follows:

How can cryptographic protocols be designed for real-world systems
to provide resilience to attacks with malware?

1https://attack.mitre.org/techniques/T1055/

https://attack.mitre.org/techniques/T1055/
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To answer our research question, we investigate three real-world use cases:
electronic payment systems, web authentication, and data aggregation. We
choose these use cases based on their high potential for damage and as such
high risk of malware attacks. In the following, we describe our methodology
to analyze the use cases. For each use case we take the following steps:

(i) Security analysis of existing protocols

(ii) Requirements for malware resistance

(iii) Cryptographic protocol design

(iv) Formalization

(v) Proof of security

First, we assess the susceptibility of existing real-world protocols to
malware attacks. Consequently, we identify requirements for a secure protocol
that remedies the weaknesses identified in existing protocols. In particular,
this includes determining the targeted security goals and attack model which
make up the security notion. We then design a new protocol for the use case
by relying on cryptographic and non-cryptographic mechanisms to achieve
resilience to malware. Finally, we formalize the protocol and our security
notion for malware-resistance and formally prove our protocol secure.

1.2 Contribution of this Work
This thesis takes important steps towards the use of malware-resistant proto-
cols in real-world systems. We provide cryptographic protocols with malware
resistance for multiple use cases, as well as security notions and formal
models to verify their security. The contribution of each individual use case
is described below.

1.2.1 Electronic Payment

EMV is the world-wide standard for electronic payment, which is used for
withdrawing money at ATMs, as well as paying at the POS. A number of
attacks demonstrated that compromising an ATM or POS device is sufficient
to break the security guarantees of EMV [20, 57].

We state general requirements for secure electronic payment. The main
challenge is to establish authenticated communication between a human
user and the bank with possibly infected devices. As a remedy, we propose
one-out-of-two security. This security notion states that a protocol must
stay secure if at least one of two devices is not compromised. For example,
a user’s smartphone can be used as an additional device in the payment
process.
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We analyze current payment protocols and observe that they do not
satisfy our requirements for secure electronic payment. In particular, they
do not satisfy one-out-of-two security. Inspired by this analysis, we propose
L-Pay, a secure protocol for electronic payment inspired by online banking
protocols such as the chip authentication program (CAP) protocol and
photoTAN. In L-Pay we require verification of a transaction on a user’s
smartphone and thereby protect against infected ATM and POS devices.
However, our protocol also protects against an infected smartphone, as long
as the ATM is not compromised.

We formalize L-Pay and our security notion one-out-of-two security using
Tamarin Prover (Tamarin) [125], a formal verification tool for cryptographic
protocols. Finally, we prove that L-Pay fulfills one-out-of-two security.

1.2.2 Web Authentication

The World Wide Web offers a plethora of services used by billions of people
all around the world. Because the Web is used for many sensitive tasks such
as online banking, shopping, and system administration, it is a lucrative
target for attacks. We analyze the security of web authentication schemes in
the presence of malware and real-time phishing attacks. We find that even
strong authentication schemes for online banking that rely on transaction
authentication as required by the revised Payment Services Directive (PSD2)
do not protect against these attacks.

As a remedy, we propose that web authentication schemes handling
security-critical transactions should fulfill one-out-of-two security, a security
notion that neither requires a primary device nor an additional device trusted.
We show how this security notion that we introduced for electronic payment
can be adapted to web authentication. Furthermore, we provide a blueprint
to design web authentication schemes that fulfill this notion and thus protect
security-critical transactions even if one device is fully compromised.

Based on our blueprint, we design and implement FIDO2D, a web au-
thentication scheme based on the FIDO2 standard. We identify shortcomings
of FIDO2 for implementing malware-resistant web authentication and show
how they can be treated. We examine multiple use cases on the Web that
benefit from FIDO2D. Finally, we provide a formal model for FIDO2D and
prove that it fulfills one-out-of-two security using Tamarin.

1.2.3 Data Aggregation

Data breaches have illustrated the danger of storing huge amounts of sensitive
information in a central database. Cryptographic encryption schemes such
as AES can be used to protect the confidentiality of stored data. However,
this prevents query processing which is essential for several use cases such as
data analytics.
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We introduce SAGMA, a cryptographic protocol for secure aggregation
that protects against compromised database servers. SAGMA fixes short-
comings of earlier approaches that rely on deterministic encryption to group
data and are thus susceptible to leakage-abuse attacks. By splitting attribute
values into buckets and hiding the frequencies of individual values in a bucket,
SAGMA offers a high level of security. SAGMA supports aggregation queries
with multiple grouping attributes. Furthermore, as aggregation is executed
row-wise, it can be combined with additional filtering clauses as supported by
searchable symmetric encryption (SSE). Hence, SAGMA can be integrated
into encrypted database systems to support a wide variety of queries.

SAGMA provides semantic security and query execution only leaks the
bucket membership of processed rows. We give guidelines on how the leakage
can be further reduced using preprocessing of plaintext data. For performance
reasons, the maximum number of grouping attributes in a single aggregation
query has to be limited. We analyze aggregation queries used in real-world
database applications such as Nextcloud, WordPress, and Piwik. Our analysis
shows that this limitation does not restrict the applicability of our scheme
to practical systems.

1.2.4 Overall Contribution

In a nutshell, this work paves the way for the adoption of malware-resistant
protocols in real-world systems. We show that designing secure protocols that
protect against malware is feasible. Even though there is no one-size-fits-all
approach to secure protocol design, we provide guidelines that can be reused
when designing protocols for other use cases. Our security notions show how
malware-resistance can be formally defined. Together with our formal models
we lay the foundations for future protocol design with malware-resistance.

1.3 Structure of this Work
The remainder of this thesis is structured as follows. In Chapter 2 we
introduce preliminaries that serve as a foundation for the rest of the work.
Chapter 3 covers our first use case based on electronic payment. In Chapter 4
we analyze our second use case that addresses web authentication. Our
third use case on data aggregation is examined in Chapter 5. We summarize
related work regarding malware-resistant protocols in Chapter 6. Finally, we
conclude our work and provide perspectives for future work in Chapter 7.



Chapter 2

Preliminaries

In this chapter we introduce preliminary information that the following
chapters are built upon. The informed reader may thus skip this chapter.
We introduce basic protection goals, malware, cryptographic primitives and
protocols, methods to formally prove the security of a cryptographic protocol,
as well as secure data aggregation.

2.1 Protection Goals

In information security, protection goals describe security requirements of a
system to limit access to data that is worth protecting [59]. The most common
protection goals are confidentiality, integrity, availability, and authenticity.
These protection goals are relevant for almost every system. We describe
these main protection goals briefly below. The confidentiality of data is
ensured if data is only accessible to authorized parties. To determine if
a party is authorized to access data, one has to verify the identity of the
party in the first place. This is covered by the protection goal authenticity.
Authenticity is satisfied if it can be verified that the claimed identity of a
party matches its real identity. The process of verifying the identity of a
party is known as authentication. The integrity of data is ensured if data
cannot be modified by unauthorized parties without being detected. Finally,
the availability of data requires that an authorized user cannot be hindered
to access data by an unauthorized party. For example, in a denial of service
(DoS) attack, an attacker floods a system with a huge amount of traffic to
affect the availability of the system.

Protection goals can be fulfilled by different means such as cryptographic
primitives, access control mechanisms of operating systems, network firewalls
and more. For example, the authenticity of data can be protected by using
encryption. We introduce cryptographic primitives, such as encryption
schemes, in Section 2.3. Our presented list of protection goals is far from
complete. Various other protection goals have been proposed such as non-

7
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repudiation and privacy. Non-repudiation means that a party cannot dispute
that it has taken an action. This is for example important in digital contracts.
Privacy ensures that an unauthorized party is not able to gather behavioral
profiles of a system’s user.

Protection goals are a fundamental tool for defining the security require-
ments of a system. In Section 2.5 we show how formal methods can be used
to verify that a system fulfills certain protection goals.

2.2 Malware

Malware is an abbreviation for malicious software. It is a catchall term for
programs that intentionally affect the confidentiality, integrity, or availability
of a system [108]. Various types of malware exist, e.g., viruses, worms,
trojan horses, ransomware, spyware, and wipers. These types define cer-
tain characteristics of the malware such as the propagation method or the
impact. For example, worms are defined by its ability to spread to other
devices in the network without assistance of the user. On the other hand,
ransomware is defined by its impact on a system, namely encrypting data
to extort money from the user. Not all types of malware are capable of
spreading autonomously. Most of them require a mechanism to infect a sys-
tem. The following infection vectors are frequently used to spread malware,
e.g., malicious email attachments, drive-by downloads, social engineering
attacks that trick the user into installing malware, infected removable media,
and vulnerabilities in public-facing systems such as remote administration
interfaces [153, 157].

Malware is a fundamental item in an attacker’s toolbox. Once malware
is running on a system, an attacker can achieve various goals. Malware can
access sensitive data, log keystrokes to steal passwords, dump credentials
stored on disk or in running processes, manipulate running processes or
encrypt data for extortion [95, 24, 155, 157].

Modern operating systems isolate applications running with low priv-
ileges from applications running with higher privileges. For example, in
the Windows operating system, each process has an associated integrity
level [127]. Processes with low or medium integrity level are isolated from
high-integrity processes and are not allowed to perform administrative tasks
such as installing software on the system. Even for an administrative user,
applications run with low or medium integrity by default. However, an
administrative user can request to start an application with high integrity
level by approving a User Account Control (UAC) prompt. Other operating
systems provide similar mechanisms.

Commonly, malware runs in the context of the currently logged on user
and as such does not have administrative privileges. However, this restricts
the possibilities of an attacker running malware only slightly. First, there are
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many opportunities for malware that do not require administrative privileges.
For example, many sensitive applications such as a password managers or
browsers run with the same privileges and can thus be accessed by malware.
Banking malware has made use of this extensively to steal money from
victims’ bank accounts [24]. And second, there are many possibilities to
escalate privileges and gain administrative privileges irregularly. As an
example, vulnerabilities in the operating system can be exploited to gain
higher privileges. Malware samples have been found in the wild that included
privilege escalation exploits [68]. As such malware is a very potent threat to
bypass security mechanisms and violate protection goals of a system.

2.3 Cryptographic Primitives

Cryptographic primitives are algorithms that serve as building blocks for
more complex cryptographic protocols [9]. These primitives can be used
to achieve certain protection goals such as authenticity, confidentiality, and
integrity.

Encryption is probably the most widely known cryptographic primitive
that is used to protect the confidentiality of data. In cryptography, a distinc-
tion is made between private-key (symmetric) and public-key (asymmetric)
encryption. In private-key encryption, the same key is used for encryption
and decryption. In contrast, in public-key encryption a key pair is generated
that consists of separate public and private keys. The public key is used to
encrypt data, while the private key can be used to decrypt a ciphertext. To
give an example, RSA [145] is a famous public-key encryption scheme and
AES [152] is a private-key encryption scheme that is widely used.

Public-key encryption can be applied in scenarios where the encrypting
party should not have access to the private key. This is not possible with
private-key encryption. However, private-key encryption usually exhibits
superior performance and thus private-key and public-key encryption are
often combined in a hybrid encryption scheme. Besides encryption many
other cryptographic primitives exist. In the following, we introduce advanced
cryptographic primitives that we use as part of our protocols in the following
chapters.

2.3.1 Digital Signatures

Digital signature schemes are a cryptographic primitive that can be used to
achieve authenticity. This primitive allows to sign a message with a private
key that results in a signature. The message and the signature can be sent
to another party that can verify that the message was really signed by the
initiator. For this, the public key of the initiator has to be exchanged in
advance.
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A digital signature scheme consists of three algorithms as shown in
Definition 1 [111]. Gen() is used to generate a key pair. Using Sign() one
can generate a digital signature. Finally, Verify() allows to verify the validity
of a signature. The following equation shows how these algorithms are
intertwined. The signature of a message m created with the private key sk
of a key pair should be successfully verified using the public key pk of the
same key pair.

Verify(pk, m, Sign(sk, m)) = 1

Definition 1. A digital signature scheme consists of the following three
algorithms:

(pk, sk)← Gen(1λ): Generates a public/private key pair.

σ ← Sign(sk, m): Creates a digital signature for message m using the private
key sk.

b← Verify(pk, m, σ): Verifies a signature σ for a message m using the public
key pk. Outputs b = 1 if the signature is valid and b = 0 otherwise.

2.3.2 Homomorphic Encryption

Homomorphic encryption is a special type of encryption that enables a
third party to perform calculations on encrypted data without having access
to the private key. A famous example of homomorphic encryption is the
textbook RSA scheme. Multiplying two ciphertexts of this scheme results
in a ciphertext that contains the product of the plaintext values. This is
illustrated by the following formula where me mod N describes the regular
RSA encryption of a message m.

(m1)e mod N · (m2)e mod N ≡ (m1m2)e mod N

Similarly, the Paillier encryption scheme allows one to combine two cipher-
texts such that the resulting ciphertext contains the sum of the plaintext
values [134]. More formally, given two ciphertexts JxK⊕ and JyK⊕ one can
compute the encrypted sum of the underlying plaintexts using the operation
⊕ on ciphertexts: JxK⊕ ⊕ JyK⊕ = Jx + yK⊕. Such a scheme is said to be
additively homomorphic. In homomorphic encryption, the encryption and
decryption routines constitute homomorphisms between the plaintext and
the ciphertext space, hence the name.

While many homomorphic encryption schemes only support one type of
arithmetic operation, fully homomorphic encryption can be used to execute
arbitrary computations on encrypted data. In his seminal work, Gentry
introduced the first fully homomorphic encryption scheme [78]. However,
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performance issues limit the applicability of fully homomorphic encryption
in real-world systems to date.

Somewhat homomorphic encryption schemes bridge this gap by sup-
porting more than one type of arithmetic operation on ciphertexts with
some limitations but improved performance. For example, the BGN scheme
supports addition and a single multiplication of ciphertexts [21].

2.3.3 Searchable Symmetric Encryption

With searchable symmetric encryption (SSE) it is possible to search for
keywords in encrypted data [47]. For that purpose, an encrypted index is
created. Without the used private key, no information can be extracted from
the encrypted index (except for its size). The underlying data is structured
as a document collection. A document collection is a collection of documents
identified by unique document identifiers. Each document can consist of
multiple keywords. To execute a search using the index, a search token is
required. A search token for a specific keyword can be created using the
private key. With the encrypted index and a search token, all documents
can be searched for the keyword. However, a search operation only returns
identifiers of matching documents and not any contents. The documents
themselves can be encrypted with a regular encryption scheme and decrypted
when necessary. We provide a formal description of an SSE scheme in
Definition 2 (see [90]).

Definition 2. A searchable symmetric encryption scheme consists of the
following four algorithms:

KSSE ← GenSSE(1λ): Generates a private key.

I ← EncSSE(KSSE , D): Creates an encrypted index from a document collec-
tion D using the private key.

tw ← TokenSSE(KSSE , w): Creates a token tw for a keyword w using the
private key.

D(w)← SearchSSE(I, tw): Uses token tw and an encrypted index I to search
for documents containing the keyword w. Returns the document identi-
fiers of all matching documents.

Even though the search index is encrypted, searching in documents
with search tokens leaks some information. In particular, the identifiers of
documents that are returned from a search, also called access pattern, are
accessible to an adversary. Furthermore, the search pattern reveals if two
tokens search for the same keyword or not.
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2.4 Cryptographic Protocols

A cryptographic protocol defines a series of steps and messages that are
exchanged between participating parties to accomplish a specific functionality.
In addition, cryptographic protocols aim to achieve certain protection goals.
To fulfill these protection goals, cryptographic primitives are applied [19].

As an example, Transport Layer Security (TLS) [143] is a very common
cryptographic protocol that establishes a secure channel between two parties
and relies on various cryptographic primitives such as private-key encryption,
public-key encryption, digital signatures and others. Below, we introduce
the FIDO2 authentication protocol that we use as a foundation for our own
protocol FIDO2D in Chapter 4.

FIDO2 FIDO2 is a set of standards published by the Fast IDentity Online
(FIDO) Alliance and the World Wide Web Consortium (W3C) [4]. It defines
a challenge-response authentication protocol using public-key cryptography.
As such FIDO2 can be used to establish the authenticity of a user. FIDO2
is mainly used on the Web via the HTTP protocol, however, some other
protocols also support FIDO2 authentication, for example SSH. FIDO2
can either be used as a second factor for password-based authentication, or
without a password in passwordless mode.

FIDO2 defines two ceremonies, one for registration and one for authenti-
cation. A client initiates a registration or authentication ceremony with a
service (also called relying party). Cryptographic operations are executed
by an authenticator that can either be an external device or integrated
into the platform that runs the FIDO client. FIDO2 uses digital signatures
and a challenge-response technique for authentication. During registration
the client transmits the public key of a fresh key pair to the relying party.
The key pair is generated by the authenticator and bound to the specific
relying party. Thereby, phishing attacks are prevented as a cryptographic
key can only be used for a specific relying party identified by its domain.
For authentication, the authenticator has to sign a challenge supplied by
the relying party and forwarded by the client. The generated signature is
forwarded by the client to the relying party. Authentication succeeds if the
relying party verifies the digital signature successfully.

Figure 2.1 shows a simplified flow of the FIDO2 registration and authen-
tication ceremonies. During registration, the client forwards a challenge
provided by the relying party, coupled with the identifier of the relying party
(rpId). The authenticator generates a key pair and responds with the public
portion of the key pair, which is again forwarded by the client to the relying
party. In consequence, the relying party stores the public key and associates
it with the user’s account. The authentication ceremony works very similar.
Again, the relying party sends a challenge to the client, which is forwarded to
the authenticator. During authentication, the authenticator responds with
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Authenticator Client Relying Party

(challenge)Registration:
(rpId, challenge)

(pk)

(pk)

(challenge)Authentication:
(rpId, challenge)

(signature)

(signature)

Figure 2.1: Simplified protocol flow of FIDO2 registration and authentication.

a signature instead of a public key. The signed data includes the rpId and
the challenge provided by the relying party. The relying party then retrieves
the stored public key of the account and verifies the digital signature. If the
signature is valid, the authentication ceremony succeeds.

FIDO2 consists of two standards; WebAuthn is a JavaScript API sup-
ported by current browsers and Client to Authenticator Protocol (CTAP)
defines the communication between the FIDO client and an external authen-
ticator [164, 69]. The standards do not require a specific server-side API and
thus exact details of the communication between the client and the relying
party are up to the implementer. However, the communication between the
client and the relying party must be protected using TLS.

FIDO ceremonies require a test of user presence, i.e., the authenticator
must verify that the user is present before fulfilling a request. For this,
authenticators usually provide a hardware button that has to be touched by
the user. Furthermore, some authenticators support to authenticate a user
based on a PIN or biometric features such as a fingerprint scan. This feature
is called user verification and has to be requested by the relying party for a
ceremony explicitly.

2.5 Provable Security

Using formal methods to prove the security of cryptographic primitives and
protocols is the central concept of modern cryptography [111]. In contrast
to former practices, the designer defines when a scheme is considered secure
using a security definition. This includes the assumed threat model, i.e.,
the capabilities of the adversary, as well as the targeted security guarantees.
Then, a rigorous proof of security is conducted to verify that a cryptographic
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primitive or protocol fulfills the definition and can thus be considered secure.
A major advantage of this approach is that the targeted security guarantees
are precisely defined, and additional assumptions are explicitly documented.

Various techniques for modeling and verifying the security of crypto-
graphic protocols exist. They all have their own strength and weaknesses.
Originally, the security of cryptographic schemes has been verified using pen
and paper. For example, game-based proofs have been used extensively to
verify the security of cryptographic primitives. For complex cryptographic
protocols, simulation-based proofs are more convenient. Nowadays, the use
of computer-assisted proof systems such as Tamarin is on the rise. These
proof systems support the user by automating the proof generation. Thus,
the user only has to define the security definition and formalize the protocol.

In the following, we introduce three relevant techniques for the formal
verification of cryptographic protocols: simulation-based security, Universal
Composability (UC), and Tamarin a tool for the computer-assisted verifica-
tion.

2.5.1 Simulation-based Security

Determining an appropriate security definition for a cryptographic protocol
is a difficult task. This is for example highlighted by the sheer amount of
security definitions that exist for secure encryption such as semantic security,
indistinguishability under chosen plaintext attack, and indistinguishability
under chosen ciphertext attack. One solution to this problem is simulation-
based security, also known as the real-ideal paradigm. In this approach,
security is defined using a comparison between a real-world and an ideal-
world experiment [119]. In the real experiment, the protocol is executed in
the presence of an adversary A. In contrast, in the ideal experiment, the
protocol execution is simulated by a simulator S and is secure by definition.
For example, in an ideal world for secure encryption, the simulator is not
given a ciphertext, but only the length of the plaintext data. However, if
the simulator is able to simulate the output of the adversary in the real
experiment, then the adversary was not able to learn anything beyond the
length of the plaintext.

More formally, the security of a protocol can be defined as shown in
Definition 3 where PPT stands for probabilistic polynomial time (see [47] for
more details). This security definition states that a protocol is considered
secure if the outputs of the real and the ideal experiment are indistinguishable.
This means that for all attacks that affect the real experiment, there must
exist a simulator S that has the same effect in the ideal world, which is
secure by definition.
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Definition 3 (Simulation-based security). A cryptographic scheme is secure,
if for all PPT adversaries A, there exists a PPT simulator S such that for
all PPT algorithms D it holds that∣∣Pr [D(v, stA) = 1 : (v, stA)← RealA(λ)]

− Pr [D(v, stA) = 1 : (v, stA)← SimA,S(λ)]
∣∣ ≤ negl(λ)

where v defines the view of the adversary, stA is the state of the adversary,
and negl(λ) is negligible in λ.

2.5.2 Universal Composability

Simulation-based security has been further extended in the UC framework [27].
Cryptographic primitives that are proven secure using a security definition in
the UC framework provide an additional guarantee, i.e., they are universally
composable. That means, a primitive can be used in a larger system with
an arbitrary number of other primitives while preserving the guarantees of
the security notion. Other security notions, e.g., game-based ones do not
have this property. Some primitives have been shown to be vulnerable when
they are used in a larger system. For example, encryption schemes that
achieve semantic security, a classic security definition for encryption, can
be broken when they are used in a scenario where the attacker is able to
send ciphertexts to a system and get feedback on whether decryption was
successful. This even led to many real-world vulnerabilities [126].

The composition property of the UC framework allows to break down
security proofs for larger systems into smaller components. Cryptographic
primitives can be proven secure individually and the composition property
ensures that they can be integrated securely. However, this strong guarantee
comes at a price. Even basic functionalities cannot be proven secure in the
UC model without additional assumptions [28]. Furthermore, creating a
security proof is a manual and error-prone task.

2.5.3 Tamarin

Tamarin is a tool for the computer-assisted verification of cryptographic
protocols [149, 154]. It has been used to verify security properties of various
real-world protocols. For example, Tamarin has been used to prove security
properties of TLS 1.3 [45]. Protocols are modeled in Tamarin using multiset
rewriting rules. These rules describe a protocol’s execution flow and define a
labeled transition system that modifies a global state consisting of a multiset
of facts. Security properties can be expressed as first-order formulas that
are verified against the traces of the transition system. Messages can be
exchanged between parties of the protocol using a shared network. By
default, Tamarin assumes a Dolev-Yao [54] attacker that has full control of
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the network. Tamarin explicitly models the knowledge of the attacker, which
is automatically extended by messages sent over the network.

Once the protocol and the security properties are modeled, Tamarin can
construct proofs automatically. To do this, Tamarin uses deduction and
equational reasoning. Proofs consider an unbounded number of protocol
sessions. Furthermore, Tamarin can provide a counterexample that represents
an attack on the protocol if the protocol cannot be proven secure. However,
it is not guaranteed that the prover terminates, since the problem of verifying
cryptographic protocols is undecidable [149]. In this case, it is possible to
use the interactive mode to manually guide the proof construction process
instead of relying on the heuristics that are used in the automatic mode.

In the following, we give a brief introduction to the Tamarin modeling
language. For more details, we refer to the Tamarin manual [154]. Multiset
rewriting rules consist of three parts: a left-hand side of input facts that are
consumed by the rule, a right-hand side of output facts that are added to
the global state once the rule has been applied and a set of action facts that
are written to the trace. An exemplary rule is shown below:

rule example :
[ INPUT_FACTS ]
--[ ACTION_FACTS ]->
[ OUTPUT_FACTS ]

Facts consist of a name and a fixed number of terms. For example, the fact
!Pk($I, pk) uses two terms to map an identifier to a public key. There are
two types of facts: linear facts that are removed from the global state once
they are consumed by a rule and persistent facts prefixed with an exclamation
mark that can be consumed by rules arbitrarily often.

Multiset rewriting rules can be used to model state transitions of the
cryptographic protocol. Rules can be chained by outputting a fact from one
rule that is consumed by another rule. Initially, the global state is empty.
Thus, a model usually contains at least one rule with an empty set of input
facts that can be applied initially. Action facts are not added or removed
from the global state but written to the execution trace. They are relevant
for defining security properties that can only refer to action facts.

In Tamarin’s modeling language, the type of a variable is determined by
its prefix. Once a variable has been defined, the prefix may be omitted in
subsequent use. We describe the main types briefly below.

• ~x denotes a fresh variable which is guaranteed to have a unique value.

• $x denotes a public variable. Public variables can share the same value.

• #i denotes a temporal variable. Temporal variables are mainly used in
security definitions.

• m denotes a message variable. A message is either public or fresh.
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Tamarin offers special facts that are generated by built-in rules and
provide functionalities such as drawing random numbers and accessing the
network. We describe these special facts briefly below.

• Fr(~r) Introduce a fresh variable r. Two fresh variables are guaranteed
to have different values. This can be used to model a nonce or a
cryptographic key. Fresh variables can only be introduced using the
Fr() fact.

• In(m) Read a message m from the network. Messages sent to the
network can be read, manipulated, and replayed by the adversary
arbitrarily.

• Out(m) Write a message m to the network. This can be used to leak
information to the attacker deliberately.

• K(m) Models that the adversary has knowledge of m.

Security properties are defined as lemmas in Tamarin. They are expressed
as first-order formulas that are verified against the traces of a model. We
sketch the syntax for lemmas in Table 2.1, which is based on the Tamarin
manual [154]. We show an exemplary lemma below, that states that every
trace that contains the fact F() must also contain the fact G().

lemma example :
"All m #i. F(m) @i ==> (Ex n #j. G(n) @j)"

Security properties usually begin with a universal quantifier to state that
all traces must fulfill a certain property. However, lemmas cannot only be
used to verify security properties but also to do sanity checks of a model.
These lemmas usually begin with an existential quantifier. For example, they
can be used to verify that a certain state in the modeled protocol can be
reached. These lemmas are also called sanity lemmas.

Tamarin provides built-in message theories for various cryptographic
primitives. For example, it provides mechanisms that model digital signa-
tures, private-key encryption, hashing, and public-key encryption. Digital
signatures can be used by including the signing package. It provides four
functions sign(m, sk), verify(s, m, pk), pk(sk), and true. The function pk()
generates a public key from a secret key. The function sign() can be used to
create a signature and verify() to verify a generated signature. Key gener-
ation can be modeled by using the built-in Fr() fact. These functions are
associated by the following equation:

verify(sign(m, sk), m, pk(sk)) = true
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Table 2.1: Syntax for defining lemmas in Tamarin as defined in [154].

All universal quantification
Ex existential quantification
==> implication
& conjunction
| disjunction
not negation
f @ i action constraints
i < j temporal ordering
#i = #j equality of temporal variables
x = y equality of message variables

Similarly, asymmetric encryption can be included using the asymmetric-
encryption package. It provides three functions aenc(m, pk), adec(c, sk), and
pk(sk) for encryption, decryption and derivation of a public key from a
private key. These functions are associated by the following equation:

adec(aenc(m, pk(sk)), sk) = m

In Tamarin, a restriction can be used to specify additional requirements
that must be fulfilled by a trace to be considered valid. For example, when
using digital signatures, a restriction is used to eliminate traces where the
signature verification failed. This is implemented by defining a fact Eq that
ensures that both its inputs are equal. This restriction is shown below:

restriction Equality :
"All x y #i. Eq(x, y) @i ==> x = y"

2.6 Data Aggregation

In this section, we introduce preliminary information on secure data aggre-
gation that we need as a basis for Chapter 5. The contents of this section
are based on joint work with Florian Hahn and Florian Kerschbaum. Parts
of this section previously appeared in the following publications.

• Timon Hackenjos. “Secure Aggregation and Grouping in Encrypted
Databases”. MA thesis. Karlsruhe Institute of Technology (KIT),
2017 [89]

• Timon Hackenjos, Florian Hahn, and Florian Kerschbaum. “SAGMA:
Secure aggregation grouped by multiple attributes”. In: Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data. 2020, pp. 587–601. doi: 10.1145/3318464.3380569 [90]

https://doi.org/10.1145/3318464.3380569
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ID Salary Gender Name Department
1 1000 male Henry Sales
2 5000 female Jessica Sales
3 1500 female Alice Finance
4 3000 male Bob Sales
5 2000 male Paul Facility

Table 2.2: Example table supported by our construction.

Aggregation is one of the most common types of queries in data analytics.
The goal of secure data aggregation is to allow an untrusted database server
to aggregate stored data while still preserving the confidentiality of the data.
Conventional encryption schemes as introduced in Section 2.3 are not suitable
for this scenario, as they prevent any type of processing on the server. Data
aggregation is especially challenging since it is commonly combined with
grouping functionality that requires to aggregate data in groups based on
another attribute’s value [90]. This problem has been approached in the past
using property-preserving encryption [109]. However, it has been shown that
property-preserving encryption is prone to inference attacks [130]. In the
following, we describe data aggregation with grouping in more detail and
present the solution from [90] that we extend in Chapter 5.

2.6.1 Problem Description

In the remainder of this section, we assume a relational database table
with the following general layout (we use the terms column and attribute
interchangeably):

1. We assume at least one column, called value column, to be aggregated
(e.g., summed, counted, averaged),

2. further, we assume one or multiple attributes, called group columns,
the GroupBy clause is executed on,

3. and finally, we assume zero or multiple auxiliary attributes, called
filtering columns, additional filtering clauses are executed on.

One can define group and value columns as filtering columns as well. We
give an example sketched in Table 2.2 to demonstrate this setting. Here,
“Salary” is a value column, “Gender” and “Department” are group columns
and “Name” and “Department” are filtering columns. A possible query
formulated in SQL is given in Listing 2.1 yielding the corresponding result
depicted in Table 2.3.

We aim for an approach that supports these kinds of queries and protects
against a persistent adversary compromising the database. For example,
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SELECT SUM(Salary), Gender, Department
FROM Example
WHERE Department = ‘‘Sales’’
GROUP BY Gender, Department;

Listing 2.1: Example SQL query

SUM(Salary) Gender Department
5000 female Sales
4000 male Sales

Table 2.3: Result of executing SQL from Listing 2.1 on Table 2.2.

an adversary might infect a database server with malware to dump the
database and monitor database operations. We revise previous approaches
before we outline SAGMA and briefly highlight the differences. We refer to
Section 5.2.3 for a thorough comparison.

One approach for secure aggregation in previous work reveals the access
pattern. For example, CryptDB [138] supports data aggregation with arbi-
trary GroupBy attributes and combinations thereof on encrypted data. The
evaluation of the GroupBy clauses is based on deterministic encryption of
values in group columns and additively homomorphic encryption of values in
value columns. Deterministic encryption Encdet(·) preserves equality: given
two plaintexts a and b with a = b it holds that Encdet(a) = Encdet(b). We
denote the encryption of a plaintext value x using an additively homomorphic
encryption scheme by JxK⊕. Given two ciphertexts JxK⊕ and JyK⊕ one can
compute the encrypted sum of the underlying plaintexts using the operation
⊕ on ciphertexts: JxK⊕ ⊕ JyK⊕ = Jx + yK⊕. In combination, the DBMS can
perform GroupBy operations on encrypted data, e.g., grouping by Encdet(a)
and subsequently perform aggregation operations for each such group using
the operation ⊕. While additively homomorphic encryption offers semantic
security, the security of deterministic encryption is questionable. Determinis-
tic encryption leaks joint group membership for all rows enabling an attacker
to reconstruct a histogram of all group values. In many cases, this histogram
enables simple, yet powerful attacks as shown by Naveed et al. [130].

An alternative approach with the goal to address this security issue for
aggregation is to compute (and encrypt) an index over the group columns
as proposed by Papadimitriou et al. with Seabed [135]. Seabed also uses
a combination of deterministic and additively homomorphic encryption.
However, by splitting group attributes into multiple columns and introducing
dummy elements they flatten the leaked plaintext frequencies thwarting
frequency analysis. Compared to CryptDB, this approach provides better
security for the grouping values; however, it restricts the choice of attribute
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combinations in one GroupBy statement. Further, statements containing
additional filtering clauses in combination with data aggregation requires
computation effort by the client linear in the filtering result size.

A naïve strategy is to pre-compute the aggregation results for combina-
tions of group column values initially during encryption time. However, there
are an exponential number of such combinations of group column values
requiring excessive storage space. Considering additional filtering statements,
the number of potential results to be pre-computed becomes even more
impractical.

Our scheme SAGMA does not unveil the access pattern for individual
grouping values. At the same time, SAGMA enables queries with GroupBy
clauses over multiple group columns and arbitrary number of value attributes
together with support for additional filtering statements. In detail, SAGMA
employs row-wise encryption such that it can be easily combined with search-
able encryption schemes, e.g., supporting filtering for specific keywords [47],
ranges or substrings [67, 92] and is even compatible with complete sys-
tems [109]. Hence, it is possible to process queries by first executing the
filtering operation and then using SAGMA on the result set for secure aggre-
gation. We emphasize that this filtering is not feasible for secure aggregation
schemes based on pre-built indexes or pre-computed results.

2.6.2 Constructions

In this section, we develop the ideas for our construction of SAGMA step-
by-step before we give a formal description of these ideas in Section 2.6.3.
Our constructions use ciphertext packing initially proposed by Ge et al. [77]
for performance improvements of additively homomorphic encryption. We
divide the plaintext into several blocks enabling encryption of multiple values
in one ciphertext. One can determine these blocks either during the initial
encryption step or during the actual data aggregation as elaborated in the
following subsections. Applying homomorphic addition allows us to add
values componentwise.

Initial Static Shifting

We re-use the idea of ciphertext packing, however, instead of increased
performance we aim for increased security. Basically, each ciphertext consists
of multiple blocks and during aggregation each block contains the current
subtotal for one group attribute value. More specifically, we interpret the
plaintext space M of an additively homomorphic encryption scheme as
multiple separate value blocks with value domain DV . For example, using
secure parameters the plaintext space M of the additively homomorphic
encryption scheme published by Pailler [134] has a size of 2048 bits, and a
value domain DV has a size of 32 bits corresponding to the common integer
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0 1000 ⇒ J1000K⊕
5000 0 ⇒ J5000 ·232K⊕
1500 0 ⇒ J1500 ·232K⊕

0 3000 ⇒ J3000K⊕
0 2000 ⇒ J2000K⊕

Figure 2.2: Example encoding for tuples consisting of value and group
attributes as given in Table 2.2.

size. We encode the value v and a group attribute g (of small sized group
attribute domain D) in a transformed value v′ to be encrypted afterwards:
The group attribute value is encoded by the index of the block containing
value v. All remaining blocks are set to zero. Given the group attribute
domain, e.g., D = {male, female} as sketched in Table 2.2 and value domain
DV = {0, . . . , 232 − 1} we can encode the tuples (1000, male), (5000, female),
(1500, female), (3000, male), (2000, male) as given in the following Figure 2.2,
where each block has bitlength 32.

From a mathematical point of view, we use a mapping function f : D →
{0, . . . , |D|} mapping group attributes to positive integers and use f to
determine the blockwise left shift s encoding the group membership of value
v ∈ DV into one transformed value v′ by multiplication

v′ = v · s(g) = v · |DV |f(g).

This transformed value v′ is then encrypted using an additively homomorphic
encryption scheme resulting in ciphertext Jv′K⊕. The sum over all data in
combination with GroupBy statement is then transformed to a general aggre-
gation over encrypted data computed by additive homomorphic encryption.
The client can decrypt the result and extract the individual group totals
by extracting the corresponding block. This approach increases security for
individual group values as it hides their access pattern.

While this scheme inherits the security of the additively homomorphic
encryption scheme, the group attribute domain size is restricted: the number
of distinct group attribute values must be smaller than the maximum number
of value blocks fitting in the plaintext domain, i.e.,

⌈
|M|
|DV |

⌉
≥ |D|.

This constraint can be addressed by concatenating multiple ciphertexts
and executing homomorphic addition componentwise. That is, given an
additively homomorphic encryption scheme with plaintext size |M| divided
in b blocks (i.e.

⌈
|M|
|DV |

⌉
= b), hence supporting group attribute domains up

to size b, we can extend the size by factor n by concatenating n plaintext
messages each encrypted separately, i.e., m′ = m1, m2, . . . , mn ∈ Mn. As
one major drawback, however, this construction results in additional storage
overhead where most parts of m′ contain zeros but still provides semantic
security.
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Statically Shifted Bucketization

To reduce the storage overhead of our initial construction, we divide the
complete group attribute domain D in separate buckets each with bucket
size B. Hence, each transformed value only consists of B instead of |D|
blocks and thus requires less storage space. Aggregation is performed in each
bucket separately but discloses the bucket membership for each row. Still,
values of the same bucket are indistinguishable for an adversary.

To map the group attribute value to one of the B blocks, we use a
simple modulo operation. The value v is shifted to the appropriate block
by multiplying it by the shift s(g) = |DV |f(g) mod B. Here, the mapping
function f can be seeded with an additional secret key, preventing (and
hiding) coherent group values to be mapped to the same bucket.

Note that the bucket membership of rows itself can be protected, e.g.,
using searchable symmetric encryption with support for Boolean search
queries such as published by Cash et al. [29]. At least for databases where
the aggregation is only computed over a subset of the complete outsourced
data set determined by additional filtering attributes. This supplementary
protection unveils the same bucket membership only for rows matching the
additional filtering clause. The bucket size B is an additional parameter
providing the possibility to trade security for required storage space for each
encrypted value as well as computation time since the aggregation is executed
componentwise. We give a more detailed security analysis on the bucket size
B and bucketing strategies in Section 5.2.1.

Dynamically Shifted Bucketization

So far, we have only addressed secure aggregation protocols for databases
containing a single value attribute to be aggregated, however, we strive to
generalize our construction to provide functionality for multiple columns
to be aggregated. For simplicity, we assume them to have the same value
domain DV . This construction can also be used for additional aggregation
functionality, e.g., count queries can be supported by encrypting value
attributes fixed to one. The construction described before can be extended
canonically to support multiple value attributes by repeated application for
each value column. However, the group membership is then encoded in each
value separately, resulting in redundant information. In order to achieve
better storage efficiency, we store the value attributes and the shift values
s(gi) determined by the group value gi separately and multiply them on the
server when queried. Since these values are assumed to be sensitive, they
have to be stored encrypted in a way still supporting multiplication (over
ciphertexts). This can be realized using somewhat homomorphic encryption
(SWHE) Σ = (Gen, Enc, Dec, ⊕, ⊗) supporting one single multiplication
and being additively homomorphic even after multiplication [21].
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E_Salary E_Gender . . .
J1000K⊗

⊕ J1K⊗
⊕

J5000K⊗
⊕ J232K⊗

⊕
J1500K⊗

⊕ J232K⊗
⊕

J3000K⊗
⊕ J1K⊗

⊕
J2000K⊗

⊕ J1K⊗
⊕

Table 2.4: Encrypted table with dynamic shifts.

We use the notation JxK⊗
⊕ to describe the encryption of a plaintext x using

algorithm Enc of a SWHE scheme. The operations ⊕ and ⊗ denote the addi-
tively homomorphic and multiplicatively homomorphic operation. We denote
the multiplication of a ciphertext JxK⊗

⊕ by a plaintext y as JxK⊗
⊕⊗y = Jx · yK⊗

⊕.
This operation uses the additively homomorphic property of the encryption
scheme only and should not be confused with the multiplicatively homomor-
phic operation that multiplies two ciphertexts. Given the previous example
in Table 2.2, the transformed table using dynamically shifted bucketization
is given in Table 2.4 with s(male) = 1 and s(female) = 232.

To generalize the construction for multiple attributes, we evaluate the
shift s(gi) of a group attribute value gi on the server. We describe the shift as
polynomial and determine the coefficients ai such that P (x) = (|DV |)x = s(gi)
for x ∈ {0, . . . , B − 1} given by x = f(gi) mod B with mapping function f .
Recall, that ciphertexts of a somewhat homomorphic encryption scheme can
be multiplied by a plaintext value. Thus, the server can evaluate polynomials
given plaintext coefficients ai of P and encrypted monomials J1K⊗

⊕, JxK⊗
⊕,

Jx2K⊗
⊕, . . . , JxB−1K⊗

⊕, where the degree of this polynomial increases linearly
with the bucket size B. We transfer the coefficients to the server during
encryption of the database to reduce the network bandwidth of aggregation
queries.

Multiple Grouping Attributes

Based on the previous ideas we describe our final SAGMA construction
supporting GroupBy statements with multiple grouping attributes in the same
query as stated in Section 2.6.3. Referring to the example from Table 2.2 this
construction supports statements grouping by “Gender” and “Department”
or arbitrary subsets thereof, e.g., solely GroupBy “Department”.

Naïve scheme While inefficient, this can be implemented using the previ-
ous scheme with the power set of group attributes. Note, that it is necessary
to use a combined bucket size of Bi for a subset of i attributes in order
to avoid additional leakage. Assuming two attributes and the bucket size
B = 2, we demonstrate a potential attack where an adversary can query a
GroupBy operation for both attributes separately and their combination.
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ID Gender Department Gender, Department
1 Gen1 Dept1 GenDept1
2 Gen1 Dept1 GenDept2

Table 2.5: Possible bucket memberships for Table 2.2.

These queries leak the bucket membership for both attributes individually
and the combination, as illustrated in Table 2.5. Based on the two individual
attributes, the two rows are indistinguishable since they are part of the same
buckets. However, the two rows do not contain the same values, thus they
might be mapped to separate buckets of the combined attribute. Mapping
them to separate buckets leaks the fact that these two rows do not contain
the same values. Both buckets Gen1 and Dept1 contain two values, therefore
there are four possible value combinations of the two buckets. To prevent
this leakage, all value combinations of the two buckets are mapped to the
same bucket of the combined attribute requiring a bucket size of B = 4.
More generally, an attribute combination of i attributes requires a bucket
size of Bi to achieve the same leakage as in the single attribute case.

Improved scheme We use the polynomial approach described in Sec-
tion 2.6.2 and extend it to multivariate polynomials where one variable
represents one group attribute. The shift for a combination of attributes
G1, . . . , Gl can be determined by the polynomial of l variables:

P (G1, . . . , Gl) =
∑

i1,...,il

ai1,...,il
·Gi1

1 · · ·G
il
l .

We improve the naïve scheme by reusing the monomials required for individual
attribute grouping for the grouping of attribute combinations. More generally,
to group a set of attributes all monomials of the subsets can be used, thus
reducing the number of monomials required to be stored on the server. Due
to the empty product, only B − 1 monomials are necessary for a single
attribute using bucket size B.

Considering three group attributes G1, G2, and G3 we demonstrate the
difference. The naïve scheme requires one monomial for each of the individual
attributes G1, G2, and G3, three monomials for the attribute combinations of
size two and seven monomials for the combination of all three attributes. The
improved scheme also requires one monomial for each individual attribute;
however, the attribute combinations of size two only require one additional
monomial because the two monomials of the individual attributes can be
reused.

The idea of monomial reuse is sketched in Figure 2.3; here the beginning
of an arrow represents monomials required to support grouping by a specific
attribute combination where monomials can be re-used for the attribute
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G1 G2 G3

G1G2 G1G3 G2G3

G1G2G3

Figure 2.3: Monomial reuse that supports multiple attributes.

combination denoted at the arrowhead. This relation is transitive, i.e., the
attribute combination of all three attributes can reuse the monomials of all
its subsets, thus only requiring one additional monomial. In this case, we
can reduce the required number of monomials from nineteen to seven.

Based on Table 2.2 we give an example that demonstrates grouping of
multiple attributes. In this example, we assume bucket size B = 2 resulting
in the following buckets: one bucket for the “Gender” attribute named Gen1
containing {male, female} and two buckets for the “Department” attribute
named Dept1 containing {Sales, Finance} and Dept2 containing {Facility}.
Bucket membership for each row is indexed using searchable symmetric
encryption as sketched 1 in Table 2.6.

Bucket Rows
Gen1 1, 2, 3, 4, 5
Dept1 1, 2, 3, 4
Dept2 5

Table 2.6: Bucket index supporting multiple attributes.

In our use case for SSE, the encrypted index is created for all bucket
identifiers of the complete table consisting of multiple rows. Particularly,
the document collection D then corresponds to the complete table and one
document corresponds to one specific row, where each such “document”
contains its specific bucket identifiers as searchable keywords. Using SSE,
rows belonging to a specific bucket can only be determined using a token
generated by the client.

Assume mapping functions f1(male) = 0, f1(female) = 1 and f2(Sales) =
0, f2(Finance) = 1 and f2(Facility) = 2. Note that each value is reduced
mod B before encryption. Further, in order to support grouping by both
attributes Gender and Department, the client must generate and outsource
an additional monomial, namely their product. This results in the encrypted
and outsourced data sketched in Table 2.7.

1This is a sketch for demonstration purpose only and constructing efficient SSE indexes
is its own line of research.
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ID E_Salary E_Gender E_Department E_Gender · Dept
1 J1000K⊗

⊕ J0K⊗
⊕ J0K⊗

⊕ J0K⊗
⊕

2 J5000K⊗
⊕ J1K⊗

⊕ J0K⊗
⊕ J0K⊗

⊕
3 J1500K⊗

⊕ J1K⊗
⊕ J1K⊗

⊕ J1K⊗
⊕

4 J3000K⊗
⊕ J0K⊗

⊕ J0K⊗
⊕ J0K⊗

⊕
5 J2000K⊗

⊕ J0K⊗
⊕ J0K⊗

⊕ J0K⊗
⊕

Table 2.7: Encrypted table with multiple attributes.

We determine a multi-variate polynomial P (G1, G2) that maps com-
binations of attribute values to the proper shift, using a system of linear
equations. In the following, G1 represents the attribute Gender and G2 the
attribute Department. However, the solution of the linear system can be
reused for other attributes using the same bucket size.


1 G1 G2 G1 · G2

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 ·

a0
a1
a2
a3

 =

 1
232

264

296


One solution for the system is a0 = 1, a1 = 264 − 1, a2 = 232 − 1, a3 =

296 − 1 − (264 − 1) − (232 − 1). These coefficients are transferred to the
server in plaintext during the encryption phase. Later, the client requests to
execute the query from Listing 2.2 grouping by both attributes.

SELECT SUM(Salary), Gender, Department
FROM example
GROUP BY Gender, Department;

Listing 2.2: Query grouping by two attributes.

Therefore, the client determines SSE tokens for the buckets Gen1, Dept1 and
Dept2 to send them to the server in addition to the identifier of the attribute
Salary to be aggregated and the identifiers of the attributes Gender and
Department to be grouped. The server uses these tokens to determine the
rows that belong to a specific bucket. Then, by calculating the intersection,
the server determines the rows that belong to a specific bucket combination.
Alternatively, an SSE scheme that supports Boolean queries can be used to
determine joint bucket membership without leaking the bucket membership
of individual attributes.

In our example, the first four rows belong to the same bucket combination
(Gen1, Dept1), while the last row with ID 5 belongs to bucket combination
(Gen1, Dept2). The server determines the (encrypted) shift for each row
by evaluating the polynomial2 P on the encrypted grouping monomials
P (G1, G2) = a0 + a1 · G1 + a2 · G2 + a3 · G1 · G2. For the first row, the

2This is possible without calling ⊗ since the polynomial’s coefficients are outsourced in
plaintext.
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1500 5000 0 4000

(a) Bucket combination (Gen1, Dept1)

0 0 0 2000

(b) Bucket combination (Gen1, Dept2)

Figure 2.4: Sketch of decrypted aggregation result for different buckets.

polynomial evaluates to 1, for the second row to 264 and so on. Notice that
the result of the evaluation is encrypted, hence hiding the shift value in each
bucket. Multiplication of the corresponding entry in the value column Salary
by the encrypted shift yields the shifted value to be aggregated. The server
adds up all the shifted values for each bucket combination separately and
returns the result. By decrypting the result, the client receives the packed
plaintexts depicted in Figure 2.4. Since the client has chosen the shifts of all
value combinations by determining the polynomial’s coefficients, the client
can map each part of the plaintext to a group attribute combination. Table
2.8 shows the final result of the query. Note that the coefficients can be
reused for other attributes if they use the same bucket size.

SUM(Salary) Gender Department
4000 male Sales
5000 female Sales
1500 female Finance
2000 male Facility

Table 2.8: Result of the query stated in Listing 2.2 on Table 2.2.

2.6.3 Formalization

Before we give a comprehensive formal description, we define the interface
of the SAGMA construction for secure aggregation of k aggregation values
and supporting a combination of up to t arbitrary grouping attributes in
one query. SAGMA consists of the following six probabilistic polynomial
time (PPT) algorithms. We refer to Table 2.9 for an overview of the used
variables in our algorithm descriptions.

(pp, K)← Setup(1λ, D1, . . . , Dl) : Executed on the client. Generates the
cryptographic keys and outputs the public parameters pp and the
secret key K. D1, . . . , Dl denote the value domains of the grouping
attributes.

C ← EncTable(K, {{vi,j}kj=1, {gi,j}lj=1}rows
i=1 ) : Executed on the client. Using

the given cryptographic keys, it encrypts the table executing EncRow
for each row. Depending on the concrete construction, an index for
grouping or additional filtering is created. The result is then outsourced
to the untrusted server.
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c← EncRow(pk, v1, . . . , vk, g1, . . . , gl) : Executed on the client for each row.
Encrypts the database row. This operation also allows the client to
add subsequent rows to the database after initial encryption.

tgrp ← AggGrpByToken(K, V, Q) : Executed on the client. Creates a group-
ing token to execute grouping by up to t grouping columns in Q and
aggregation of value columns in V .

cagg ← AggGrpBy(pp, tgrp, C) : Executed on the server. Aggregates the en-
crypted data with GroupBy statement using the tokens generated in
the previous step.

res← DecAgg(K, cagg) : Executed on the client. Decrypts the encrypted
result of the aggregation query with GroupBy statement.

Variable Description
Di Value domain for i-th grouping attribute
l Number of grouping attributes
λ Security parameter
fi Pseudorandom function mapping grouping attribute values of column

i to natural numbers
ai Polynomial coefficients used for oblivious shift calculation
B Bucket size of each bucket containing B group attribute values
pp Public parameters
KSSE Secret key for searchable encryption scheme
K Secret master key
|S| Number of elements in set S
vi,j Attribute value for the j-th value column (in the i-th row if stated)
gi,j Attribute value for the j-th grouping column (in the i-th row if stated)
k Number of value attributes
D Document collection for SSE containing the bucket identifiers of all

rows
I Searchable encrypted index for bucket memberships of all grouping

attribute values for each row
ri,j Offset of value in bucket for j-th grouping column in i-th row
C Encrypted database
mi Monomial for oblivious shift calculation of bucketized group values
Q GroupBy clause of aggregation query for up to t grouping attributes
si Number of buckets for i-th grouping attribute
ti,j SSE token for the j-th bucket of the i-th grouping attribute
p Size of joint bucket
R Rows for aggregation of joint bucket
Si Shift for the i-th row

Table 2.9: Overview of used variables.
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Based on the formalization, we discuss storage efficiency in Section 2.6.4,
state a theoretical upper bound for the information leakage of our scheme
in Section 2.6.4, and compare our construction with an approach based on
pre-computation and Seabed in Section 5.2.3.

Let Σ = (Gen, Enc, Dec, ⊕, ⊗) be a semantically secure SWHE scheme
supporting one single multiplication as introduced before. Let SSE =
(GenSSE , EncSSE , TokenSSE , SearchSSE) be an adaptively semantically secure
SSE scheme as defined in Section 2.3.3. In the following, we give an in-
tuition for each SAGMA algorithm together with a formal description in
Algorithms 1– 6.

Algorithm 1 Key generation algorithm.
Setup(1λ0 , 1λ1 , D1, . . . , Dl):

(pk, sk)← Gen(1λ0)
F = (f1, . . . , fl), fi : Di 7→ {0, . . . , |Di|}
pp = (pk, a0, . . . , aBl−1)
KSSE ← GenSSE(1λ1)
return pp, K = (pk, sk, F, KSSE)

Setup as stated in Algorithm 1 generates the cryptographic keys, defines
the mapping functions for the group domains and calculates the polynomial
determining the shift values.

EncTable as stated in Algorithm 2 creates and indexes the group buckets
for all grouping attributes using SSE. Note that EncRow is called for a set
of rows encrypting aggregation values and bucketized group values.

Algorithm 2 Encryption algorithm for the complete table.
EncTable(K, {{vi,j}kj=1, {gi,j}lj=1}rows

i=1 ):
D = {{j : fj(gi,j)

B }lj=1}rows
i=1

I ← EncSSE(KSSE , D)
ri,j = fj(gi,j) mod B
ci ← EncRow(pk, vi,1, . . . , vi,k, ri,1, . . . , ri,l)
return I, C = c1, . . . , crows

Particularly, EncRow as stated in Algorithm 3 determines monomials
of the bucketized group values required to determine appropriate shifts on
the server later on and applies somewhat homomorphic encryption to the
aggregation values and the monomials to support dynamic shifting. Note
that this algorithm can be used for database updates after the initial table
encryption if the bucket index I is updated accordingly.
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Algorithm 3 Encryption algorithm for a single row.
EncRow(pk, v1, . . . , vk, g1, . . . , gl):

m1, . . . , mBl =
{

l∏
i=1

gei
i | ∀ 0 ≤ ei < B

}
return c = (Jv1K⊗

⊕, . . . , JvkK⊗
⊕, Jm1K⊗

⊕, . . . , JmBlK⊗
⊕)

AggGrpByToken as stated in Algorithm 4 creates SSE search tokens
for all buckets of the grouping attributes and outputs the identifier of the
attribute to aggregate, the identifiers of the group attributes, and the SSE
tokens.

Algorithm 4 Group token generation algorithm.
AggGrpByToken(K, V ∈ {1, . . . , k}, Q ⊆ {1, . . . , l}):

for all q ∈ Q do
sq =

⌈
|Dq |

B

⌉
for all 1 ≤ b ≤ sq do

tq,b ← TokenSSE(KSSE , q : b)
return V, Q, {tq,b | q ∈ Q, b ∈ {1, . . . , sq}}

AggGrpBy as stated in Algorithm 5 uses the encrypted index to determine
the rows of all buckets of the group attributes. By calculating the intersection,
rows belonging to joint buckets are determined and aggregation is executed
for each joint bucket. Aggregation involves determining the appropriate shift
for each row and multiplying the shift by the value attribute. Finally, one
encrypted result is returned for each joint bucket.

DecAgg as stated in Algorithm 6 decrypts and unpacks the packed
ciphertexts that result from aggregation.

2.6.4 Efficiency

By precomputing Bl − 1 monomials for the polynomial evaluation, a SWHE
scheme supporting one multiplication is sufficient for our construction. How-
ever, the bucket size B and the number of group attributes l is limited by the
available storage space on the server. Particularly, our SAGMA construction
requires Bl − 1 monomials with exponential increase in the number of group
attributes l.

Generally, only small subsets of group attributes occur together in one
query. Limiting the number of group attributes stated in one query allows
us to reduce the number of required monomials.

3Enumerates joint buckets using the cartesian product of the buckets of the queried
attributes.
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Algorithm 5 Aggregation algorithm over encrypted data.
AggGrpBy(pp, V, Q, {tq,1, . . . , tq,sq | q ∈ Q}, C, I):

sq =
⌈

|Dq |
B

⌉
, for q ∈ Q

p = B|Q| − 1
determine coefficients a0, . . . , ap for Q
determine indices i1, . . . , ip for Q
for all (b1, . . . , b|Q|), bi ∈ {1, . . . , sQi} 3 do

R←
|Q|⋂
i=1

SearchSSE(I, tQi,bi
)

for all r ∈ R do
Sr = Ja0K⊗

⊕ ⊕
p⊕

j=1
aj ⊗ Jmij K

⊗
⊕

aggb1,...,b|Q|
= ⊕

r∈R
JvV K⊗

⊕ ⊗ Sr

return all aggregates aggb1,...,b|Q|

Algorithm 6 Decryption algorithm for query result.
DecAgg(K, agg1, . . . , aggs):

for 1 ≤ i ≤ s do
ui,1, . . . , ui,B|Q| ← Dec(sk, aggi)

return u1,1, . . . , us,B|Q|

More particular, assume the number of attributes is limited by a constant
t. We denote the number of monomials that have to be stored for each row
in a database with l group attributes by m(l, t). We can apply our naïve
construction to all subsets of attributes of size t, which requires to store
m(l, t)naive monomials per row as defined by the following equation:

m(l, t)naive =
(

l

t

)
· (Bt − 1) ≤

(
l · e

t

)t

· (Bt − 1)

As a result, the number of required monomials is polynomially bounded,
instead of exponentially in l. However, the monomial reuse in our improved
scheme reduces the number of required monomials further. To calculate the
exact number of monomials necessary, we examine how many monomials are
necessary to support grouping of t attributes, if we already support grouping
of t − 1 attributes. Notice that m(l, 0) = 0. The result of this iterative
construction is given for some t in Table 2.10. In the first step, we aim to
support grouping of a single attribute. This requires storing B − 1 powers of
all attributes. To support grouping of two attributes B2 − 1 monomials are
required for each subset of attributes of size two (−1 because of the empty



33 2.6. Data Aggregation

t m(l, t)−m(l, t− 1)
1 l · (B − 1)
2

(
l
2
)
·
(
B2 − 1− 2 · (B − 1)

)
3

(
l
3
)
·
(
B3 − 1−

(3
1
)
· (B − 1)−

(3
2
)
· (B − 1)2)

...
...

t
(

l
t

)
·
(

Bt −
t−1∑
i=0

(
t
i

)
(B − 1)i

)
Table 2.10: Required number of monomials to support grouping up to t
attributes.

product). The B − 1 powers of the two attributes can be used and thus
be subtracted. This can be generalized for an arbitrary t resulting in the
following equation:

m(l, t)−m(l, t− 1) =
(

l

t

)
·
(

Bt −
t−1∑
i=0

(
t

i

)
(B − 1)i

)
∗=
(

l

t

)
· (B − 1)t .

The above transformation (∗) can be verified using a proof by induction.
More precisely, we define the number of monomials required to support
grouping of t attributes in one query given a database with l possible group
attributes as:

m(l, t) =
t∑

i=1
m(l, i)−m(l, i− 1) =

t∑
i=1

(
l

i

)
· (B − 1)i.

A lower bound of this number grows polynomially in l and thus m(l, t) ∈
Θ(lt ·Bt):

t∑
i=1

(
l

i

)
· (B − 1)i ≥

(
l

t

)
· (B − 1)t ≥

(
l

t

)t

· (B − 1)t.

Security

Given a semantically secure SWHE encryption scheme Σ and an adaptively
semantically secure SSE scheme, the construction as stated in Algorithms 1–
6 essentially leaks the bucket membership of all queried group attributes.
We emphasize that our construction offers improved security compared to
the encryption of individual group attributes either deterministically or
searchable. While deterministic encryption as well as searchable encryption
leaks the frequencies of the whole plaintext domain after the execution of
one aggregation query, our construction only leaks the frequencies of distinct
buckets.
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For a formal security analysis, we use a simulation-based security defini-
tion following the work on searchable symmetric encryption by Curtmola
et al. [47]. Basically, simulation-based security definitions consist of two
experiments, the real and the simulated experiment. The real experiment
describes a regular protocol sequence, i.e., in our case an adversary A chooses
a plaintext database table to be encrypted and queries the grouping tokens
to be created. Encryption of the database table and generation of grouping
tokens is executed by the regular algorithms of the scheme. In contrast, in
the simulated experiment the encrypted database and the grouping tokens
are created by a simulator S that only has access to limited information
about the plaintext database and the queries. This limited information is
modeled by a leakage function L, whose output is given to the simulator.
Both experiments output the encrypted database and the created grouping
tokens. Intuitively, a scheme is secure if the output of both experiments is
computationally indistinguishable, i.e., no PPT algorithm exists that has
non-negligible advantage in distinguishing the two distributions. A formal de-
scription of these two experiments is given in Figure 2.5. The security notion
is stated in Definition 4. Notice, that our security definition is adaptive, i.e.,
the adversary has access to the grouping tokens created for earlier queries
and can choose the next query in dependence on the tokens. In contrast,
non-adaptive security definitions require the adversary to choose all queries
at once, which is a weaker security definition and a far less realistic scenario
for applications.

Definition 4 (Adaptive L-Security). The SAGMA scheme as defined in Sec-
tion 2.6.3, is adaptively L-secure, if for all PPT adversaries A = (A0, . . . ,Aq+1),
there exists a PPT simulator S = (S0, . . . ,Sq+1) such that for all PPT algo-
rithms D it holds that∣∣Pr [D(v, stA) = 1 : (v, stA)← Real∗A(λ)]

− Pr [D(v, stA) = 1 : (v, stA)← Sim∗
A,S(λ)]

∣∣ ≤ negl(λ)

where q = poly(λ) and negl(λ) is negligible in λ.

Formalized Information Leakage We construct a simulator S fulfilling
Definition 4. S has restricted information in form of the identifiers of the
value attribute and the group attributes (V, Q) of all queries. Both V and Q
are only identifiers of the queried attributes and do not contain the actual
values of these attributes, i.e., they identify the column to be aggregated
and to be grouped by. Further, the trace τ , that is the information leaked by
SSE is forwarded to S, hence the overall leakage we proof as upper bound is
formalized as:

L (T, (V1, Q1) . . . , (Vi, Qi)) = ((V1, Q1) , . . . , (Vi, Qi) , τi) .
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We do not explicitly mention the number of rows and columns of the
database and the bucket size B in the leakage but assume them to be public.
Notice that each aggregation query involves multiple SSE queries, one for each
bucket of the queried group attributes. Thus, the trace after i aggregation
queries contains the access and the search pattern of i′ ≥ i keyword queries,
namely τi = τ(D, w1, . . . , wi′). The trace itself consists of the sizes of the
documents and the access pattern (i.e. the document identifiers of matching
documents) and the search pattern that discloses if two tokens correspond to
the same keyword. In our case, the search pattern corresponds to a bucket
identifier and the access pattern reveals the rows contained in each bucket. In
summary, the overall leakage of our SAGMA construction can be described
as follows: the identifiers of the grouping attributes are leaked and for each
queried group attribute, the construction leaks the mapping of rows to bucket
identifiers, which is included in the access pattern of SSE.

We use SSE as black box, including its common security definition as
introduced by Curtmola et al. [47].

Real∗A(λ):
D1, . . . , Dl, stA ← A0(1λ)
pp, K ← Setup(1λ, D1, . . . , Dl)
T, stA ← A1(stA, pp)
C ← EncTable(K, T )
for 1 ≤ i ≤ q do

Qi, stA ← Ai+1(stA, pp, C, tgrp,1 , . . . , tgrp,i−1 )
tgrp,i ← AggGrpByToken(K, (Vi, Qi))

return pp, C, tgrp,1 , . . . , tgrp,q , stA

Sim∗
A,S(λ):

D1, . . . , Dl, stA ← A0(1λ)
pp, stS ← S0(1λ, D1, . . . , Dl)
T, stA ← A1(stA, pp)
C, stS ← S1(stS ,L(T ))
for 1 ≤ i ≤ q do

Qi, stA ← Ai+1(stA, pp, C, tgrp,1 , . . . , tgrp,i−1 )
tgrp,i , stS ← Si(stS ,L(T, (V1, Q1), . . . , Vi, Qi))

return pp, C, tgrp,1 , . . . , tgrp,q , stA

Figure 2.5: Security Experiments – Real vs. Ideal

Theorem 1. If the used SSE scheme is adaptively semantically secure,
and the used SWHE scheme Σ is semantically secure, then our SAGMA
construction as stated in Algorithms 1– 6 is adaptively semantically L-secure
according to Definition 4.
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Proof. For our proof sketch we give an intuition why a simulator exists
such that the outputs of the experiments Real∗A and Sim∗

A,S are com-
putationally indistinguishable for every possible PPT adversary A. Using
a standard hybrid argument, we show that our construction satisfies the
security definition. The output of both experiments has the same structure,
that is, pp, C ′ = (C, I), tgrp,1 , . . . , tgrp,q , stA. Since the public parameters pp
have been created by the same algorithm Setup, their distribution is identical.
If a PPT algorithm exists that distinguishes the encrypted database C of the
two experiments, then an adversary can be constructed breaking semantic
security of Σ contradicting our assumption. Similarly, if the encrypted index
I or the SSE tokens contained in the grouping tokens tgrp can be distin-
guished, then the security of the SSE scheme can be broken. Furthermore,
the grouping tokens tgrp contain the identifiers of the queried value attribute
and group attributes. Since these identifiers are contained in the leakage,
they are identical in both experiments.

Because no component of the output can be distinguished by a PPT
algorithm, using the hybrid argument it follows that the outputs of both ex-
periments are indistinguishable and thus our construction fulfills the security
definition.

2.6.5 Evaluation

We implemented SAGMA described in Section 2.6.2 using the SWHE scheme
published by Boneh, Goh and Nissim (BGN) [21] based on bilinear maps.
BGN is additively homomorphic and supports a single multiplication of
ciphertexts. We implemented SAGMA in Java using parallelization during
query execution and decryption to use multiple cores.

Decryption of BGN requires to calculate the discrete logarithm in a prime-
order group; thus, the plaintext space has to be restricted to support efficient
decryption. Nevertheless, the decryption of a ciphertext with restricted
plaintext space of 32 bits still takes several seconds on a current laptop and
is too inefficient for data aggregation. Hu et al. propose to use the Chinese
remainder theorem (CRT) to speed up the decryption of BGN [101]. They
split a message into several parts; homomorphic operations are executed for
each part and the result is reconstructed after the decryption of all parts
using CRT. This approach offers a trade-off between decryption time on the
client and execution time of homomorphic operations on the server. Since
ciphertext components can only be decrypted if they are small enough and
homomorphic operations increase the components, the use of homomorphic
operations is limited.

Our implementation supports three aggregation operations, namely sum-
mation, row count and average. The row count can be calculated by aggre-
gating the shifts instead of the shifted values. As the result is limited by the
total number of rows, the CRT scheme is not required.
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Figure 2.6: Processing time of our scheme SAGMA for a varying number of
rows.

Results

We use the lineitem table of the TPC-H 4 benchmark to evaluate aggregation
time and decryption time. The evaluation runs on a machine with two Intel
Xeon E5-2670 CPUs with eight cores each operating at 2.60 GHz and 256 GB
of RAM. We execute every query ten times and calculate the mean running
time, as well as the 95% confidence interval. Network latencies between client
and server are not considered. Since the performance of SSE schemes has
been analyzed extensively before, our implementation uses a plaintext index
located on the client to determine the bucket identifiers of rows. For our
evaluation, we instantiate a cryptographic key with 1024 bits. Since BGN is
based on the hardness assumption of factorization of a composite modulus
this choice provides about 80 bits of security [10, 72].

We evaluate the performance of our SAGMA construction in dependence
on the number of rows to be aggregated. Figure 2.6 shows a linear increase
of the aggregation time. Aggregating the count of 1000 rows requires 1.9 s
and for 10, 000 rows it lasts 17.7 s. Summation is less efficient, since it is
based on the CRT scheme. The decryption time of the count operation stays
constant, while it increases for the summation operation. Again, this is due
to the CRT construction limiting the number of supported additions.

We emphasize that most queries contain WHERE clauses to filter rows
which limits the number of rows that have to be aggregated in real use cases
making our construction also suitable for larger databases. Such preceding
selection is orthogonal to our work and can be implemented efficiently using
SSE.

The runtime for different bucket sizes B is compared in Figure 2.7a. The
aggregation time increases superlinearly, summation takes 5.7 s for bucket
size 2 and 71.3 s for bucket size 7 due to the use of unit shifts to reduce

4See https://www.tpc.org/tpch/.

https://www.tpc.org/tpch/
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Figure 2.7: Aggregation time of our scheme SAGMA for varying bucket sizes
and a varying number of combined attributes in one query.

the size of the CRT components. Instead of one polynomial of degree B,
B polynomials are required to evaluate the shifts for each row. Hence, the
running time increases quadratically in the bucket size. Again, the row count
operation is more efficient than summation.

Finally, we evaluate the impact of the number of attributes to be grouped.
According to Figure 2.7b, the aggregation time increases superlinearly. Here,
the running time increases polynomially in the total number of attributes of
the database table if the number of grouping attributes in a single query is
limited by t. This enables us to store and combine Bt monomials to evaluate
the polynomial.



Chapter 3

Electronic Payment

The contents of this chapter are based on joint work with Dirk Achenbach,
Roland Gröll, Alexander Koch, Bernhard Löwe, Jeremias Mechler, Jörn
Müller-Quade, Jochen Rill, and Julian Herr. Parts of the content previously
appeared in other publications. The publications are listed below. This thesis
presents a new proof of security based on the computer-assisted protocol
verification tool Tamarin.

• Dirk Achenbach, Roland Gröll, Timon Hackenjos, Alexander Koch,
Bernhard Löwe, Jeremias Mechler, Jörn Müller-Quade, and Jochen
Rill. “Your money or your life—modeling and analyzing the security of
electronic payment in the UC framework”. In: International Conference
on Financial Cryptography and Data Security. Springer. 2019, pp. 243–
261. doi: 10.1007/978-3-030-32101-7_16 [1]

• Jochen Rill. “Towards Applying Cryptographic Security Models to
Real-World Systems”. PhD thesis. Karlsruhe Institute of Technology
(KIT), 2020 [144]

• Alexander Koch. “Cryptographic protocols from physical assumptions”.
PhD thesis. Karlsruhe Institute of Technology (KIT), 2019 [113]

3.1 Introduction

“Your money, or your life!”—surrender your belongings or face death. This
threat was used by bandits in England until the 19th century [132]. As
people often needed to carry all their valuables with them when traveling,
banditry was a lucrative (albeit dangerous) endeavor. Today, electronic
money transfer (EMT) systems alleviate the need to have one’s valuables
at hand but introduce new threats as well. Instead of resorting to violence,
modern thieves may compromise their victim’s bank account. Once they are
widely deployed, insecure EMT systems are notoriously difficult to transition
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away from—magnetic stripes are still in use today. The current state-of-the-
art payment standard EMV (short for Europay International, MasterCard
and VISA, also known as “Chip and PIN”) improves on this but falls short
of providing a secure solution to payment (or money withdrawal), as shown
by its many weaknesses described in literature. Among these are practical
attacks, such as

(i) “cloning” chip cards by pre-computing transaction messages (so-called
“pre-play attacks”) [20],

(ii) tricking an innocent customer into accepting fraudulent transactions by
relaying transaction data from a different point of sale (POS) (so-called
“relay attacks”) [57],

(iii) disabling the Personal Identification Number (PIN) verification of
stolen cards by intercepting the communication between chip card and
POS device [129, 13].

Upon close examination of these attacks, one finds that these issues
mainly stem from two major false assumptions which are baked into the
design of the EMV protocol:

(i) that the input device (POS or automated teller machine (ATM)) itself
is trustworthy and

(ii) that the communication between all protocol participants (e.g. between
the chip card and the POS) cannot be intercepted.

Designing payment protocols that are secure even if the input device
is infected with malware is especially challenging, since the input device
provides the user with an interface to communicate with the bank. A human
user is not capable of performing cryptographic operations and thus needs
such a device. However, interacting with a compromised input device, the
user cannot be sure that the displayed transaction is really executed and not
manipulated behind the scenes.

Even though these assumptions are critical for the security of EMV, they
are not explicitly stated in the standardization documents [61, 62, 63]. We
suggest that this is mainly because EMV has been created by a functionality-
focused engineering process in which problems are fixed as they occur and
features are added when necessary, rather than a design process that uses
formal models and techniques.

Modern cryptographic protocols in contrast are designed by first pro-
viding a formal description of the protocol, explicitly stating all necessary
assumptions and then giving a proof of security. This does not make cryp-
tographic protocols unbreakable, but it does make their potential breaking
points explicit. Therefore, we argue that it is necessary to start developing
electronic payment protocols by using the same methodology of rigorous
formal modeling as has already been established in cryptography.
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3.2 Secure Electronic Payment

As a basis for our considerations, observe the process of withdrawing cash at
an automated teller machine (ATM). First, there is the bank and its customer,
Alice. Second, there is the money dispensing unit inside the ATM. Assuming
authenticated communication from Alice to the bank and from the bank
to the money dispensing unit, secure payment is easy: Alice communicates
the amount of cash she needs and the identity of the money dispensing unit
she expects to receive the cash from. The bank then instructs the money
dispensing unit to dispense the money. However, Alice is a human and
therefore cannot perform cryptographic operations required for a classical
channel establishment protocol. Thus, Alice needs another party which offers
a user interface to her and communicates with the bank, namely an ATM.

This does not only apply to cash withdrawal but can be extended to
electronic money transfer (EMT) in general. To this end, think of Alice as
the initiator of a transaction and the money dispensing unit as the receiver.
The process of money withdrawal can now be framed as a payment of money
from Alice’s account to the account of the money dispensing unit, which
upon receiving money, promptly outputs cash. In this scenario the ATM
serves as an input device. The same works for the point of sale: here, the
device’s owner (e.g. the supermarket) is the receiver.

Regarding our adversarial model, we make no assumption about the
trustworthiness of the ATM whatsoever and do assume that the adversary has
control over all communication. However, we assume the money dispensing
unit inside the ATM (or receiver in general) to be trusted. If it is under
adversarial control, the adversary could simply dispense money at will. This
requires that the money dispensing unit can only be controlled remotely by
the bank and not by the ATM itself.

3.2.1 Necessary and Sufficient Requirement

The core challenge when realizing secure electronic payment is the authen-
ticated transmission of transaction data from the (human) initiator to the
bank. As discussed before, we assume that the bank can communicate with
the (trusted) receiver authentically. This can be realized with standard
cryptographic mechanisms such as digital signatures as the sender and the
receiver are both not human. Thus, in this work we focus on the secure
initiation of a transaction by a human.

In an ideal payment protocol, the (human) initiator would transmit the
desired transaction data securely to the bank without the adversary being
able to interfere. Thus, by encoding a message inside the transaction data, a
payment protocol can be used to transmit a message authentically. We use
this insight to establish a necessary condition for protocols that realize secure
electronic payment: they must be strong enough to realize authenticated
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communication between the initiator and the bank. Protocol designers can
use this condition as an easily checkable criterion for the insecurity of payment
protocols. Likewise, authenticated communication between the initiator and
the bank is sufficient to realize electronic payment, as the authenticated
channel can be used to transmit the transaction details authentically.

3.2.2 Confirmation Is Key

Realizing authenticated communication from a human initiator to the bank is
hard since a human cannot execute cryptographic operations. Furthermore,
the ATM that provides the user with an interface to communicate with the
bank might be compromised. Since the human initiator of a transaction can-
not be sure that an untrusted input device correctly processes his transaction
data, he needs a way of confirming the transaction data with the bank before
the transaction is processed. By default, EMV uses smartcards containing
shared secrets with the bank in order to authenticate transactions. However,
this only works if the input device which accesses the smartcard (e.g. the
ATM) can be trusted. Otherwise, after the initiator enters his Personal
Identification Number (PIN) to authorize a seemingly legitimate transaction,
the input device can present false (transaction) data to the smartcard (cf. e.g.
[20]). Thus, smartcards are not sufficient to establish a secure confirmation
mechanism. Instead, we need a mechanism that is transparent for the user
even if the ATM is compromised. This can for example be realized using an
additional device with a display. Similar to a smartcard, the additional device
might store a secret key. However, the major advantage is that the device
can show the transaction data before signing it and request confirmation
from the user, e.g., by pressing a button.

3.2.3 One-out-of-two Security

Various devices such as transaction authentication number (TAN) genera-
tors and smartphones can be used to establish a confirmation mechanism.
However, smartphones, which are increasingly used to replace smartcards,
regularly call attention because of vulnerabilities. They are complex systems
connected to the Internet and are thus vulnerable to attacks—especially if
they are operated by people without expertise in IT security. As stated
earlier, ATMs are vulnerable to attacks too. Unpatched operating systems
and exposed Universal Serial Bus (USB) interfaces are only two examples for
weaknesses that have been exploited successfully in the past to infect ATMs.

This dilemma can be resolved by requiring trust in only one of the two
devices. We call this property one-out-of-two security. This means that a
protocol is still secure if one of the two devices is corrupted, no matter which
one of them. We propose one-out-of-two security as a means of providing
protection against malware attacks.
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We argue that it is difficult for an adversary to compromise both an
ATM and the smartphone of a user that wants to withdraw cash at an ATM.
Especially since the two devices differ in many aspects such as their location,
hardware, operating system and system configuration. Thus, it is unlikely
that an adversary is able to compromise both devices using the same method.
Therefore, the required effort for a successful attack is heavily increased.

3.3 On the Security of Current Payment Protocols
In this section, we analyze current protocols for withdrawing cash and paying
at the point of sale (POS). The protocols discussed in this section make
additional implicit assumptions, which we believe to be plausible, but want
to make explicit. These include the following:

(i) An additional trusted device beside the input device. This is a plausible
assumption if the device is simple, less so if it is a smartphone. However,
using an additional device could enable protocols to provide one-out-
of-two security.

(ii) Authenticated communication between the initiator of a transaction
and an additional trusted device. This is a realistic assumption, since
the initiator owns the device. Likewise, the initiator can authenticate
themselves to the device, e.g., by unlocking the screen of a mobile
device.

(iii) Confidential communication from the initiator to the ATM, which can
be realized by covering the PIN pad with one’s hand if the ATM is not
compromised.

(iv) Confidential communication from the ATM to the bank. This can be
realized using public-key cryptography.

The default EMV protocol with smartcard and PIN does not rely on an
additional device and thus assumption (i) and (ii) are not required for this
protocol. In the following, we analyze multiple protocols for cash withdrawal
and paying at the POS. Table 3.1 summarizes our findings.

3.3.1 EMV

Even though EMV is the most widely used standard for payments, we do
not elaborate on its security in this chapter. As mentioned before, its design
incorporates at least two assumptions that do not hold, as several attacks
have been demonstrated. Current payment protocols such as Google Pay,
Apple Pay, Samsung Pay, Microsoft Pay and Garmin Pay provide an app
that uses the EMV contactless standard to communicate with existing POS
devices via near-field communication (NFC) [151, 158]. Since they rely on
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Table 3.1: Comparison of current payment protocols. A protocol is marked
as offline, if the additional device does not require an Internet connection
during the payment process or no additional device is used.

Protocol Offline Secure Applicable for
EMV standard ✓ × Withdrawal, PoS
Cardless Cash ✓ × Withdrawal

VR-mobileCash × × Withdrawal
L-Pay (our protocol) ✓ ✓: 1-of-2 Withdrawal, PoS

Consumer Device Cardholder Verification Method (CDCVM), the user is
authenticated by the mobile device exclusively. Currently, these apps use a
PIN, a fingerprint or face recognition and thus do not incorporate a second
device such as the POS device for authentication. Therefore, the security of
the protocol is solely based on the mobile device.

3.3.2 Cardless Cash

Cardless Cash [42] is an app-based protocol for cash withdrawal offered by
numerous banks in Australia. In its most simple variant, it works as follows:
after registration, the app can be used to create a “cash code” by entering
the desired amount and a phone number. The phone number is used to send
a PIN via SMS. To dispense the cash, the PIN has to be entered at the
ATM alongside the cash code. The security of the protocol is based on both
the security of the ATM and the mobile device. An attacker that controls
the mobile device can generate arbitrary cash codes and receive the PINs
via SMS. Similarly, since all relevant information is entered on the ATM,
an attacker controlling the ATM can eavesdrop on the cash code and PIN.
Instead of sending this data to the bank, the attacker can use it to withdraw
the money at another ATM. Thus, if any of the two devices is compromised,
the protocol is insecure.

3.3.3 VR-mobileCash

VR-mobileCash [141] is another app-based protocol for cash withdrawal
offered by Volks- und Raiffeisenbanken, a German association of banks.
Upon registration, the user receives the mobile personal identification number
(mPIN), which has to be entered on the ATM later on to confirm a transaction.
To withdraw cash, the user has to enter the desired amount in the app. After
selecting the mobile payment option at the ATM, the ATM shows a mobile
transaction identification number (mTIN) which has to be entered in the
app. The ATM then shows the requested amount and asks the user to enter
the mPIN. If the mPIN is correct, the ATM dispenses the requested amount
of cash.
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Although not stated explicitly in the public documentation, the mobile
device has to be online during the transaction, as the ATM is informed
about the transaction data without establishing a communication mechanism
with the ATM locally. In its current form, VR-mobileCash does not fulfill
one-out-of-two security. If the mobile device is corrupted but the ATM is
honest, a user can detect an attack because he has to confirm the transaction
by entering the mPIN at the ATM and thereby verifies the location of the
ATM. However, a corrupted ATM can employ a relay attack by displaying
the mTIN of another corrupted ATM and forwarding the entered mPIN
to it, thus allowing the second corrupted ATM to dispense the cash. This
could be fixed by adding a serial number imprinted on the ATM which is
also displayed in the app after entering the mTIN. Thereby VR-mobileCash
could potentially realize one-out-of-two security.

3.3.4 Online Banking

Some protocols that are currently used in online banking such as the chip
authentication program (CAP) protocol and photoTAN establish a confir-
mation mechanism using an additional device such as a TAN generator or
smartphone. However, they are not intended to be used for cash withdrawal
or paying at the POS. We analyze the security of online banking schemes in
more detail in Chapter 4.

3.4 Designing A Protocol for Electronic Payment

Even though many of the current payment protocols rely on smartphone
apps to secure the payment process, none of them provides one-out-of-two
security. Thus, compromising an automated teller machine (ATM) is still
a feasible way to steal money. We design a protocol for electronic payment
and aim to achieve the following design goals:

(i) Establish a confirmation mechanism using a smartphone

(ii) Achieve one-out-of-two security

(iii) Do not require internet connectivity for the smartphone

Our protocol L-Pay is inspired by online banking protocols such as chip
authentication program (CAP) and photoTAN. We establish a confirmation
mechanism using the initiator’s smartphone. In addition, we require the ini-
tiator to confirm a transaction by entering a Personal Identification Number
(PIN) at the ATM. This prevents a compromised smartphone from initiating
arbitrary transactions. In combination, L-Pay achieves one-out-of-two se-
curity. Before transactions can be issued using the protocol, the user must
register the smartphone with the bank. In addition, the bank supplies the
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Initiator App Input Bank Receiver

(I, B, m$)Phase 1:
(I, B, R, m$)

(I, B, R, m$, nonce)(I, B, R, m$)Phase 2:
(fetch)

(nonce)

(nonce)Phase 3:
I, B, R, m$

(PIN) (PIN , nonce)

(I, R, m$)

Figure 3.1: Protocol flow of L-Pay using authenticated and confidential
channels drawn as and respectively.

user with a PIN. Both of these tasks can be carried out in a registration
ceremony at a branch bank.

The protocol flow of L-Pay consists of three phases as shown in Figure 3.1.
In the first phase, the initiator enters the desired transaction details into an
input device such as an ATM or point of sale (POS) device. In this scenario,
we assume that a user withdraws money at an ATM. The transaction details
consist of the account number I of the initiator, the bank B, and the desired
amount m$ to withdraw. The ATM forwards this information to the bank
and adds the identifier of its money dispenser R. In the second phase, the
transaction has to be confirmed using the smartphone. To achieve this, the
bank transmits the transaction data and a nonce to the smartphone app.
However, since our protocol should work with a smartphone that does not
have an active internet connection, the data is relayed through the ATM and
transmitted from the ATM to the smartphone using a QR code. Because
the transmitted information is confidential, the bank encrypts the data using
the public key registered for the app during registration. The app decrypts
the message and displays the transaction data. After the user confirmed the
transaction data, the app displays the transmitted nonce. It is important that
the app does not display the nonce before the user confirmed the transaction
data. Otherwise, the displayed nonce could be picked up by a CCTV camera
monitoring the ATM and used by an adversary to confirm the transaction
without the user’s explicit consent. In the last phase, the user confirms
the transaction at the ATM by entering the nonce and the PIN. The ATM
forwards the PIN and nonce to the bank. Finally, the bank verifies that the
nonce belongs to a pending transaction of an account and that the PIN is
valid for the account. In this case, the bank notifies the money dispensing
unit inside the ATM to dispense the requested amount of cash.
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3.4.1 Communication Channels

L-Pay relies on multiple communication channels between the participants
of the protocol. In the following, we list the necessary channels and describe
how they are realized in L-Pay.

(i) Bank App: confidential channel

(ii) Initiator Smartphone: bidirectional authenticated channel

(iii) Initiator ATM: confidential channel

(iv) ATM Bank: confidential channel

(v) Bank Receiver: authenticated channel

The channel between the bank and the smartphone app must be confiden-
tial to protect the transmitted nonce. This can be realized using public-key
encryption. In addition, we need an authenticated channel between the
initiator and the smartphone to assure that only the initiator can confirm
the transaction. This is commonly realized by the lockscreen mechanism of
the smartphone. Furthermore, the initiator needs to enter the PIN into the
ATM confidentially, e.g., by covering the PIN pad with one’s hand, such that
it cannot be eavesdropped by a CCTV camera. In addition, the ATM needs
a confidential channel to send the PIN to the bank. Otherwise, an attacker
controlling the network between the ATM and the bank can learn the PIN.
Furthermore, the transmission of the PIN has to be resilient to replay attacks.
Encrypting the PIN and sending it to the bank is not sufficient, because
an attacker controlling the network can replay the recorded ciphertext in
a subsequent transaction. In L-Pay, the PIN and the nonce are encrypted
together in the same message and sent to the bank. Because the nonce is
only valid for one specific transaction, the ciphertext cannot be reused to
confirm different transactions. Finally, we need an authenticated channel
between the bank and the receiver to inform the receiver of the completed
transaction. For this channel, it is important that messages are only valid
for a short amount of time. An attacker controlling the network can delay
messages to the receiver. This could be abused to delay a command to
dispense cash. An honest user will probably wait some time for the money
dispenser to cash out money but will eventually leave and contact the bank.
In the meantime, the attacker can deliver the command and collect the user’s
money. To prevent this, the message to the money dispenser should include
a timestamp such that the receiver can verify that the message is fresh and
drop expired messages. However, this also means that the receiver must have
access to a hardware clock. The use of sequence numbers is not sufficient on
its own as this only prevents reordering messages but not delaying a message.
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3.5 A Formal Model for L-Pay
To reason about the security of our protocol, we formalize L-Pay, as well as our
security notion one-out-of-two security. In previous work, we presented a for-
mal model for electronic payment based on the Universal Composability (UC)
framework [1]. However, in this thesis we present a formalization of the L-Pay
protocol and security proof using Tamarin Prover (Tamarin) [125]. Tamarin
is a tool for the computer-assisted formal verification of cryptographic proto-
cols. For a brief introduction to Tamarin, we refer to Section 2.5.3. Using
Tamarin to formally verify the security properties of L-Pay provides the
following advantages:

(i) The proof generation is automated. Once the protocol and the secu-
rity notion are formalized, Tamarin can be used to generate a proof.
This eliminates the potential of human errors during proof generation.
Furthermore, Tamarin outputs a counterexample if the prover reasons
that the protocol does not fulfill the security notion. This constitutes
a possible attack on the protocol.

(ii) We model a stronger attack model incorporating adaptive corruption.
That means, the attacker can compromise a device at any time during
the protocol execution. The UC model in [1] is based on the concept
of static corruption, where the adversary can only compromise devices
prior to the protocol execution.

(iii) Manual proof generation quickly gets unmanageable for complex sce-
narios. Thus, using Tamarin we were able to model a more complex
scenario incorporating multiple banks and automated teller machines
(ATMs).

(iv) By providing two security proofs, we strengthen the confidence in our
protocol.

3.5.1 Assumptions

We do make certain assumptions regarding the trustworthiness of different
protocol participants. As discussed before, we assume the money dispensing
unit inside an ATM to be trusted. Since our work focuses on the challenges
that arise from the interaction of humans with untrustworthy devices over
insecure communication, we do not model the banks’ book-keeping and
assume the banks to be incorruptible.

Our model for electronic payment is thus designed with regards to the
following principles:

(i) The adversary always gains access to all transaction data. An elec-
tronic payment operation can be secure (that is all participants of
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the transaction get notified about the correct and non-manipulated
transaction data) without the transaction data being secret.

(ii) The payment operation occurs in three stages. In the first stage, the
initiator inputs his intended transaction data which the adversary can
change at will. This models that a corrupted input device will always
be able to change the human initiator’s transaction data, even if it will
be detected at a later stage. In the second and third stage, the bank
and the receiver are notified about the transaction data.

3.5.2 Modeling L-Pay using Tamarin

We use Tamarin to model our protocol L-Pay. Our model supports adaptive
corruption, i.e., the adversary can compromise ATMs and smartphones at any
time during protocol execution. Furthermore, our model supports scenarios
with multiple banks and ATMs. We do not consider the compromise of
a bank and thus assume the banks to be incorruptible and to be able to
communicate securely with each other. We assume that an ATM can be used
by customers of all registered banks and that the ATM can communicate
confidentially with these banks. Furthermore, a user can open bank accounts
at multiple banks. We use the following multi-set rewriting rules to model
L-Pay using Tamarin:

• create_bank: Registers a new bank as a persistent fact.

• create_atm: Registers a new ATM as a persistent fact.

• init_app: A user installs the banking app required for L-Pay on the
smartphone. The app generates a key pair that is later used during
registration.

• register_account: Register a new bank account for a user at a specific
bank. The user provides the bank with the public key of his banking
app. Furthermore, the bank assigns a random Personal Identification
Number (PIN) to the user.

• init_transaction: A honest user commences a transaction at an ATM.
After entering the transaction details, the ATM forwards the transaction
data to the bank.

• attacker_init_transaction: A malicious user commences a transaction
at an ATM and enters arbitrary transaction details. This is modeled as
a separate rule, because it allows to differentiate transactions initiated
by honest and malicious users, which is important for the security
notion.
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• bank_receive_transaction: A bank receives a transaction from an ATM.
The bank verifies that the bank account exists and transmits the
transaction details in conjunction with a nonce to the app registered
for the account.

• app_receive_transaction: The app receives and decrypts an encrypted
message containing the transaction details and the nonce from the
bank.

• user_verify_app_transaction: The user verifies the transaction details
displayed by the app. If the user confirms the transaction, the app
displays the nonce transmitted by the bank.

• atm_user_enter_pin_and_nonce: The user verifies the transaction
details displayed by the ATM and confirms the transaction by entering
his secret PIN and the nonce displayed by the app.

• atm_attacker_enter_pin_and_nonce: A malicious user tries to confirm
a transaction at an ATM by entering a previously acquired PIN and
nonce.

• bank_verify_transaction: The bank receives the nonce and the PIN
from the ATM via a confidential channel. The bank verifies the nonce,
as well as the PIN of the user. If everything is correct, the transaction
is confirmed by the bank.

• compromise_atm: An ATM is compromised by an adversary.

• compromised_atm_leak_pin: A user confirms a transaction at a com-
promised ATM. The adversary thus learns the entered PIN.

• compromise_app: The smartphone of a user is compromised by an
adversary. The adversary leaks the private key stored in the app.

Figure 3.2 shows a simplified trace of rules for creating a bank account
and executing a transaction. The trace is separated into the different phases
of the L-Pay protocol. The figure also includes rules that allow an attacker
to interfere with the protocol such as compromising a device.

3.5.3 How Our Model Captures Existing Attacks

One of our main motivations for establishing a formal model for electronic
payment is to make trust assumptions explicit in order to detect unrealistic
ones which enable practical attacks like [20], [129] and [57]. Thus, our model
needs to be able to capture these kinds of attacks. In the following, we
explain how this is achieved.
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Phase 1
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Figure 3.2: Simplified execution trace of our Tamarin model for initiating
and confirming a transaction at an ATM with L-Pay.

Changing Transaction Data

An adversary controlling the input device can easily change transaction data.
This is represented in our model by transmitting the transaction data over
an insecure channel to the bank, which can be manipulated arbitrarily by
the adversary.

Relay Attacks

The aim of a relay attack [57] is to get Alice to authorize an unintended
transaction, which benefits the attacker, by relaying legitimate protocol
messages between the point of sale (POS) device she uses to pay for goods
to another POS device. Our model supports relay attacks out of the box.
Since Tamarin is based on the Dolev-Yao attack model, all messages passed
through the network can be read, manipulated, forwarded and replayed by
the adversary. Furthermore, in our model messages from an ATM to the
bank are not authenticated and can be forwarded arbitrarily.
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lemma only_user_initiated_transactions_accepted :

"All acc bank data atm #i.
BankVerifiedTransaction (acc , bank , atm , data) @ #i
==>
(
Ex #j. ( TransactionInitiated (acc , bank , atm , data) @ #j)
)"

Listing 3.1: First security lemma that states that all accepted transactions
are initiated by an honest user.

Pre-Play Attacks

Pre-play attacks [20] basically rely on two facts: (i) once unlocked, smart-
cards, as used in the EMV protocol, can be coerced into generating message
authentication codes (MACs) for arbitrary transaction messages and (ii) that
even honest ATMs use predictable “unpredictable numbers”. Cards interact-
ing with a corrupted ATM can be used to easily generate additional MAC
tags. Since in our protocol, the smartcard is replaced by a smartphone
and instead of generating a MAC, the smartphone decrypts a nonce trans-
ferred from the bank, the protocol enforces freshness and resists injecting
pre-calculated data. Nonetheless, this kind of attack could be represented in
our model by adding a rule that grants an adversary access to a signature
oracle once a smartcard is inserted into the input device.

3.5.4 Modeling One-out-of-two Security

In addition to the protocol, we model our security notion one-out-of-two
security using first-order logic formulas for Tamarin to verify. We need to
model two aspects of our security notion:

(i) The security goal

(ii) The attack model

The definition of the security goal is inspired by [115] and is split into
two lemmas. The first lemma only_user_initiated_transactions_accepted
shown in Listing 3.1 states that each transaction that is accepted by a bank
must have been initiated by an honest user. This lemma ensures that an
adversary is not able to execute arbitrary transactions.

However, this lemma does not prevent replay attacks. Consider a simple
protocol where the initiator sends a signature of the transaction data con-
sisting of the bank, identifier of the ATM, and amount to the bank. Once
the transaction is complete, the attacker can replay the recorded signature
to execute the same transaction again. This does not falsify the lemma but
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lemma replay_attack_impossible :

"All acc1 bank1 data1 atm1 acc2 bank2 data2 atm2 #i #j.
BankVerifiedTransaction (acc1 , bank1 , atm1 , data1) @i &
BankVerifiedTransaction (acc2 , bank2 , atm2 , data2) @j &
not #i = #j
==>
( Ex #k #l.
TransactionInitiated (acc1 , bank1 , atm1 , data1) @k &
TransactionInitiated (acc2 , bank2 , atm2 , data2) @l &
not #k = #l)"

Listing 3.2: Second security lemma that states that transactions cannot be
replayed.

is clearly undesirable. Thus, we define an additional lemma replay_attack_-
impossible as shown in Listing 3.2 that captures exactly this requirement. It
states that for each possible pair of accepted transactions there must exist
two unique points in time when each of them was initiated by an honest user.

Besides the security goal, our security notion must respect our attack
model too. For one-out-of-two security, we allow the adversary to either
compromise an ATM or the user’s smartphone but not both. However,
our formalization of L-Pay allows the adversary to compromise ATMs and
smartphones participating in the protocol arbitrarily. Thus, we have to
restrict compromise of devices in our security notion explicitly. In our
model, compromise of a device results in an action fact being written to
the trace. For example, if a smartphone is compromised, the action fact
CompromiseApp is written to the trace. For ATMs, our model establishes a
persistent fact ATM_Compromised. Once this fact is established, an attacker
might leak PINs entered by users that withdraw money at the compromised
ATM. If the PIN of a user is leaked by an ATM, we output the action fact
WithdrawAtCompromisedATM.

To incorporate our attack model, we add the following clause to the
security lemmas. Thereby, we state that the lemma must hold as long as the
adversary does not compromise the user’s app and an ATM where the user
withdraws money.

Ex #j #k. CompromiseApp (acc , bank) @#j &
WithdrawAtCompromisedATM (acc , bank) @#k

We show the complete definition of our security notion in Listing 3.3.
The entire model of our protocol and the security notion can be found in
Appendix A. A protocol satisfies one-out-of-two security if both lemmas
only_user_initiated_transactions_accepted and replay_attack_impossible
are fulfilled. We used the Tamarin prover to verify that our protocol L-Pay
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lemma only_user_initiated_transactions_accepted :

"All acc bank data atm #i.
BankVerifiedTransaction (acc , bank , atm , data)@ #i
==>
(( Ex #j.
TransactionInitiated (acc , bank , atm , data) @ #j)
| (Ex #j #k. CompromiseApp (acc , bank) @#j &

CompromiseATM (atm) @#k))"

lemma replay_attack_impossible :

"All acc1 bank1 data1 atm1 acc2 bank2 data2 atm2 #i #j.
BankVerifiedTransaction (acc1 , bank1 , atm1 , data1) @i &
BankVerifiedTransaction (acc2 , bank2 , atm2 , data2) @j &
not #i = #j
==>
(( Ex #k #l.
TransactionInitiated (acc1 , bank1 , atm1 , data1) @k &
TransactionInitiated (acc2 , bank2 , atm2 , data2) @l &
not #k = #l
)
| (Ex #m #n. CompromiseApp (acc1 , bank1) @m &

WithdrawAtCompromisedATM (acc1 , bank1) @n)
| (Ex #m #n. CompromiseApp (acc2 , bank2) @m &

WithdrawAtCompromisedATM (acc2 , bank2) @n))"

Listing 3.3: Formalization of our security notion one-out-of-two security for
electronic payment using two Tamarin lemmas.

fulfills both lemmas. Thus, L-Pay achieves one-out-of-two security and is
secure as long as one of the two devices is not compromised.

3.6 Related Work

In this section, we introduce different types of related work, including secure
human-server communication, alternative hardware assumptions, electronic
cash, and the EMV standard.

3.6.1 Secure Human-Server Communication

Basin, Radomirovic, and Schläpfer [14] give an enumeration of minimal
topologies of channels between a human (restricted in its abilities), a trusted
server, a possibly corrupted intermediary and a trusted device, that realize
an authenticated channel between the human and the server. Our work
differs in two main aspects: Their model uses either fully secure or untrusted
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channels only and cannot account for just authenticated or just confidential
communication, which is important in our setting. For example, we assume
that information displayed on the user’s smartphone is not confidential due to
the presence of CCTV cameras and shoulder-surfing. Second, their solution
is based on a trusted device, whereas in our work no single device needs to
be trusted (see Section 3.2.3).

3.6.2 Alternative Hardware Assumptions

As we identified in Section 3.2.2, the confirmation of payment information
by the user is an important sub-problem we aim to solve for achieving secure
payment. A possible solution is “Display TAN” [76] providing a smartcard
with a display to show the transaction data. Smart-Guard [51] uses such
smartcards with a display together with an encrypting keyboard fixed to the
card to achieve a functionality which may be used for payment. These strong
hardware assumptions allow for flexible trust assumptions, accounting for
several combinations of trusted/compromised status of the involved devices.
For our construction we do not propose a new kind of hardware device but
rely on the user’s smartphone.

3.6.3 Electronic Cash and Cryptocurrencies

Electronic cash was invented to support the privacy properties of cash money
in electronic payment systems [35, 34]. These systems offer untraceable
payments that hide the payment details from third parties. At the same
time, they ensure that double spending is not possible, i.e., the bank can
identify the corresponding user if a digital coin is spent multiple times.
Modern decentralized cryptocurrencies such as Bitcoin establish an electronic
payment system that prevents double-spending without relying on a trusted
bank [75]. This is achieved by storing transactions in a public ledger and
using a consensus mechanism based on proof-of-work. In general, electronic
cash systems and cryptocurrencies have very different design goals. They
aim for untraceable payments or the replacement of a trusted bank by a
distributed system. In contrast, we are concerned with the authenticated
transmission of the transaction data from a human user to the bank.

3.6.4 EMV

EMV is not only a single payment protocol, but a complete protocol suite
for electronic payment (cf. [61, 62, 63]). Protocols that are EMV-compliant
might just implement the EMV interface while using another secure protocol.
This means that, while there are multiple attacks against the EMV payment
protocol, not every protocol with EMV in its name is automatically insecure.
In addition to the attacks mentioned previously, there are other attacks as
described by Chothia et al. [37] and Emms et al. [60].
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Degabriele et al. [50] investigate the joint security of encryption and
signatures in EMV using the same key-pair. A scheme based on elliptic
curves (as it is used in EMV) is proven secure in their model. However,
as they conclude, their proof does not eliminate certain kinds of protocol-
level attacks. Cortier et al. [43] present an EMV-compliant protocol for
point of sale (POS) using a secure element in a mobile device and prove
the security of their protocol using Tamarin [125]. In contrast, our protocol
does not rely on a single trusted hardware component but instead spreads
trust between two involved devices. Basin, Sasse, and Toro-Pozo [13] model
several configurations of the EMV standard using Tamarin and discover new
flaws. However, their model is based on the Dolev-Yao attack model and
does thus not consider compromise of the POS device or automated teller
machine (ATM).

3.7 Conclusion and Future Work
Designing payment protocols that protect against infected devices poses a
particular challenge. They typically involve a human user who is not capable
of performing cryptographic operations and therefore needs an intermediate
device (e.g. an automated teller machine (ATM)) to interface with the
protocol, which might be compromised. For payment protocols involving
additional devices such as smartphones we proposed one-out-of-two security
as a remedy. Protocols fulfilling this security notion are secure as long as
either the ATM or additional device is uncompromised. Based on these
results, we examined current payment protocols and found that most do not
realize this notion. Online banking protocols such as chip authentication
program (CAP) and photoTAN might satisfy the requirements for secure
electronic payment. However, online banking differs from electronic payment
in many aspects and is thus analyzed separately in Chapter 4. We designed
a protocol called L-Pay (inspired by online banking protocols), which uses
an additional smartphone and is secure even if either the ATM or the
smartphone is compromised. To verify the security properties of our protocol,
we formalized L-Pay and verified that it fulfills one-out-of-two security using
Tamarin Prover (Tamarin).



Chapter 4

Web Authentication

The contents of this chapter are based on joint work with Benedikt Wagner,
Julian Herr, Jochen Rill, Marek Wehmer, Niklas Goerke, and Ingmar Baum-
gart. Parts of the content previously appeared in other publications. The
publications are listed below.

• Timon Hackenjos, Benedikt Wagner, Julian Herr, Jochen Rill, Marek
Wehmer, Niklas Goerke, and Ingmar Baumgart. “FIDO2 With Two Dis-
plays—Or How to Protect Security-Critical Web Transactions Against
Malware Attacks”. In: arXiv preprint arXiv:2206.13358 (2022). doi:
10.48550/arXiv.2206.13358 [91]

4.1 Introduction
In recent years, the World Wide Web and the multitude of different services
offered within changed almost everyone’s life. Whether we want to send an
email, do online banking, buy a product, or update our social media profile,
we use the Web. In general, each of these activities requires a separate
account with which we authenticate ourselves. According to a study by
Google in partnership with The Harris Poll in 2019, the average American
has 27 different online accounts [7].

Passwords always were and still are the main means of authentication on
the Web. However, since one cannot possibly remember that many different
passwords (and the adoption of password managers is still very low) re-using
passwords on a multitude of different sites is a common practice [49]. This
means that one stolen password from an account on an unimportant website
might also give an adversary access to more important ones, like an online
banking account.

As more and more of our private and professional life started to happen
on the Internet, compromising accounts through simple and cheap attacks
like credential stuffing and phishing became increasingly more attractive and
lucrative for attackers.
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To mitigate these risks, security experts started to advertise the use
of two-factor authentication instead of only a single password [105]. A
mandatory second authenticating factor (like a one-time password (OTP))
severely restricts the utility of stolen passwords for an attacker. Users and
account providers alike took a very long time to adopt this recommendation,
but nowadays many web applications offer at least one form of two-factor
authentication. Most implementations require the user to present a second
factor together with a password during login. If successful, the user then
receives an authenticated session token (stored within a cookie), which she can
use to interact with the site and her account without having to authenticate
herself again for a while.

When using two-factor authentication, it is recommended to use two of
the three following factors: something you know, something you have and
something you are. Behind this categorization lies the assumption that it
is improbable for the same adversary to compromise factors from different
categories (e.g., an adversary that gets a password from a password leak
cannot also steal a copy of the user’s fingerprint). However, this is only true
in a very specific adversarial model. An attacker who has compromised a
victim’s computer does not need to steal a copy of the fingerprint; he can
simply manipulate all interactions with a website by using the authenticated
session token stored in the browser after the victim performed a legitimate
login.

Indeed, two-factor authentication as it is used today does not help against
a number of attack techniques used by real-life adversaries [146, 5, 39]. Most
schemes are susceptible to malware attacks and some popular forms, like
OTP, are also vulnerable to real-time phishing, in which an adversary relays
authentication details from a fake website to a legitimate one [106, 115].

Bruce Schneier adequately summarized the applicability of two-factor
authentication in as early as 2005: “Two-factor authentication isn’t our
savior. It won’t defend against phishing. It’s not going to prevent identity
theft. It’s not going to secure online accounts from fraudulent transactions.
It solves the security problems we had 10 years ago, not the security problems
we have today” [150].

In recent years, online banking has been moving into the right direction
security-wise by introducing transaction authentication, which is the verifica-
tion of transaction details (often on an additional device, but not necessarily).
Authenticating transactions individually mitigates the risk of session hijack-
ing by stealing a cookie. Furthermore, manipulation of transaction details
can be detected if one is using an additional device to check them.

The chip authentication program (CAP) protocol used in online banking
thus provides a high level of security [95]. It relies on a dedicated card reader
with a display. The device offers a very small attack surface for infection by
malware as it has limited functionality and is specifically built for this use
case.
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Carrying an additional device has been identified to be unpleasant for
many users [116, 120]. In consequence, many banks abandoned dedicated
hardware tokens and transitioned to app-based authentication schemes such
as photoTAN. However, similar to regular computers, smartphones have large
attack surfaces, are susceptible to, and have been attacked by malware [68].
By compromising the smartphone, attackers can bypass confirmation of
transactions on the device [95]. Therefore, if an attacker gets access to
the user’s password, he can access the online banking system and execute
arbitrary transactions (see Section 4.2). Some banks even allow initiating
transactions from the same device [95]. Thus, most current online banking
schemes, which are required by law to offer strong security [66], do not
adequately protect against malware attacks, since the smartphone needs
to be fully trusted. Besides online banking, many other use cases such as
administration panels and electronic health records handle security-critical
transactions (see Section 4.6). However, most of them do not implement
transaction authentication and thus do not protect against malware attacks.

The recent FIDO2 standard provides a widely implemented browser API
called WebAuthn that simplifies integration of secure web authentication
mechanisms relying on public-key cryptography and supporting authentica-
tion of individual transactions. However, authentication with FIDO2 as it is
used today does not involve a second device with a display and thus suffers
from susceptibility to malware attacks as described before. An extension for
transaction authentication has even been removed from the latest version of
the WebAuthn standard because it was not implemented in any browser1.

We show how to design web authentication schemes using two devices (one
of which could be a smartphone) which protect security-critical transactions,
even if one device is fully compromised. While this might seem like an
impossible task, it can be done. In the following, we show how.

4.2 Attacks on Web Authentication

In this section, we analyze attacks on current web authentication schemes
and introduce our attack model that serves as a basis for the following
considerations.

4.2.1 Password Attacks

Password authentication is by far the most prominent authentication scheme
in the web. The main problems of password authentication are that users
choose weak passwords and reuse them across multiple sites [155]. Brute-
force and password spraying attacks exploit weak passwords while credential-
stuffing attacks focus on reused passwords. For example, the video conferenc-

1https://github.com/w3c/webauthn/issues/1386

https://github.com/w3c/webauthn/issues/1386


4.2. Attacks on Web Authentication 60

ing solution Zoom was hit by a credential-stuffing attack and a large number
of accounts were compromised [103]. The success of these attacks is not
surprising considering the amount of publicly available credentials [102].

Risk-based authentication (RBA) aims to strengthen password authenti-
cation by monitoring features such as the IP address and the user agent of the
browser and triggering additional authentication during login if they differ
from those recorded before [162]. While this limits the impact of a stolen
password, most features are easy to detect and spoof during a phishing or
malware attack. Criminal platforms evolved that sell access to user profiles
containing credentials and features that allow bypassing RBA [26].

4.2.2 Real-Time Phishing

In 2018, Amnesty International reported targeted phishing attacks on Google
and Yahoo accounts that bypassed one-time password (OTP)-based two-
factor authentication [5]. By automating the process of using the stolen
password and OTP, the attackers were able to work around the short validity
of the token. Despite being more complex than classic phishing attacks
that only harvest passwords for later use, real-time phishing attacks are
not sophisticated. Several tools are publicly available to automate this
attack [121, 133]. In addition, real-time phishing attacks can be used to
identify features of the user necessary to bypass RBA [26].

4.2.3 Malware

As described in prior work, multiple ways exist to remotely infect devices
with malware ranging from drive-by downloads and email attachments to
social engineering attacks that convince a user to install malware herself [83,
131]. Google’s Threat Analysis Group even detected the use of a zero-day
exploit for the Safari browser to steal cookies for popular websites such as
Google, Microsoft and LinkedIn [153]. Modern operating systems support
to isolate applications from another which might limit the impact a piece
of malware can have on a system. However, these mechanisms have been
bypassed multiple times in the past, e.g., using privilege escalation exploits.
Thus, we assume malware to run with the highest privileges available on a
system. For more information regarding isolation mechanisms of modern
operating systems we refer to Section 6.2.1. Of course, smartphones are
affected by malware too [68]. In the following, we discuss two types of attacks
that can be carried out by malware to issue a malicious transaction.

Transaction Manipulation

In the following, we assume that an authentication scheme is used that does
not display transaction details on an additional device. Malware on the
primary device can then carry out a transaction manipulation attack as
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Figure 4.1: Transaction manipulation attack: malware on the device manip-
ulates the transaction data t and issues a transaction t’ instead.
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Figure 4.2: Transaction initiation attack: malware on a smartphone confirms
transaction initiated by the attacker.

depicted in Figure 4.1. Suppose that a user wants to make a security critical
transaction on a website. After logging in (potentially with two factors), she
enters the desired transaction details t (1), however, the compromised device
initiates a manipulated transaction t’ (2) instead. If the service relies on
session authentication only, the manipulated transaction t’ is authenticated
by the cookie sent by the browser and thus confirmed immediately. However,
the service might require confirmation by a second factor for transaction t’
such as an OTP (3). In this case, the malware prompts the user to confirm
the original transaction t (4). As the user cannot detect the manipulation,
she supplies the required OTP (5). The attacker can use the OTP to
confirm the manipulated transaction t’ (6). This attack applies to other
authentication schemes such as FIDO2 as well. Transaction manipulation
has been used extensively in the wild by online banking malware such as
ZeuS and SpyEye [146]. Note that RBA does not prevent this attack, as the
transaction is initiated in a valid user session.

Transaction Initiation

Authentication schemes that incorporate an additional device for transaction
verification are often susceptible to a transaction initiation attack as depicted
in Figure 4.2. We assume that the attacker compromised the additional
device and installed malware. In a next step, the attacker needs to determine
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the user’s password using one of the methods from Sections 4.2.1 and 4.2.2.
Potentially, the password is even stored on the additional device and thus
accessible to the attacker. With the password, the attacker logs in to the
service from his own device using the victim’s account (1). The service
might require confirmation of the login attempt on the additional device,
e.g., because the service implements RBA and detected a change in the user
profile. Usually, confirmation of the login attempt is implemented using
text messages, email or an app [163]. However, since the attacker remotely
controls the additional device, he can confirm the login request (3) [95]. After
logging in successfully, the attacker can initiate an arbitrary transaction t (4).
The service might require confirmation of the transaction (5), however, again
the attacker controlling the additional device can confirm the request (6).

4.2.4 Our Attack Model

We identify the following three main means of attack on web authentication
schemes:

• Password attacks

• Real-time Phishing

• Malware

Malware attacks are more powerful than real-time phishing and password
attacks. Password attacks give access to passwords only. In addition, real-
time phishing grants access to other credentials entered by the user such as
an OTP. The strongest type of attack is compromising a device and infecting
it with malware. This grants full access to input and output interfaces of a
device such as the keyboard and display, as well as credentials stored on the
device. Thus, malware on a device might eavesdrop on credentials entered
by the user, as well as manipulate information displayed on the screen.

We assume malware to be executed with the highest user privileges
available such as root or administrator and thus malware might manipulate
the operating system. This assumption is supported by prior work that
documents the use of privilege escalation attacks in the wild [68]. Furthermore,
a similar model for malware has been used in prior work [115, 95].

Because of the high prevalence of password and phishing attacks [155], we
assume all attackers to be able to carry them out. However, we differentiate
attackers by their ability to infect involved devices with malware. The
underlying premise is that each device that has to be compromised by the
attacker to break a scheme increases the difficulty of the attack. Furthermore,
we consider that an attacker can carry out multiple attacks targeting the
same user. For example, an attacker that infects a smartphone with malware
can also mount a password or phishing attack targeting the account of the
user.
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4.3 Malware-Resistant Web Authentication

As discussed in the last section, a secure web authentication scheme should
protect against real-time phishing and malware attacks. In the following, we
argue that the concept of transaction authentication is inevitable to protect
against malware attacks and that two-factor authentication, as it is currently
defined, does not provide security benefits in this attack model.

4.3.1 Transaction Authentication

Usually, users sign in to a web service before using it. During this process,
the web service authenticates the user and establishes a trusted session.
Session authentication means that once the session is created, the user is
allowed to perform an arbitrary number of actions by sending requests to the
service. It can be described as authenticating the session and then assuming
every action performed as part of the session has been authorized by the
user.

On the other hand, using transaction authentication, transactions are
initiated in an authenticated session, but confirmation of each individual
transaction is required (e.g., verification of transaction details by the user
on a separate device). Nonetheless, transaction authentication is usually
used for security-critical transactions only. For example, in online banking,
transferring money between a checking and a savings account of the same
user could rely on session authentication. Security-critical transactions
such as bank transfers to an external account should require transaction
authentication. These transactions must be identified for each use case on its
own. We provide examples for such transactions in Section 4.6.

Relying on session authentication only is fundamentally flawed in the
presence of malware. Taking control of the session lets an attacker interact
with the service on behalf of the user, independently of the used authenti-
cation procedure. Thus, strong security guarantees can only be stated for
transactions protected by transaction authentication. However, transaction
authentication is not sufficient to protect against malware attacks on its own.
For example, if transactions are initiated and confirmed on the same device,
malware can manipulate the transaction data without the user noticing [95]
Combined with other measures proposed below, individual transactions can
be protected to make it impossible for an attacker to perform an unsolicited
transaction without the user explicitly authenticating it.

4.3.2 Flaws in Two-Factor Authentication

The notion of two-factor authentication is too weak in a realistic attack
model and does not imply any security guarantees in the presence of a
malware or phishing attacker, even for individually authenticated transactions.
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Intuitively, we expect a two-factor authentication scheme to be secure as
long as one of the two factors is not compromised. However, this is satisfied
neither by the notion nor by currently deployed schemes in the presence
of malware. As described in Section 4.2, malware and real-time phishing
attacks are not prevented thoroughly by current two-factor authentication
schemes.

Two-factor authentication schemes used in online banking such as the chip
authentication program (CAP) protocol and photoTAN provide resistance to
malware on the device running the browser. However, the reason for this does
not lie in the fact that they fulfill the two-factor authentication definition,
but that they require the user to verify transaction details on a separate
device. Thus, we need a new way of defining two-factor authentication that
fulfills the intuitive promise of the notion: ensuring the security of a scheme
even if one of two factors is compromised. This redefinition of two-factor
authentication makes malware and real-time phishing attacks infeasible and
thus solves the weaknesses of current web authentication schemes.

4.3.3 One-out-of-two Security for the Web

In Chapter 3 on secure electronic payment, we formalized exactly this
requirement. However, instead of relying on two factors from the three
categories, we separate trust between two independent devices. Our electronic
payment protocol L-Pay uses two devices and is still secure (with regards to
specific security properties) even if one of the devices is fully compromised.
We called this security notion one-out-of-two security and showed that it
can be fulfilled by requiring the user to verify the transaction details on
both devices. In this chapter, we adapt one-out-of-two security to web
authentication by letting the user verify details of individual transactions on
two separate devices.

L-Pay relies on a so-called confirmation mechanism to fulfill one-out-of-
two security. The transaction details are displayed to the user (e.g., on an
additional device) and explicit confirmation is required before performing the
transaction. We reuse the idea of a confirmation channel in the design of our
web authentication scheme. However, we use a slightly stronger version of
one-out-of-two security. Our security notion also covers attackers that mount
multiple attacks to target a user, e.g., infecting a device with malware and
executing a brute-force attack on the password. According to our definition, a
protocol that uses two separate devices exhibits one-out-of-two security, if an
attacker who has the capabilities defined in our attack model in Section 4.2
is not able to issue a fraudulent transaction without compromising both
devices. To make it harder for an attacker to compromise both devices,
the devices should be hardened and isolated from each other. Attacks have
been described that abuse synchronization mechanisms to compromise a
smartphone from an infected computer [114]. This illustrates the importance
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of proper device isolation. However, details about how device isolation can
be achieved goes beyond the scope of this work.

Note that the goal of the security notion is authenticity of transactions
and not confidentiality of the transaction details. To be able to confirm the
authenticity of a transaction on two devices, the user must either see or enter
the details on each device separately. In either case, both devices will need to
handle the transaction details in plain text. Thus, compromising one device
is enough to violate the confidentiality of transaction details. As described
in Section 4.6, by limiting access to actions that return or change data on
the service, the authenticity guarantee of transactions can be used to achieve
integrity and confidentiality of data stored on the server.

4.3.4 Blueprint for Secure Web Authentication

Constructing a web authentication scheme that fulfills one-out-of-two security
and is thus only vulnerable to attackers that are able to compromise both
devices is not an easy task. As we will show in Section 4.7, commonly used
schemes do not have this property.

We propose Two Display Authentication (2DA), a blueprint for secure
web authentication. Following the blueprint simplifies constructing schemes
that fulfill one-out-of-two security. We identify the following requirements
for 2DA.

(2DA.1) Authenticate security-critical transactions.

(2DA.2) Require verification of transaction details by the user on both
devices.

(2DA.3) Use authentication mechanisms that protect against network-based
attacks.

(2DA.4) Use local authentication mechanisms to limit access to the devices.

The first requirement addresses the fact that the security guarantees can
only be accomplished for transactions that are authenticated individually.
The second requirement is necessary to thwart attacks that involve one of
the two devices being compromised. Entering the transaction details on a
device instead of reading them from the display is also possible. Furthermore,
the third requirement relates to the communication between the devices
and the server. If an insecure authentication protocol is used that can
be hijacked on the network level, then an attacker would not bother to
compromise a device to impersonate the user. For example, using only a
password to authenticate a transaction, guessing the password or mounting a
phishing attack is sufficient to impersonate the user without the necessity of
compromising the primary device. Thus, one-out-of-two security cannot be
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achieved by using password authentication. Finally, the fourth requirement
protects devices in case they are stolen. Even though this is not strictly
necessary to fulfill one-out-of-two security, as the notion does not consider
how a device is compromised, we deem it an important mechanism to prevent
physical attackers from compromising or abusing stolen devices. Other
hardening measures that increase the difficulty of compromising a device can
be used to further enhance security, e.g., enabling exploit mitigations.

Note that a secure transaction authentication scheme does not protect a
user from authenticating an unintended transaction if the original transaction
data was manipulated in the first place. Thus, it is of utmost importance that
the transaction data is either self-explanatory or the user has the ability to
compare the transaction data with a known safe value. For example, attacks
on online banking have been described that are based on manipulating digital
invoices [93]. If the original transaction details are only available on one
device, then no scheme can offer protection when the device is compromised.

The goal of 2DA is to simplify creating web authentication schemes that
protect security-critical transactions by relying on one-out-of-two security.
In the following section, we show that building on existing web authenti-
cation mechanisms such as FIDO2, we can use this blueprint to design an
authentication scheme that is secure, even in the presence of malware and
real-time phishing attacks.

4.4 Two Display Authentication using FIDO2

We use our blueprint 2DA from the last section to design FIDO2 With Two
Displays (FIDO2D), a new web authentication scheme that fulfills one-out-
of-two security, i.e., the scheme is secure as long as one of the two devices
is not compromised. We refer to Section 4.5 for a detailed security proof.
On a high level, a user U aims to initiate a transaction at a server S using a
computer B running a browser. The user also holds an additional device A,
such as a smartphone.

We assume that (2DA.4) is satisfied by existing mechanisms that restrict
access to B and A. Most devices offer to setup a lockscreen that requires the
user to authenticate herself to the device before getting access, e.g., using
a Personal Identification Number (PIN). Thus, an attacker would have to
steal a device and the corresponding authentication factor for the device.
Compromising both devices by stealing them and their authentication factors
is even more challenging. Optimally, the user has even setup individual
authentication factors for the two devices. Following (2DA.3), we build on
top of an existing authentication mechanism with appropriate security, and
following (2DA.2) we use two instances of this mechanism. That is, one
instance is executed between B and S, and one instance is executed between A
and S. Again, following (2DA.2) we let the user verify the transaction details
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during both instances. To be more precise, we organize both instances in a
way that the user enters the transaction details in the browser on B and require
verification of the transaction data by the user on A using a confirmation
channel. In the following, we introduce the underlying authentication scheme
FIDO2, and then describe the protocol for registration and authentication
in its entirety.

4.4.1 FIDO2

We use FIDO2 as the underlying authentication mechanism [8]. FIDO2 is an
interactive public-key challenge-response authentication protocol published
by the Fast IDentity Online (FIDO) Alliance. It is used on top of Transport
Layer Security (TLS). Both registration and authentication consist of a
three-message flow between client and server. The first message from client
to server initiates the interaction. The second message is sent from server to
client and contains a randomly sampled challenge. Finally, the client sends a
signature of this challenge and some additional data to the server. For more
information about the basic protocol flow of FIDO2 we refer to Section 2.4.

More precisely, the client does not execute the cryptographic operations
itself, but rather forwards messages to a so-called authenticator, which
contains all key material. FIDO2 differentiates platform authenticators that
are integrated into devices and roaming authenticators that can be connected
via transports such as USB. For our further description, we focus on the
FIDO client, because most authenticators do not contain a display to show
transaction data themselves that is crucial for verification by U.

There are mainly two reasons for our choice of FIDO2. First, it is
supported as an API by all modern browsers on the client side and libraries for
various programming languages on the server side. This makes our protocol
easy to implement and integrate. Second, it offers the security we need
for (2DA.3) and (2DA.4). For our requirement (2DA.3), the authentication
mechanism must resist network-based attacks such as phishing and replay
attacks. FIDO2 is resilient to these attacks because both a random challenge
and the identifier of the current web service, typically a domain name, is
signed. Thus, the signature can neither be forwarded to another service
because the identifier would not match nor replayed because a different
challenge would be used. Furthermore, correctly guessing the used secret,
i.e., the private key of a digital signature scheme, is very unlikely when an
appropriate key length is used. For our requirement (2DA.4) FIDO2 supports
a mechanism called user verification. When enabling user verification, the
authenticator authenticates the user before allowing to use the stored key
material, e.g., using a PIN. Thus, a stolen authenticator can only be used
with the corresponding authentication factor. In the following, we describe
our protocol FIDO2D and how it interfaces with FIDO2.
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Figure 4.3: Sequence diagram for registration in our protocol FIDO2D. Here,
a user U registers at a server S. The devices B and A are used to generate
secret and public keys sB, pubB and sA, pubA during the process. The nonce
n is randomly generated by S.

4.4.2 Registration

First, the user registers the device B using the standard FIDO2 registration
ceremony. The device B and service S communicate with each other using
a TLS session where the service authenticates itself to the clients using a
certificate. The same applies to the communication between A and S later
on. During registration, S stores a public key pubB from B. Then, S provides
a nonce to B to link the second device A to the account. The user transfers
the nonce from device B to A using a QR code. Again, we use the FIDO2
registration ceremony to store a public key pubA from A on S.

In more detail, the registration process is depicted in Figure 4.3. The
server responds to a user registration request with a set of options opt,
containing a random challenge, the identifier of the server and the name of
the new user, as well as further parameters for the creation of credentials.
First, the authenticator of B creates a new credential and sends the public key
pubB back to S. During this process, the user is asked to confirm registration
on device B. Next, the server S randomly generates a nonce n, links it to the
username, and sends it to B. Then, n is transferred from B to A (e.g., using a
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Figure 4.4: Sequence diagram for transactions in our protocol FIDO2D.
Here, a user U authenticates a transaction with data d with a server S by
using devices B and A. The devices B and A have a secret key sB and sA,
and the server S knows the corresponding public keys pubB and pubA. The
variables authch and authch′,d contain ch and ch′, d respectively and are
further explained in the text.

QR code). Again, the user is asked to confirm the registration on the device
A. Then, A can initiate a FIDO2 registration ceremony with S. Because A
supplies n, S can link both registration ceremonies to the same username.

As a result of the registration, S is aware of public keys pubA, pubB linked
to user U. The devices A and B know the secret keys sA, sB for the public
keys pubA, pubB, respectively.

4.4.3 Transactions

The message flow during a transaction is shown in Figure 4.4. Again, the
communication between the devices B and A and the service S is protected
using a TLS session with server authentication. Recall that a user U wants
to issue a transaction with data d at a server S. First, the user U enters the
intended transaction data d on device B, which transfers the transaction data
together with the username to S. S sends a set of options opt, containing
a random challenge ch, to B. To complete the transaction initiation, B



4.4. Two Display Authentication using FIDO2 70

must respond with a signature covering ch and S using the private key sB.
Before this data is signed by B’s authenticator and the signature is sent to
S, according to the FIDO2 protocol the authenticator has to confirm user
presence, i.e., the user has to touch a button. In addition, because we require
user verification, the authenticator has to authenticate the user, e.g., using a
fingerprint scanner or a PIN. However, in this step U does not have to verify
the transaction data as this was implicitly done by entering the transaction
data on B.

The authenticator computes the signature over a hash of the servers’
domain, flags, the authenticator’s signature counter (which is used for clone
detection), extension data, and a hash of the client data that contains
the challenge ch. This follows the FIDO2 standard. In Figure 4.4 this is
simply presented as Sig(sB, authch) where authch contains the aforementioned
data. After receiving the signature from B, the transaction is not yet fully
authenticated. The server S requires confirmation by A too. For this, the
FIDO2 authentication protocol is performed between A and S. Note that in
this step a fresh challenge ch′ and the public key pubA is used. S links both
challenges ch and ch′ to the transaction data d and user U.

A receives the transaction data d together with the challenge ch′ as
part of options opt′ from S, and presents the transaction data, identifier
of S and username U to the user. The user has to verify that this data
is correct and decline the dialog otherwise. As before, the authenticator
has to confirm user presence and user verification. For device A we use the
Simple Transaction Authorization Extension (txAuthSimple) of FIDO2. This
extension ensures that d is signed together with ch′ and S. Thus, after U’s
confirmation, A not only signs ch′ and S, but d too. Thereby the challenge
ch′ is linked to the transaction data d, which is important when the data is
transmitted over an insecure channel. As we propose to use TLS, transferring
d along the signature would suffice in our attack model. However, using the
txAuthSimple extension allows adapting the protocol to devices that can
only communicate insecurely with S. For example, a device A that is not
connected to the Internet directly could transmit data to B to relay them
to S. As the channel between A and B might be constrained, e.g., when
transferring data manually with QR codes, using TLS is not reasonable in
this scenario.

In our diagram, we denote the signature generated by B’s authenticator
as Sig(sB, authch), where authch′,d depicts the data that is signed analogous
to authch described before. S accepts the transaction with data d when both
authentication ceremonies are successful, i.e., both signatures can be verified
using the stored public keys and the signatures cover the correct challenges
ch and ch′. In addition, the signature from device A must cover the correct
transaction data d.
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Figure 4.5: Screenshots of a user’s view in our app prototype during regis-
tration. Left: Registration in the browser using FIDO2. Right: Registration
in the app by scanning a QR code.

4.4.4 Prototypical Implementation

To verify the feasibility of our approach, we implemented a prototype of
FIDO2D consisting of a server component for S and an Android app running
on A. On the server, we use a Go library for FIDO2 by Duo-Labs2. We had
to add support for the txAuthSimple extension. More specifically, the server
has to check that the authenticator signed the extension data containing
the transaction details and that they have not been tampered with. For
our app, we use an Android library by Duo-Labs3 to create credentials and
sign supplied challenges. Again, we added support for the txAuthSimple
extension, which mainly required signing the extension data. On device B,
we use the Web Authentication (WebAuthn) browser API which is part of
the FIDO2 standard and is supported by all modern browsers.

Following the principle (2DA.4) we limit access to the devices by a local
authentication mechanism such as a lockscreen. On A we force the use
of a lockscreen by enabling the option setUnlockedDeviceRequired of the
Android Keystore4. This ensures that the private key can only be used if
the device is unlocked. Access to the private key can be further restricted
by requiring to push a physical button or displaying transaction data on a
protected screen [124]. We assume that device B has a lockscreen set up

2https://github.com/duo-labs/webauthn
3https://github.com/duo-labs/android-webauthn-authenticator
4https://developer.android.com/reference/android/security/keystore/

KeyGenParameterSpec.Builder

https://github.com/duo-labs/webauthn
https://github.com/duo-labs/android-webauthn-authenticator
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder
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Figure 4.6: Screenshot of our app prototype during transaction confirmation
in a fictitious micro-blogging scenario.

too. Furthermore, we enable the requireUserVerification parameter in the
WebAuthn API and require the User Verified flag to be set in the signed
authenticator data. This ensures that roaming authenticators that are prone
to theft cannot be used without authentication, e.g., using a PIN.

Figure 4.5 shows the user interface of the registration process. On B the
browser shows a pop-up asking the user to confirm registration with FIDO2.
Afterwards, the user links the app on A to the account by scanning a QR
code from the browser. In the background, the app establishes a connection
to the server and initiates a FIDO2 registration ceremony as well. Figure 4.6
shows the transaction confirmation screen of our app. In this example, the
user initiated a new post on a fictitious micro-blogging service. The app
displays all relevant information including the username and identifier of the
service.

Even though the Client to Authenticator Protocol (CTAP) is designed
to relay data to an authenticator, we decided against using it for our app.
CTAP requires the user to connect the smartphone to the computer during
authentication [69]. However, Bluetooth and NFC are not available on all
platforms [112] and USB requires a wired connection. Thus, we suggest
using push messages and TLS for the communication of A and S. In our
implementation, we use the push service Firebase Cloud Messaging5. How-
ever, we do not transmit any data in the push message, but request the app
to establish a TLS connection to the server and retrieve data from there.

5https://firebase.google.com

https://firebase.google.com
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Integration of a push-based transport into CTAP would be desirable, as it
would allow FIDO2D to rely on standard FIDO2 only. Recently, attempts to
integrate such a mechanism into CTAP [128] have been made, however, they
are not yet included in the standardized protocol. We hope that our work
strengthens these developments. Furthermore, our prototypical app could be
superseded by integrated support for FIDO2 in mobile operating systems.
This requires that the smartphone can be used as a roaming authenticator
on another device and that it supports the txAuthSimple extension such that
transaction data can be verified. However, the extension txAuthSimple has
been removed in the second level of the WebAuthn standard [164]. This was
justified by the fact that the extension was not implemented in any browser6.

Although we do not consider recovery in our implementation, promising
methods for recovery of FIDO2 authenticators have been proposed that do
not sacrifice security by incorporating a backup authenticator [73].

4.5 Security Proof
We formally prove that our protocol FIDO2D fulfills the security notion one-
out-of-two-security (see Section 4.3.3) with the help of the protocol verification
tool Tamarin Prover (Tamarin) [125]. Our lemma definitions, which from
Tamarin’s point of view constitute the protocol’s security properties, are
inspired by [115]. We also analyze the effect of users not verifying transaction
data on the security of FIDO2D. While our scheme does not fulfill one-out-
of-two-security in this scenario, we prove that it still protects against most
types of attacks including phishing and malware affecting the additional
device.

In the following, we describe how we modeled our protocol as well as the
security notion one-out-of-two security.

4.5.1 Our Tamarin Model for FIDO2D

Our model consists of 13 rules and two lemma definitions. We refer to
Appendix B for a complete definition of each rule, including an enumeration
of facts that are produced and consumed by it. Each rule’s purpose is briefly
explained below:

• new_server: Registers a new honest server as a global fact. Honest
servers cannot be used to perform phishing attacks.

• register_first_device: Registers a new account at a server and connects
a user’s first device to it. The device is identified by a public key
generated for the particular account. Account and device identities are
then leaked to the attacker.

6https://github.com/w3c/webauthn/issues/1386

https://github.com/w3c/webauthn/issues/1386
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• register_second_device: Finishes registration of a user’s account by
connecting a second device to it. This step also leaks the public key
registered by the second device to the attacker.

• init_transaction: A user commences a transaction at a server for which
there already exists a personal account with two registered devices. Af-
ter sending the transaction with its accompanying data to the network,
the first device waits for a challenge from the server.

• receive_transaction: An honest server receives a transaction from a
previously registered user. It generates a challenge and sends this back
to the user’s first device.

• phish_transaction: A user falls for a phishing attack and initiates a
transaction on a phishing server.

• receive_transaction_phisher: A phishing server receives a transaction
of a user that fell for a phishing attack.

• sign_nonce: A user’s first device signs a challenge for a transaction
that has also been started by her.

• verify_signature: A server verifies the signature of a previously issued
challenge of a user’s first device. It then generates a second challenge,
which is sent to the user’s second device.

• sign_second_nonce: A user’s second device receives a transaction re-
quest. After the user verified that the displayed transaction data
corresponds to the transaction she previously initiated, her second
device signs the second challenge. The signature is sent back to the
server.

• verify_second_signature: A signature of a user’s second device is veri-
fied on the server. If verification succeeds the transaction is completed,
i.e., the server executes the user requested transaction internally.

• compromise_first_device: A user’s primary device is compromised. We
model this by leaking the device’s private key to the adversary.

• compromise_second_device: A user’s additional device is compromised.
We model this by leaking the device’s private key to the adversary.

An example trace containing a transaction accepted by a server can be
obtained by instantiating the rules in the order given in Figure 4.7, excluding
rules that model phishing or compromise of devices. In our model, there are
two rules that do not require custom facts to be present within the global
state, namely new_server and register_first_device. Consequently, these two
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register_first_device

register_second_device

compromise_first_device

compromise_second_device

init_transaction

receive_transaction

Registration

Init transaction

sign_nonce

verify_signature

sign_second_nonce

verify_second_signature

phish_transaction

receive_transaction

receive_transaction_phisher

Verify transaction

Figure 4.7: Structure of our Tamarin model. Pictured is the most straight-
forward order of instantiation of rules for normal and phishing transactions.

rules can be instantiated regardless of the current world state within Tamarin.
In this example, protocol instantiation starts with registration of an honest
server (omitted for clarity in Figure 4.7), registration of a user’s devices at
this server, initialization of a transaction and verification of a transaction by
the server. These rules correspond to three distinct categories: registration,
transaction initialization and transaction verification. In order to model
phishing attacks, which is a transaction that is started on a malicious server,
transaction initialization contains two more rules, init_transaction_phisher
and receive_transaction_phisher.

4.5.2 How Our Model Captures Reality

Tamarin builds on the Dolev-Yao [54] attack model. In this model, the
attacker obtains knowledge of every message sent over the network. He is
also able to modify, suppress and inject messages, as well as re-send known
messages at any time during protocol execution. However, the attacker is
not able to break cryptographic schemes without knowing the key.
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Although we expect typical implementations of FIDO2D to be embedded
within already bootstrapped TLS sessions, our Tamarin model relies on
unilateral authentic channels only. Specifically, we require the communication
channels from the server to the user’s devices to be authentic. We use rules
suggested in the Tamarin manual to model authentic channels [154]. As a
result, the actual payload of a transaction is always assumed to be transmitted
in the clear over an attacker-controlled network. These simplifications allow
us to present a more concise model in contrast to a model in which FIDO2
and TLS have also been realized. Furthermore, this highlights again that we
assume a strong attack model. In a real-world implementation of FIDO2D,
confidentiality is guaranteed by performing transactions within the context
of a TLS session.

FIDO2D relies on FIDO2 and thus we also model a simplified version
of the FIDO2 protocol. We use the built-in signing model of Tamarin
that provides the necessary functions for a signature scheme. To model
drawing a fresh nonce as challenge, we use the built-in fact Fr(~nonce).
We simplified the signed data to include the server identity and challenge
only. Thus, in our model, the signature generation can be described as
sign(<S, nonce>, privkey). In our implementation, the second device signs
the transaction details by usage of the FIDO2 txAuthSimple extension.
Therefore, our model assumes that the authenticator data also contains
the transaction data for the second device. This is expressed by the term
sign(<S, d, nonce>, privkey).

During registration, the registered public keys are written to the attacker-
controlled network. We thereby model that authentication information stored
on a server can be leaked by a data breach. However, we do assume the
devices to be uncompromised during registration.

Our model considers phishing and malware attacks as described in Sec-
tion 4.2. We model malware by explicitly allowing the attacker to compro-
mise a device. This is depicted in the rules compromise_first_device and
compromise_second_device by leaking the stored private key. In our proto-
col the private key is everything one needs to fully impersonate a device.
Thus, it is not necessary to model other capabilities of malware such as the
manipulation of transaction data explicitly.

To consider real-time phishing, we add the rules phish_transaction and
receive_transaction_phisher. The rule phish_transaction allows the attacker
to force the user to visit a potentially attacker-controlled website. In an
actual attack, this could be accomplished by sending a phishing email with
a link to the user. We assume that the user falls for the phishing attack
and continues to follow the protocol by entering transaction data. The rule
receive_transaction_phisher allows the attacker to answer the user’s request
with arbitrary transaction data and challenge. The whole protocol flow of a
phishing attack can be found in Figure 4.7. After receiving transaction data
from the user, the attacker initiates a manipulated transaction at the original
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lemma only_user_initiated_transactions_accepted :

"All initiator transaction server #i. TransactionComplete
(initiator , server , transaction ) @i

==>
(
(Ex #j. TransactionBegin (initiator , server , transaction )

@j) |
(Ex #k #l. CompromiseDev1 (initiator , server ) @k &

CompromiseDev2 (initiator , server ) @l)
)"

Listing 4.1: A FIDO2D security property which states that only honest
(i.e., user initiated) transactions are accepted by a server, captured as a
Tamarin lemma. In conjunction with replay_attack_impossible, this lemma
constitutes one-out-of-two-security.

server. For example, this allows him to relay the challenge of a different
transaction to the user’s device.

4.5.3 Proving One-out-of-two Security

The security guarantees of our protocol are verified by Tamarin against
two lemmas, only_user_initiated_transactions_accepted and replay_at-
tack_impossible. Together they form our security notion one-out-of-two-
security. The lemmas are inspired by the Tamarin proof of SecurePay [115]
and analogous to the lemmas we defined for L-Pay in Section 3.5.4. We
present the definition of the lemmas in Listing 4.1 and Listing 4.2 respectively.

The first lemma in Listing 4.1 states that every transaction that is
accepted by a server must have been initiated by an honest user and has not
been tampered with. However, this lemma is not sufficient on its own as it
does not rule out replay attacks. In a protocol that is susceptible to replay
attacks, an attacker may replay a legitimate transaction initiated by an honest
user which would result in the same transaction being executed again. Thus,
the second lemma shown in Listing 4.2 states that each accepted transaction
must have been initiated by an honest user at a unique point of time. With
these two lemmas we ensure that in a secure protocol, transactions by honest
users can neither be started nor manipulated by an attacker.

Besides the targeted security guarantees, our security notion must also
capture the attack model. The formalization of our protocol allows the
attacker to compromise devices arbitrarily. However, to fulfill one-out-of-two
security, a protocol must withstand the compromise of one of the user’s
devices but not both. Thus, we add a clause to ensure that the lemmas are
not falsified when the attacker compromises both devices.
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lemma replay_attack_impossible :

"All initiator1 transaction1 initiator2 transaction2
server #i #j.

TransactionComplete (initiator1 , server , transaction1 ) @i
&

TransactionComplete (initiator2 , server , transaction2 ) @j
& not #i = #j

==>
((
Ex #k #l.
TransactionBegin (initiator1 , server , transaction1 ) @k &
TransactionBegin (initiator2 , server , transaction2 ) @l &
not #k = #l
) |
(Ex #m #n. CompromiseDev1 (initiator1 , server ) @m &

CompromiseDev2 (initiator1 , server ) @n) |
(Ex #m #n. CompromiseDev1 (initiator2 , server ) @m &

CompromiseDev2 (initiator2 , server ) @n) )

Listing 4.2: A FIDO2D security property which states that transactions
cannot be replayed captured as a Tamarin lemma. In conjunction with
only_user_initiated_transactions_accepted, this lemma constitutes one-out-
of-two-security.

For simplicity, the lemmas do not impose any temporal order on the
sequence of actions on the trace. Thereby, the lemmas are more general but
consider traces with specific temporal order as well. For example, the point
of time at which the start of a transaction is recorded should be before the
corresponding completion of said transaction.

By using the Tamarin theorem prover, we verified that our protocol
satisfies both lemmas only_user_initiated_transactions_accepted and re-
play_attack_impossible and thus exhibits one-out-of-two security. In the
following, we sketch why the scheme intuitively fulfills one-out-of-two security
and adheres to these lemmas. Assume a user’s first device is compromised,
and her second device is benign. Then, the attacker is able to initiate
fraudulent transactions or manipulate benign transactions on the first device.
During protocol execution the user is asked to confirm the transaction data
d̂ on her second device, although she did not initiate a transaction at all or
initiated a transaction with data d ̸= d̂. Clearly, the user will not confirm
this transaction and thus the server will not execute the transaction. On
the other hand, assume her second device compromised and her first device
benign. In this case, the attacker cannot initiate a transaction himself. If
the user initiates a transaction, the attacker is not able to manipulate the
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transaction data because the server links the challenge sent to the user’s
second device to the transaction data entered on the corresponding first
device beforehand. Thus, the attacker can only confirm a transaction with
transaction data that was chosen by the honest user.

4.5.4 Comparing Transaction Data

Our model expects the user to verify transaction data properly. User studies
suggest that this is not always the case [94]. Furthermore, attackers have
been found to successfully bypass authentication by triggering repeated push
notifications to animate honest users into accepting them [107]. Similar
to prior work, we extend our model to consider users that do not verify
transaction data at all [12]. In our model, it is sufficient to remove parameters
from the fact UserWaitForConfirmation. Thereby, the user only confirms a
transaction after she initiated one but does not compare the transaction data.
Under this assumption, our protocol does not satisfy one-out-of-two-security.
An attacker can break the scheme by compromising the first device to initiate
a malicious transaction. Then, the user confirms the transaction on the
second device because she does not verify the transaction data. Below we
describe the sequence of rules that leads to a successful attack.

1. new_server: A new honest server is registered.

2. register_first_device: The user registers her first device.

3. register_second_device: The user registers her second device.

4. compromise_first_device: The attacker compromises the first device of
the user and leaks the private key sk stored on the device.

5. init_transaction: The user initiates a transaction with transaction data
d.

6. receive_transaction: The adversary drops the message sent by the user’s
first device and initiates a transaction with transaction data d′ instead.
The service sends a challenge ch to the user’s first device.

7. sign: The adversary signs the challenge ch with the stolen key sk and
sends the signature to the service.

8. verify_signature: The service verifies the signature and sends the trans-
action data d′ and a fresh challenge ch2 to the user’s second device.

9. sign_second_nonce: The user confirms the transaction without noticing
that the transaction data differs. The second device signs d′ and the
challenge ch2 and sends the signature to the service.
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10. verify_second_signature: The service verifies the signature from the
second device and confirms the transaction.

By removing the rule compromise_first_device we can prove that our
protocol resists an attacker that compromises the additional device and
carries out password and phishing attacks even if the user does not verify the
transaction details at all. Thus, FIDO2D provides strong security guarantees
and even provides one-out-of-two-security if the user verifies transaction
data.

4.6 On When to Use FIDO2D
FIDO2D can improve security in several scenarios. Before we describe
possible use cases, we present general guidelines and requirements.

4.6.1 Guidelines and Requirements

To adopt FIDO2D, the first step is to identify security-critical actions that
should be protected from malware attacks. Our scheme can be used to achieve
two separate security goals. First, the confidentiality of data stored on the
server can be protected by requiring the user to confirm requests for said data.
However, once the user approves a request, the data is shown on the primary
device and might be eavesdropped by malware. Nonetheless, malware on a
single device cannot get access to data protected by transactions without the
user requesting or confirming it. Furthermore, transactions can protect the
integrity of data stored on the server or activities triggered by the server. For
example, money transfers are commonly protected by transactions as they
change the account balance stored on the server. Actions have to be chosen
carefully, as requiring transaction authentication for many actions can easily
cause authentication fatigue, drastically reducing security benefits.

For the security of FIDO2D, it is important that transaction details
contain all necessary information about the transaction, so that the user can
verify them. As FIDO2D might be used for multiple accounts and services,
the transaction details should always include the domain name of the service
and the account name. Furthermore, the length of the transaction details
should also be considered when identifying suitable actions.

Services can still provide a login mechanism and offer to initiate a trans-
action from the authenticated session. However, the login mechanism must
resist password and phishing attacks and security-critical actions chosen
by the provider must be verified by the user on the additional device. Of
course, not all users want to confirm messages individually. Thus, the use of
FIDO2D should be configurable. However, disabling FIDO2D for an account
must also require verification with FIDO2D. Otherwise, FIDO2D can be
bypassed trivially.
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To be able to use FIDO2D, users need a smartphone and a computer
that supports FIDO2 either with an integrated platform authenticator or
with a roaming authenticator. Windows 10 provides a FIDO2 platform
authenticator out-of-the-box7. Hence, many users only need to install an
app on their smartphone. Our app can be used for multiple web applications
that implement our protocol. While platform authenticators are bound to
a specific device, a roaming authenticator might also be used to access an
account from multiple devices.

4.6.2 Use Cases

FIDO2D is suited best for scenarios with security-conscious users as it unfolds
it full potential when users verify transaction data properly. We introduce
four use cases where FIDO2D can protect users against malware attacks.

Online Banking

Of course, FIDO2D can be used in online banking scenarios. For example,
transactions can be used to protect the integrity of money transfers and
settings such as transfer limits. For money transfers, the transaction details
should include the recipient and the amount. Changing limits, should include
the new value of the limit. These types of transactions can be verified on a
smartphone properly.

Even though transaction authentication is already used in online bank-
ing, applying FIDO2D yields the following advantages. First, it advertises
initiating and confirming transactions on a different device. And second, it
replaces the use of passwords to login to the online banking system.

Electronic health record

In electronic health records, FIDO2D can be used to protect the confidentiality
of stored health information. Sensitive information would only be accessible
for a patient after confirmation on the smartphone. The transaction data
should indicate which data was requested. Such requests can be verified on
a smartphone properly.

Microblogging

In a microblogging service, the integrity of posted messages can be protected
using FIDO2D. In this scenario, publishing a message might have a huge
impact depending on the author. Messages of influential people such as the
former president of the United States have been associated with stock market
activity [79] but might also influence international affairs. As messages in a

7https://fidoalliance.org/microsoft-achieves-fido2-certification-for-windows-hello/

https://fidoalliance.org/microsoft-achieves-fido2-certification-for-windows-hello/
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microblogging service are short (e.g., 280 characters on Twitter), they are
suitable for verification on a second device. The transaction details should
include the name of the account as well as the full message content.

Administration Panels

Management panels such as Plesk8 allow users to carry out administrative
tasks on remote servers. For example, DNS settings for registered domains
can be configured. Manipulating the DNS settings of a domain allows to
eavesdrop and manipulate all traffic destined to the domain [98]. Thus,
protecting the integrity of the DNS settings using FIDO2D is beneficial. The
transaction details should include the domain name, the record type and
the value. Since this information is short, it is suitable for verification on a
smartphone.

4.7 Related Work

In the following, we consider two types of related work: security models for
web authentication and work that introduces web authentication schemes.
Finally, we compare the security of existing web authentication schemes with
FIDO2D.

4.7.1 Security Models

Jacomme et al. introduce a formal model for multi-factor authentication in
the applied pi calculus [106]. They analyze the Universal Second Factor (U2F)
protocol, a predecessor of FIDO2 and Google 2-step authentication. Their
threat model includes phishing and malware attacks, as well as fingerprint
spoofing to bypass RBA. Using ProVerif they identify several weaknesses
of the analyzed protocols. Google 2-step is susceptible to phishing attacks
that include fingerprint spoofing and U2F to malware controlling an at-
tached authenticator. They propose that these protocols should incorporate
verification of transaction data, which is exactly what FIDO2D provides.

Bonneau et al. [22] compare schemes proposed to replace passwords for
web authentication regarding usability, deployability, and security. They
consider a wide range of schemes such as password managers, federated
schemes, OTPs, and hardware tokens. The security of a scheme is assessed
based on the resilience to different kinds of attacks. However, phishing
and malware attacks are not considered to their full extent. For example,
malware is only assumed to steal credentials passively but not to manipulate
the browser. Furthermore, real-time phishing attacks are excluded explicitly.

8https://www.plesk.com/
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4.7.2 Web Authentication

FIDO2 is a standard for web authentication published by the FIDO Alliance.
It consists of a widely implemented browser API called WebAuthn [164].
This API simplifies integration of strong authentication mechanisms in web
applications. The underlying challenge-response protocol relies on public-key
cryptography. Even though the protocol is resistant to real-time phishing, it
does not prevent malware attacks [106].

This also applies to Google’s Advanced Protection program [80]. It
restricts login attempts to FIDO tokens; however, they can still be abused by
malware. Other proprietary solutions such as Duo Push and Akamai MFA
confirm login attempts using push messages [84, 58]. However, they do not
authenticate transactions individually and are thus susceptible to malware
using session hijacking or transaction manipulation (see Section 4.2).

The CAP protocol is a transaction authentication scheme used in online
banking [56]. A dedicated card reader is used to allow the user to verify
transaction details. Even though the CAP protocol is resilient to malware
on the primary device, it does not exhibit one-out-of-two security. In the
unlikely event that the card reader is compromised, the scheme can be
attacked by using phishing to initiate a malicious transaction (see Section 4.2).
Nonetheless, it provides a high level of security as compromise of the card
reader is less likely than of a smartphone. However, the protocol is of
proprietary nature and requires the user to carry an additional device, which
has been shown to hinder adoption significantly [116].

Recent attempts to improve authentication schemes focus on banning
weak schemes but do not reason about security properties and requirements
systematically, e.g., the European Commission issued the revised Payment
Services Directive (PSD2), a regulation requiring strong customer authentica-
tion for online banking [66]. PSD2 suggests that users have to be made aware
of the transaction details, but does not prevent malware attacks, as it allows
operating both factors on one device [95]. NIST introduced security levels for
authentication called Authenticator Assurance Level (AAL) [82], but does
not systematically consider what needs to be authenticated. Thus, these
regulations do not solve the problems of two-factor authentication schemes.

Mannan and van Oorschot [123] introduce Mobile Password Authentica-
tion (MP-Auth). The scheme is based on a trusted smartphone that stores
cryptographic keys. By incorporating public-key cryptography, the protocol
achieves phishing-resistance. The authors use transaction authentication to
thwart malware attacks, yet MP-Auth is only secure if the smartphone is
not compromised. Because smartphones are multi-purpose devices that are
connected to the Internet, they are susceptible to malware as well. Similarly,
Chow et al. introduce a scheme that relies on a trusted smartphone [38].
The smartphone is used as a OTP generator that displays the transaction
data and requires confirmation by the user.
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Table 4.1: Security of transaction authentication schemes.

✓indicates that a scheme is secure in a given scenario. × indicates that this
is not the case.
B is the device running the browser. A is an additional device.
Compare means that the user verifies transaction details. No Compare
indicates that this is not the case.
The trust model lists all devices that must be uncompromised for the scheme
to be secure.
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No Compare Compare
CAP reader [56] × × ✓ × A
PhotoTAN [1] × × ✓ × A
MP-Auth [123] × × ✓ × A
Chow et al. [38] × × ✓ × A
Secure Pay [115] × × ✓ × TEE in A
FIDO2D × ✓ ✓ ✓ A or B

Konoth et al. propose a solution to secure two-factor authentication
when both factors are operated on a single smartphone [115]. Their scheme
SecurePay uses OTPs and a trusted user interface to verify transaction data.
The authors formally model and verify the security of their scheme using
Tamarin [125]. By relying on a Trusted Execution Environment (TEE),
Secure Pay is resilient to malware attacks. However, this is only true as
long as attackers do not exploit vulnerabilities in the TEE implementation
to escalate their privileges to the secure world, which has been successfully
achieved in the past [32]. Furthermore, TEE implementations have been
shown to be susceptible to fault injection and side-channel attacks [147, 139].

Similarly to our work, they identify the issue that the current way two-
factor authentication is defined and used is insecure and give guidelines on
how to improve upon that. However, they mainly focus on the fact that
strict isolation of the two factors is needed which, even though it works in
their case, in general is not sufficient to guard against malware attacks. In
contrast, our work gives a universally applicable guideline for how to design
secure authentication schemes, which are resilient to malware. In particular,
our notion of one-out-of-two security does not require a special type of device
and is agnostic to how isolation is achieved.
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4.7.3 Security of Transaction Authentication Schemes

We summarize the security of web authentication schemes in Table 4.1. We
only consider schemes that support transaction authentication, because other
schemes are susceptible to malware attacks (see Section 4.3). Because users
might not verify transaction data properly, we differentiate two scenarios:
compare and no compare (see Section 4.5.4). Furthermore, we assume the
attacker to either compromise B or A. In addition, the attacker may carry
out password and phishing attacks (see Section 4.2). A scheme is considered
secure in a given scenario, if the attacker is not able to execute a malicious
transaction. As expected, none of the considered schemes provides security
guarantees if both devices are compromised.

First, we analyze the security of the schemes when a user confirms
transactions on an additional device without comparing transaction data. In
this case, all considered schemes are vulnerable to malware on the primary
device B because the user does not detect manipulation of transaction data.
In contrast to other schemes, FIDO2D is secure if A is compromised (see
Section 4.5). The reason for this is that transaction initiation is protected
by FIDO2, which is resilient to password and phishing attacks.

If the user actually compares transaction data, all schemes protect against
malware on the primary device B. Again, FIDO2D is the only scheme that is
secure if A is compromised. Control of device A allows an attacker to tamper
with transaction verification [95]. However, FIDO2D protects transaction
initiation with FIDO2 against phishing and malware attacks. The other
schemes rely on password authentication (potentially including RBA) that
is susceptible to password attacks and real-time phishing. As described in
Section 4.2, the attacker can mount a transaction initiation attack.

Thus, FIDO2D is the only scheme that fulfills one-out-of-two security.
For users that verify transaction data, it provides resistance to password,
phishing, and malware attacks as long as one device is not compromised.
Even if the user does not verify transaction data at all, FIDO2D is resilient
to malware on device A. Thus, it provides a higher level of security than
existing schemes regardless of whether transaction data is verified or not.

4.8 Conclusion and Future Work

In this chapter, we showed how to protect security-critical web transactions
against attacks with malware. Current web authentication schemes do not
offer this protection.

We identified requirements for such authentication schemes, namely one-
out-of-two security and transaction authentication. Web authentication
schemes that fulfill these requirements protect security-critical transactions
against malware attacks as long as one device is not compromised.

We introduced 2DA, a generic blueprint for designing web authentication
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schemes that fulfill one-out-of-two security. Based on this blueprint, we
designed and implemented a new web authentication scheme called FIDO2D,
which is applicable to a wide range of use-cases. We proved the security of
FIDO2D using Tamarin.

By relying on protocols and APIs of the FIDO2 standard, FIDO2D can
be integrated into web applications easily. We demonstrate this by creating
a prototypical implementation.



Chapter 5

Data Aggregation

The contents of this chapter are based on joint work with Florian Hahn
and Florian Kerschbaum. The publications that previously appeared and
contained parts of this chapter’s content are listed below.

• Timon Hackenjos, Florian Hahn, and Florian Kerschbaum. “SAGMA:
Secure aggregation grouped by multiple attributes”. In: Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data. 2020, pp. 587–601. doi: 10.1145/3318464.3380569 [90]

5.1 Introduction
Databases are ubiquitous in enterprise IT architectures. They store huge
amounts of potentially sensitive data in a centralized place and are thus a
lucrative target for attack. This threat is intensified by the current trend to
outsource databases and analytics to third-party cloud providers. Attackers
have already been identified to target database servers. For example, in
2022 security researchers found a piece of malware specifically crafted for
Microsoft SQL servers [36].

Encryption at the client side can be used to mitigate those security threats.
Standard encryption schemes, such as AES-GCM or RSA-OAEP, render
database operations at the cloud provider impossible. Fully homomorphic
encryption (FHE) enables the execution of arbitrary queries on encrypted
data, but is currently still too inefficient for most practical use [3, 78]. Secure
multi-party computation (MPC), e.g., SMCQL [15], requires multiple, mutu-
ally distrustful cloud providers increasing cost and administrative burden.
Cloud providers can use trusted hardware modules, such as Intel’s SGX [44,
167], but this only shifts the trust anchor from the cloud provider to the
hardware manufacturer. A long history of bugs in the Intel Management
Engine [65], bugs based on speculative execution [25], side-channel vulnerabil-
ities [81], and architectural CPU bugs [23] create doubts in the security those
hardware modules provide. A very active line of research addresses these
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shortcomings by developing encryption schemes that enable query processing
over encrypted data, e.g., [74, 88, 138, 135].

Kamara and Moataz [109] introduced the first system supporting a large
class of SQL queries without using property-preserving encryption. However,
their proposal lacks an efficient solution for data aggregation on the server
side as they propose data aggregation on the client side after data filtering
and decryption.

In this work, we bridge this gap and consider aggregation queries grouped
by multiple attributes over encrypted data combined with filtering. Aggre-
gation queries are the most common form of query in data analytics. For
example, Piwik, a popular web analytics tool, which – among others – we
use to evaluate our encryption scheme, determines the number of visitors of
a site by country, browser, referrer, time, and many other attributes.

Designing a secure aggregation scheme is challenging, since the tuples
composing a group are aggregated into one result, i.e., the access pattern
of an aggregation query reveals the frequency of each group. Currently,
there exist two approaches in encryption schemes for secure aggregation.
First, revealing the access pattern: Deterministic encryption, e.g., used in
CryptDB [138] allows grouping on ciphertexts in combination with partial
homomorphic encryption for data aggregation. This approach allows grouping
by any combination of attributes, but leaks the frequency of each individual
grouping attribute value. Simple, yet efficient leakage-abuse attacks exploit
this frequency information to reconstruct plaintext values with high accuracy
as recent work demonstrates [130, 86]. Second, pre-computing the groups
into an index: Seabed [135] thwarts frequency analysis attacks by flattening
the histogram of attribute values. It uses multiple columns per attribute and
inserts dummy tuples. However, all group values and possible combinations
of grouping attributes in queries must be known at encryption time and
pre-computed to be outsourced; thus, increasing server storage requirements
exponentially. Further, filtering clauses (SQL’s WHERE) must be mostly
handled at the client.

In Section 2.6, we introduced Secure Aggregation Grouped by Multiple
Attributes (SAGMA), a protocol for secure data aggregation that neither
leaks the frequencies of individual grouping attribute values nor requires
the combinations of grouping attributes to be known at encryption time. In
this chapter, we evaluate the practical applicability of SAGMA to protect
the confidentiality of stored data even when the database server is infected.
SAGMA only reveals semantically secure ciphertexts and hides the frequencies
of individual grouping attribute values during query execution by splitting
the value domain into disjoint buckets and processing each bucket at once.
Queries can contain any combination of at most t grouping attributes where
t is a threshold chosen at setup time. SAGMA supports additional filtering
clauses without relying on property-preserving encryption while significantly
reducing the storage requirements compared to previous solutions.
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5.2 Practical Applicability

In this section, we analyze the practical applicability of SAGMA to protect
real-world database systems from malware attacks and propose improvements.
More specifically, we study the resistance of the protocol to malware, and
investigate if the performance and storage requirements of SAGMA are
suitable for practical use.

5.2.1 Malware Resistance

SAGMA only reveals semantically secure ciphertexts to the database server.
Thus, malware running on the database server only has access to encrypted
data. However, during query execution SAGMA leaks additional information.
In Section 2.6.4, we presented a simulation-based security proof for SAGMA
with precisely defined leakage. The underlying security notion assumes
a persistent, honest-but-curious attacker. That means, the attacker can
monitor database operations passively to gain knowledge about plaintext
data. However, it does not consider an attacker that actively interferes
with the protocol. As homomorphic encryption schemes are by definition
malleable, malware could manipulate stored ciphertexts and thereby change
the result of a query. However, in the following we focus to protect against
an honest-but-curious attacker and note that active security is still an open
problem in data aggregation. As verified by the formal proof, during query
execution, SAGMA only leaks the mapping of database rows to the group
attribute buckets. The impact of this leakage can be reduced by increasing
the bucket size. However, as we showed in Section 2.6.5 the bucket size
cannot be increased arbitrarily without a performance penalty. Thus, in the
following, we analyze additional mechanisms to reduce the leakage.

In a real-world scenario, the impact of the leakage largely depends on the
distribution of the plaintext data. Rows that are part of different buckets
can be distinguished using the access pattern; however, the underlying group
values for each row cannot be extracted from this leakage. More precisely,
group values that are mapped into the same bucket are indistinguishable for
any adversary; an adversary distinguishing these rows with non-negligible
probability could break the SWHE scheme, i.e., could distinguish encrypted
monomials. Given a pseudorandom function that maps individual group
values to buckets, an adversary cannot tell which group value is mapped
into which bucket for group values with the same frequency. The provided
security heavily depends on the characteristics of the underlying plaintext
values – we emphasize, that this is true for all SSE schemes.

As highlighted by the designers of Seabed [135], the best security can be
achieved by adding dummy rows to each bucket until the same frequency
t is reached for each bucket hence making all buckets indistinguishable.
However, a naïve implementation of such dummy rows would induce high
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computational overhead. Specifically, assuming bucket size B and the B
most-frequent group values occur r times in total then t is set to r. Assuming
all other group values occur exactly once, each bucket is filled up with t−B
dummy values. The number of buckets is bounded by ⌈ |D|

B ⌉, thus the number
of total dummy values is bounded by (⌈ |D|

B ⌉ − 1) · (t − B). In addition to
dummy values, we describe additional mechanisms, such as optimizing the
mapping function and splitting group attribute values in the next section.
These can be used to minimize the total overhead for a targeted security
level. We emphasize, that these protection mechanisms are data-dependent
and their effect should be analyzed for each use-case individually.

Bucket Partitioning

The choice of the mapping function directly influences the bucket distribution
and hence information leakage. For instance, consider bucket size B = 2
and three group values g1, g2 and g3 with frequencies 1, 2 and 3. Mapping
g1 and g3 into the same bucket results in bucket frequency 4 and g2 is
mapped into a separate bucket with bucket frequency 2. An attacker aware
of the group attribute distribution can reconstruct the mapping since the
bucket frequencies are unique, i.e., they can only be generated by one
mapping. In contrast, mapping g1 and g2 into one bucket and g3 into a
separate one, results in two buckets with the same frequency. Thus, the
indistinguishability of values can be extended beyond values of the same
bucket by proper partitioning.

Ceselli et al. [33] examine the use of hash functions for partitioning.
They examine selection queries and introduce the exposure coefficient, which
quantifies the average probability of correctly guessing the attribute value of
an encrypted row based on auxiliary information. The exposure coefficient
depends on several factors, e.g., the number of mapping functions resulting in
the same bucket distribution, the number of attribute values and the number
of buckets with the same frequency, the individual value distribution inside
each bucket. In order to reduce exposure, they propose a larger collision
factor of the hash function corresponding to larger bucket sizes in our scheme.
Based on the work of Ceselli et al. we propose the following additional security
mechanisms that increase security compared to deterministic encryption.

1. Optimal choice of the mapping function, i.e., bucket partitioning with
minimal exposure.

2. Supplementing dummy rows and thus changing the number of values
in buckets.

3. Partition group attribute values, e.g., split group attribute value g with
high frequency in two distinct values g.1 and g.2.
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Application Grouping attributes
1 ≤ 2 ≤ 3

Nextcloud 100 % 100 % 100 %
Wordpress 97 % 99 % 100 %

Piwik 25 % 83 % 95 %

Table 5.1: Grouping queries with attribute numbers.

Optimal mapping function We choose a bucket distribution that mini-
mizes exposure. Note, that this approach is limited by the plaintext distribu-
tion and the bucket size. For example, given bucket size 2 and three group
values g1, g2 and g3 that occur 1, 2 and 4 times respectively, all possible
bucket partitions are distinguishable. Here, a specific choice of the mapping
function does not introduce a large computational overhead and can be
combined with dummy values and attribute value splits as further protection
mechanisms.

Supplementing dummy values The structure of individual buckets can
be altered by adding dummy values. Particularly, the number of elements
in one bucket can be increased by adding dummy values containing value
attributes all set to zero into specific buckets. Thus, they do not influence
the aggregation result, but hide the distribution of attribute values. While
inserting dummy rows for the use case of Ceselli et al. raises additional client
overhead to filter rows, it only increases the server overhead in our use case.

Attribute value splits A group attribute value g can be split into two
values g.1 and g.2 and thereby the frequency can be split into two summands.
This requires the client to aggregate the sum for g.1 and g.2 after decryption
but modifies value distribution in buckets, hence increase security.

5.2.2 Real-World Database Queries

As described in Sections 2.6.4 and 2.6.5, the storage requirements and
performance of SAGMA mainly depend on the total number of grouping
attributes t that are allowed in one query. However, this does not limit the
applicability of SAGMA to real-world systems severely. As summarized in
Table 5.1, many real-world applications use queries with a small number of
grouping attributes only as our analysis of popular applications including
Nextcloud 12, WordPress 3.7, and Piwik 3.2 showed. To determine the
queries used by these applications, we set up a MariaDB database logging all
queries into a file and ran the test suites of the applications. We describe the
results of this evaluation below. Nextcloud only uses aggregation queries that
group by a single attribute. Similarly, 97% of the aggregation queries used
by WordPress contain a single group attribute; the largest query contains
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three grouping attributes. Finally, Piwik, being an analytics platform, uses
grouping functionality extensively. We report that 95% of the aggregation
queries contain three group attributes or less. The largest query contains
five grouping attributes. This indicates that establishing an upper limit for
the number of group attributes supported in a single query does not restrict
the applicability of the protocol to real-world database applications.

5.2.3 Storage Requirements

Finally, we analyze the storage requirements of our solution SAGMA and
compare it with the following two approaches:

(i) pre-computing all results as discussed in Section 2.6.1

(ii) Seabed [135], another proposal for secure aggregation

We analyze storage requirements on the server, as well as computation
efforts required by the client. We assume a table with r rows, k value
attributes, l grouping attributes and denote t as the maximum number of
grouping attributes supported in one query. Further, we denote n as the
number of filtering clauses queried by the client in combination with data
aggregation, where the i-th filtering clause has a result set size of ρi. We refer
to Table 2.9 for an overview of all variables used in the following analysis.

We assume the bucket size for SAGMA and the number of common values
for Seabed to be equal for all grouping attributes denoted as B. For Seabed
and SAGMA, we denote C as the number of aggregation results for a query
with up to t grouping attributes, i.e., C = |D|t. Originally, Seabed does
not support grouping by multiple attributes, i.e., aggregating each attribute
value combination individually. Thus, we assume all value combinations have
been computed on the client and stored on the server.

Scheme Server Storage Client

Pre-computed
(

t∑
i=1

(
l
i

)
· |D|i

)
· k · n 1

Seabed
(

t∑
i=1

(
l
i

)
· ((B + 1)i − 1)

)
· k · r ρi · C

SAGMA
((

t∑
i=1

(
l
i

)
· (B − 1)i

)
+ k

)
· r C

Table 5.2: Complexity of approaches hiding individual group attribute values.
Notation is stated in Table 2.9.

In Table 5.2 we summarize the storage requirements on the server mea-
sured in ciphertexts and the required client computation effort for the different
approaches. Naïve pre-computation requires each possible query result to
be calculated, encrypted by the client and stored on the server. Thus, we
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Figure 5.1: Server storage requirements of the three schemes: Pre-computed,
Seabed and SAGMA.

enumerate all possible grouping operations combining up to t attributes for
storage calculation. The number of combinations for i grouping attributes
has size |D|i. Additionally, a different result is stored for each value at-
tribute and for each possible filtering clause. Pre-computing and storing the
results for all possible filtering clauses is impractical for real applications,
e.g., assuming only one filtering column containing integer values and solely
considering equality matching, there are already 232 possible filtering clauses,
increasing exponentially with additional value domains contained in further
filtering columns.

In order to support grouping by multiple attributes with Seabed, (B +
1)i − 1 columns have to be stored for grouping by i grouping attributes.
Again, we enumerate all grouping operations combining up to t attributes.
Since Seabed encodes the value attribute in the group attribute column,
all columns have to be stored for each value attribute separately. Seabed
requires excessive client computation if combined with additional filtering
clauses since ASHE is optimized for dense datasets. In the worst case, one
operation has to be performed for each row contained in the filtering result
for each of the C results. As a result, the client might have to perform more
operations than there are rows in the database, making it less efficient than
downloading the complete database and aggregating it locally on the client.

SAGMA requires (B − 1)i monomials for a grouping operation with i
attributes. As before, we enumerate all grouping operations combining up to
t attributes. Value attributes and grouping attributes are stored separately
and combined during aggregation. Hence, each value attribute is stored
only once. SAGMA is interoperable with searchable encryption for filtering
clauses, that is, filtering clauses are executed on the server and the resulting
rows are subsequently aggregated using SAGMA. Client effort is minimal, as
the number of different group value combinations is lower bounded by C and
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for each combination the encrypted aggregation is decrypted by the client.
SAGMA is the only scheme that scales with the number of value attributes
and the number of possible filtering clauses at the same time.

We determine specific values for the server storage for l = 4, t = 3, k =
2, r = 1000, n = 2 and give the results in Figure 5.1. We evaluate different
values for the maximum number of supported grouping attributes t in
Figure 5.1a, and different group attribute domain sizes |D| in Figure 5.1b.
Seabed requires an excessive amount of storage space and SAGMA is superior
to the pre-computed scheme for t ≥ 3 and |D| ≥ 10.

5.3 Related Work

Hacigümüş et al. introduce mechanisms to execute database queries on
encrypted data by outsourcing a plaintext index [88]. They propose to
partition an attribute’s value domain into non-overlapping buckets and to
outsource bucket identifiers instead of attribute values. This allows the
database server to group rows according to the bucket identifiers even though
the rest of the database row is encrypted. However, the scheme does not
support server-side aggregation and thus the client has to aggregate the
grouped values and refine the grouping after decryption. Therefore, most
of the work has to be handled by the client. The authors do not provide a
formal proof of security. Additional work on bucketization has been published
by Hore et al. providing functionality for range queries [100, 99].

CryptDB provides an encrypted database system that supports a wide
range of operations [138]. Aggregation queries with grouping are implemented
using homomorphic encryption in combination with deterministic encryption.
Deterministic encryption has been shown to be susceptible to inference attacks
that can be used to recover plaintext data [130]. To reduce information
leakage, attribute values are encrypted in multiple layers. However, during
query execution, grouping attributes need to be deterministically encrypted
and thus the client passes the encryption keys of the outer layers to the
database server and enables inference attacks once again. Furthermore,
CryptDB misses a formal proof of security. Other systems for encrypted
databases refrain from using property-preserving encryption and leave server-
side secure aggregation as an open problem [109].

Seabed combines additively symmetric homomorphic encryption (ASHE)
and deterministic encryption to support aggregation queries with group-
ing [135]. ASHE has improved performance in comparison to asymmetric
schemes such as Paillier, and is optimized for dense datasets, where multiple
consecutive values are aggregated. This optimization, however, causes issues
with additional filtering as expressed by WHERE clauses. In the worst case,
the client’s computation overhead for GroupBy statements in combination
with WHERE clauses is the same as decryption and aggregation of all records
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Scheme Aggregation Grouping Security Proof Mult. Attributes
Bucketization [88] × ×/✓ G# × ×/✓
CryptDB [138] ✓ ✓ # × ✓
Seabed [135] ✓ ✓ G# ✓ ×
SAGMA1 ✓ ✓  ✓ ×
SAGMA ✓ ✓ G# ✓ ✓

Table 5.3: Comparison of our scheme SAGMA with related work.

matching the WHERE clause. Similar to the construction presented in Sec-
tion 2.6.2, the authors encode the value attribute and the group attribute into
a single plaintext and encrypt it using ASHE, hence they avoid deterministic
encryption. Instead of using ciphertext packing, they create a new column
for each group attribute value. To limit storage consumption, they propose
an enhanced scheme that only introduces new columns for common group
attribute values and one single column for less frequent ones. A column with
deterministically encrypted group values is added to be able to aggregate the
column that contains the uncommon values correctly. As this column only
contains values in rows with uncommon group values, rows with common
group values can be used to flatten the histogram by adding dummy values
with no impact on the aggregation result. However, Seabed requires excessive
storage space to support grouping operations with multiple attributes.

In Table 5.3, we compare all schemes mentioned in this section regarding
their support for aggregation and grouping of multiple attributes on the
server, classify their security properties, and whether they are formally
proven secure. This shows that SAGMA offers a superior combination of
functionality, flexibility, and provable security.

5.4 Conclusion

In this chapter, we analyzed the practical applicability of SAGMA, a protocol
for secure data aggregation, to protect against a database server that is
infected by malware. SAGMA hinders malware that leaks the database
and monitors database operations from learning plaintext data. Previous
constructions either leak more information or do not support grouping by
multiple attributes together with additional filter clauses.

We propose mechanisms to further reduce the leakage such as optimizing
the mapping function and supplementing dummy values. Furthermore,
we analyze the storage requirements of SAGMA, and compare them with
existing approaches. The choice of parameters, such as the bucket size and
the supported number of grouping attributes, results in different trade-offs
between security, supported queries, computational overhead and storage
requirements. We analyze queries of real-world database applications such

1SAGMA without bucketization as described in Section 2.6.2.
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as Nextcloud, Wordpress, and Piwik to verify that restricting the supported
number of grouping attributes in a query does not limit the applicability of
SAGMA to real-world systems.



Chapter 6

Related Work

In this chapter, we examine different types of related work. In Section 6.1 we
review mechanisms that prevent infection of a system with malware, while
in Section 6.2 we examine mechanisms used in cryptographic protocols to
provide security guarantees even if a device is infected by malware. Existing
security notions that consider malware are examined in Section 6.3. Finally,
we provide an overview of malware-resistant protocols in Section 6.4.

This chapter can also be helpful for protocol designers to get a coarse
overview of available mechanisms for malware-resistance. Furthermore, it
allows to identify protocols with similar goals that might serve as a blueprint.

6.1 Preventing Malware Infection

Devices can be compromised in many different ways ranging from exploiting
vulnerabilities in installed software over social-engineering attacks that trick
the user into installing malware to tampering hardware - just to name a
few [83, 157]. Thus, many lines of research emerged that explore ways to
increase the security of devices and prevent them from getting compromised.

One line of research focuses on identifying vulnerabilities in hard- and
software so that they can be fixed by the vendor. In vulnerability research,
techniques such as static analysis and fuzzing are applied to discover vulner-
abilities [122, 160]. Optimally, vulnerabilities are already identified during
development. Therefore, tools and techniques are also integrated into soft-
ware development processes to identify vulnerabilities. Furthermore, software
verification can be used to prove that the behavior of a program conforms to
a formal specification [2, 11]. However, this comes at a high cost and is thus
not widely used [96].

To increase the difficulty of successfully exploiting a vulnerability, several
exploit mitigation techniques have been introduced [136]. For example, Data
Execution Prevention (DEP) ensures that certain memory regions that are
intended to store data are not executable. However, exploit mitigations

97
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have been bypassed multiple times in the past. For example, DEP can be
bypassed by reusing code from the vulnerable program instead of writing
the malicious code into memory.

To benefit from the work of security researchers that notify vendors of
vulnerabilities in their products, it is important to regularly install security
updates for devices [52]. Apart from updates, other security mechanisms
should be enabled to strengthen the security of a device. For example, by
setting up a lockscreen, access to a device can be restricted, using full-disk
encryption stored information can be protected and secure boot impedes
tampering [124, 70].

Many attacks rely on social engineering techniques to reach their goal. By
tricking the user into clicking on a link that leads to a malicious website or
to install malicious software, an attacker can get access to the user’s system.
Different types of security awareness training have been proposed to increase
the resistance of users to social engineering attacks. However, awareness
training techniques have to be chosen deliberately, as some popular techniques
such as simulated phishing campaigns have been shown to potentially have
an adverse effect [97, 159].

Antivirus (AV) and endpoint detection and response (EDR) software
serve as a last resort to prevent infection of a system with malware. They
apply different techniques such as signature-based detection where prominent
byte patterns of known malware are used to identify samples on other systems
and behavior-based techniques that focus on monitoring running software to
identify malicious behavior [31]. However, AV and EDR software struggle to
detect novel malware samples reliably as recent work confirmed [110].

While applying mechanisms to prevent devices from getting infected
are important, they cannot rule out infection of a device entirely. Thus,
we claim that infection of a device with malware should be part of each
cryptographic protocol’s threat model. As part of a defense in depth approach,
compromising devices should be made more difficult, as well as mechanisms
be used to make protocols malware-resistant.

6.2 Mechanisms for Malware-Resistance

Several mechanisms have been introduced in related work to restrict the
impact of a malware infection. These mechanisms can be divided into two
categories, mechanisms from the first category described in Section 6.2.1 are
based on providing isolation of applications inside a device while mechanisms
in the second category described in Section 6.2.2 rely on isolation between
multiple devices. Mechanisms from both categories can also be combined to
reach an even higher level of security.
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6.2.1 Hardware-Based Isolation

When a device is infected with malware, this does not necessarily mean that
the adversary has full control of the infected system. Modern computing
platforms provide multiple barriers to restrict access to sensitive data or
security-critical functionality using trusted hardware modules. Integrating
such mechanisms in a cryptographic protocol can contribute to the security
of the protocol regarding the resilience to malware infection.

Kernel Boundary

In modern operating systems regular applications run in user mode and are
isolated from the operating system running in kernel mode. This isolation is
implemented using different protection rings offered by modern processors.
User-mode applications do not have permission to access hardware resources
directly or manipulate the operating system. However, there are plenty of
other opportunities for user-mode application to behave maliciously, e.g., by
injecting code into other user-mode applications to dump sensitive informa-
tion or manipulate applications. How extensive the capabilities of user-mode
applications are, differs between operating systems and platforms.

In addition to manipulating other applications, user-mode malware can
exploit vulnerabilities in the operating system to escalate privileges. Multiple
malware samples have been found in the wild to use privilege escalation
exploits [68]. Based on the extensive capabilities that user-mode malware
has and considering privilege escalation exploits, the kernel boundary is not
sufficient to restrict malware adequately.

Secure Key Storage

Cryptographic keys are an attractive target for adversaries because the
security goals of cryptographic protocols can only be achieved if the keys
stay secret. If keys are stored by the operating system or a user-mode
application, they can be leaked by malware running with suitable privileges.
Modern platforms provide ways to store cryptographic keys securely. Trusted
Platform Modules (TPMs) as defined by the Trusted Computing Group
(TCG) or GlobalPlatform Secure Elements (SEs) are specialized hardware
components that provide security-related functionality such as secure key
storage. Besides resistance to some forms of physical attacks, they also
prevent malware running on an infected system to access stored keys.

A TPM (and a SE alike) provides an API to generate keys, import keys
into the TPM, and execute cryptographic operations [6]. Most importantly,
the API does not offer to export stored keys, at least not in plaintext. Thus,
malware can interact with the TPM and request cryptographic operations
but not extract keys without exploiting a vulnerability inside the TPM.
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Typically, being able to use a key is sufficient for an adversary to attack
a protocol. Nonetheless, storing a key inside a TPM, SE or similar hardware
modules provides the following benefits:

(i) It prevents an adversary from relocating the key to another device and
thus makes attacks more difficult.

(ii) It simplifies designing protocols that recover after a compromise which
is formalized by the security notion Post-Compromise Security (PCS)
(see Section 6.3.2 for more details).

(iii) It provides resilience to some forms of physical attacks.

Access to cryptographic operations can be further restricted through user
authentication and user presence checks. User authentication with a PIN
prevents malware from executing cryptographic operations without knowing
the PIN. This protection is far from perfect since the PIN is commonly entered
on the infected device and thus accessible to (high-privileged) malware.

User presence checks are intended to verify that a user is physically
present. This is often implemented using hardware buttons that are wired
to the hardware module and must be pressed by the user. Even though
this check cannot be bypassed by malware, malware can still manipulate
legitimate requests for cryptographic operations by the user and thereby
execute arbitrary operations. However, user presence checks limit the number
of operations that an adversary can execute and might support users in
uncovering malicious behavior if legitimate requests fail frequently.

Trusted Execution Environment

Hardware modules that support a specific functionality such as secure key
storage offer very limited extensibility. Apart from hardware modules that
provide a specific functionality, solutions were designed to allow loading and
running arbitrary software in a compartmentalized environment. A TEE
as defined by GlobalPlatform is an execution environment that is isolated
from the regular execution environment of a system [148]. In particular, this
means that code running inside the TEE is protected from an adversary that
compromised the operating system.

The GlobalPlatform definition does not dictate implementation details.
Thus, a wide range of implementations that rely on hardware-based isolation
such as Intel SGX, AMD PSP, and ARM TrustZone emerged [166]. Hardware
resources can be shared between the regular execution environment and the
TEE. This allows to build primitives like a Trusted User Interface (TUI) to
display information that cannot be manipulated by malware [115, 104].

A disadvantage of using a TEE in a cryptographic protocol, is that it
limits the applicability of the protocol. Since different TEE implementations
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are not compatible with each other, supporting heterogeneous devices such
as mobile devices, laptops, and desktop computers is expensive.

Furthermore, several attacks were discovered in recent years that question
the level of security that TEEs provide. TEEs have been shown to be
susceptible to side-channel and transient-execution attacks [81, 147, 25].
Recently, an architectural CPU bug has been discovered that allows to
break the security of Intel SGX [23]. Cerdeira et al. review vulnerabilities
found in TEE implementations based on ARM TrustZone. They note that
these TEE systems expose a large attack surface and miss state-of-the-art
protection mechanisms such as address space layout randomization (ASLR).
Vulnerabilities do not only affect TEE implementations but were also found
in many trusted applications running inside the TEE.

In addition to isolating security-critical software from malicious software
running in the regular execution environment, according to GlobalPlatform
TEEs should provide protection against some forms of physical attacks.
Prior work determined that protections against these types of attacks is
limited [139]. They were able to break security guarantees of ARM TrustZone
using fault injection attacks.

Because of the ambiguous security guarantees and fading support [142]
of TEEs, in this thesis we rely on the isolation of two separate devices
instead. This approach is also described in more detail in Section 6.2.2. For
a comparison of our approach with TEE-based systems in a specific use case,
we refer to Section 4.7.2.

6.2.2 Distributed Computing

An alternative to achieving isolation inside a device, is to distribute an
application that is part of a protocol between multiple devices. For example,
in many online-banking protocols, a transaction is verified on a different
device than it was initiated originally. Thereby, transactions can be executed
securely, even if the primary device is compromised. To achieve this, most of
the protocols introduce an additional device that is considered trusted [123,
56]. The problem of this approach is that it only provides limited protection
against malware attacks. In the case that the trusted device is infected,
the security guarantees are lost. Because general purpose devices such as
smartphones provide a huge attack surface, some protocols rely on special-
purpose hardware devices such as smart card readers or FIDO tokens (see
Chapter 4). These devices are specifically built and hardened for their use
case and are thus thought to be less prone to attack.

Many multi-party computation (MPC) protocols are specifically designed
to withstand attacks where an attacker compromises a subset m of n parties
(or devices) of a protocol (with m < n). These protocols allow multiple parties
to jointly evaluate a function, without disclosing their individual inputs. To
achieve this, MPC protocols apply a wide range of cryptographic primitives
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such as commitments, secret sharing, oblivious transfer and homomorphic
encryption [48, 137, 140]. However, use cases that benefit from these specific
security guarantees are rare. In Yao’s Millionaires’ problem, two millionaires
want to know which of them is richer [165]. This is a classic problem, that
can be solved with MPC.

The security of our proposed protocols FIDO2D and L-Pay relies on
the isolation of devices too. As our protocols target different security goals,
namely authenticity and integrity of transaction data, they are not directly
comparable to MPC. However, the attack model of our security notion one-
out-of-two security is a special case of the aforementioned attack model of m
compromised parties out of n parties for m = 1 and n = 2 and each party
represents a device. One-out-of-two security guarantees that the protocol
stays secure even if one of the two devices is compromised.

Cross-platform infection has been introduced in related work as a way
to break authentication schemes relying on multiple devices [114, 53]. The
authors exploit synchronization features to use control of one device to
install malware remotely on another device that is synchronized with the
first device. Thus, measures should be taken to isolate the two devices,
such as disabling synchronization features. Furthermore, individual devices
should be hardened to make compromise more difficult, e.g., by using security
features such as lockscreens, full-disk encryption and secure boot. Using
heterogeneous devices with different computing platforms and operating
systems can also contribute to make infection of both devices more difficult,
as vulnerabilities rarely affect multiple platforms.

In addition, mechanisms to determine the state of a remote system can
be integrated into protocols to strengthen isolation. Remote attestation is a
feature offered by hardware modules such as TPMs that allows an authorized
party to verify the state of a system remotely [161]. TPMs provide multiple
registers that contain hashed values representing the current system state.
For example, during the boot process all executables and configuration data
are hashed into these registers [85]. During a remote attestation protocol,
these register values are transferred as part of a signed quote to the verifying
party. Changes in the state of a remote system may indicate compromise of
that system [71]. For example, malware modifying the boot configuration
to achieve persistence also results in a different measurement that can be
detected with remote attestation. These systems can then be excluded
from the protocol to prevent further damage. In the FIDO2 registration
ceremony, remote attestation can be used to restrict registration to approved
authenticators that are in a valid state [164]. The security benefits of using
remote attestation depends on the scope of the measured data. Measuring as
much information as possible and including it in a quote would be beneficial
to reveal more types of manipulation of the system. On the other hand, this
could diminish the availability of the system as valid system changes can
influence the measurements and get a system locked out from a protocol.
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Sustaining operation of a system despite failure of one or multiple com-
ponents is the goal of fault-tolerant systems. Besides software errors, faults
can be triggered by adversaries to impair availability. In distributed systems,
there might be inconsistent information about whether a component failed or
not. Such a condition is also known as Byzantine fault. A common example
of Byzantine faults is the Byzantine generals problem where multiple generals
must agree on whether to attack the enemy or retreat [118]. This is especially
challenging, because generals might behave maliciously and provide other gen-
erals with inconsistent information. As a remedy, Byzantine fault tolerance
algorithms have been proposed to reach consensus, e.g., using state machine
replication [30]. Consensus algorithms are used to provide different security
goals such as availability and integrity. For example, the cryptocurrency
Bitcoin uses a consensus algorithm to realize electronic payment without
a trusted bank. The proof of work consensus algorithm is used to protect
the integrity of a global transaction log. However, Bitcoin does not protect
against the compromise of payment clients to create arbitrary transactions,
which is the focus of Chapter 3.

6.3 Security Notions

A security notion captures both the targeted security guarantee, as well as
the capabilities of the adversary [111]. In the following, we examine security
notions that consider compromise of a device.

6.3.1 Perfect Forward Secrecy

Perfect forward secrecy (PFS) has been introduced in the context of authen-
ticated key exchange (AKE) protocols [87]. This security notion states that
exchanged session keys must stay secret, even if the long-term private keys
of the protocol’s participants are leaked later on [40]. For example, using
public-key encryption to transmit a session key does not suffice to achieve
PFS because an attacker that records the exchanged messages can decrypt
the ciphertext once he learns the long-term private key.

PFS is not solely academic but also relevant for real-world systems. For
example, the protocol TLS 1.3 achieves PFS [45]. Regarding infection by
malware, PFS is not a very strong security notion, since it only states a
guarantee for past protocol executions. Once a device is infected or rather
the private key is leaked, current and future protocol executions do not fulfill
session key secrecy. In this regard, PFS is weaker than one-out-of-two security
which also protects protocol executions during and after a compromise.
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6.3.2 Post-Compromise Security

PCS is another security notion for AKE protocols that states security guaran-
tees for protocol executions after a compromise [40]. The authors differentiate
between weak compromise and full compromise. While the first grants the
adversary temporary control of cryptographic operations with the long-term
private key, the latter allows the adversary to learn the long-term private key
itself. There are two forms of PCS depending on the particular adversary
model. The first form assumes that an adversary only achieves weak com-
promise, e.g., because the long-term private key is stored inside a hardware
security module (HSM) such as a TPM. To fulfill this form of PCS, a proto-
col must ensure freshness of protocol messages to prevent precomputation.
The second form allows for a full compromise; however, it assumes that an
uncompromised session takes place after the compromise. For example, if an
adversary infects a device and steals the private key but is not able to persist
access to the device, protocols fulfilling PCS can provide security guarantees
for future protocol executions.

The Signal protocol, which is already used in real-world messaging apps,
can achieve PCS when implemented correctly [41]. However, Cremers et al.
point out that the implementation of the Signal protocol as it is used in many
messaging apps including Signal, WhatsApp, and Facebook does not fulfill
PCS [46]. The authors implement an attack that involves cloning a device
and impersonating the user afterwards. This attack should be prevented
due to PCS, however, the experiment showed that the messaging apps are
vulnerable nonetheless. PCS has mainly been analyzed in regard to message
secrecy, however, it is also applicable to authenticity [55].

PCS is a relevant security notion to provide malware-resistance. However,
PCS does not promise security guarantees while a device is compromised but
only once the infection is detected and the device cleaned up or the attacker
loses access otherwise. Our proposed security notion one-out-of-two security
does even provide security guarantees during the compromise.

6.4 Conclusion

Various protocols were introduced in related work that provide some form
of malware resistance. They differ in many aspects such as the desired
functionality, the targeted security goal, the used approach and the proof
technique. We give an overview of the protocols that we deem most relevant
in Table 6.1.

We examine the targeted security goal such as authenticity, integrity and
confidentiality. As in most protocols authenticity and integrity co-occur, we
do not differentiate them. We also consider the targeted functionality by
mapping the protocols to one of our use cases. However, two protocols target
another use case namely instant messaging.
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L-Pay* CH 3 A/I EP DC 1-of-2 CL UC, TMN
VR-mobileCash [141] A/I EP DC TD CL -
FIDO2D* CH 4 A/I WA DC 1-of-2 CL TMN
SecurePay [115] A/I WA HB TH CL TMN
CAP reader [56] A/I WA DC TD CL -
PhotoTAN [1] A/I WA DC TD CL -
MP-Auth [123] A/I WA DC TD CL PCL
Chow et al. [38] A/I WA DC TD CL -
FIDO2 Tokens [8] A/I WA DC TD CL GB
FIDO2 Platform [164] A/I WA HB TH CL -
MoDUSA [55] A/I IM DC PC CL, SRV GB
SAGMA* CH 5 C DA DC HC SRV SB
CryptDB [138] C DA DC HC SRV -
Seabed [135] C DA DC HC SRV SB
SMCQL [15] C DA DC HC SRV -
Double-ratchet [41] C IM DC PC CL, SRV GB

Table 6.1: Overview of malware-resistant protocols.

The abbreviations used in the table are described below:
∗ Protocol introduced in this work

CH Chapter
A/I Authenticity/Integrity
C Confidentiality

EP Electronic payment
WA Web authentication
IM Instant messaging
DA Data aggregation
HB Hardware-based isolation
DC Distributed computing

1-of-2 One of two devices is compromised
TH Trusted hardware module
TD Trusted device
PC Post compromise
HC Honest-but-curious
CL Client

SRV Server
UC Universal Composability

TMN Tamarin
PCL Protocol Composition Logic
GB Game-based security
SB Simulation-based security
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We provide a rough categorization of the used mechanisms. More specifi-
cally, we examine whether they rely on hardware-based isolation in a device
or isolation between devices. Furthermore, we differentiate the underlying
attack model. Some protocols assume a trusted device, a trusted hardware
module, an attacker that is passive (honest-but-curious), an attacker that
loses access to a device after infection (post compromise) or one of two devices
to not be compromised (1-of-2). In addition, we denote which type of device
is thought to be infected. Because all analyzed protocols use client-server
communication, either the client or the server is considered infected. And
finally, we investigate if the protocol provides provable security and if so,
which proof technique is used.

The security goals of the protocols in Table 6.1 are related to the respec-
tive use cases. The use cases electronic payment and web authentication
target authenticity (integrity), in the data aggregation use case confiden-
tiality is the targeted security goal. In contrast, instant messaging targets
both authenticity (integrity) and confidentiality of the message contents.
Most protocols rely on distributed computing to achieve malware resistance.
However, there are also two protocols that use hardware-based isolation:
SecurePay and FIDO2 platform authenticators.

Taking a look at the attack model, we notice that the use of trusted devices
is popular in electronic payment and web authentication. Two protocols rely
on trusted hardware, and our own protocols L-Pay and FIDO2D are based
on one of two devices being uncompromised. In instant messaging, the attack
model resembles a post-compromise scenario where a device is compromised
but cleaned afterwards. In data aggregation, an honest-but-curious attacker
is assumed. This attacker operates passively, follows the protocol and tries
to learn as much information as possible. An active attacker that deviates
from the protocol could affect the correctness of the aggregation result.

In most protocols, the client device of a client-server architecture is
assumed to be compromised. This applies to the electronic payment and web
authentication use cases. In contrast, the server is assumed to be compromised
in the data aggregation scenario. Furthermore, in instant messaging the
server is considered compromised and according to the post-compromise
scenario, a client can be compromised for a limited time.

Regarding provable security, more than half of the protocols provide
a formal proof. The used proof techniques vary widely in the electronic
payment and web authentication use cases. However, in the instant messaging
and data aggregation use cases, game-based proofs and simulation-based
proofs are predominantly used respectively.

Our analysis of related work emphasizes that for several use cases cryp-
tographic protocols that provide at least some form of malware resistance
already exist. Nonetheless, this work takes a step forward in several aspects.
We propose one-out-of-two security, a new security notion for cryptographic
protocols that rely on distributed computing to achieve malware resistance.
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Our protocols L-Pay and FIDO2D achieve one-out-of-two security and im-
prove upon many existing protocols that rely on a single trusted device
and offer an alternative to protocols that require trusted hardware modules.
In addition, we provide formal models to verify that our protocols fulfill
one-out-of-two security using Tamarin. For data aggregation, our protocol
SAGMA provides an adjustable level of security that improves upon existing
protocols. We validate the practical applicability of SAGMA by analyzing
queries of real-world database applications.

In summary, our work paves the way for the adoption of cryptographic
protocols with malware resistance in the real world. We provide guidelines, as
well as protocols that can serve as a template for real-world implementation.
Furthermore, with our protocols and formal models we prepare the ground
for the design of malware-resistant protocols for other use cases.
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Chapter 7

Conclusion

In this work, we addressed the susceptibility of cryptographic protocols that
are used in the real world by millions of people every day to malware attacks.
Malware is a catch-all term for programs that behave maliciously. It is used
by attackers to log keystrokes, dump credentials, and manipulate software
running on the system. This allows to bypass various security mechanisms
that were never designed to protect against attackers on the local system. In
this work, we were concerned about the consequences of the infection of a
system with malware to the security guarantees of cryptographic protocols.

As shown in related work, many protocols used in real-world systems
are susceptible to malware attacks [56, 93, 129, 130]. The main problem
is that these real-world protocols lack the formal treatment that is usually
used in academic protocol design and thus the targeted security guarantees
are not precisely defined. Furthermore, during protocol design an attack
model was assumed that has been shown to be too weak for today’s threat
landscape. An attack model describes the capabilities of an attacker. Most
real-world protocols are based on the Dolev-Yao attack model, where the
attacker controls the network between computer systems and is able to read
and manipulate exchanged messages arbitrarily [54]. However, this model
does not assume the attacker to compromise systems with malware and thus
many protocols are vulnerable to this type of attack.

The goal of this thesis was to determine how cryptographic protocols can
be designed to provide resilience to malware while still being applicable to
the real world. For that purpose, we examined three use cases: electronic
payment, web authentication, and data aggregation. In each use case, we
adopted a similar series of steps. We started by analyzing the security of
existing protocols for that use case and confirmed the results from related
work that most currently deployed protocols do not resist malware attacks.
In particular, even protocols using smart cards or relying on two-factor
authentication are susceptible.

109
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From these insights we derived requirements for malware resistance and
based on these requirements, we designed new cryptographic protocols. We
used formal methods to model our security notion and protocol. Finally, we
verified the security guarantees using a formal proof of security.

We see our main contribution in the fact that we provide formalisms to
precisely define and verify what it means for a protocol to be resilient to
malware. In addition, we define guidelines to design secure protocols and
provide new protocols for our use cases that could serve as a template for
real-world adoption.

We introduced formal models and security notions to prove resilience of
our protocols to malware attacks. In particular, we propose one-out-of-two
security, a security notion for cryptographic protocols where a human user
operates two devices. Protocols that fulfill one-out-of-two security must stay
secure even if one of the two devices is compromised. We use Tamarin, a tool
for the formal verification of cryptographic protocols to verify our claimed
security guarantees. We formulated the main research question of this thesis
as follows:

How can cryptographic protocols be designed for real-world systems
to provide resilience to attacks with malware?

In this work, we showed that designing cryptographic protocols with
malware-resistance is indeed possible. We introduced L-Pay a protocol
for secure electronic payment satisfying one-out-of-two security, FIDO2D
a protocol based on the FIDO2 standard protecting transactions in the
Web with one-out-of-two security, and SAGMA a protocol for secure data
aggregation in encrypted databases with semantic security and precisely
defined leakage.

Our protocol L-Pay improves upon EMV, the worldwide standard for
electronic payment. EMV has been found to be susceptible to a plethora
of attacks such as relay attacks, pre-play attacks, and man-in-the-middle
attacks [13, 20, 57, 129]. One particular weakness is that compromising an
automated teller machine (ATM) is sufficient to break the security of this
protocol standard. L-Pay offers secure money withdrawal at an ATM or
payment at the point of sale (POS). We achieved this by enabling the user to
verify the transaction data on a smartphone. In contrast to previous protocols,
L-Pay fulfills one-out-of-two security and as such also protects transactions
when either the primary device or the smartphone is compromised. We
formally verified this claim using Tamarin.

In our second use case, we analyzed authentication in the Web. Pass-
words are still the prevalent mechanism for authentication there. Two-factor
authentication is on the rise; however, most web authentication schemes
are inherently vulnerable to malware attacks. One reason for this is that
web authentication schemes usually establish an authenticated session dur-
ing login. This session can be hijacked by stealing cookies stored in the
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browser using malware. Online banking schemes authenticate transactions
individually instead of establishing a trusted session, nonetheless, most of
them are vulnerable to malware attacks. We introduced 2DA, a blueprint for
designing web authentication schemes with malware resistance and FIDO2D,
a protocol for web authentication based on our blueprint. FIDO2D relies on
the FIDO2 standard to securely initiate and confirm a transaction on two
separate devices. We verified that our protocol fulfills one-out-of-two security
using Tamarin and confirmed the feasibility of our approach by creating a
prototypical implementation. Integration into the FIDO2 standard would
pave the way for broad adoption of our approach. We urge the FIDO Alliance
to fully embrace one-out-of-two security and transaction authentication as
a design paradigm for secure web authentication in future versions of their
standard.

Finally, we analyzed the resilience of database servers to malware attacks.
Commonly, databases are not encrypted and as such can be accessed by
malware that compromised the database server. Encrypting the data with a
regular encryption scheme on a client protects the confidentiality of the data
against malware on the server, however, at the same time it prevents process-
ing the data. Special cryptographic schemes bridge this gap by supporting
a limited set of database operations while protecting the confidentiality of
the stored data. Data aggregation with grouping is a common functionality
used in data analytics. Previously, a combination of deterministic encryp-
tion and homomorphic encryption was proposed to support these types of
operations [138]. However, deterministic encryption leaks the frequencies of
attribute values that can be exploited in leakage-abuse attacks [130]. We
proposed SAGMA, a protocol for secure aggregation with grouping that
provides a novel trade-off between security and performance by hiding the
frequencies of individual attribute values using bucketization. SAGMA relies
on homomorphic encryption in combination with searchable symmetric en-
cryption (SSE). It provides semantic security and query execution only leaks
the bucket membership of rows. By increasing the bucket size, the impact
of the leakage can be reduced. We showed how the plaintext data can be
preprocessed to further reduce the leakage and analyzed queries of real-world
database applications to verify the applicability of SAGMA to real-world
systems.

With our protocols, formal models, and security notions we have taken
important steps towards the use of malware-resistant protocols in real-world
systems. We showed that designing secure protocols that protect against
malware is possible. In particular, we provide cryptographic protocols with
malware-resistance for three use cases. Even though no one-size-fits-all
approach for secure protocol design exists, we provided guidelines, as well as
security notions and formal models that can serve as a foundation to design
secure protocols for other use cases in the future.
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Future Work Apart from the three use cases we examined in this thesis,
many other real-world protocols are susceptible to malware too. For example,
remote administration protocols such as Remote Desktop and SSH rely on
session authentication and are thus vulnerable to session hijacking. Designing
a malware-resistant protocol for remote administration is left for future work.

Usability aspects have a huge impact on the adoption of a protocol in
practice. Thus, future research could conduct usability studies to examine
how well users cope with our protocols. In particular, the verification of
transaction details on a smartphone might be prone to human errors.

We proposed the notion one-out-of-two security to protect the authenticity
and integrity of transaction data. It is still an open problem how the
confidentiality of data requested by an honest user can be preserved when
one device is infected by malware. Once data is displayed on the screen of
a device, it is accessible to malware. Thus, a secure scheme would have to
split the information between devices and enable the user to combine them.

Determining which actions of a web application should be protected by
transaction authentication is challenging. There is a fine line between in-
creasing security by covering more actions and causing authentication fatigue
diminishing security ultimately. Furthermore, one has to ensure that actions
that are not protected by transaction authentication cannot impact state that
should only be modifiable by actions protected by transaction authentication.
Otherwise, transaction authentication can easily be bypassed. Providing a
framework to determine suitable actions for transaction authentication and
eliminating the possibility of privilege escalation using unprotected actions
is left for future research.
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Tamarin Model for L-Pay

The Tamarin model for our protocol L-Pay from Chapter 3 can be found
below. This also includes the formalization of our security notion one-out-of-
two security for electronic payment.

1 theory lpay
2 begin
3 builtins : asymmetric-encryption
4
5 rule create_bank :
6 [
7 ]
8 --[ BankCreated ($B)]->
9 [

10 !Bank($B),
11 Out($B)
12 ]
13
14 rule create_atm :
15 [
16 ]
17 --[ ATMCreated ($ATM)]->
18 [
19 !ATM($ATM),
20 Out($ATM)
21 ]
22
23 rule init_app :
24 [
25 Fr(~ k_app)
26 ]
27 --[]->
28 [
29 ! App_Pk (pk(~ k_app)),
30 ! App_Ltk (pk(~ k_app), ~k_app),
31 UnlinkedApp (pk(~ k_app))

113
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32 ]
33
34 rule register_account :
35 [
36 !Bank(B),
37 ! App_Pk ( pk_app ),
38 UnlinkedApp ( pk_app ),
39 Fr(~ pin)
40 ]
41 --[ AccountRegistered ($Acc , B)]->
42 [
43 ! Account ($Acc , B, pk_app , ~pin),
44 Out(<$Acc , pk_app >)
45 ]
46
47 rule init_transaction :
48 [
49 !Bank(B),
50 !ATM(ATM)
51 ]
52 --[ TransactionInitiated ($Acc , B, ATM , $d)]->
53 [
54 UserWaitForConfirmation ($Acc , B, ATM , $d),
55 ATMTransactionStarted ($Acc , B, ATM , $d),
56 Out(<$Acc , B, ATM , $d >)
57 ]
58
59 rule attacker_init_transaction :
60 [
61 !Bank(B),
62 !ATM(ATM)
63 ]
64 --[ MaliciousTransactionInitiated ($Acc , B, ATM , $d)]->
65 [
66 AttackerWaitForConfirmation ($Acc , B, ATM , $d),
67 ATMTransactionStarted ($Acc , B, ATM , $d),
68 Out(<$Acc , B, ATM , $d >)
69 ]
70
71 rule bank_receive_transaction :
72 [
73 ! Account (Acc , B, pkApp , pin),
74 In(<Acc , B, ATM , d>),
75 Fr(~ nonce_app )
76 ]
77 --[ NonceChosenByBank (~ nonce_app )]->
78 [
79 BankWaitForConfirmation (Acc , B, ATM , d, ~

nonce_app ),
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80 Out(aenc(<Acc , B, ATM , d, ~nonce_app >, pkApp))
81 ]
82
83 rule app_receive_transaction :
84 [
85 ! Account (Acc , B, pkApp , pin),
86 ! App_Ltk (pkApp , k),
87 In(c)
88 ]
89 --[]->
90 [
91 AppDecryptedTransactionData (Acc , B, adec(c, k))
92 ]
93
94 rule user_verify_transaction_app :
95 [
96 AppDecryptedTransactionData (Acc , B, <Acc , B, ATM ,

d, nonce >),
97 UserWaitForConfirmation (Acc , B, ATM , d)
98 ]
99 --[ UserLeakedNonce (nonce)]->

100 [
101 Out(nonce),
102 UserWaitForConfirmationATM (Acc , B, ATM , d)
103 ]
104
105 rule atm_user_enter_pin_and_nonce :
106 [
107 ! Account (Acc , B, pkApp , pin),
108 UserWaitForConfirmationATM (Acc , B, ATM , d),
109 ATMTransactionStarted (Acc , B, ATM , d),
110 In( nonce_app )
111 ]
112 --[ ]->
113 [
114 Out_C(ATM , B, <Acc , B, ATM , d, nonce_app , pin >)
115 ]
116
117 rule atm_attacker_enter_pin_and_nonce :
118 [
119 ! Account (Acc , B, pkApp , pin),
120 AttackerWaitForConfirmation (Acc , B, ATM , d),
121 ATMTransactionStarted (Acc , B, ATM , d),
122 In( nonce_app ),
123 In(pin)
124 ]
125 --[ AttackerConfirmedTransaction (Acc , B, ATM , d) ]->
126 [
127 Out_C(ATM , B, <Acc , B, ATM , d, nonce_app , pin >)
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128 ]
129
130 rule compromised_atm_leak_pin :
131 [
132 ! ATM_Compromised (ATM),
133 ! Account (Acc , B, pkApp , pin),
134 UserWaitForConfirmationATM (Acc , B, ATM , d),
135 ATMTransactionStarted (Acc , B, ATM , d)
136 ]
137 --[ WithdrawAtCompromisedATM (Acc , B), PINLeaked (pin)

]->
138 [
139 Out(pin)
140 ]
141
142 rule bank_verify_transaction :
143 [
144 BankWaitForConfirmation (Acc , B, ATM , d, nonce_app

),
145 In_C(ATM , B, <Acc , B, ATM , d, nonce_app , pin >),
146 ! Account (Acc , B, pkApp , pin)
147 ]
148 --[ BankVerifiedTransaction (Acc , B, ATM , d)]->
149 [
150 ]
151
152 rule compromise_atm :
153 [
154 !ATM(ATM)
155 ]
156 --[ CompromiseATM (ATM) ]->
157 [
158 ! ATM_Compromised (ATM)
159 ]
160
161 rule compromise_app :
162 [
163 ! Account (Acc , B, pk_app , pin),
164 ! App_Ltk (pk_app , k_app)
165 ]
166 --[ CompromiseApp (Acc , B) ]->
167 [
168 Out(k_app)
169 ]
170
171 lemma types [ sources ]:
172 "( All nonce #i. UserLeakedNonce (nonce) @i
173 ==>
174 (
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175 (Ex #j. NonceChosenByBank (nonce) @j) |
176 (Ex #j. KU(nonce) @j & j < i)
177 ))"
178
179 /* Confidential channel rules */
180 rule ChanOut_C :
181 [
182 Out_C($A ,$B ,x)
183 ]
184 --[ ChanOut_C ($A ,$B ,x) ]->
185 [
186 !Conf($B ,x)
187 ]
188
189 rule ChanIn_C :
190 [
191 !Conf($B ,x),
192 In($A)
193 ]
194 --[ ChanIn_C ($A ,$B ,x) ]->
195 [
196 In_C($A ,$B ,x)
197 ]
198
199 rule ChanIn_CAdv :
200 [
201 In(<$A ,$B ,x>)
202 ]
203 -- >
204 [
205 In_C($A ,$B ,x)
206 ]
207
208 // These restrictions are not required for security but

simplify proofs and counterexamples
209 restriction UniqueAccounts :
210 "All acc bank #i #j. AccountRegistered (acc , bank)

@i & AccountRegistered (acc , bank) @j ==> #i
= #j"

211
212 restriction UniqueATMs :
213 "All atm #i #j. ATMCreated (atm) @i & ATMCreated (

atm) @j ==> #i = #j"
214
215 #ifdef SANITY
216 lemma end_of_line_reached_without_attack :
217 exists-trace
218 "Ex acc bank atm data #i. BankVerifiedTransaction (acc

, bank , atm , data) @i & not (Ex #j. CompromiseApp
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(acc , bank) @j) & not (Ex #k. CompromiseATM (atm)
@k) & not (Ex #l. MaliciousTransactionInitiated (
acc , bank , atm , data) @#l)"

219 lemma multiple_banks :
220 exists-trace
221 "Ex bank1 bank2 #t1 #t2. BankCreated (bank1) @t1 &

BankCreated (bank2) @t2 & (not bank1 = bank2)
"

222 lemma multiple_atms :
223 exists-trace
224 "Ex ATM1 ATM2 #t1 #t2. ATMCreated (ATM1) @ #t1 &

ATMCreated (ATM2) @ #t2 & not ATM1 = ATM2"
225
226 lemma user_can_register_with_multiple_banks :
227 exists-trace
228 "Ex Acc Bank1 Bank2 #t1 #t2. AccountRegistered (

Acc , Bank1) @ #t1 & AccountRegistered (Acc ,
Bank2) @ #t2 & not Bank1 = Bank2"

229
230 lemma atm_leaks_pin :
231 exists-trace
232 "Ex pin #i. PINLeaked (pin) @#i"
233
234 lemma attacker_can_start_transaction :
235 exists-trace
236 "Ex acc bank atm data #i.

MaliciousTransactionInitiated (acc , bank , atm ,
data) @#i"

237
238 lemma attacker_initiated_transaction_accepted :
239 exists-trace
240 "Ex acc bank atm data #i #j.

MaliciousTransactionInitiated (acc , bank , atm ,
data) @#i & BankVerifiedTransaction (acc ,

bank , atm , data) @#j & not (Ex #k.
TransactionInitiated (acc , bank , atm , data) @#
k)"

241
242 lemma compromised_atm_can_confirm_transaction :
243 exists-trace
244 "Ex acc bank atm data #i. BankVerifiedTransaction

(acc , bank , atm , data) @#i & not (Ex #j.
TransactionInitiated (acc , bank , atm , data) @#
j) & not (Ex #k.
MaliciousTransactionInitiated (acc , bank , atm ,

data) @#k)"
245
246 lemma compromise_both_devices :
247 exists-trace
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248 "Ex acc bank atm data #i. BankVerifiedTransaction
(acc , bank , atm , data) @#i & not (Ex #j.
TransactionInitiated (acc , bank , atm , data) @#
j)"

249
250 #endif
251
252 // one-out-of-two security
253 #ifdef SEC
254 lemma only_user_initiated_transactions_accepted :
255 "All acc bank data atm #i. BankVerifiedTransaction (

acc , bank , atm , data) @ #i ==> (( Ex #j. (
TransactionInitiated (acc , bank , atm , data) @ #j))

256 | (Ex #j #k. CompromiseApp (acc , bank) @#j &
WithdrawAtCompromisedATM (acc , bank) @#k))"

257
258 lemma replay_attack_impossible :
259 "All acc1 bank1 data1 atm1 acc2 bank2 data2 atm2 #i #

j. BankVerifiedTransaction (acc1 , bank1 , atm1 ,
data1) @i & BankVerifiedTransaction (acc2 , bank2 ,
atm2 , data2) @j & not #i = #j

260 ==>
261 ( (Ex #k #l. TransactionInitiated (acc1 , bank1 , atm1 ,

data1) @k & TransactionInitiated (acc2 , bank2 , atm2 ,
data2) @l & not #k = #l)

262 | (Ex #m #n. CompromiseApp (acc1 , bank1) @m &
WithdrawAtCompromisedATM (acc1 , bank1) @n)

263 | (Ex #m #n. CompromiseApp (acc2 , bank2) @m &
WithdrawAtCompromisedATM (acc2 , bank2) @n)

264 )"
265 #endif
266
267 end
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Appendix B

Tamarin Model for FIDO2D

Our Tamarin model for our protocol FIDO2D from Chapter 4 including the
formalization of our security notion one-out-of-two security can be found
below. For brevity, we omit sanity lemmas, as well as the variations of
the model for users that do not compare transaction data as described in
Section 4.5.4. However, the full Tamarin model is available online1.

1 theory fido2d
2 begin
3 builtins : signing
4
5 rule new_server :
6 [ ]
7 --[ HonestServer ($S) ]->
8 [ ! Honest ($S) ]
9

10 rule register_first_device :
11 [ Fr(~ privkey ) ]
12 --[ ]->
13 [
14 ! Ltk_Dev1 ($I , $S , ~ privkey ),
15 ! Pk_Dev1 ($I , $S , pk(~ privkey )),
16 RegisteredPartially ($I , $S),
17 Out(<$I , pk(~ privkey ) >)
18 ]
19
20 rule register_second_device :
21 [
22 Fr(~ privkey ),
23 RegisteredPartially (I, S)
24 ]
25 --[ AccountRegistered (I, S) ]->
26 [
27 ! Ltk_Dev2 (I, S, ~ privkey ),

1https://tinyurl.com/2022-fido2d-tamarin
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28 ! Pk_Dev2 (I, S, pk(~ privkey )),
29 ! Registered (I, S),
30 Out(<I, pk(~ privkey ) >)
31 ]
32
33
34 rule init_transaction :
35 [
36 ! Registered (I, S),
37 ! Honest (S)
38 ]
39 --[ TransactionBegin (I, S, $d) ]->
40 [
41 UserWaitForConfirmation (I, S, $d),
42 Dev1WaitForNonce (I, S, $d),
43 Out(<I, S, $d >)
44 ]
45
46 rule receive_transaction :
47 [
48 ! Registered (I, S),
49 ! Honest (S),
50 In(<I, S, d>),
51 Fr(~ nonce)
52 ]
53 --[ TransactionReceived (I, S, d) ]->
54 [
55 ServerWaitForSignature (I, S, d, ~nonce),
56 Out_A(S, I, <I, d, ~nonce >)
57 ]
58
59 rule phish_transaction :
60 [
61 ! Registered (I, S),
62 In(P)
63 ]
64 --[ TransactionBegin (I, S, $d), Phisher (P) ]->
65 [
66 UserWaitForConfirmation (I, S, $d),
67 Dev1WaitForNonce (I, P, $d),
68 Phished (I, S, P)
69 ]
70
71 rule receive_transaction_phisher :
72 [
73 In(<d, nonce >),
74 Phished (I, S, P)
75 ]
76 --[ ]->
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77 [
78 Out_A(P, I, <I, d, nonce >)
79 ]
80
81 rule sign_nonce :
82 [
83 Dev1WaitForNonce (I, S, d),
84 In_A(S, I, <I, d, nonce >),
85 ! Ltk_Dev1 (I, S, privkey )
86 ]
87 --[ NonceSigned (I, S, nonce) ]->
88 [
89 Out(sign(<S, nonce >, privkey ))
90 ]
91
92 rule verify_signature :
93 [
94 In( signature ),
95 ServerWaitForSignature (I, S, d, nonce),
96 ! Pk_Dev1 (I, S, pubkey ),
97 Fr(~ nonce2 )
98 ]
99 --[ Eq( verify (signature , <S, nonce >, pubkey ), true),

SignatureVerifiedDev1 (I, S, d) ]->
100 [
101 ServerWaitForSecondSignature (I, S, d, ~ nonce2 ),
102 Out_A(S, I, <S, I, d, ~nonce2 >)
103 ]
104
105 rule sign_second_nonce :
106 [
107 UserWaitForConfirmation (I, S, d),
108 In_A(S, I, <S, I, d, nonce >),
109 ! Ltk_Dev2 (I, S, privkey )
110 ]
111 --[ DisplayData (I, S, d), NonceSigned (I, S, nonce) ]-

>
112 [
113 Out(sign(<S, d, nonce >, privkey ))
114 ]
115
116 rule verify_second_signature :
117 [
118 In( signature ),
119 ServerWaitForSecondSignature (I, S, d, nonce),
120 ! Pk_Dev2 (I, S, pubkey )
121 ]
122 --[ Eq( verify (signature , <S, d, nonce >, pubkey ), true

), TransactionComplete (I, S, d) ]->
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123 [
124 ]
125
126 rule compromise_first_device :
127 [
128 ! Ltk_Dev1 (I, S, privkey )
129 ]
130 --[ CompromiseDev1 (I, S) ]->
131 [
132 Out( privkey )
133 ]
134
135 rule compromise_second_device :
136 [
137 ! Ltk_Dev2 (I, S, privkey )
138 ]
139 --[ CompromiseDev2 (I, S) ]->
140 [
141 Out( privkey )
142 ]
143
144 // Authentic Channel Rules from Tamarin Manual
145 rule ChanOut_A :
146 [
147 Out_A(A, B, x)
148 ]
149 --[ ChanOut_A (A, B, x) ]->
150 [
151 !Auth(A, x),
152 Out(<A, B, x>)
153 ]
154
155 rule ChanIn_A :
156 [
157 !Auth(A, x),
158 In(B)
159 ]
160 --[ ChanIn_A (A, B, x) ]->
161 [
162 In_A(A, B, x)
163 ]
164
165 restriction Equality :
166 "All x y #i. Eq(x,y) @i ==> x = y"
167
168 restriction HonestServersDontPhish :
169 "All server #i #j. HonestServer ( server ) @i & Phisher (

server ) @j ==> F"
170
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171 // This restriction is not required for security but
simplifies proofs and counterexamples

172 restriction UniqueAccounts :
173 "All acc server #i #j. AccountRegistered (acc , server )

@i & AccountRegistered (acc , server ) @j ==> #i =
#j"

174
175 lemma only_user_initiated_transactions_accepted :
176 "All initiator transaction server #i.

TransactionComplete (initiator , server ,
transaction ) @i ==> ((Ex #j.

177 TransactionBegin (initiator , server , transaction )
@j) | (Ex #k #l. CompromiseDev1 (initiator ,
server ) @k & CompromiseDev2 (initiator , server
) @l))"

178
179 lemma replay_attack_impossible :
180 "All initiator1 transaction1 initiator2 transaction2

server #i #j. TransactionComplete (initiator1 ,
server , transaction1 ) @i & TransactionComplete (
initiator2 , server , transaction2 ) @j & not #i = #
j ==> ((Ex #k #l. TransactionBegin (initiator1 ,
server , transaction1 ) @k & TransactionBegin (
initiator2 , server , transaction2 ) @l & not #k = #
l) | (Ex #m #n. CompromiseDev1 (initiator1 , server
) @m & CompromiseDev2 (initiator1 , server ) @n) | (
Ex #m #n. CompromiseDev1 (initiator2 , server ) @m &

CompromiseDev2 (initiator2 , server ) @n) )"
181
182 end
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