
Cloud-Enabled Handheld NIR Spectroscopy: A Transformative
Approach for Real-Time Forensic Analysis of Cannabis Specimens

Florentin Coppey,a Cédric Schelling,b, c Jean-Luc Veuthey,b, c and Pierre Esseiva*a

a University of Lausanne, School of Criminal Justice, CH-1015, Lausanne, Switzerland,,
e-mail: pierre.esseiva@unil.ch

b School of Pharmaceutical Sciences, University of Geneva, CMU – Rue Michel Servet 1, CH-1211, Geneva 4,
Switzerland

c Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU – Rue Michel Servet 1,
CH-1211, Geneva 4, Switzerland

Dedicated to Prof. Robert Deschenaux on the occasion of his retirement

© 2023 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG. This is an open access article under the terms of the
Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

In the past few years, there has been significant interest within the forensic community regarding the
deployment of portable solutions that provide real-time results. This article introduces an innovative technology
or technology architecture that enables the integration of a handheld device, specifically, Viavi MicroNIR, with a
cloud-based system. This cloud system encompasses a server responsible for data processing and a mobile
application acting as a user interface.
To demonstrate the transformative impact of this technology on field operators, the analysis of cannabis
specimens has been utilized. System’s capacity to distinguish between CBD-type and THC-type cannabis has
been particularly highlighted, along with the remarkable congruence observed between the near-infrared (NIR)
spectra and the reference analytical method involving ultra-high-performance liquid chromatography (UHPLC)
The article will present the advantages of this application primarily focusing on its potential to alleviate the
burden on laboratories by expediting routine illicit drug analysis. Viavi MicroNIR technology provides laboratory
personnel with additional time to handle more complex cases, thereby enhancing overall efficiency.

Keywords: analytical methods, big-data analysis, cannabis analysis, forensic science, liquid chromatography,
machine learning, near infrared (NIR), ultra-high-performance liquid chromatography (UHPLC).

Introduction

Cannabis sativa L. is by far the most widely consumed
illicit drug in the world.[1] It is also the most
controversial product due to its potential for both
recreational and medicinal purposes and legislation
varying depending on the country.

This disparity extends to different forms that are
available on the licit or illicit market. In Switzerland, for
instance, marijuana and resin are the most encoun-
tered form. Marijuana refers to the dried vegetal forms
such as buds (called marijuana) and resin is the
concentrated product obtained by using a grinder to
mechanically extract a fine powder that concentrates

the part of the plant (the trichomes) containing the
highest concentration of Δ9-tetrahydrocannabinol
(THC), the predominant cannabinoid responsible of
the psychoactive effects. Additionally, other products
can be found like cannabis oil extracts or edibles. The
diversity of cannabis products is further reflected in
the various methods of consumption, including smok-
ing, inhalation, ingestion, drinking, and vaporization.

The cannabis plant contains a complex mixture of
terpenes, flavonoids, phenolic derivatives, and more
than 90 cannabinoids were present in the inflores-
cence. Among them, THC and cannabidiol (CBD) were
the most abundant.[2] However, it is important to
mention that CBD and THC are not biosynthesized in
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the plant but are present in their cannabidiol acid
(CBDA) and tetrahydrocannabinol acid (THCA) form.[3]

To obtain the active forms of THC (tetrahydrocannabi-
nol) and CBD (cannabidiol), a process called decarbox-
ylation is required. Decarboxylation involves the
removal of a carboxyl group from the cannabinoid
molecules through the application of heat. This
process converts the inactive forms of THC and CBD
(THCA and CBDA, resp.) into their active and psycho-
active forms.

In the context of cannabis consumption, one
common method of achieving decarboxylation is by
smoking the cannabis plant, often mixed with tobacco.
When the cannabis plant material is exposed to heat
through combustion, the decarboxylation process
occurs, converting THCA and CBDA into THC and CBD,
respectively. Smoking cannabis mixed with tobacco is
a popular practice. This method effectively allows for
the decarboxylation of cannabinoids through the heat
generated during smoking.

The characterization of cannabis sativa L. is a
significant topic in drug analysis as it has raised
numerous questions within the community in recent
years. Due to the varying legislation in different
countries, where cannabis can be either a controlled
or legal substance, several inquiries have emerged,
primarily regarding the determination of potency and
the ability to differentiate between high-THC, low-CBD
content (THC-type) and low-THC, high-CBD content
(CBD-type) products.[4]

To answer these questions, it is necessary to
quantify the amount of THC. For instance, different
limits can be defined to determine if one is dealing
with CBD-type or drug-type cannabis. In Switzerland,
the legal limit is set for THC at �1%,[5] while in other
European countries, the limit may vary from �0.2% to
�0.6%.[4]

There is a significant demand for the availability of
rapid analysis methods for forensic purposes. To tackle
these challenges, various initiatives have been pub-
lished, focusing on the deployment of rapid technolo-
gies for the analysis of illicit or licit drugs.[6–9]

Spectroscopic techniques such as Raman or Near
Infrared spectroscopy (NIR) have shown excellent
results in identifying and quantifying illicit drugs.[10–13]

This trend has also extended to cannabis analysis, with
several publications demonstrating the potential of
spectroscopy in analyzing cannabis samples.[14–16]

These rapid techniques based on spectroscopy
have undeniable advantages, including their speed,
portability, non-destructiveness, minimum sample
preparations requirements. This opens a new possibil-

ity to deploy these techniques directly into the field in
a various setting.[17] For example, in a forensic context,
they can be used for determining the CBD-type or
THC-type of substances.[17] In drug checking settings
related to public health, they can inform consumers
about the potency of drugs. Additionally, in the hemp
industry, they can be utilized for monitoring the
maturity of hemp production.

This article focuses on discussing the performance
of a portable NIR spectrometer for the qualification
and quantification of cannabis samples. The evaluation
will be conducted by comparing the results with a
well-established method commonly used for analyzing
such samples: ultra-high-performance liquid chroma-
tography (UHPLC) coupled with diode-array detection
(DAD).[18,19] The UHPLC method measures the total
THC (THC+THCA) and total CBD (CBD+CBDA) con-
tent.

As previously mentioned, the cannabis plant
primarily contains the acidic forms of THC and CBD.
However, when the product is consumed, such as
through smoking, the acidic forms undergo decarbox-
ylation to form THC. Therefore, measuring the total
THC provides a better indication of the potency of the
final product that will be consumed. The total CBD
content of the specimens used in this study has also
been systematically measured. Since the specimens
are from police seizures, there is no prior information
available regarding the type of cannabis. Two ap-
proaches have been evaluated for the treatment of
NIR data. The first approach is more qualitative, aiming
to differentiate between CBD-type and THC-type
cannabis by employing exploratory data analysis
techniques like principal component analysis (PCA).
The second approach utilizes chemometric models
based on artificial intelligence to predict the total THC
content in marijuana and resin cannabis
specimens.[7,16]

Finally, this article presents the advantages of
combining spectroscopic approaches with the tradi-
tional chromatographic techniques to address the
challenging workloads faced by laboratories. The use
of these combined techniques provides instant results
and enables the deployment of technologies directly
into the field. This allows users to analyze seized
samples independently, contributing to more efficient
and expedited monitoring of the illicit drugs market.
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Results and Discussion

Cannabis Samples Content Analyzed by UHPLC

To evaluate the potential of NIR approach in correctly
identifying and classifying cannabis samples (CBD-type
vs. THC-type) and predicting potency, 257 randomly
selected cannabis specimens were obtained from
police seizures and sent to the laboratory. These
samples were initially analyzed using the reference
separative UHPLC method for classification.

Based on the total THC and total CBD quantifica-
tion obtained through UHPLC, the samples were
categorized into four groups. The categories were
determined based on their form (resin vs. marijuana)
and their total THC and CBD content. The clustering is
as follows: 109 marijuana specimens classified as THC-
type, 27 marijuana specimens classified as CBD-type,
103 resin specimens classified as THC-type, and 18
resin specimens classified as CBD-type.

The summarized results of total THC and total CBD
quantification for the 257 cannabis specimens are
presented in Figure 1. For THC-type marijuana speci-
mens, the mean THC content is 15.4% with most of
the specimens ranging from 13.1 to 18.2%, and the
mean CBD is 0.1% with most of the specimens ranging
from 0.02 to 0.04%.

For resin THC-type specimens, the mean THC is
25.6% content with most of the specimens ranging
from 23.9 to 29%, and the mean CBD is 1.4% with
most of the specimens ranging from 1.0 to 1.89%.

For CBD-type marijuana specimens, the mean CBD
content is 12.6% with most of the specimens ranging
from 11.0 to 14.6%, and the mean THC is 0.9% with
most of the specimens ranging from 0.5 to 0.9%.

For resin CBD-type specimens, the mean CBD is
18.1% content with most of the specimens ranging
from 17.0 to 20.7%, and the mean THC is 0.8% with
most of the specimens ranging from 0.5 to 1.9%.

Qualitative Approach: Differentiation between THC-Type
and CBD-Type Cannabis by NIR

The potential for NIR spectra to distinguish between
THC and CBD-type has been investigated using PCA
visualization. Figures 2 and 3 demonstrate excellent
separation between marijuana and resin cannabis. This
highlights the capability of MicroNIR to accurately
assign the cannabis type based on prior classification
using UHPLC. These results provide law enforcement
organizations with an efficient and reliable means to
quickly test cannabis seizures.

Quantitative Models

The cannabis samples were categories into marijuana
and resin samples based on physical characteristics.
For both groups, a training set consisting of 2/3 of the
specimen and a validation set comprising the remain-
ing specimens were used to develop the two models.
The division into these datasets was performed using
Kennard–Stone[20] strategy to maximize the variability
of the specimens within each group.

To evaluate the correlation between NIR THC
prediction and UHPLC THC quantification, an accept-
able limit of 2.5% in absolute difference was defined.
The evaluation of regression models for marijuana
specimens (see Figure 4) and resin specimens (see
Figure 5) demonstrates that the results obtained with

Figure 1. Distribution of total THC and total CBD content analyzed by UHPLC-DAD for marijuana and resin specimens.
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the NIR method are remarkably close to those
obtained with the reference method, not only for the
training groups, but also for the test groups. In fact,
more than 95% of the specimens in the test set fall
within the limit of 2.5%.

The results presented in this article highlight the
potential of the MicroNIR to provide a valid informa-
tion about the cannabis specimen. It can determine
the type (CBD-type vs. THC-type) as well as the content
of total THC. This approach offers new possibilities by
bringing the laboratory to the field[21,22] and providing
real-time information. This is particularly valuable for
the law enforcement agencies in determining the
legality of seized cannabis. The analysis is non-

destructive and chemical-free, making it an excellent
alternative to other field tests, such as colorimetric
reagents.

Additionally, MicroNIR is an excellent tool for
selecting samples that require further analysis in the
laboratory. As demonstrated in this article, NIR analysis
is a powerful technology for identifying and quantify-
ing most marijuana and resin specimens due to their
high THC levels (between 13% and 29%) and clear NIR
signals, enabling accurate qualification and quantifica-
tion. If NIR prediction shows low THC concentration
(<5%) or inconsistent results (e.g., identifying a CBD-
type when a THC-type is expected), the specimen
should be sent to the laboratory for further inves-

Figure 2. PCA separation of the two populations of marijuana samples (THC-type vs. CBD-type), using the scores of the two main
principal components with the 2nd derivative and SNV pre-treatment of the raw spectra.

Figure 3. PCA separation of the two populations of resin samples (THC-type vs CBD-type), using the scores of the two main
principal components with the 2nd derivative and SNV pre-treatment of the raw spectra.
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tigation. For low THC concentration, since the data-
base may have limited samples in this range, analysis
using a separative method such as UHPLC is necessary.
In the case of CBD-type identification instead of THC-
type, performing a complementary analysis is impor-
tant. Synthetic cannabinoids like MDMB-4en-PINACA
or HHC (Hexahydro cannabinol) can activate CBD
cannabis, and analytical techniques like GC/MS are
utilized to detect and identify these compounds.
Portable NIR spectroscopy is again an effective
approach for pre-screening unusual specimens, allow-
ing the laboratory to focus on challenging cases and
reducing its workload.

To illustrate this, potential cannabis specimens of
the last two years provided by law enforcement
agencies for forensic analysis were selected (the
authors’ university has a laboratory specializing in illicit
drug analysis).

A total of 1,503 specimens were analyzed using
portable NIR spectroscopy, resulting in 827 predictions
of marijuana THC type, 328 predictions of marijuana
CBD type, and 348 predictions of resin THC type.
Following the quantitative triage approach, only 45
specimens (resin THC and marijuana THC) were further
analyzed using chromatographic methods to confirm
total THC content, which accounted for less than 4%
of the total resin and marijuana THC specimens. This
approach significantly saves time and reduces the
workload on the laboratory.

This strategy allows to focus on CBD-type cannabis
seized by the police. During this period, approximately
21% of all specimens (328) were identified as CBD
types. As previously discussed, CBD-type cannabis can
be adulterated with synthetic cannabinoids. Therefore,
these specimens were analyzed using GC/MS screen-
ing method. Out of the 328 CBD-type specimens, only
16 (less than 5%) showed the presence of MDMB-4en-
PINACA, indicating that this phenomenon is still
limited in the Swiss French-speaking area of Switzer-
land.

NIR Technology enables direct analysis of cannabis
specimens by the police, bypassing the need for an
analytical laboratory. This allows for the collection of
extensive data on the types of cannabis products
present in the illegal market that would not otherwise
be available. In Switzerland, cannabis consumption is
generally not a priority for prosecuting authorities,
resulting in police seizures often not being referred to
forensic laboratories for analysis. As a result, there is
little knowledge about the products available in the
market and their potency. Since cannabis is the most
used illicit drug, it is frequently seized. Therefore,

Figure 4. Summary of the performance of the quantitative
regression model for the training set and the test set for the
cannabis marijuana specimen. Each specimen has been ana-
lyzed in triplicate using three different NIR instruments.

Figure 5. Summary of the performance of the regression model
for the training set and the test set for the cannabis resin
specimen. Each specimen has been analyzed in triplicate using
three different NIR instruments.
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crucial information about the composition of this
market becomes available, enabling its monitoring.

Real-time access to the data collected by the police
authorities provides immediate for the field officers,
enhancing the value of forensic data beyond mere
data but as a source of intelligence.

This approach can also be applied in a drug
checking system to inform the consumers about the
potency of the product they intend to consume. Real-
time and reliable results are crucial in such
deployments.[23]

Conclusion

In this article, several practical applications that exploit
technical developments in the miniaturization of
analytical instruments, and advancement in communi-
cation and data processing algorithms are presented.
These applications highlight a general trend of shifting
analytical capabilities outside of the traditional forensic
laboratory setting, enabling instant results directly in
the field. Portable technologies now go beyond
conducting presumptive tests and provide highly
valuable results comparable to separative reference
methods.

Undoubtedly, there is still progress to be made,
questions to be answered, and research efforts to be
carried out regarding the deployment of portable
technologies. However, the forensic community in
general, and including forensic laboratories, should
seize the opportunity presented by these innovative
approaches. These technologies, rooted in the digital
transformation of society, have the potential to bring
disruptive changes to forensic laboratory operations
and their interaction with law enforcement or prose-
cution authorities. As seen, they can contribute, at
least partially, to reducing the workload of laboratories
by decreasing the time required for routine analyses.
They may also catalyze the reallocation of resources to
more challenging cases that fully utilize the skills of
employees, thereby revaluing their work.

The decentralization of forensic capabilities repre-
sents an important turning point that forensic and
analytical laboratories must consider. However, it is
important to mention that the rise of portable
technologies does not mean the end of forensic
laboratories. On the contrary, it redefines the contours
of forensic laboratories, and places them at the center
of the decision-making process, as they can generate
tactical advantages and improve efficiency, such as
real-time monitoring of illicit markets.

Reliable, real-time analysis also opens the use of
this technology to other applications, particularly in
the field of public health (e.g., drug use and misuse).
The ability to directly inform illicit drug users of the
potency of the cannabis they plan to consume allows
them to receive relevant and appropriate risk-reduc-
tion and safer-use messages.

Experimental Section

Cannabis Specimens

To assess the performance of the portable NIR
spectrometer, 136 marijuana specimens and 121 resin
specimens were randomly selected from police seiz-
ures conducted between 2020 and 2021 in the French-
speaking part of Switzerland.

UHPLC Quantification Method

Chemicals and Reagents. Methanol, ethanol, 2-propa-
nol, water, and acetonitrile of UHPLC-MS grade were
purchased from Fischer Scientific (Loughborough, UK).
Formic acid was obtained from Biosolve (Valkenswaard,
Netherlands). All phyto-cannabinoid standard solu-
tions at 1 mg/mL in EtOH (Δ9-THC), in MeOH (CBD), in
MeCN (CBDA) and in 2-PrOH (THCA� A) were obtained
from Lipomed AG (Arlesheim, Switzerland).

Standard and Calibration Solutions. The standard
stock solution containing Δ9-THC, CBD, THCA� A,
CBD� A was prepared at a concentration of 250 μg/mL.
All stock solutions were stored at � 20 °C. The standard
stock solution was diluted in water/MeCN (3 :7, v/v) to
obtain the final concentrations of 1.95, 3.90, 7.81,
15.62, 31.25, 62.50 and 125.00 μg/mL for each analyte.

Preparation of Cannabis Samples. Cannabis sample
preparation consisted of a solid–liquid extraction
using ethanol as extraction solvent. Then, 10 mL of
ethanol was added to 500 mg of plant material in an
Ika ultra tube drive system for agitation and grinding
for 4 min at 3500 rpm with two glass beads 6 mm in
diameter. The mixture was left at ambient temperature
for 9 min, and a first centrifugation was carried out for
3 min at 3900 rpm. An aliquot was placed in a 5 mL
Eppendorf which was centrifuged at 10’000 rpm for
3 min. The supernatant was diluted 50 times before
injection into the chromatographic systems. If the
measured sample has a concentration above the
calibration range, the supernatant of the extraction is
diluted so that it is within the assay range. This
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extraction protocol has been previously optimized,
and the robustness was tested by using a multivariate
approach.[18]

UHPLC Analysis

Apparatus and Methodology. All experiments were
conducted using a Waters Acquity UPLC H-class system
(Waters, Milford, MA, USA) equipped with a quaternary
solvent manager, a sample manager with flow through
needle (FTN) injector, and a column manager (CM).
The wash solvent consisted of a mixture of MeCN,
EtOH, and water in a ratio of 4 : 4 :2 (v/v/v), while the
purge solvent was a mixture of MeCN and water in a
ratio of 7 : 3 (v/v), with a post-inject wash duration of
six seconds. UV Detection at 214 nm was performed
using a Waters PDA detector connected to the
chromatographic system.

UHPLC-UV Method Conditions. The separation was
carried out at 30 °C using an InfinityLab Poroshell 120
EC-C18 column (150×2.1 mm, 2.7 μm) from Agilent
(Santa Clara, USA), along with an Infinity Lab Poroshell
120 EC-C18 guard column (5×2.1 mm, 2.7 μm) from
Agilent. The mobile phase A consisted of water with
0.1% formic acid, while the mobile phase B consisted
of MeCN with 0.1% formic acid.

The gradient profile was as follows: an isocratic
mode at 68% B for 2.8 min, followed by an increase
from 68% to 73% B in 0.5 min. This composition was
held for 3.7 min, then increased to 95% B over
5.0 min, and held for 1.0 min. The percentage of B was
then brought back to the initial condition in 0.5 min
and maintained for 4.5 min to re-equilibrate the
system. The flow rate was set at 0.5 mL/min, and the
injection volume was 1 μL.

Spectroscopy

The portable NIR Spectrometer used in this study is
the MicroNIR Onsite-W 1700 from Viavi Solutions Inc.
(see Figure 6). It operates in the spectral region of
950–1650 nm and consists of a linear variable filter
(LVF) directly connected to a 128-pixel linear indium-
gallium-arsenic (InGaAs) array detector. The detector
has a nominal spectral resolution of 6.25 nm. The
signal-to-noise ratio of the instrument is 25,000, the
integration time is set to 10 ms, and it collects 100
scans per analysis.

The instrument is connected to the NIRLAB mobile
application through Bluetooth as described by Coppey
et al.[7] The mobile application, in turn, connects to a
database where algorithms handle the previously
acquired NIR signals to predict the type of illicit drugs
(such as CBD-type or THC-type) as well as their content
(in this case, the percentage of total THC or total CBD).
These predictions are made using the predictive
models developed in this article.

The technological architecture of NIRLAB is cen-
tered around an advanced web interface programmed
in Python, which enables the development and
maintenance of predictive models. This tool integrates
the NIR spectra stored in the reference library with the
reference data generated by the forensic laboratory to
generate these models. The process of model develop-
ment and updates involves combining the results
obtained from NIR spectra with data from a chromato-
graphic reference analytical method, such as UHPLC-
DAD.

By utilizing machine learning algorithms, it be-
comes possible to create predictive models that are
trained to estimate the desired value, whether it is
qualitative or quantitative, based on the spectral data
from the reference method. These algorithms use the
spectral data as input to make predictions about the
targeted value.

Figure 6. MicroNIR Onsite-W 1700 and the mobile application.
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NIR Measurements

In each specimen, four measurements are taken either
around the flower or on various areas of the resin
surface using direct contact, as depicted in Figure 7.
These steps are repeated with three different MicroNIR
devices to account for variability among instruments
and to standardize measurements for UHPLC-DAD
quantification.

Cannabis flowers, the primary products of the
plant, exhibit substantial variability. To address this
heterogeneity and enhance repeatability, a specific
protocol is implemented. The detection capabilities of
the instruments are designed to capture reflected light
from a surface area of approximately 2 cm2 on the
flower. The spectra collected with the four measure-
ments on the specimen are aggregated and averaged,
thus producing a composite spectrum that more
accurately represents the flower or the resin.

For model training and testing, each sample
consists of a single flower of dimensions 2 cm by 1 cm
or larger. It is important to emphasize that this study
only examines flowers from recent harvests (<1 year)
that are preserved from excessive sunlight and heat.
The potential influence of these external parameters
on the models is not investigated in this study.

In addition, only ‘consumer-ready’ flowers are
analyzed; these are post-harvest cured and dried, with
a moisture level between 8 and 12%. Given water’s
significant impact on the NIR spectra in the range of
1300 nm to 1500 nm, the models trained here cannot
be applied to fresh flowers.

The models were developed in Python using the
scikit-learn framework version 0.24.2.[24] For the classi-
fication models that distinguish between THC-type
and CBD-type flowers and resins, a tree-based pipeline
optimization process was employed.[25] This process
involves searching through the combination of classi-

Figure 7. Illustration of the analysis of marijuana and resin cannabis specimen using the MicroNIR Onsite-W.
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fication algorithms and parameters that yields the
highest accuracy in cross-validation (Figure 8).

To enhance reproducibility across different devices,
the spectra edges were truncated based on the
manufacturer’s recommendation. Consequently, the
first and last five variables of the spectra were
excluded from the training process. This step was
taken to achieve better consistency and comparability
between different devices.

Following the initial model development, a second
step of the analysis was performed.

The same method was also applied to train
quantitative models for predicting the THC content of
THC type flowers and resins (Figure 9).

The resulting models in this study utilized an
optimized pipeline comprising an ensemble of random
forest and bagged trees classifiers for the classification
of flowers and resins. For the quantitative analysis of

Figure 8. Spectra of CBD and THC flowers after pre-processing using Savitzky–Golay second derivative (smoothing of 5) followed
by SNV. The green bands show the area where the differences are the most visible between the two cannabis types.

Figure 9. Spectra of THC type flowers used to train the model, pre-processing: Savitzky–Golay second derivative (smoothing of 5) +

SNC. Color=THC potency in %.
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THC, an ensemble consisting of gradient boosting and
k-nearest neighbors (KNN) regressors was employed.

These predictive models were trained using a
library that can handle high-dimensional data well,
prevents overfitting, and capture complex non-linear
relationships without making assumptions of data
distributions, unlike classical methods like PLS.

However, it is important to note that these models
can be computationally intense, particularly with large
datasets. Additionally, their ‘black box’ nature presents
challenges in terms of interpretability. Automated
machine learning systems also carry the risk of ‘over-
optimization’, where the model becomes too closely
fitted to the training data.

In comparison to classical methods like PLS and
SVM, these automated techniques can provide higher
accuracy by effectively modeling intricate patterns.
However, they may lack simplicity in interpretation. On
the other hand, PLS and SVM offer more straightfor-
ward interpretability but may struggle with complex
data. The choice between these methods depends on
factors such as data complexity, interpretability re-
quirements, and available computational resources.

Once the prediction models are trained, a valida-
tion phase is conducted before the release of the new
model (see Figure 10). This is to ensure the models are
not overfitted and perform well on unknown data.
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