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Abstract

Motion planning is a computational problem of finding robot motions between start

and goal states so that a robot avoids collision with obstacles. This is a non-trivial

problem because of the high dimensionality of the search space. The problem becomes

even more challenging under realistic assumptions: Real-life robots’ sensing and motion

capabilities are inherently inaccurate. The accumulation of inaccuracies can lead

to failure during the execution of a motion plan. Therefore, a planner must reason

about uncertainty to avoid execution failure. It can search for actions unaffected by

uncertainty, which are frequently a needle in a haystack, or it can augment uncertain

states with sensor measurements, which requires reasoning about sensing.

The thesis contributes conceptual and algorithmic approaches to efficiently reduce

state uncertainties in motion planning problems resulting from perception and motion

inaccuracies. We reduce uncertainty with "collision-exploiting" motions that conŕict

with traditional "collision-free" planning. This conŕict raises several challenges, such

as collision-exploiting motion requires frequent collision checking, which is an expensive

computational operation, and reasoning about contact states or contact sensing further

increases an already high-dimensional problem space. We tackle these and other related

challenges by representing the state space using the Environmental Constraint (EC)

concept.

The Environmental Constraint concept was introduced in the context of human

grasping experiments. Deimel et al. (2016) have proven that humans deliberately

increase contact with their environment when their vision is experimentally blurred to

achieve robust grasping. Roboticists have shown that contact with the environment

reduces uncertainty and simplifies grasping (Odhner et al., 2013; Eppner and Brock,

2015; Hang et al., 2019). This thesis builds on these findings and further advances the

EC-based manipulation and motion planning field.

In the first part, we introduce sampling-based motion planning and apply EC

exploitation in high-dimensional planning problems by devising multiple contact-based

configuration-space motion planning algorithms. One planner leverages an EC-based
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decomposition of the workspace to avoid exploring task-irrelevant regions. Another

planner detects deviations using contact events to reduce large amounts of state

uncertainty. We evaluated all planners in simulation and one planner with real-robot

experiments. The results show that our algorithms generalize to high-dimensional

problems and handle increased state uncertainty.

In the second part, we characterize a new environmental constraint manifesting in

piles of objects and show that the novel EC provides similar beneficial effects as static

parts of the environment, simplifying grasping from piles of objects. We empirically

study human-like grasping from piles of objects with a robotic hand. The interaction

between the hand, objects, and the environment produces patterns in interaction forces.

These force patterns constrain objects’ motion and reduce uncertainty mechanically. We

show that these force patterns are consistent in regions of the workspace, and changes

in the force patterns produce detectable contact events. Our real-robot experiments

show that grasping and planning become substantially simpler when using these effects.

The third and final part discusses the practical application of EC exploitation in

a robotic system. We present the Soft Manipulation System devised for integrating

and evaluating concepts and technologies developed by a consortium of academics and

industrial partners. Our tightly integrated but modular system design enabled EC

exploitation with various hardware components. We conclude the thesis by proposing

an EC-based problem factorization for manipulation and motion planning problems

by blurring the boundaries between control, perception, and planning; and shifting

manipulation responsibilities from these components to the environment.



Zusammenfassung

Die Bewegungsplanung ist ein Berechnungsproblem, bei dem es darum geht, Roboter-

bewegungen zwischen Start- und Zielzustand zu finden, sodass ein Roboter Kollisionen

mit Hindernissen vermeidet. Dies ist ein nicht-triviales Problem aufgrund der hohen

Dimensionalität des Suchraums. Unter realistischen Annahmen wird das Problem

noch schwieriger: Die Wahrnehmungs- und Bewegungsfähigkeiten von Robotern im

realen Leben sind von Natur aus ungenau. Diese Anhäufung von Ungenauigkeiten

kann zu Fehlern bei der Ausführung eines Bewegungsplans führen. Daher muss ein

Planer Unsicherheit in seinen Planungsprozess miteinbeziehen, um Ausführungsfehler

zu vermeiden. Er kann nach Aktionen suchen, die nicht von der Ungewissheit betroffen

sind, was häufig eine Nadel im Heuhaufen ist, oder er kann unsichere Zustände mit

Sensormessungen ergänzen, was jedoch ebenfalls erfordert, dass Messvorgänge im

Planungsprozess miteinbezogen werden.

In dieser Arbeit werden konzeptionelle und algorithmische Ansätze zur effizienten

Reduzierung von Zustandsunsicherheiten in Bewegungsplanungsproblemen vorgestellt,

die aus Wahrnehmungs- und Bewegungsungenauigkeiten resultieren. Wir reduzieren

die Unsicherheit mit žkollisionsausnutzendenž Bewegungen, die mit der traditionellen

žkollisionsfreienž Planung in Konŕikt stehen. Dieser Konŕikt wirft mehrere Heraus-

forderungen auf, wie z.B. die Tatsache, dass kollisionsausnutzende Bewegungen häufige

Kollisionsprüfungen erfordern, was eine aufwändige Rechenoperation ist, und dass die

Schlussfolgerungen über Kontak- tzustände oder Kontaktwahrnehmung einen bereits

hochdimensionalen Problemraum weiter vergrößern. Wir gehen diese und andere

damit verbundene Herausforderungen an, indem wir den Zustandsraum mit Hilfe des

Environmental Constraint (EC) Konzepts darstellen.

Das Environmental Constraint-Konzept wurde im Zusammenhang mit Experi-

menten zum menschlichen Greifen eingeführt. Deimel et al. (2016) haben bewiesen,

dass Menschen bewusst mehr Kontakt mit ihrer Umgebung erzeugen, wenn ihre Sicht

experimentell unscharf gemacht wird, um ein robustes Greifen zu erreichen. Robotiker

haben gezeigt, dass der Kontakt mit der Umgebung die Unsicherheit reduziert und das
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Greifen vereinfacht (Odhner et al., 2013; Eppner and Brock, 2015; Hang et al., 2019).

Die vorliegende Arbeit baut auf diesen Erkenntnissen auf und bringt das Gebiet der

EC-basierten Manipulation und Bewegungsplanung weiter voran.

Im ersten Teil stellen wir stochastische Bewegungsplanung vor und wenden die

EC-Nutzung, indem wir zwei kontaktbasierte Konfigurationsraum-Bewegungsplanungs-

algorithmen entwickeln. Ein Planer nutzt eine EC-basierte Dekomposition des Arbeit-

sraums, um die Erkundung aufgabenirrelevanter Regionen zu vermeiden. Ein anderer

Planer erkennt Abweichungen anhand von Kontaktereignissen, um große Mengen an

Zustandsunsicherheit zu reduzieren. Wir haben beide Planer in Simulationen und einen

Planer auch in Experimenten mit realen Robotern evaluiert. Die Ergebnisse zeigen, dass

unsere Algorithmen auf hochdimensionale Probleme verallgemeinert werden können

und mit erhöhter Zustandsunsicherheit umgehen können.

Im zweiten Teil identifizieren wir die vorteilhaften Auswirkungen der Ausnutzung

von Environmental Constraints auf das Greifen und zeigen, dass diese Effekte das

Greifen von Objekten aus Objekthaufen vereinfachen. Wir untersuchen empirisch das

menschenähnliche Greifen aus Objekthaufen mit einer Roboterhand. Die Interaktion

zwischen der Hand, den Objekten und der Umgebung erzeugt Muster in den Inter-

aktionskräften. Diese Kraftmuster schränken die Bewegung von Objekten ein und

reduzieren Unsicherheit auf mechanische Art. Wir zeigen, dass diese Kraftmuster in

bestimmten Bereichen des Arbeitsraums konsistent sind und dass änderungen in den

Kraftmustern zu erkennbaren Kontaktereignissen führen. Unsere Experimente mit

realen Robotern zeigen, dass das Greifen wesentlich einfacher wird, wenn diese Effekte

genutzt werden.

Der dritte und letzte Teil befasst sich mit der praktischen Anwendung der EC-

Ausnutzung in einem Robotersystem. Wir stellen den Soft Manipulation Planner vor,

der für die Integration und Bewertung von Konzepten und Technologien entwickelt

wurde, die von einem Konsortium aus Wissenschaftlern und Industriepartnern en-

twickelt wurden. Unser stark integriertes, aber modulares Systemdesign ermöglicht

die Nutzung von EC mit verschiedenen Hardwarekomponenten. Zum Abschluss der

Arbeit schlagen wir eine neu EC-basierte Problemfaktorisierung für Manipulations-

und Bewegungsplanungsprobleme vor, indem sie die Grenzen zwischen Steuerung,

Wahrnehmung und Planung verwischt und die Verantwortung für die Manipulation

von diesen Komponenten auf die Umgebung verlagert.
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1

Introduction

Robotics is an interdisciplinary field that combines computer science and engineering

to create machines that interact with their environment. A robotic system is composed

of hardware and software components. The hardware components include actuators

that move parts of a robot’s body or the whole robot and sensors that detect or

measure physical properties of the robot or the environment. Software components

generally include perception, control, and planning. The perception component collects

and interprets sensory information. The planner makes decisions based on prior and

collected information, and a control component computes and sends input commands

to the actuators. The synergistic combination of these components enables a robot to

safely and purposefully interact with its environment, other robots, or humans.

Robots have a great potential to help humankind by assisting elderly or disabled

people and replacing manual labor in dangerous, hazardous, or strenuous jobs. However,

most robots are used in industry to solve simple, pre-defined, and repetitive tasks, such

as polishing automotive parts or patrolling and inspecting equipment. In our daily life,

robots also have limited use for now, for example, vacuum cleaning or lawn mowing.

Robots will reach their full potential when they can autonomously make decisions

to change their environment and interact with humans safely and purposefully. Inter-

estingly, high-level reasoning, such as task scheduling, requires less computation than

lower-level reasoning, such as motion generation.

The difference between computational complexity for high- and low-level reasoning

was formulated in the 1980s as Moravec’s paradox. Moravec’s paradox states that

higher-level reasoning requires little computation, but motion and perception skills

require enormous amounts of computation. The paradox became more apparent in 1997

when Chess Champion Garry Kasparov lost to the Deep Blue computer program (Hsu

et al., 1995). Then in 2017, Go Champion Ke Jie lost to AlphaGo (Silver et al.,

2016). In 2019, world champion Team OG was defeated by OpenAI Five (OpenAI
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et al., 2019) in the Dota 2 computer game. In the latter case, OpenAI Five’s success

was impressive because the multiplayer computer game requires reasoning about

collaborative gameplay strategies. Logically, OpenAI Five computer program played

Dota 2 without a mechanical embodiment. However, with Chess and Go, it is surprising

that both human champions were not defeated by a robot but by the hands of another

human who moved the chess pieces or go-stones based on the instructions given by a

computer program.

The thesis focuses on a complex lower-level reasoning problem, namely motion

planning. Motion planning is a computational problem of finding a continuous transition

of configurations from A to B, where a configuration describes the state of a body.

For example, the configuration of a key turning in a keyhole can be represented by a

single number, the angle relative to when it was inserted. However, if the key is not

yet inserted, we need three values to represent its position and another three values to

represent its orientation. As another example, the configuration of a robot arm can be

represented by its joint angles. Most robot arms have at least six or more joints. The

increased number of values that uniquely define the state of a three-dimensional body or

robot makes the configuration space high-dimensional. Reasoning in high-dimensional

spaces makes motion planning a computationally complex problem.

Another challenge arises when decisions are made under uncertainty. Uncertainty

results from various sources of inaccuracies. Real robots are inherently inaccurate

in their sensing, motion, and knowledge about their environment and physics. Such

inaccuracies accumulate over time, making a robot uncertain about its state, motion

outcomes, and observations about its own or the world’s state. When inaccuracies

accumulate beyond a given task’s tolerance, it leads to execution failure. We can

avoid such execution failures if we eliminate the source of inaccuracies, such as by

developing high-accuracy sensors or high-precision actuators. However, not all sources

of inaccuracies can be eliminated. For example, it is impractical to assume that a robot

could have an exact model of apples since there are no identical apples on an apple

tree. Therefore, unresolved uncertainty must be dealt with during planning, which

further increases the computational complexity of motion planning.

Motion planning is a computationally complex problem because the state space is

high-dimensional and knowledge about past, current, and future states is uncertain.

To solve motion planning problems, we need to reduce their computational com-

plexity using realistic assumptions about a given task and a robot’s capabilities. On

the one hand, we can use assumptions to tackle the high dimensionality by omitting
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less relevant dimensions, discretizing continuous valued dimensions, or using different

approximations. On the other hand, we can reduce complexity by reducing the scope

of a motion planning problem. By reducing the scope of a problem, we can use more

task-specific assumptions to simplify planning. There exist numerous sub-problems

in motion planning. For example, when computing a collision-free path between two

configurations, motion planning considers velocity and acceleration constraints. In

contrast, path planning is a purely geometric problem of finding a collision-free path,

disregarding dynamics, duration of motions, or limitations on motions or control inputs

to a robot. As another example, manipulation planning focuses on changing the state

of the environment, and grasping is a manipulation sub-problem dealing with stably

seizing and holding an object against external disturbances.

To compute robust motion trajectories under uncertainty, we can tackle uncertainty

by eliminating some sources of inaccuracy and by reasoning about the remaining

uncertainty during planning. From a planning perspective, we can differentiate between

three approaches for handling uncertainty depending on how much uncertainty a

planner has to reason about.

First, if uncertainty is below a given task’s tolerance, the planner can ignore

uncertainty, i.e., it is not required to be modeled. If uncertainty is more significant than

the task-tolerance, it needs to be modeled to predict its effect on motion outcomes.

Secondly, a planner searches for robust actions unaffected by uncertainty, i.e.,

avoiding execution failure and leading to an expected outcome. However, for a large

amount of uncertainty, robust actions may not exist, or it may be challenging to find

them, like searching for a needle in a haystack.

Thirdly, we can integrate sensing into planning to handle a large amount of

uncertainty. With sensing, a planner can anticipate deviations that may occur during

execution and compute appropriate reactions. However, each deviation creates a new

planning problem of computing appropriate reactions, and inaccurate sensing requires

additional reasoning, which increases the computational complexity of a given problem.
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1.1 Goal of the Thesis

The thesis explores all three approaches for motion planning under uncertainty, and

it overcomes challenges related to uncertainty and high dimensionality by integrating

contact-based information into planning. Contact-based information is gained from

deliberately moving into contact with environmental constraints. Thus, the thesis

investigates two research questions:

1. How to use contact-based information to reduce uncertainty?

2. How to use contact-based information to simplify a given planning problem?

The thesis tackles both questions simultaneously by integrating contact-exploiting

motion, contact sensing, and contact-based priors as assumptions into motion planning

to solve real-world motion trajectory generation, object localization, and grasping

problems. Since our planners solve real-world problems, the proposed planners can

only rely on realistic assumptions about perception, control, model of the environment,

and model of the interaction physics.

The thesis builds on the premise that a well-structured environment, designed and

built by humans, holds task-relevant information. We1 argue that this information can

be obtained and leveraged by deliberately establishing contact with the environment,

i.e., using contact-exploiting motions.

Prior research has shown that contact-exploiting motion and contact sensing reduce

robot state uncertainty. As an example, Will and Grossman (1975) introduced guarded

moves, a linear motion ending in an easily detectable contact event with the environment.

Guarded moves reduced an object’s position uncertainty because a state was constrained

to the contacted surface, and the associated contact event indicated when the motion

terminated. In another example, Lozano-Pérez et al. (1984) combined guarded moves

and sliding motion in contact to generate complex motion behaviors. The resulting

motion behaviors reduced state uncertainty and succeeded despite significant motion

inaccuracies. Furthermore, Hsiao et al. (2007) combined contact-exploiting motion

with contact sensing to discriminate between possible motion outcomes. The computed

motion plan had branches based on the possible contact events a robot could sense

during execution. In this example, contact sensing enabled the localization of a target

object with an initially unknown location.

1For the sake of consistency, I will use the first-person plural narrative "we" throughout the thesis
because a large part of the work presented in Part I and III is collaborative.
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Motion planning with collision-exploiting motions conŕicts with traditional collision-

free planning. This conŕict raises several challenges, such as collision-exploiting

motion requires frequent collision checking during planning, which is an expensive

computational operation, and reasoning about contact states or contact sensing further

increases an already high-dimensional problem space.

We think that a recently formulated manipulation concept, environmental constraint

exploitation (ECE) (Deimel et al., 2013) can be applied in motion planning under

uncertainty to overcome the mentioned challenges. This concept uses contact with

the environment to generate robust manipulation behaviors that simplify aspects of

planning, perception, and control. The thesis aims to apply the concept in motion

planning under uncertainty.

1.2 Environmental Constraint Exploitation

Moravec’s paradox may seem logically unacceptable to the reader. How can it be that

devising a winning game strategy for a chess game is an easier computational problem

than physically moving the pieces on the board? Intuition is deceptive in this case.

While Chess can be traced back almost 1500 years, humanity had a few million years to

perfect their perception and motor skills. Hence, it is reasonable to think that humans

have found a way to simplify manipulation that made them so handy with tools. This

is why analyzing human manipulation skills can provide insights to simplify robotic

manipulation.

The concept of environmental constraint exploitation emerged from a human

grasping study (Deimel et al., 2013). The authors explained how humans simplify

grasping using deliberate contact with the environment, argued that robust grasping

requires deliberate contact, and showed that their insights are transferable to robotic

grasping. Even though the concept is relatively new, we must note that contact-

based motion and manipulation research has already discovered multiple benefits of

contact-exploiting motion and sensing central for environmental constraint exploitation.

Environmental constraint exploitation is a collective term referring to different ways

in which the environment can be used. Deliberate interaction between a robot and the

environment can generate robust motion behaviors against uncertainty and simplify

a manipulation task, such as grasping. An environmental constraint is a recurring

structure or property of the environment that restricts the motion of a body, such as a

hand’s or an object’s motion. The interaction between the body and the environment

results in motion regularities that can be used to simplify computational aspects of
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Figure 1.1 Humans touch the environment, even for picking up a pencil. Deliberately
contacting the table simplifies grasping because it signals when the fingers reach the
table and constrains the fingers’ motion at an appropriate height relative to the pencil.

perception, control, and planning to manipulate the body. Since the relevant property

of an environmental constraint is recurring, the associated environmental constraint

exploitation is applicable in a region of the environment.

As a thought experiment, consider picking up a pencil on a tabletop at a reachable

distance by looking at it once before grasping it but not while reaching to grasp it.

First, we approach the pencil somewhat aligned with our fingers and with a significantly

wider distance between fingers and thumb than the width of the pencil. When we

think our palm is above the pencil, we lower our hand until we feel the table surface

with our fingertips. Then, we close our fingers while sliding on the table to grasp the

pencil. In this example, the horizontal surface constrained the pencil’s position onto

a plane. Using our sense of touch, we used this constraint to signal when the fingers

reached the appropriate height and followed the constraint with our fingers to maintain

the appropriate height. For a robot, this grasping strategy would allow omitting to

compute the vertical position of the pencil from a camera image, omit to control the

vertical position of the fingers while closing them, or omit to plan precisely the points

where the fingers should touch the pencil. This way, the hand’s interaction with the

environment replaces computational aspects of perception, control, and planning.

Environmental constraint exploitation simplifies perception, control, and planning

by replacing some computational aspects of sub-problems solved by these components.

Below, we explain four ways to leverage environmental constraints central to the thesis:

• reducing uncertainty with manipulation funnels

• reducing uncertainty with contact sensing

• composing complex motion behaviors with contact forces

• reducing search space with task-relevant manipulation funnels
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Uncertainty Reduction With Manipulation Funnels

Contact with the environment implicitly reduces state uncertainty. Uncertainty is

implicitly reduced because when a body (robot or object) is in contact, its possible

configurations are restricted by the environment. Consequently, uncertainty about its

configuration is also constrained. For example, a body’s three-dimensional position is

constrained to a two-dimensional plane when contacting a surface, to a one-dimensional

line when contacting an edge, and to a single point when contacting a corner.

In the context of robotic manipulation, Mason (1985) referred to such uncertainty

reduction as manipulation funnels. The thesis uses the funnel analogy in later parts

because it captures the core effect: Motion in contact reduces a large set of possible

states (the entrance of a physical funnel) to a smaller set of possible states (the exit of

a funnel) mechanically (the walls of a funnel).

With human grasping, Deimel et al. (2013) showed that humans use contact with the

environment for robust grasping. They blurred the vision of humans with frosted goggles

and observed that the participants increased their interaction with the environment.

Kazemi et al. (2014) confirmed that humans extensively use their environment for

robust grasping with another grasping study. Later, Deimel et al. (2016) extended their

study showing robust robotic grasping under uncertainty concerning a constraint’s

placement and an object’s size, shape, and position with grasp strategies exploiting

ŕat horizontal and vertical surfaces, concave and convex edges along these surfaces.

One use of environmental constraint exploitation is reducing uncertainty mechan-

ically with a manipulation funnel that simplifies perception, control, and planning.

With planning, it can be used implicitly or explicitly by ignoring uncertainty (Eppner

and Brock, 2015) or modeling uncertainty to search for actions that reduce it (Sieverling

et al., 2017b), respectively. With control, manipulation funnels can be used implicitly

with structurally compliant hardware or explicitly if compliant motions are provided via

control. Moreover, some controllers are not required to accurately (or at all) regulate

variables that are subject to implicit uncertainty reduction. Perception is implicitly

simplified because it needs less accurate information about the environment or state

variables when a manipulation funnel reduces uncertainty about these properties or

variables.

Uncertainty Reduction With Contact Sensing

Another use of environmental constraint exploitation is reducing uncertainty with

contact events. Contact between a body and the environment produces interaction
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forces, such as the contact normal vector. Interaction forces change discretely when

a new contact is made or an existing one is lost. Such contact events are easily

detected with appropriately-placed tactile or force sensors on a robot. Since an

environmental constraint has recurring properties (e.g., geometry), contact events are

helpful for sequence manipulation funnels (Erdmann, 1986; Eppner and Brock, 2015;

Sieverling et al., 2017a). Moreover, contact events can discriminate between possible

configurations of a body in contact reducing state uncertainty (Hsiao et al., 2007).

With the funnel analogy, interaction forces indicate when a funnel’s wall is reached

or left, the entrance or exit of the funnel, respectively. Moreover, one can distinguish

between funnels when the respective interaction forces are perceivably different.

Reasoning about contact events increases the computational complexity of decision-

making because a planner must consider possible sensor measurements and plan

appropriate reactions. However, it can also simplify planning when searching for robust

actions. After a contact event reduces state uncertainty, more actions become robust;

consequently, a planner needs less searching to find a robust action. Similarly to

planning, control and perception can be simplified. Some state variables are optional to

be accurately regulated or measured if uncertainty about their values is eliminated after

a contact event. Perception must collect and interpret contact-based measurements,

increasing its computational complexity.

Composing Motion Behaviors With Contact Forces

A different use of environmental constraint exploitation is composing motion behaviors

with interaction forces. A body in contact with the environment is subject to interaction

forces, such as contact normals and friction. When a body in contact with the

environment is actuated with external forces, its motion behavior is the sum of all

external and interaction forces acting on it. In the context of compliant motion

generation, Lozano-Pérez et al. (1984) devised such composed motion behaviors using

hybrid position and force control, sometimes in contact with the environment, and

called the resulting behavior fine-motion strategies. With grasping, Chavan-Daŕe and

Rodriguez (2015) used interaction forces with the environment to reposition a grasped

object and called it external dexterity. Environmental constraints can also be thought

of as a virtual finger that may hold an object for repositioning and help in pivoting,

sliding, or stabilizing its motion (Chang et al., 2008; Odhner et al., 2013; Chavan-Daŕe

and Rodriguez, 2015; Deimel et al., 2016).

The additional actuation provided by interaction forces increases a robot’s dexterity

without increasing its hardware or control complexity. Planning also becomes simpler
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when a simple actuation produces complex behaviors without needing to plan a series

of multiple actuations.

Environmental Constraints Structure State-Action Space

Environmental constraint exploitation structures a robot’s workspace into regions with

consistent geometrical properties. Also, it structures the actions that a robot may take

in those regions for a given task.

On the one hand, an environment’s geometrical properties and connectivity implic-

itly structure a robot’s workspace into regions of environmental constraints. When

these regions are known, a planner can search for a sequence of regions between a start

and goal configuration and then search for the actual motion plan through the selected

regions. Limiting the state space search to a subset of regions simplifies the planning

problem since fewer states must be considered.

On the other hand, environmental constraints restrict possible motion, and thus, it

restricts actions that a robot can take. Limiting the action space simplifies planning

similarly to limiting the state space because a planner can reason about a subset of

actions in a state space region without considering all possible actions.

When environmental constraint exploitation regions are not known prior to planning,

these must be computed from the geometrical model of the environment or sensor

measurements. For the former case, Lozano-Pérez et al. (1984) proposed to compute

these regions exactly, and they called them pre-images. For the latter, these regions

can be approximated by detecting affordances of environmental constraint exploitation

for robust manipulation (Kaiser et al., 2014; Eppner and Brock, 2015)

A further use of environmental constraint exploitation is representing structural

context to reduce the search for manipulation funnels and contact events. A planner

has to explicitly reason about these regions in a given environment for a given task,

and perception has to detect these regions.

In summary, environmental constraint exploitation can be viewed as a set of "tools" to

reduce uncertainty and simplify planning, control, and perception. One challenge is

combining these tools appropriately for a given task. Another challenge arises from

the fact that all robotic system components are involved in environmental constraint

exploitation. Therefore, environmental constraint exploitation requires a synergistic

combination of hardware, control, perception, and planning.
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1.3 Content and Contributions

The thesis is split into three parts. The first part generalizes environmental constraint

exploitation by applying its effects, observed mostly in manipulation research, to motion

planning under uncertainty. The second part aims to expand our understanding of envi-

ronmental constraint exploitation by investigating the benefits of a new environmental

constraint in a specific grasping scenario. The third part focuses on the implications

of environmental constraint exploitation on a robotic system as a hole by integrating

algorithmic solutions presented in Part I and II into a grasping system designed to solve

real-world industrial applications. Note that we split background material into two

chapters: First, Chapter 2 introduces relevant concepts and planning approaches for

Part I. Secondly, Chapter 5 introduces classical grasp planning approaches to highlight

what computational aspects are simplified in Part II.

Below, we present each part’s content and provide a list of the main contributions.

A detailed outline and list of contributions are provided at the beginning of each part.

In Part I, we apply environmental constraint exploitation in motion planning under

uncertainty. Chapter 2 provides background on motion planning. We assume to know

the environment’s geometry, and we model motion and perception uncertainty and

its effect on a robot’s state. We differentiate between planning problems under low

uncertainty and high uncertainty. For low uncertainty, Chapter 3 presents a planning

method that searches for robust contact-exploiting and free-space motions to reduce

state uncertainty when needed. The method approximates task-relevant environmental

constraint regions and uses these regions to limit the state and action space exploration

for robust actions. For high uncertainty, Chapter 4 integrates contact sensing into

planning to discriminate between outcomes of contact-exploiting and free-space motions

to reduce increased state uncertainty. We evaluate our methods in simulation and show

that the respective motion planners scale to high-dimensional problem spaces, complex

environments, and increased uncertainty.

In Part II, we solve a particular grasping problem as simply as possible by exploiting

environmental constraints. By focusing on simplicity, we use all the beneficial effects

of environmental constraint exploitation. Chapter 5 provides background on grasping,

and Chapter 6 tackles grasping from piles of nearly identical objects, sometimes next

to static walls. We assume that uncertainty originates from inaccurate sensing, motion,

and modeling of movable objects’ interactions. First, we present a new environmental

constraint emerging from the complex interaction of movable objects in a pile and show

robust grasping with a task-tailored sequence of manipulation funnels. We characterize

the novel environmental constraint empirically to derive realistic assumptions for grasp
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planning. Then, we simplify the planning problem and devise a grasp planner that

ignores uncertainty because our task-tailored sequence of manipulation funnels enabled

robust grasping under uncertainty. Finally, we evaluate the novel environmental

constraint in simulation, with real-world experiments, and in a bin-picking application.

In Part III, we analyze the implications of environmental constraint exploitation on

robotic system designs. Chapter 7 presents a complex robotic system that combines

algorithmic contributions presented in Part I and II to solve real-world industrial

applications. We explain the practical implications of environmental constraint ex-

ploitation on perception, planning, control, hardware, and environment design and

propose general system-building practices beneficial for robotic systems exploiting

environmental constraints. On the next page, Table 1.1 lists the thesis’s main scientific

and technical contributions.
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Topic Chapter Sec. Contribution

M
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3

3.2.1
We propose an approximation of environmental constraint
exploitation regions in high-dimensional configuration spaces
that is computable efficiently for task-relevant regions.

3.2.4

We devise a motion planning method that efficiently finds
a sequence of motions from A to B under uncertainty. Us-
ing the approximated environmental constraint regions, the
planner guides searching for free-space motions unaffected
by uncertainty or contact-exploiting motions that reduce
uncertainty.

4

4.2.1
We propose an effective uncertainty reduction technique by
moving into contact and observing the resulting contact
measurements to rule out possible outcomes.

4.2.3

We devise a planning method that handles uncertainty by
efficiently planning contingencies for anticipated deviations.
It integrates contact sensing as discrete feedback to anticipate
deviation and reuses solved contingencies to extend the goal
region.

G
ra

sp
in

g
fr

om
pi

le
s

6

6.1

We discover and empirical study a new environmental con-
straint emerging from complex and dynamic interactions of
movable objects in a pile. We instantiate the novel envi-
ronmental constraint with a simple grasping strategy using
open-loop controllers without detecting individual objects in
a pile.

6.2

We devise a grasp planning method that sequences environ-
mental constraints for grasping from piles of nearly identical
objects. We simplify the representation of the planning prob-
lem using the results from our empirical study of the novel
environmental constraint.

R
ob

ot
ic

sy
st

em
de

si
gn

7
7.3

We expose practical implications of environmental constraint
exploitation on perception, planning, control, and hardware
by devising a complex robotic system for two real-world tasks
using planning methods presented in previous parts of the
thesis.

7.5
We propose hypotheses of beneficial design choices for general
robotic system-building when using environmental constraint
exploitation.

Table 1.1 List of scientific and technical contributions of the thesis.



Part I

Motion Planning With Environmental

Constraints

"All human plans [are] subject to ruthless revision by Nature, or Fate, or whatever one

preferred to call the powers behind the Universe."

Arthur C. Clarke, 2010: Odyssey Two
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Motivation

Motion planning is a computational process of finding a collision-free motion trajectory

between two robot configurations. Motion planning considers the whole robot that can

be composed of a mobile base, robot arm, and an end-effector. A collision-free path

means that the robot avoids colliding with the environment because an undesired or

uncontrolled collision might damage the environment or the robot leading to failure.

Finding a collision-free path becomes increasingly difficult if we consider inaccurate

perception, motion, or model of the environment. Such inaccuracies make a robot state

uncertain. If uncertainty is handled poorly, the solution becomes brittle leading to

execution failure. On the other hand, if a planner anticipates all possible deviations

and plans contingency for each deviation, it needs enormous computation time to solve

all contingencies.

Fortunately, environmental constraint exploitation reduces state uncertainty im-

plicitly using manipulation funnels and explicitly by reasoning about contact events.

With ECE, we can redefine the motion planning problem from finding a collision-free

path to combining collision-free and contact-exploiting motions. A planner combining

collision-free and contact-exploiting motions still needs tremendous computation time.

This part of the thesis applies ECE in motion planning to reduce uncertainty and

to simplify planning by leveraging the benefits of environmental constraint exploitation.

Contributions

The contributions of the first part of this thesis are the following:

• We propose an approximation of environmental constraint exploitation regions

in high-dimensional configuration spaces computable for task-relevant regions

efficiently.

• We devise a motion planning method that finds a sequence of motions from A to B

under uncertainty. It assumes to know the geometrical model of the environment.

However, motion and proprioception are inaccurate. The planner approximates

environmental constraint regions to guide the exploration of configurations, free-

space motions unaffected by uncertainty, and contact-exploiting motions that

reduce uncertainty.

• We devise another motion planner that finds a sequence of motions from A to B

under uncertainty. It uses the same assumptions and EC region approximation

as stated above but only reduces the configurations space for exploration.
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• We propose to reduce uncertainty explicitly by moving into contact and observing

the resulting contact measurements to rule out possible outcomes and plan

appropriate reactions.

• We devise a planning method that finds alternative motion trajectories from A to

B, leveraging contact events to anticipate deviations. It assumes a noisy motion

model, inaccurate proprioception, a known geometrical model of the environment,

and a fully observable contact sensing. As a result, the solution is a contingency

plan that reacts appropriately to deviations during execution.

• We devise a further motion planning method that combines guided configuration

space exploration with efficient contingent planning under the same assumptions

as stated for the previous method.

Outline

This part presents motion planning methods leveraging geometrical features of a given

environment as presented in Section 1.2. We explicitly model the effect of motion

and perception uncertainty on a robot and handle uncertainty by searching for robust

actions immune to it or augmenting uncertain states with contact measurements.

Chapter 2 introduces fundamental concepts and motion planning algorithms that

are relevant to the contributions presented in later chapters.

Chapter 3 presents a belief space planner that searches for robust actions in task-

relevant ECE regions. Section 3.1 formally defines the planning problem. Section 3.2

explains the key ideas to identify task-relevant regions in a robot’s workspace, map

these regions to a combined configuration and action space, and describe two motion

planners, the Contact Exploring Exploiting Tree planner and the Contact Exploring

Tree planner. The former leverages both configuration and action space reduction,

while the latter only uses configuration space reduction for guided exploration.

Section 3.3 experimentally evaluates the described motion planners showing that our

approach scales to high-dimensional configuration space planning and large workspace

with numerous surfaces. Finally, Section 3.4 discusses related planning approaches,

and Section 3.5 concludes the chapter with a discussion about limitations and future

considerations.

Chapter 4 presents a motion planner that integrates contact measurements into

planning to handle increased amounts of uncertainty by reasoning about contingencies.

Section 4.1 defines the contingent motion planning problem in a combined configu-

ration and contact spaces under motion uncertainty. Section 4.2 explains the core ideas



17

about anticipating detectable deviations with contact events to reduce uncertainty

and planning appropriate contingency for each deviation efficiently. Moreover, we

describe the Contingent Contact Exploiting RRT motion planner. Section 4.3 evaluates

the proposed motion planner showing increased robustness against a large amount

of uncertainty, scalability to high-dimensional configuration space planning, and its

application for tactile object localization with a real-world experiment. Similar to the

previous chapter, we conclude this chapter by discussing related work, the limitation

of our approach, and further considerations for contingent motion planning.
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Background on Motion Planning

This chapter introduces the basic motion planning concepts and algorithmic approaches

relevant to our contributions presented in the later chapters. The content of this chapter

is unique to this thesis, and for more details, we refer to planning textbooks (LaValle,

2006; Latombe, 2012; Lynch and Park, 2017). Note that we provide background on

grasping in Chapter 5 at the beginning of Part II since the second part focuses on

grasping and this part only focuses on motion planning.

First, Section 2.1 defines the representation of a robot’s configuration, and then,

Section 2.2 presents three different configuration space planners. We discuss how

these algorithms use prior task information because we also integrate ECE-based

task-relevant information into motion planning. Then, Section 2.3 discusses how to

generate motion on task-space constraints because a contact surface is a task-space

constraint, and we use it as a geometrical EC to reduce state uncertainty. Uncertainty

handling during planning is central to this part of the thesis, so Section 2.4 presents

planning approaches to handle it. Motion planning under uncertainty is a complex

computational problem, so, Section 2.5 discusses common assumptions and strategies

to improve a planner’s computational efficiency.

2.1 Configuration Space Obstacles

Motion planning is the process of finding a robot’s motion between a start and a goal

configuration such that the motion plan respects the kinematic and dynamic limitations

of the robot and avoids collision with obstacles.

The most fundamental concept for motion planning is configuration space, or C-

space. In C-space, a point represents a unique robot configuration q ∈ R
n, where n is

the number of joints of the robot. In classical motion planning, the environment is an
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d
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a) obstacles in workspace and configuration space b) workspace obstacle inŕation

Figure 2.1 Examples of configuration space obstacles. Left and middle: workspace
obstacles (gray) even with simple geometries have a highly non-linear shape in C-space
visualized for a robot arm with two rotational joints at angles θ1 and θ2 for configuration
q. Right: when the workspace and C-space are identical, obstacles (gray) are inŕated,
in this example, by the radius d/2 of a circular robot (blue), to represent the robot
with a point and account for its shape for collision avoidance.

obstacle, and a robot must avoid collision with the environment. This view results in a

division of C-space into two parts: C = Cobstacle ∪ Cfree. The free configuration space

Cfree defines the space where a robot is not in a collision or penetrating an obstacle and

is within its joint limits. Moreover, the configuration space occupied by obstacles is

Cobstacle, where a robot cannot go. Since ECE is a central theme in this thesis, we define

the boundary of an obstacle as δCfree. δCfree becomes relevant for contact-exploiting

motions, but for now, we will only consider Cfree and Cobstacle.

With Cfree and Cobstacle, the motion planning problem is finding a motion trajectory

of a point robot in the free space under kinematic and dynamic constraints between

qstart and qgoal. However, obstacles can crate separated components of Cfree. If the start

and goal configurations are in separated components of Cfree, there is no collision-free

solution to the planning problem.

It is challenging to represent Cobstacle mathematically. The shape of Cobstacle is very

complex even when obstacles have simple geometrical shapes, as visualized on the

left two sketches in Figure 2.1. Even if a robot’s configuration space is identical to

the workspace, an exact Cobstacle representation is impractical. For example, consider

a circular mobile robot that can only translate without rotation. The obstacles are

"inŕated" by the robot’s radius to represent the robot with a point, as shown on

the rightmost sketch in Figure 2.1. An obstacle’s exact representation becomes quite

complex if a robot can rotate and it has an irregular shape. Thus, Cobstacle is rarely

described with an exact mathematical model.
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To overcome modeling difficulties of Cobstacle, we can approximate the connec-

tivity of Cfree by sampling configurations and using collision checking, such as the

Gilbert-Johnson-Keerthi algorithm (Gilbert et al., 1988). Collision-checking algorithms

efficiently approximate distances between two convex bodies. This distance is used to

verify if a robot is in a collision or not for a given configuration. We should point out

that collision checking is an expensive computational operation. Next, we present two

planning approaches that use collision checking but approximate Cfree differently.

2.2 Motion Planning Approaches

This section presents three motion planning approaches relevant to our motion planners

in the following chapters. The first two planners use sampling to approximate Cfree

connectivity, and the third uses virtual potential fields.

2.2.1 Grid-Based Planning

We can approximate Cfree by discretizing C into a grid, where the configuration

space is discretized with k grid points. With this discretization, Cfree can be ap-

proximated with a graph where nodes are grid points in Cfree and edges are con-

nections between neighboring nodes where motion along grid lines is collision-free.

9 8 7 6 5 ∞ ∞ ∞ ∞ 10

8 7 6 5 4 ∞ ∞ ∞ ∞ 9

9 ∞ ∞ 4 3 4 5 ∞ ∞ 8

10 ∞ ∞ 3 2 3 4 ∞ ∞ 7

11 ∞ ∞ 2 1 2 3 ∞ ∞ 6

12 ∞ ∞ 1 0 1 2 3 4 5

11 10 ∞ 2 1 2 3 4 5 6

10 9 ∞ 3 2 ∞ ∞ ∞ ∞ 7

9 8 ∞ 4 3 ∞ ∞ ∞ ∞ 8

8 7 6 5 4 ∞ ∞ ∞ ∞ 9

9 8 7 6 5 6 7 8 9 10

Figure 2.2 Solution of a wavefront
planner on a 2D grid with obstacles
(gray), a goal cell (green), and cell
labels showing the distance to the
goal.

Graph search algorithms, such as A* (Hart et al.,

1968), can generate a motion trajectory by adding

qstart and qgoal as nodes and connecting them to

the closest node with a collision-free edge.

If the environment and qgoal are the same for

different planning problems, it is worth preprocess-

ing the grid by assigning a distance value to each

grid point relative to the goal with a wavefront

planner.

A wavefront planner updates distance values

of grid points similarly to how a wave propagates

from a splash in a pond, where the splash is the

goal grid point, and the pond is the grid itself,

as illustrated in Figure 2.2. In our example, the

green cell with the goal was initialized with a value

of 0. Using breath-first traversal of adjacent cells



2.2 Motion Planning Approaches 21

starting from the goal, we increased the distance value of a cell by one for each newly

visited depth. The distance values of cells with obstacles were set to ∞, since we want

to avoid obstacles. After computing each cell’s value, the planning problem is trivial.

To reach the goal, a robot can follow the gradient of distance values starting from any

free cell.

Although grid-based planners return an optimal solution (with a k resolution)

or failure (if start and goal are disconnected) after a limited amount of time, it is

only applicable on low-dimensional C-space problems. As the number of dimensions

increases, the number of grid points increases exponentially because a k resolution

grid needs kn points. As a result, the problem’s computational complexity increases

exponentially as well, and this computational complexity problem is referred to as the

curse of dimensionality.

One approach to overcome the curse of dimensionality is to use multi-scale grids

to refine the representation of Cfree near obstacles. Another approach is to sample

configurations randomly.

2.2.2 Sampling-Based Planning

Sampling-based planners overcome the curse of dimensionality by drawing random

samples from C-space, determining the closest previously drawn sample, and moving

from the closest sample toward the random sample. If this motion is collision-free,

the respective configuration is added to a graph or tree. The resulting graph or

tree approximates Cfree. Such a graph-based planner is the Probabilistic Roadmap

planner (Kavraki et al., 1996), and a tree-based example is Rapidly-Exploring Random

Tree (RRT) planner (LaValle, 1998).

Since our algorithmic contributions in later chapters build on the RRT planner, we

describe this algorithm in detail, including relevant variations.

The basic RRT motion planner (Algorithm 1) assumes to know the environment’s

exact geometry and a robot’s kinematics and/or dynamics. The planner builds a tree

from qstart until qgoal is reached with an ϵgoal precision by adding configurations as

nodes and edges between nodes. At each tree expansion, the planner samples a random

configuration qrand, searches for the nearest neighbor qnear that is the closest node in

the three to qrand, and extends qnear toward qrand with a small distance d. Since d

is small, a local planner can simulate a simple straight-line motion. If the motion is

collision-free and within kinematic and dynamic limitations, the reached configuration

qnew is added to the tree with an edge from qnear to qnew.
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Algorithm 1 Basic RRT planner
Input: qstart,qgoal

Output: T = (V,E)
Output: qnew = qstart

1: V ← {qstart} init tree with start configuration

2: while ∥qnew − qgoal∥ ≥ ϵgoal do search until goal reached

3: qrand ← SAMPLE()
4: qnear ← NEAREST_NEIGHBOUR(V,qrand) the closest neighbors of qrand from V

5: qnew ← EXTEND(qnear,qrand) local planner

6: if IS_VALID(qnew) then

7: V ← V ∪ {qnew}
8: E ← E ∪ {(qnear,qnew)}
9: return T

The RRT planner is a single-query planner, i.e., it needs to re-plan for any new

qstart or qgoal. However, the tree rapidly grows into the search space and later fills in

the gaps. The planner achieves this behavior by extending the nearest node from a

random sample. If random samples are drawn uniformly, the probability of extending a

node is proportional to its Voronoi region. The Voronoi region of a node consists of all

the configurations closer to the node than any other node. This exploration behavior

is called Voronoi bias.

The RRT planner has numerous variations because its simple components can be

easily extended to achieve a task-tailored C-space exploration. For example, the sampler

can be biased toward the goal by drawing qgoal with a given probability. As a result,

the tree grows faster toward the goal. The local planner can simulate the entire motion

from qnear to qrand, and thus, connect qnear with qrand using the connect local planner.

The connect local planner was used in the RRT-Connect motion planner (Kuffner and

LaValle, 2000) that grew two trees: one from the start and one from the goal. This

planner used a greedy connect-action to connect one tree with the other; when that

action failed due to collision, the respective tree grew using random sampling.

A rather different variant, the RRT* planner, is in the family of optimal sampling-

based planners (Karaman and Frazzoli, 2011). The goal of the RRT* planner is to find

an optimal solution for a cost function associated with the path, for example, path

length. It has two key differences compared to the basic RRT planner. First, a new

configuration is not added to the tree with an edge to the nearest node. However, it

is connected with a neighboring node with the lowest cost from the start node, i.e.,

cost to come. Secondly, after the new node is added to the tree, the planner rewires

neighboring nodes to reach them from the new node if their cost to come is reduced.
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S

2D navigation problem Basic RRT RRT - 50% goal bias

RRT - Connect LP RRT Connect RRT*

Figure 2.3 Variations of the RRT motion planner show different exploration behavior
on the same planning problem, where a circular vacuum robot (blue) that can only
translate needs to navigate to its charging station (yellow bolt) shown in the first
sketch. The tree is visualized with green lines, and the solution path is red. Using
priors about the task reduces the tree size to reach the goal and, thus, makes planning
more efficient, where LP stands for local planner. However, searching for an optimal
solution with RRT* requires more exploration, a larger tree, and more computation.

In Figure 2.3, we show C-space exploration behaviors of different RRT-based

planners to illustrate how simple modifications change the exploration behavior and the

planning efficiency for the same planning problem. The planning problem is finding a

motion trajectory of a robot that can only translate from the top right corner of a room

to the charging station in the bottom left room. One can observe a stark difference in

how each planner explores the configuration space. The required number of nodes to

reach the charging station is less than the basic RRT for each modified planner except

RRT*. Having fewer nodes means that a planner is more efficient because it needs less

C-space exploration to find a solution.

First, let us discuss the modifications that increased planning efficiency in the

previous example. The first three modifications exploited different prior information

about the planning problem. With goal bias, the planner exploited knowledge about

the location of the charging station. With the connect local-planner, the respective

motion planner exploited knowledge about the robot’s motion controller that allowed

driving the robot in straight lines. With two tree expansions from start and goal, the
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RRT-Connect planner exploited the fact that a path from the robot’s current location

to the charger is interchangeable with a path from the charger to the robot.

Secondly, let us discuss why the RRT* planner generated a significantly denser

tree than the other planners indicating a lower efficiency in finding a solution. RRT*

searched for the shortest path by storing the path length from the start to each node

and exploiting this information to rewire the tree. Since the planner does not stop

when the goal is reached but further optimizes the tree structure, it grows further in

Cfree and fills in more gaps than the other four planners. Therefore, searching for an

optimal solution requires more computation than finding any solution.

2.2.3 Virtual Potential Field Based Planning

Figure 2.4 A virtual potential field
with a goal region (green), two ob-
stacles (grey), arrows showing the
induced forces, and a local mini-
mum region (red).

Virtual potential field-based methods are inspired

by naturally occurring potential fields such as mag-

netic or gravitational fields. As gravity induces a

force on an object and can move it from a high al-

titude to a valley, we can define a virtual potential

field over C-space to induce a force that moves a

robot from a high- to a low-potential. Suppose the

goal region has a very low virtual potential and all

configurations in Cobstacle have a very high virtual

potential. In that case, the negative gradient of

the respective virtual potential field provides a

force that drives a robot toward the goal while

avoiding collision with obstacles.

The virtual potential field approach differs from

the previously presented grid- and sampling-based

approaches. It is easy to compute the potential

field, and a robot can avoid moving or unseen

obstacles with appropriate sensorization. However,

the basic method has a severe drawback. When

the environment has multiple obstacles, the computed potential field can have local

minima away from the goal, as illustrated in Figure 2.4. In such local minima, a robot

gets stuck even if a collision-free path exists to the goal. We can overcome the local

minimum problem using a wavefront planner because a wavefront planner computes a

local-minimum-free potential function.
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2.3 Task Constrained Planning

We explained in the introduction (Section 1.2) that the environment provides beneficial

constraints for manipulation. We want to use such constraints in motion planning as

well. Therefore, we discuss task-constrained planning concepts.

When a robot moves in contact with the environment or on a task constraint,

its configuration is constrained to a lower dimensional manifold. We define this m-

dimensional manifold as function F : C → R
m such that F (q) = 0. All configuration

that fulfill this equation are on the manifold MF = {q ∈ C, F (q) = 0}.

Using this definition, we can formulate a task-constrained path planning problem

as follows: Given a constraint function F , find a motion trajectory that brings a robot

from a start configuration qstart ∈ MF to a goal state qgoal ∈ MF such that the

trajectory is on the manifold.

Our pencil grasp strategy presented in Section 1.2 used two types of constrained

motions: pose constrained motion and contact constrained motion.

With pose constrained motion, our hand approached a pencil from free space with

its palm facing down and moving straight down. We can define such a pose constraint

as:

F (q) = 0 if f(q) ∈ MF ⊂ W ,

where f is the forward kinematic model of the robot mapping a configuration q ∈ C to

an end-effector pose (e.g., hand pose) x ∈ W ⊂ SE(3).

With contact constrained motion, our fingers slid on a tabletop toward a pencil.We

can define such a contact constraint for a robot as follows:

F (q) = 0 if q ∈ MF ⊂ δCfree.

It is difficult to randomly sample a configuration from C-space so that it is on

a pose- or contact-manifold because these manifolds are lower-dimensional than the

state space, and they are a relatively small region compared to the whole state space.

Nevertheless, we can borrow the principles of potential fields to drag a sample onto

a manifold and on the manifold. Suppose we have a parametric representation of a

manifold. In that case, we can move on a manifold using direct sampling (Shkolnik

and Tedrake, 2009), otherwise using task projection (Stilman, 2007), both illustrated

in Figure 2.5 and explained below.
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Figure 2.5 The sketch illustrates direct sampling and task projection using a robot
arm with three rotational joints (left) with initial q0 in contact with a wall (gray).
With direct sampling, a random point xrand is sampled on the contact surface, and the
end-effector is dragged step-by-step toward this point along the contact manifold MF .
With task projection, a random configuration qrand is sampled away from the surface,
and then, q0 is dragged toward qrand. If the resulting configuration q′

1 leaves MF , it is
dragged back onto the manifold.

With direct sampling, a random sample is drawn on the manifold xrand ∈ MF ,

then, a configuration q on the manifold is dragged toward the random sample using

the transpose or pseudoinverse of the Jacobian at each simulation step:

qn+1 = qn + δJ+
M (f(qn)− xrand) .

Since direct sampling is parameterized, we can draw uniform samples on the

manifold, and the method is scaleable to very high-dimensional configuration spaces.

However, it is not probabilistic complete.

With task projection, a random configuration qrand is sampled from C-space. The

sample can be outside the manifold because a configuration q initially on the manifold

is first moved toward the random sample. Then, the resulting configuration q′ is

projected back onto the manifold:

q′
n+1 = qn + δ (qrand − qn)

qn+1 = q′
n+1 + J+

M (∆xdistance) ,

where ∆xdistance is the vector between the manifold and the closest point on a robot.

The task projection method requires more computation than direct sampling due to
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the two steps, but Stilman (2010) showed probabilistic completeness and observed an

additional benefit. When computing the Jacobian during planning, det(JJT)1/2 can

indicate the manipulability of sampled configurations.

2.4 Strategies for Uncertainty Handling

Since we want to handle uncertainty with ECE in motion planning, we present three

relevant strategies. First, we can ignore uncertainty during planning. Second, we can

search for robust actions immune to uncertainty. Third, we can integrate sensing into

planning to augment uncertain robot states with information from sensor measurements.

Next, we present approaches for the three strategies and discuss their effect on planning.

2.4.1 Ignoring Uncertainty

Even though it is unrealistic to assume that a robot can perfectly execute motion

or sense its environment, uncertainty can be ignored during planning if inaccuracies

do not accumulate beyond the tolerance of a given task. In this case, uncertainty

handling becomes the responsibility of perception, control, or even of ECE, making

the respective planner more efficient than the one that needs to handle it.

We will show in Section 6.1 that using a new EC with a soft hand eliminates

uncertainty completely for grasping round objects from a pile. Hence, we will omit to

model state uncertainty, so our grasp planner (see Section 6.2.2) can ignore uncertainty.

Another way to ignore uncertainty during planning is by re-planning. First, a

robot executes a short motion plan (without necessarily reaching the goal). Then, the

robot updates its state based on sensor measurements and re-plans with the updated

state. This way, the robot eliminates some possible action outcomes through execution.

However, perception has greater responsibility for uncertainty handling than control

because the planner needs an accurate estimation of its state before re-planning.

2.4.2 Searching for Actions Under Motion Inaccuracies

Another approach is searching for reactive actions under stochastic action outcomes.

Then, a planner assumes that a robot’s motion is inaccurate, but it can identify its

state during execution. Since the robot knows its state during execution, from state

memory or sensing, the planner can compute a mapping from states to actions. Such

a mapping is called a policy π. As opposed to a motion plan which is a sequence of

states, the policy provides an appropriate action for a given state.
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We can define a probabilistic motion model for executing an action u at a config-

uration q to account for motion inaccuracies. Similarly to grid-based planners, we

can define a discrete set of states and actions, which problem formalism leads to the

Markov Decision Process (MDP) model.

An MDP provides decision-making by modeling the problem with a discrete set of

states q ∈ C and of actions u ∈ U , a probabilistic transition function P (q′|q, u), and a

reward function R(q). The transition function must have the Markov property, i.e., the

probability of reaching q′ depends only on the action u and state q, and probability

must be independent of past actions and states. The reward function R : C → R ̸=±∞

maps a state to a real value that is not infinite. It is used as an immediate reward

after reaching a new state. Unlike virtual potential fields, the goal region has a high

positive value, and regions to be avoided have a negative value.

An MDP’s solution is an optimal policy π∗ : C → U mapping states to actions.

We can obtain an optimal solution because an MDP-based planner’s objective is to

maximize the cumulative discounted reward for a sequence of actions:

∞∑

t=0

γ tR(qt),

where γ ∈ [0, 1] is a discount factor modifying the planner’s preference for early or later

rewards. By choosing a low value for γ, the distant future is insignificant, and a planner

chooses actions greedily. When the value is closer to one (which is more common),

early and later rewards are weighted similarly, allowing the planner to explore the

future better.

An MDP planner searches for the optimal policy that maximizes the expected

cumulative discounted reward. To estimate the expected cumulative reward of a state,

i.e., the current and future rewards, we can use the Bellman equation that computes a

value function V : C → R:

V (q) = R(q) + γ · max
u

∫
P (q′|,q, u)V (q′)dq′.

Observe that this is a recursive function, which is non-linear due to the max operator.

Therefore, we calculate this function with a value iteration algorithm to obtain the

optimal policy. To compute the optimal policy π∗, we choose actions that maximize

the utility of a state:

π∗(q) = argmax
u

∫
P (q′|,q, u)V (q′)dq′.
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While an MDP-based approach can handle motion inaccuracies well, it is subject

to the curse of dimensionality, similar to grid-based planners. Therefore, some MDP

planners use a sampling-based approach to approximate the state space. For exam-

ple, Alterovitz et al. (2007) presented an MDP-based PRM planner, and Melchior

and Simmons (2007) presented an MDP-based RRT planner. These two planners

represented the approximated configuration space with a graph or a tree, respectively,

and both computed the transition probabilities between nodes with Monte-Carlo

simulation (Thrun, 1999).

2.4.3 Integrating Sensing

Previously, we assumed a robot could accurately observe its current state during

execution, so an MDP’s policy handled motion inaccuracies by searching for robust

actions. However, sensing is also subject to inaccuracies. When sensing inaccuracy is

significant, we must consider possible sensor measurements for the same action during

planning. We can assume that the robot partially observes its state, leading to the

Partially Observer Markov Decision Process (POMDP) model.

The POMDP model extends the MDP model by reasoning about sensing inaccura-

cies. In addition to two discrete sets of states and of actions, a probabilistic motion

model, and a reward function (inherited from MDP), we also define a discrete set of

observations o ∈ O and a probabilistic sensor model P (o|q).

Now that a robot does not know its true state, it needs to reason about the possible

states it might be in at a given time. To represent the possible states in which a robot

can be, we introduce the belief state concept. A belief state b(q) ∈ B is a probability

distribution assigned to the true state q.

A belief state holds the observation history. Hence, a POMDP planner does not

need to reason about observation history explicitly. To integrate the observation history

into a belief state, we update the current b after taking action u as follows:

b′(q′) = αP (o|p′)

∫

q

P (q′|q, u)b(q), (2.1)

where α is a normalization constant such that the
∫
b′(q′) = 1.

With POMDPs, the optimal policy π∗ : B → U is a mapping from belief states to

actions, and it does not depend on the actual state.

A POMDP planner has three general steps. It simulates an action for a given belief,

observes the measurement o, and computes the new belief state b′ with Equation 2.1.

Because the belief state has the Markov property, we can write the respective transition
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function as P (b′|b, u). Moreover, we can define the reward function for a belief state as:

R(b) =
∑

q

b(q)R(q)

Having P (b′|b, u), R(b), and that a belief is fully observable, we cast the problem as

an MDP over the space of belief states. Now, we can solve the MDP on the belief-state

spaces, and the resulting optimal policy π∗ is also optimal for the original POMDP. A

belief space is continuous, which makes value iteration very inefficient. Nevertheless,

the optimal value function is piecewise linear and convex, which allows the construction

of the value function incrementally (Kaelbling et al., 1998).

In summary, we can integrate information from sensing into a belief state to augment

state uncertainty caused by sensing and motion inaccuracies. POMDP planners can

handle both sources of inaccuracies and provide an optimal solution. Similarly to

MDPs, POMDPs are also under the curse of dimensionality because the dimension of

B equals the dimension of C. Moreover, the number of discrete observations further

increases the complexity of POMDP planning problems compared to MDPs. For

practical problems, the optimal solution of a POMDP is computationally intractable

because the problem is PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). There

exist reasonable approximations that reduce the problem complexity and increase a

POMDP planner’s computational efficiency, which we discuss in the next section.

2.5 Strategies for Efficient Belief-Space Planning

Our goal is to handle uncertainty efficiently during motion planning using the beneficial

effects of ECE. Previously, we have shown that a planner can handle uncertainty from

motion and sensing inaccuracies by representing uncertain states with a belief state.

However, searching for a robust solution is a computationally complex problem.

Now, we discuss different techniques to reduce the computational complexity of belief

space planning because we also use some of these techniques in later chapters. First,

we explain how different uncertainty handling methods increase planning efficiency,

then discuss assumptions that simplify the representation and planning. Finally, we

discuss how to balance information usage to augment uncertain states.
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2.5.1 Uncertainty Handling

The simplest way to handle uncertainty during planning is to ignore it, making planning

more efficient. We can use different heuristics to ignore uncertainty.

One heuristic is to ignore uncertainty from certain sources. Ong et al. (2010)

considered some dimensions of the state space fully observable and other dimensions

partially observable, which made the planning problem a Mixed Observable MDP

(MOMDP). By combining fully and partially observable states, they represented a

high-dimensional B as the union of lower-dimensional subspace. This reduction of

dimensions improved the planner’s computational efficiency.

Another heuristic is to consider uncertainty unchangeable for a state. Yoon et al.

(2008) used hindsight optimization with a pessimistic approach by searching for a policy

that succeeds without gathering new information. In contrast, Littman et al. (1995)

introduces QMDP, where they assumed that any uncertainty of a belief state disappears

after the next action. This is an optimistic approach to finding a solution. In both

cases, the POMDP was transformed into an MDP, and the problem’s computational

complexity was reduced while giving up optimality guaranties (Arora et al., 2018).

A further approach is to reduce uncertainty with contact-exploiting actions actively.

Will and Grossman (1975) introduced the guarded motion, which action moved a robot

into contact with the environment. By doing so, the robot’s state uncertainty was

constrained to the contact manifold. Since contact manifolds are lower dimensional

than the configuration space, they reduce state uncertainty along the "lost" dimension.

Lozano-Pérez et al. (1984) combined guarded moves with sliding motions in contact

to generate complex motion behavior that is also robust against uncertainty. The

uncertainty reduction effect of guarded motions and siding are illustrated in Figure 2.6.

These contact-exploiting actions were used in an RRT-like motion planner (Sieverling

et al., 2017b) to reduce state uncertainty while searching for a solution. We also use

such actions to reduce state uncertainty in our planners.

A previously mentioned heuristic is re-planning by interleaving planning and exe-

cution on a short time horizon until the goal is reached. This approach tightly links

planning and perception because after executing a short sequence of actions, the robot

needs to perceive its state to restart planning. It can outperform complex reasoning

approaches because it cuts off unlikely branches through real-life execution. However,

this approach requires an efficient planner for time-sensitive tasks so that a robot is

not blocked by planning during execution (Kaelbling and Lozano-Perez, 2013; Buşoniu

et al., 2018).
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Figure 2.6 All four sketches show a robot arm (blue) with three rotational joints in front
of a tabletop, where its state uncertainty is illustrated with the three configurations
(solid and dashed lines), and the respective beliefs and contact manifolds are illustrated
below each sketch. When the robot performs a guarded move, the round end-effector
moves into contact. Consequently, the initial belief b, illustrated as a ball, is projected
onto the contact manifold MF , and b′ becomes smaller than b. If the arm slides on the
surface, the state uncertainty only increases along the manifold. A guarded slide moves
the end-effector to the edge of the tabletop, reducing state uncertainty significantly
because b′′ collapses into a line at the intersection of the two contact manifolds MF

and MF ′ .

2.5.2 Simplifying the Representation

To reduce computational complexity, one can simplify the problem representation. The

following simplifications of the problem representation relax the optimality requirement

to reduce computational complexity. For example, a Gaussian representation of a belief

state or a linear motion or sensor model greatly simplifies the computation of a new

belief. Furthermore, a quadratic cost term as a reward can make the planning problem

a Linear Quadratic Regulator (LQR), and LQRs have a closed-form solution, which

can be computed with the Ricchatti equation even for high-dimensional problems.

When belief states are non-Gaussian, we can represent them with particles. A

particle-based belief state can be updated similarly to the particle filter algorithm (Thrun

et al., 2005), and the state transition function can be approximated using Monte-Carlo

simulation (Thrun, 1999). Our planners also use a particle-based representation of

beliefs because contact-exploiting actions make beliefs non-Gaussian.

Another approach is to sample only the reachable state space and apply value

iteration on this sub-space with a point-based POMDP planner (Kurniawati et al.,

2008). One of our planners reduces the search space based on reachability and relevance

for a given task.
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2.5.3 Balancing Information Usage

Previously, we have shown that various modifications of the basic RRT planner in-

creased the resulting planner’s computational efficiency because the modifications used

information about a given task. We can use task-based information in belief space

planning to explore a belief space efficiently. However, partial information, like in the

case of virtual potential fields, may lead to local minima, and information gathered

from inaccurate sensing increases the problem’s computational complexity. To avoid

such issues, we can balance the use of information during planning.

Regarding information balancing, we can place motion planners on a spectrum

of how much information they use. One end of the spectrum is exploitation, where

planners compute a plan based on the available information, such as virtual potential

field methods. On the other end of the spectrum is exploration, where planners use no

information about a given task but sample the space to approximate its connectivity,

such as the basic RRT planner. Between the two ends of this spectrum is guided

exploration. With guided exploration, planners use some information to select a region

of the space and explore that region for a solution.

It is important to balance exploration and exploitation. Rickert et al. (2008)

proposed to use information about workspace decomposition that guides the exploration

of the configuration space between a given start and goal states. To avoid local minima,

they adaptively balanced the used workspace information achieving 13 times faster

planning than RRT-Connect. Yang (2013) adapted the exploitation of goal bias

sampling when the tree approached a goal region to find better samples around the

goal for a non-holonomic robot. In the next chapter, we use adaptive exploitation

and exploration, where our planner leverages ECs’ workspace structuring property to

explore only task-relevant configurations.
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Guiding Configuration Space

Exploration With Environmental

Constraints

This chapter applies environmental constraint exploitation in motion planning under

uncertainty. We leverage two of the four ECE portieres discussed in Section 1.2 to

simplify motion planning while handling uncertainty. First, we use the structural

context of the environment to divide the workspace into ECE regions and reason

about these regions’ relevance for a given task to guide configuration space exploration.

Secondly, we reduce uncertainty with manipulation funnels by contact-exploiting

motions along task-relevant parts of the environment. The content of this chapter is

unique to this thesis and has not been published before.

While workspace connectivity can be derived from the environment’s geometry,

it is difficult to compute an exact representation of configuration space connectivity.

Configuration space is generally higher dimensional than workspace, and the environ-

ment in this representation has a very complex shape (see Figure 2.1). Therefore, we

approximate configuration space connectivity using a sampling-based approach. Even

though a sampling-based approach can overcome the curse of dimensionality, another

challenge arises when planning under uncertainty.

Configuration space connectivity depends on a robot’s kinematics, its geometry,

and the environment’s geometry. When a robot’s perception and motion are inaccurate,

we are uncertain about the space occupied by the robot, making motions closer to

obstacles more probable to lead to undesired collisions and failure. Hence, the feasibility

of a motion depends not only on configuration space connectivity but also on state

uncertainty which we illustrate with a narrow passage that closes under high motion
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Figure 3.1 The three sketches illustrate a robot (blue circle) moving through a corridor
(arrow) for different motion errors. The safety margin (light gray), where collision
can be avoided for a forward motion, increases as motion error accumulates and state
uncertainty increases. The narrow passage closes when state uncertainty is so large
that the robot might collide with the corridor walls.

error in Figure 3.1. Since motion feasibility also depends on state uncertainty, we

model uncertainty and reduce it when needed.

To reduce uncertainty, our planner uses contact-exploiting actions, such as guarded

moves, sliding, or guarded sliding, introduced in Section 2.5.1 and illustrated in

Figure 2.6. Our planner uses free-space connect actions when uncertainty can be

ignored, described in Section 2.2.2.

Since our planner can choose from four actions to explore a configuration space and

approximate its connectivity, the planning problem’s complexity is further increased.

The planner must pick from possible actions and reason about probabilistic outcomes

due to uncertainty. For the former, we leverage information provided by ECs to guide

action selection and configuration space exploration. For the latter, we search for robust

actions leading to an expected outcome, including actions that reduce uncertainty.

Configuration space exploration can be guided with task-relevant workspace infor-

mation. ECs implicitly structure the workspace into contact manifolds and free space

regions from where a manifold is reachable. We can reduce the number of contact and

free space regions considered for planning by reasoning about their usefulness for a

given task. By ignoring less useful regions, a planner becomes computationally more

efficient because it can avoid exploring the entire search space.

In our view, the environment is an essential friend, and we deliberately establish

contact with it where and when needed!

We evaluated our planner in simulation and reached up to two orders of magni-

tude increase in planning performance when using workspace information for guided

configuration space exploration in high-dimensional spaces under motion uncertainty.
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3.1 Belief-Space Motion Planning Problem Definition

Before presenting our algorithm, we describe the planning problem formally. We plan in

an n-dimensional configuration space C ∈ R
n, and define Cvalid the valid configuration

where a robot is within its joint limits and does not collide with the environment with

its parts that do not sense contact. We decompose Cvalid into Cfree free space and ∂Cfree

configurations in contact at the boundary of free space. We assume to have perfect

knowledge about the environment and the robot’s kinematic model.

Moreover, we define the task-relevant configuration space as a subset of the valid

space Ctask ⊂ Cvalid where a robot is within its joint limits, does not collide with

the environment with its parts that do not sense contact. The subspace comprises

manipulation funnels (free- and contact spaces) directly relevant to a given task. A

funnel is task-relevant if its wall reduces uncertainty so that robust actions with an

expected outcome are available to progress toward a given goal or the goal is reachable

with ϵgoal precision.

The planner can simulate an action u, which is either a straight line joint space

motion in free space, a guarded move (a free space motion ending in contact), a slide

along a surface, or a guarded slide (slide until a new contact is gained or the existing

one is lost). All motions have an uncertain outcome, and the robot can not fully

perceive its configuration but must estimate it from noisy sensor measurements. Hence,

we use a motion model with independent joint noise δq̂ = δq +N (0,
√

|δq|σmotion).

Moreover, the initial configuration is not known accurately and we model the initial

state uncertainty with a Gaussian distribution N (q0,σinit) around a configuration q0

and variance σinit.

Due to uncertainty, instead of planning in configuration space, we plan in belief

space B, where each belief b ∈ B is a probability distribution over configurations. Each

belief state is associated with a fully observable contact state C = {c1, . . . , ck} and

a contact state c = (surfacerobot, surfaceEC, n̂) is a pair of robot and environment

surfaces and the EC’s contact normal. A belief b is in a task-relevant space if it lies

mostly in the task-relevant configuration space:

∫

q∈Ctask

b(q)dq > 1− ϵ, (3.1)

and Btask is the space of all task beliefs.

The planning problem is now the following: given a start and goal belief b0, bg ∈ Btask,

approximate the task-relevant configuration space C̃task ⊂ Ctask and search for a policy

π : B̃task → U that brings the robot from the start to the goal belief state.
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Figure 3.2 The two sketches illustrate the difference between task-relevant regions
for different goals. In both sketches, a mobile robot must go to its charging station.
Depending on the charger’s location, some parts of the workspace are less relevant to
visit while moving toward the charger.

3.2 Contact Exploring Exploiting Tree Planner

Following the previous problem definition, we present the Contact Exploring Exploiting

Tree (CEET) planner, a sampling-based motion planner that finds a robust motion

trajectory against perception and motion uncertainties. Before presenting the algorithm,

we first explain two essential insights for understanding our planner.

3.2.1 Limiting the Search Space to Task-Relevant Regions

The first insight is related to the fourth property of ECs explained in Section 1.2,

namely that ECs implicitly structure the workspace into regions. Some regions are

more relevant for a given task, while other regions are less relevant. Thus, we leverage

a workspace structure to extract task-relevant regions for a given task. We reduce

the search space by searching for a motion plan in task-relevant regions. As a result,

planning becomes more efficient because the planner avoids exploring less useful parts

of the environment.

We illustrate the difference between task-relevant and less useful regions in Figure 3.2

with two instances of a 2D planning problem where a robot needs to go to its charging

station. Intuitively, we can split the workspace into a task-relevant space where the

charger can be directly reached and a space that the robot should not enter if its

battery is low. By dashing the less relevant parts of the workspace (free space and

surfaces), it is visible that the remaining task-relevant region depends on the charger’s
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b0

bg bg
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Figure 3.3 Both sketches illustrate how wavefront expansion can identify task-relevant
free and contact regions in a two-dimensional navigation problem where a robot moves
from b0 (gray) to bg(green).

location. If the robot’s initial position changes, the task-relevant region also changes.

The question is how to identify task-relevant free- and contact-space for planning.

Task-relevant and free space regions can be efficiently computed by decomposing

a robot’s workspace using a wavefront planner (Rickert et al., 2014). Task-relevant

regions are computationally less expensive to obtain from workspace decomposition

than from C-space because the workspace is generally lower dimensional than C-space.

Moreover, ECs have a simpler representation in the workspace than in C-space. Hence,

we can efficiently compute task-relevant contact regions as well. Suppose the waves are

only expended toward the goal. In that case, the waves cover a task-relevant free space

region and touch task-relevant surfaces, as illustrated in Figure 3.3. Such workspace

information can guide C-space exploration.

Workspace information can guide C-space exploration because a joint-space config-

uration can be moved efficiently toward a workspace pose when the robot’s kinematic

model is known. With a robot’s forward kinematic model, we can efficiently com-

pute its Jacobian to move a configuration toward a pose. Moreover, we can also

efficiently compute a robot’s pose from its configuration to check if a configuration is

in a task-relevant region of the workspace.

We use a sphere-based wavefront expansion in workspace (Brock and Kavraki,

2001) to approximate the task-relevant free space region and surfaces. First, we

compute a tree of workspace spheres in free space from a given start until the goal.

Then, we extract a sequence of spheres from start to goal and save its neighbor-

ing surfaces and contact normals for each sphere, as shown in Figure 3.4. The

extracted spheres approximate a task-relevant sub-space in the robot’s workspace

and configurations within these spheres approximate C̃task as well. With the neigh-
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boring surfaces of these spheres, δ̃Ctask can be approximated by projecting C̃task on

the respective surfaces. By knowing the sequence of spheres between the start and

goal, we also know the direction in which a robot should move within a sphere.

s0

s10

Figure 3.4 A sequence of ten spheres ap-
proximating the task-relevant free space
region and surface normals (arrows) in-
dicating nearby surfaces of the spheres.

We approximate C̃task and δ̃Ctask by defin-

ing two potential fields. One potential field

drags a robot from one sphere to the next

one. The other field drags the robot into con-

tact with a neighboring surface of a sphere.

If the robot is already in contact with a sur-

face, we combine the two potential fields to

slide toward the next sphere while maintaining

contact. However, purely exploiting potential

fields might not always work due to a local

minima or kinematic limitations of a robot.

When pure exploitation of workspace in-

formation fails, we are going to shift from

exploitation to exploration of the configuration space. Next, we explain our second

insight about the relation between finding robust actions and state uncertainty.

3.2.2 Configuration Space Connectivity Depends on

Accumulated Uncertainty

The second key insight concerns how state uncertainty affects finding robust actions.

With motion planning under uncertainty, robust actions become spares (or nonexistent)

depending on state uncertainty and locally imposed constraints. Uncertainty affects

actions when it is larger than the maximum amount of uncertainty allowed for which

the action avoids undesired collisions. The maximum uncertainty depends on locally

imposed constraints by the environment, and state uncertainty results from error

accumulation over time while the robot moves.

Figure 3.5 illustrates uncertainty’s temporal and local nature. When motion error

accumulates slowly, a belief state’s uncertainty is low enough to pass the first narrow

passage and only hinders progress before reaching the goal. In contrast, when motion

error accumulates rapidly, the belief state’s uncertainty is larger than the first narrow

passage. In both cases, uncertainty can be reduced with contact-exploiting actions

near the respective narrow passages.
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bg
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Figure 3.5 The two sketches illustrate how different amounts of motion error and
resulting state uncertainty close narrow passages at a different location in a two-
dimensional navigation problem. A point mass robot goes from b0 toward bg while its
state uncertainty increases (gray circles) until its belief state (red circle) does not fit
through a narrow passage.

We want to reduce belief state uncertainty only when needed because no free lunch

with contact-exploiting motions exists. On the one hand, contact-exploiting motions

reduce uncertainty, which can improve finding robust actions. On the other hand,

contact-exploiting actions require more frequent collision checking than motion in free

space because contact must be maintained without penetration. To reduce collision

checking and improve planning efficiency, we start by exploring C̃task and shift to δ̃Ctask

when progress is hindered.

3.2.3 Adaptive Guided Exploration Behavior

We balance exploitation and exploration, and we balance C̃task and δ̃Ctask exploration

similarly. The balancing strategy is similar because we shift from exploitation to

exploration and also shift from exploring C̃task to δ̃Ctask. We initially exploit workspace

information for the former to quickly reach the next sphere. We start exploring an

alternative path to the next sphere if pure exploitation fails. For the latter, we initially

explore C̃task because it requires less computation than δ̃Ctask. If we cannot find a path

to the next sphere through C̃task, we start exploring δ̃Ctask as well to reduce uncertainty.

Observe that we start shifting from exploitation to exploration and from exploring

C̃task to δ̃Ctask for the same reason, i.e., when progress toward the next sphere is hindered.

Therefore, we measure the lack of progress with a single variable β ∈ [0, 1] and use its

value to balance both exploitation and exploration, and exploring C̃task and δ̃Ctask. We

illustrate the use of β in Figure 3.6 and explain it below.
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Figure 3.6 The value of β balances a) exploitation and exploration of workspace
information and b) free and contact space exploration. a) to balance exploitation and
exploration, a pose sample is drawn from a sphere s (orange circles) where the position
is from a normal distribution with variance proportional to β and the orientation is
from a uniform distribution. b) to balance free and contact space exploration, the
previously drawn sample is projected with β probability to a surface within ϵEC distance
away from s.

With β = 0, the planner purely exploits workspace information and behaves like

a potential field planner using a global navigation function approximated with the

sequence of spheres S. Since the planner drags a robot toward the next sphere’s center

ps that is in free space, we can consider it as an "exploration" of C̃task, even though in

this edge case the planner does exploitation and not exploration.

When pure exploitation fails, β increases, and exploration starts. Exploration is

realized by sampling a pose close to the sphere’s center s. To draw a sample, we sample

an orientation from a uniform distribution and sample a position from a Gaussian

distribution N (ps, βrs) around the centers of a sphere ps∈S with variance proportional

to β. Hence, β indicates how closely the planner follows (probabilistically) the potential

field defined by task-relevant workspace information. At the same time, β balances

C̃task and δ̃Ctask exploration by projecting the previously drawn sample onto a randomly

selected neighboring surface with β probability.

When β = 1, samples are drawn with high probability anywhere inside a sphere

and projected on a neighboring surface. If β is further increased, more samples would

be drawn outside the sphere, indicating that the planner could not reach the next

sphere and it is stuck.
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We propose two strategies to unstuck the planner, backtracking to the previous

sphere or randomly exploring Cvalid until a new sphere is reached, and explain them in

more detail in the next section.

3.2.4 Algorithm Outline

The CEET planner presented in Algorithm 2 is an RRT-based planner that builds

a belief space tree in C-space. Every node of the tree T is a belief b. A belief b is

approximated with a set of particles b = Q = {q1, ...,qN}, where each particle qi=1..N is

a configuration. We use a particle-based representation because a belief state becomes

a non-Gaussian distribution of configurations when projected on a contact manifold.

We denote the mean configuration µb, the covariance Σb, and the workspace tool frame

Tb for µb. The tool frame is the end-effector frame in the case of articulated robots or

an arbitrary point and orientation in the case of rigid-body robots.

The algorithm initializes the tree with b0 as the root and computes the sequence of

spheres S and associated EC. Then, in every iteration, it expands a tree node toward

the next sphere snext (line 7). If the resulting belief bnew is valid, it is added to the tree

(lines 9 and 10). A belief is valid if all particles have the same contact state, respect

joint limits, and avoid collisions with robot parts that do not sense contact. Next, the

algorithm tries to connect bnew and bg, and upon success, returns the tree (lines 11

and 12). Otherwise, it checks if a new sphere (e.g., the next sphere or one even closer

to the goal) is reached. When a new sphere is reached, it updates s, resets β = βinit,

and initialize the stuck counter ks with zero (lines 14-16). However, if bnew is not

valid or a new sphere is not reached, we increase β linearly (line 18) or exponentially

(line 20), respectively, to shift toward exploration and to use more contact-exploiting

actions. We increase β more when expansion fails because it is a stronger indication

that uncertainty hinders progress.

If β > 1 at the end of the while loop, the planner reaches the exploration limit.

Hence, it resets β and increases the stuck counter ks (lines 22 and 23). The number of

times we explore the same sphere depends on the size of the current sphere relative

to the next one. Moving from a smaller sphere toward a larger one is like exiting a

narrow passage. In this case, we hope to have more feasible paths than entering a

narrow passage. Thus we restart the exploration of the same sphere multiple times.

In contrast, we restart exploration fewer times when we go from a larger sphere to a

smaller one (entreating a narrow passage). When ks reaches this adaptive threshold,

the planner backtracks to the parent sphere (line 25).
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Backtracking is one way to escape a local minimum. Another alternative is to

explore Cvalid randomly until a new sphere is reached. We are going to evaluate

both backtracking with the CEETb planner and random exploration with CEETe in

Section 3.3.

Algorithm 2 CEET motion planner
Input: b0, bg
Output: T = (V,E)
1: V ← {b0} initialize tree

2: S,EC ← WAVEFRONT(µb0 , µbg) compute sphere tree and associated ECs

3: s ← Sbegin take first sphere

4: β ← βinit initialize exploration-exploitation balance

5: ks ← 0 initialize sphere exploration counter

6: while true do

7: bnear, bnew ← EXPAND(V, snext, ECsnext ∪ ECs, β) expend one node in the tree

8: if IS_VALID(bnew) then

9: V ← V ∪ {bnew} add new node to the tree

10: E ← E ∪ {(bnear, bnew)} add new edge to the tree

11: if GOAL_CONNECT(bnew, bg) then

12: return T the goal is reached from the new belief

13: if Tbnew
∈ sunvisited ∨ sunvisited ∈ S then new belief reached an new sphere

14: s ← sunvisited update current sphere

15: β ← βinit reset exploration-exploitation balance

16: ks ← 0 reset sphere exploration counter

17: else

18: β ← β(1 + α) increase exploration when sphere is not reached

19: else

20: β ← β(1 + α)2 increase exploration when node expansion failed

21: if β > 1 then exploration limit reached

22: β ← βinit reset exploration-exploitation balance

23: ks ← ks + 1 increase the stuck counter for s

24: if rnext + rs ≥ rnext ∗ (1 + α)ks then

25: s ← sparent backtrack to parent sphere

26: ks ← 0 reset sphere exploration counter for parent sphere

Guided exploration is realized in the EXPAND method, which has steps similar

to the basic RRT planner, but these steps are radically different. Below, we give

implementation details for each step, where the numbers in parentheses refer to lines

in Algorithm 3.
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Algorithm 3 EXPAND
Input: V, s, EC, β

Output: bnear, bnew

1: Tsample ← SAMPLE(s, rs, β) sample target pose from s and its ECs

2: bnear ← NEAREST_NEIGBOUR(V,Tsample) find nearest node to sampled pose

3: qtarget, u ← STEER(µbnear
,Tsample, n̂EC , β) pull robot toward sampled pose

4: bnew ← SIMULATE(bnear,qtarget, u) forward propagate bnear toward qtarget with action u

5: return bnear, bnew

Sampling expansion direction (line 1): We sample a frame T inside a sphere s:

psample = ps +N (0, βrs),

Rsample = U(),

where the position psample is a sample from a Gaussian distribution with center at

the sphere ps and βrs variance, and the orientation R is sampled from a uniform

distribution U(). We project the sample on a randomly selected EC with β probability.

Thus, a large value of β increases a sphere’s exploration and the use of contact-exploiting

action.

Selecting nearest neighbor (line 2): To find the nearest neighbor to a sample,

we use a combined distance metric:

bnear = argmin
b

[γdΣ(b) + (1− γ)dT(b)]

where dT(b) = ∥Tb −Tsample∥2 is the spatial distance between the sampled frame and

the end-effector frame of a belief b, and dΣ(b) =
√

tr(Σb) is the square-root of the

trace of the belief’s covariance metrics, and γ balances the cost of state uncertainty. If

γ is closer to zero, the metric penalizes more for a larger spatial distance than state

uncertainty. If it is closer to one, beliefs with increased uncertainty are more penalized

than those with a larger spatial distance. In other words, a large value of γ enforces

the planner to expand only low uncertainty nodes in the three.

Steering toward the next sphere (line 3): The STEER algorithm (Algorithm 4)

drags a predefined frame on the robot toward the previously sampled frame Tsample.

First, we choose between a CONNECT or SLIDE action based on the initial contact

state of bnear and whether the potential field breaks contact or allows sliding. We

simulate an action by moving the robot’s frame in a straight line using the robot Jaco-



3.2 Contact Exploring Exploiting Tree Planner 45

Algorithm 4 STEER
Input: qnear,Tsample, n̂

Output: qsample, u

1: if qnear ∈ Cfree ∨ |n̂× POTENTIAL(Tsample, f(qnear)| < ϵangle then

2: u ← CONNET nearest is in free space or potential field breaks contact

3: else

4: u ← SLIDE nearest is in contact and potential field maintains contact initially

5: qnew ← qnear

6: while |pnew − psample| < ϵposition do

7: ∆x ← Tnear −Tsample

8: ∆q ← J∗(qnear)∆x

9: q′ ← qnew +∆q

10: if SINGULARITY(q′) then

11: q′ ← RAND()
12: q′ ← INTERPOLATE(qnew,q

′, |∆q|)
13: if u = CONNET ∧ q′ ∈ Cobstacle then motion in free space ends in contact

14: return qnew, GUARDED-MOVE the action becomes a guarded move

15: if u = SLIDE ∧ Cq′ ̸= Cqsample
then sliding motion ends in a different contact state

16: q′′ ← BACK-PROJECT(q′, n̂) back project to the target surface

17: if Cq′′ ̸= Cqsample
then back projection failed or new contact gained

18: return q′′, GUARDED-SLIDE the action becomes a guarded slide

19: else

20: q′ ← q′′

21: qnew ← q′

22: return qnew, u

bian. With sliding actions, we maintain contact with a surface using task projections,

as presented in Section 2.3. If the contact state changes after a simulation step, we

update u with the action needed to reach that state. A CONNECT action changes to

GUARDED-MOVE for a new contact, and SLIDE changes to GUARDED-SLIDE if the

initial contact state of bnear changes. The algorithm returns the reached configuration

and the associated action if the action changed during simulation or if the target is

reached with ϵposition precision.

Simulating belief propagation (4): The final step forward propagates bnear toward

the target configuration qtarget by simulating action u with a noisy motion model for

each particle in the belief .

In summary, our planner guides exploration using workspace information to improve

planning efficiency. On the one hand, the planner reduced the searched configuration

space by approximating C̃task and δ̃Ctask using the spheres in the SAMPLE method.
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On the other hand, it reduced the action space by using spheres connectivity in the

STEER method. Both methods removed less useful C-space regions and actions for

a motion planning problem. Consequently, these reductions increased the planner’s

efficiency in finding a solution. To analyze the benefits of these reductions, we present

two baselines that search the entire action space and/or reduce the configuration space.

3.2.5 Baseline Algorithms

Before evaluating the CEET planner, we present two baseline algorithms: the CERRT

planner (Sieverling et al., 2017b) and a new Contact Exploring Tree (CET) planner.

The two baselines differ from CEET by the amount of workspace information used

during planning. CERRT uses goal bias with a 10% sampling probability without using

other workspace information. In contrast, CET uses 10% goal bias and workspace

information to reduce the configuration space to task-relevant regions but without

reducing the action space. Thus, CERRT uses the least amount of information, CET

uses workspace information to reduce C-space, and CEET uses the most information

to reduce both C-space and the action space.

Both baseline planners are RRT-based and build a belief tree from a start belief to

a goal region. We provide a single pseudo code for the two baselines because a small

modification of the CERRT planner results in the novel CET planner.

With Algorithm 5, we can obtain the CERRT planner for Wexplore = W as input

and the CET planner for Wexplore = S as input, where W denotes the entire workspace

and S is the workspace volume covered by a sequence of spheres pre-computed as done

in the CEET planner. The sampler (line 3) returns a configuration for which a robot’s

tool frame is inside Wexplore. Hence, it reduces the search space to W̃task when the

workspace is limited to S. The nearest neighbor selection (line 4) is similar to the one

in Algorithm 3 but uses the euclidean join distance between configurations rather than

the spacial distance between frames. Actions are sampled (line 5) based on the contact

state of bnear and with γ probability to be a contact-exploiting action. Then, bnear is

forward projected (line 6) as done in Algorithm 3. Finally, if the resulting bnear ∈ Cvalid,

the planner greedily tries to connect to the goal, and upon success, it returns the tree,

otherwise continues the search. For more details about this CERRT algorithm, we

refer to the respective publication (Sieverling et al., 2017b).
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Algorithm 5 CERRT or CET planner depending on Wexplore input parameter

Input: b0, bg,Wexplore

Output: T = (V,E)
1: V ← {b0} initialize tree with start belief

2: while true do search until goal reached

3: qrand ← SAMPLE(Wexplore) sample a random configuration in a workspace volume

Wexplore

4: bnear ← NEAREST_NEIGHBOUR(V,qrand, γ) the closest belief to the sample in the

tree

5: u ← SELECT_ACTION(bnear, γ) sample an action

6: bnew ← SIMULATE(bnear,qrand, u) a local planner forward projects belief

7: if IS_VALID(bnew) then

8: V ← V ∪ {bnew}
9: E ← E ∪ {(bnear, bnew)}

10: if GOAL_CONNECT(bnew, bg) then

11: return T

3.3 Evaluation of the CEET Planner

We evaluated the CEET planner in simulation to show that a) reducing the configuration

and the action spaces to task-relevant regions significantly improves planning efficiency

and b) our planner scales to high-dimensional configuration space planning problems.

Moreover, we analyzed the proposed heuristics to unstuck the planner and the balancing

parameters for different amounts of motion errors.

We implemented all experiments using the Robotics Library (Rickert and Gaschler,

2017) and carried out the experiments on a computational cluster. All experiments

in Section 3.3.1 ran on Intel(R) Xeon(R) E5-2630 v2 @ 2.60GHz CPUs, and the

rest of the experiments ran on Intel(R) Xeon(R) E5540 @ 2.53GHz CPUs. We ran

ten experiments for each data sample and listed the planning parameters for each

experiment in Table 3.1.

3.3.1 Configuration Space Reduction Increase Planning Effi-

ciency for Large 2D Spaces

We want to show that leveraging task-relevant regions to guide exploration improves a

planner’s computational efficiency. Therefore, we compared the planning duration of

CERRT, CET, CEETe and CEETb on three 2D planning problems with increasing

C-space volumes.

In all three planning problems (top row in Figure 3.7), a 2-DOF gripper had to

move from q0 to qg using only translational motion under initial position and motion
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Figure 3.7 Planning efficiency improves significantly when workspace information
is used in problems with large free and contact spaces that are less relevant for a
task. Top row: three planning problems where a 2-DOF gripper had to move from
q0 to qg under initial position and motion uncertainty. The problem complexity
increases from left to right by increasing the C-space volume and the complexity of
the environment. Bottom row: comparing mean planning duration of four planners
with increasing use of workspace information: CERRT randomly explores Cvalid, CET
randomly explores (C̃task ∪ δ̃Ctask) ⊂ Cvalid, CEETe, CEETb is restricted to explore
C̃task ∪ δ̃Ctask by backtracking when it is stuck, while CEETe can explore beyond the
spheres because it performs random exploration when stuck. By comparing CEETb

and CEETe, our task-relevant region approximation appears too restrictive for the
maze problems.
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Param. Description
2-DOF
gripper

7-DOF
WAM

10-DOF
Uman

t [min] time budget 500 1000 1500
N number of particles 20 20 20
δstep simulation step size 0.05 1.0 1.0
ϵgoal goal region 0.1 0.05 0.05
γ weighting factor in

the composite distance
metric

0.3 0.3 0.5

βinit initial exploration and
exploitation balance

0.1 0.3 0.1

α rate of β increase 0.1 0.01 0.1
σinit initial uncertainty [0.2, 0.2] 0.02 ∗ 17 0.02 ∗ 110
σmotion motion uncertainty [0.2, 0.2] [0.02 ∗ 16, 0.0] [0.02 ∗ 19, 0.0]

Table 3.1 Planning parameters, where 1n is an n dimensional vector with ones and
[1n, x] is the concatenation of 1n with a scalar x resulting in an n + 1 dimensional
vector.

uncertainty. The first planning problem is the grasping POMDP proposed by Hsiao

et al. (2007), and the other two problems, grasping-maz, and grasping-large-maze, are

variations with increasing complexity. First, we increased the volume of less relevant

regions from 0% to 13% and 81% for the grasping POMDP, grasping-maze, and

grasping-large-maze problems, respectively. Secondly, we increased the environment’s

geometrical complexity by increasing the number of less relevant surfaces and the total

number of surfaces from 0/5 to 3/21 and 32/51.

We expect that leveraging task-relevant workspace regions decreases planning

duration as the C-space volume and the number of surfaces increase.

The bottom row in Figure 3.7 shows the mean planning duration and the 95%

confidence interval on each bar. The results in the two maze problems show that

C-space reduction significantly improved planning efficiency, but action space reduction

only provided minor improvement. However, the grasping POMDP problem results

show that random exploration was better when the whole workspace was task-relevant.

This is because the other three planners approximated C̃task too restrictively so that

the reduced search spaces contained fewer solutions making planning more difficult.

The planners found a solution for all three problems under the given time budget,

except the CERRT planner for the large maze. CERRT failed two times out of ten in

the large maze because it spent too much time exploring the two large openings at

the top. In contrast, CET and CEETb only explored the corridors directly leading

to the goal region without ever exploring the top regions of the maze. Even though
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tough CEETe was not restricted to searching less relevant regions when escaping a

local minimum, the planner surprisingly found a solution faster than CET and CEETb

in the maze problems.

In the two maze problems, CEETe outperformed CEETb significantly. Note that the

two planners differ in the local-minimum escaping heuristics, where CEETe used random

exploration and CEETb backtracked to the parent sphere. The random exploration

heuristic was better than backtracking because the sphere-based task-relevant region

approximation was too restrictive for 2-DOF problems. In the next section, we further

analyzed the two heuristics for higher dimensional C-spaces.

3.3.2 The CEET Planner Scales to High-Dimensional Prob-

lems

We want to show that the CEET planner scales to high-dimensional configuration

space planning problems. Hence, we compared the planning duration of CERRT,

CET, CEETb, and CEETe planners on two planning problems with increasing C-space

dimensions: using a 7-DOF or 10-DOF robot, as illustrated at the top in Figure 3.8.

With 7-DOF, the Barrat WAM arm had to move its end-effector from free space into

a deepening on a wall. With 10-DOF, the Uman robot, composed of a holonomic

mobile-based and the WAM arm, had to remove its arm from a window on a wall and

to insert it into another window on the same wall.

We expect significant planning efficiency improvement when leveraging workspace

information to reduce the configuration and action spaces compared to planners that

explore beyond task-relevant regions.

The bottom row in Figure 3.8 shows the mean planning duration and the 95%

confidence interval on each bar. The results show that CEET scaled to high-dimensional

problems when using the proper escaping heuristic. With the backtracking heuristic,

CEETb was the fastest in the 7-DOF problem, and it was the only one that solved the

10-DOF problem with an 80% success rate, while the other three planners could not

find a solution within the given time budget. This indicates that backtracking was a

better heuristic to unstuck the planner in high-dimensional C-space.

Interestingly, CEETb was better performing in high-dimensional C-spaces than

CEETe, and the other way around in low-dimensional spaces. We think this is because

backtracking reduces the search space compared to random exploration, which opens

it up fully. In high-dimensional search spaces, our approximation of C̃task ∪ δ̃Ctask

potentially contained multiple valid paths. By backtracking in a high-dimensional
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Figure 3.8 CEET generalizes to high-dimensional configuration spaces, and the back-
tracking heuristic is better than random exploration to unstuck the CEET planner.
Top row: two planning problems with increasing C-space dimensionality: a 7-DOF
WAM arm is in front of a wall or a 10-DOF Uman mobile robot in front of another
wall. The tasks are similar, reaching qg from q0 under initial position and motion
uncertainty. Bottom row: comparing planning duration of the four belief space motion
planners on the two planning problems. Note that only CEETb was able to solve the
10-DOF problem with an 80% success rate.
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Figure 3.9 Best βinit, γ, and α parameters in function of the motion error σmotion for
the CEETb planner on the 7-DOF WAM problem (top left image in Figure 3.8). As
motion error increases, the parameters increased, indicating that the planner handled
increased state uncertainty by shifting faster to exploration, using contact-exploiting
actions (α and βinit) and by expanding less uncertain nodes (γ).

search space, the planner kept searching for these solutions in C̃task ∪ δ̃Ctask. It was

like combing through a haystack multiple times to find a needle. This is not the case

for low dimensional space, where our approximation of C̃task ∪ δ̃Ctask was seemingly

too restrictive. The reduced search space probably contained very few valid paths,

while numerous solutions were outside this reduced search space. By using random

exploration to unstuck the planner, we searched beyond the task-relevant regions and

found those solutions. It was like searching for a needle in the grass beside the haystack.

3.3.3 Planner Parameters for Different Motion Error

We want to analyze the sensible values of α, βinit, and γ with respect to motion

uncertainty because these parameters balance the exploitation and exploration of

workspace information, and these also balance the exploration of C̃task and δ̃Ctask.

Therefore, we ran a grid search of various parametrizations of the CEETb on the

7-DOF WAM planning problem (first image in the first row in Figure 3.8), where

βinit ∈ {0.1, 0.3, 0.6, 0.9}, α ∈ {0, 0.001, 0.01, 0.1, 0.3}, γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9},

and the motion error was σmotion ∈ {0, 0.001, 0.01, 0.1, 0.3}.
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In Figure 3.9, we show the best parameter combination of α, βinit, and γ for

which the planner needed the least amount of time to find a solution under different

motion errors. Note that the x-axis has a logarithmic scale to better visualize the

parameters for low motion error. The results show that as motion error increased, the

values of the three parameters increased except βinit for the largest motion uncertainty

σmotion = 0.3. However, for the same σmotion, the second-best parameter combination

was αmotion = 0.3 and βinit = γ = 0.9, where βinit increased compared to the case of

σmotion = 0.1. Moreover, the mean planning duration was less than 7% slower with

the second-best parameter combination compared to the best parameterization for

σmotion = 0.3. Thus, we assume a positive correlation between σmotion and α, βinit,γ.

The positive correlation between the parameters and the motion error was expected

because a larger motion error increases state uncertainty faster. So, the planner needs

to reduce it more frequently. For larger α and βinit the planner shifted faster from

exploring C̃task to δ̃Ctask. Consequently, it reduced state uncertainty faster. For larger

γ, the planner weighted more state uncertainty than spatial distance when searching

for the nearest neighbor. As a result, it preferred to extend three branches with less

uncertainty.

Adaptive Distance Metric Evaluation

The previously presented results suggest that βinit and γ could have the same value

for certain σmotion. We want to further analyze the role of γ and whether it should be

dynamically adjusted during planning similarly to β. Thus, we defined four heuristics

for γ and labeled the CEET planner as follows:

CEETβinit: γ = βinit, γ is constant during planning but it is adjusted to the motion

error using the results from above.

CEETβ: γ = β, it is increasing as exploitation shifts to exploration during planning

and resets when β resets. Since β increases if uncertainty hinders progress, γ

becomes uncertainty dependent implicitly.

CEETks: γ = βinit(1 + α)ks , it is increasing as the stuck counter increase for a

given sphere. This heuristic weighted uncertainty increasingly when the planner

restarted the exploration of a sphere. Thus, γ is uncertainty dependent implicitly

but increases slower than for CEETβ.

CEETrs: γ = 1− [rsnext
/max(rs|∀s ∈ S)], it changes with respect to the relative size

of the next sphere. With smaller spheres, uncertainty reduction is weighted more



54 Guiding Configuration Space Exploration With Environmental Constraints

0.00 0.02 0.04 0.06 0.08 0.10
motion error σmotion

0

10

20

30

40

50

60

m
ea

n
du

ra
ti

on
(m

in
ut

es
)

CEET βinit

b CEET β
b CEET ks

b CEET rs
b

Figure 3.10 Comparing different distance metrics with a constant and three adaptive
weighting of state uncertainty for the 7-DOF WAM planning problem with the CEETb

planner.

than for larger spheres because the smaller sphere could indicate a narrow passage.

This heuristic assumes that entering a passage is more difficult than exiting one.

In contrast to the previous heuristics, this only considers the environment’s

geometry represented by the spheres.

We evaluated the four heuristics on the 7-DOF WAM planning problem for a set of

motion uncertainties σmotion ∈ {0, 0.001, 0.005, 0.01, 0.1} with the CEETb planner.

Figure 3.10 shows the mean planning duration for the four heuristics as motion error

increases. All heuristics performed similarly for small motion errors. However, for large

motion errors, heuristics that change in function of uncertainty (explicitly or implicitly)

outperform the heuristic that only considers the environment’s geometry.

3.3.4 Evolution of Balancing Parameters

Finally, we want to show the evolution of the β and ks when executing the CEETb

planner on the grasping-maze 2-DOF planning problem to illustrate how these variables

can indicate regions that are difficult to traverse. The left side in Figure 3.11 shows the

sequence of spheres and the solution path for each particle. The top-right plot in the

same figure shows when spheres were explored and when the planner performed back-

tracking, and the bottom-right plot zooms on the first two consecutive backtrackings

to illustrate the evolution of β and ks for s ∈ {12, 13}.

The planner triggered backtracking the first time while trying to reach the goal in

s13, and then it triggered backtracking from s12 as well. The top plot clearly shows

that the motion planning problem has an extremely difficult region in the last few
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Figure 3.11 Left: A sequence of spheres (orange) and the solution path for each particle
(red) is visualized for the 2-DOF grasping-maze problem, and the last two spheres are
labeled s12 and s13. Right: Two plots showing the evolution of ks, β, snext variables
and the event of backtracking (dashed lines). In the top plot, it is visible that progress
is hindered in the last spheres, where multiple backtracking happened. The bottom
plot zoomed in when the first two backtracking events happened. The zoomed-in plot
shows that the backtracking is not dependent on a fixed value for ks. However, it
depends on sphere sizes, and the plot also shows how β initially increases linearly and
then exponentially.

spheres. On the bottom plot, one can observe that the planner detected being stuck

for different ks values due to differences in sphere sizes. Moreover, it is also visible that

β initially increased linearly for each new value of ks, indicating that the planner found

actions with valid outcomes. As β increased, the spheres’ perimeter was increasingly

explored. Consequently, more actions resulted in inconsistent contact states making β

to increase exponentially.

3.4 Related Planning Approaches

We discuss related planning approaches divided into two topics. First, we discuss

contact-exploiting motion planners because our planners (CEET and CET) reduce

uncertainty by exploiting contact with the environment. Second, we discuss how other

motion planners use information because our planners use workspace information to

guide exploration.
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3.4.1 Contact-Exploiting Belief Space Planners

Geometry-based workspace decomposition was first introduced by Lozano-Pérez et al.

(1984). They defined a pre-image as a region in the free and contact space from where

all states can reach a goal with a single compliant motion. They combined guarded and

sliding motions to sequence compliant motions in contact that reduce state uncertainty

and produce robust motion plans. Canny (1989) showed that pre-image-based planning

is a PSPACE-hard problem; therefore, it is difficult to apply to complex manipulation

problems. Pre-images are challenging to compute because they represent task-relevant

regions exactly. We overcome their computational complexity by approximating task-

relevant regions using wavefront expansion for workspace decomposition. Moreover,

task-relevant C-space regions are represented implicitly by guiding C-space exploration

with workspace information.

An environment’s geometry provides a discrete structure. Thus, contact-based

planning can be formulated as a multi-modal problem, where the continuous state

space is split into contact manifold or modes. Modes generally have a parametric

representation rather than an exact one, such as pre-images. A multi-modal planner

explores modes and searches for transitions between them to find a path between a

start and a goal. The set of modes can be incrementally built by first searching for valid

samples in transitional regions (Bretl, 2006; Hauser and Latombe, 2010), similar modes

can be bundled into folaitions (Kingston et al., 2020; Orthey et al., 2020; Morgan et al.,

2022), or modes can be enumerated instantaneously using a combination of random

sampling and projection approach (Cheng et al., 2021). CEET can be considered a

multi-modal planner because it leverages the discrete structure of the workspace. It

explores modes (contact manifolds) obtained from workspace decomposition and finds

transitions between modes either directly at mode intersections or through free space

by leaving the mode.

Our planner is closely related to particle-RRT (Melchior and Simmons, 2007) that

approximated belief state with particles. Particles can represent state uncertainty,

and by forward simulating each particle with a noisy model, they can also represent

motion uncertainty. A particle-based approximation of a belief is suitable for planners

that use contact-exploiting motions because when a belief is projected on a contact

manifold, it becomes non-Gaussian (Sieverling et al., 2017b; Wirnshofer et al., 2018;

Phillips-Grafflin and Berenson, 2020).

Contact-exploiting compliant motion can be used to increase positioning error

tolerance during planning, simplify sampling on contact manifolds, or transition

between manifolds (Hang et al., 2019; Morgan et al., 2022). While this beneficial
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effect of contact-exploiting compliant motion was not used in our planner, one could

evaluate a sensible increase in ϵEC and ϵposition for surface extraction during wavefront

exploration and for selecting a sample and an action during steering, respectively.

Contact-exploiting actions can be combined with contact sensing to further reduce

state uncertainty by discriminating between possible outcomes. POMDP-based planners

reason about contact observations, and such approaches were successfully applied to

low-dimensional manipulation and object localization problems (Hsiao et al., 2007; Bai

et al., 2010; Vien and Toussaint, 2015; Koval et al., 2016). Integrating sensing is not in

the scope of this chapter. However, it is the focus of the next chapter where we present

another sampling-based planner using contact-exploiting actions and contact sensing

to reduce increased amounts of state uncertainty.

3.4.2 Levels of Information Usage During Planning

Since we use workspace information to guide configuration and contact space exploration,

we discuss approaches to integrate information into planning. We divided these

approaches into three categories based on the levels of information usage: exploitation,

exploration, and guided exploration.

Exploitation-based planners compute a plan relying solely on prior information

without considering any information gained during planning. Such approaches are

based on gradient descent and exploit the information encoded in a potential function.

For example, virtual potential fields or navigation functions can guide a robot to avoid

obstacles and progress toward the goal. These approaches were discussed in detail in

Sections 2.2 and 2.5.3.

Exploration-based planners use no information but randomly sample configurations

to gain understating of the configuration space. Such sampling-based motion planners

represent the configuration space connectivity with a graph or tree data structure.

With a graph data structure, the Probabilistic Roadmap (PRM) based planners

uniformly draw samples using no information. However, when these planners check

the connectivity between samples, they use guided exploration. With a tree data

structure, Rapidly-exploring Random Tree (RRT) based planners grow a tree from

a start configuration toward the largest Voronoi region associated with the existing

samples in the tree. The Voronoi bias enables quick exploration of the configuration

space, but such a planner requires a goal bias to find a path to the solution faster.

Goal bias is an informed sampling technique that guides exploration. It can be

achieved by sampling the goal configuration instead of a random sample or by trying to

connect new nodes to the goal. Such techniques are widely used in particle-RRT-based
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planners as well (Melchior and Simmons, 2007; Sieverling et al., 2017b; Phillips-Grafflin

and Berenson, 2020; Cheng et al., 2021) and our planner also uses greedy goal connect

action beside workspace information to guide C-space exploration.

There are a variety of informed sampling techniques that use a fixed or adaptive

heuristic (Burns and Brock, 2007; Hauser and Latombe, 2010; Kingston et al., 2020).

Such techniques exploit information gained during exploration to efficiently explore

difficult regions of the configuration space, such as narrow passages with bridge sampling.

Other heuristics were developed to solve issues related to the Voronoi bias of RRT

planners to escape bug traps. For example, a planner can stop to extend nodes for

which expansions have failed multiple times or use a bi-directional search with multiple

trees, making a forest and even growing multiple forests (Hang et al., 2019).

Valuable information can be obtained from a robot’s workspace to guide exploration

and consequently increase a planner’s efficiency in finding a solution. The most

straightforward use of workspace information is to divide the space info free and

contact regions and use different sampling techniques or local planners tailored for

the respective region (Koval et al., 2016; Guan et al., 2018). Another approach is to

leverage the environment’s geometry to discretize the state space into regions, sequence

the decomposed regions, and search for a motion plan through these regions (Erdmann,

1986; Lozano-Pérez et al., 1984; Goldberg, 1993; Bhatia et al., 2010). A workspace

decomposition can be learned (Chamzas et al., 2021) or approximated (Rickert et al.,

2014; Rajendran et al., 2019; Liu et al., 2020) and used to bias exploration toward

task-relevant regions of the workspace.

The CEET planner extends the EET palnner (Rickert et al., 2014) to solve motion

planning problems under uncertainty. We used the same approximation technique to

decompose the workspace and identify task-relevant regions in free space. The key

difference between the EET and CEET planners is that we considered motion and

perception uncertainty. To handle uncertainty, our planner exploits motion in contact.

Therefore, we extended the workspace information to include contact regions as well.

3.5 Conclusion and Further Considerations

The chapter aimed to efficiently plan robust motions under uncertainty by exploiting

environmental constraints. To achieve that, we leveraged mechanical uncertainty

reduction and a geometry-based workspace decomposition. The combination of these

two ECE effects allowed efficient belief space planning. First, our planner searched for

robust actions unaffected by uncertainty and contact-exploiting actions that reduce
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uncertainty. Consequently, the resulting motion plan was robust against perception and

motion inaccuracies. Secondly, we reduced the exploration of configurations and actions

using task-relevant workspace information, improving planning efficiency. Task-relevant

information was obtained by decomposing the workspace into task-relevant ECE regions

and sequencing these regions between a given start and goal. We have shown that

workspace information is precious when a configuration space has large regions less

relevant for a given task. Our planner scaled for high-dimensional configuration spaces

as well. Therefore, we achieved our goal of efficiently planning robust motions against

uncertainty by sequencing task-relevant manipulation funnels and searching for a

motion through these funnels.

While this chapter combined two ECE properties discussed in Section 1.2, the next

chapter provides a different combination of properties by integrating contact sensing

into planning when a robot moves into contact. We close this chapter with a discussion

of the limitations of the CEET planner.

3.5.1 Limitations of the CEET planner

Since the CEET motion planner uses the connectivity of task-relevant ECE regions as

a virtual potential field, the planner is subject to local minima where the planner can

get stuck. To overcome this, a planner must detect when it is stuck and escape from

the local minimum.

We detected when the planner got stuck by virtually increasing a sphere until it

fully covered its parent sphere. We showed that this detection works. However, there

might be more efficient ways to identify when the planner is stuck. One could estimate

the maximum state uncertainty of a region from failed expansions and compare it with

neighboring nodes.

We evaluated two escaping strategies that are on the opposite ends of the spectrum:

random exploration and backtracking using exploration bias. We showed that the

appropriate escaping strategy depends on configuration space dimensionality, and

further strategies should be explored for a more efficient resolution of local minima.

Another area for improvement of the CEET planner is the need for reasoning about

path optimality. Since the path is searched in a task-relevant subspace, the solution’s

path length is generally smaller than a path generated by randomly exploring the

whole search space. One could further optimize the path generated by CEET by using

our planner’s solution to initialize an optimizer that reasons about contact (Posa et al.,

2014; Toussaint et al., 2014; Posa et al., 2016; Toussaint et al., 2022).
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A further limitation arises from the assumption that the environment is static.

Despite this assumption, we think that the planner could be extended to reason about

movable objects. However, reasoning about movable objects and their state uncertainty

would increase the problem’s complexity enormously. To overcome this issue, we are

going to use a hierarchical planning scheme (Asfour et al., 2006; Jain and Niekum, 2018)

in Chapter 7: the CEET motion planner searches for valid motion trajectories, and at

a higher abstraction level, an ECE-based grasp planner (presented in Section 6.2.2)

reasons about movable objects in a pile.



4

Integrating Contact Events Into

Motion Planning

This chapter takes another approach to uncertainty handling than the previous chapter

by integrating contact-based sensing into planning. In Chapter 3, we modeled uncer-

tainty to find and sequence task-relevant manipulation funnels. Then, we searched

for robust actions unaffected by uncertainty moving in free space inside the selected

funnels and moving in contact on funnel walls. Contact sensing was required to execute

a policy by indicating when entering a desired manipulation funnel. This chapter also

models uncertainty and uses manipulation funnels to reduce it, but integrates contact

sensing into motion planning to distinguish between funnel entrances because an action

can lead to different funnels under a large amount of uncertainty. The content of this

chapter, to a large extent, has been published before in (Páll et al., 2018) ©2018

IEEE. I was the first author of that paper. I conceived, implemented, and evaluated

the proposed ConCERRT algorithm. The other two authors gave scientific advice and

helped with writing. The second author and I contributed equally to the writing.

We integrate contact information from sensory measurements into motion planning

to distinguish between action outcomes and reduce state uncertainty. Fortunately,

ECE provides easily detectable contact events that indicate when an EC is reached

or the transitioning between ECEs (Section 1.2). We leverage these contact events to

distinguish between action outcomes. Since we obtain contact events from an ECE

using contact-exploiting actions, such actions reduce uncertainty mechanically as well,

as used in Chapter 3. Thus, this chapter combines mechanical uncertainty reduction

and contact events to handle a large amount of uncertainty during motion planning.

When a robot’s state uncertainty is too large, motions can lead a single action

to have several possible outcomes. Different outcomes need different reactions, so a
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motion planner must in advance determine suitable reactions. A motion plan can

capture reactive motion behavior as alternative branches. During the execution of

such a plan, a robot uses sensor data to select the one matching the current situation

among the branches. A plan able to address such eventualities is called a contingency

plan; a planner producing it is called a contingent planner (Pryor and Collins, 1996).

To find contingency plans, a planner can model the robot’s uncertainty and reason

probabilistically about sensor events that might happen during execution. However,

taking into account all possible eventualities is not possible. The high dimensionality

and the continuous state and action space in manipulation problems make global,

complete solutions to contingent planning intractable. To be effective, a planner must

make approximations.

q′

q′′ qgoal

Figure 4.1 A robot performs tactile localiza-
tion of an object using contact sensors on
two fingers of a soft hand. By moving into
contact and measuring which finger makes
contact first, the robot can estimate the po-
sition of the box relative to itself (e.g., box
configuration q

′ or q
′′) and then adapt its

action to reach qgoal. ©2018 IEEE

We present the Contingent, Contact-

Exploiting RRT (ConCERRT)Ða plan-

ner that overcomes this complexity for

contingencies based on contact sensing.

The planner finds robust strategies in con-

figuration space for problems such as the

one shown in Figure 4.1. These prob-

lems require the robot to adapt its mo-

tion based on sensor information from

contact sensors. The key to our planner

is the assumption that contact sensing is

uncertainty-free. This assumption allows

for ruling out a large part of the robot’s

state space, given a contact measurement.

This simplifies planning and leads to a

low number of contingencies.

In our view, only uncertainty-free sensing should be integrated into motion planning

to reduce state uncertainty and to keep the problem computationally tractable.

Compared to related Partially Observable Markov Decision Process (POMDP)

approaches, our planner does not require any a priori discretization of configuration or

action space. Instead, it builds a task-specific discretization of the state space during

planning, informed by the available actions, similar to sampling-based motion planners.

Our experiments show that our planner consistently finds successful contingency plans

in practical applications. We show solutions for problems with high uncertainty where
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conformant (or non-contingent) planners fail. In real-world experiments, we show that

our assumptions about uncertainty hold in realistic scenarios.

4.1 Contingent Motion Planning Problem Definition

Planning contingencies for contact-sensing robots requires combining reasoning about

uncertainty with a model for contact sensing. Before presenting our algorithm, we will

describe the problem formally.

Similarly to the CEET planner presented in Chapter 3, ConCERRT plans in an

n-dimensional configuration space C. Cvalid is the valid configuration space composed

of free space Cfree and the configurations in contact at the boundary ∂Cfree. The robot

can execute actions u, straight line joint space motions in free space, guarded motions

(moving until the robot is in contact), or compliant slides along surfaces. All motions

have an uncertain outcome, and the robot can not fully perceive its configuration

but must estimate it from noisy sensors. Additionally, the robot does not fully know

its initial configuration. Therefore, instead of planning in configuration space, we

plan in belief space B, where each belief b ∈ B is a probability distribution over the

configuration space. We model the initial state uncertainty as a Gaussian distribution

b0 := N (q0,σ0) and use a motion model with independent joint noise:

δq̂ = δq+N (0,
√
|δq|σδ).

In contrast to the CEET planner, now, we assume the robot has access to reliable

contact sensors to observe the active contact(s) at a given configuration q. A key

assumption for efficient planning is that contact sensing is fully observable. i.e., we

assume that no contact is ever detected wrongly. We use two different contact sensor

models:

1) Tactile sensor model assumes binary contact sensing on different parts of the

robot: Otactile(q) = {o1, . . . , ok}, where each contact observation oi = ci is a sensor

patch indicating contact in the given configuration.
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2) Force sensor model assumes the robot can detect the contact normal: Oforce(q) =

{o1, . . . , ok}. Each observation oi = (ci, n̂i) is a pair of a sensor patch and surface

normal n̂i. Similarly to Equation (3.1), a belief b is valid if it lies mostly in the valid

configuration space: ∫

q∈Cvalid

b(q)dq > 1− ϵ,

where Bvalid is the space of all valid beliefs. The planning problem is now the following:

given a start and goal belief b0, bg ∈ Bvalid, find a policy π : Bvalid → U that brings the

robot to the goal belief state with high probability. This chapter only cares about

finding feasible policies and does not consider optimality. This problem is a belief

space planning problem (Van Den Berg et al., 2011). However, the possibility for the

robot to make contact with the environment makes the state non-Gaussian or even

multi-modal.

4.2 Continget Contact Exploiting RRT Planner

This section presents the Contingent Contact-Exploiting RRT planner (ConCERRT),

a sampling-based motion planner that finds contingency plans based on contact sens-

ing. Before describing the algorithm, we will first explain two crucial insights for

understanding our planner.

4.2.1 Belief State Partitioning

The first insight is that a robot can effectively reduce uncertainty by moving into

contact and observing the resulting contact measurement to rule out parts of its state

space. For example, a robot (Figure 4.2) with an uncertain state moves toward a wall

until it touches the wall with its left or right finger. By visualizing this in belief space,

uncertainty reduction becomes obvious: the contact event partitions the belief into two

halves, each with less uncertainty than the original belief.

These belief space partitions can also arise out of contact direction sensing, which

we show in Figure 4.3. Here the robot (in this case, a 2D point robot) can sense the

normal at the point of contact. The robot now moves towards an edge and matches the

sensor reading to the wall normals. Like before, the result of this action is partitioning

a large belief into two smaller belief states, which is an efficient reduction of uncertainty.

This is the first insight exploited by the ConCERRT planner: some actions reduce

uncertainty by partitioning the belief space. The ConCERRT planner exploits these

actions and assembles them into robust policies.
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Figure 4.2 Belief state partitioning with binary contact sensing; (a) A 3-DOF robot with
a two-finger hand moves from free space into contact. The initial position uncertainty
results in two different contact states. (b) This action partitions the belief b into two
belief states b′ in contact with the left and b′′ with the right finger. ©2018 IEEE

4.2.2 Incremental Policy Construction

Using belief-space partitioning actions in a planner is not straightforward, as every

added partition adds at least two new belief states to the policy. Both states must be

eventually connected to the goal. However, we will show now that this effort can be

limited in practice, as a planner can reuse sub-solutions to speed up planning.

The working principle of ConCERRT is shown in Figure 4.4. ConCERRT maintains

two separate lists of belief states:

• Bopen contains all belief states that are yet to be connected to the goal. It is

initialized with the initial belief of the robot and increases with every belief space

partition. If Bopen is empty, the planner returns success.

• Bconnected contains all beliefs that are already connected to the goal. Initially, it

only contains the goal belief bg. However, over time, the planner expands the

policy and adds elements to Bconnected.

ConCERRT now runs for every state in Bopen a separate tree search, attempting to

connect to any state in Bconnected. If it can connect any node from Bopen to any node

from Bconnected, it adds the resulting action sequence to the policy, and it also adds all

nodes visited by that path to Bconnected. If this sequence results in any new partitions,

it adds to Bopen and creates a new tree for each of them.

This parallel search using a whole forest of trees might seem like an overhead.

However, the effort is limited in practice, which can be explained by the algorithm
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Figure 4.3 Left: a robot with state uncertainty moves from state b0 towards a corner
in the world, which projects the uncertainty on the surfaces resulting in state b. Right:
measuring the contact normal (n̂′ and n̂

′′) allows the robot to partition its belief state
b into lower uncertainty states b′ and b′′. ©2018 IEEE
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Figure 4.4 Two iterations of the ConCERRT planner: a) first iteration: the initial
search tree Tb0 connecting start and goal beliefs b0 and bg. On the right is the resulting
policy π, which consists of one path from start to goal but also contains one unconnected
partition b2. b) second iteration: the next iteration of the algorithm. Starting from b2,
the algorithm builds a new search tree Tb2 that can connect to any of the beliefs in π.
The planner finds a path that can reconnect by moving back to b0g. On the right, this
path is added to the final policy π′. ©2018 IEEE
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Algorithm 6 ConCERRT motion planner
Input: b0, bg
Output: π

1: Bopen ← b0 initialize open contingencies with b0
2: Bconnected ← bg initialize goal region with bg
3: Tb0 ← b0 initialize tree

4: π ← ∅ initialize policy

5: while P (π) < 1 do until all contingencies are solved

6: for all b ∈ Bopen do expand all open contingencies

7: Tb ← Tb.EXPAND(Bconnected) see Algorithm 7

8: π ← π.UPDATE(Tb) the policy is updated if a contingency is solved

9: Bopen ← Bopen.UPDATE(Tb) add new contingencies and remove the solved one

10: Bconnected ← Bconnected.UPDATE(Tb) save beliefs in a solved contingency as goal

11: return π

moving from exploration to exploitation (Rickert et al., 2014). Initially, the algorithm

must explore most of the space as Bconnected contains only one element. However,

whenever adding a path to the policy, the algorithm also adds states to Bconnected. At

some point, nodes in Bconnected will cover most of the state space. All these beliefs are

opportunities for exploitation which decrease the complexity of later iterations.

4.2.3 Algorithm Outline

Based on the two previous insights, we can now give the full description of the

ConCERRT planner (Algorithm 6). To plan efficiently with the non-Gaussian belief

states, we represent the belief with a set of particles b = Q = {q1, . . . ,qN} where

each particle q is a configuration. We denote the sample mean and covariance of the

configurations in a belief b with µb and Σb, respectively.

ConCERRT initially samples a fixed number of particles from the initial belief b0
and adds them as root to the initial search tree. Then, in every iteration, ConCERRT

cycles through all elements of Bopen and expands the respective tree. The expansion

works similarly to an RRT planner. It samples a random configuration, finds the

nearest neighbor in the current search tree, chooses an action, simulates the effects of

that action and adds the resulting state to the tree, and tries to connect the new state

to the goal(s).

We will now give implementation details for the expansion. The numbers in

parentheses refer to the lines in Algorithm 7.
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Sampling (line 1) The planner samples a random configuration to extend the

current tree. The tree growth is randomly biased towards the goal by choosing µbg

instead of a random sample with a fixed probability p(bg).

Nearest neighbor search (line 2) The nearest neighbor selection computes a norm

that balances uncertainty and Euclidean distance. As a distance term over uncertainty,

we use the trace norm dΣ(b) :=
√

tr(Σb). As spatial distance to the random sample

qrand we use dµ(b) := ∥µb − qrand∥2. The best neighbor is chosen as:

bnear = argmin
b

⎡
⎣γ

⎛
⎝dΣ(b) +

∑

b′∈Sib(b)

dΣ(b
′)

⎞
⎠+ (1− γ)dµ(b)

⎤
⎦ ,

where Sib(b) denotes the set of all siblings of b, i.e., the partitions that were reached

from the same action. Similarly to the CEET algorithm presented in Section 3.2.4,

the value of γ ∈ [0..1] balances free and contact space exploration. Small values

favor free space exploration, and large values result in more contact space exploration.

For further details about the inŕuence of the γ-parameter, we refer to the CERRT

planner (Sieverling et al., 2017b).

Action selection (line 3) The planner chooses an action u randomly. The possible

actions are: 1) connect, which moves particles towards the random sample on a straight

line; 2) guarded move, which moves particles toward the random sample and stops

when contact is gained; 3) guarded slide, which moves them in contact along a surface,

maintaining contact until the contact state changes. These actions are identical to the

ones used by CEET (Section 3.2.4) and CERRT planners (Sieverling et al., 2017b).

Simulation (line 4) Similarly to the CEET planner, we compute the resulting belief

state b′ from applying action u in belief bnear by simulating the execution of u for every

particle in bnear with the noisy motion model. We check b′ for joint limits or collisions

with links that do not sense contact in line 5.

Belief state partitioning (line 6) If b′ is valid, we apply the contact sensor model

to find potential partitions of the belief state. For each particle q
′ ∈ b′ we compute

O(q′) = {o0, . . . , ok}. We then cluster the belief b′ into {b′o0 , . . . , b
′
ok
}, such that particles

with the same measurement are in the same belief. The implementation is different

for the two sensor models: We cluster based on the sensor patches in contact for the

tactile sensor model. For the force sensor model, we cluster two particles into different
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beliefs if the difference between their measured normals is larger than 15°. We estimate

the transition probabilities as p(b′oi |b, u) ≈
|Q(b′oi )|

Nparticles

Goal connect (line 9) We add the new beliefs b′oi to the tree and try to connect

them to any belief in Bconnected. To do so, we simulate a noisy connect action towards

every bgoal ∈ Bconnected resulting in a new distribution b′′. We check if b′′ lies within the

goal belief by testing if dM(q) < ϵM = 2 for all q ∈ b′′, where dM (q) is the Mahalanobis

distance between q and bgoal. If this test succeeds, ConCERRT UPDATEs the policy π

with all beliefs on the solution path, Bconnected with all new beliefs that were connected

to the goal. Moreover, it also updates Bopen with all new partitions that are not yet

connected to the goal, as described in Section 4.2.2.

Algorithm 7 T .EXPAND method
Input: Bconnected

Output: T

1: qrand ← RANDOM_CONFIG() sampling a random configuration

2: bnear ← NEAREST_NEIGHBOR(qrand, T ) closest node to sample

3: u ← SELECT_ACTION(qrand, bnear) γ biased action selection

4: b′ ← SIMULATE(qrand, bnear, u) forward propagate all particles in bnear
5: if IS_VALID(b′) then

6: Bcontingencies ← BELIEF_PARTITIONING(b′) identify contact-based deviations

7: for all b′′ ∈ Bcontingencies do

8: T ← T.ADD_BELIEF(b′′)
9: T ← T.GOAL_CONNECT(b′′,Bconnected)

10: return T

The ConCERRT planner can be changed to Contingent Contact Exploring Tree

(ConCET) planner to reduce the exploration space from Cvalid to C̃task ∪ δ̃Ctask similarly

how we changed CERRT into CET in Section 3.2.5. The ConCET planner leverages

both contact events and structural context obtained from ECE-based workspace

decomposition. We include both contingent planners in our evaluations in the next

section.

4.3 Evaluation of Our Contingent Panner

We evaluate ConCERRT and ConCET planners in simulation and one planner in a real-

world experiment to show that a) our planning approach scales up to high-dimensional

problems compared to other belief space motion planners. b) the contingency branches

of ConCERRT and ConCET allow solving problems with significantly higher uncertainty
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Figure 4.5 Left : 2-DOF gripper problem with initial distribution b0 and goal configura-
tion qg. The fingers and their tips on the gripper (blue) can sense contact with the
object (red). Right : 7-DOF problem. The right configuration shows the mean of the
initial belief µb0 . The goal configuration qg is inside the green container next to the
yellow box. The blue rod at the end-effector is a force sensor. One policy computed by
ConCERRT is shown with red lines. ©2018 IEEE

than comparable non-contingent contact-based planners. c) ConCERRT policies are

robust enough to be executed on real-world systems.

We implemented all experiments using the Robotics Library (Rickert and Gaschler,

2017). All experiments were carried out on a desktop computer with an Intel i5 3.5GHz

processor. Table 4.1 gives the values of the planner’s parameters for all experiments.

4.3.1 Our Approach scales to high-dimensional problems

Most belief space planners rely on pre-defined discretization, which lets them fail

in complex environments. We now validate in simulation that our approach scales

to high-dimensional state space with complex contact states. The first experiment

(Figure 4.5 left) modeled a gripper with tactile sensors on the fingers and the fingertips,

similar to the setup in (Koval et al., 2020). The gripper could translate into two

dimensions. Compared to a similar problem from the POMDP literature (Hsiao et al.,

2007), no outer walls limited the workspace, increasing the problem’s difficulty. In the

second experiment (Figure 4.5 right), a Barrett WAM 7-DOF arm had to reach into

a rectangular container and touch a yellow obstacle. To reduce uncertainty, it could

measure the contact normal of the surfaces with a stick-shaped end-effector.
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Param. Description 2D gripper 7D sim robot 7D real robot
t [min] time budget 10 16.66 16.66
γ contact/free-

space bias
0.7 0.9 0.85

N number of par-
ticles

50 40 100

δstep simulation
step size

0.05 0.5 0.5

p(bg) goal bias prob-
ability

0.1 0.1 0.3

σinit initial uncer-
tainty

[σ, σ] 0 [2, 2, 2, 3
, 3, 3, 3]× 10−2

σmotion motion uncer-
tainty

[σ, σ] [σ, σ, σ, σ, σ, σ, 0] [1, 1, 1, 2,
2, 2, 0]× 10−2

ϵd dist. thresh-
old to goal

0.2 0.03 0.035

Table 4.1 ConCERRT planning parameters during experimental evaluation. ©2018
IEEE

The results for the second problem (Figure 4.7) prove that ConCERRT and ConCET

were efficient enough to compute policies directly in a 7-dimensional configuration

space. The planners found policies under significant motion uncertainty that slid

along the walls of the container to localize the yellow box. We do not show results for

uncertainties σ > 0.4 because the simulation of the sliding action became unreliable for

extremely high motion uncertainties. Without a fixed discretization, this problem is

not solvable for POMDP-based motion planners (Hsiao et al., 2007; Koval et al., 2016)

which become intractable under the more significant number of DOF and complex

contact manifolds. ConCERRT and ConCET also handled a significant amount of

motion uncertainty. This relaxes the assumptions of related approaches (Koval et al.,

2020), which require the inverse kinematics of the robot and fully observable joint

states. Thus, we can solve a larger set of problems. Our approach also relaxes the

assumptions of Particle-RRT motion planners (Phillips-Grafflin and Berenson, 2020)

as it does not require reversible actions and fully observable joint states.

4.3.2 Contingent planning increases robustness

Contingency plans capture many possible execution states and find appropriate reac-

tions. Therefore, they should be more robust than plans without contingencies. To
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Figure 4.6 Success rate of ConCET, ConCERRT, CEET, CERRT, and RRTCon on
the 2-DOF gripper problem as a function of the position uncertainty. ConCET always
finds a solution, and ConCERRT still finds solutions for σ > 0.3 where the conformant
planners start failing.

validate this, we ran the ConCERRT and ConCET planners on the simulation scenarios

(see Section 4.3.1), varying the amount of uncertainty.

We compared our planners against three baselines. The first baseline was an

uncertainty-unaware RRT-Connect with goal bias (RRTCon) (Kuffner and LaValle,

2000). The second baseline was the conformant CERRT planner (Sieverling et al.,

2017b), and the third was the non-contingent CEET planner from Section 3.2. To

compare contingent and non-contingent planners, we had to define a suitable scoring

function considering both the planning time and the plan’s quality. Therefore, we

computed the score as Psuccess = P (π) · Nsucc(t)
N

, where P (π) was the success probability

of the policy (equal to 1 for CERRT and CEET) and Nsucc(t)
N

was the ratio of found

solutions. We ran 30 experiments per setup for the 2-DOF and ten for the 7-DOF

problems.

In Figure 4.6, we show results for the 2-DOF problem. The RRT Connect always

returned a trajectory that failed even with little uncertainty (Nsucc = 0 for σ ≥ 0.05).

The solution quality of the CERRT planner dropped to 0% while ConCERRT solutions’

quality stayed over 50%, even for the highest uncertainty. CEET was comparably

as good as ConCERRT until uncertainty reached the maximum value making CEET

perform more than twice worse than ConCERRT. However, the ConCET planner

outperformed all baselines and ConCERRT because it anticipated deviations and
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Figure 4.7 Success rate comparison of ConCET, ConCERRT, CEET, and CERRT for
a 7-DOF manipulator with force sensing. Our contingent planners can handle up to
ten times more uncertainty than conformant planners.

planned contingencies, but it explored only task-relevant regions of the configuration

space.

The result in Figure 4.7 shows that ConCET and ConCERRT substantially outper-

formed the baselines CERRT and CEET in terms of robustness to uncertainty if the

dimensionality increases.

In Figure 4.8, we show how the solution quality improves over planning time for

the 7-DOF problem with different uncertainty values for the ConCERRT planner.

Interestingly, low uncertainties did not necessarily lead to lower computation times

for ConCERRT. We believe this is due to the planner committing to suboptimal

contingencies too early, i.e., choosing a contingent plan when a conformant strategy

would be possible, which leads to one failed plan for σ = 0.01 and one for 0.5. The

planner found policies that succeed in 50% of the runs in under one minute. The

policies improved as time went on, approaching 100%. This shows the anytime property

of ConCERRT.

4.3.3 Real robot experiment

To validate the policies generated by ConCERRT in a real-world application, we applied

one policy on a 7-DOF Barrett WAM robot arm with the RBO Hand 2 (Deimel and

Brock, 2016) as an end-effector. The experiment was inspired by the problem in Koval
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Figure 4.8 The success probability for different ConCERRT policies with increased
computation time. The solution quality of the policy increases over time until all
possible contact events are covered.

et al. (Koval et al., 2016), where a robot arm with a contact-sensing hand localized

an object on a table surface. Similarly, our task was to sequence contact motions

that reduce uncertainty enough such that the hand stops centered in front of the box.

Figure 4.1 shows the experimental setup. The fingers of a soft hand deform when they

come into contact with the environment, resulting in a measurable pressure change.

We used large changes in pressure as a proxy for contact sensing. We only used the

partially inŕated index and little fingers as contact sensors. To find a policy, we ran

the ConCERRT planner but excluded the slide action from planning as reliable sliding

is hard to implement with a soft manipulator.

ConCERRT consistently found feasible policies in 16.66 minutes. One computed

policy π with P (π) = 1.0 is shown with an exemplary execution of it with two different

box displacements in Figure 4.9 and in this video1. The policy executes multiple

motions in front of the box, expecting no contact. However, the policy also contains

contingencies for the contact case. The most likely path through the policy makes

four of these free space motions and then executes a guarded move to ensure the final

contact. To evaluate the robustness of the policy, we moved the box 0, 2, 4, and 6 cm

to the left and right relative to the hand’s initial position. We executed the policy four

times for each displacement while keeping the initial hand position constant.

1https://youtu.be/NaRppcg0CtQ

https://youtu.be/NaRppcg0CtQ
https://youtu.be/NaRppcg0CtQ
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Figure 4.9 Top: The ConCERRT policy is executed on the real robot. Circles are belief
states with contact state {I} (index finger), {L} (little finger), {I, L} (both fingers), or
{} (no contact). The edges with the respective probabilities are actions that move the
robot to the goal state bg. The edge coloring shows the path taken by the robot shown
below the policy. Bottom rows : Snapshots of two executions of the same policy found
by the ConCERRT planner. First row of images with blue arrows : Box displaced +2
cmÐthe index finger makes contact first. Second row with red arrows : Box displaced
−4 cmÐthe little finger makes contact first. ©2018 IEEE

For the given uncertainty model, CERRT could not find a conformant solution.

Thus we compared the execution to an uncertainty-unaware planner such as RRT-

Connect (RRT). Here we assumed that the robot executes the RRT trajectory perfectly
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Figure 4.10 Relative position of hand and object after executing the policy shown in
Figure 4.9 for different object displacements. The real robot can localize the box until
up to 4 [cm] position uncertainty. ©2018 IEEE

but is unaware of the moving box. Thus the position error of the RRT is equal to

the position of the box relative to the hand. The results in Figure 4.10 show that the

selected ConCERRT policy was robust up to 4 cm uncertainty, and it could handle

6 cm to the right but started to fail when the box was moved further to the left.

Contact sensing via pressure sensors is not fully reliable. A wrong contact event

was triggered in six out of the 28 runs. In one case, this failure could be detected

automatically as the contact observation was not part of the policy. In another case,

a wrongly detected contact triggered a false reaction, resulting in a high error in the

final hand position (at +4 cm), while the other five cases were within the 3.5 cm error

bound. One could mitigate these failures by equipping the soft fingers with tactile

sensors (Wall and Brock, 2019, 2022).

4.4 Related Uncertainty Handling Approaches

We integrated contact information into planning to increase execution robustness.

Hence, we present planning approaches on the spectrum of how much sensory informa-

tion is integrated into a motion plan. Too little sensory information can not augment
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inaccurate perception and actuation, but too much information can hinder planning

efficiency. We need to carefully select the amount and type of information to balance

computational tractability with execution robustness.

4.4.1 Sampling-Based Motion Planning

Sampling-Based approaches generate a collision-free path from a geometric model

of the environment and robot kinematics by assuming that the world model and

execution are perfect. Elbanhawi and Simic (2014) reviewed the classical sampling-based

motion planning methods, which methods can efficiently search the high-dimensional

configuration space. Such methods usually do not incorporate contact information into

the plan or reason about uncertainty, but some replan from scratch or discard portions

of the explored space where execution failed. We share the authors’ view that planning

under uncertainty and in changing environments "represents a next step in robotic

research." For that, we need to integrate information accessible during execution into

planning.

4.4.2 Conformant Planning

A conformant motion planner generates a fixed sequence of robust actions where the

actions are guaranteed to lead to a goal, even under significant uncertainty. Information

that is accessible during execution is integrated into the plan to transition between

actions. The transitioning events can be proprioception, the duration of motion, or any

other sensor events. A classical way is to compute all regions from which compliant

actions lead to a goal, so-called pre-images (Lozano-Pérez et al., 1984), and then chain

them to a sequence of actions. This approach can bring objects with unknown positions

into the desired state without any sensing (Erdmann and Mason, 1988; Goldberg, 1993).

In sampling-based frameworks, information types ranging from artificial information-

regions to rangefinders and cameras images were used (Bry and Roy, 2011; Platt Jr

et al., 2010; Van Den Berg et al., 2011), respectively, to estimate the relative position

of a robot from obstacles and transition between actions. The combined configuration

in contact and free space using particle-based representation (Phillips-Grafflin and

Berenson, 2020; Sieverling et al., 2017b; Guan et al., 2018; Wirnshofer et al., 2018)

enabled planning with contact events, as we also have shown in the previous chapter

with CEET and CET planners.

Conformant planning needs robust actions leading to one unique goal state, and

finding such actions is challenging under large uncertainty. To overcome this issue,
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we integrated even more information to react appropriately to actions with multiple

outcomes.

4.4.3 Contingent Planning

Pryor and Collins (1996) generated reactive behavior by implementing a decision tree

or graph that branches based on observations. Integrating more information into the

resulting motion plan becomes a policy that maps observations to actions. Contingent

planners generally can solve a broader class of problems than conformant planners, for

instance, part orientation for arbitrary shapes and realistic friction models (Amagai

and Takase, 2001; Zhou et al., 2017) using visual or contact observation. One way to

add contingencies to a motion plan is to reverse and retry motions that do not lead to

the desired outcome (Phillips-Grafflin and Berenson, 2020). We tackled non-reversible

actions by incrementally constructing a policy. We repeatedly invoked a conformant

planner and reconnected outcomes to previously found solutions.

4.4.4 Optimal Planning Under Uncertainty

POMDP solvers are a generic approach to compute globally optimal contingency plans.

The solution is a policy that maps from a belief space to actions, and this approach

can integrate the most information into the plan. Point-based POMDP solvers can

approximate optimal solutions (Kurniawati et al., 2008) for low-dimensional, discrete

state-, action-, and observation-spaces. For continuous state space problems (e.g.,

manipulation and grasping), some methods discretized the lower-dimensional manifold

of configurations in contact (Hsiao et al., 2007; Koval et al., 2016, 2020) to use contact

as feedback. However, these approaches scale badly in high-dimensional spaces, and

the discretization limits the approach to problems with few possible contacts. There

exist solvers for continuous state space (Bai et al., 2010) based on sampling and

Monte Carlo simulation, for continuous action space (Seiler et al., 2015) relying on

numerical optimization, and continuous state-action space by combining sampling and

optimization-based techniques (Vien and Toussaint, 2015). However, these approaches

can not easily be applied to high-dimensional configuration space or with increased

contact manifolds.

Sensory information should be integrated into motion planning to handle increased

amounts of uncertainty. However, one should carefully balance the amount and quality

of the information to keep the problem computationally tractable and the solution

robust under uncertainty.
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4.5 Conclusion and Further Considerations

This chapter aimed to handle large amounts of uncertainty during motion planning

by integrating contact-based sensing into planning. We leveraged contact-exploiting

actions to reduce state uncertainty mechanically and contact sensing to distinguish

between the possible outcomes of a noisy motion. Since reasoning about contact sensing

increases the computational complexity of a motion planning problem, we assumed that

contact sensing is fully observable. Moreover, we increased the goal region with each

partial solution making planning easier for unsolved deviations detected via contact

sensing. We evaluated our ConCERRT and ConCET motion planners in simulation

and showed the former’s application for tactile object localization. We achieved our

goal by integrating contact events as sensor measurements into motion planning to

solve problems with increased uncertainty.

Since this is the last chapter of Part I, we summarize this part’s contributions

before discussing the limitations of the ConCERRT motion planner. The goal of Part I

was to apply environmental constraint exploitation in motion planning under uncer-

tainty. Environmental constraint exploitation provides numerous benefits discussed

in Section 1.2. This part showed that ECs structure the workspace into task-relevant

manipulation funnels that guide configuration space exploration. Moreover, it showed

that contact events associated with ECs reduce uncertainty efficiently. Hence, we

successfully applied 1) manipulation funnels to reduce uncertainty mechanically, 2)

contact-event-based uncertainty reduction by generating reactive motion behaviors,

and 3) leveraged the structural context of the environment to identify task-relevant

manipulation funnels. Consequently, motion planning under uncertainty became com-

putationally scalable to high-dimensional configuration spaces, large workspaces, and

increased uncertainty. In Part II, we will show that movable objects in a pile offer

similar ECE benefits (and more) as the geometrical features of a static environment.

4.5.1 Limitations of the ConCERRT planner

One limitation of the ConCERRT and ConCET planners concerns our assumption

about contact sensing. We assumed contact sensing is fully observable, which might

seem to be a strong assumption. However, we have shown with a real robot experiment

that a robot can localize an object using pressure differences in a soft hand when it

deforms by appropriately thresholding pressure measurements. Therefore, we had to

couple planning and sensing to uphold our assumption. This implication for ECE-based

manipulation is discussed in more detail in Chapter 7.
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Another limitation is that our planners assumed a static environment without

reasoning about movable objects. While handling movable objects is not implemented,

in principle, our planners could model the noisy motion of movable objects. However,

as we point out in Chapter 3, if the number of movable objects is large, reasoning about

all objects’ motion increases the problem’s computational complexity enormously. We

overcome this challenge in a particular grasping problem in the next chapter by using a

new EC that allows abstracting away details of individual interactions between objects

in a pile.

Similarly to the CEET planner (Section 3.2), the ConCERRT and ConCET motion

planners do not minimize the overall path length of the solution. Wirnshofer et al.

(2018) have shown that asymptotically optimal planning is feasible for similar problems.

Alternatively, a sub-optimal motion plan can be post-processed with an optimizer that

reasons about contact as well (Posa et al., 2014; Toussaint et al., 2014; Posa et al.,

2016; Toussaint et al., 2022).

Finally, the ConCERRT planner integrated only sensing-based contact information,

which increased the computational complexity of the planning problem. We reduced the

computational complexity by assuming fully observable contact sensing and by reusing

solved contingencies as goal regions. However, one could increase planning efficiency

by integrating workspace information about task-relevant free and contact regions. We

showed with the ConCET planner that limiting the configuration space exploration

increases planning efficiency, and we think that leveraging the structural context

provided by workspace decomposition would further improve planning efficiency.



Part II

Grasping With a New Environmental

Constraint

"Everything should be made as simple as possible, but not simpler."

Albert Einstein
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Motivation

Humans effortlessly grasp a single object on a tabletop or from a pile of objects in a

box. They can reach into a box and grasp a single piece of popcorn without looking

while watching a movie. As opposed to humans, robots grasp objects seemingly in

a more complicated way. Robots look at a scene to choose an object for grasping,

approach and position their fingertips accurately, and close their fingers to grasp the

chosen object. Why can humans grasp effortlessly? What do humans use to simplify

the grasping process? Can we simplify robotic grasping using insights from human

grasping? This part of the thesis proposes answers to these questions by studying

human-like grasping from piles of objects.

In terms of human grasping, Deimel et al. (2016) have shown that the environment

plays a key role in single object grasping, and they have called such use of the

environment environmental constraint exploitation. When a hand applies forces on an

object and the environment, the environment provides additional forces constraining

the hand’s and the object’s motion. Humans use such constraining forces to simplify

grasping because these forces help to slide, pivot, ŕip, or stabilize an object for grasping.

Researchers have shown that robots can use static and ŕat surfaces as environmental

constraints to simplify a variety of manipulation tasks (Odhner et al., 2013; Daŕe et al.,

2014; Eppner and Brock, 2015).

We study complex interactions between a hand and movable objects to identify a

new environmental constraint. We use the gained insights to efficiently handle uncer-

tainties caused by inaccuracies in perception, actuation, modeling the environment,

and modeling interaction physics when grasping from piles of nearly identical objects.

Contributions

The contributions of the second part are the following:

• We discover and characterize a new environmental constraint and its effect on

grasping from piles of objects.

• We describe an empirical procedure to identify and characterize environmental

constraints using a real robot and simulated experiments.

• We instantiate the novel environmental constraint with a simple grasping strategy

using open-loop controllers without detecting individual objects in a pile.

• We devise a planning method to synthesize grasp strategies leveraging the novel

environmental constraint in combination with other environmental constraints.
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Outline

This part analyses the implications of environmental constraint exploitation in robotic

grasping from piles of nearly identical objects. We explain the gained insights from

our empirical study and build on these in Part III.

Chapter 5 presents classical grasping approaches. With the form- and force-closure

approaches, we point out the classical assumptions about the considered point contact

information and the computation needed to devise a grasp strategy to illustrate what

aspects of computation are simplified when using a new environmental constraint.

Chapter 6 analyzes the implications of environmental constraint exploitation on

a specific grasping problem. Section 6.1 empirically studies a new environmental

constraint emerging in the dynamics of piles of nearly identical objects and characterizes

the conditions for simple open-loop grasping. Our grasping strategy is robust even

without reasoning about individual contact points between objects or individual objects’

motion. Section 6.2 shows how the novel environmental constraint can be used to

simplify perception, control, and grasp planning by abstracting away details of the

interaction physics of pile dynamics. Finally, Section 6.4 discusses the benefits and

limitations of the proposed grasping strategy and future research direction.
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Background on Classical Grasping

This chapter presents two classical approaches to synthesizing grasp strategies: the

form and force closure approaches rely on analytical interaction models to compute

a desired grasp strategy, and these are the most used approaches for grasping. The

content of this chapter is unique to this thesis and is based on the robotics textbook

by Lynch and Park (2017) that offers a more thorough introduction.

Since our goal is to use the environment to simplify robotic grasping and reduce

uncertainties, the following introduction focuses on the accuracy requirements formu-

lated as assumptions and the computation needed for classical grasping. We conclude

this chapter with a discussion about these assumptions’ realism and the associated

limitations of the presented approaches.

5.1 Contact Kinematics

Classical grasping approaches analyze how contacts between a robot’s fingers and

a movable object constrain the object’s motion. Therefore, we define two types of

constraints imposed by a single contact between two objects: the active- and the

impenetrability-constraint. For that, we assume to know the contact point, the contact

normal, and that two objects remain in contact if the contact point’s velocity is

constant.

First, we define the active constraint, ensuring that the two objects in contact also

maintain contact when they start moving:

n̂
T(ṗA − ṗB) = 0,

where n̂ ∈ R
3 is a unit vector aligned with the contact normal expressed in a world

fame, pA ∈ R
3 is a contact point on an object A and pB ∈ R

3 is on B, and the
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associated contact point velocities are ṗA and ṗB. Even though the contact points pA

and pB are identical, the associated velocities ṗA and ṗB can be different because the

two objects can move in a different direction.

Secondly, we define the impenetrability constraint, ensuring that two objects do

not pass through each other when they move into or in contact. For this definition, we

choose that the contact normal points into A:

n̂
T(ṗA − ṗB) ≥ 0.

The active and impenetrability constraints can be expressed in terms of twists

V = (w, v), where ṗ = v+w×p = v+ [w]p, and a wrench F = (p× n̂, n̂) = ([p]n̂, n̂):

FT(VA − VB) = 0 and (5.1)

FT(VA − VB) ≥ 0, (5.2)

respectively. When object B is fixed, both conditions’ left side simplifies to FTVA.

After this simplification, the two objects repel each other when FTVA > 0, and they

are in an active constraint when FTVA = 0.

When two objects A and B are in contact satisfying the active constraint condition

(Equation 5.1), then A and B are in a roll-slide contact. To differentiate between a roll

or slide contact, we analyze the relative motion at the contact point. The two objects

are in roll contact if there is no relative motion at the contact point:

ṗA = vA + [wA]pA = vB + [wB]pB = ṗB. (5.3)

Note that this definition considers only rolling and sliding contact. Moreover, rolling

contact includes sticking contact because there is no relative motion at the contact

point nor relative rotation in a sticking contact. From the definitions, it follows that

two objects are in sliding contact if Equation (5.1) is satisfied but Equations(5.3) is

not satisfied.

A stable grasp requires more than one contact point. So, we extend the analysis

from single to multiple contacts. Consider that an object A is in contact with m

other objects at n contact points, where m ≤ n. We number the other objects with

j = 1, ...,m, the contact points with i = 1, ..., n, and we refer to a specific contact

between object A and j at contact i as j(i). Each contact i creates a constraint on VA
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limiting the six-dimensional twists to a half-space that can be expressed as:

FTVA = FTVj(i).

We compute the feasible twist V in the VA space:

V = {VA|F
T
i (VA − Vj(i)) ≥ 0 for all i},

where Fi is the ith contact normal pointing into object A as chosen previously and

Vj(i) is the twist of the other object at the same contact i.

Let us consider all contact i stationary and denote the respective constraint wrench

Fi. Then the feasible twist cone V is

V = {VA|F
T
i VA ≥ 0 for all i}. (5.4)

If the constraint wrench Fi positively spans the six-dimensional wrench space, then

the stationary contacts immobilize object A entirely, and we have form closure. Next,

we discuss in more detail from closure.

5.2 Form Closure

n̂1

n̂2

n̂3

n̂4

Figure 5.1 Form closure grasp ex-
ample of a square (gray) with four
robot fingertips (blue) and associ-
ated contact normals n̂i=1,...,4 (red
arrows).

Form closure analyzes how rigid objects can move

relative to each other while respecting the impen-

etrability constraint Equation (5.2). The analysis

is based exclusively on contact normals and geo-

metric properties of the object. A movable object

is in force closure if it is fully immobilized by con-

tacts provided by a set of stationary objects, as

illustrated in Figure 5.1.

A stationary contact i provides a half-space

twist constraint as presented in Equation (5.4):

FT
i V ≥ 0.

To achieve form closure for a spacial object, we

need 6 + 1 = 7 contacts, and for planar objects,

we need 3+ 1 = 4 contacts. Moreover, to compute
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a form closure, we need to know the exact geometry of the object and find a set of

contact points that constrain all possible external wrenches. We can randomly choose

a set of contact points and then solve a linear programming test. For this test, we

define the matrix F :

F = [F1 F2 · · · Fj] ∈ R
n×j, (5.5)

where the columns are the j contact wrenches, n = 6 for three dimensional bodies or

n = 3 for planar bodies, and a contact wrench is Fi = [miz fix fiy]
T.

We evaluate a set of contact points, represented with F , using a weighting vector

k ∈ R
j . Form closure is achieved with a given set of stationary contacts if there exists

a weight vector k such that

Fk+ Fexternal = 0 for all Fexternal ∈ R
n. (5.6)

We determine form closure in two steps:

1. compute the rank of F , if rank(F ) = n, n = 3 for planar problems and n = 6 for

spacial problems, then

2. find a strictly positive k with coefficients ki > 0, i = 1, ..., j that satisfies:

argmin
k

(1Tk) such that Fk = 0, (5.7)

where 1 is a vector of ones of size j, and it is used to make the problem well-posed

for some linear program solvers, but it is not required to determine form closure. An

object is in form closure if both steps succeed. If any of the two steps fail, the object

is not in form closure.

In conclusion, a form closure grasp requires a set of contact points provided by

a robot’s fingers on a movable object such that the object is fully immobilized. The

analysis considers only contact points and normals and assumes that the object’s exact

geometry is known. The next section also considers friction forces, which allows fewer

contact points to achieve force closure.
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µα
n̂

f1

f2

f ′1

f ′2

(a) two point contacts with friction

r1 r2

f3

f4f1

µ
f2

n̂

(b) two soft contacts with friction

Figure 5.2 Left: a force closure grasp example of a square (gray) contacted by two
fingertips (blue). At the left fingertip, we visualize the friction cone with two edges f1
and f2 (orange arrows) for the point contact with contact normal n̂ (red arrow). The
two edges are computed using the Coulomb friction model and α = tan−1µ, where µ is
the friction coefficient. Right: two soft contacts on a box. The bottom contact patch
is approximated as a contact point, and the friction cone, pointing into the box, is
approximated with a four-sided polyhedral cone with edges fi=1,...,4. The soft contact
on the top illustrates that the contact path can resist rotations in both directions r1
and r2 around the contact normal due to torsional friction.

5.3 Force Closure

The difference between form and force closure is that the latter approach considers

friction forces at a contact point. We model frictional contact with the Coulomb

friction model ft ≤ fn · µ, where the magnitude of the tangential friction force ft is

proportional to the normal force fn multiplied by the friction coefficient µ.

Since friction forces are tangential to the contact normal, a contact can provide

forces along the plane defined by the contact normal. The forces that can be applied

along this plane lie inside a friction cone. The friction cone is characterized by the

friction angle α = tan−1µ. For planar problems, the friction cone is the positive span of

the two edges of the cone, as shown on the left in Figure 5.2. The force cone is usually

approximated for spacial problems to allow linear formulations of contact mechanics.

The approximated cone is discretized into a polyhedral convex cone as illustrated on

the bottom right in Figure 5.2.

A friction force f can be expressed as a wrench F = ([p]f, f) by choosing a reference

frame and then transforming it into a wrench cone. Each edge of the wrench cone

provides a wrench Fi, where i = 1, 2 for planar problems and i ≥ 3 for spacial problems.
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A movable object is in force closure if the wrenches provided by all wrench cones of

stationary contacts can balance any external wrench Fexternal.

Similarly to form closure, we use linear programming to determine if an object is

in force closure. For planar problems, the linear programming test provides an exact

binary output. However, for spacial problems, it is only an approximation because the

friction con is approximated, so the associated wrench cone is also approximated.

We denote the wrenches corresponding to the edges of the friction cones for all

the contacts with Fi, where i = 1, ..., j. Then, we compose the F matrix using

Equation (5.5) and follow the same steps defined for form closure. First, we verify

that rank(F ) = n, n = 3 for planar problems, and n = 6 for spacial problems. Second,

we evaluate the condition in Equation (5.7) with linear programming. An object is

in force closure if both steps succeed. If the matrix rank is less than n or there is no

solution to the linear program, the object is not in force closure.

In conclusion, a force closure grasp requires fewer contact points than form closure

to restrict an object’s motion against an external force by using friction forces and

balancing the contact forces. Similarly to form closure, we assume to know the

exact geometrical model of the object. However, we also assume to know the friction

properties of the object and a robot’s fingers.

It is important to note that we can approximate the effect of friction without

explicitly modeling the associated forces, and consequently, we can analyze a grasp

kinematically. We can consider the following three approximations:

• a frictionless point contact considers only the roll-slide contact and enforces

only the impenetrability constraint with Equation (5.2),

• a point contact with friction differentiates between a roll and slide contact

and enforces Equation (5.2) and (5.3),

• a soft contact extends the point contact with friction by considering an addi-

tional constraint at the contact. The additional constraint forbids spin between

the two objects at the contact because a soft contact creates a contact patch that

provides torsional friction, as illustrated in Figure 5.2. With planar problems, a

point contact with friction and a soft contact is identical because rotation is not

allowed around a contact normal but orthogonal to the plane.
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5.4 Point Contact Approximation Leads to Inefficient

Computation

This section discusses the realism of the assumptions of form and force closure analyses

because we need realistic assumptions to handle uncertainty. Moreover, we discuss the

computational requirements to compute a stable grasp with the mentioned methods

because we want to simplify grasping with environmental constraint exploitation.

The point-contact assumption is a computationally inefficient approximation of

complex interactions for robotic manipulation, and ignoring the environment is a

missed opportunity to simplify the manipulation problem.

Both form and force closure assume point contacts, which might seem to be a very

strong assumption because it is rarely the case in real life. However, a set of point

contacts can model a line contact or even a contact patch. A line contact can be

represented with two contact points at the end of the line segment, and a contact

patch can be represented with a set of points at the vertexes of the patch’s convex

hull. This simplification allows analyzing the robustness of a grasp with the mentioned

approaches. Even though we can simplify a line and a patch contact to a set of point

contacts, a stable grasp requires significant computation because we need to search

for appropriate contact points on an object’s surface that has an infinite number of

possible points.

With form closure, the frictionless contact assumption is a reasonable simplification.

However, the form closure’s requirement to entirely restrict an object’s motion is too

strong because it is only needed for a narrow set of applications. If we look at human

grasping, humans only partially restrain an object because they can anticipate possible

external forces that a grasp has to resist. The soft finger pulps always allow some

object motion. While some research exists in the context of compliant contact with

form closure analysis (Howard and Kumar, 1996; Lin et al., 1997; Ciocarlie and Allen,

2009), it is not applied in real robot experiments, which makes it difficult to assess its

realism.

Force closure-based approaches are more popular than form closure because fewer

contacts can already stabilize a grasped object, but we need to know the object’s

friction properties to find good contact points. Similar to form closure, we also need

accurate knowledge about the object’s geometry. Having accurate information about

all objects that humans grasp daily is difficult. Therefore, this assumption is too

strong and a potential source of inaccuracies. When we lack this information, we can
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use visual perception to identify an object’s shape and reason about other physical

properties. Nevertheless, it is unreasonable to assume that we can perfectly assess the

frictional properties of an object from visual perception.

While the mentioned assumptions require unreasonable knowledge or visual per-

ception accuracy, execution also assumes accurate positioning of a robot’s fingertips.

However, the robot’s motion likewise suffers from inaccuracies that can lead to grasping

failure. Even if we fulfill model and motion accuracy requirements, both form and

force closure approaches require an enormous amount of computation.

In the context of grasping, re-grasping, and in-hand-manipulation, Chavan-Daŕe

(2020) showed in his thesis that planning with classical frictional point contacts is

10-1000 slower than reasoning about motion cones. He introduced motion cones to

represent a set of instantaneous object velocities using frictional interactions and

abstracting away the interaction dynamics between an object and the pusher. The

manipulation strategy’s computation was quicker using motion cones, but it required a

lower bound estimate of friction coefficients. However, Chavan-Daŕe has proved that if

the environment is appropriately used, the motion cone approach is invariant to the

friction coefficient, the object mass, and the grasping force, and so, it became invariant

to associated modeling inaccuracies. This is one of the multiple beneficial effects of

environmental constraint exploitation, and we will discuss further benefits in the next

chapter.
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Piles Provide Granular Environmental

Constraints for Grasping

This chapter analyzes the implications of ECE on a grasping problem and shows that

a new EC offers the same benefits as presented in Section 1.2. The main difference to

Part I is that the novel ganular EC manifests in piles of movable objects and enables

robust grasping. Now, the task is to grasp an object from a pile of nearly identical

objects, sometimes next to static vertical walls. We assume that state uncertainty

results from error accumulation from different sources such as inaccurate perception,

actuation, model of the environment, or model of physics. The new granular EC

eliminates uncertainty and also simplifies perception, control, and planning. To some

extent, the content of this chapter has been published in (Páll and Brock, 2021) ©

2021 IEEE. I was the first author of that paper and the main contributor to the writing.

I conducted the empirical study and the experiments. The second author gave scientific

advice and helped with the writing.

Classically, grasping problems are solved by visually detecting individual objects,

computing contact points on objects for stable grasping, and choosing an object based

on contact points that promise robust grasping. Then the robot approaches the

object and touches it at the computed contact points without disturbing the pile.

Alternatively, a robot can separate objects from the pile to reduce the problem of

grasping an individual object.

In contrast, we devised a robust grasping strategy without detecting individual

objects in a pile, computing contact points, or carefully applying forces on an object.

The surprising success of our simple grasping strategy was due to a new environmental

constraint, or EC. We discovered the novel EC emerging from the complex interaction
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control

robot

objects environment

behavior

Figure 6.1 The same control signal sent to a robot generates different motions (orange
lines) for different starting conditions. However, the manipulation behavior is robust
because uncertainty is reduced, just like a physical funnel reduces uncertainty. The
manipulation behavior emerges from the interaction between a robot, objects, and
the environment. So control, a robot’s embodiment, and the environment can reduce
uncertainty.

between a robot and a pile of objects, and its exploitation simplified perception, control,

and planning.

The first core idea is to generate robust manipulation behaviors from the interaction

of three actors: a robot, objects, and the environment, as illustrated in Figure 6.1. An

ECE-based grasping behavior is robust against uncertainties because the environment

provides manipulation funnels (Mason, 1985), reducing uncertainty mechanically. Un-

certainty is reduced mechanically because an object’s (or hand’s) state is constrained

physically by the environment.

We show that complex interactions between movable objects in a pile reduce the

position uncertainty of an object relative to the hand when scooping objects from a pile.

Hence, pile dynamics provide a manipulation funnel similar to manipulation funnels

emerging from the interaction between an object and static parts of an environment

(e.g., horizontal or vertical ŕat surfaces). Since we leveraged the geometrical properties

of a static environment, we will refer to this type of EC as geometrical EC in the

coming parts of the thesis to differentiate it from the granular EC. Until now, we have

only considered and leveraged geometrical ECs.

The second core idea is that some effects of ECE on a grasping process are easily

predictable, and others are easily observable. For example, mechanical uncertainty

reduction is predictable for geometrical ECs since such constraints restrict an object’s

configuration to a lower dimensional manifold (e.g., plane, edge, or point), and con-

tacting different surfaces is detectable by observing the perceived contact normals. An
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appropriate division between predicting and sensing interaction outcomes simplifies

the grasping process. While debating the role and importance of sensing in robotics,

Mason (1993) formulated this observation citing Brooks (1991) famous quotes:

"Let the world be its own model." This homily contains a kernel of

truth: "Do not compute that which can be sensed more economically."

However, the opposite is equally true: "Do not sense that which can

be predicted more economically."

Since an individual object’s motion in a pile is difficult to predict due to complex

multi-body dynamics, we studied the novel environmental constraint empirically. We

analyzed the emergence of a high-level motion pattern in pile dynamics and the

conditions for which the high-level pattern consistently manifests. Based on our

findings, we instantiated a simple open-loop grasping strategy that could robustly

grasp round objects from a pile without visually detecting individual objects. Finally,

we derived realistic assumptions based on our study and devised a grasp planner that

can sequence ECs, including the novel environmental constraint.

6.1 An Empirical Study of Granular Environmental

Constraint Exploitation

Figure 6.2 Granular environmental con-
straint exploitation with a soft hand
from a pile of tennis balls beside a wall.
© 2021 IEEE

This section characterizes a new environmen-

tal constraint and shows how its predictable

manipulation behavior and observable manip-

ulation outcomes simplify perception and con-

trol while achieving robust grasping. The

novel EC emerges from complex interactions

of movable objects in a pile, and we devise a

grasping strategy to leverage it. We use the

outcomes of the following empirical study to

simplify the associated grasp planning prob-

lem and devise a grasp planner.

We observed the novel EC in piles of nearly

identical objects. When a hand on a tabletop

slid into a pile, as shown in Figure 6.2, objects

in front of the hand stabilized, i.e., moved together with the hand, while other objects

expanded radially. Based on this observation, we devised a simple grasping strategy.
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Surprisingly, the robot achieved a 100% success rate when grasping from piles of tennis

balls using open-loop controllers without any visual or tactile perception. The success

of this simple strategy can only be explained by the existence of an EC and it provides

a plausible explanation for why humans grasp effortlessly from piles of objects, like

grasping popcorn or nuts from a container.

To characterize the manipulation funnel provided by the novel EC, we propose a

physics-based explanation for why objects stabilize in front of a hand when grasping

with our strategy. We consider piles of solid objects to be a granular material (Duran,

2012). Granular materials have two important properties: penetration resistance (Stone

et al., 2004) and radial force chains (Tordesillas et al., 2014). We describe and leverage

these properties in our explanation. Even though we can provide an explanation using

the physics of granular material, it is difficult to model pile dynamics accurately. Small

changes in applied forces on an object produce very different object motions. However,

high-level force patterns consistently manifest, and we have named this a granular

environmental constraint.

We show that granular EC exploitation replaces the control of objects’ stability.

Objects stabilize in front of the hand due to force patterns in the pile dynamics. When

the stabilization force is large enough, one or multiple objects roll on the hand. In

the presence of a strong stabilization force, a robot can grasp from a pile without

visual or tactile perception and using simple open-loop control. Next, we explain

why stabilization occurs, and later, we characterize the condition under which the

stabilization forces support grasping with real-world and simulated experiments.

6.1.1 Effects of Granular Environmental Constraint Exploita-

tion on Grasping

To show that pile dynamics provides a manipulation funnel, we follow abduction

reasoning:

1. We describe an observed interaction regularity in pile dynamics when a hand

pushes into a pile.

2. We propose a possible explanation for this pattern. Based on our explanation,

we propose multiple testable hypotheses to show the existence of the granular

EC and characterize the conditions for robust grasping with this EC.

3. We validate our hypotheses with real-world and simulated experiments.
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a) sketch of force patterns

b) force patterns in simulation
Figure 6.3 All images show an interaction pattern in piles when pushed by an end-
effector. Top row: the four sketches illustrate the object stabilization and rolling into
a hand with red funnels. The red arrows show that objects inside the funnel move
with the hand. The blue arrows depict the radial spread of the other objects outside
the funnel. The green arrows show the contact normals on static walls in the direction
of pushing. For large enough piles or piles supported by walls, interaction forces roll
an object on the hand, and the pile expands less. Bottom row: we show a vector
field depicting the interaction forces averaged throughout multiple simulations. We
manually colored some of the arrows indicating similar patterns to the respective sketch.
Even though the interactions are complex, a similar pattern to that depicted in the
sketches can also be observed in the simulation.

Observed Patterns in Piles

Granular EC results from the interaction between a pusher, objects in a pile, and the

environment. The interaction of these three actors creates a high-level force pattern.

In the following, we present the observed high-level force pattern, explain the observed

pattern using two properties of granular materials to derive testable hypotheses, and

define an open-loop grasp strategy to analyze the granular EC empirically.

We observed an interaction regularity when a hand on a tabletop slides into a pile.

Some objects in front of the hand were stabilized, i.e., moved together with the hand,

while the other objects spread radially. With larger piles, one or multiple objects rolled

into the hand, depending on the hand width and object size. With smaller piles, an

object rolled into the hand when the environment constrained the pile’s expansion.

In the top row of Figure 6.3, we depict the stabilization regularity as a funnel. The

funnel entrance illustrates a region of objects that start moving together with the hand.

The funnel walls represent a shrinking of the stabilization region. The shrinking of
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the stabilization region symbolizes that the number of stabilized objects decreases;

sometimes it decreases to a single object that becomes centered on the hand. Finally,

the exit of the funnel indicates the point when an object rolls into the hand. Note that

the funnel has no ending on the first sketch, indicating that objects move together

with the hand and no object rolls into the hand.

At the bottom of Figure 6.3, a similar regularity can be observed where the data

was obtained from simulation. In the simulation, a shovel-like end-effector pushed into

a pile of spheres until it passed through the pile or an object rolled onto it. Here, we

visualize four vector fields of interaction forces inside piles. For each cell in the field, we

averaged the forces acting on objects in that cell over the whole simulation duration and

repeated averaging for 100 simulations for each of the four cases. Then, we manually

colored arrows that indicate object stabilization (red), radial expansion of other objects

(blue), and objects’ interaction with static vertical walls (green). The black arrows

cannot be associated with any of the three cases mentioned before, indicating the

complexity of the interaction forces. Similarities and differences between real-world

and simulation experiments are discussed in Section 6.1.4.

Based on our observations, we propose three effects of granular EC exploitation

concerning the predictability of the grasping process:

1. objects tend to stabilize in front of the hand,

2. an object becomes centered on the hand, and

3. geometrical and granular ECs interact.

With respect to observability, we define a grasping strategy that sequence open-loop

controller based on contact events.

We provide a physics-based explanation of granular ECE effects to analyze it

empirically. We consider a pile to be a granular material under the assumption that

the objects are solid. We use granular materials’ properties to explain the proposed

effects of granular ECE.

Interestingly, even though it is difficult to predict the individual objects’ motion

when pushed accurately, a higher-level force pattern arises consistently. Therefore, we

refrain from defining mathematical formulas to describe the regularity, but we use the

following explanations to find relevant properties of piles, objects, and the environment

that affect grasping with granular ECE.

In the following explanations, we consider that the hand and object sizes allow

grasping one object at a time. Our explanations should hold when the hand is wider
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or the objects are smaller: in these cases, multiple objects stabilize, center, and roll

into the hand.

Physics-Based Explanation of Object Stabilization

Granular materials possess the penetration resistance (Stone et al., 2004) property.

Penetration resistance provides an opposing force on a pusher and, consequently, on

a pushed object as well. This opposing force manifests because the objects’ kinetic

energy dissipates inside granular materials, similar to the effect of the friction force

between two objects. Kinetic energy dissipates due to friction between objects and

the objects’ inertia. Objects can stabilize, i.e., move together with the pusher, if the

pusher’s front part has a concave or ŕat shape.

Objects stabilize in front of a hand when pushed due to the penetration resistance.

The concavities between the fingers also help this stabilization. When a hand pushes

an object into a pile, the loss of kinetic energy generates an opposing force on the

pushed object. If the opposing force is large enough, the pushed object rolls into the

hand, after which the hand can close its fingers to grasp the object.

We analyze the conditions for grasping when leveraging the object stabilization

effect of granular ECs. Since kinetic energy loss affects the amount of opposing force,

we want to characterize the relationship between the cardinality of a pile (number of

objects in a pile) and grasp success. We propose the following hypothesis:

Hypothesis 1: As the number of objects in a homogeneous pile increases, granular

ECE better supports grasping, assuming that the size and mass of the objects relative

to the hand allow grasping one object at a time.

Physics-Based Explanation of Object Centering

The second key property of granular materials concerns how an external force propagates

through the material. An external pushing force propagates through short and temporal

force chains, transferring the load. These force chains are parallel or radial for

structured- and unstructured granular materials, respectively (Tordesillas et al., 2014).

The force chains carry the opposing force, creating compression in front of the pusher.

With unstructured piles, a hand applies forces at multiple locations. Thus, a

compression region develops in front of the hand. In this region, objects are pushed

toward the hand, and objects roll away outside the region. Since the force chains

are temporal, the region’s width changes relative to the hand. Therefore, objects can

shift laterally in front of the hand, and only a centered object remains stabilized. The

changing nature of the compression region causes an object to center in front of the
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hand. To analyze the object-centering effect on grasping, we analyze the importance

of hand alignment to an object.

Hypothesis 2: A robot can grasp successfully from a homogeneous pile even without

initially aligning its hand with an object when leveraging the granular EC, assuming

that the size and mass of the objects relative to the hand allow grasping one object at

a time.

With structured piles, the object-centering effect does not emerge because the force

chains are parallel and constant. Therefore, the compression region is also constant

in front of the hand. If the structure breaks, the compression region changes and the

object-centering effect manifests. Since we are interested in the object-centering effect

of granular ECs, our study focuses on unstructured piles.

Physics-Based Explanation of Granular and Geometrical EC Interactions

Static parts of the environment increase the penetration resistance of the granular

material (Stone et al., 2004). The penetration resistance increases near static obstacles

because of the contact normals and friction forces between the environment and objects.

When the environment constrains a smaller pile’s expansion, the pile propagates

the interaction forces between objects and the environment. We can leverage the

interaction between a pile and the environment to facilitate grasping from smaller piles.

Hypothesis 3: A robot can grasp with granular ECE from smaller homogeneous piles,

which alone provides an insufficient amount of opposing force if the pile is beside static

walls assuming that the size and mass of the objects relative to the hand allow grasping

one object at a time from large enough piles not supported by geometrical ECs.

The last two sketches in Figure 6.3 illustrate two cases where a small pile is

constrained by a wall and constrained even more by a corner. In both cases, the

penetration resistance increases when walls are present. A corner further constrains

a pile’s expansion, which we illustrate by having fewer blue arrows on the leftmost sketch.

In conclusion, granular EC manifests in piles due to kinetic energy loss. There-

fore, our analysis of the granular EC focuses on properties of the pile, objects, and

environment that inŕuence kinetic energy loss, such as an object’s inertia and the

number of objects in a pile. Next, we define a grasp strategy that leverages granular

EC, sometimes in combination with geometrical ECs, to evaluate the three proposed

hypotheses.



6.1 An Empirical Study of Granular Environmental Constraint Exploitation 101

θ
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β

Figure 6.4 2D sketch of the grasp strategy in the order of execution: a hand approaching
the pile from free space, where θ (green) is the finger’s slope, α (blue) and β (yellow)
are the relative hand orientation to the pile and a supporting wall or corner, and the
hand’s motion is visualized with black arrows. The force along the contact normal
(vertical red arrow) triggers the sliding motion, which terminates when a contact force
(horizontal red arrow) is detected, and finally, the hand grasps an object that rolled on
it. © 2021 IEEE

Figure 6.5 Grasping from a pile of cylinders next to a wall. © 2021 IEEE

6.1.2 Definition of Granular EC Exploiting Grasp Strategy

We define a grasp strategy that uses granular ECE. We assume that granular ECE

effectively stabilizes and centers an object. Thus, we omit controlling an object’s

position and the applied forces. Later, we use this strategy to characterize the effects

of the granular ECE.

The strategy consists of three phases, as illustrated in Figure 6.4 and shown in

Figure 6.5. First, the hand approaches a pile by lowering it to the tabletop with its

palm facing up. Second, the hand slides on the horizontal support surface and pushes

the pile. Finally, grasping triggers after the hand moves through the pile or reaches a

static wall, and then, the hand stops moving and closes its fingers.

We parameterized the strategy with the hand’s orientation (α, β, and θ), velocity

|vhand|, sliding distance, and a force threshold Fgrasp. The hand’s orientation is relative

to a pile and the environment, where α is the relative hand orientation to the pile.

When the pile is next to a wall, α is the angle between the hand and the wall-normal.
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With corners, α is the angle between the hand and the interior bisector of the corner

angle. β is the offset angle between the fingers and the direction of motion, and θ is

the slope on the fingers.

To analyze the object-centering effect, we define two instances of the above-described

strategy: the pile centered and the object centered instances. The two instances differ in

the way the hand approaches a pile. With the pile-centered strategy, a robot approaches

a pile object agnostic, i.e., the hand is centered on the pile without considering any

object’s position. The strategy exploits the object centering and stabilization effects

without explicitly controlling which object to be pushed on the pile’s perimeter, and

also, the motion of the pushed object is not controlled. In contrast, the object-centered

strategy aligns the hand with an object during the approach phase. This strategy

assumes that the centered object is grasped and exploits the object stabilization

effect only. Therefore, we shift less control from the robot to granular ECE with the

object-centered strategy when compared to the pile-centered one.

For the pile-centered strategy, the hand is lowered to a predefined location on a table

in front of a pile. Even if the hand’s pose is constant between executions, its relative

pose to objects is random because we build random piles described in Section 6.1.3.

Concerning the object-centered strategy, first, an expert chooses an object on the

pile’s perimeter and then horizontally aligns the hand to the object before the sliding

phase starts. For the hand alignment, the expert tuned the relative hand pose using 18

tennis balls in a pile and iteratively testing different hand alignments. A chosen ball’s

center was aligned with each gap between the fingers and the tip of the index or middle

finger. The best alignment was when the index and middle finger gap aligned with the

object’s center. This outcome was used for piles of any size and for all object types.

6.1.3 Description of the Experimental Protocol

We analyze the granular EC with real-world and simulated experiments. We omit

human grasping experiments to avoid biases like human reŕexes. Humans can react

uncontrollably to visual and tactile stimuli that affect pile dynamics. On the other

hand, a robot’s motion control can be open-loop by design. All experiments used the

same parameters and followed the protocol unless stated otherwise:

1. building a random pile on a table,

2. executing the previously presented grasp strategy, and

3. observing if an object rolled on the hand during siding and after the fingers

closed, also observing the number of grasped objects.



6.1 An Empirical Study of Granular Environmental Constraint Exploitation 103

tennis ball cylinder cube apple lime

60 or 180 g 45 g 65 g 168 g 87 g

r = 27 mm r = 20 mm l = 45 mm r = 70 mm r = 49 mm

h = 50 mm h = 64 mm h = 68 mm

Table 6.1 Objects’ mass in grams and size in millimeters, where l, h, r are length,
height, and radius, respectively.

Building Random Piles

We built a random pile to have a random hand-object alignment when executing the

pile-centered strategy and to sample the grasp success. Since objects’ configuration in

a pile can affect the pile dynamics, we built unstructured piles with random object

configurations by dropping the objects into a cube-like frame.

The frame was placed at a predefined location on a table. When vertical walls

constrained a pile, the frame was placed next to a wall or corner. The frame size

linearly increased with the pile’s cardinality |Pile| as follows: 0.77 × |Pile| + 11.15.

We chose this frame size to build piles with a minimum of two layers of objects. We

removed the frame, waited until the pile stabilized, and then executed the strategy.

The real object’s properties are given in Table 6.1. All simulated objects had the

same friction properties using the tennis ball’s properties (Cross, 2002) for comparability

between simulated and real-world experiments. The restitution coefficient (COR) of

all simulated objects was a linear function of the mass, where COR(60g)= 0.72 (Cross,

2002), and COR(180g) = 0.37 using our experimental observation on our sand-filled

heavy tennis balls.

Executing the Grasp Strategy

In real-world experiments, we used a Barrett WAM arm with seven degrees of freedom

(DOF). We mounted an ATI FTN-Gamma force-torque sensor between the wrist of

the robot and the end-effector. As an end-effector, we used a simple and rigid shovel

or the compliant and anthropomorphic RBO Hand 2 (Deimel and Brock, 2016). In a

simulation, we used the shovel-like end-effector, which was similar to the real one, as

shown in Figure 6.6. We used the simple end-effector in the simulation because we

expected to observe the granular EC even with this simple shovel. The simulated end-
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Figure 6.6 The real shovel-like end-effector approaches a pile of tennis balls next to a
wall (left) and similarly in a multi-body dynamics simulation where the pile is in a
corner (right). © 2021 IEEE

effector had lateral friction 0.5, spinning-, rolling-friction 0.001, and COR = 0.8. We

parameterized the strategy with α = β = 0°, θ = 15°, |vhand| = 0.1m/s, Fgrasp = 17N ,

and the sliding motion terminated after 30 cm.

Observing Outcomes

We observed the Roll Success (RS) and Grasp Success (GS) in each experiment. We

observed the roll and grasp successes because it is difficult to measure interaction forces

inside a pile, and force-torque measurements are noisy. Roll Success is true if an object

rolls on the hand such that the object’s center of mass is above the fingers. Grasp

Success is true if an object is grasped after the fingers close. We sampled these success

rates from 20 observations on the robot and 50 in simulation.

Previously we proposed three hypotheses. We evaluate these hypotheses in the

next section. We statistically analyze the results and report the respective p-values.

We interpret a p-value as a relative strength of evidence rather than choosing a single

threshold value for hypothesis testing. Similarly to Ganesh and Cave (2018), we

interpret the ranges of p-values as follows:

• pvalue < 0.001 indicates very strong evidence that our hypothesis explains the

behavior and the null hypothesis can be rejected,

• pvalue < 0.01 indicates strong evidence,

• pvalue < 0.05 indicates moderate evidence,

• pvalue < 0.1 indicates weak evidence, and
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• pvalue ≥ 0.1 indicates insufficient evidence.

6.1.4 Experimental Characterization of Granular Environmen-

tal Constraints

We want to analyze granular EC in piles of nearly identical objects. We conducted an

empirical analysis because piles’ dynamics are challenging to model accurately, but

force patterns manifest on a high level. We designed hypothesis-driven experiments to

analyze the conditions that enable grasping from piles with granular ECE and also

conducted explorative experiments to analyze other aspects of open-loop grasping:

• We show that granular ECE provides an opposing force and object centering by

evaluating the previously derived Hypotheses 1 and 2.

• We analyze granular and geometrical EC interactions by evaluating Hypothesis 3.

• We analyze the factors that enable granular ECE concerning properties of a pile,

objects, and end-effector.

• Finally, we discuss the sim-to-real gap concerning our analysis.

Larger Piles Provide Sufficient Opposing Force For Grasping

We analyzed conditions under which a pile provides enough opposing force on a pushed

object for grasping with respect to a pile’s cardinality. Previously we established that

the opposing force results from kinetic energy loss. Since friction dissipates kinetic

energy, if we increase the number of objects, then the number of contacts between

objects also increases, so more kinetic energy dissipates. Therefore, if we increase a

pile’s cardinality, the granular EC better supports grasping. We formally express our

first hypothesis as:

Hypothesis 1: There is a positive correlation between grasp success rate and pile

cardinality when granular EC enables open-loop grasping.

To test our hypothesis, we observed the roll and grasp successes for piles with

different cardinality. We sampled the success rates from piles with cardinality |Pile| ∈

{1, 5, 10, 14, 15} of tennis balls of 180 grams on a horizontal surface. Because the

object-centering effect of the EC is not in the scope of this experiment, we executed the

object-centered strategy and considered an attempt successful if one or more objects

were rolled or grasped.
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Figure 6.7 Piles with more objects, larger cardinality, enable grasping with granular
EC exploitation. The pile’s opposing force increases as the pile cardinality increases,
which we observed in the increase in roll success rates both in the real-world (blue
boxes) and in simulation (yellow dots) and with the fitted logical regression (solid lines)
in both cases.
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Figure 6.8 Both real robot and simulated experiments strongly indicate that granular
ECs can replace controlling object centering. The pile-centered grasp strategy (yellow
bars) performs as well as the object-centered strategy (blue bars) ,but it is somewhat
better for heavy spheres.
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Spearman coefficient
|Pile| 1 5 10 14 18 N.A.
P(RS) 0 0.65 0.85 0.9 0.95 0.99
P(GS) 0 0.2 0.35 0.65 0.6 0.89

Table 6.2 We observed with the real robot a positive correlation between a pile’s
cardinality |Pile| for roll success (RS) and grasp success (GS) rates strongly indicating
that larger piles provide larger opposing forces than smaller piles.

The results are summarized in Table 6.2 and shown in Figure 6.7. The figure shows

the roll success rate (markers) for different pile cardinalities and the estimated logistic

regression model (solid line). The roll success rate monotonically increased with the

pile cardinality. The positive correlation with the Spearman coefficient of 0.99 is a very

strong indication that the opposing force increases for larger piles.

The results also indicate a minimum pile cardinality for which the opposing force

was large enough to support grasping with a simple straight pushing motion. We

observed the same behavior in the simulation, but the minimum pile’s cardinality was

larger. We account this difference to the simulation gap, which we discuss in more

detail in Section 6.1.4.

In Table 6.2, we can observe that the grasp success rate was less than the roll

success rate. This is because the fingers closed after the hand stopped sliding. In some

cases, the object rolled off due to its inertia before the fingers started closing. However,

both observations very strongly support our hypothesis that the grasp success rate

increases as the pile becomes larger due to the large positive Spearman correlation

coefficients.

Granular ECE Provide Object Centering for Grasping

We want to show the existence of the object-centering effect of the granular EC. So,

we compared the pile- and object-centered strategies for various piles. Recall that

the pile-centered strategy omits explicitly centering the hand on an object, while the

object-centered strategy explicitly does that. Therefore, differences in grasp success

rates between the two strategies can indicate if object centering can be replaced (or

not) by granular EC exploitation.

We compared the grasp success rates of the two strategies. We considered an

attempt successful only if one object is grasped. If an object is not centered initially

and not by the granular EC, then the hand grasps more than one object or none. We

derive the following null hypothesis:
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Null hypothesis: The object centered strategy is better than the pile centered strategy:

µ(GSobject centered) > µ(GSpile centered),

where µ(GS) is the mean grasp success. We propose two alternative hypotheses. There

is no significant difference between the grasp success rates for the two strategies.

Alternatively, the pile-centered strategy performs better than the object-centered one.

Hypothesis 2a: The two strategies are equally good:

µ(GSobject centered) = µ(GSpile centered).

Hypothesis 2b: The pile centered strategy outperforms the object centered one:

µ(GSobject centered) < µ(GSpile centered).

We sampled the grasp success rate for three objects: light and heavy tennis balls

and cylinders. The piles had 18 balls or 14 cylinders. Note that the hand can grasp

two tennis balls and more than three cylinders. We built the pile beside a wall to

increase the strength of the opposing force, which we analyze in detail in Section 6.1.4.

Both real robot and simulation results are shown in Figure 6.8. There are no

statistical differences in grasp success rates between pile- or object-centered strategies

for light tennis balls and cylinders. These results show that the granular ECE can

replace object centering.

Moreover, we found weak evidence indicating that the pile-centered strategy was

better than the object-centered one for heavy tennis balls, where the p-value is 0.041

from a single-sided Fisher’s exact test. This suggests that it was difficult for the expert

to properly model the pile’s dynamics and center the hand relative to an object. At

the same time, the granular EC provided better object centering.

Geometrical EC Enables Grasping From Small Piles With Granular ECE

We analyze the interaction between geometrical and granular ECs. When a hand

pushes into a pile beside vertical walls (i.e., geometrical ECs), objects interact with

the environment, and as a result, penetration resistance increases in a pile when the

hand is also near a vertical wall.

Hypothesis 3: If a pile’s expansion is constrained increasingly in opposition to the

hand motion, the grasp success rate increases when leveraging the granular EC.
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Figure 6.9 Static walls (geometrical ECs) increase the opposing force in small piles and
enable grasping with granular EC exploitation.

To analyze our hypothesis, we sampled grasp success rates from increasingly con-

strained piles to expand. We constrained the pile expansion with two walls. To increase

the expansion constraint, we changed the angle between the two walls. When there

are no walls, a pile is the least constrained, 270◦ corner angle is less constrained than

180◦, and 90◦ corner angle is the most constrained case, as shown at the bottom in

Figure 6.9. We grasped from piles of 18 light tennis balls with the pile-centered strategy

that slides the hand along a corner’s bisector on the horizontal surface. We slid it

along the bisector so that the wall’s normal forces were symmetrical on both sides of

the hand. We expect that grasp success increases as the pile’s expansion is increasingly

constrained.

The results show an increase in grasp success rate as the environment constrains the

pile increasingly, as shown in Figure 6.9. Both real-world and simulation results show

a strong correlation between grasp success and environment support, with Spearman

coefficient > 0.94. Interestingly, a single vertical wall (or two walls with 180◦) provided

enough additional forces to achieve robust grasping from small piles.
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Figure 6.10 Granular EC exploitation is easier for round objects. The real robot
performs best with the RBO Hand 2 for all round objects, while the real shovel can
only exploit the EC for light tennis balls. © 2021 IEEE

Characterizing Granular ECE Concerning Object Inertia

We want to analyze open-loop grasping when exploiting the granular EC concerning

an object’s inertia. An object’s inertia affects the pile dynamics and the object-hand

interaction. The pile dynamics is affected because inertia is an object’s property

to resist changing its state when an external force is applied, affecting the amount

of opposing force provided by the pile. The object-hand interaction is also affected

because objects with increased inertia also resist change from stably moving with the

hand to rolling (or sliding) on the hand.

To analyze the granular EC for piles of objects with different inertia, we executed

the pile-centered strategy for piles of tennis balls of 60 or 180 grams, cylinders, and

cubes. A pile’s cardinality was 18 for tennis balls and 14 for cylinders and cubes. The

piles were beside a wall so the opposing force supports grasping. Since the object-

centering effect was not in the scope of the experiments and an object’s inertia can

hinder rolling an object into the hand, a grasp attempt was considered successful if

one or more objects were grasped. We expect that the grasp success rate decreases

when the object’s inertia increases.

Figure 6.10 shows the grasp success rate for different objects and end-effectors. In

all three cases, it is visible that a low-inertia object (a light tennis ball) was the easiest
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Figure 6.11 We can exploit the granular EC for round objects (blue and green) for a
wide range of hand orientations, unlike cubes (red). We can use simulation to identify
the EC because the behavior is qualitatively similar to the real world. © 2021 IEEE

to grasp. We can also note that increasing the inertia (increased mass or different

shape) affected grasp robustness, but the end-effector’s morphology greatly inŕuenced

this. For now, we only look at the effects of an object’s inertia, and Section 6.1.4

discusses the impact of the end-effector’s morphology.

We conducted an exploratory analysis to qualitatively analyze grasp robustness for

a wide range of hand orientations relative to a pile next to a wall. We executed the

pile-centered strategy from piles of spheres, cylinders, and cubes with various strategy

parametrizations (α, β) ∈ {(0◦, 0◦), (30◦, -10◦), (30◦, 20◦), (45◦, -20◦)}. We omitted

the heavy 180 grams tennis ball because the other real object’s weight is relatively

closer to the light tennis balls. We built piles with cardinality |Pile| ∈ {14, 15, 18, 20}.

We expect that open-loop grasping succeeds more likely for round objects.

In Figure 6.11, we compare the grasp success rate distributions between different

object shapes using a kernel density estimation of the sampled grasp success rates. The

violin plots were limited only to the observed data. The mean grasp success rates were

≥ 80% for tennis balls and cylinders. While for cubes, it was < 50%. The results show

that granular EC exploitation is more robust for round objects because the distribution

shifted down as object roundness decreased.

Similarly to our previous qualitative analysis, we analyzed the inŕuence of an object’s

mass. We grasped from a variety of piles with different object’s mass mobject ∈ {60, 180}
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Figure 6.12 Lighter objects are easier to grasp even when the environment constrains a
pile’s expansion. © 2021 IEEE

in the real world, and in simulation mobject ∈ {30, 60, 120, 180, 360, 720}. We grasped

from piles with various cardinality, in the real-world |Pile| ∈ {5, 18}, and in simulation

|Pile| ∈ {3, 5, 10, 15, 20, 25, 30, 60, 90}, with and without a static wall or corner.

Note that in our previous work (Páll and Brock, 2021), we reported that grasping

failed when walls did not support the pile. This failure occurred because the hand only

closed if Fgrasp was reached. However, smaller piles (without static walls) cannot provide

a large enough opposing force to trigger grasping. Now, we extended the triggering

condition with a maximum sliding distance. We acknowledge that the granular EC,

like geometrical ECs, provides an observable discrete contact event. In our case, it

indicates if an object rolls onto the fingers or the palm of the hand. However, we used

an RBO Hand 2 equipped only with air pressure sensors that were not sensitive enough

for our use case. We think that an appropriately sensorized hand can provide even

greater benefits than detecting when an object rolls onto the hand, which we discuss

in the final section of this chapter. We ran new experiments using the new condition

when walls did not support a pile. We expect an increase in grasp success for lighter

objects.

Figure 6.12 shows the grasp success rates with segment-wise linear interpolation.

The results confirm that lighter objects are easier to grasp when the pile is next to a

wall or corner, where the cumulative aligning forces of the granular and geometrical
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ECs support grasping. When the environment has no walls, grasping heavier objects

has a higher success rate. We think this is because the object’s inertia contributes to

penetration resistance besides friction. However, there is insufficient evidence to reject

that the means are equal due to the 0.32 p-value of a single-sided Fisher’s exact test.

We conducted a further experiment to show how to improve heavy object grasping.

We grasped 18 heavy tennis balls in a corner because the corner further constrained

the objects’ motions. We expect that if we increase the hand’s velocity and grasping

force threshold, grasp robustness increases because heavier objects require more force

to induce more interaction in a pile and roll an object on the hand. We increased grasp

success from 60% to 85% by increasing the velocity |vhand| from 0.1 to 0.25m/s and

force threshold Fgrasp from 17 to 25N, showing weak evidence with a p-value is 0.07 of

a single-sided test.

Characterizing Granular ECE Concerning the End-Effector Morphology

We want to analyze the inŕuence of the end-effector’s morphology (shape and structure)

on granular EC exploitation. Therefore, we executed the pile-centered strategy with

the anthropomorphic, compliant RBO Hand 2, and the shovel-like, rigid end-effector.

We grasped from piles of 18 light and heavy tennis balls and 14 cylinders or cubes next

to a wall.

Figure 6.10 shows the real and simulated mean grasp success rates. The real robot

performed best with the hand. The hand achieved between 95% and 100% grasp

success for round objects, while the shovel could scoop up only light tennis balls with

85%. Both end-effectors performed poorly for cubes, indicating a limitation of granular

EC exploitation for cuboid objects. We think this drop in grasp success is because

cuboid objects require more force to roll onto the hand due to their shape.

Though the shovel can exploit the granular EC, only the soft hand allows open-loop

grasping. We needed an impedance controller that uses force feedback to slide the

rigid shovel on a surface. As opposed to the rigid shovel, the soft hand provided

enough compliance due to its structure that we could slide the hand using a simple

operational-space controller.

Grasping with a soft hand had two more benefits. First, the space between fingers

created a guiding rail for centering and rolling an object into the palm when the hand

was pushed into the pile. Second, the softness of the hand allowed the fingers to adapt

passively to the object’s shape making the grasp stable.

We executed over 900 grasp attempts and observed grasps of multiple objects within

one attempt. We grasped more than one object 15% for 600 successful grasps with the
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Figure 6.13 The grasp success and number of grasped objects depend on the ratio
between the object’s and end-effector’s size shown for light spheres in a corner. ©
2021 IEEE

RBO Hand 2 and 8.75% for 160 successful attempts with the shovel. The number of

grasped objects and grasp success depended on the object’s and end-effector’s size, as

shown in Figure 6.13. If we want to grasp a single object, only the hand can solve this

with in-hand-manipulation to drop all but one object back into the pile.

Simulation and Real Observations Are Qualitatively Similar

We want to show that simulation is qualitatively similar to real-world open-loop

grasping when analyzing the granular EC. Hence, we simulated open-loop grasping

likewise to the real robot experiments. Previously, we presented experiments and

results that included both real-world and simulation, and now, we interpret the results

together.

In Section 6.1.4, we showed that the pile’s cardinality and object stabilization by

the granular EC are positively correlated. Larger piles provided more penetration

resistance to rolling an object into the hand. We observed qualitatively similar behavior

in simulation, as shown in Figure 6.7. However, the slope is shallower in simulation

compared to the real-world results. We think the simulation gap can be accounted for

inaccuracies in kinetic energy loss due to inaccurate friction simulation. We observed
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qualitative similarities when analyzing the horizontal aligning forces in Figure 6.8, but

simulated grasp success was generally higher than on the real robot.

When analyzing the effects of an object’s inertia, we showed that object roundness

improves granular EC exploitation in the real world. Figure 6.11 also confirms a

qualitative similarity between real-world and simulation results. For both cases, the

distributions’ mean increased with an object’s roundness. We can observe qualitative

similarity concerning object roundness in Figure 6.10 as well, where we compared

different end-effectors. However, this experiment shows a significant sim-to-real gap

between real- and simulated-shovel, similarly between the hand and simulated shovel

for cubes. Hence, simulation cannot indicate an end-effector’s limitation to exploit

granular EC.

The real-world and simulation results indicate (see Figure 6.12) that lighter objects

are easier to grasp when supported. In the simulation, we also showed the relationship

between grasp success and relative object size to the end-effector (see Figure 6.13).

We analyzed how granular ECs interacted with geometrical ECs and showed that

walls enabled robust grasping from small piles, as shown in Figure 6.9. A strong

positive correlation was visible for both real robot and simulated experiments, where

both experiments had Spearman coefficient > 0.94.

With respect to sim to real gap, the results show that simulation qualitatively

captures the high-level force pattern in piles. Thus, we can analyze granular EC in

simulation. On the other hand, the quantitative differences show that we must combine

simulation with real robot experiments to characterize the EC, choose an appropriate

end-effector, and synthesize a grasp strategy for granular EC exploitation.

In summary, we have shown that pile dynamics produce a manipulation funnel

because a high-level and consistent interaction force pattern restricts objects’ motion

in a pile, i.e., granular EC. Granular ECE has all four properties of ECE. It implicitly

reduces uncertainty about an object’s position in a pile relative to a hand pushing

into the pile. It produces observable contact events on the hand, indicating a grasping

outcome. It structures the robot’s workspace into a region from where the granular EC

can be reached (the horizontal support surface under the pile) and a region where it can

be leveraged (the pile itself). Granular ECE enabled robust grasping by augmenting

a simple straight pushing motion of the hand to separate and stabilize an object.

Moreover, its use simplified control and perception such that grasping was robust using

open-loop controllers without using visual or tactile perception for object detection.
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Next, we define a grasp planner that uses granular and geometrical ECE and explain

how our findings from this empirical study simplified our grasp planner.

6.2 Grasp Planning With Environment Constraints

We want to simplify grasp planning from piles by using the gained insights from the

previous study about granular ECE. First, we define the granular and geometrical

EC-based grasping problem. Since force pattern manifest on a high level, we can

abstract away details of pile dynamics from the representation of the planning problem.

And as a result, planning becomes simpler. Then, we present an ECE grasp planner

that uses the high level nature of the force patterns and that granular and geometrical

ECs implicitly structure the workspace into regions. Finally, we apply granular ECE

in a real-wold industrial application.

The proposed representation and grasp planner builds on the work of Eppner and

Brock (2015) on geometrical ECE-based grasping, and we extend the previous work

from single object grasping to grasping from piles of nearly identical objects.

6.2.1 Grasping Problem Definition

Since our open-loop grasp strategy (in Section 6.1.2) leveraged a variety of geometrical

and granular ECs, we start with a formal definition of ECE. Eppner and Brock (2015)

defined an ECE, Υ, to be a contiguous subset of all possible hand poses, object poses,

and the exerted force onto the object by the hand and environment:

Υ ⊂ Chand × Cobject ×Fobject,

where C ∈ SE(3) is a set of configurations and Fobject is the 6D wrench space of

the object. To sequence ECEs for grasping, we can evaluate ECE connectivity by

computing their intersection. Two ECEs are connected if their intersection is not

empty:

Υi ∩Υj ̸= ∅.

This representation captures the interaction force pattern of an ECE as a constraint

function f(Fobject) ≥ 0, and thus, it allows a form closure analysis. However, planning

with this representation requires enormous amounts of computation because of the

high dimensionality of the state space. If we represent a 3D configuration with a
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position vector and three angles q = [x, y, z, α, β, θ] ∈ C for Chand and Cobject, then the

dimensionality of the state space is R
6 × R

6 × R
6 = R

18.

Because of this high dimensionality, we want to simplify the representation using a

series of approximations, and for realism, we based these assumptions on our empirical

study of granular ECE.

The first and foremost assumption is that granular ECE supports grasping, i.e., the

hand and object properties (such as mass, size, shape, and morphology) are adequate

for EC-based grasping with our open-loop strategy as discussed in Section 6.1.4. The

following simplifications are the consequence of this first assumption.

We simplified Chand because our grasp strategy was very structured within the

exploited ECs (a pile, a horizontal surface, and walls) while it achieved robust grasping

for a set of hand positions and orientations, as presented in Section 6.1.4. Therefore,

we simplified the Chand by representing the hand’s position with an oriented bounding

box obb and its orientation with a discrete set of angles R.

We omitted Cobject and Fhand from the representation. We have shown previously

that granular ECE replaces control over an object’s position and stabilization. Since

our grasp strategy does not use information about the object’s position (e.g., not

used as feedback in control), we could omit the object configuration Cobject from the

representation. Furthermore, since the granular ECE replaces an object’s stabilization

control, we omitted Fobject.

Since we omitted Fobject but observable contact events are key to sequencing

ECEs, we added the 6D wrench of the hand Fhand to represent contact events that

are measurable by sensors on the robot. For geometrical ECE, we associated force

measurements with contact normals of the respective surfaces. For granular ECs, we

can associate a force in the direction of the hand’s motion with the high-level opposing

force that rolls the object on the hand or an object’s weight on the hand.

As a result of these simplifications, the approximated ECE Υ̃ is a contiguous subset

of possible hand poses and the exerted force or torque onto the hand:

Υ̃ ⊂ C̃hand ×Fhand,

where q = {obb, R} ∈ C̃hand is an approximated hand configuration and Fhand ∈ R
6 is

a 6D wrench.

Both granular and geometrical ECEs are manipulation funnels because they reduce

uncertainty implicitly and mechanically. Using a physical funnel analogy for granular

and geometrical ECEs, the entrance of these funnels are any hand pose q ∈ Υ̃ where

a strategy-specific motion results in Fhand ∈ Υ̃. An object moves through a physical
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funnel either constrained by its walls or between the wall. In the case of ECE, we move

on the funnel’s wall (active constraint exploitation) by leveraging the force pattern,

which is represented as:

Υ̃(q,F). (6.1)

An ECE funnel exit is the termination of an ECE usage, and it is indicated by a

contact event measured as a discrete force change on the hand δFhand.

Important to note that we omitted to explicitly model uncertainty because we

assumed that a sequence of ECE reduces uncertainty below the tolerance for robust

grasping. This assumption is realistic for piles of round objects, as we have shown it

empirically.

The transition condition between two approximated ECEs Υ̃i and Υ̃j can be defined

as follows:

Υ̃i ↦→ Υ̃j
iff

⇐⇒ Υ̃i ∩ Υ̃j ̸= ∅

⎧
⎪⎨
⎪⎩

obbi ∩ obbj ̸= ∅

and

Ri ∩ Rj ̸= ∅.

(6.2)

Based on the transition operator " ↦→", we defined the planning problem as a

workspace-connectivity search problem. We are going to represent the workspace

connectivity with a directed graph, and we will show an example of such a graph in a

bin-picking application (see Figure 6.14). The nodes of such a graph are ECEs, and

the edges are the possible transitions between ECEs.

Note that we made no assumptions about a pile’s cardinality because a single object

can be considered a pile with cardinality one. Our simplifications of the representation

hold for this edge case as well because our assumptions for geometrical ECs are

independent of the pile’s cardinality. With respect to granular EC assumptions, even a

single object produces an opposing force on the hand due to its inertia, but this force

does not necessarily center or roll the object onto the hand. However, a static wall

or corner enables grasping a single object with our strategy because our strategy, for

α = β = 0°, is analogues to the wall grasp strategy presented by Eppner and Brock

(2015), and they have shown robust grasping of a single round object when supported

by a static wall.

Surprisingly, our simplifications of the problem representation lead to the same

representation as for single object grasping using geometrical ECE alone (Eppner and

Brock, 2015) while we used both geometrical and granular ECE. This is because both

types of ECs, geometrical and granular, share the same properties (Section 1.2) when

leveraged.
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Algorithm 8 Geometrical and Granular ECE Grasp Planner
Input: PCL, chand

Output: HA

1: V ← ∅ init the list of nodes

2: E ← ∅ init the list of edges

3: V ← DETECT_ECs(PCL) add detected ECs as nodes to the graph G

4: for (vi, vj) ∈ V |i ̸= j do find edges between nodes

5: if vi.obb ∩ vj .obb ̸= ∅ AND vi.R ∩ vj .R ̸= ∅ then based on Equation 6.2

6: E ← {(vi, vj)} add edge between two connected ECs

7: π ← PDDL_SOLVER(G(V,E), chand) find a sequence of ECE for grasping

8: HA ← CONVERT(π) convert grasp strategy to executable hybrid automaton

9: return HA

6.2.2 Granular EC Exploiting Grasp Planner

Based on the previous problem definition, we present the granular ECE grasp planner

in Algorithm 8. The planner builds a graph with nodes being ECEs and edges being

possible transitions between two ECEs. First, it detects existing ECs from point cloud

data obtained from an RGB-D camera. Then, it verifies the connectivity between all

pairs of detected ECs and adds the respective edges to the graph. Next, it searches for

an ECE sequence leading to a successful grasp. Finally, the planner converts the ECE

sequence into an executable plan. Below, we discuss the three main steps: detection

of ECs, graph search for a solution, and conversion of the solution into an executable

plan. The numbers in parentheses refer to the lines in Algorithm 8:

Detecting ECs (line 3) For geometrical EC detection, we used the method devel-

oped by Eppner and Brock (2015) that extracts horizontal support surfaces, vertical

walls, concave and convex edges, and an oriented bounding box for a target object.

They assumed that only one object is in the scene. Similarly, we assumed that only

one pile was in the scene. Therefore, we could detect a pile similarly to single object

detection. For pile (or single object) detection, the points associated with geometrical

ECs were subtracted from the point cloud data. This assumption implies that the

remaining points are from the pile, and one can easily compute an oriented bounding

box on the remaining points. Moreover, the number of objects in a pile could be

estimated with point cloud volume estimation (Chang et al., 2017). However, we

assumed to know this information. The pile cardinality becomes relevant during the

graph search step.

Even though EC detection is not in the scope of this thesis, it brings up a very

important observation. We need a tight integration between perception and planning
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to exploit ECs because we need to plan for an instance of a grasping problem. We will

discuss this implication in more detail in Chapter 7.

Creating an ECE-graph (lines 4-6) The planer built an ECE-graph based on

the detected ECs and possible transitions. Since we could reason about the ECE

regions and their connectivity symbolically, the grasp planning became a symbolic

search problem of finding interconnected ECEs that lead to grasping success.

Solving a PDDL (line 7) The symbolic search problem was represented with

Planning Domain Definition Language (PDDL) (McDermott et al., 1998) that is a less

restricted version of the STRIPS (Fikes and Nilsson, 1971). There exist numerous ex-

tensions of PDDL, and we used the PDDL2.1 definition to represent the pile cardinality

because this version integrates numerical ŕuents to model non-binary resources.

A PDDL problem is defined with a domain and a problem description. Our domain

consisted of three sets of object types T , predicates P , and actions. Our problem

description defined the initial conditions and the goal state. The object types T and

predicates P were:

T =
{

hand, Υ̃
}

,

P =

⎧
⎪⎨
⎪⎩

Connected(Υ̃i, Υ̃j),

Hand(Υ̃),

GraspProbability(Υ̃),

⎫
⎪⎬
⎪⎭

,

where Connected(·, ·) was true if the two given ECs were connected, Hand( ·) was true

if the hand was currently exploiting the specified EC, and GraspProbability( · ) was

the grasp success probability for granular ECE or the combination of a granular and a

geometrical ECE. In Section 6.1.4, we have shown that the granular and geometrical

ECs interact, and this interaction increased the grasp success probability for piles with

low cardinality. So, GraspingProbability(Υ̃i∈wall, corner) = g(∢Υ̃i
) was in function of

the angle between two walls, and for a single wall, the angle was 180°. When a granular

EC is used alone, GraspingProbability(Υ̃pile) = h(|pile|) was a linear function, and

for piles above twenty objects was 100, based on our findings in Section 6.1.4.
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In a domain definition, actions have parameters, preconditions, and effects. Actions

are universally quantified and apply to any state in which the precondition holds. We

defined three actions:

Action
(
MoveHand(Υ̃from, Υ̃to),

Precond: Hand(Υ̃from) ∧ Connected(Υ̃from, Υ̃to)

Effect: ¬Hand(Υ̃from) ∧ Hand(Υ̃to)
)
,

Action
(
ConnectPile(Υ̃to),

Precond: Hand(Υ̃surface) ∧ Connected(Υ̃surface, Υ̃pile)∧

Connected(Υ̃surface, Υ̃to) ∧ ¬Connected(Υ̃pile, Υ̃to)

Effect: Hand(Υ̃pile) ∧ Connected(Υ̃pile, Υ̃to)
)
,

Action
(
GraspObject(Υ̃with),

Precond: Hand(Υ̃pile) ∧ Connected(Υ̃pile, Υ̃with)∧

GraspingProbability(Υ̃with) > 100− ϵ

Effect: ObjectGrasped
)
.

The MoveHand(·, ·) action transitioned the hand between two ECE. The second action

ConnectPile( · ) connected the pile with a static wall or corner by moving a portion

of a pile next to a geometrical EC. The action created a new edge in the graph, and

so it enabled grasping with the respective geometrical EC in combination with the

granular EC. While moving the pile was not explicitly analyzed in our empirical study,

we have shown in Section 6.1.1 that a small portion of a pile stably moved in front

of the hand when pushed. Therefore, a portion of a pile can be moved next to a

geometrical EC. The last action GraspObject( · ) was parameterized by an ECE: Υ̃pile

was a granular ECE without considering interactions with any geometrical ECs. For

logical correctness, we assumed that a granular ECE was connected with itself. With

Υ̃wall and Υ̃corner, the granular ECE was used in combination with the chosen vertical

support if there was a connection between the two ECEs. Note that the three actions

ensured that ECEs could only be sequenced if connected.
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Finally, the initial state s0 and the goal state sg are represented as a logical formula,

which is a conjunction of ground and functionless atoms:

s0

(
Hand(Υ̃hand)∧

⋀

Υ̃i,Υ̃j∈Υ̃,

Υ̃i ↦→Υ̃j

Connected(Υ̃i, Υ̃j) ∧

GraspingProbability(Υ̃pile) = f(|pile|) ∧

GraspingProbability(Υ̃i∈{wall,cornere}) = g(∢Υ̃i
)
)
,

sg(ObjectGrasped),

where Υ̃hand was the initially exploited EC by the hand, and Υ̃ without an index was

the set of all detected ECs. We used the closed-world assumption, meaning that all

atoms not mentioned in a state are false. For example, ObjectGrasped was not part

of the initial state, so the hand was empty initially.

Following this definition, the planning problem was reduced to a graph search where

the nodes were an EC exploitation, and the edges were the allowed transitions. The

search objective was to maximize grasp probability in as few steps as possible. One can

find an ECE sequence using a graph search algorithm, such as A* (Hart et al., 1968).

The graph was obtained directly from visual perception, which creates a strong

connection between the planner and visual perception. Therefore, we plan for what we

see: an instance of a grasping problem.

Generating the executable strategy (line 8) The symbolic ECE sequence was

directly convertible into a hybrid automaton (Henzinger, 2000) for execution. A hybrid

automaton is a mathematical representation to execute a sequence of continuous

processes with discrete switches between these processes. Since an ECE was realized

with one (or multiple) continuous controller(s), a node of the graph could be mapped

to a set of controllers. Moreover, transitions between two ECEs were contact events, so

the switching condition between two sets of controllers was a discrete change in force

measurements.

Note that the solution of our grasp planner easily generalizes to different hardware

setups because the hybrid automaton provides an interface for different hardware

components, which we discuss in detail in Chapter 7.
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Figure 6.14 Left: Granular ECE-based grasping in the Ocado’s bin picking use
cases (Mnyusiwalla et al., 2020) © 2021 IEEE. Right: ECE-graph for the use case on
the left, where nodes labeled W stand for a wall, C for a corner, S for a surface, and P
for a pile; edges are arrows indicating the possible transitions between ECEs.

In summary, we simplified the general representation of ECE-based grasping using

realistic assumptions based on our empirical study about the granular EC and its

usage. The predictable manipulation behavior of granular and geometrical ECE allowed

abstracting away physics from the representation. The structural context represented

by ECE allowed reasoning about regions of the workspace rather than actual states.

The presented grasp planner is extremely simpler than classical approaches, like

form or force closure, because some aspects of computation classically done by the

robot (e.g., searching for contact points and evaluating these points) are optional (or

futile) when using granular and geometrical ECEs. Moreover, the planner ignored

uncertainty which contributes to its simplicity as well. Uncertainty was not modeled

because the used ECEs reduced positioning and motion inaccuracies, and they made

grasping invariant of modeling inaccuracies.

Next, we apply granular ECE-based grasping in an industrial application and

show that co-designing the environment for granular ECE further simplifies perceptual

requirements.

6.2.3 Application of Granular ECE-Based Grasping

Bin-picking tasks are ideal for leveraging geometrical and granular ECs because a

bin has static walls, and the goods are stored in piles in many cases. Mnyusiwalla

et al. (2020) have presented such a use case to evaluate robotic hands and grippers for

pick and place operations. The use case was inspired by the requirements of Ocado’s

warehouse fulfillment center, where employees pack customer orders: First, an employee

receives a grocery shopping list. Then, a bin arrives at the picking station containing
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Objects
tennis ball
60 grams

tennis ball
180 grams

cylinder
net bag
of limes

apple

R/N 4.3/4 5/4 9/4 5.6/4 7.6/4

Table 6.3 We leverage granular ECs in a bin picking application, where we measured
R the average grasp attempts to pick and place N = 4 objects of the same type.

one type of grocery item from the list. Next, the employee places the given number of

items into a delivery bag, and the process repeats itself for another item on the list.

We used Ocado’s industrial grocery logistics use case (Mnyusiwalla et al., 2020) to

show the applicability of granular ECE-based grasping.

Like in the Ocado use case, our robot had to fulfill an order by picking N items

from a bin and placing it into a delivery bag, as shown on the left in Figure 6.14. Only

one type of good was stored in the bin. The bin’s location was considered known, so

geometrical EC detection was not required, and the ECE-graph was pre-defined, as

shown on the right in Figure 6.14. We measured the system’s efficiency with R the

average grasp attempts to fulfill an order of N items of the same type. In our adaption

of the use case, the items were apples, tennis balls, cylinders, or net bags of limes (see

Table 6.1). The order was of four items of the same type: N = 4.

The key difference to Ocado’s use case was that we tilted the bin 5°, so the pile

remained beside the same wall after each grasp attempt. This way, we could consider

a pile’s location known, and thus, visual detection of the pile was not required. We

justify changing the environment because humans design their tools to maximize their

utility. The robot uses the environment as a tool, so it is reasonable and advised to

change the environment to increase its utility for granular EC exploitation. Compared

to our empirical experiments in Section 6.1.4, we increased the slope of the fingers

from θ = 15° to 30° due to kinematic and environmental limitations.

Before each grasp attempt, an operator decided to leverage the granular EC with a

wall or corner and executed the pile-centered strategy. If the robot grasped more items

than required, the robot dropped the grasped objects back into the pile. For example,

the robot already picked and placed three apples out of four. If the next time it picks

two apples in one attempt, it drops both apples back into the pile. Since we allowed

the robot to grasp more than one item in one attempt and our hand can grasp two to

three objects simultaneously, the ideal R value is between two and four.

We executed four times an order fulfillment request per each object type. The

results are shown in Table 6.3 and in this video1. On average, the robot needed 6.3

1https://youtu.be/BtCBNdkgejU

https://youtu.be/BtCBNdkgejU
https://youtu.be/BtCBNdkgejU
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grasp attempts to pick and place four items indicating that granular ECE is applicable

in bin-picking applications. It also indicates that granular ECE generalizes for irregular

object shapes like apples and net bags of limes.

We evaluated the symbolic planner by running it 100 times to grasp a light tennis

ball from a pile for the described application on a desktop computer with an Intel

i5 3.5GHz processor. The average computation time was 6.75 ms to select a grasp

strategy. While this is an impressive result, there is no free lunch with the applied

simplification, and we discuss related limitations in Section 6.4.1.

6.3 Related Grasp Approaches

We analyzed a novel environmental constraint that replaces some aspects of control,

perception, and planning when leveraged for grasping. Thus, we discuss related work

concerning how different aspects of control, perception, and planning are distributed

between the robot and the environment in various grasping approaches.

6.3.1 Form and Force Closure Grasp Approaches

Form- and force-closure approaches solely rely on the robot to plan and control grasping

based on perfect knowledge about the object or perfect perception to identify the

physical properties of the object. Such approaches first compute desired contact points

and applied forces between fingers and an object, considering physics, kinematics, and

dynamics. Then, the robot accurately positions its fingertips on an object and applies

the desired forces. A large body of research exists, including optimality analysis (Zheng,

2013; Guay et al., 2014; Lévesque et al., 2018; Jia et al., 2017) where robots control

the grasp and even resist external wrench loads. Because the robot models all aspects

of the interactions, these methods can analyze the robustness of a grasp strategy and

provide mathematical stability guarantees.

Even though these approaches can provide stability guarantees, they are difficult to

apply in our context when leveraging pile dynamics for grasping. Since form and force

closure approaches need to model the interaction physics accurately, these approaches

also need to know the object pose and geometry accurately. The pose of multiple objects

is occluded inside a pile, making it difficult to accurately model the interaction in piles.

Therefore, we searched for high-level patterns. The high-level pattern manifesting

consistently allowed us to abstract away details of the interaction physics, and as a

result, we replaced aspects of control from the robot to the environment.
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6.3.2 Machine Learning Grasp Approaches

Machine learning grasp approaches can replace aspects of control. Recent research

has shown impressive grasp performance (Mahler et al., 2019). In this research, a

robot learned from a large amount of training data to grasp from piles of non-identical

objects. Researchers collected data from simulated and real-world experiments. When

experiments capture beneficial EC exploitation, by chance or design, the learned grasp

strategy can include EC exploitation. If EC exploitation is in the learned strategy, the

machine learning technique shifts aspects of control and perception from the robot to

the environment.

When the data contains EC exploitation by chance, it is difficult to extract which

aspects of the control can be shifted from the robot to the environment. In contrast,

when we know about the beneficial effects of ECs, we can use these as an inductive

bias for learning. This bias should reduce the amount of data required for learning the

policy. Our empirical research closes the knowledge gap when grasping from piles by

characterizing the granular ECE so researchers can use our insights as an inductive

bias.

6.3.3 Environmental Constraint Exploiting Approaches

Researchers investigated how humans leverage contact with the environment when

grasping and successfully transferred human-like grasp strategies to robots. These

robots leveraged static surfaces and their edges as constraints, i.e., geometrical ECs.

Static surfaces and concave edges constrain the motion of an object in the direction of

surface normals which was leveraged to stabilize the object for grasping (Deimel et al.,

2016). Moreover, a surface provides support to pivot or reorient an object (Odhner et al.,

2013; Chavan-Daŕe and Rodriguez, 2015), and a concave edge can expose a portion

of the object for pinch grasping (Kappler et al., 2010; Hang et al., 2019). Mandery

et al. (2015) also observed ECE usage in human’s whole-body posture for locomotion

and manipulation. In these examples, geometrical ECE replaced stabilization control.

Similarly, objects in front of a hand stabilize when a robot uses granular ECE.

Dynamic object properties constrain an object’s motion, for example, its inertia.

An object’s inertia in combination with gravity was used to reorient an object (Mason,

1999; Daŕe et al., 2014; Woodruff and Lynch, 2017). Since gravitational and inertial

forces constrain the motion of an object, we can consider it a form of ECE. In the

given examples, the effect of inertia and gravity was modeled to complement the forces



6.4 Conclusion 127

provided by a robot, and so a robot’s dexterity was increased, but the computational

complexity of the manipulation problem remained unchanged.

Bhatt et al. (2021) showed that compliant parts of a robot hand provide similar

constraints as geometrical ECs for in-hand-manipulation. They used some fingers of a

soft hand to move an object on the palm. Other fingers were used as vertical support

to constrain the object’s motion. Compliant vertical supports, like soft fingers, provide

contact force as well. As opposed to rigid surfaces, where contact changes discretely,

the soft fingers provide continuously changing contact forces acting as damping that

makes an object’s motion smoother. Since they exploited this compliant constraint

without explicitly modeling the interaction physics, they provided another example

where ECE simplifies the representation by allowing to abstract away details of physics.

The granular EC is different from the mentioned ECs because it manifests in

a pile of movable objects but shares the four key properties of ECE: It provides 1) a

manipulation funnel that implicitly reduces uncertainty, 2) contact events that could be

used to explicitly reduce uncertainty, for example, about the number of grasped objects,

3) structural context about the environment, and 4) the interaction forces inside the

pile augment the grasping behavior. Consequently, its use reduced uncertainty and

simplified perception, control, and planning for grasping from piles of nearly identical

round objects.

6.4 Conclusion

The chapter’s goal was to show the implications of ECE-based grasping on perception,

control, and planning. Thus, we used ECE benefits in a particular grasping problem.

We discovered a complex environmental constraint manifesting in piles of objects

when a hand scoops an object from a pile. We characterized the novel granular EC

and showed that its use provides similar benefits to geometrical ECE (Section 1.2).

We devised a simple grasping strategy that used granular and geometrical ECs to

robustly grasp a random object from piles of nearly identical objects. Uncertainty

about an object’s position and stability was eliminated by the used ECs so that the

grasp strategy could be executed with open-loop controllers and without detecting

individual objects in a pile.

Besides reducing uncertainty, granular and geometrical ECEs simplified control,

perception, and planning by replacing some computation performed by the robot

classically. We could replace computational aspects of control, perception, and planning



128 Piles Provide Granular Environmental Constraints for Grasping

with ECE because the granular and geometrical ECs 1) provided predictable high-

level motion patterns simplifying the representation, 2) also provided easily observable

feedback about the manipulation process that enabled reactive behavior generation, and

3) implicitly structured the robot’s workspace into regions with predictable behavior

and observable outcomes.

We devised a grasp planner to sequence geometrical and granular ECs for grasping

from piles. The proposed grasp planner handled uncertainty the most efficiently by

ignoring it because it avoided any computation burden to reason about it. The planner

could ignore uncertainty because the task-tailored ECE sequence, in our grasp strategy,

eliminated uncertainty entirely.

6.4.1 Limitations and Further Considerations

The last section of this chapter discusses the limitations and future research directions

about ECE-based manipulation from practical and conceptual views.

For the practical applicability of granular ECE, there is room for improvement.

Even though we have conducted an extensive empirical study of open-loop grasping

from piles, some properties of the three actors: objects, environment, and the robot

should be further analyzed. One should further investigate the effect of different friction

properties of the three actors because of the motion and force regularity of the granular

EC manifest due to kinetic energy loss. While we successfully applied the strategy on

a few irregularly shaped objects, like apples and net bags of limes, it is essential to

characterize the EC for irregularly-shaped and deformable objects.

A significant limitation arises from the fact that we considered only an end-effector’s

motion without considering the used robot arm. We used open-loop controllers,

assuming that these controllers generate the desired behavior and avoid an undesired

collision or kinematic limitation of the respective robot arm. To voided some kinematic

and environmental limitations in our bin picking application, we increased the slope

of the hand. This solution does not generalize to other robot arms or environments.

For that, we need motion planning. Part I tackled this issue by applying ECE in

motion planning under uncertainty, and Part III combines our EC-based grasping and

motion planning approaches into a complex robotic system to overcome the mentioned

limitation.

For future manipulation research, one could apply our insight as an inductive bias to

learn an object-dependent parametrization of our grasp strategy or to find sophisticated

motions for grasping less round objects as well. Moreover, machine learning techniques



6.4 Conclusion 129

could be used to co-design the hand and the environment to maximize the benefits of

granular EC exploitation.

Furthermore, we propose a practical in-hand-manipulation problem associated

with grasping more objects than desired. The problme has two challanges. The first

challenge is to extract information about the grasped objects, and the second is to

manipulate the objects so that only the desired amount of objects remains grasped.

Since fingers partially occlude the grasped objects, visual perception can not detect

their position. However, the RBO Hand 2 could be equipped with strain or acoustic

sensors (Wall and Brock, 2019, 2022) that can measure the hand’s deformation. The

increased deformation capability of the hand is beneficial for stable grasping since it

can passively adapt to an object’s shape, and so, its deformation holds information

about the number and positions of grasped objects. One could use gravity alone or

in combination with finger and thumb actuation to manipulate the grasped objects.

With gravity alone, objects could be dropped by opening appropriate fingers. The

latter approach is a challenging in-hand-manipulation problem since the hand has to

manipulate multiple objects at the same time.

For future ECE research, our study contributes a procedure to identify and charac-

terize new ECs, which helps to find other ECs that will simplify perception, control,

and planning. We are fascinated to see novel ECs and their usage and hope to find

answers to two questions: Are there other complex ECs with different beneficial effects?

Moreover, what other physical interaction regularities will be used as ECE beyond

manipulation or motion planning? We think that answering the first question requires

examining even more complex interactions than pile dynamics. Regarding the second

question, interaction forces manifest from other physical phenomena without estab-

lishing contact. Interaction forces manifest on different scales and magnitudes in the

context of electromagnetism, gravity, and solar pressure. These forces can be seen as

constraints, and their physics shows regularities. Therefore, we are eager to see their

use as ECs to ease challenges in different research fields, such as space travel.

For now, let us keep our feet on the ground and continue with Part III, where

we combine our previous contributions into a robotics system that uses granular and

geometric ECs for two industrial applications.
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"To err is human; to manage error is system."
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Economic World
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Motivation

Robotics is a multidisciplinary field because a robotic system combines a variety

of components developed in different fields, such as mechanical engineering, control

engineering, or computer science. Experts from different fields choose appropriate

technologies for sub-problems of a given task and combine these different components

into a robotic system to solve the task efficiently and reliably. The synergy of com-

ponents from different fields makes robotic system building challenging. Complex

tasks often need complex systems where the overall system performance depends not

only on individual components’ performance but also on the proper combination and

cooperation of components.

In order to understand how to build complex robotic systems, we need to analyze

existing systems concerning the requirements and applied design choices. Such an

analysis can highlight design principles enabling researchers and industry to build

complex and robust systems for their needs.

We integrated our motion planning and grasping approaches from Part I and II,

respectively, into a system to evaluate the ECE concept’s realism and analyze the impli-

cations of ECE on complex robotic system building. We have shown that environmental

constraint exploitation is beneficial for motion generation (including grasping) under

uncertainty by individually evaluating our algorithmic implementations in Part I and II.

These benefits are apparent in the overall system and affect how different components

are combined for good cooperation.

Contributions

The contributions of the third and final part of the thesis are the following:

• We present a complex grasping system designed to evaluate and demonstrate the

realism of environmental constraint exploitation and soft-bodied manipulation.

• We explain the practical implications of environmental constraint exploitation

on our robotic system.

• We propose hypotheses of beneficial design choices for building complex robotic

systems which use environmental constraint exploitation.
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Outline

The third part of the thesis discusses the implications of environmental constraint

exploitation on robotic system building.

In Chapter 7, the first section presents two industrial applications where the ECE

concept is applied. Then Section 7.2 describes the system, Section 7.3 explains how the

ECE concept inŕuenced our system design, and Section 7.4 summarizes the evaluation

of the system. Finally, Section 7.5 compares the presented system with three other

complex robotic systems designed for similar pick and place tasks. We conclude the

chapter by proposing general system-building principles beneficial for environmental

constraint exploitation-based manipulation.

In Chapter 8, we conclude the thesis by summarizing the contributions, explaining

how our initial objectives were handled using environmental constraint exploitation,

and discussing problem factorization in robotics from a motion-behavior generation

perspective.
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Analyzing Grasping Systems That

Use Environmental Constraints

This chapter focuses on the implications of ECE usage on robotic system design. We

developed a robotic grasping system that combines contributions from Part I and II.

Since ECE usage affected our grasping and motion generation approaches, we also

want to analyze its effect on the overall system. The content of this chapter is unique

to the thesis and has not been published before.

A robotic system combines different hardware and software components. Actuators

move parts of a robot, and sensors detect or measure the physical properties of a robot or

the environment. A perception component collects and interprets sensory information,

a planner makes decisions based on sensory information and prior information about

an instance of a task, and control executes desired motions.

The performance of individual components of a robotic system can indicate its

capabilities and limitation. However, the overall system performance also depends

on the combination and cooperation of the components.

Traditional grasping systems follow the sense-plan-act paradigm, where perception,

planning, and control components are connected sequentially. First, a perception

component processes visual information about a given object. Then, a planner uses

the processed information to compute a grasp pose and the forces to be applied to the

object. Finally, a control component executes the plan. The cooperation of the three

components relies on accuracy because a planner computes a grasp pose based on the

assumption that object properties are accurately known or perceived, and controllers

can precisely touch the object and apply the desired forces.

In contrast, our system’s components cooperate to generate robust motion behaviors

using ECE rather than relying on perception and control accuracy. We showed
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in previous chapters that ECE reduces sensing, motion, and modeling inaccuracies

that reduce perception and control accuracy requirements. Thus, our components’

combination and cooperation are inŕuenced by ECE usage.

We analyze the implications of ECE on a robotic system with a case study. We

devised the Soft Manipulation (Soma) system to evaluate and demonstrate the realism

of technologies concerning soft robotics and environmental constraint exploitation.

These technologies were developed in the Soft-Bodied Intelligence for Manipulation

H2020-ICT-6455991 research project. The project partners, the consortium, were

composed of five research groups from academic institutions and two from the industry.

The developed software and hardware technologies were synergistically integrated into

the Soma system and evaluated in two real-world applications.

The purpose of the Soma system was to evaluate and demonstrate the realism of

novel technologies in real-world applications. Both applications involved grasping: one

focused on commercial food handling and the other on human-robot interactions.

Below, we present the two real-world applications, system requirements, and the

Soma system. Then, we explain the practical implication of ECE concerning the

combination and cooperation of our system’s components. We summarize evaluations

of this system performed by the consortium to show how the project goals were

accomplished. Finally, we compare the Soma system to three other complex grasping

systems, along with software component integration and general system-building

aspects, to provide a broad perspective on the implications of ECE on robotic systems.

The development of the Soma system was a team effort, combining many peo-

ple’s work within a research project. When discussing components concerning my

contributions, I will use the first-person plural "we." For contributions from other

project partners, I will use the noun "consortium." The lead developer responsible for

integration and deployment was the Robotics and Biology Laboratory from Technische

Universität Berlin, and I, the author of the thesis, was part of this team. My unique

contributions to the system are the design and implementation of various software

interfaces and components: the design of grasp feasibility modules, the implementation

of the simulated environment, the implementation of a grasp heuristic, the implemen-

tation of various communication interfaces, and the augmentation of the grasp planner

and the graphical user interface.
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Figure 7.1 Soma system’s hardware setup at the Technische Universität Berlin and the
two real-world applications. The depicted system used a Barrett WAM 7-DOF arm and
an RBO Hand 2 with a wrist-mounted force-torque sensor and a lower-arm-mounted
RGB-D camera. Left: in the commercial food handling application, the robot picks the
same fruits or vegetables from a green bin and places them into bags in the red bin ©
2021 IEEE. Right: in the human-robot interaction application, the same robot picks
up an object from a table and hands it over to a human or places it back on the table
if the human did not take it.

7.1 Demonstrator Applications and Requirements

Before we describe the Soma system, we present two real-world applications for which

the system was designed. Each industrial project partner provided one application

by defining a real-world task and a set of requirements for later evaluations. The

two applications involved grasping in well-structured environments, but the domains

were different. Hence, the task requirements and evaluation criteria were different

as well. The first application, commercial food handling, was defined by Ocado, the

world’s largest dedicated online grocery retailer. The second application, human-robot

interaction, was defined by The Walt Disney Company, a mass media and multi-industry

entertainment company.

Below, we list all task and project requirements, and then we describe each task

and explain their requirements:

R1 modular design,

R2 reconfigurability,

R3 reliable execution,

R4 damage-free food handling,

R5 reasonable execution speed,

R6 safe human-robot interaction, and

R7 realistic and conformable interaction.

1project page https://soma-project.eu/

https://soma-project.eu/
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7.1.1 General Requirements

The Soma project defined general system requirements to evaluate the developed

technologies and to demonstrate these technologies in relevant applications. Formally,

the objective was defined as reaching a Technology Readiness Level (TRL) seven.

The consortium used the TRL, defined by the Horizon 2020 guidelines, as a realism

and applicability indicator. Initially, the consortium validated their technologies in

well-controlled laboratory environments (TRL 4). Then, these were validated in an

application-relevant environment using production line containers and real fruits and

vegetables (TRL 5). Next, different technologies were combined into the Soma system,

and the system was used as a demonstrator during periodic project evaluations (TRL 6).

Since components were developed and evaluated continuously, their integration and

deployment were also continuous. Therefore, the project requirements aimed to ease

integration and deployment efforts in two ways:

R1 modular design ś Since project partners had to integrate their technologies into

the Soma system, the system design was required to support easy integration of

new components. The system had to be modular to reduce integration efforts so

that partners could integrate technologies as individual components. A modular

design affected both software and hardware solutions and supported the validation

of different combinations of alternative system components.

R2 reconfigurable design ś The Soma system had to be deployed at industrial partners

for periodic evaluations and demonstrations. The system had to be reconfigurable

for the two applications and for different hardware platforms. Our industrial

partners used different robot arms (e.g., Kuka LBR IIWA 14 and P-Rob2 by

F&P Robotics), and they also had to evaluate different end-effectors developed

by the consortium.

7.1.2 The Commercial Food Handling Application

The food and agriculture industry is a multi-trillion Dollar industry2, and humans still

perform food handling in the lack of relevant robotic technologies. Food handling and

packaging is a challenging robotic problem because food packages have irregular shapes

and deformable structures, and the goods are easily damaged. The Soma project

developed novel technologies capable of addressing the mentioned challenges and tested

these technologies within the following application.

2https://www.statista.com/outlook/cmo/food/worldwide

https://www.statista.com/outlook/cmo/food/worldwide
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We provide a brief description of our commercial food handling application with

an emphasis on the requirements because we described the same application in detail

when evaluating the use of granular ECE in Section 6.3.3. For more details, we refer to

the task and requirement definitions in the public project deliverables D5.1 and D5.23.

In the commercial food handling application, a robot had to grasp one delicate

and fragile fruit or vegetable from a bin. The bin’s location was known and contained

only one type of fruit or vegetable. Then, the robot had to transport and drop off the

grasped object into a collection bag with a known location. The fruit and vegetable

types were: a net bag of limes, mango, cucumber, a pack of three avocados, and a bag

of green salad. Before grasping, the type of fruit or vegetable was known, but their

exact properties (e.g., shape, mass, size) or location inside the bin was unknown. Note

that the objects never filled the bottom of the bin. Figure 7.1 illustrated on the left

side the task and one hardware setup.

Since the bin provided static walls and corners, the robot was able to choose between

a surface-, wall-, or corner-grasp strategy. The latter two strategies are analogs with

the one presented in Section 6.1.2 when α = β = 0° and the pile was next to a wall

or corner, respectively. With surface-grasping (Eppner and Brock, 2015)4, a hand

approached an object with its palm facing down. Then, the hand was lowered until

a contact event was detected with the object or the support surface. Finally, the

fingers were closed such that they slid on the support surface until they wrapped

around the object. Our industrial partner defined the commercial food handling system

requirements as follows:

R3 reliable grasping and transportation of goods ś This requirement ensured an

object’s successful pick and place and affected all components. Our system used

a modified version of the grasp planner from Section 6.2 and leveraged granular

and geometrical ECE by distributing responsibilities between control, planning,

perception, hardware morphology, and the environment to achieve robust grasping.

Hence, all software and hardware components needed appropriate cooperation

for reliable grasping.

R4 damage-free food handling ś This requirement ensures that fruits and vegetables

are not damaged (e.g., bruised). It mostly affected end-effector designs, but it

also inŕuenced the execution. For example, we limited the applied forces and the

drop-off location’s height.

3D5.1 Requirements Analysis and D5.2 Revised Requirements Analysis are published at
https://cordis.europa.eu/project/id/645599/results

4Video of the surface-grasp strategy: https://youtu.be/wzWAkwj95hk

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b61fc4bb&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b6803bae&appId=PPGMS
https://cordis.europa.eu/project/id/645599/results
https://youtu.be/wzWAkwj95hk


140 Analyzing Grasping Systems That Use Environmental Constraints

R5 reasonable grasping speed ś While this requirement had a lower priority than the

previous two, it affected mainly software components because a robot’s maximum

velocity was limited for damage-free and safe execution.

7.1.3 The Human-Robot Interaction Application

Human-robot interaction spans an enormously large application domain because robots

and humans should move closer to co-exist and co-work. Therefore, it is vital to address

the safety of manipulation systems and humans’ willingness to approach or collaborate

with robots. The Soma technologies were tested in a handshaking and a handover task.

Below, we focus on the handover task because it involves object grasping.

In the handover task, a robot equipped with an anthropomorphic robotic hand

picked up an object from a tabletop and handed it over to a human. If the human did

not take the object, the robot had to place it back onto the table. The location and

geometry of the table and the objects were not known. The object type was known

prior to grasp, and the following objects were considered for handover: a plush toy, a

headband, an apple, a banana, a bottle of water, and a ticket. For a detailed task and

requirement description, we refer to the public project deliverables D6.1 and D6.25.

In a tabletop environment, a robot could use the surface- or the edge-grasp strategy.

The surface-grasp strategy is identical to the one presented above. The edge-grasp

strategy (Kappler et al., 2010)6 leverages convex edges of a surface to expose a ŕat

object’s opposing sides for pinch grasping. A thin object is pushed to the edge of a

table so that the opposing surface of the object is free to be grasped. Since no vertical

walls or corners were on the table, wall- and corner-grasp strategies were not available

for grasping in this application.

While the previous application domain formulated quantifiable requirements (e.g.,

execution success, damage-free interaction, and execution speed), this application

focused on qualitative aspects. This is because the consortium wanted to analyze how

humans perceive interactions with a robot:

R6 safe interactions and increasing perceived-safetiness by humans ś This requirement

inŕuenced both software and hardware components. The developed hardware

technologies had distinctive benefits for human safety due to their inherent

compliance. It also affected planning and execution because motion behaviors

inŕuenced perceived-safetiness as well.

5D6.1 HRI Use Cases and D6.2 HRI Use Cases are published at
https://cordis.europa.eu/project/id/645599/results

6Video of the edge-grasp strategy: https://youtu.be/0LnvVSEINH4

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b61fcc59&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b68037be&appId=PPGMS
https://cordis.europa.eu/project/id/645599/results
https://youtu.be/0LnvVSEINH4


7.2 Software Architecture of the Soma System 141

R7 increased realism and comfort perceived by humans ś This requirement similarly

affected hardware and software components. Compliance was again beneficial

from a hardware point of view. With software, an early system evaluation has

shown that the reliable grasping (R3) and smooth motion trajectories inŕuenced

perceived realism and comfort.

7.2 Software Architecture of the Soma System

This section describes the software architecture of the Soma system and explains how

the system fulfills the previously presented requirements. We start with a high-level

description of the system and later provide details about each software component.

We implemented a modular software architecture (R1) using the Robot Operation

System (ROS). In ROS, we implemented each module as a stand-alone application

(node). We used ROS communication protocols to implement various interfaces

between nodes. With ROS service calls, we implemented one-to-one synchronous

communication between nodes that implement specific functionalities. With ROS

topics, we implemented one-to-many asynchronous communication for data logging.

The system is composed of four main software components that were further

decomposed into sub-components and implemented as ROS nodes. In the following,

we describe each component and its sub-components.

7.2.1 High-Level Task Manager

The Task manager implemented the high-level behavior of the system. It synchronized

sensing, planning, and control and the data ŕow between components. Moreover, it

provided failure handling, data logging with execution labeling, and a Graphical User

Interface (GUI) to configure, monitor, and control task execution.

The Soma system had to pick and place fruits/vegetables or handover objects

autonomously. This high-level behavior was implemented with a state machine, as

illustrated in Figure 7.2. The Task manager implemented the state machine with

five states: Visual detection, Grasp planning, Strategy execution, Handover/Drop-off

(depending on the application), and Idle mode. The system started in Idle mode, and

the manager activated the states with a service call. If all objects were picked or a

failure occurred, the system transitioned back to Idle mode.

In Idle mode, the robot stopped moving, and it was either in gravity compensation or

in a locked-joint mode increasing the system’s safety (R6). This way, the system avoided
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Figure 7.2 The Task manager used a state machine with five states (blue boxes),
successful, and failed (dashed) transitions, where the starting state is indicated with a
gray circle.

potentially dangerous interactions with humans, fragile fruits or vegetables (R4), or

the environment. We discuss each state’s failure modes in more detail when describing

the associated system component. Note that a failed grasp attempt was not considered

a system failure.

For the Idle mode and Handover/Drop-off states, the Task manager generated an

executable plan and sent it to the ROS node that implements Strategy execution.

Data-Flow Between States

The system was designed to be highly modular (R1) using ROS nodes because the

consortium developed many (sometimes alternative) software and hardware technologies

while researching soft-bodied intelligence. For easy integration, it was essential to

implement well-defined communication interfaces. These interfaces were implemented

as ROS services, and the Task manager was calling the services to perform computation

with specific nodes. The service calls returned the requested data (or failure). The

data ŕow between components is illustrated in Figure 7.3 and described below.

The Visual detector received point cloud data from an RGB-D camera and com-

puted an ECE-graph, as presented in Section 6.2.2. The graph was sent to the Grasp

planner that selected a grasp strategy and generated an executable hybrid automa-
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Visual detector Ggasp planner

RGB-D image ECE-graph Grasp strategy Grasp behavior
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config fileconfig fileconfig file

Figure 7.3 Data ŕow between high-level components of the Soma system. The Visual
detector received a point cloud of the scene from the lower-arm-mounted RGB-D camera.
It computed the ECE-graph where ECE nodes contained a frame attached to ECs and
the object. The Grasp planner chose an object (yellow bounding box) and a grasp
strategy (e.g., surface-grasp) visualized with the pre-approach hand position. Finally,
the strategy was sent to the Hybrid automaton (HA) manager that generated the
desired grasp behavior by sequentially executing different controllers. A configuration
file, specific for the used hardware and application domain, was an additional input for
each system component.

ton (Henzinger, 2000) as discussed in Section 6.2.2. Finally, the Hybrid automaton

manager instantiated the controllers and sequenced their execution to generate the

desired manipulation behavior.

To easily reconfigure the system for different hardware platforms and applica-

tions (R2) (e.g., various robot arms, pick-and-place, or handover), software components

were parameterized with configuration files. We provide further details about the

configuration files for each component in their respective sections.

Graphical User Interface and Data Logging

The GUI was implemented as part of the Task manager and served multiple purposes,

as shown in Figure 7.4. It enabled reconfiguration of active components at run

time (R2), increased execution safety (R6), and decreased the integration effort of new

components (R1).

The GUI increased the system’s reconfigurability by allowing the user to select

between alternative functionality implementations (e.g., motion feasibility checking)

or turn on/off optional functionalities (e.g., grasp success estimation) without restart-

ing the system. The alternative and optional functionalities are discussed for each

component in later sections.
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Figure 7.4 Image of the graphical user interface of the Soma system. We visualized
the system’s current state by showing: 1) the ECE-graph, the selected strategy and
its phases, 2) up to two live video streams, 3) the operation mode and current state
of the state machine, 4) the selected object type, and 5) the end-effector state. The
user could select 6) hand orientation parameters when leveraging granular ECE for
grasping, 7) system behavior, and 8) activate grasp success estimation. At the bottom,
9) we listed the hotkeys for the manual operation mode.

The GUI also increases operational safety because a user could trigger failure at

anytime. Moreover, a user had to approve transitions between states when the system

was in manual operation. For informed approvals, the GUI visualized the system’s

intermediate states and internal variables, such as the ECE-graph, the selected strategy,

and other system parameters.

The GUI decreased integration efforts because it allowed testing a particular state

of the system while reusing the outcomes of previous states. For expert users, the

GUI provided hotkeys to transition to any state while reusing the last registered

outcomes from all other states. For example, an expert could fine-tune controller gains

by re-executing a grasp strategy over and over using the same hybrid automaton.

The Task manager provided systematic data logging, and the GUI complemented

it with labeled execution outcomes. The manager saved sensor measurements such

as video feeds, joint states, and force-torque measurements in a ROS Bag file. In
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contrast, the ECE-graph, hybrid automation, current system configuration, and labeled

execution outcomes were saved in an XML file. Execution outcomes could be labeled

manually or automatically. With manual labeling, a user could enter the number of

grasped objects or free text to describe the execution process. With automatic labeling,

the manager estimated the mass held by the robot after lifting the closed hand and

logged the estimated number of grasped objects.

In summary, the Task manager implemented a high-level behavior of the system

and combined system components following the sense-plan-act paradigm. At lower

abstraction levels, we used different component combinations depending on desired

motion behaviors. Next, we describe the general components and their sub-components.

7.2.2 Visual Detector

The Visual detector 7 computed the ECE-graph from point cloud data of an RGB-D

camera. The consortium decomposed the detector into EC extraction and object

detection and developed alternative solutions for each sub-component. We present

two solutions: A general solution was applicable for both applications using minimal

assumptions about the tasks, and it could detect ECE for surface-, wall-, corner-, or

edge-grasp strategies. The other solution was designed specifically for commercial food

handling using strong task-based assumptions. Both solutions returned an ECE-graph

where the nodes contained geometrical properties of the environment (e.g., a frame

attached to the detected surface where the z-axis was aligned with the surface normal.)

and a list of detected objects (or the entire pile) represented as oriented bounding

boxes. If the ECE-graph was empty or no object was detected, the detector returned

failure.

The general visual detector was initialized with a configuration file (R2) that

could limit the possible ECs to be detected, provided camera-specific parameters for

pre-processing, and defined ECE transitioning conditions based on the used end-effector.

With the task-tailored solution, the consortium aimed to reduce ECE-graph com-

putation (R5) by leveraging priors about the commercial food handling task as as-

sumptions. Since the bin’s geometry was known and its location was constant, the

ECE-graph was predefined. The component computed the EC-relevant data for each

node in the graph only when the Soma system was newly set up. It computed the

bin’s location for a new setup by detecting two perpendicular and vertical planes in

7Visual Detector: https://github.com/SoMa-Project/vision

https://github.com/SoMa-Project/vision
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front of the robot, assuming that those are two bin walls, and assigned frames to ECs

using the bin’s geometry.

7.2.3 Grasp Planner

The Grasp planner 8 devised a grasp strategy based on the ECE-graph and generated

an executable hybrid automaton. We decomposed grasp planning into two abstraction

layers. The symbolic planner from Section 6.2 reasoned about grasping, and on a

lower abstraction level, the motion planner from Section 3.2 reasoned about motion

trajectories. The Grasp planner was initialized with a configuration file defining

hardware-specific parameters for grasp strategy selection, motion generation, and

hybrid automaton generation.

The symbolic planner searched for a grasp strategy in the received ECE-graph. We

defined a heuristic function to estimate grasp success probability using the findings

of Eppner and Brock (2017) about single object grasping with geometrical ECE. This

function weighted grasping nodes in the ECE-graph. A user could select if the planner

should maximize grasp success probability (R3), select a random object-strategy tuple,

or sample a tuple based on grasp success probability. Since the grasp plan was symbolic,

it did not ensure a collision-free motion with other ECs or that the desired hand motion

is followable with the used controllers. Thus, we provided a sub-component to ensure

motion feasibility (R3).

Motion feasibility evaluation was an optional component that could be activated

in the GUI, and the consortium developed alternative solutions. We present below

two alternative solutions. One solution geometrically reasoned about objects’ location

relative to the bin’s walls, and the other used sampling-based motion planning.

With geometrical reasoning, we filtered grasp strategies based on an object’s relative

location to other ECs that were not used with the respective strategy. For instance,

surface-grasp strategies were filtered out for objects within ϵ distance from a wall of the

bin. While geometrical reasoning could quickly filter nodes of the ECE-graph (R5) that

may cause execution failure, it could not handle a robot arm’s kinematic or dynamic

limitations. So, we provided a motion planning solution as well.

Our planning-based solution9 could avoid undesired collision and kinematic or

dynamic limitations of a robot arm, as shown in this video10. It is a task-tailored

8Grasp planner: https://github.com/SoMa-Project/ec_grasp_planner
9TUB’s motion feasibility module: https://github.com/SoMa-Project/tub_feasibility_

check
10example of collision avoidance using our feasibility module: https://youtu.be/8h4tCEGkmQs

https://youtu.be/8h4tCEGkmQs
https://github.com/SoMa-Project/ec_grasp_planner
https://github.com/SoMa-Project/tub_feasibility_check
https://github.com/SoMa-Project/tub_feasibility_check
https://youtu.be/8h4tCEGkmQs
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version of the CEET planner presented in Section 3.2. First, we omitted wavefront

exploration because the task and strategies were well-structured but provided the

approximated task-relevant regions with cuboids based on the detected ECs and

geometrical priors of the bin or table. Second, we limited the planner’s action to the

guarded and sliding motions for the grasping strategy’s approach and slide phases.

Moreover, the end-effector orientation was kept constant as defined by the grasp

strategy, for example, the palm facing up for wall-grasp or down for surface-grasp.

The consortium further extended our planning-based solution to generate jerk-limited

trajectories increasing the realism and comfort preconceived by humans (R7). The

output of the motion planner was a joint trajectory.

A chosen grasp strategy, including the optional joint trajectories, was converted

into a hybrid automaton and returned as an XML file to the Task manager. To improve

damage-free commercial food handling (R4) and safe execution (R6), the Grasp planner

included safety switches in the hybrid automaton. Safety switches were conditioned to

stop a robot’s motion and trigger execution failure transitioning the system into Idle

mode. Such switches were triggered if joint velocities, force, or torque measurements

breached a hardware-specific limitation.

The Grasp planner returned failure if it could not find a strategy with a grasp

probability score larger than a predefined threshold unless the user selected a random

object-strategy selection. It also returned failure if the motion planner could not find

a valid trajectory for a given strategy.

7.2.4 Hybrid Automaton Manager

The Hybrid automaton manager instantiated the controllers and sequenced them into

sets of controllers. A set of controllers could be composed of a single controller, for

example, a joint position controller that moved the arm to the drop-off location, or

multiple controllers running in parallel. For example, a task-space controller rotated

the wrist of the hand, and the hand controller closed fingers during grasping while

executing the final phase of a wall grasp strategy. The transitioning between different

control sets was based on discrete sensor events, for example, contact events measured

with a force sensor when transitioning between two ECEs. The manager also published

sensor measurements about the robot’s state and its own state for data logging.

We provided the core functionality with the Hybrid Automaton Library11, developed

prior to the Soft Manipulation project. The library defined the communication interface

11Hybrid Automaton Library:
https://github.com/SoMa-Project/hybrid-automaton-library

https://github.com/SoMa-Project/hybrid-automaton-library
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and general functionalities. The Hybrid automaton manager implemented low-level

communication with hardware components. Hence, partners implemented their manager

for their hardware platforms.

7.2.5 Application Domain Simulator

In order to develop an integrated demonstrator and evaluation platform, it is essential

to start the integration of research contributions as early as possible.

For early integration, we provided a Gazebo-based simulation. The simulation

included a task-relevant environment, a partner’s robot arm, an RGB-D camera, a

force torque sensor between the arm and the end-effector, and a minimal working

example of a Hybrid automaton manager for the respective robot. With the simulator,

we were able to support early integration and deployment (R1).

Next, we explain the practical implications of ECE on the Soma system building on

our detailed system description. Then discuss the achieved project goals and summarize

system evaluations. Finally, we compare our system with other systems to derive

beneficial system-design practices for ECE-based manipulation.

7.3 Implications of Environmental Constraint Exploita-

tion on the Soma System

ECE-based grasping affected how our system’s software and hardware components

interacted and cooperated because we used ECE to reduce state uncertainty, gener-

ate reactive manipulation behavior, and replace computational aspects traditionally

performed by different software components.

Traditionally, a manipulation system was divided into components with well-defined

responsibilities: perception provided an accurate world model, a planner computed

accurately where and how to apply forces on an object, and controllers accurately

executed the computed plan. Such strong assumptions about accuracy are optional

when using ECE.

With ECE-based grasping, we did not assume an accurate perception of the world

or accurate execution but augmented inaccurate knowledge about the world and robot

state with contact-based sensing. ECE provided discrete contact events that were

easy to detect, and we successfully integrated such events into the presented motion
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and grasp planners in Part I and II. This way, we tightly integrated perception into

planning and control.

Furthermore, we reduced uncertainty mechanically. To leverage mechanical un-

certainty reduction, we analyzed the conditions under which granular ECE manifests

and have shown that it can replace computational aspects of perception, planning,

and control. Thus, the Soma system distributed responsibilities between the environ-

ment, software, and hardware components by co-design hardware, control, and the

environment.

In the following, we explain how planning, perception, control, and hardware

design were affected due to the relaxation of accuracy assumption and distribution of

responsibilities.

7.3.1 Planning for What We See and Touch

Traditional grasp planners were responsible for providing guarantees for grasp stability.

In contrast, Chapter 6 showed that this responsibility could be shifted from the planner

to the environment because granular ECE provided reliable object stabilization for

grasping from piles of round objects. To shift grasp stability responsibility to the

environment, the planner had to know about grasp affordances for an instance of a

problem, and this information was obtained with visual perception. Therefore, planning

and visual perception became tightly coupled, so the robot planned for what it saw.

Moreover, robust grasping was achieved with a sequence of ECE. The planner

created a reactive plan that reasoned when to start and stop an ECE based on contact

events. To generate a reactive plan, we anticipated contact events from detected EC

affordances and integrated them into the plan. Thus, we tightly integrate contact

sensing and planning, so the robot plans for what it will touch.

7.3.2 Integrating Perception Into Planning and Control

Traditional grasp planning assumed perfect knowledge of the manipulandum’s geometry

or that the geometry can be perceived accurately. In contrast, we relieve the accuracy

requirement about objects’ geometry for perception. We used simple features, such as

an oriented bounding box, indicating which grasping strategy is applicable (Eppner

and Brock, 2017). Even though we reduced accuracy requirements for perception, it

became tightly coupled with planning, control, and hardware.

Visual perception is not only coupled with planning but also with a robot’s em-

bodiment. Visual perception had to detect ECs and their connectivity to compute
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an ECE-graph. The graph’s connectivity depends on the environment’s geometrical

connectivity and an end-effector’s morphology. Therefore, we needed information about

the hardware used for grasping to compute the ECE-graph creating a tight coupling

between visual perception and the robot’s morphology.

Contact-based sensing became essential for our system because it was tightly

integrated into planning and control. Besides visual perception, our system used

contact sensing for planning and control. Our planners anticipated detectable contact

events indicating an expected outcome or a deviation. Our planners required a sensor

model to reason about detectable contact events. We used force torque sensors and

defined contact events with threshold values on the continuous force measurements.

During execution, the thresholded force measurements triggered controllers’ activation

and deactivation, generating a reactive motion behavior.

7.3.3 Co-Designing Control, Hardware, and Environment

Traditionally, execution focused on motion generation and applying forces at specific

locations of an object while ignoring the environment. With ECE-based grasping, we

used the environment for robust grasping and focused on generating manipulation

behaviors. Our manipulation behaviors resulted from the interaction between a robot,

objects, and the environment depending on the applied control signals. We co-design

the applied control, robot hardware, and the environment to achieve the desired

manipulation behavior.

We provide co-design examples from the consortium’s integration and system

evaluation efforts. Since the thesis focuses on motion generation, we present practical

examples affecting grasp and motion planning. We encourage the reader to review the

following publications resulting from the Soft Manipulation project for a more in-depth

discussion on co-design Ghazi-Zahedi et al. (2017) and Abele and Brock (2017).

Hand morphology and control: The consortium developed a variety of compliant

end-effectors, where compliance was achieved mechanically with human-like tendon-

driven fingers (Catalano et al., 2014), actively controlled (Friedl et al., 2018), or by

using soft structure (Deimel and Brock, 2016). A compliant end-effector is beneficial

for grasping because it can passively adapt to the shape of an object. Thus, grasping

was robust for some amount of variation in an object’s shape (such as for fruits and

vegetables) and position inside the hand. Moreover, the number and size of contact

patches between an end-effector and an object increased due to compliance making the

grasp better resist external forces. While compliance is highly beneficial, stiffening of a
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Figure 7.5 Co-design examples of hardware components and the environment: a) a new
RBO Hand 2 finger, b) similar finger but with blue fingernails and powdered surface,
c) finger with chemically reduced surface friction, d) the ŕat inner surface of a finger,
e) finger with soft pulps, f) original bin, g) modified bin with a smooth and powdered
surface to reduce sliding friction, and a rounded edge along the right wall to enable
wall grasping less round objects.

finger can improve resistance against an object’s mass so that the fingers do not open

or bend away when lifting a heavy object.

As an example of co-designing hardware and control, we used the morphological

compliance of the RBO Hand 2 to adapt to the shape of an object and compensate

lack of stiffness with wrist-hand motion when grasping heavy objects. We pre-inŕated

the fingers before grasping and pitching the hand while closing the finger. Pre-inŕation

increased the stiffness of fingers. However, heavy objects (e.g., cucumbers or mangoes)

could still bend the fingers away and not around the object. Thus, we used controlled

wrist motion to roll a heavy object toward the palm when using the wall- or corner-grasp

strategies.

Importance of friction: Friction forces are beneficial to hold and transport an

object reliably because such forces provide resistance against slippage due to gravity

or other external forces. Yet, friction forces are less desired when a hand slides on a

surface because they increase the hand’s wear. Moreover, these can trigger contact

events identical to contact normals which could prematurely switch the active controller.

Therefore, we desired higher friction on the inner side of the fingers than on the outer

side.

Inspired by human anatomy, the consortium increased the friction on the inner

side of the RBO Hand 2 fingers with pulps made of very soft silicon (see d and e in
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Figure 7.5). These pulps increased friction and the size of contact patches due to their

softness, further improving grasp robustness.

For friction reduction, the consortium also experimented with changing the fingers

and the environment. With the RBO Hand 2, one approach was adding fingernails

inspired by human anatomy (see b in Figure 7.5). However, fingernails had no observable

or measurable effect on grasping. Another approach was to apply a chemical on the

back of the fingers (see c in Figure 7.5). While it reduced friction, it also increased

production cost and duration significantly. A further approach was to powder the

back of the fingers, which was an effective and inexpensive solution. However, friction

between a hand and the environment can be reduced by changing the environment, for

example, by adding an inlay or powdering the bottom surfaces of the bin.

Modifying the environment: We modified the bin used in the commercial food

handling application to simplify perception, planning, and control. To simplify per-

ception and planning, we tilted the bin, so round objects always stayed next to one

specific bin wall. Hence, pile (or object) detection was not required to select ECs for

grasping.

To simplify control, the consortium applied two changes to the bin. First, we

covered the ridges on the bottom of the bin with a sheet, making the sliding motion

smooth even with open-loop control. Secondly, the consortium placed an inlay next

to a wall making the convex edge rounded. The rounded corner enabled grasping less

round objects with the wall grasping strategy (f and g in Figure 7.5).

The described co-design examples resulted from periodic system evaluations and

from close collaboration between researchers developing hardware and software solutions.

System evaluation provided feedback for hardware and software development and led

to new research questions, for example, the one answered in Chapter 6: Why can a

robot reliably grasp from piles of objects using simple open-loop control?

7.4 Soma System Evaluation

The Soma system aimed to evaluate concepts and technologies of soft-bodied intelligence

for manipulation and to demonstrate the realism of these technologies in relevant

environments. The consortium achieved both goals during the project run-time and

published relevant results that we summarize below.
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7.4.1 The Soma System Became an Evaluation Platform

The Soma system became an evaluation platform shortly after its initial deployment.

First, the consortium used the Soma system to evaluate two compliant hands (Tri-

antafyllou et al., 2019) developed by the consortium. Then, Mnyusiwalla et al. (2020)

performed an overall system evaluation using four different compliant end-effectors

(three gripers and a hand). Beyond the published results, the Soma system was used

with three robotic arms: Barratt WAM, KUKA LBR iiwa 14 R820, P-Rob2 by F&P

Robotics, and five end-effectors: Pisa/IIT Hand (Catalano et al., 2014), Pisa Soft-

gripper, the CLASH Hand (Friedl et al., 2018), the RBO Hand 2 (Deimel and Brock,

2016) and RBO gripper. As a result, our system achieved its first goal of becoming an

evaluation platform of software and hardware technologies.

Summary of Published Evaluations Concerning System Design

The Soma system distributed computational responsibilities between system compo-

nents and the environment. Triantafyllou et al. (2019) have shown increased grasp

success with below-average visual perception and without using contact sensing as

continuous feedback when leveraging ECE with two different compliant hands. This

suggests that ECE and the compliance of the hands reduced object position uncer-

tainty. Mnyusiwalla et al. (2020) increased the complexity of the commercial food

handling task by increasing the number of objects in the bin. Their results confirmed

that ECE-based strategies work in cluttered environments without object singulation

prior to grasping and indicated the existence of the granular EC. Therefore, object

singulation, as a traditional responsibility of visual detection, planning, and controller,

was replaced by the exploitation of ECs.

Mnyusiwalla et al. (2020) also noted that some system failures occurred due to

controller failures, for example, joint limits, singularities, or unintended collisions

when executing a grasp strategy generated by the symbolic planner. Furthermore,

the consortium also observed an increase in similar system failures when using the

P-Rob2 arm with only 6-DOF compared to the other used arms with 7-DOF. Both

observations motivated the need for a motion planner that can mitigate such issues.

With the modified CEET motion planner, we demonstrated robust grasping in real-

world demonstrations during the final project review meeting in 2019.
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7.4.2 The Soma System Became an Integrated Demonstrator

The consortium continuously integrated newly developed technologies into the Soma

system and demonstrated its capabilities during periodic evaluations in July 2018 and

May 2019.

During the final evaluation, the consortium demonstrated both applications using

similar software components on two different hardware platforms. Both demonstrations

have shown that the Soma system integrated a variety of scientific contributions and

reliable task execution in both application domains.

Since the consortium demonstrated reliable execution in relevant environments for

commercial food handling and human-robot interactions, the system with its software

and hardware components reached TRL 6 (Section 7.1.1). This strongly indicates

that our system, the ECE concept, and soft-bodied manipulation are applicable for

industrial use.

7.5 Implication of Environmental Constraint Exploita-

tion on Grasping Systems

Next, we compare the Soma system with three other complex grasping systems to

highlight the implications of ECE on general system design. We compare the four

systems with respect to integration and general system building aspects.

With component integration aspects, Triantafyllou et al. (2021) proposed a method-

ology for analyzing the integration of complex robotic systems, and they illustrated

the use of the methodology within a bi-manual pick and place task. The respective

grasping system was developed under similar conditions as the Soma system because

five partners from academia and one from industry developed it within the SecondHands

research project12. We use the proposed methodology and the described system in our

analysis to identify how component integration affects general system-building aspects.

With general system building aspects, Eppner et al. (2018) proposed four key

dimensions for designing robotic systems and compared their system with multiple

other systems developed for the Amazon Picking Challenge in 2015. The authors’

system is our second candidate for comparison, and we use their four comparison

criteria to identify the implications of ECE on robotic system building.

12SecondHands project page: https://secondhands.eu/index.html

https://secondhands.eu/index.html
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First, we present the three systems and their respective grasping tasks and describe

comparison criteria. Then we discuss similarities and differences between all four

systems for component integration and general system building.

7.5.1 Candidate Robotic Systems for Comparison

The State-of-the-Art Dexterity Network

We included the Dexterity Network, or Dex-Net, in our comparison because it is the

state-of-the-art universal picking solution. The respective research project aims to

develop highly reliable robotic grasping for various rigid objects. Their latest solution,

Dex-Net 4.0 (Mahler et al., 2019), learns ambidextrous robot grasping policies. We

will refer to this system as DN system in later parts of this chapter.

Figure 7.6 Illustration of
the DN system with a bi-
manipulator, a suction cup, a
gripper, and a 3D scanner used
for universal packing.

Their task was to learn ambidextrous robot grasp-

ing from 75 different objects, where the system knew

50 of these objects. They used the known objects in a

simulation to train a grasp policy on synthetic datasets.

In real-world experiments, a robot had to pick objects

from a randomly built pile of 75 objects and place it

into a tray on the side. Their robot picked and placed

objects until all objects were placed into a tray or if

the robot failed ten times consecutively.

Their hardware setup was composed of the

ABB YuMi bi-manual industrial collaborative robot

equipped with a custom-built parallel-jaw gripper on

one arm. The other arm had a custom-built suction

cup gripper. The system used an industrial 3D scanner

with a fixed location to perceive objects in a pile.

The software part of the system was composed of

a grasp planner, a linear motion planner, and linear motion controllers. The grasp

planner used the offline learned policy and the 3D scan of a given scene to choose a

grasp pose for a specific object and end-effector. Then, a motion planner computed

a trajectory, and the controllers moved the end-effector to the grasp pose and to the

drop-off location. We assume that their system used the ROS framework even though

it is not disclosed in their publication. We based our assumption on the fact that

Dex-Net is integrated into ROS and the ABB YuMi robot that also has planning and

control implementations in ROS.
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The DN system used no ECE for grasping, and its design is similar to a traditional

grasping system. The grasp planner used the policy to compute a grasp pose by

assuming that perception provides accurate 3D features. It also assumed that the

robot could reach the desired grasp pose accurately. In contrast to traditional grasping

approaches, such as form or force closure, the system used a learned grasp policy rather

than an analytical contact-based interaction model to compute a grasp pose. Since

the DN system used no ECE and had a traditional design, differences to our system

should highlight the implications of ECE on robotic system building.

The Bi-Manipulation System of the SecondHands Project

The SecondHands’ (Triantafyllou et al., 2021) manipulation task was to pack a toolbox

with tools lying around the box on a tabletop. The packed tools had to be uniformly

distributed inside the toolbox. The toolbox’s location and the objects were known,

but the exact location of the objects was unknown. We will refer to this system as SH

system.

Figure 7.7 Illustration of the
SH system with two Kuka
arms, wrist-mounted force sen-
sors, two compliant hands, and
an RGB-D came used for tool
packing.

The hardware components included two identical

robot arms with two different mechanically compliant

hands. For sensing, force-torque sensors were mounted

between each arm and hand, and a fixed RGB-D cam-

era was placed above the workspace.

The software components were implemented in the

ROS ecosystem similar to ours. They had a vision

component detecting individual tools, a planning com-

ponent devising a motion trajectory for grasping and

placing a tool in the toolbox, and an execution compo-

nent implementing the drivers of the arms and hands.

The SecondHands project coordinator was the same

industrial partner, Ocado, who was also part of the

Soma project, and the two projects started a the same

time in 2016. Therefore, we can observe similarities in grasping techniques (e.g.,

a similar surface-grasp strategy was used in both projects) and in system design choices

(e.g., using compliant hands).

Since the SH system uses both ECE and compliant hands for grasping, we expect

that the characteristics of this system should align with our system and indicate ECE

implications on the robotic system’s design.
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The Winner Systems of the Amazon Picking Challenge in 2015

With the Amazon Picking Challenge in 2015, contestants built their robotic system to

pick and place autonomously twelve objects out of 25 from a warehouse shelf into a

storage container in 20 minutes. The objects were known, and the content of each shelf

was also known. However, the exact location of the objects on the shelf was unknown.

Figure 7.8 Illustration of the
APC robot approaching the
shelf. The robot was composed
of a mobile base with a lidar
and the WAM arm with an
RGB-D camera, a force sensor,
and a suction cup end-effector.

We compare our system to the one that won the

challenge in 2015, and we will refer to this system

as APC system (Eppner et al., 2018). The hardware

consisted of a holonomic mobile base, Barrett WAM 7-

DOF arm using a suction cup end-effector. The robot

was equipped with a laser range finder, an RGB-D

camera, and a force torque sensor mounted between

the arm and the end-effector.

Similarly to the previous systems, the APC system

also used a ROS-based ecosystem. It had a vision

component identifying objects inside a shelf, a local-

ization component to align the base with the shelf,

a planning component devising a grasp strategy and

transportation to the storage container, and an execu-

tion component implementing the drivers of the arms

and the suction cup.

Notably, the APC system used ECE with its slide

grasp strategy, where an object was pushed against a side wall of the shelf to align

the object with the wall. Hence, the characteristic of this system should also indicate

beneficial design choices for ECE-based manipulation.

The APC system was developed by the Robotics and Biology Laboratory, which

research group was the coordinator of the Soma project and the lead developer of the

Soma system. A few APC system developers were contributing actively to the Soma

system as well. Thus, their experience and understanding of robotic system building

inŕuenced the Soma system.

While all four systems were designed for similar grasping tasks using similar (and

sometimes even identical) components, we expect that differences between the three

designs arise from task requirements, integration requirements, and ECE implications.
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7.5.2 Comparing Component Integration Aspects

Early and continuous integration is crucial to creating a complex robotic system

because a system’s performance depends on the interaction and cooperation of the

used components that can only be evaluated after integration.

A system’s design is affected by the task and the integration effort required to

combine system components. Integration efforts increase as the complexity of a

system increases due to the increased number of components. It further increases

when developers are separated geographically due to less frequent and spontaneous

interaction between developers. Hence, it is important to analyze the integration effort

before comparing general system-building aspects.

Triantafyllou et al. (2021) proposed a methodology to analyze integration effort for

robotic system building and distinguished between high-level and low-level integration.

With each level, we present the proposed conditions for different integration strategies

and how these strategies were applied in the considered systems described above.

Little information is provided about the DN system components’ high- and low-level

integration aspects. Our assessment is based entirely on the fact that Dex-Net and

the used robot platform are ROS-enabled. However, the developers might have used

different software solutions to plan or control the two arms or end-effectors. Therefore,

we include the system in our comparison based on the previously drawn assumption,

but we are not going to discuss in detail this system’s high- and low-level integration

strategies.

High-Level Integration Strategies

With high-level integration, we need to analyze software compatibility and assess the

effort required to resolve compatibility conŕicts. The overall system is developed in a

native development environment defining the version and type of the chosen operating

system and available drivers and libraries. With compatibility analysis, we evaluate

if a component’s software requirements can be fulfilled in the native development

environment.

A component can be integrated directly, i.e., native inclusion when it is executable

directly in the native development environment. This type of integration is straightfor-

ward and requires little integration effort. A component may be natively included when

the effort is low to resolve software compatibility conŕicts (e.g., extending communica-

tion interfaces). However, when a component is not executable natively (e.g., missing

libraries or drivers), conŕict resolution increases integration effort substantially.
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System component Native inclusion Containerisation
ROS ecosystem Soma, DN, APC, SH Ð
Perception Soma, DN, APC SH
Planning Soma, DN, APC, SH Ð
Control Soma, DN, SH, Soma, APC, SH

Table 7.1 Comparing common components compatibility from native integration and
containerization point of view for the four systems. Note that a system’s component
may be assigned to both categories due to variations in sub-components or alternative
implementations.

To eliminate conŕict resolution effort, a component can be containerized in a virtual

environment so that its requirements are fulfilled inside the container without modifying

the native development environment. Even though containers (e.g., Docker13, LXC14, or

ROS MultipleMachines15) eliminate conŕict resolution efforts entirely, containerization

requires additional effort to setting up a container and to interface it with the native

environment.

In Table 7.1, we present the high-level integration strategies used for each system

component of the Soma, DN, APC, and SH systems. Since the DN system could use

ROS-enabled components, we assumed native inclusion for all of its components.

As Triantafyllou et al. (2021) pointed out, native inclusion is the general and

preferred integration strategy that we also observed in all four systems. For example,

the ROS ecosystem offers standardized communication interfaces and distributed

system architecture. It supports both Python and C++ programming languages for

native inclusion. Moreover, countless general software solutions are available in this

ecosystem for planning, perception, and control that can be readily used or easily

augmented. Thus, ROS fosters native inclusion.

On the other hand, containerization is frequently required for components imple-

menting controllers. Industrial robots have proprietary controller implementations;

oftentimes, these implementations are not native to ROS. All three systems used

containerization due to robot drivers. However, we must note that the respective

systems used customized hardware components, and some used alternative hardware

components, which increased the probability of driver compatibility conŕicts.

The difference between native and containerized perception highlights a challenge

frequently faced by researchers. The SH system’s visual perception component was

13Docker containerization: https://www.docker.com/
14Linux containers: https://linuxcontainers.org/
15Distributed ROS environment for driver or library conflicts: http://wiki.ros.org/ROS/

Tutorials/MultipleMachines

https://www.docker.com/
https://linuxcontainers.org/
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
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containerized because the developed software solution was not compatible with their

native development environment. The incompatibilities arose due to unmaintained

libraries. A similar issue would arise now with one of Soma’s ECTO16-based vision

component because ECTO is not maintained since 2018. The respective component

would require containerization or re-implementation. The latter option brings us to

low-level integration strategies.

Low-Level Integration Strategies

With low-level integration, we analyze the interoperability of the components within a

system and the components’ quality and performance levels. A component’s current

development state must be assessed both in isolation and within the system to estimate

the associated integration effort. Triantafyllou et al. (2021) proposed to analyze five

conditions of a component:

1. the component has a directly usable interface without any modification,

2. its programming language or framework is supported by the native environment,

3. its execution and resource usage is efficient,

4. it is well documented and tested, and

5. it is actively maintained.

If a component fulfills all five conditions mentioned above, it can be directly

integrated into a system because the integration effort is the lowest. The effort increases

depending on which conditions are unmet and the importance of those conditions. The

effort is medium when unmet conditions require component augmentation (e.g., interface

extension or performance improvements). A component needs re-implementation when

key functionalities or interoperability are not met.

The proposed method provides a quantitative evaluation to assess a component’s

integration effort and duration. The quantitative evaluation considers how well the

five conditions are met, weighted by priority. Since such evaluation is not available

for the APC and DN systems, we only compare the applied component-wise low-level

integration choices for all four systems. We encourage the reader to learn more details

about this quantitative evaluation from Triantafyllou et al. (2021).

16ECTO framework: https://plasmodic.github.io/ecto/

https://plasmodic.github.io/ecto/
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System
component

Direct integration Augmentation Re-implementation

ROS ecosystem Soma, DN, APC, SH Ð Ð
Perception APC, DN Soma, SH Soma
Planning APC, DN, Soma Soma SH
Control DN Soma, SH Soma, APC, SH

Table 7.2 Comparing common components integration via direct inclusion, augmenta-
tion, or re-implementation for the three systems. Note that a system’s component may
be assigned to multiple categories due to variations in sub-components or alternative
implementations.

Table 7.2 compares the four systems for low-level integration design choices. As for

high-level integration, we assumed that the DN system directly integrated all of its

components since there are ROS-enabled solutions. Since this is a strong assumption,

we excluded the DN systems from the below discussion.

We can observe two patterns. First, all three systems (Soma, APC, and SH)

directly integrated ROS because this meta-operating system provides well-structured

communication interfaces and off-the-shelf software solutions that can be directly

integrated into a system.

Secondly, the APC system used more direct integration than the Soma or SH systems.

We motivate this for two reasons: the developers were geographically localized, and they

developed novel components. Close collaboration enables ŕuid and quick knowledge

sharing. Moreover, novel software or hardware solutions have limited or no requirement

conŕicts. The APC system was created by one research group, and they developed

novel vision, planning, and execution components. In contrast, the other two systems

(SH and Soma) were developed by multiple groups located apart geographically and

built on existing software and hardware infrastructures.

As an example, the visual perception component of the APC system was devel-

oped from scratch. In contrast, Soma and SH used existing frameworks, ECTO and

TensorFlow, respectively. While SH developers had to adapt the interface of a neural

network in TensorFlow for integration, the Soma consortium had to augment ECTO

to interface it with ROS. However, the Soma consortium also re-implemented bin and

object detection outside ECTO due to curiosity to see if increased visual accuracy

improves the overall system performance.

In summary, native inclusion is the preferred high-level integration strategy, but

hardware components and deprecated software libraries often require containerization.

Moreover, low-level integration strategies span all three strategies within a complex
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Modular Integrated

Soma system SH system APC system beneficial region for ECEDN system

Figure 7.9 Comparing system building aspects of the four grasping systems along
the modular and integrated design spectrum, where the red band indicates the region
beneficial system designs for ECE usage.

system, especially for heterogeneous hardware platforms and geographically distant

developer teams.

7.5.3 Comparing General System Building Aspects

We want to analyze general system-building aspects beneficial for ECE-based manip-

ulation systems. Eppner et al. (2018) recommended characterizing general system

building along four dimensions, and each dimension proposes a spectrum of approaches.

They explored these dimensions and identified problem characteristics that can match

with regions along some dimensions. We want to extend their analysis by identifying

beneficial regions for an ECE-based manipulation system along each dimension.

We compared the four systems for the four general system-building aspects by

placing each system on the respective spectrum and highlighting beneficial regions for

ECE-based manipulation systems.

Modular Ð Integrated Spectrum

A robotic system can be decomposed into individual modules by breaking down a task

into simpler sub-problems which helps solve complex tasks. However, a wrong factoriza-

tion of the problem into sub-problems can make solving the task unnecessarily difficult.

Moreover, the system’s performance can only be determined by how these modules

collaborate to solve a given task and not by the individual module’s performance.

A modular design is preferred when the effort is increased for high- or low-level com-

ponents integration. It is especially beneficial when system components are developed

across distant developers (geographically or by expertise). Collaborative development

of an integrated solution requires a shared understanding of the problem and the

solution. However, using sub-components requires well-defined interfaces that can be

more easily communicated than knowledge.
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Next, we explain the placement of each system on the spectrum by starting from the

Modular side and progressing toward more Integrated systems, as shown in Figure 7.9.

We placed the DN system closer to the Modular end of the spectrum than the other

systems because its components individually solved sub-problems. At the same time,

there was a minimal coupling between components.

The SH system is somewhat further away from the Modular end than the DN system.

The system subdivided the packing process and used dedicated planning and control

components for grasping and placement that increased its modularity moderately.

However, it also coupled sensing, control, and hardware using a geometrical ECE-based

surface-grasp strategy similar to ours.

Our system is in the middle of the spectrum but slightly shifted to the Integrated end

than the SH system. The Soma system was designed to be a tightly integrated system

using hybrid automaton to couple planning and control and by adapting grasping

strategies to our compliant end-effector’s embodiment. However, we broke down vision

and planning into multiple sub-components, increasing the system’s modularity to

simplify the integration of components developed by different project partners.

The APC system is toward the Integrated end of the spectrum because its de-

velopment process, similarly to the Soma systems, was tailored to create a tightly

integrated system. This system also tightly coupled planning and control using a

hybrid automaton control scheme, and it adapted the picking strategies to their robot’s

embodiment and the requirements for object recognition. Compared to the SH and

Soma systems, the APC system did not decompose planning into grasp planning and

motion trajectory generation. It only used a simple grasp planner to choose one out

of two grasp strategies and omitted motion trajectory generation by leveraging the

mobility of its hardware platform.

We propose that an integrated system design is beneficial for ECE-based manipula-

tion. ECE-based manipulation aims to generate robust behavior rather than controlling

specific state variables. To generate a manipulation behavior, we need to tightly couple

system components which we observed for all three systems that used ECE for grasping.

ECE-based manipulation systems tightly couple perception with planning and control

for reactive behavior generation and couple control and hardware via co-designing

these components.

The beneficial region for ECE-based systems extends toward the Modular end of

the spectrum because a modular design can reduce the effort to combine different

hardware and software technology for complex robotic systems and for distant developer

teams. The Soma and SH systems were developed to be modular to ease integration for
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Planning Feedback

Soma system SH system APC system beneficial region for ECEDN system

Figure 7.10 Comparing system building aspects of the four grasping systems along
the planning and feedback design spectrum, where the red band indicates the region
beneficial system designs for ECE usage.

geographically distant project partners and to incorporate various robot arms and/or

end-effectors.

Planning Ð Feedback Spectrum

With planning, we search for global solutions using a world model. For example, a

motion planner uses a model of the environment and the robot to compute a valid

motion trajectory from a given start to a goal. When global information is difficult to

obtain, locally obtained information can be used as feedback.

With feedback, we search for local solutions and reduce uncertainty using the

information provided by physical interaction. As an example, visual servoing uses

visually perceived information to minimize an error between the desired and actual

position of a feature. With this example, we use continuous feedback. However, discrete

changes can be used as feedback as well. Such discrete feedback is used in the hybrid

automaton control scheme to switch between active controllers. Moreover, sensory

information can also be integrated into planning using the POMDP representation of

a planning problem.

Since EC-based planning integrates discrete feedback into planning (for grasping or

motion trajectory generation), we expect the respective systems to shift toward the

Feedback end of the spectrum.

The DN system is at the Planning end of the spectrum because it computed a

globally optimal grasp pose for one of its end-effectors based on the 3D scan of the

whole scene. At the same time, it used no feedback from physical interaction nor

searched for a local solution.

The SH system is almost at the center of the spectrum but closer to the Planning

end because it relied on motion planning to grasp, transport, and place an object into

the toolbox while using open-loop joint-trajectory control. However, they used discrete

feedback when surface-grasping objects. Unlike the DN system, where objects were
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pick-and-placed iteratively, the bi-manual simultaneous packing created the need for

motion planning for the SH system because the two arms shared the drop-off location

where collision avoidance is required. Even if the arms had been mounted on a mobile

base, as in the APC system, the robots would have still shared the goal regions for

tool placement. This task requirement also affected the system’s design along the next

spectrum.

We settled the Soma system at the middle of the spectrum because it relied on

planning and feedback. It used a symbolic planner to choose an object, EC, and

strategy, and it also could use a motion planner to find feasible joint space trajectories.

At the same time, the system integrated continuous and discrete feedback into planning

and control. While the motion planning sub-component was optional, the consortium

used several alternative solutions (sampling-based planners, geometrical reasoning, or

based on prior knowledge) depending on the application domain. As Eppner et al.

(2018) observed, a different embodiment could circumvent the need for motion planning.

For example, a mobile base would have significantly simplified the execution of sliding

motions in our commercial food handling task, and a redundant robot arm would have

solved the kinematic limitation of the 6-DOF P-Rob2 arm.

The APC system is placed at the Feedback end of the spectrum because it used

feedback extensively, similarly to the Soma system but relied on very simple planning.

The planner chose between two grasping strategies based on visual information and

prior knowledge. The hybrid automaton integrated discrete feedback to switch between

motion primitives, and the motion primitives were executed with feedback-guided

controllers. Strikingly, the system robustly solved the task without using motion

planning for collision avoidance or to avoid the kinematic limitations of the used robot

arm by leveraging the mobility of their hardware platform.

With this spectrum, EC-based systems are situated toward the Feedback end because

ECE offers observable contact events that can be integrated into planning and execution

for decision-making and for reactive behavior generation. Moreover, contact-exploiting

motions oftentimes require a feedback controller to regulate interaction forces.

Computation Ð Embodiment Spectrum

A robot’s behavior is determined by the computation performed by software compo-

nents and the embodiment of its hardware components. Software components are easily

adapted to task requirements, and grasping problems can be defined as pure computa-

tional problems, such as computing a force closure grasp. Similarly, visual perception
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Computation Embodiment

Soma system SH system APC system beneficial region for ECEDN system

Figure 7.11 Comparing system building aspects of the four grasping systems along the
computation and embodiment design spectrum, where the red band indicates the region
beneficial system designs for ECE usage.

can be posed as a computational problem by processing raw sensor measurements to

extract relevant task information.

On the other hand, customizing hardware components take longer and can signifi-

cantly increase a system’s cost. However, task-tailored hardware solutions are simple

and robust, and appropriate embodiment simplifies software-based computation. In the

context of grasping, under-actuated and compliant robotic hands can passively adapt

to the shape of an object and consistently reduce the need for accurate object shape

and pose detection. Furthermore, a camera’s field of view can be greatly increased by

mounting it on a robot’s arm.

The DN system used the most software-based computation compared to the three

other systems. It used large amounts of synthetic data to compute a grasp policy using

machine learning. Then, the learned model computed a grasp pose, and a planner

computed the arm’s motion to reach the pose. However, we must note that the DN

system leveraged their robot’s embodiment because the system could learn to grasp with

two end-effectors. By having two different end-effector embodiment complementing

each other, the system’s grasp performance increased significantly compared to its

previous versions Dex-Net 2.0 and 3.0.

The SH system used significant software-based computation for motion planning

and control, but their compliant hands also complemented the grasping behavior.

The system had to use software-based computation for collision avoidance due to

the simultaneous packing with two arms. However, visual detection and grasp pose

calculation was simplified using the passive adaptability of their mechanical compliant

hands to an object’s shape when grasping.

Our system is closer to the Embodiment end of the spectrum than the SH system

because the consortium’s soft-bodied intelligence research aimed to leverage a robot’s

embodiment to solve grasping tasks robustly. Thus, embodiment was essential to

generate robust grasping behaviors and simplify object and EC detection. Still, the
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Generality Assumptions

Soma system SH system APC system beneficial region for ECEDN system

Figure 7.12 Comparing system building aspects of the four grasping systems along the
generality and assumptions design spectrum, where the red band indicates the region
beneficial system designs for ECE usage.

Soma system also used software-based computation for reliable execution, keeping the

system closer to the middle of the spectrum than to the Embodiment end.

We placed the APC system at the Embodiment end of the spectrum because the

developers chose a well-designed combination of hardware components to simplify

software computation. A good example is their use of a holonomic mobile base to

significantly relax the kinematic constraints when reaching into a shelf by simply

driving the base forward. Another example is the custom-built end-effector with an

elongated thin nozzle and tip-mounted suction cup that could easily fit between objects

and pick 24 out of the 25 objects. The system performed most computation for object

detection, which was also simplified using priors about the end-effector.

We think that the Embodiment region of the spectrum benefits systems using

ECE for manipulation. ECE-based manipulation behavior depends on a robot’s

embodiment, and it can replace computational aspects of control, planning, and

perception traditionally performed with software components.

Generality Ð Assumptions Spectrum

General solutions apply to a wide range of problems, while assumptions narrow the

scope of applicability. Ideally, a system generalizes for variable properties of a given

problem and uses strong assumptions about invariant problem properties. We can

appropriately categorize these properties when we deeply understand the problem.

Some robotic problems are already well understood for which general approaches

were applied successfully. Examples of such approaches are task-generic navigation and

motion planning algorithms (A*, PRM, or RRT), various robot arm controllers (joint

space, operation space, or impedance control), or Bayesian-based state estimators.

In the scientific community, roboticists frequently assess how well an approach

generalizes because it shows a deeper understanding of the solved problem, which was

also the goal of Part I to generalize ECE for motion planning. Generalization is less
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important for the industry because the goal is to efficiently and reliably solve a task

with a fixed scope. Thus, all invariant problem properties are used as assumptions

to keep the problem as simple as possible. For example, Part II and III leveraged as

many assumptions as the industry-inspired tasks and ECE offered.

The DN system aimed to solve universal picking. Their task was less inspired by an

industrial application than the other three tasks for the Soma, SH, and APC systems.

Since the latter three systems tackled real-world industry-related grasping problems,

we think that all three systems leveraged as many invariant problem properties as

possible.

All four systems used readily available or general solutions such as ROS, motion

planning, or controllers generating robot arm motions. Moreover, all systems used

custom-made end-effectors. Except for the DN system, the other three systems

customized their high-level planning component for task-specific decision-making and

visual detection by combining object and environment-specific assumptions.

Along this spectrum, the DN system is placed close to the Generality end, while

the three other systems were placed radically closer to the Assumptions end. This is

because the DN system was designed to provide a universal picking solution evaluated

with 25 unseen objects. Even though its grasping solution generalizes to unseen

objects, it is difficult to attain a deeper understanding of the grasping problem because

knowledge was encoded into a Convolutional Neural Network.

While Soma, SH, and APC systems are very close to the Assumptions end of the

spectrum, we shifted the Soma system toward Generality for two reasons. First, our

system was designed for two application domains and to work with various hardware

components, while the DN, APC, and SH systems had a fixed hardware setup and

aimed to solve a single task. The Soma system was made to be re-configurable for each

application domain using configuration files. These files can be combined such that all

types of ECs (surface, wall, corner, edge, and granular) can be detected, and all grasp

strategies can be used in both application domains.
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Figure 7.13 Illustrative size,
color, and shape difference be-
tween two instances of a fruit.

Secondly, our commercial food handling task in-

volved grasping real fruits and vegetables with irregular

shapes, mass, and colors, as illustrated in Figure 7.13.

Compared to the DN system’s grasping problem with

50 known and 25 unseen objects, the Soma system

aimed to grasp uncountable unseen objects because

there are no two identical real fruit or vegetable. Nev-

ertheless, the Soma system used strong assumptions

to simplify grasping, while the DN system used no

assumptions about the considered objects or the envi-

ronment.

The SH and APC systems are side-by-side and

closest to the Assumptions end of the spectrum because

these systems used strong assumptions about invariant

problem properties from their tasks. Since their object

sets were fixed, their solutions generalized less than the Soma system.

We propose that the beneficial region is centered between Generality and As-

sumptions ends, as opposed to the three other spectra where the beneficial regions

for ECE-based systems were rather one-sided. This is because ECE-based manipu-

lation offers strong priors to be used as assumptions and also generalizes for various

manipulation and motion planning tasks as well.

ECE provides assumptions about manipulation behavior because the produced

manipulation behavior relies on interaction regularities. When we understand the

physics of such regularities, we can identify problem properties that do not affect

the regularity and use them as assumptions. Hence, a system using ECE can also

use assumptions about the respective interaction regularities. An excellent example

of ECE-based assumption is that granular ECE provides a high-level force pattern

implicitly controlling objects’ position relative to a hand pushing into a pile. We used

this assumption to simplify planning and control, as shown in Chapter 6. As another

example, we assumed that ECE provides detectable contact events, and based on this

assumption, we efficiently computed contingent motion plans in Chapter 4.

At the same time, ECE offers generalization because a simple grasp strategy can

reliably pick a large variety of objects. We have shown that more object properties

become invariant when geometrical ECs are used in combination with granular ECE.

For example, the cardinality of a pile becomes an invariant property when the pile

is next to a wall. As a further example, ECE mechanically reduces the position
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uncertainty of an object, an end-effector, or the configuration of a robot arm, that we

leveraged for conformant motion planning in Chapter 3, for contingent motion planning

in Chapter 4, and for grasping in Chapter 6.

7.6 Conclusion and Further Considerations

The third and final part of this thesis focused on the implications of ECE on robotic

system design. To achieve that, we combined ECE-based motion planning and grasping

methods from Part I and II, respectively, into the Soft Manipulation (Soma) system.

The Soma system was designed to serve as an evaluation platform and demonstrator

of software and hardware technologies. These technologies resulted from researching

soft-bodied intelligence that involved environmental constraint exploitation to a great

extent. We evaluated the realism and relevance of these technologies with the Soma

system and demonstrated the system’s capabilities with two real-world industrial

applications. Therefore, the system’s design was driven to use ECs. After a detailed

description of our system’s components, we explained the practical implications of

ECE-based manipulation for each component by comparing it to a traditional grasping

approach and by providing practical implementation details. To extend our insights

on general system building, we compared the Soma system with three other complex

systems solving real-world pick-and-place tasks. Based on our analysis, we proposed

beneficial characteristics of robotic systems that use ECE-based manipulation. We

proposed that ECE-based manipulation systems should have an integrated design,

use continuous and discrete feedback for planning and control, and leverage a robot’s

embodiment to simplify software-based computation. Hence, we accomplished our goal

of revealing how ECE-based manipulation affects the design of robotic systems.

7.6.1 Limitations of the Soma System

The Soma system achieved Technology Readiness Level 6 by demonstrating its capabil-

ities in relevant environments. Nonetheless, we only reached the first milestone ahead

of many more before our technologies could be integrated into a production line.

With the commercial food handling application, we tackled increasingly complex

grasping scenarios to challenge our approaches, improve our understanding of the

grasping problem, and continuously improve the system. For example, we started with

a single object in the bin, then increased the number of objects, and finally grasped

from piles of objects. One could further increase the problem’s complexity by having
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one or multiple layers of objects covering the bottom of the bin. In such a situation,

our system would have difficulties grasping. It would require new grasping strategies,

such as a top-down scooping motion, tactile sensing on the fingers for controlled sliding

on a layer of objects, or a new end-effector design. The complexity of the scenarios can

be further increased by considering objects loosely packed or with less round packaging.

While we worked on such a problem, more research is required to provide reliable

solutions.

With human-robot interactions, the consortium analyzed perceived realism, comfort,

and safety using a relatively simple handover scenario. Despite its simplicity, the

consortium gained essential insights into what properties of a robot’s behavior inŕuence

human’s willingness for interaction. To give a concrete example, the smoothness of a

motion and delayed reactions can increase perceived realism and comfort. Our robot’s

simple handover behavior could be further improved by perceiving human intentions

and reacting appropriately. If a robot could detect human intention from visual cues,

such as body posture, then it could adjust its handover motion to increase a human’s

willingness for interaction.

With the implication of ECE on robotic system design, we analyzed and compared

four systems solving similar pick and place tasks. However, ECE is useful for other

prehensile and non-prehensile manipulation tasks, such as learning from demonstrations

or collaborative work between humans and robots or multiple robots. Robotic systems

solving such manipulation tasks can also benefit from our observations and propositions

for system building.





8

Final Discussion

The thesis tackled motion planning under uncertainty by focusing on one core idea: a

well-structured environment provides contact-based information via contact-exploiting

motions and contact sensing to simplify motion planning under uncertainty. Such

use of the environment is called environmental constraint exploitation (Deimel et al.,

2013). First, we revisit the main challenges of motion panning from the introduction

and summarize our main insights. Secondly, we finish this chapter and the thesis by

discussing the implications of environmental constraint exploitation from a problem

factorization perspective.

In Chapter 1, we explained that motion planning is a complex decision-making

problem. Its computational complexity arises from the fact that we need many

variables to uniquely describe the state of an object or a robot, making the state space

high-dimensional. Moreover, we pointed out that uncertainty makes decision-making

challenging. In robotics, uncertainty originates from inaccuracies in a robot’s motion,

sensing, belief about its environment, or understanding of physics.

The thesis handled motion generation challenges associated with state uncertainty

and high dimensionality by integrating contact-exploiting motion, contact sensing, and

contact-based structural context into planning.

Part I focused on motion planning under uncertainty and applied geometrical

environmental constraint exploitation to find robust solutions under motion and

perception inaccuracies efficiently. We derived two methods that used contact with the

environment to simplify planning in high-dimensional configuration spaces. The main

difference between the two methods is in uncertainty handling.

The first method handled uncertainty by searching for robust action in free space

unaffected by uncertainty or contact-exploiting motions reducing uncertainty. We

proposed a balanced exploration of free-space and contact-exploiting motions because

configuration space connectivity depends on environment geometry and accumulated
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uncertainty through past motions of a robot. We efficiently approximated task-relevant

environmental constraint regions using workspace decomposition and mapped these

workspace regions onto a combined configuration and action space. We showed that

our search space reduction makes motion planning under uncertainty scalable to

high-dimensional problems and large workspaces.

The second method also used free-space and contact-exploiting motions but inte-

grated contact-based sensing into planning to distinguish between outcomes of noisy

motions. We used the fact that environmental constraint exploitation produces de-

tectable contact events to rule out parts of the state space when these events are

distinguishable from sensor measurements. For each perceivably different contact event,

we planned appropriate contingencies and reused partial solutions to reduce the effort

for planning yet unsolved contingencies. We showed that contingency planning also

benefits from limiting the configuration space search to task-relevant regions. In future

work, the connectivity of task-relevant regions should also be used to limit the action

space when planning contingencies.

In this part, we simplified planning by searching for task-relevant motion behaviors.

To search for those motion behaviors, we modeled the effect of geometrical environmental

constraints on a robot’s state. Therefore, this approach is limited to environmental

constraints for which we can accurately model the interaction physics.

Part II focused on robotic grasping from piles of nearly identical objects using

environmental constraint exploitation. We discovered a complex environmental con-

straint emerging from dynamic and seemingly chaotic interaction between movable

objects when a hand is shoved into a pile. The novel granular environmental constraint

effectively centered and rolled an object onto the hand without controlling individual

objects’ motion or applied forces on them. This regularity can be leveraged to generate

robust grasping behavior and simplify perception, control, and planning.

Our empirical study of the granular environmental constraint provided alternative

grasp strategies using granular and geometrical environmental constraints and realistic

assumptions to simplify grasp planning. We reduced uncertainty purely with a task-

tailored sequence of environmental constraint exploitations without explicitly reasoning

about it. Thus, the proposed grasp planner ignored uncertainty. To further simplify the

planning problem, we discretized the state space into environmental constraint regions

and devised task-tailored actions for each region prior to planning. Since the granular

and geometrical environmental constraints provided a high-level motion constraint, we

abstracted away details about the multi-body interaction physics. As a result, grasp
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planning became a symbolic search problem of finding a sequence of environmental

constraint exploitations leading to a successful grasp.

Our approach greatly simplified perception, control, and planning by devising

robust manipulation behaviors. To devise such robust manipulation behaviors, we

needed a deep understanding of the involved environmental constraints. While we

provided an empirical process to gain understanding, a theoretical approach should

also be developed to find and characterize other complex environmental constraints.

Part III finally combined our motion planning and grasping approaches in a complex

robotic system aimed to solve real-world industrial applications. Environmental

constraint exploitation affects all system components. In Part I, geometrical ECE

affected robust motion trajectory generation under uncertainty. In Part II, geometrical

and granular ECE affected perception, control, hardware, and high-level reasoning about

grasping. Therefore, our robotic system combined software and hardware components

depending on the requirements of the used ECs. We achieved synergistic component

combinations by integrating contact sensing into planning and control for reactive

behavior generation and by co-designing control, hardware, and the environment based

on the required motion behaviors. We then investigated the general implications of

environmental constraint exploitation on robotic system designs by comparing the state-

of-the-art grasping system with three other systems that use environmental constraint

exploitation. For environmental constraint exploitation, we propose an integrated

system design with extensive use of feedback and leveraging a robot’s embodiment.

8.1 Decomposition Paradigms of Robotics Problems

We close the thesis with a discussion about decomposing robotics problems. There

are two decomposition paradigms: the functional decomposition and the behavioral

decomposition. Below, we compare the two paradigms and argue that environmental

constraint exploitation fosters behavioral decomposition.

The traditional and still predominant functional decomposition subdivides complex

problems into subproblems that are easier to solve. The general subproblems are

sensing, planning, and acting. Perception interprets sensor measurements to compute a

model of the environment for planning. Planning computes the entire collision-free path

from start to goal. The planned path is followed with controllers computing control

signals to generate the desired motions. These subproblems are solved individually

with dedicated modules having well-defined functionality.
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Figure 8.1 Different combinations of sensing (S), planning (P), and acting (A) for
reactive behavior generation, where a) is sequential sense-plan-act architecture, b) is
reactive control, c) is reactive planning, and d) is hybrid reactive planning and control.

One combination of these modules is sense-plan-act as described above. This

combination is suited for well-structured, -defined, and -controlled environments. How-

ever, it is not applicable in the presence of uncertainty because it gathers information

only once at the very beginning, and the planner plans too far into an uncertain

future. Researchers proposed alternative solutions to generate motions that react to

changes (caused by uncertainty) by integrating sensing in various ways into control

and planning (Kappler et al., 2018).

Reactiveness requires integrating sensing into planning and acting, and it can be

defined as a functional requirement. One example is sequential sense-plan-act, where

a robot request information at intentionally chosen moments during an execution

(Figure 8.1.a). While it improves robustness against some sources of inaccuracies, it

is unsuitable for handling fast environmental changes. As another example, reactive

control (e.g., feedback control or visual servoing) uses continuous sensor information

(Figure 8.1.b). Thus, it can cope with fast local changes and handle sensing and motion

uncertainty. However, such an approach can be subject to local minima because it lacks

planning, i.e., decision-making with global information. A further example is reactive

planning which can overcome local minima by making decisions with global information

updated with locally gained new information (Figure 8.1.c). Hybrid reactive planning

and control can handle local and globally affecting changes, where both planning and

acting (or only one) are equipped with reactive functionalities (Figure 8.1.d). However,

reactiveness can be interpreted as a behavior.

Behavioral decomposition divides a complex behavior into simpler behaviors, where

the complex behavior is a solution to a given problem. We propose to differentiate

between two types of motion behaviors: reactive and adaptive behavior. Reactive

motion behavior handles uncertainty. The thesis provides two examples of reactive

motion behavior generation. First, we used manipulation funnels (geometrical and
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granular ECE) to reduce uncertainty mechanically. Secondly, we used contact events

to reduce uncertainty by differentiating between reached funnel entrances. Adaptive

behavior adjusts motions to a given environment. The thesis provides two examples

of adaptive motion behavior generation as well. First, we used an ECE-graph to

adapt grasping from a pile concerning its cardinality and geometrical ECs near the

pile. Secondly, we adapted motion generation to a task in a given environment with

guided configuration space exploration (in free space and on geometrical ECs). Thus,

environmental constraint exploitation fosters the behavioral decomposition of motion

generation problems into reactive and adaptive behaviors.

With behavioral decomposition, first, we need to find task-relevant motion behaviors.

Secondly, we need to select appropriate components and define their functionalities

for each desired behavior. For the former, we have shown that ECE can be used to

find adaptive behaviors in Part I and II. For the latter, we need to consider other

constraints, such as robot kinematics or parts of the environment not used as ECs, to

select components and define required functionalities, which we have shown with the

Soma system in Part III.

We want to illustrate behavioral decomposition and how to define components and

their functionalities for a specific motion behavior. Since environmental constraint

exploitation is about generating motion behaviors, a sequence of ECE is a behavioral

decomposition. Thus, let us re-examine our bin-picking task from a motion behavior

generation perspective.

In Figure 8.2, we decomposed the bin-picking task into simple motion behaviors

and proposed specific combinations of sensing, planning, and acting for each simple

behavior. Approaching a pile inside a bin can be achieved with reactive control, for

example, visual servoing. Visual servoing is a non-contact-based manipulation funnel

since it can bring a robot’s hand from a large set of possible states to a narrower

set of states. For lowering and sliding the hand, we proposed using hybrid reactive

planning and control because the hand must reach and maintain contact with the

bottom of the bin. At the same time, the robot must avoid collision with other parts of

the environment. Collision avoidance was an additional constraint on the two motion

behaviors besides the horizontal surface EC. We generated these behaviors with a

motion planner and hybrid automaton control scheme (Section 3.2.4). However, we

showed that simple controllers could successfully lower and slide the hand without

using motion planning (Section 6.1) when the environment was composed only of the

involved environmental constraints, so collision avoidance was not required. Finally,

the grasping behavior is achievable with two controllers running in parallel. We used



178 Final Discussion

Figure 8.2 Behavioral decompo-
sition of grasping from a pile in-
side a bin: 1) move the hand
above the bin, next to the pile,
and with its palm facing up,
achievable with reactive control;
2) lower the hand until it touches
the bottom of the bin without
other collision, achievable with
hybrid reactive planning and con-
trol; 3) slide the hand on the
horizontal surface into the pile
until the selected wall is reached
without any other collision be-
tween the robot and the bin,
achievable with hybrid reactive
planning and control; 4) close
the hand while rolling the object
into the palm, achievable with
an open-loop controller for finger
closure and a reactive controller
for the wrist motion.
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an open-loop controller to close our compliant hand and an impedance controller to

maintain contact between the hand and the wall while rotating the wrist so that the

object rolls toward the palm.

As another example, Burridge et al. (1999) proposed a formal approach to se-

quence robot behaviors. The behaviors were represented as manipulation funnels

and implemented with reactive controllers. Each manipulation funnel defines the

required functionalities and interactions between control and sensing to produce desired

behaviors.

Hence, behavioral decomposition does not commit to one specific functional decom-

position but allows tailoring components and functionalities for the desired behavior.

ECE defines a behavioral decomposition and simplifies components’ functionalities

compared to components derived from a traditional decomposition. Perception can

detect ECE affordances without computing an accurate model of the whole environment.

Planning can compute only segments of a complex motion behavior where other

constraints are imposed on the motion without computing the entire path. Control
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generates compliant motions (unless a robot’s hardware provides structural compliance)

to follow a manipulation funnel without accurately following a path.

The thesis explored the use of geometrical and granular environmental constraints

inspired by how humans use their environment. We expect that humans use other

contact and non-contact-based environmental constraints unconsciously. To discover

and understand new constraints, robotics should expand its multi-disciplinary field of

computer science and engineering with other analytical science fields, such as behavioral

biology, neuroscience, and psychology. Fortunately, such initiatives have been started,

such as the Science of Intelligence1 research cluster.

I believe that behavioral decomposition is the path toward generating artificially intel-

ligent behavior, and environmental constraint exploitation is one fundamental tool for

motion behavior generation. The thesis revolved around contact-based environmental

constraint exploitation. I hope the explained insights will inspire and help researchers

unlock the full potential of robots to help humanity and protect the environment.

1SCIoI project page: https://www.scienceofintelligence.de/

https://www.scienceofintelligence.de/
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