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Abstract

The Berry, Levinsohn, and Pakes (1995, BLP) model is widely used to obtain parame-

ter estimates of market forces in differentiated product markets. The results are often

used as an input to evaluate economic activity in a structural model of demand and

supply. Precise estimation of parameter estimates is therefore crucial to obtain realistic

economic predictions. The present paper combines the BLP model and the logit mixed

logit model of Train (2016) to estimate the distribution of consumer heterogeneity in

a flexible and parsimonious way. A Monte Carlo study yields asymptotically normally

distributed and consistent estimates of the structural parameters. With access to micro

data, the approach allows for the estimation of highly flexible parametric distributions.

The estimator further allows to introduce correlations between tastes, yielding more

realistic demand patterns without substantially altering the procedure of estimation,

making it relevant for practitioners. The BLP estimator is established to yield biased

and inconsistent results when the underlying distributional shape is non-normally dis-

tributed. An application shows the estimator to perform well on a real world dataset

and provides similar estimates as the BLP estimator with the option of specifying con-

sumer heterogeneity as a function of a polynomial, step function or spline, resulting in

a flexible estimation procedure.



1 Introduction

The Berry, Levinsohn, and Pakes (1995, BLP hereafter) model is a powerful tool of

empirical industrial organization. Its success is based on several features. The model

yields realistic predictions of substitution patterns with minimal data requirements.

It also deals with the endogeneity of price that is borne out of the correlation with

unobserved demand shocks. The normally distributed random coefficients, based on

consumer-product interaction terms, are key to obtaining realistic substitution patterns.

Commonly observed markets with differentiated products can be tractably handled by

applying the contraction mapping, removing the need to estimate product fixed effects

and thus largely reducing the number of parameters to be estimated and improving

efficiency. The model runs on aggregate data but is flexible enough to also incorporate

micro data and demographics. The BLP estimator is therefore considered the workhorse

of contemporary demand estimation.

The BLP estimator is frequently applied to analyze important research questions.

Recent examples include Björnerstedt and Verboven (2016) who estimate a BLP de-

mand system to evaluate a merger in the Swedish painkiller market. Duch-Brown et al.

(2017) use a BLP model to investigate the impact of online sales on consumers and firms.

Fan and Yang (2020) employ a BLP demand system in the U.S. smartphone market to

study theoretical ambiguities concerning firms product portfolios when firms merge and

product choices are endogenous. Bourreau, Sun, and Verboven (2021) estimate a BLP

demand system to infer potentially collusive conduct in the French telecommunications

industry.

The normality assumption of the random coefficients is a convenient but restrictive

assumption and is usually justified by data availability restrictions and ease of imple-

mentation. Whereas mean and variance are often reliably estimated in spite of misspec-

ification, this does not hold for higher moments of the distribution, as discussed by Hess

and Axhausen (2005). Hess, Bierlaire, and Polak (2005) discuss problems related to the

estimation of random taste distributions. They find distributions mistakenly specified

as symmetric to bias point estimates. Results about potential misspecification bias

is contributed by Compiani and Smith (2022), who finds that misspecification affects

equilibrium profits. Despite this finding, it is not generally clear how the arbitrary

distributional assumption of normality affects subsequent analyses. This is somewhat

astonishing as the parameter estimates of the BLP demand system are often just an

input to a more elaborate structural model. Getting estimates of the demand model

right is crucial to derive such important structural measures as elasticities and markups.

To provide correct policy advice, it is thus imperative to carefully model the underlying
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distributions.

The present paper aims at relaxing the normality assumption by using a method of

sieves approach as implemented by Train (2016), which is referred to as the logit mixed

logit (LML) model. By combining the BLP model and the logit mixed logit model, the

random coefficients are parsimoniously estimated in a flexible way. In short, the dis-

tributions of the random coefficients are dependent on a parameter vector and random

tastes are drawn from a prespecified grid and inserted into the nonlinear interaction

term. Nonrandom coefficients can still be concentrated out as in the BLP model. The

original estimation procedure is largely unchanged, and practitioners are able to apply

all common tools that are used in conjunction with BLP. The model can be further en-

hanced by introducing correlations between random coefficients or adding micro data to

estimate demand parameters more precisely. This in turn allows substitution patterns

to be closely mapped to the data without the bias of misspecification.

The paper further touches on several issues that might be of interest to practition-

ers. In line with the results of Reynaert and Verboven (2014), optimal or approximately

optimal instruments are shown to yield more precise estimation results, benefiting post

estimation by increasing accuracy of estimated markups or marginal costs. The addi-

tion of micro data is shown to make the estimation of sophisticated taste distributions

feasible, without the need to increase the sample size of the aggregate data. This is

of importance, since changes in the underlying true taste distributions are set out to

imply different market equilibria, which will result in biased BLP estimates if not ap-

propriately taken into account. An estimation using solely micro data in the moment

conditions confirms the findings in Berry and Haile (2022), that micro data identifies

substitution patterns, and instruments are needed to pin down the price coefficient.

Lastly, the flexible estimator is applied to a real world dataset. The estimator is sub-

jected to different specifications of the grid and the estimated coefficients are found to

be quite robust to the grid specification. This result is reassuring, since the estimator’s

validity largely hinges on the robustness of the subjectively chosen grid support.

The rest of the paper is structured as follows. Section 2 relates the paper to the

literature. In Section 3, the BLP model, the logit mixed logit model and the flexible

model are introduced along appropriate notation. Section 4 presents a Monte Carlo

study and shows consistency of the estimator. Section 5 enriches the model with micro

data and shows how micro data can be used to estimate sophisticated distributions.

Section 6 investigates the effects of distributional misspecification on the performance

of the BLP estimator. Section 7 applies the flexible estimation procedure to a commonly

used dataset. Section 8 concludes.
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2 Literature

The literature concerned with demand estimation and estimation of heterogeneous pref-

erences is vast. I focus on the literature of empirical industrial organization that evolved

from the discrete choice literature, with BLP as its most prominent member. Narrowing

it down to flexible demand estimation with respect to consumer heterogeneity, several

strands of the literature can be distinguished. The approaches crucially depend on how

much structure is put on the taste distributions underlying the demand functions. I do

not provide a complete literature review and other options for organizing the literature

are feasible.

A first strand of the literature uses the full set of parameterizations, with random

coefficients modeled as a parametric distribution and modeling the error term to be type

1 extreme value distributed, yielding the logit model. BLP belongs to this category,

using a normal distribution. Researchers also use discrete type distributions when

consumer types are observable, e.g., Berry, Carnall, and Spiller (1996), Berry and Jia

(2010) and Doi (2022).

A second strand of the literature relaxes the parametric assumption of the random

coefficients, while retaining the logit error term. The approaches rely on micro data and

do not easily generalize to a setting with aggregate data only and price endogeneity; the

high flexibility allows a good fit to the data and the linearization provides computational

ease and fast estimation. Train (2008) retains the logit formula and uses the expectation

maximization algorithm. Fosgerau and Mabit (2013) propose flexible specifications of

the mixing distributions using power series approximations. Fosgerau and Hess (2008)

use Legendre polynomials and mixtures. Fox, Kim, and Yang (2016) linearize the

nonlinear logit model and estimate the probability masses directly via regression. Heiss,

Hetzenecker, and Osterhaus (2021) discuss potential problems related to this approach

such as the shrinkage of a significant amount of probability masses to zero due to

high correlation in the covariates. They provide an enhancement of the approach by

putting more structure or smoothing on the derived probability masses. Train (2016)

uses a semi-nonparametric approach to approximate the mixing distribution in a way

that is rather flexible and easy to implement. Train uses micro level data and estimates

the model by hierarchical Bayes and maximum likelihood estimation. Other models are

more closely related to the BLP model, usually with a semi-nonparametric specification

of the random coefficients. The models aim for a direct transformation of the BLP

model to relax the distributional assumptions without wavering too far from the BLP

framework. Wang (2022) and Lu, Shi, and Tao (2022) employ a semi-nonparametric

approach and linear regression to model the random coefficients. The applied sieves
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in these models can be relatively freely chosen, e.g., according to Gallant and Nychka

(1987) or as in Train (2016). These models are convenient as they retain the advantages

of BLP but relax the normality assumption.

Lastly, a third strand of the literature transforms the possibly nonlinear underlying

functions and drops the logit error term to estimate demand as flexibly as possible.

The models can handle complements and are thus able to flexibly structure the rela-

tionship between product groups when the relationship is not clear ex ante. Compiani

(2022) and Monardo (2021) use linear transformations and Bernstein polynomials to

approximate the market shares nonparametrically. To identify parameters, the authors

use economically motivated restrictions and distance measures based on the character-

istics space. The flexibility comes at the price of high computational cost and data

requirements, restricting the use in practice.

This concludes the review of the literature. In the next Section I move on to in-

troduce the notation of the BLP and logit mixed logit model before discussing the

implementation of the flexible estimation procedure.

3 Relaxing the Normality Assumption

3.1 The BLP Estimator

The BLP model builds on the discrete choice literature and assumes each consumer

to derive utility from consumption based on product attributes and consumer specific

tastes. Let j = 0, ..., J index J products, where j = 0 denotes the outside option.

Let k = 1, ..., K index K characteristics of a product. Characteristic k of product j is

denoted by xjk and part of the 1×K dimensional row vector xj. Let consumer tastes

be denoted by the 1×K dimensional row vector νr for r = 1, ..., R consumers and let ξj

be a characteristic unobserved by the econometrician. The functional form of demand

further depends on the parameter vector θ, which relates tastes and attributes and

determines the marginal utility the consumer obtains from consuming an additional

unit of attribute xjk. Following BLP, consumer utility is given by

urj = xjβ − αpj + ξj − pjθpνrp +
∑
k

xjkθkνrk + εrj. (1)

Utility can be split into a mean utility component δj = xjβ−αpj+ξj and an individual-

specific component µrj = −pjθpνrp +
∑K

k=1 xjkθkνrk. The individual taste deviations

from the mean are represented by ν. Finally, εrj is an idiosyncratic preference shock

assumed to be type I extreme value distributed, resulting in the familiar logit functional
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form for the choice probabilities, originally developed by Luce (1959):

Probrj(δ; θ, νr) =
exp(δj + µrj)

1 +
J∑
k=1

exp(δk + µrk)

, (2)

The unconditional market shares can be found by integrating over consumer hetero-

geneity,

Probj(δ; θ, νr) =

∫
Probrj(δ; θ, νr)dνr. (3)

To estimate the model parameters, BLP apply a nested fixed point contraction mapping,

equating the simulated market shares with the observed market shares. Given an

appropriate identification assumption, the parameter vector θ is estimated as

θ̂ = argmin
θ

ξ̂′(δ̂; θ, ν)ZWZ ′ξ̂(δ̂; θ, ν), (4)

with ξ̂ as a vector stacked over markets, Z a matrix of instruments stacked over markets

and W being an appropriate weighting matrix, often the conditionally homoskedastic

weight matrix. For a more elaborate discussion, please refer to Berry, Levinsohn, and

Pakes (1995).

3.2 The Logit Mixed Logit Model

Train (2016) uses the logit model to calculate a weight for each conditional logit prob-

ability. The random coefficients logit model is then aggregated by weighting each

consumer-specific choice probability by its respective population weight, formally

sj =
∑
r∈S

Probrj(νr) ·W (ν̃r|θ) =
∑
r∈S

 exp(xjνr)∑
k∈J

exp(xkνr)

 ·
 exp(z(ν̃r)θ)∑

s∈S
exp(z(ν̃s)θ)

 . (5)

The θ parameters shape the distribution of the random coefficients in combination

with a vector valued function z(·) in the exponentials to form the weight W (ν̃r|θ). This

procedure covers a wide range of possible shapes. S refers to the space of all possible

random coefficients and will in practice be substituted by random draws of the random

coefficients. The length of the grid needs to be specified in advance, which is a drawback

of the approach. Train suggests to use an estimate of a parametric specification first

(the logit model or random coefficients model with a normal distribution) and then use

the estimated mean and variance to determine an adequate grid specification.

5



Train proposes a Legendre transformation on the random coefficients in the weight

function, yielding transformed coefficients ν̃r with a support of ν̃r ∈ [−1, 1] and addi-

tional advantages such as orthogonality and reduced risk of overflow in the exponentials.

The transformation is done by calculating ν̃r = −1 + 2(νr − a)/(b − a) with a and b

being the lower and upper boundary of respective heterogeneity parameters of the grid.

The Legendre transformation is not mandatory but recommended to avoid potential

numerical issues during estimation.

The vector valued function z(·) should take as many terms as necessary to approx-

imate the underlying distribution. As discussed by Train (2016), the function should

be modeled in such a way that the true distribution can be appropriately cast. Sev-

eral specifications are possible, e.g., polynomials, step function or splines. Note that

even though only a limited number of parameters has to be estimated, the resulting

distribution of consumer preferences is very flexible.

3.3 Combining BLP and the Logit Mixed Logit Model

It is now possible to combine the sophistication of the Berry, Levinsohn, and Pakes

(1995) model with the flexibility of the logit mixed logit model of Train (2016), by

plugging the utility specification given in Equation (1) into Train’s model:

sj =
∑
r∈S

Probrj(δj; θ, νr) ·W (ν̃r|θ) =
∑
r∈S

 exp(δj + µrj)

1 +
∑
k∈J

exp(δk + µrk)

 ·
 exp(z(ν̃r)θ)∑

s∈S
exp(z(ν̃s)θ)


(6)

with Probrj being the conditional (unweighted) logit market share of consumer type

r and W (ν̃r|θ) (abbreviated Wr) the weight or the probability mass associated with

this type of consumer. I label this estimator the flexible estimator. The functions z(·)
transform the taste parameters according to the specification of the researcher. It may

contain ν̃rk and its squared value to estimate a more flexible version of the normal

distribution with cut off tails. A fourth order polynomial may represent a bimodal

distribution. See Train (2016) for an in-depth discussion.

To distinguish between consumer tastes that are homogeneous and heterogeneous, I

define xj to be the vector of attributes of product j holding all the attributes assumed

to be associated with homogeneous tastes and denote the attributes associated with

heterogeneous tastes as x̃j. The vector xj from now on holds only the linearly entering

attributes of the products, whereas x̃j holds the nonlinearly entering product attributes.

Also the price variable is from now on assumed to be contained in either of these sets.
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Utility is similar to the specification in BLP with the modification that consumer

heterogeneity draws enter the nonlinear interaction term directly, without a split into

mean and deviation as in BLP, according to

δj = xjβ + ξj, (7)

µrj =
∑
k∈K

x̃jkνrk, (8)

urj = xjβ + ξj +
∑
k∈K

x̃jkνrk + εrj. (9)

The idea is formalized in Equations (7), (8) and (9). The mean utility component of

product j is given by Equation (7) which contains linearly entering attributes xj. The

associated parameters to be estimated β are “concentrated out” similar to BLP as is

discussed below. Equation (8) shows the nonlinearly entering interaction term. The

standard deviations σ that are present in BLP drop out because the variance of the

distribution is determined by θ and by the grid specification.

More details on notation: to keep consistency with BLP, the heterogeneity draws

are denoted by νrk, which has βrk as the equivalent in Train (2016). Therefore, the

individual taste of individual r towards characteristic k is given by νrk. These tastes

are drawn prior to estimation from the specified grid and can be scaled to be ν̃rk ∈
[−1, 1] prior to estimation, as discussed in Section 3.2. The draws are held fixed during

estimation. Given the grid support, the draws and the data, the nonlinear term µ is

fixed and δ can be backed out using a contraction mapping similar to BLP, setting

the observed market shares equal to the model implied market shares, Sj = sj(δ, ν; θ),

conditional on θ. See Appendix A.1 on how to rewrite the contraction to speed up

estimation times, as shown by Brunner et al. (2017).

Defining w ≡ exjβ+ξj = eδj , the demand shock is then backed out by applying ordi-

nary least squares or two stage least squares depending on the assumption concerning

the price coefficient which also yields the linear demand parameters:

log(w) = xjβ + ξj (10)

ξj = log(w)− xjβ (11)

The contraction mapping yields ξj directly, if all consumer tastes concerning all at-

tributes and the constant are assumed to be heterogeneous.

Now that ξ is known, a standard identification argument can be used and the esti-

mation proceeds by the generalized method of moments as described by Hansen (1982).
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This specific identification argument is not crucial to the flexible estimator, e.g., covari-

ance restrictions, as in MacKay and Miller (2023), can be used if appropriate. Here,

the instruments, z, are assumed to be mean independent of the demand unobservables,

formally E[ξ|z] = 0 and the parameters identified by setting the objective function as

close as possible to zero, with the objective given by

θ̂ = argmin
θ

ξ̂′(δ̂; θ, ν)ZWZ ′ξ̂(δ̂; θ, ν) (12)

and W being an appropriate weighting matrix. For later use, let the objective be

abbreviated by G1 = ξ′ZWZ ′ξ.

Note that the implementation of the flexible distribution does not change the gen-

eral procedure of the BLP estimator and can thus be quickly added to the model by

practitioners, if necessary, as an additional robustness check and to achieve richer sub-

stitution patterns. Adding the flexibility is independent of identification assumptions

and does not largely change post estimation, apart from calculating simple derivatives.

It is straightforward to add correlations between tastes to further enhance substitution

patterns, as discussed by Train.

Now that the flexible estimation procedure is spelled out, its properties are discussed

by conducting a Monte Carlo study in the next Section. The derivation of the market

share derivatives with respect to price and demand shocks and the gradient are laid

out in Appendix A.2 and Appendix A.3, respectively. A derivation for an exemplary

specification with a polynomial as z variable is laid out in Appendix A.4.

4 Monte Carlo Study

In order to investigate the properties of the flexible estimator, I conduct a Monte Carlo

study. The implementation follows Berry (1994) and Reynaert and Verboven (2014).

The procedure assumes consumer heterogeneity to be structured in a certain way by

selecting θ to shape the distribution of the random coefficients. Given randomly gen-

erated product data, the demand system parameters are estimated. I discuss empirical

statistics of the estimator’s asymptotic behavior, its distribution and its performance.

The next Section lays out the Monte Carlo procedure. Section 4.2 discusses the use of

instruments. Section 4.3 presents the results.

4.1 Implementation Details

The setup of the Monte Carlo study can be described as follows. Let product data

be generated for T = {50, 200, 500} markets. In each market, four firms produce
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three goods, so that there are twelve products in total. The number of observations

available to the econometrician is therefore n = {600, 2,400, 6,000}. Firms compete in

prices in a differentiated product market. There is one characteristic for each product

in each market that is assumed to be independent over markets and drawn from x ∼
Uniform(0, 3). Consumers are assumed to display heterogeneous preferences concerning

the characteristic; I thus denote it with a tilde, presently x̃jt. The additional subscript

t denotes market t. Demand further depends on price and on an intercept providing

the link to the outside good, captured by xjt = (−pjt, 1). Let Xjt = (xjt, x̃jt). The

demand side marginal utility parameters of Xjt are given by the column vector βr =

(α, β0, νr) = (5,−2, νr) with νr being the marginal utility parameter for individual r and

the price coefficient is assumed to be α = 5 and the intercept value −2. No consumer

heterogeneity is assumed concerning the price coefficient. The Monte Carlo study is

repeated for consumers being heterogeneous concerning the price coefficient, yielding

similar results. See Appendix A.5 for details. For an example of a heterogeneous price

coefficient applied to real data, see the application in Section 7. Demand follows the

functional form given by Equation (6). The product unobservable characteristic ξjt

is drawn from a multivariate normal distribution with a mean of 0 and a standard

deviation of 1. Corresponding to each unobserved characteristic a supply shock ωjt

is drawn (with covariance of 0.7) inducing strong endogeneity due to the correlation

between the unobserved characteristic and price.

Note that ξjt and x̃jt are independent. This guarantees that instruments generated

from x̃jt yield adequate properties of the moment conditions with E[ξ(δ; θ0, ν)|z] = 0

and convergence of the objective to zero at the true parameter values (cf. Cameron

and Trivedi, 2005; Hansen, 2021). The subscript of zero indicates evaluation of the

objective at the true parameter values.

Marginal costs are assumed to be constant and determined by x̃jt with cost side

parameters γ = (2.5, 0.2). Marginal costs are further determined by the aforementioned

supply shock ω, which is weakened by a factor of γc = 0.2. For clarity, utility is formally

given by urjt = Xjtβr + ξjt + εrjt = −5pjt − 2 + x̃jtνr + ξjt + εrjt. Marginal costs are

formally given by mcjt = 2.5 + 0.2x̃jt + 0.2ωjt.

As far as consumer heterogeneity is concerned, the logit formula is specified with a

second order polynomial as z variable, which is similar to a normal distribution. The

coefficients are θ = (θ21, θ22) = (0,−4). For a more sophisticated, bimodal shape of the

underlying density, see Section 5. The random coefficient lies in an interval of νr ∈ [0, 8].

Integration of the market shares during data generation is done deterministically with

1,000 equally spaced random coefficient values. Random draws are not needed since the

integration is one dimensional and a densely packed real line is sufficient to accurately
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cast the distributional shape. This is convenient as random fluctuations are prevented

from entering the objective. During estimation, 200 equally spaced values are used to

integrate the market shares.

The general procedure can be described as follows. The data is generated. Based on

the parameters, the conduct assumption and the distributional assumption concerning

heterogeneity, the market equilibrium is established by iterating over the market par-

ticipants’ reactions until a measure of the price differences is below a threshold. The

iterative procedure is necessary to establish the equilibrium, but introduces inaccuracy

when generating the data, because no analytical solution to the nonlinear system of

equations exists. Accuracy is obtained by setting a low tolerance. The threshold is

set to less than 1e−14. As a distance measure, the Euclidean norm is used, formally

‖piter+1 − piter‖ < ε = 1e−14. The iteration starts with an arbitrary price vector and

is based on the first order conditions of the differentiated Nash Bertrand model (cf.

Berry, Levinsohn, and Pakes (1995)). This yields product prices and market shares.

Then either BLP instruments or an approximation to optimal instruments are calcu-

lated and estimation can be performed by minimizing the objective for 10 different

starting values, selecting the parameters with the lowest uncovered objective value out

of these estimates and calculating summary statistics based on the objective minimiz-

ing parameter values. This entire process is repeated 1,000 times for each combination

of instruments and market size, yielding 1,000 · 2 · 4 · 10 = 80,000 estimations and

8,000 parameter values based on objective minimizing values. Only the demand side is

estimated. For computational details, see Appendix A.6.

There is evidence that simultaneous estimation of demand and supply increases

accuracy of parameter values if the supply side is correctly specified, as discussed by

Reynaert and Verboven (2014). For the Monte Carlo study conducted presently, there is

no estimation of supply side parameters and there is no combined objective of demand

and supply shocks. I opted for a demand only approach to keep it simple, to avoid

additional assumptions and lower computational burden. As the results of Reynaert and

Verboven (2014) indicate, given optimal instruments are available, the additional gains

from simultaneous estimation of demand and supply are comparatively small. This

moves the discussion to the use of appropriate instruments to correct for endogeneity

and for efficiency reasons.

4.2 Calculation of Instruments

In this Monte Carlo study, two types of instruments are used. The first type are easy

to compute instruments as used in the seminal work of BLP. They are calculated based
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on sums over characteristics of all other products of the same firm and sums over

characteristics of all competing firms, formally for product j, characteristic k and firm

f (suppressing time subscript):

g∗j (x̃) =

x̃jk, ∑
r 6=j,r∈Ff

x̃rk,
∑

r 6=j,r /∈Ff

x̃rk

 . (13)

Armstrong (2016) investigates properties of instruments based on characteristics and

finds instruments to perform worse in situations with few markets and many products.

Markets with many products might therefore face an identification problem. Reynaert

and Verboven (2014) show that efficiency gains can be realized by calculating approxi-

mations to optimal instruments based on Chamberlain (1987). Following the notation

of Reynaert and Verboven, the optimal instruments for product j, and the second type

of instruments used in this study, are given by

g∗∗j (x̃) = E

[
∂ξj(θ)

∂θ

∣∣∣∣x̃j]′Ω−1 (14)

with x̃ being exogenously given values (all characteristics except price) and Ω is a

matrix defining the covariance structure of ξ, ω. The inner part of the expectation

is known already from the calculation of the gradient. Since only the demand side is

estimated, the matrix Ω is set to identity (cf. Reynaert and Verboven, 2014), facilitating

calculation of the instruments.

Since all parameter values are assumed to be known, it is possible to back out

optimal instruments and survey their performance relative to BLP instruments using the

flexible estimation procedure presented here. For simplicity, a first stage to approximate

optimal instruments during estimation will not be implemented but instead optimal

instruments calculated when generating the market equilibrium and assumed to be

known prior to estimation. This is not feasible in real world applications but suitable

in the present case since the main focus of the Monte Carlo study is to show the

consistency of the flexible estimator.

I calculate an approximation to optimal instruments as presented by Reynaert and

Verboven (2014) and Berry, Levinsohn, and Pakes (1999). The approximation “re-

places the expected value of the derivatives [...] by the derivatives evaluated at the

expected value of the unobservables” (Reynaert and Verboven, 2014, p. 96), which is

easy because the expectation of ξ and ω is zero. I will refer to these second kind of

instruments as instruments evaluated “at zero” or “approximately optimal”. Ease of

computation is weighted against a bias as stated by Berry, Levinsohn, and Pakes (1999)

and is straightforward to see by Jensen’s inequality (cf. Cameron and Trivedi, 2005).
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Marginal costs and utility simplify and the market equilibrium can be calculated by

simultaneous iteration over the first order derivatives. Then, the approximation to the

optimal instruments can be calculated according to Equation (14), which simplifies to

the inner derivative of the gradient as derived in Appendix A.3. Integration is done

deterministically with 1,000 equally spaced random coefficient values.

As discussed by Reynaert and Verboven (2014), I proceed similarly and enrich in-

struments g∗j by calculating the expected price based on a regression. This regression

provides the fitted values of price regressed on characteristic x̃jt, its squared value, and

the values obtained from g∗j (except xj to prevent collinearity). The resulting values

are incorporated as an additional instrument.

4.3 Discussion of the Results

4.3.1 Visual Inspection

To start off, an intuitive approach to check for consistency is by graphically inspecting

the resulting shapes of the distributions based on the number of markets. Respective

parameter values are calculated by taking the arithmetic mean over all estimated values.

Figure 1 shows the resulting shapes dependent on the number of markets for the BLP

instruments. The solid line represents the true distribution. Note that all values are

probability masses based on a support of 100 discrete values (but plotted as a smooth

function). The distributions for 25, 50 and 100 markets are overly broad and do have a

sign flip on its parameter value, as the distributions are opened upwards. They are poor

representations of the true distribution. The distribution for 100 markets is still flipped

over, but at the same time not as wide. The distribution for 200 markets seems to grasp

the shape of the true distribution with appropriate width and opening downwards.

There is still some room left for improvement as the backed out distribution does

not fully show the high concentration around the expected value and instead exhibits

fat tails. The results of the specification using BLP instruments seem to indicate

consistency.

Figure 3 shows the resulting shapes for the specification using approximately optimal

instruments. The distribution for 25 markets matches closely to the true distribution

with only a little shift to the left, capturing the shape of the true distribution almost

exactly. In the case of 50, 100 and 200 markets, the shape of the true distribution

is captured so well that it is not visually possible to tell apart the true distribution

from the estimated distribution. The results obtained by using approximately optimal

instruments clearly indicate consistency.
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Figure 1: True and Averaged Estimated Probability Masses of νr for a Second Order

Polynomial and BLP Instruments
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Figure 2: True and Averaged Estimated Probability Masses of νr for a Second Order

Polynomial and Approximately Optimal Instruments
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Table 1: Parameter Summary Statistics for a Distribution based on a Second Order

Polynomial as z Variable and BLP Instruments

Markets θ0
¯̂
θ

˜̂
θ θ[0.025] θ[0.975] St. Err.

θ21

50 0 −0.698 −0.698 −2.842 2.065 5.094

200 0 −0.114 −0.114 −0.866 0.973 0.482

500 0 −0.032 −0.032 −0.562 0.672 0.304

θ22

50 −4 −0.326 3.674 −10.903 3.961 62.222

200 −4 −3.919 0.081 −5.856 −0.292 1.456

500 −4 −3.987 0.013 −5.196 −2.231 0.781

θ11 = α

50 5 4.256 −0.744 −0.907 11.610 3.120

200 5 4.984 −0.016 2.839 9.400 1.615

500 5 5.012 0.012 3.540 7.315 1.019

θ12 = β0

50 −2 −3.990 −1.990 −18.000 16.448 8.563

200 −2 −2.027 −0.027 −7.870 10.021 4.431

500 −2 −1.963 0.037 −6.003 4.327 2.778

4.3.2 Convergence of Parameter Estimates

Table 1 and Table 2 show statistics conditional on the estimated parameter values and

on the number of markets. Reported are the true parameter values θ0, the average of

all estimated parameter values
¯̂
θ and the bias

˜̂
θ as defined by

˜̂
θ = bias(θ̂) = E(θ̂)− θ0,

with the expectation replaced by the sample moment. The empirical 95% confidence

thresholds are reported along with the standard error.

Table 1 shows statistics for the specification using BLP instruments. The table

is structured by displaying the nonlinear parameters θ21 and θ22 first. They shape

the distribution of the random coefficient and are followed by the linearly estimated

parameters, θ11 = α and θ12 = β0. The first subscript indicates linearity (subscript

equals 1) or nonlinearity (subscript equals 2), whereas the second subscript enumerates

respective values. Next to the column with the true parameter values θ0 on the left side

are the estimated parameter averages. It is straightforward to see that all estimated

averages converge towards the true parameter values as the number of markets increases.

The empirical confidence intervals clearly tighten around the true values, e.g., the first
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nonlinear parameter θ21 shaping the distribution of x̃jt going from −6.231 and 3.637

at 25 markets to −0.861 and 0.914 at 200 markets with a true value of 0. The price

coefficient α is increasingly precisely estimated, with a value of 3.274 at 25 markets and

4.867 at 200 markets with a true value of 5. This is especially important as it shows

that endogeneity is taken into account and instrumental variables are valid.

Table 2 shows statistics for the specification using approximately optimal instru-

ments. The results are similar in the sense that parameters seem to converge to their

true counterparts. At the same time, the convergence is stronger, e.g., in the case of

θ21 the empirical confidence interval is estimated to be −1.476 and 2.244 at 25 markets

and closes around −0.536 and 0.714 at 200 markets with a true parameter value of

0. All values are estimated precisely, the estimated average of the price coefficient α

is estimated as 5.011 with a true parameter value of 5 and the intercept estimated as

−1.968 at 200 markets with a true parameter value of −2. For 100 and 200 markets the

precisely estimated parameters mildly fluctuate around the true value. It is explained

by the calculation as means and by outliers when looking at the confidence interval

actually strongly tightening. Comparing the estimated values at 200 markets to the

estimated values using BLP instruments, it can be said that the approximately optimal

instruments increase precision by a substantial amount.

Next, I move on to discuss and compare the convergence of a single parameter

value based on the empirical distribution. Figure 3 and 4 view histogram and density

for one selected parameter value dependent on market size. The dashed vertical line

indicates the true parameter value. Figure 3 (Figure 4) captures the convergence of

the parameter for BLP instruments (approximately optimal instruments). In both

cases consistency is visible. Firstly, the peak of the distribution matches somewhat to

the true value in the case of BLP instruments and matches closely to the true value

for approximately optimal instruments. Secondly, the width of the distribution narrows

down with increasing sample size, indicating a decrease in variance. The approximately

optimal instruments display a more pronounced convergence, as the peak is more closely

situated at the true parameter value at each sample size and the variance appears to

be smaller in each case compared to BLP instruments. This underlines the efficiency

of the approximately optimal instruments.

Figure 11 in Appendix A.7 plots the convergence of the price coefficient by market.

A convergence to the true parameter value can be observed. The peak of the distribution

moves ever more closely to the true value and the variance steadily decreases as the

number of observations grows. Apparently, the endogeneity of price induced by the

correlation between the price and the unobserved characteristics is fully accounted for

as long as the instruments are valid. BLP instruments again perform worse compared to
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Table 2: Parameter Summary Statistics for a Distribution based on a Second Order

Polynomial as z Variable and Instruments at the Expected Value of the Structural

Shocks

Markets θ0
¯̂
θ

˜̂
θ θ[0.025] θ[0.975] St. Err.

θ21

50 0 −0.067 −0.067 −1.046 1.668 0.683

200 0 −0.013 −0.013 −0.548 0.669 0.317

500 0 0.001 0.001 −0.341 0.398 0.192

θ22

50 −4 −3.991 0.009 −6.155 −1.181 1.239

200 −4 −4.021 −0.021 −4.881 −2.941 0.477

500 −4 −4.012 −0.012 −4.581 −3.409 0.310

θ11 = α

50 5 4.931 −0.069 2.789 8.624 1.514

200 5 4.962 −0.038 3.771 6.539 0.704

500 5 5.002 0.002 4.245 6.006 0.453

θ12 = β0

50 −2 −2.174 −0.174 −8.045 7.850 4.120

200 −2 −2.105 −0.105 −5.301 2.114 1.909

500 −2 −1.993 0.007 −4.025 0.694 1.225

approximately optimal instruments. Distributions for BLP instruments are not plotted

for brevity.

Apart from consistency, the distribution of the estimator is indicative to be roughly

approximated by a normal distribution. Looking at the density plotted along the his-

togram of the various figures, e.g., for the second nonlinear parameter in Figure 4, the

shape of the density seems to be somewhat fitting to a normal distribution. All versions

with a higher number of markets seem to roughly fit a normal distribution. This is re-

assuring as one can be confident that the estimator exhibits the properties of nonlinear

generalized method of moments and thus allows inference.

A disclaimer in this regard is the slight skewness to the right that can be observed

in the density plots in Appendix A.5 and A.7, which is a possible threat to inference.
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Figure 3: Monte Carlo Convergence of Parameter θ22 for a Second Order Polynomial

as z Variable and BLP Instruments
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Figure 4: Monte Carlo Convergence of Parameter θ22 for a Second Order Polynomial

as z Variable and Instruments at the Expected Value of the Structural Shocks

T
=

50
T

=
200

T
=

500

−10.0 −7.5 −5.0 −2.5 0.0 2.5

0.0

0.2

0.4

0.6

0.0

0.3

0.6

0.9

0.0

0.5

1.0

Random coefficient value

de
ns

ity

17



4.3.3 Convergence of Aggregate Values

Table 3 provides detail on the estimation of structural parameters, namely convergence

of the demand shocks and the marginal costs. Also, a measure for the convergence

of respective distributions is presented. All values are averages over all estimations.

The left column shows the average absolute deviation of the estimated shock term

from the true shock term ∆ξj of a random product. Similarly, the column labeled

∆mcj shows the average absolute deviation of the estimated marginal cost from the

true marginal cost of a random product. Both cases, g∗j (BLP instruments) and g∗∗j

(approximately optimal instruments), show clear convergence, with the bias being less

pronounced for g∗∗j . To gain a more overall picture, the third column displays the root

mean squared error (RMSE) for the vector of structural shocks. The RMSE is defined

by RMSE(x̂) =
√
E[(x̂− x0)2] = ¨̂x, with the arithmetic mean replacing the population

moment. I rescale the RMSE by a factor of 1000. A falling RMSE generally indicates

a better fit. A clear decrease of the bias can be observed. The bias of the specification

with approximately optimal instruments is less pronounced for all numbers of markets

compared to BLP instruments. The value of the RMSE for the structural demand terms

drops for specification g∗j from 0.597 at 25 markets to 0.231 at 200 markets, whereas

the RMSE drops from 0.345 to 0.124 with regard to specification g∗∗j . Similar results

hold for the the convergence of marginal costs; noteworthy is the comparatively rather

dramatic decrease in the bias, as soon as additional markets enter the sample. The

right column shows the RMSE of the probability masses for the taste distribution of

x̃jt,
¨̂
fx̃jt , and is an indicator of the convergence with respect to the underlying functional

form. Again, the bias decreases in both cases and approximately optimal instruments

estimate the underlying parameters more closely.

4.3.4 Additional Comments

Section 4 is now completed with a summary and interpretation of the results. First and

most importantly, the study indicates that the proposed estimator is largely consistent.

The Monte Carlo study shows a variety of different statistics to converge to their true

counterparts. A necessary assumption is that the support of the random coefficient

is correctly specified, and its underlying functional form is flexible enough to capture

the true shape of the distribution. Additionally, the instruments need to be mean

independent of the structural shock terms and sampling and simulation error must

be small. The latter is most easily guaranteed if only one parameter for consumer

heterogeneity is assumed, as a deterministic approach to integration avoids rather large

fluctuations induced by simulation.
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Table 3: Summary Statistics of Structural Convergence

Markets ∆ξj ∆mcj
¨̂
ξ ¨̂mc

¨̂
fx̃jt

g∗j

25 0.479 1.303 0.597 12.241 3.129

50 0.353 0.945 0.460 2.413 2.261

100 0.264 0.342 0.336 1.275 1.542

200 0.191 0.333 0.231 1.040 1.012

g∗∗j

25 0.273 0.445 0.345 1.913 1.690

50 0.206 0.333 0.259 0.840 1.156

100 0.148 0.269 0.181 0.599 0.746

200 0.100 0.281 0.124 0.557 0.514

Secondly, there is evidence that the estimator exhibits the behavior of a normal

distribution. Based on the exclusion of sampling and simulation error, the estimator is

established to follow the rules of nonlinear generalized method of moments. This can

be seen by inspecting the empirical distributions of the estimated values. The results

are in line with the theoretical findings in Berry, Linton, and Pakes (2004).

Thirdly, the theoretical results of Fox et al. (2012) discussing nonparametric iden-

tification of random coefficient logit models seem to be confirmed by the results of the

Monte Carlo study. The parameters of the distribution as well as the parameters of the

model appear to be uniquely identified.

Fourthly, it can be reported that estimating more sophisticated shapes with aggre-

gate data only is a difficult enterprise. I estimate a similar specification with a fourth

order polynomial and convergence requires more than 10 times the amount of observa-

tions. For details, see Section 5. The weakened convergence is straightforward so see

by adding 2 additional monomials to the second order polynomial and replicating the

Monte Carlo study described in this Section.

Fifthly, a part of the observations of Reynaert and Verboven (2014) can be repli-

cated, namely that the use of Chamberlain’s (1987) optimal instruments improves ef-

ficiency and reduces small sample bias. Comparing the results using BLP instruments

and the results using approximately optimal instruments it is clear that in this set up

BLP instruments are almost always inferior in efficiency. It is necessary to stress that

the instruments are here assumed to be available at high accuracy, which will not be
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the case in practice.

5 Monte Carlo Extended: Using Micro Data

By circumventing the normality assumption, estimation of more flexible distributions

can pose a challenge. These models often face large data requirements and are subjected

to the curse of dimensionality problem, resulting in serious challenges for practitioners.

It is thus paramount to investigate ways to estimate models flexibly without being

constrained too much by the modeling assumptions and the amount of data required.

The flexible estimator presented here offers these kinds of benefits. Moving from a

normality assumption to a flexible structure comes at the cost of having more param-

eters to estimate consistently, which usually requires more data. Yet it is possible to

show how the availability of precise micro data can alleviate estimation and make it

possible to estimate highly flexible distributions with only limited data requirements.

I therefore investigate the estimator’s behavior with a more sophisticated distribution

of consumer tastes and discuss an appropriate implementation.

The aim of this Section is to show that the estimator can be used with micro data

and consistently estimates arbitrary distributions. I therefore firstly estimate a flexible

estimation with a bimodal underlying distribution without micro data and then repeat

the estimation with micro data and compare the results. The procedure is similar to

Petrin (2002) and Berry, Levinsohn, and Pakes (2004). I compare the performances

of estimation with and without micro data and find that using micro data makes it

possible to uncover sophisticated distributional shapes that are not easily estimated in

the absence of micro data.

I proceed as follows. Section 5.1 presents a simple way to add micro data to the

model, whilst Section 5.2 discusses an implementation and the results.

5.1 Specification and Introduction of Micro Moments

Let Dr be consumer specific information, e.g., family size or income, and P(D) the

associated demographic distribution. For simplicity, its mean is assumed to be zero.

Let dj be a dummy such that dj = 0 if x̃jk < x̃jk and dj = 1 otherwise. The threshold

value x̃jk distinguishes segments. The dummy enables different segments of products

in a market to be separated and makes it possible to calculate expected demographics

conditional on segments. Let ζ be a utility shifter which is estimated. Then write

utility as
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urj = xjβ + ξj + x̃j(νr + Drζdj) + εrj. (15)

The associated market shares are the same as in Equation (6) with the addition of

the demographics in the nonlinear part of utility, i.e., the idiosyncratic shock is tier I

extreme value distributed, resulting in the logit model. The nonlinear utility is now

given by µrj = x̃j(νr + Drζdj) + εrj. I refrain from adding several nonlinear attributes

or demographics. This keeps notation at a minimum, as the sum notation can be left

out and generalization to multiple demographics is straightforward.

Estimation proceeds similarly as before. The distribution P(D) is either known and

random draws can be inserted during estimation or the distribution is estimated along

the other parameters if unknown. A derivation of the partial derivatives is presented

in Appendix A.2.

A crucial change are the micro moments that are appended to the BLP moments. To

form the micro moments it is necessary to calculate the expectations of demographics

conditional on a specific product, j, or conditional on a segment, o. This also conditions

on the occurrence of a purchase. The model implied expected demographics of a prod-

uct, j, are then approximated by multiplying each consumer type specific weighted

market share by its corresponding demographic value and averaging over consumer

types,

E[D|j] = S−1j
∑
r∈S

Wr · srj ·Dr, (16)

with Sj referencing the observed market share of product j. The model implied expected

demographic value conditional on a specific segment, o, is approximated similarly by

conditioning on the segment and additionally summing up across all products of the

segment,

E[D|type = o] = S−1o
∑
j∈o

∑
r∈S

Wr · srj|o ·Dr, (17)

with So referring to the market share of segment o.

The expected demographics based on the micro data are calculated as

D̄j = R−1j

Rj∑
r=1

Dr|j, (18)

D̄o = R−1o

Ro∑
r=1

Dr|o, (19)
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with Rj indicating the number of all consumers observed to purchase product j and Ro

indicating all consumers sampled in segment o. The micro moments are then formed

by the squared difference (stacked over all products and markets, indicated as bold)

and weighted by the inverse of the moment variance

G22 = E[D|j]− D̄j ,

G33 = E[D|type = o]− D̄o,

G2 = G′22G22/σ
2
G22
,

G3 = G′33G33/σ
2
G33

and appended to the BLP moments so that the objective can be written as G =

G1 +G2 +G3. See Appendix A.8 for a derivation of the gradient.

5.2 Monte Carlo Study: Micro Data

To see the flexible estimator in action and investigate its performance with micro data,

I conduct a Monte Carlo study, similarly as in Section 4. Consumer utility depends on

price, a constant, a randomly generated characteristic, x̃jt, and on a randomly generated

demand shock correlated with a supply side cost shock. As before, consumer utility

additionally depends on a consumer, product specific arbitrary shock term (logit error),

but now also on consumer demographics. Consumers are heterogeneous with respect

to the product characteristic x̃jt, as indicated by tilde. Firms compete Nash in prices.

Marginal costs are similarly structured as in Section 4. For details on the specification

of the model, see Appendix A.9.

I first run 100 Monte Carlo repetitions for 2000 markets with four firms in each mar-

ket and each firm providing three products, i.e., there are 24, 000 observations available

for estimation. In this first run, I do not utilize micro data during estimation and use

only BLP moments and an identification assumption based on exogenous characteristics

to estimate the model, labeled ‘No Micro’. I secondly run 100 Monte Carlo repetitions,

now for 100 markets and the same industry structure, i.e., 1200 observations are avail-

able to the econometrician. The model is then estimated with micro data generated for

each product as described in Section 5.1. This second micro data based run is labeled

‘Micro’.

The results can be seen in Table 4. I report the true values, θ0, along with an

estimate of the median, θ̂[0.5], and the bias,
˜̂
θ, as defined by the deviation from of

the true value from the median. The last columns show empirical quantiles and the

interquartile range (IQR). Each block separated by horizontal lines is a comparison

of an estimate between the version with and without micro data. The names of the
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Table 4: Comparing Micro to Non Micro Estimates with Bimodal Underlying

Distribution

Specification θ0 θ̂[0.5]
˜̂
θ θ̂[0.025] θ̂[0.975] IQR

θ21

No Micro −1.5 −2.085 −0.585 −13.960 12.487 5.196

Micro −1.5 −1.506 −0.006 −1.507 −1.375 0.000

θ22

No Micro 5 4.144 −0.856 −36.414 9.613 4.715

Micro 5 4.997 −0.003 2.743 4.998 0.000

θ23

No Micro 3 4.651 1.651 −14.282 103.251 16.113

Micro 3 3.016 0.016 1.534 3.017 0.001

θ24

No Micro −6 −8.140 −2.140 −85.859 12.565 14.892

Micro −6 −6.005 −0.005 −6.006 −2.940 0.000

θ11 = α

No Micro 6 5.997 −0.003 5.969 6.034 0.021

Micro 5 4.989 −0.011 4.795 5.297 0.198

θ12 = β0

No Micro −4 −4.011 −0.011 −4.121 −3.881 0.090

Micro 9 8.979 −0.021 8.371 9.931 0.607

‘No Micro’ estimated on 24, 000 observations without micro data. ‘Micro’ estimated on

1, 200 observations with micro data. Columns: θ0: True parameter values.
˜̂
θ: Bias of

the estimates. θ̂[x]: x quantile of the estimates. IQR: Interquartile range.

specifications are self explanatory. It is expedient to work with empirical quantiles, as

the estimation of deep parameters can sometimes produce large deviations from the

true values. Note that this does not imply a poor estimation of the post estimation

parameters, e.g., marginal costs or demand shocks.

The results show that, despite a large advantage of the ‘No Micro’ model in ob-

servations over the ‘Micro’ model, that the model with micro data produces vastly

superior estimates. The first two rows show statistics for parameter θ21 with a true

value of −1.5. The median for ‘No Micro’ is estimated to be −2.085 compared to an

estimated value of −1.506 for ‘Micro’ with a bias of −0.585 and −0.006, respectively.

The other deep parameters, θ22, θ23 and θ24, show qualitatively similar results. The

23



empirical quantiles show large diversions from the true values for ‘No Micro’ and slight

deviations for ‘Micro’. Due to the semi-nonparametric nature of the model, abnormal

estimates are collected on the fringe. To get a better picture of the dispersion, I report

the interquartile range (IQR), as defined by IQR= θ̂[0.75] − θ̂[0.25]. Here it can be seen

that there are vast differences in the estimated values. As far as ‘No Micro’ is con-

cerned, estimates differ widely. The ‘Micro’ specification is estimated almost exactly,

with a slight bias remaining due to simulation inaccuracy. The IQR of the first deep

parameter θ21 is estimated to be 5.196 for No Micro and 2.569e−4 for ‘Micro’, which

differs by a factor of over 20, 000. This observation holds for all deep parameters. The

homogeneous taste parameters are estimated comparably less precisely in the ‘Micro’

case when compared to ‘No Micro’, but still precise. The relative imprecision of the

homogeneous parameters is due to the small sample size of ‘Micro’, which increases the

variance of the two stage least square regression results.

I also estimate a version in which I only use micro moments in the estimation,

obtaining largely similar results. I do not report the results for brevity. In line with

the results in Berry and Haile (2022), the reliance on instruments is largely reduced

by introducing micro data; instruments are only needed to determine the magnitude of

the price coefficient.

All in all, the results show how a rather sophisticated shape can be estimated with

quite limited data requirements. Estimating a bimodal distribution is a difficult under-

taking, yet the flexible model is able to consistently estimate the parameters with only

1, 200 observations, given that low measurement error micro data is available.

I want to close out with a few remarks: the variances of the market shares and micro

data are kept to a minimum. Whether these assumptions can be justified, has to be

decided on a case by case basis. Integration of the market shares is assumed to be done

at high accuracy, which can be guaranteed if enough computational power is available.

The specification presented here is further stylized and might seem simplistic, yet it

is similar to specifications often found in contemporary empirical research and is thus

expected to be useful in the future.

6 Effects of Distributional Misspecification

The present Section aims at highlighting the potential importance of taking arbitrarily

distributed taste heterogeneity into account when estimating demand and simulating

mergers. I do so by comparing market equilibria and estimating respective parameters

with different underlying taste distributions.

I proceed similarly as in Section 4 and Section 5. The taste parameter concerning
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the price is assumed to be heterogeneous across consumers. The empirical setup is

unchanged with minor changes to the true coefficient values and the grid, ensuring

that the equilibrium can be established. Approximately optimal instruments and two

additional cost shifters are used as instruments. For additional details, please refer to

Appendix A.10.

Section 6.1 compares BLP and flexible estimator true market equilibria, i.e., the

estimation parameters are assumed to be known. Additionally, I simulate a merger for

each model to compare the results. Section 6.2 moves on and estimates the parameter

values using the BLP model, when the true underlying bimodel distribution is generated

by the flexible model and assesses the performance of the BLP estimator. Section 6.3

discusses the results.

6.1 Comparing True Market Equilibria

I now investigate whether it is any different to model the market equilibrium based on a

normality assumption, or by a logit mixed logit model with a second order polynomial

as z variable or based on a fourth order polynomial as z variable, which I assume to be a

bimodal distribution. For ease of language, I refer to the models in the following as BLP,

Second Order and Fourth Order, respectively. In this Section there is thus no estimation

of any model, only calculated true market equilibria are compared. To rule out any

differences due to first and second order moments or asymmetries of the distribution,

I choose expectation and variance to be equal for all distributions and model the logit

mixed logit distributions to be symmetric. This allows a direct comparison of the

different underlying distributional assumptions and its implied structural parameters.

After generating the data, I simulate a merger between two firms and report respective

statistics, namely welfare change, average price changes of the merging parties and the

change of the Lerner index (all statistics in percent), as well as average cross and own

elasticities prior to the merger.

The results can be seen in Table 5. The first and second columns show means (x̄conc)

and respective standard errors (SEconc) over 100 markets and 100 Monte Carlo repeti-

tions within a relatively concentrated industry, with three firms offering two products

each. The results based on BLP differ quite considerably from the results based on

the logit mixed logit model, with the largest difference to the bimodal distribution,

and the results of the second order polynomial as z variable in a middle ground. The

percentage welfare loss is calculated to be approximately 1% in the BLP model, 0.77%

in the Second Order case and 0.26% for the bimodal distribution. The price changes

of the merging parties are backed out as 5% for BLP, 3% for the Second Order and
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Table 5: Summary Statistics for Market Equilibria of BLP (Normality) and LML

(Second and Fourth Order Polynomial) Simulating a Merger

x̄conc SEconc x̄comp SEcomp

Welfare Change (%)

BLP −1.019 (0.134) −0.386 (0.031)

Second Order −0.774 (0.007) −0.358 (0.004)

Fourth Order −0.257 (0.003) −0.137 (0.001)

Price Change (%)

BLP 5.000 (0.000) 2.680 (0.000)

Second Order 3.006 (0.000) 2.158 (0.000)

Fourth Order 1.462 (0.000) 1.312 (0.000)

Lerner Change (%)

BLP 22.181 (0.109) 10.874 (0.051)

Second Order 17.304 (0.064) 9.935 (0.049)

Fourth Order 10.453 (0.045) 7.005 (0.032)

Cross Elasticities

BLP 0.723 (0.002) 0.418 (0.001)

Second Order 0.811 (0.002) 0.466 (0.001)

Fourth Order 0.646 (0.002) 0.410 (0.001)

Own Elasticities

BLP −7.060 (0.006) −8.110 (0.004)

Second Order −7.948 (0.003) −8.668 (0.003)

Fourth Order −9.104 (0.004) −9.618 (0.002)

The subscript “conc” indicates a more concentrated industry, whereas the subscript

“comp” indicates a more competitive industry. Generated with 100 Monte Carlo repeti-

tions using 100 markets each. Markets consist of 3 firms offering 2 products each in the

more concentrated case, and 4 firms offering 3 products each in the more competitive

case. Heterogeneous price coefficient, intercept and consumer characteristic preference

assumed to be linear. Aggregation is done by weighting with respective market shares.

1.46% for the bimodal distribution, as well as increases of the Lerner index of 22%, 17%

and 10% due to the merger, respectively. These results show considerable differences

between distributional assumptions. Whereas the BLP model overestimates the welfare

loss with a factor of four compared to the bimodal distribution, BLP overestimates the

price increase of the merger and overpredicts the increase in market power indicated by
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the Lerner index. This picture is reflected in the own elasticities, with BLP estimating

the average own elasticity to be −7.06, with the Second Order estimate being −7.95 and

the bimodal estimate being −9.10, i.e., BLP may underestimate the quantity effect by

roughly 2 percentage points in this setting, if one estimates by BLP, but the underlying

distribution is truly bimodal. The cross elasticities show no such hierarchical ordering;

the cross elasticities estimated by BLP are intermediate with an average value of 0.72,

the Second Order estimate is 0.81 and the bimodal estimate being 0.65.

One may wonder why the results of BLP and Second Order differ at all, given that

both distributions have the same mean and variance and they also share the same shape.

Welfare and price changes could be expected to be largely equal. The difference can be

explained by the support of the random coefficients. Since the grid of the logit mixed

logit model limits the support of the random coefficients, rare outliers are impossible in

the flexible specification, whereas the support of the normal distribution is unlimited.

These rare outliers are amplified when entering the exponential function and spill over

into welfare estimates. The normality assumption in BLP can be seen as a special case

of the logit mixed logit model by stretching to grid to infinity. Running a specification

for Second Order with a stretched grid, whilst keeping the variance constant, produces

the same results as in the BLP model. The flexible estimator is thus more general

and accommodates all cases in between a single linear taste and an infinite support for

tastes.

The two right columns show the results for a more competitive industry, with four

firms offering three products each, indicated by “comp”. The results are similar from a

qualitative perspective. Looking at the magnitude, it turns out that problems are more

aggravated in the concentrated industry, which is intuitive, as effects are spread over

more market participants and products in the less concentrated industry. Following

this argument, the price effect of BLP is 5/1.46 = 3.42 times the effect of the bimodal

distribution in the concentrated industry, compared to a factor of 2.68/1.31 = 2.05

times in the less concentrated industry.

6.2 Estimating BLP when Consumer Tastes are Non-Normally

Distributed

Next, I investigate what happens when the true data is generated by an underlying

bimodal taste distribution, but estimated with BLP, thus wrongly modeling the distri-

bution to be normally distributed. I generate 1000 datasets as described in Section 5.1,

but change the number of markets to 1000 to minimize small sample bias. As in the

previous Section, the distribution of the tastes for the price coefficient is modeled to
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be bimodal, which is achieved by setting the z variable to a fourth order polynomial.

The distribution can be described as symmetric with two pronounced peaks and a large

trough in the middle. There are three firms in the market, each offering two products.

For more details, please refer to Appendix A.10.

Table 6 shows the estimated standard deviation and the associated linear parameter

of the random coefficient, α, along with the parameters for homogeneous tastes, i.e., the

parameter for the constant, β0, and the parameter for the characteristic, β1. I report

mean estimates, medians are essentially equal. The column with the BLP estimates can

be directly compared to the true values in the right column. The standard deviation of

the random coefficient is estimated to be 0.82, compared to a true value of 1.75. The

estimated width of the shape is seemingly compressed in the estimation to fit the model

to the data. The mean value of the nonlinear price coefficient is estimated to be too

low, with an estimated value of 4.26 compared to the true mean of 5.50, implying that

demand is estimated less elastic than it actually is, consistent with the results of Section

6.1. The intercept and the characteristic coefficients are estimated relatively well, with

an intercept estimate of 3.71 compared to the true value of 4.00 and β1 almost exactly

estimated.

Table 7 shows aggregated parameters of the market equilibrium before and after

a simulated merger. I report the root mean square percentage error (RMSPE) of

elasticities, price changes, the Lerner index and model implied welfare. The root mean

square percentage error is defined as RMSPE(x0, x̂) = 100
√
E[((x̂− x0)/x0)2] and is

a measure of the accuracy of the estimated values compared to the true values. The

RMSPE of the own and cross price elasticities are estimated to be 7.41 and 13.98

respectively, indicating that the BLP model misses the true estimates of own and cross

price elasticities by roughly 7% and 14%. The RMSPE value of the own and cross

Table 6: BLP Estimates When Truly Underlying Distribution is Bimodal

Variable BLP St. Err. True

Standard deviation 0.82 (0.04) 1.75

Price coefficient (α) 4.26 (0.29) 5.50

Intercept (β0) 3.71 (0.80) 4.00

Characteristic (β1) 1.99 (0.06) 2.00

Estimated with 1000 Monte Carlo repetitions and 1000 markets in a concentrated industry (3

firms with 2 products each).
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Table 7: Aggregate Statistics Bias When Estimated By BLP and Truly

Underlying Distribution is Bimodal

Statistic RMSPE(x0,x̂)

ηjj 7.41

ηajj 7.21

ηjk 13.98

ηajk 12.97

∆p(merging) 13.62

∆p(fringe) 35.55

Lerner 7.69

Lernera 7.84

Welfare 17.14

Aggregate statistics using estimates from Table 6. I report root mean square

percentage error (RMSPE) between estimated and true values. All measures are

weighted by market share. ηjk is the percentage market share response of product

j due to a 1% increase in price of product k. The superscript ‘a’ indicates after

merger results. Aggregation is done by weighting with respective market shares.

price elasticities after the merger are marked by a superscript ‘a’, and have similar

magnitudes, showing that the bias carries over to the merger simulation results. The

percentage price change of the merging parties is overestimated by 13.62% compared to

the true values, and the percentage price change of the fringe parties is overestimated

by 35.55% compared to the true values. In both cases, before and after the merger, the

Lerner index is overestimated by roughly 8% compared to the true values. The welfare

loss is underestimated by 17% compared to the true welfare loss.

6.3 Discussion

The results of the previous Sections show bias on two different scales. In Section

6.1, the biases are quite large, whereas in Section 6.2 the biases are more moderate.

When estimating the BLP model on non-normally distributed tastes, the bias is not as

pronounced, e.g., the ratio of the price changes calculated with BLP and the Fourth

Order in Table 5 imply that price changes are overestimated by more than 100% in BLP,

whereas in Table 7, it is implied that merging parties price increases are overestimated

by 14%. The BLP model seems to be quite adaptive and minimizes the error induced

by misspecification, at the cost of biased parameter estimates.
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The BLP model does not estimate the implied welfare loss correctly. The percentage

welfare loss of the merger is underestimated by 17%, which is a considerable bias given

the misspecification. This is interesting because one may expect the welfare loss to be

overestimated, since firms enjoy heightened market power. Yet this effect is counter-

veiled by the large tails in the true distribution, such that consumers that are situated

off-center in the preference distribution incur relatively more losses due to increased

prices, inducing a higher welfare loss with regard to the bimodal distribution.

By repeating the estimation with a different parameter values, I find the bias of

the structural estimates of BLP to aggravate for skewed true underlying distributions

and in more concentrated industries (cf. Section A.12 for more details). Moreover, the

point estimates of the BLP standard deviation increasingly fluctuate with non-normally

distributed true underlying distributions. Non-normality might thus potentially be a

source of the reported numerical instabilities in BLP, albeit that numerical stability

appears to be fostered by tight tolerances and accurate integration, as shown on the

datasets used by BLP and Nevo (cf. Knittel and Metaxoglou (2014), Nevo (2000b),

Dubé, Fox, and Su (2012), Brunner et al. (2017)).

To conclude, the results generally hint at the potential biases induced by a wrong

specification of the distribution. The results seem to indicate that market power, price

effects and welfare cannot be precisely predicted by BLP when subject to distributional

misspecification, i.e., when the underlying true distribution cannot be approximated by

a normal distribution. I further establish that the bias in the welfare estimate cannot

be ignored when the true underlying distribution is symmetric. A more asymmetric

distribution may introduce numerical instabilities and increase the bias of the estimates.

More concentrated industries amplify the bias induced by misspecification.

7 Application to BLP car data

7.1 Set up, Specification and Data

Next, I apply the flexible estimator to a commonly used dataset. The dataset provides

data on U.S. car sales from 1971 to 1990. Aggregate shares and prices are given along

with important characteristics of the cars. Characteristics include horsepower, weight

and the measures of a car along with fuel consumption and a dummy variable indicating

the presence of an air conditioning system. The dataset contains 2, 217 observations.

For more information on the dataset, see Berry, Levinsohn, and Pakes (1995).

The characteristics used to explain consumer utility are largely similar to BLP and

Brunner et al. (2017). The ratio of horsepower to weight (Hpwt) serves as a proxy for
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the power of a car, air conditioning (Air) serves as a proxy for luxury, miles per gallon

(Mpg) captures the consciousness of consumers towards energy efficiency and a space

variable (Space) serves as a proxy for safety and preference for larger interior space and

aesthetics (cf. BLP). The price variable is assumed to be endogenous and consumers

price sensitivity is assumed to be heterogeneous. All other variables are treated as

linear variables.

I estimate the flexible model with a second order polynomial (Flex 2nd) and a fourth

order polynomial (Flex 4th) as z variables for price. The grid of the random coefficient

for price is based on some initial experimentation with different specifications using the

R package BLPestimatoR and set to αr ∈ [−0.2, 8.2], assuming a mean of ᾱ = 4 and a

standard deviation of 1.4 and the grid to span 3 standard deviations below and above

the mean value. The results are then compared to results obtained from BLPestimatoR,

which also treats price as the only heterogeneity term and all other characteristics as

linear. BLPestimatoR is available to users of the programming language R, an open

source statistical software environment. The estimation in R uses default tolerances

and 10,000 modified latin hypercube sampling draws.

It is not clear whether the structural error terms are conditionally homoskedas-

tic. I do not cluster by car model and use a two step GMM procedure and calcu-

late a first consistent estimate using an appropriate identity as a weighting matrix.

The weighting matrix is then recalculated based on the initial results according to

Ŵ = (n−1
∑n

i=1 ĝiĝi
′ − ḡnḡn′)−1, with ĝi as the individual moments based on an initial

consistent estimate and ḡn as the average of the moments (cf. Hansen, 2021). This is

the procedure to obtain the asymptotically efficient weight matrix.

I use BLP instruments in the first step and then calculate the approximation to

optimal instruments, g∗∗j (x), by iterating over the first order conditions until the prices

are sufficiently stable and an equilibrium is assumed, similarly as discussed in Section

4.1. Then, in the second step, I use the approximated efficient weight matrix along with

BLP instruments and the backed out approximately optimal instruments to estimate

the second stage.

7.2 Discussion of the Results

Table 8 presents the results for the BLP model and the flexible model using second

and fourth order polynomials. All estimates are point estimates. Standard errors

are not reported. The first column contains the results for the BLP model estimated

with BLPestimatoR. The mean marginal disutility of price is estimated to be 3.43.

Its standard deviation is estimated to be 1.09 and highly significant, indicating that
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consumers are indeed heterogeneous with respect to the price to pay. The power proxy

Hpwt is estimated to be 2.12. The average consumer thus receives positive utility

when confronted with a power increase of the car, ceteris paribus. Air, Space and Mpg

are estimated to be 1.14, 2.98 and 0.33, respectively. The signs are intuitive and as

expected. The presence of an air conditioning system induces a utility gain as well as

an increase in Space and fuel efficiency, represented by Mpg.

The second column shows the result of the flexible specification using a second order

polynomial as z variable. The linear parameters and the mean of the price coefficient

are comparable to the BLP specification. The mean of price is estimated to be 4.33

and consumers are therefore estimated to be more price sensitive on average compared

to BLP. All other marginal utility parameters are estimated almost exactly the same as

in BLP. The utility gain from Hpwt is estimated to be 2.21 and Air is estimated 1.12.

Space and Mpg are estimated as 3.05 and 0.34, respectively. The last rows of Table 8

contain the underlying estimates of the z variables, θ21 = 0.60 and θ22 = −3.61. These

parameters do not have a direct economic meaning but rather shape the distribution

of the random coefficients. A negative second order term reveals that the shape of the

logit distribution is opened downwards, similar to a normal distribution.

In the third column, the results of the specification using a fourth order polynomial

as z variable can be seen. The parameter estimates are broadly in line with the other

Table 8: Results with BLP and Flexible Demand Using a Second and Fourth Order

Polynomial to Specify Price

Variable BLP Flex 2nd Flex 4th Misspec 1 Misspec 2

Const −9.79 −9.40 −9.51 −9.27 −9.41

Price 3.43 4.33 3.64 4.43 4.35

Hpwt 2.12 2.21 2.96 2.56 2.35

Air 1.14 1.12 1.95 1.43 1.14

Space 2.98 3.05 3.08 3.07 3.05

Mpg 0.33 0.34 0.24 0.30 0.33

θ21 − 0.60 −30.58 7.59 −4.42

θ22 − −3.61 −146.60 −9.64 −8.14

θ23 − − 31.39 − −
θ24 − − 145.51 − −
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Figure 5: Comparison of Shapes BLP Model/Flexible Model with a Support of

αr ∈ [−0.2, 8.2]
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two specifications. Notably, the mean of the price coefficient is estimated to be closer

to the mean of the BLP model with 3.64 compared to specification using a second order

polynomial. Hpwt and Air are estimated to be comparably high with values 2.96 and

1.95, and Mpg relatively low with a value of 0.24. Again, the last four rows hold the

estimated parameter values of the z variables, e.g., θ21 = −30.58 or θ22 = −146.60.

Higher values are usually a good indicator for degenerate distributions or distributions

that do not cover the full support as specified.

Figure 5 shows the backed out shapes of the distribution of the price coefficient. The

solid line represents the normal distribution with a mean of 3.43 and standard deviation

of 1.09 as estimated by the BLP model. The bell shape of the normal distribution is

clearly visible. The dashed line shows the distribution calculated based on the flexible

model with a second order polynomial as z variable. The shapes differ slightly in terms

of mean and width, but the similarity is striking. The dotted line shows the distribution

based on the fourth order polynomial. It shows a large and sharp increase in probability

around its mean value of 3.64 and quickly falls off to zero at the surrounding area and

mostly displays zero probabilities on its support. This is in line with the observation

that the parameters of the z variables are estimated as large values. Based on this

distribution, one might reject the hypothesis of consumer heterogeneity and conclude

that a linear parameter is appropriate.

The robustness observed for the second order polynomial as z variable cannot be
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said about the fourth order polynomial. The results varied widely based on starting

values and grid specification and often showed degenerate distributions. Often two or

three large spikes can be identified holding the entire mass of the distribution with

all other values having zero probability masses. In other cases, only the smallest and

largest random coefficient value hold positive probability masses. Since the second

order polynomial is robustly estimated but the fourth order polynomial is not, several

interpretations are possible. According to one interpretation, one spike in probability is

equivalent to homogeneous consumers, characterized by a linear parameter only. In this

case, the nonlinear term and the assumption of consumer heterogeneity are rejected,

and the model reverts to the simple version, which is inconsistent with the results from

the second order polynomial. Another tempting interpretation thus takes the fragility

as a sign that the underlying true distribution in fact can be approximated by a normal

distribution but is not estimable due to a lack of data. The failure of the third and

fourth order terms of the fourth order specification to converge to zero can then be seen

as small sample bias being too strong to let those terms converge to zero and reveal

the bell shape. This would be consistent with observations from the Monte Carlo study

where 2, 400 observations (200 markets and 12 products) are not enough to consistently

estimate the shape of the bimodal distribution. From this perspective, the BLP dataset

is just limited in what is possible with 2, 217 entries. A third interpretation is that the

underlying distribution might as well be bimodal or follow some skewed distribution.

Then the backed out bell shape can be treated as an approximation of the mean and

variance of the underlying true distribution. More data is needed to overcome small

sample bias and reveal its true shape.

I now want to move on to a more in-depth discussion about the robustness of the

estimation procedure. The results obtained for the second order polynomial appear to

be robust once the grid is fixed at the specified values. Changing optimization starting

values does not result in different parameter estimates. In this respect, the results of the

second order polynomial seem to be quite robust. Also changing the grid range by some

margin does not result in large changes in parameter estimates, which is reassuring as

the specification of the grid is particularly arbitrary and a point of contention. Changing

the grid by ±1 does not result in large shifts of parameter estimates. Interestingly,

specifying the grid too low or too high often resulted in zero probabilities of those

regions misspecified, further strengthening the impression of validity. In some cases, a

grid specified to be far off resulted in a failure to contract the market equilibrium when

calculating the instrumental variables approximations. Using only BLP instruments in

the second step of generalized method of moments does not largely produce different

results.
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Figure 6: Shapes of Distributions with Misspecified Grid for a Second Order

Polynomial as z Variable
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Misspecification 1 refers to a distributional shape backed out based on a support of αr ∈
[−4.2, 8.2] and Misspecification 2 refers to a distributional shape backed out based on a support

of αr ∈ [−0.2, 12.2]. The usual caution was taken when optimizing, e.g., the results are robust

over different starting values.

The columns Misspec 1 and Misspec 2 of Table 8 refer to different specifications of

the grid. I hereby assume that the correct specification of the grid is given by αr ∈
[−0.2, 8.2]. Misspec 1 refers to a misspecified grid with αr ∈ [−4.2, 8.2] and Misspec 2

refers to a misspecified grid with αr ∈ [−0.2, 12.2], each specification stretching the grid

4 units on one side. Note that the word misspecification is technically not correct but

used for illustrative purposes, as the true grid capturing most or all random coefficients

is unknown. Table 8 reveals that the estimated linear values and the expectation of the

random coefficient are only marginally influenced by the misspecification, with all values

in line with the other specifications. The mean of the price coefficient is unswayed by the

grid manipulation, with the grid stretched on the upper side surprisingly resulting in a

lower price coefficient of 4.35 than the downward stretched grid with a price coefficient

of 4.43. This observation must be taken with care; an earlier version of the paper with

a different specification of the estimation indicated that the price coefficient can very

well be influenced by the grid specification.

Figure 6 shows the shape of the distributions based on the misspecified grid. Despite
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the misspecification, the correct shapes are clearly captured. Also, no matter in which

direction the misspecification, the correct support of the random coefficient is matched

closely, as can be seen in Figure 6 and comparing the shapes to Figure 10. Manipulation

of the grid does not force the shapes on a different support. The linear value of the

price coefficient backed out by the second order polynomial as z variable is highlighted

by a vertical line at 4.33 as reference. Notice that the peaks match closely to the

reference specification. Special attention should be given to the lowest and highest

values of the random coefficients. At those values that are not in an area where the

price coefficient is normally expected to reside, namely at negative values (more specific,

αr ∈ [−4.2, 0]), the probability masses are actually estimated to be mostly zero. At the

same time, at the values far to the right, e.g., at values beyond eight, the probability

masses are also virtually zero, corresponding to the normal distribution from the BLP

model; realization of random coefficient values of higher than eight is highly unlikely.

This altogether presents a rather robust picture of the second order specification of the

flexible estimation procedure.

This concludes the application section. To summarize, the flexible estimation pro-

cedure seems to be able to produce realistic results outside of the artificial environment

of a Monte Carlo study. The estimates are comparable to the BLP model and are ro-

bust to changes of starting values and grid specification. The dataset does not provide

enough information to estimate higher order specifications. This is not surprising as

demonstrated in the Monte Carlo study.

8 Conclusion

The Berry, Levinsohn, and Pakes (1995, BLP) model is widely used to obtain parameter

estimates of market forces in differentiated product markets. The results are often

used as an input to evaluate economic activity in a structural model of demand and

supply. Precise estimation of parameter estimates is therefore crucial to obtain realistic

economic predictions. The present paper combines the BLP model and the logit mixed

logit model of Train (2016) to estimate the distribution of consumer heterogeneity in

a flexible and parsimonious way. A Monte Carlo study yields asymptotically normally

distributed and consistent estimates of the structural parameters. With access to micro

data, the approach allows for the estimation of highly flexible parametric distributions.

The estimator further allows to introduce correlations between tastes, yielding more

realistic demand patterns without substantially altering the procedure of estimation,

making it highly relevant for practitioners. The BLP estimator is established to yield

biased and inconsistent results when the underlying distributional shape is non-normally
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distributed. An application shows the estimator to perform well on a real world dataset

and provides similar estimates as the BLP estimator with the option of specifying

consumer heterogeneity as a function of a polynomial, step function or spline, resulting

in a flexible estimation procedure.
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A Appendix

A.1 Rewriting the Contraction

Following the notation of Brunner et al. (2017) (see also Appendix of Nevo (2000a)),

the contraction mapping is given by:

witer+1
j = witerj · Sj

sj(θ, ν)
= witerj · Sj

R−1
∑
r

witerj vrj

1+
∑
k
witerk vrk

,

with w ≡ exjβ+ξj = eδj and vrj ≡ eµrj .

The contraction is rewritten similar to the Appendix of Brunner et al. (2017) to

speed up estimation times. Pull witerj into the denominator:

witer+1
j =

Sj
R−1

∑
r

vrj
1+

∑
k
witerk vrk

and finally applying Train (2016) to the contraction mapping yields the modified con-

traction mapping:

witer+1
j =

Sj∑
r∈S

vrj
1+

∑
k

witerk vrk
·Wr

. (20)

A.2 Implementation Details: Own- and Cross-Derivatives of

the Market Shares

Based on the new formula for the aggregate market shares, entries of Ω cannot be

calculated as in the BLP model, but have to be modified. Differentiating sj in Equation

(6) with respect to price and rearranging, the entries of a nonlinear price coefficient

become

∂sj
∂pj

= −
∑
r∈S

srj(1− srj)(νrp +Drζdj)Wr (21a)

∂sj
∂pq

=
∑
r∈S

srjsrq(νrp +Drζdj)Wr (21b)

For a model without micro data, set ζ equal to zero. The formulae can take on different

signs, depending on how the prices are specified. I specify the price vector to be a

vector of negative prices (i.e., the original price vector p times −1) so that the grid is

specified to hold positive values.
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A.3 Implementation Details: Derivation of the Gradient

Train (2016) stresses the ease of deriving the gradient to speed up estimation times. I

now proceed to derive the gradient for the flexible model as discussed in Section 3.3

and 4. The gradient of the objective in Equation (12) is given by

∇G1(θ) = 2

(
∂ξ

∂θ

)′
ZWZ ′ξ. (22)

Rewriting δ = xβ + ξ as ξ = δ − xβ, the inner derivative can be calculated similarly

as described by Nevo (2000a) by totally differentiating the matching condition and

subtracting the linear part:
dξ

dθ
=
∂δ

∂θ
− ∂xβ

∂θ
. (23)

The components are given by

∂δ

∂θ
= −

[
∂s(δ; ν, θ)

∂δ

]−1 [
∂s(δ; ν, θ)

∂θ

]
(24)

and by taking into account Equation (10) and the β value resulting from a two stage

least squares procedure and the matrix formula associated with it, the derivative obtains

∂xβ

∂θ
= −x (x′ZWZ ′x)−1x′ZWZ ′︸ ︷︷ ︸

τ

[
∂s(δ; ν, θ)

∂δ

]−1 [
∂s(δ; ν, θ)

∂θ

]
︸ ︷︷ ︸

∂δ
∂θ

= −xτ ∂δ
∂θ

(25)

with market shares s(δ, ν; θ) given by Equation (6) and τ referring to the two stage

least squares projection matrix and x (cf. Hansen (2021), eqs. 12.30 and 12.31, pg.

345).

Nevo calculates the derivative ∂δ/∂θ by linearizing the system of nonlinear equa-

tions, taking the derivative and transforming the system back to the nonlinear system

(cf. Simon and Blume (1994) pg. 355). The results are an approximation about a

specified point, which should be kept in mind. The gradient is only accurate close to

the point evaluated.

Deriving the first term of the right hand side of (24) is straightforward, i.e., the mar-

ket shares differentiated with respect to the linear part of utility δ, having dimensions

J × J , j and q being two products:

∂sj(δ, ν; θ)

∂δj
=
∑
r∈S

srj(1− srj) ·Wr (26a)

∂sj(δ, ν; θ)

∂δq
= −

∑
r∈S

srjsrq ·Wr (26b)
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Lastly, I calculate the market shares differentiated with respect to the optimization

parameters θ. From now on one has to specify a z variable which I assume to be a

polynomial of order n. After forming the derivative and simplification, the expression

for the market share derivative with respect to nonlinear optimization parameter θ

concerning characteristic xk is given by

∂sj(δ, ν; θ)

∂θkn
=
∑
r∈S

srj

(
ν̃nrk −

∑
s∈S

Wsν̃
n
sk

)
·Wr, (27)

with ν̃nrk referencing the scaled draws as described in Section 3.2 and n indicating which

order of the polynomial the derivative refers to. Expression (27) holds for all random

coefficients, also for a random coefficient on the constant. Replacing k by p yields the

derivative with respect to the price coefficient.

A.4 Implementation Details: Exemplary Derivation of Market

Share Derivatives with Respect to Optimization Param-

eters

Derivatives are calculated exemplary for a logit distribution based on polynomials of

order n. Structuring the z variables differently (e.g., step-functions or splines) requires

all derivatives to be re-derived. With normalized random coefficients denoted as ν̃r, the

aggregate market share is given by

sj =
∑
r∈S

 eδj+µrj

1 +
∑
j∈J

eδj+µrj

 ·
 eθ

′z(ν̃r)∑
s∈S

eθ′z(ν̃s)


and the logit distribution polynomial of order n in the more elaborate form

Wrk = W (ν̃k|θk2) =
eθ
k
21ν̃rk+θ

k
22ν̃

2
rk+...+θ

k
2nν̃

n
rk∑

s∈S
eθ
k
21ν̃sk+θ

k
22ν̃

2
sk+...+θ

k
2nν̃

n
sk

.

Concerning notation: θk2n indicates the nth logit parameter of characteristic k associated

with heterogeneity. The subscript ‘2’ indicates a nonlinear optimization parameter. The

value ν̃nrk is the nth power of the transformed heterogeneity draw (or taste) of consumer

type r towards characteristic k. Then the derivative can be calculated as

∂sj
∂θk2n

=
∑
r∈S

eδj+µrjL− eδj+µrj
∑
j∈J

eδj+µrj

L2
Wr + srjWr

[
ν̃nrk −

∑
s∈S

Wsν̃
n
sk

]
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with the outer sum covering the whole term and L = 1+
∑
j∈J

eδj+µrj . The term simplifies

to:

∂sj
∂θk2n

=
∑
r∈S

srj

[
ν̃nrk −

∑
s∈S

Wsν̃
n
sk

]
Wr. (28)

The market share derivatives with respect to the parameters for the price coefficient

are derived similarly and calculated as

∂sj
∂θα2n

=
∑
r∈S

srj

[
ν̃nrp −

∑
s∈S

Wsν̃
n
sp

]
Wr. (29)

A.5 Convergence of Parameter Values, Consumer Heterogene-

ity on Price

The following Table 9 and Figures 7, 8, 9 and 10 show convergence of the parameter

estimates of the Monte Carlo study in Section 4, with the price coefficient being het-

erogeneous across consumers, thus denoted by p̃, and the constant and the taste on

x being homogeneous across consumers. This changes the model setting only slightly,

with Xjt = (p̃jt, 1, xjt). The demand side marginal utility parameters of Xjt are then

given by the column vector βr = (αr, θ11, θ12) = (αr, β0, β1) = (νr, 4, 2). The grid is

set to νr ∈ [2, 9] and the z variables are set to θ = (θ21, θ22) = (0,−4), modeled by

a second order polynomial. The modification is necessary to allow equilibrium con-

vergence when generating the data, which must accommodate a specific combination

of parameter values. I modify marginal costs, with two additional cost shifters, c1

and c2, excluded from demand. The cost shifters are used as instruments along with

the approximately optimal instruments. This is necessary to show clear convergence

for 200 markets or 2, 400 observations, as estimation of the distribution for the price

coefficient turns out to be more challenging than estimating the distribution on the

parameter on characteristic x. The cost shifters (cs) are generated as uniformly dis-

tributed variables or cs ∼ Uniform(0, 0.1). For clarity, utility is formally given by

urjt = Xjtβr + ξjt + εrjt = p̃jtνr + 4 + 2xjt + ξjt + εrjt. Marginal costs are formally given

by mcjt = 2.5 + 0.2x̃jt + c1 + c2 + 0.2ωjt. Qualitatively, the results mirror the results of

Section 4.
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Table 9: Parameter Summary Statistics for a Distribution based on a Second Order

Polynomial as z Variable, Heterogeneous Price Coefficient

Markets θ0
¯̂
θ

˜̂
θ θ̂[0.025] θ̂[0.975] St. Err.

θ21

50 0 0.550 0.550 −3.627 4.321 1.900

200 0 0.269 0.269 −1.406 2.323 0.920

500 0 0.060 0.060 −0.939 1.354 0.576

θ22

50 −4 34.551 38.551 −8.830 813.005 169.198

200 −4 −3.510 0.490 −5.812 0.385 1.602

500 −4 −3.841 0.159 −5.120 −2.004 0.739

θ11 = α

50 4 3.746 −0.254 0.513 9.751 2.419

200 4 3.994 −0.006 1.844 6.846 1.325

500 4 3.952 −0.048 2.494 5.630 0.812

θ12 = β0

50 2 1.979 −0.021 1.708 2.437 0.190

200 2 1.999 −0.001 1.817 2.223 0.102

500 2 1.996 −0.004 1.883 2.124 0.061
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Figure 7: Monte Carlo Convergence of Parameter θ21 for a Second Order Polynomial

as z Variable and Instruments at the Expected Value of the Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the price coef-

ficient, p̃. The intercept and the characteristic, xj , enter the model linearly.
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Figure 8: Monte Carlo Convergence of Parameter θ22 for a Second Order Polynomial

and Instruments at the Expected Value of the Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the price coef-

ficient, p̃. The intercept and the characteristic, xj , enter the model linearly.
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Figure 9: Monte Carlo Convergence of Parameter θ11 = β0 for a Second Order

Polynomial as z Variable and Instruments at the Expected Value of the Structural

Shocks
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This figure is created with consumers having heterogeneous tastes concerning the price coef-

ficient, p̃. The intercept and the characteristic, xj , enter the model linearly.
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Figure 10: Monte Carlo Convergence of Parameter θ12 = β1 for a Second Order

Polynomial and Instruments at the Expected Value of the Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the price coef-

ficient, p̃. The intercept and the characteristic, xj , enter the model linearly.
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A.6 Monte Carlo Study: Computational Details

All programming is done using the programming language Python, mainly relying on

the library NumPy for data generation and data manipulation and SciPy for mini-

mization of the objective. The SciPy function minimize is used along with the BFGS

algorithm and an analytical gradient. I scale the objective given by Equation (12)

by dividing through the squared number of products in the sample. The tolerance of

the optimizer gradient norm is set to 1e− 12. Objective minimizing parameter values

are accepted as an estimate only when the optimizer converged; otherwise, the current

draws are dropped and new random draws generated. The inner tolerance of the con-

traction mapping is set to 1e− 16. It is important to keep the inner tolerance tight to

prevent inaccuracies from spreading into the system, as discussed by several authors (cf.

Dubé, Fox, and Su (2012), Brunner et al. (2017), Conlon and Gortmaker (2020)). The

gradient is also affected by inaccurate contraction, aggravating optimization. Also, the

maximum number of iterations before premature termination of the contraction should

not be set to low and checked. I set it to 2500, which is far in abundance of what

is actually needed. The tolerance when initially generating the market equilibrium in

Nash Bertrand fashion by looping over the first order conditions is set to 1e-12. The

starting values are selected randomly for each optimization based on a standard normal

distribution.

A failure of optimization can occur when particularly large values are entered into

the exponentials of the logit probability formula, leading to frequent overflow. A solu-

tion is presented by Conlon and Gortmaker (2020) who use the following log-sum-exp

expression: lse(x) = log
∑

k e
xk = a+log

∑
k e

xk−a for a = max{0, maxk xk}. I use this

formula to rewrite the logit probabilities of the weights in Equation (6), W (νr|θ), as

log(ex−a/
∑

k e
xk−a) = x−a−log

∑
k e

xk−a. Exponentiating the last term feeds back the

logit probabilities. After implementing this expression, problems related to overflow are

greatly reduced. Note that I do not apply this formula to the consumer-specific choice

probabilities, Probrj(δj; θ, νr).

One more point to stress is that in some rare cases the estimated values fall far off

the average value of all other parameters, more specific values being 1, 000 times as

large as the average of all other values. This happened 17 times out of 4000 parameter

values in the case of BLP instruments (of which 16 times when estimating 25 or 50

markets) and only 4 times out of 4000 parameter values for the approximately optimal

instruments.

There are several reasons why some values might be far off. It might be the case

because the optimizer has trouble finding the true minimum. Another reason might be
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the inherent randomness of the data, sometimes leading to unusual results. To better

evaluate the results, I exclude those extreme values from the discussion of the results

and when calculating the summary statistics. Note that I only exclude 21 out of 8000

estimated values. A set of estimated values is dropped if the positive of a value is larger

than 1, 000.
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A.7 Convergence of Parameter Values, Consumer Heterogene-

ity on the Characteristic

This Appendix shows the convergence of the other parameters of the Monte Carlo study

conducted in Section 4. Figure 11 shows convergence of the parameter of the first z

variable, responsible for shifting the distribution to the sides (similar to a parabola).

Figure 12 shows convergence of the price coefficient. Figure 13 shows convergence of

the intercept. For all parameters, the bias is reduced with additional markets entering

the sample and all parameters appear to be consistently estimated given an appropriate

sample size.

Figure 11: Monte Carlo Convergence of Parameter θ21 for a Second Order Polynomial

as z Variable and Instruments at the Expected Value of the Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the character-

istic, x̃. The intercept and the price, p, enter the model linearly.
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Figure 12: Monte Carlo Convergence of the Price Coefficient θ11 = α for a Second

Order Polynomial as z Variable and Instruments at the Expected Value of the

Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the character-

istic, x̃. The intercept and the price, p, enter the model linearly.
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Figure 13: Monte Carlo Convergence of Parameter θ12 = β0 for a Second Order

Polynomial and Instruments at the Expected Value of the Structural Shocks
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This figure is created with consumers having heterogeneous tastes concerning the character-

istic, x̃. The intercept and the price, p, enter the model linearly.
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A.8 Implementation Details: Derivation of the Gradient with

Micro Data

The market shares are now given by

sj =
∑
r∈S

Wr · srj (30)

and

srj =
exp(xjβ + ξj + x̃j(νr + Drζdj))

1 +
∑
j

exp(xjβ + ξj + x̃j(νr + Drζdj))
. (31)

The derivatives of the micro moments are calculated similarly. The inner derivative of

the linear part of utility has to be taken into account. Since the linear part, δ, is the

outcome of the contraction mapping and depends on the parameter vector, thus δ(θ),

the derivative is given by:

∂sj
∂θkn

=
∑
r∈S

Wr

ν̃nr −
∑
i∈S

Wiν̃
n
i︸ ︷︷ ︸

κ1

+
∂δj
∂θkn
−

J∑
j=1

sij
∂δj
∂θkn︸ ︷︷ ︸

κ2

srj. (32)

The inner derivative of Wr is given by κ1 and the derivative of the linear term given by

κ2. I calculate κ2 in an initial step according to Equation (27). Then the gradient of

the micro moments are

∂G2

∂θ
+
∂G3

∂θ
= 2G22

∂ E[D|j]
∂θ

/σ2
D̂|j + 2G33

∂ E[D|type=o]

∂θ
/σ2

D̂|o (33)

with E[D|j] and E[D|type=o] defined in Section 5.1 and σ2 referring to the moment

variance. Finally, the derivatives of the expected demographics are

∂ E[D|j]
∂θ

=
∑
r∈S

Wr(κ1 + κ2)srj|P ·Dr (34)

∂ E[D|type = o]

∂θ
=
∑
j∈o

∑
r∈S

Wr(κ1 + κ2)srj|P ·Dr (35)
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A.9 Micro Data: Implementation Details

This Appendix spells out the modeling details of Section 5.2. In order to study the

behavior of the estimator with micro data, I proceed conceptually similar to Section

4. Consumer utility depends on the endogenous price, a constant, a randomly gen-

erated characteristic, a randomly generated demand shock correlated with a supply

side cost shock and on a consumer, product specific arbitrary shock term. Consumer

utility additionally depends on consumer demographics. The characteristic is given

by x̃jt, with x̃jt ∼ Uniform(0, 3) and the demand and cost shocks are multivariate

standard normal with covariance 0.7. Products belong to two different segments; they

are either in a first segment if x̃jt < x̃jk = 1.5 and otherwise belong to the second

segment. Firms compete in prices and consumers display homogeneous preferences

concerning intercept and price. The distribution of consumer tastes on the coefficient

of x̃jt is modeled as a fourth order polynomial as z variable with parameter values

θ = (θ21, θ22, θ23, θ24) = (−1.5, 5, 3,−6). This yields a bimodal distribution with two

pronounced peaks and a deep trough. The parameters of the distribution are then esti-

mated by generalized method of moments. The weight function contained in Equation

(6) is now a joint distribution of taste and the demographic variable. Micro data is

introduced which follows a simple distribution modeled by the logit formula as in Train

(2016) with dummy variables as z variables yielding a step function. The distribution

has a discrete support of Dr ∈ {2, 3, 4, 5} with probabilities p = (0.3, 0.35, 0.2, 0.15),

respectively. This is reminiscent of Petrin (2002) and can be thought of as family size.

During estimation, only demographic deviations from its expected value are considered,

i.e., the mean is set to zero. As far as the logit formula modeling the probability dis-

tribution is concerned, the probability that an individual is associated with family size

i is given by pi = exp(φi)/
∑n

k=1 exp(φk), which is a step function. Since I assume the

probabilities to be known, it is possible to calculate the corresponding φ’s according to

φi = ln (pi/(1−
∑n−1

i=1 pi)) and the last element is normalized to φn = 0. See Appendix

A.11 for a derivation and Train (2016) for more details.

The specifications ‘No Micro’ and ‘Micro’ differ in their exact utility functions.

The modification is necessary to allow equilibrium convergence when generating the

data, which must accommodate a specific combination of parameter values. For clarity,

consumer utility for specification ‘No Micro’ is given by urjt = −6pjt − 4 + x̃jt(νr +

Drdj) + ξjt + εrjt. Consumer utility for specification ‘Micro’ is given by urjt = −5pjt +

9 + x̃jt(νr +Drdj) + ξjt + εrjt. The utility shifter ζ is set to unity, and dj is a segment

dummy as described above. Marginal costs are assumed to be constant. Costs depend

on a constant and x̃jt with cost side parameters γ = (2.5, 0.2), respectively. Marginal
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costs are determined by a cost shifter cs ∼ Uniform(0, 0.1) (only in the case of ‘No

Micro’) and are further determined by a supply shock ω, which is weakened by a factor

of γc = 0.2. Marginal cost is given by mcjt = 2.5 + 0.2xjt + csjt + 0.2ωjt. The grid of the

‘No Micro’ specification is set to νr ∈ [1, 8]. The grid of the ‘Micro’ specification is set

to νr ∈ [0, 2].

The estimator is affected by several sources of variance as discussed in BLP and

Berry, Levinsohn, and Pakes (2004). A first source of variance is introduced by the

randomness of the product characteristics. A second source of variance stems from

the inaccuracy of observed market shares. A third source of variance is introduced by

integration of the market shares. Finally, a fourth source of variance follows from the

sampled micro data.

I keep the variances at a minimum with the following measures. I use low tolerances

when generating the equilibrium to obtain highly precise market shares. Integration

is executed with high precision and micro data derived values are assigned with a low

variance of 1e − 14, i.e., the micro moments are basically assumed to be exact. The

low variance results in high weights of the the micro moments in the objective function.

This is done intentionally to proxy highly accurate micro data. Covariances between

the moments are set to zero for simplicity.

A.10 Effects of Distributional Misspecification: Computational

Details

This Appendix spells out the modeling details of Section 6. Firms compete Nash in

prices and marginal costs are assumed to be constant. Costs are determined by a

constant and xjt with cost side parameters γ = (2.5, 0.2), respectively. Marginal costs

are determined by two cost shifters cs ∼ Uniform(0, 0.1) and further by a supply shock

ω, which is weakened by a factor of γc = 0.2. Marginal costs are formally given by

mcjt = 2.5 + 0.2xjt + csjt + 0.2ωjt. Utility of a consumer of type r and product j in

market t is formally given by urjt = −νrpp̃jt+4+2xjt+ξjt+εrjt. Consumer heterogeneity

is modeled as follows. The grid is set to νrp ∈ [2, 9]. The parameters of the second order

polynomial as z variable are θ = (θ21, θ22) = (0,−1) and the parameters of the fourth

order polynomial as z variable are θ = (θ21, θ22, θ23, θ24) = (0, 6, 0,−10). Tolerances

are tightened sufficiently, and integration is done at high accuracy using modified latin

hypercube sampling (Hess, Train, and Polak, 2006) and unique draws for each market

(cf. Freyberger, 2015).
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A.11 Derivation of Step Function Logit Probabilities for De-

mographics

The step function discussed in Train (2016) is given by

W (νi) =
exp[

∑
g φgI(νi ∈ Hg)]∑

s∈S exp[
∑

g φgI(νs ∈ Hg)]
,

with νi representing a random coefficient value in the finite support of the random

coefficients, S, and Hg representing a subset of S. I(·) is the indicator function with

I = 1 if νi ∈ Hg and I = 0 otherwise. This approach is used to derive a simple step

function for consumer demographics. Let pi ∈ (0, 1) for i = 1, ..., n and
∑n

i=1 pi = 1 and

1−
∑n−1

i=1 pi = L and Di ∈ Hi for i = 1, ..., n. Then the probability that any interval Hi is

associated with the consumer value Di can be derived from the associated coefficients

φ = {φ1, φ2, ..., φn−1, 0} of the indicator function, i.e., the coefficients are n scalars

defining the probabilities of respective intervals. If Di /∈ Hi, the corresponding value

is set to 0 by the indicator function; intervals can be overlapping (for more details, cf.

Train (2016)). The coefficients can be derived as follows. Let pi = expφi/
∑n

i=1 expφi

and after swapping sides
∑n

i=1 expφi = expφi/pi = expφn/pn = expφn/L. Then,

by taking the natural logarithm of expφi/pi = expφn/L and setting φn = 0 yields

φi = ln (pi/L) for i = 1, ..., n− 1 and φn = 0.

A.12 Effects of Distributional Misspecification: Asymmetric

Distribution

This Appendix repeats the estimation presented in Section 6 with a differently shaped

distribution. The procedure is unchanged with the minor modification that the vector

to estimate is now given by θ = (θ21, θ22, θ23, θ24) = (−2,−0.5, 3,−5), yielding a strongly

skewed distribution. The distribution is not bimodal. Table 10 and Table 11 report the

results.

From the Tables, two things can be seen. Firstly, Table 10 shows the estimates to

be more closely aligned to the true values as compared to the case with a symmetric

bimodal distribution in Section 6, e.g., the standard deviation of the price coefficient is

estimated to be 1.28 on average with a true value of 1.20 and the mean price coefficient

is estimated to be 6.78 on average with a true value of 6.98.

Secondly, Table 11 shows an increased bias in estimated merger price changes and an

increased bias in the welfare estimate (e.g., a bias in the welfare estimate of 23.12% in

Table 11 compared to a bias of 17.14% in Table 7), with only minor changes to the bias

of elasticities and the Lerner index. This indicates that with a skewed distribution,
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Table 10: BLP Estimates When Truly Underlying Distribution is Skewed

Variable BLP St. Err. True

Standard deviation 1.28 (0.08) 1.20

Price coefficient (α) 6.78 (0.41) 6.98

Intercept (β0) 3.95 (0.90) 4.00

Characteristic (β1) 2.00 (0.07) 2.00

Estimated with 1000 Monte Carlo repetitions and 1000 markets in a concentrated industry (3

firms with 2 products each).

the variance of the parameter estimates is larger as compared to the bimodal case,

which is captured by the empirical standard error of the estimates (in parenthesis). A

standard error of 0.04 in Table 6 compares to a standard error of 0.08 in Table 10 for

the standard deviation, which is a doubling of the standard error. Whereas the skewed

shape captures the true value better on average, frequent deviations from the true

distributional shape increase the root mean square percentage error of the estimates by

overshooting the true price differentials in both directions, increasing the overall bias

of the structural estimates.
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Table 11: Aggregate Statistics Bias When Estimated By BLP and Truly

Underlying Distribution is Skewed

Statistic RMSPE(x0,x̂)

ηjj 7.27

ηajj 7.26

ηjk 16.58

ηajk 12.97

∆p(merging) 21.47

∆p(fringe) 46.23

Lerner 7.53

Lernera 7.77

Welfare 23.12

Aggregate statistics using estimates from Table 10. I report root mean square

percentage error (RMSPE) between estimated and true values. All measures are

weighted by market share. ηjk is the percentage market share response of product

j due to a 1% increase in price of product k. The superscript ‘a’ indicates after

merger results. Aggregation is done by weighting with respective market shares.
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