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Abstract. In 2012, the Emilia-Romagna region (Italy) was
struck by a seismic crisis characterized by two main shocks
(ML 5.9 and 5.8) which triggered relevant liquefaction
events. Terre del Reno is one of the municipalities that
experienced the most extensive liquefaction effects due to
its complex geostratigraphic and geomorphological setting.
This area is indeed located in a floodplain characterized by
lenticular fluvial channel bodies associated with crevasse and
levee clay–sand alternations, related to the paleo-Reno River.
Therefore, it was chosen as a case study for the PERL project,
which aims to define a new integrated methodology to assess
the liquefaction susceptibility in complex stratigraphic con-
ditions through a multi-level approach. To this aim, about
1800 geotechnical, geophysical, and hydrogeological inves-
tigations from previous studies and new realization surveys
were collected and stored in the PERL dataset. This dataset
is here publicly disclosed, and some possible applications are
reported to highlight its potential.

1 Introduction

In the last few years, an increasing number of source data is
publicly disclosed, allowing for wider access to research ac-
tivities. Key examples are the huge amount of free satellite
imagery (i.e., Sentinel, Landsat) provided by the main space
agencies and the cutting-edge tools and procedures inte-
grated in widely known and open-source EO platforms such
as Google Engine. A multitude of algorithms and codes are
available for all the fields of knowledge concerning natural
hazards, while their application is made easier by the increas-
ing number of open-access inventories of natural phenom-
ena (i.e., Martino et al., 2014; Guarino et al., 2018; Tanyaş
et al., 2022). However, only a few examples of datasets of
in situ investigations and related parameters are publicly
disclosed, and this is a gap to be filled. With regard to
macro types of investigations (i.e., geological, geophysical,
geotechnical, hydrogeological, etc.), some databases are cur-
rently available worldwide (i.e., Orgiazzi et al., 2017; Kmoch
et al., 2021; Geyin et al., 2021; Minarelli et al., 2022), as well
as in the Italian national territory. An example is provided by
Vannocci et al. (2022), which includes geotechnical and hy-
drological soil parameters for shallow landslide modeling.
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However, there are only a few examples of freely avail-
able products which integrate different macro typologies of
in situ investigations in a unique database, especially with
reference to the Italian territory (Gaudiosi et al., 2021). In
light of the above, the aim of the authors is to make a dataset
of about 1800 geological, geophysical, geotechnical, and hy-
drogeological in situ investigations and related parameters
collected in the Terre del Reno municipality freely available
(Emilia-Romagna region, Italy). The study area is affected
by severe seismic hazards and prone to seismically induced
effects, as extensively documented by the 2012 seismic se-
quence which was characterized by more than 2000 earth-
quakes (Facciorusso et al., 2016). Two main shocks were
recorded during the crisis: the first one on 20 May with
ML 5.9 and the epicenter in Finale Emilia and the second
one on 29 May with ML 5.8 and the epicenter in Medolla,
both in Modena Province.

As widely reported in the bibliography, the propaga-
tion of seismic waves through the upper portion of the
soil can be modified by local site conditions (i.e., Boz-
zano et al., 2017; Fabozzi et al., 2021; Falcone et al., 2020,
2021; Gautam, 2017; Luo et al., 2020; Meza-Fajardo et
al., 2019) and can determine the triggering of earthquake-
induced effects at ground surface (i.e., Forte et al., 2021;
Martino et al., 2017, 2019; Giannini et al., 2022; Paolella
et al., 2022). In Terre del Reno, these earthquakes triggered
several earthquake-induced effects (Chini et al., 2015; Pap-
athanassiou et al., 2015), among which linear and punctual
liquefaction effects were the most prominent. These effects
may occur when saturated granular deposits are shaken by a
seismic action, and their magnitude depends on the combina-
tion of earthquake intensity and soil condition. Literature re-
ports plenty of liquefaction events happened in complex ge-
ological conditions and were triggered by earthquakes with
various magnitudes such as for instance the Gorkha, Nepal
(Gautam et al., 2017), Christchurch, New Zealand (Mau-
rer et al., 2019), Urayasu, Japan (Baris et al., 2021), 2008
Wenchuan, China (Zhou et al., 2020), and 2019 Dürres, Al-
bania (Mavroulis et al., 2021) earthquakes. Liquefaction ef-
fects in Terre del Reno were mainly related to the complex
sedimentological and stratigraphic setting of the areas (i.e.,
Stefani et al., 2018; Tentori et al., 2022), characterized by
multiple and alternate sandy and silty-sandy packing, hosting
local (shallow) and regional (deep) aquifers (Regione Emilia-
Romagna, 1998). Several authors (i.e., Ecemis, 2021; Jain et
al., 2022) have highlighted that the presence of a tiny alter-
nation of silt and sand seems to influence the liquefaction
occurrence, while other studies focused on the role of silty
sands and soil packing condition on liquefaction triggering
(i.e., Naeini and Baziar, 2004; Stamatopoulos, 2010; Gobbi
et al., 2022a). To overcome the difficulties related to het-
erogeneously complex soil conditions, integrated approaches
are applied to predict the occurrence of liquefaction by com-
bination of numerical and experimental methods (Gobbi et
al., 2022b; Rios et al., 2022; Paolella et al., 2022). Further

steps toward this direction were made for the Terre del Reno
case study by pursuing two main objectives of the PERL
project in order to (i) define a new integrated methodology
to assess the liquefaction susceptibility in complex strati-
graphic settings through a multi-level approach and (ii) per-
form the seismic microzonation of the municipality for land
and civil protection planning purposes. This project allowed
for the collection and analysis of the abovementioned in situ
investigations and the elaboration of thousands of related pa-
rameters that were stored in a harmonized and standardized
dataset (named PERL) conceived to guarantee interoperabil-
ity with existing ICT (information and communication tech-
nologies) solutions and data models. The availability of such
a dataset of surveys, catalogued and processed according
to shared standards, makes Terre del Reno one of the best-
characterized municipalities in Italy in terms of seismic haz-
ard and earthquake-induced effects. This flexible dataset can
be manipulated and combined to tackle different problems
and represents a powerful resource for the scientific commu-
nity, for those who cannot set up and manage a living labora-
tory or directly perform on-site investigations.

For these reasons, the authors provide complete access to
the dataset through the supplementary materials and present
two different applications herein used as references to high-
light the potential of the PERL dataset.

2 Geological setting

2.1 Structural and stratigraphic setting

The study area is located within the southern portion of the
Po alluvial plain, which represents the sedimentary cover
of the Po Basin infill (Fig. 1). The geological substrate of
the study area, which lies along the northern sectors of the
Apennine chain, shows complex fold and thrust structures
with arcuate geometry associated with strongly asymmetri-
cal foredeep basins. Although the Po Basin represents both
the Alpine retro-foreland basin and the Apennine foredeep,
its Cenozoic structural evolution was mainly driven by the
northeast migration of the external front of the northern
Apennines, which consists of four arcuate fold-and-thrust
systems: the Monferrato Arc, the Emilia Arc, the Ferrara
Arc, and the Adriatic Arc (Pieri and Groppi, 1981; Royden
et al., 1987; Scrocca et al., 2007). These systems that are
buried beneath the present Po plain have been active since
the late Miocene (Fig. 1) and are still considered seismogenic
(Boccaletti et al., 2011; Ghielmi et al., 2013). In particular,
the movement of a segment of the Ferrara Arc thrust system
(i.e., the Mirandola thrust system) was responsible for the
2012 Emilia seismic events (ISIDe Working Group, 2010),
which triggered numerous co-seismic effects associated with
liquefaction phenomena in the provinces of Ferrara, Modena,
and Bologna. In the study area, the shallowest Quaternary
sedimentary fill consists of marine deposits (marine Quater-
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nary in Fig. 1b) and 100 kyr spaced transgressive–regressive
cycles constituted by nearshore sands and alluvial deposits,
formed during interglacial and glacial periods, respectively
(continental Quaternary in Fig. 1b). The stratigraphic frame-
work of the topmost late Pleistocene to Holocene Po Basin
succession (at 0–40 m depth from the ground surface) doc-
uments a succession of tabular-shaped fluvial sands (i.e.,
glacial) overlain up-section by the Holocene’s poorly drained
and mud-rich floodplain and swamp and marsh succes-
sion with subordinate lenticular fluvial sandy channel bod-
ies associated with crevasse and levee clay–sand alternations
fed by the paleo-Reno River (i.e., interglacial) (Bruno et
al., 2021; Stefani et al., 2018; Tentori et al., 2022). The Reno
River’s modern drainage basin extends for about 2500 km2 in
the northern Apennines. Owing to the low topographic gradi-
ents in the area, the paleo-Reno River experienced fast aggra-
dation and frequent avulsion episodes during recent and his-
torical times (see Tentori et al., 2022 and references therein).

2.2 Hydrostratigraphic setting

The hydrostratigraphic architecture reflects the depositional
and tectonic evolution of the southern Po sedimentary basin
from the Pleistocene to Holocene (Molinari et al., 2007;
Emilia-Romagna Region and ENI-AGIP, 1998). The aquifers
from the most superficial hydrostratigraphic group (e.g.,
Group A), consist of six lower-order hydrostratigraphic units
belonging to the Quaternary fluvio-deltaic and alluvial depo-
sitional systems. In the study area, Group A aquifers consist
of the sandy fluvial bodies deposited during glacial periods,
separated by the muddy-dominated intervals of transgressive
alluvial facies (aquitards) deposited during interglacial peri-
ods. The more surficial composite aquifer system named A0
by Molinari et al. (2007) consists of two sandy-dominated
aquifer units hosted within the late Pleistocene–Holocene
channelized bodies and encased by alluvial floodplain muds.
Based on the piezometric level dating back to the summer of
2012, Calabrese et al. (2012) placed the groundwater level
of the shallower semi-confined aquifer at about 3–4 m depth
below the levee and about 1–2 m in the floodplain.

3 Materials and methods

The PERL dataset was obtained by merging three databases
provided by different institutions. Additional 17 geotechnical
investigations were specifically performed in the framework
of the PERL project.

The three existing databases are the following:

– Modello Unico Digitale per l’Edilizia – Unique Digi-
tal Model for Building (MUDE database). The MUDE
database consists of 384 records including punctual and
linear in situ investigations. Data were extracted from
a series of technical reports produced to plan the re-
construction works of buildings collapsed during the

2012 seismic crisis. Since the digital formats of these
investigations were originally not available, geolocal-
ization, key information, and measured parameters were
obtained from the digital scans of technical and geolog-
ical reports.

– Regione Emilia-Romagna - Emilia-Romagna Region
database (RER database). The RER database is com-
posed of 906 geolocalized, punctual records, associated
with a set of key information (typology, date, coordi-
nates, and maximum depth) and a scan of the investiga-
tion sheet. Parameters were extracted from investigation
sheets, as they are not available in a digital format. This
database is available at https://servizimoka.regione.
emilia-romagna.it/mokaApp/apps/geg/index.html (last
access: 12 September 2022).

– Seismic Microzonation Studies (SM database). The SM
database is composed of 1284 records, including punc-
tual, as well as linear in situ investigations. These in-
vestigations are geolocalized and organized in a stan-
dardized structure according to Commissione tecnica
per la microzonazione sismica (2015). The key infor-
mation (typology, date, coordinates, etc.) of each inves-
tigation is stored in a dedicated table, while all the mea-
sured parameters are reported in chained tables. This
database is available at https://www.webms.it/ (last ac-
cess: 12 September 2022).

The first problem faced when merging these databases was
the presence of duplicate information. To avoid duplicates,
a methodology to discern and verify the uniqueness of an
investigation was elaborated.

This methodology is based on the implementation of a se-
ries of multiple, progressive true/false (TF) controls applied
to various control parameters (CP) relative to all the inves-
tigations included in the pertinence area. The latter was de-
fined as a circle with a radius equal to 200 m centered in the
correspondence of the considered investigation. The progres-
sively considered CP (Fig. 1) are (CP1) the absence of an-
other investigation within the area of pertinence, (CP2) un-
matching of the investigation typology, (CP3) unmatching
of the date of the survey, and (CP4) matching of the maxi-
mum depth reached by the investigation. Each CPm (m= 1,
2, 3, 4) is checked in a dedicated TF test (TFn with n= 1,
2, 3, 4). Starting from TF1, an investigation that verifies CP1
is moved to TF2 for CP2 verification up to TF4. Each time
a CPm in a TFn is not verified, the investigation is defined
as “unique”. If an investigation verifies all the control pa-
rameters, it is defined as “redundant” and removed from the
database. The application of this methodology allowed us to
identify and remove 32 % of the investigations, obtaining a fi-
nal dataset composed of 1805 unique investigations (Fig. 2).
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Figure 1. (a) Tectonic sketch map of the Po Plain (northern Italy) showing the main buried faults of the northern Apennines and southern Alps
and epicenters of the two mainshock from the 2012 Emilia sequence (red stars) (modified from Tentori et al., 2022 and Bruno et al., 2021).
The black-lined rectangle encloses the study area. (b) Simplified stratigraphic cross section and major tectonic structures along the trace A–A′

in panel (a) (modified after Boccaletti et al., 2004). The tectonic structures are enucleated into Mesozoic to Paleogene carbonate successions
and largely controlled the sedimentary evolution of the terrigenous basins during the Neogene (Ghielmi et al., 2013; Rossi et al., 2015; Ricci
Lucchi, 1986). The Pliocene–Pleistocene boundary records the transition from turbiditic sedimentation to marine clay deposition, whereas
the Quaternary sedimentary fill consists of marine deposits, nearshore sands, and alluvial deposits (see text for details).

4 Data description

The PERL dataset consists of two shapefiles implemented
into a GIS system and an associated geodatabase. The
two shapefiles are named ind_pc and ind_ln and corre-
spond to punctual and linear investigations, respectively
(EPSG:32633). The associated attribute tables contain the
main information of each investigation:

– ID. Unique identification number for each investigation.

– Investigate. Investigation typology.

The complete set of investigations, and the related mea-
sured parameters are reported in an Excel file following this
structure:

– ID. Unique identification number of each investigation.

– Type_par. Parameter typology (see list of parameters for
legend).

Nat. Hazards Earth Syst. Sci., 23, 1371–1382, 2023 https://doi.org/10.5194/nhess-23-1371-2023
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Figure 2. Synthetic workflow of the method used to merge the
MUDE, RER, and SM databases, as well as the new realization in-
vestigations, into the PERL dataset.

– Value. Parameter value.

– Depth_top. Depth (m) of the layer top to which the pa-
rameter refers.

– Depth_bottom. Depth (m) of the layer bottom to which
the parameter refers.

The PERL dataset includes 1805 records corresponding
to as many investigations and guarantees an average den-
sity of 35 punctual (Fig. 3a) and/or linear measurements
(Fig. 3b, c) per square kilometer of the Terre del Reno munic-
ipality (about 51 km2). Focusing on investigation typologies
(see the list of typologies and codes and Fig. 4a), the dataset
consists of 71 % of penetrometer tests (CPT, CPTU, CPTE,
SCPT, SPT, DN), 16 % of boreholes and trenches (S, T, SP,
SC, SD), 12 % of punctual and linear geophysical investi-
gations (CH, DH, HVSR, MASW, ESAC_SPAC), and 1 %
of laboratory and hydrogeological tests (CR, CI, CD, SM,
ED, TD, LF; see Appendix A for abbreviation definitions)
(Fig. 3).

Penetrometer tests, geognostic boreholes, trenches, and
borehole geophysical tests are characterized by a depth of
investigation ranging from a few meters to more than 100 m
(maximum depth: 265 m) (Fig. 4b). About 90 % of them
reach a maximum depth of investigation of 35 m. Thus, the
most represented depth classes are 30–35 and 10–15 m with
330 (21 %) and 310 (20 %) investigations, respectively. Pen-
etrometer tests are characterized by depths ranging between
5 and 50 m, with the 30–35 m class being the most repre-
sented. On the contrary, boreholes and trenches cover the
entire spectrum of the dataset depth. However, it is worth
noticing that about 60 boreholes and trenches reach a depth
higher than 55 m, which is the most represented classes to-
gether with the 10–15 m class. Penetrometer tests, boreholes,
trenches, and geophysical tests are characterized by inves-
tigation depths ranging from a few to some hundred meters
with a maximum of 265 m. About 90 % of them reach a max-
imum depth of investigation equal to 35 m. Most investiga-
tions are carried out up to a depth of 30–35 m and 10–15 m

(330 (21 %) and 310 (20 %) investigations for each class, re-
spectively). On the contrary, boreholes and trenches cover the
whole spectrum of depth classes. However, it is worth notic-
ing that about 60 boreholes and trenches reach a depth higher
than 55 m, which is the most represented class together with
the 10–15 m class.

5 Examples of applications

To address some of the conceptual points discussed in the In-
troduction and to better highlight the uniqueness and poten-
tial of the PERL dataset, we present two different applica-
tions. In the first case study, we take advantage of the PERL
database to represent the complex geology beneath the San
Carlo alluvial plain. The second case history focuses on a
statistical inference of the PERL geophysical data to obtain
soil dynamics when experimental information is missing.

5.1 Stratigraphic reconstruction of liquefiable layer
thickness in the San Carlo subsoil

The PERL database includes several sedimentological,
geotechnical, geophysical, and hydrogeological data which
can be used to reconstruct the stratigraphic architecture of
the Terre del Reno subsurface and provide a reliable geo-
logical framework for future studies devoted to earthquake-
induced hazard mitigation. The position and the thickness of
the liquefiable portion within the subsoil are key information
for liquefaction risk assessment and mitigation. The possibil-
ity of an automatically built three-dimensional subsoil model
with advanced procedures represents a current topic of the
applied technological research. Here, a combination of these
two approaches is presented to spotlight the potential of the
PERL dataset.

As an example, Fig. 5 shows the geostatistical interpo-
lation, performed with the ordinary kriging, of the cumu-
lated thickness of the liquefiable layers (CTL) in the dis-
trict of San Carlo. In particular, the CTL has been manually
extracted from 33 boreholes and automatically obtained on
148 CPTs by applying the procedure proposed by Spacagna
et al. (2022). The obtained map has been overlayed on the
map of liquefaction evidence that occurred after the Emilia-
Romagna 2012 seismic sequence, showing a good match be-
tween the liquefaction-induced surficial manifestations and
the CTL distribution.

5.2 Statistical analysis of shear waves variability with
depth

As widely represented by literature data, the amount of avail-
able investigations progressively decreases with soil depth.
Thus the uncertainty in subsoil characterization increases
from the ground surface to the deepest layers of the soil.
To overcome this issue, an example of statistical inference
of soil parameters is presented. Based on the available data,

https://doi.org/10.5194/nhess-23-1371-2023 Nat. Hazards Earth Syst. Sci., 23, 1371–1382, 2023
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Figure 3. Spatial distribution of the in situ punctual (a) and linear (b, c) investigations composing the PERL dataset. The digital elevation
model (DEM) was retrieved from Regione Emilia-Romagna (2015).

a correlation analysis between the values of Vs (m s−1) and
depth (m) was carried out to infer information when the depth
of investigation does not guarantee a correct soil parame-
terization. Considering the high geological and stratigraphic
complexity of the case study, a lithological-based statistical
inference was performed. Specifically, for each lithology L,
the scatter plot of the value of Vs (m s−1) as a function of
depth, D (m), and the corresponding linear regression were
calculated.

The linear regression model is defined by the following
relationship:

Vs(D)= aD+Vs0 ,

where a and Vs0 correspond to the slope and intercept of the
model line, respectively.

The PERL database can rely on 164 Vs profiles mainly
identified from penetrometer tests (SCPT), down hole (DH),
MASW, ESAC_SPAC, SDMT, and cross hole (CH) tests.
Each of these Vs profiles was discretized with a step size of
1 m in depth and, through an automated procedure, each me-
ter of depth was associated with lithological (L) information
extracted from proximal boreholes.

For each lithology L, a statistical analysis was performed,
and the linear regression models were calculated. The results
obtained for MH and SP lithologies are here presented as
case examples (Fig. 6). The corresponding values of coeffi-
cients a and b and the coefficient of determination R2 are
reported in Table 1.

Nat. Hazards Earth Syst. Sci., 23, 1371–1382, 2023 https://doi.org/10.5194/nhess-23-1371-2023
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Figure 4. PERL dataset characteristics. (a) Classes of in situ investigations and (b) depth reached by penetrometer tests, geophysical inves-
tigations (CH and DH), boreholes, and trenches.

Table 1. Coefficients (a = slope, Vs0 = intercept) of the regression
model for two lithologies (L) and related coefficient of determina-
tion (R2).

Lithology (L) a Vs0 R2

MH 4.18 132 0.59
SP 1.28 195 0.79

As expected, the obtained a and b values highlight a posi-
tive slope as the depth mean value increases together with the
mean of the dependent variable Vs. At the same time, these
values allow us to quantify how much the Vs value changes
per meter of depth, showing an SP variation rate greater than
that characterizing MH. Moreover, the coefficient of deter-
mination R2 obtained for MH and SP lithologies are char-
acterized by a 0.59 and 0.79 value, respectively, proving the
reliability of the fitting. When experimental data are lacking,

for depths that fall within the variability range of the avail-
able data, the regression models allow us to obtain Vs by in-
terpolation, while an extrapolation can be applied for greater
depths.

Results may be used in the future for comparison with
other Italian estimates (Romagnoli et al., 2022) or combined
with ambient vibration measurements to define the thickness
of the resonant sedimentary layers (D’Amico et al., 2008;
Giannini et al., 2021).

6 Conclusions

As part of PERL project, a considerable number of investi-
gations were collected in the Terre del Reno municipality,
Emilia-Romagna region (Italy). This area experienced the
most extensive liquefaction effects during the 2012 Emilia-
Romagna seismic crisis and remains exposed to severe seis-

https://doi.org/10.5194/nhess-23-1371-2023 Nat. Hazards Earth Syst. Sci., 23, 1371–1382, 2023
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Figure 5. Geostatistical maps of the cumulated thickness of the liquefiable layer.

Figure 6. Scatter plot and regression line model for lithology MH (a) and SP (b). Equations and R2 are also reported.

mic hazards and seismically induced effects due to its com-
plex geological setting.

Thanks to this study, complete and free access to the PERL
dataset, which includes 1805 punctual and linear in situ in-
vestigations consisting of geological, geotechnical, geophys-
ical, and hydrogeological data, is provided. The database is
composed of 71 % of penetrometer tests, 16 % of boreholes

and trenches, 12 % of geophysical investigations, and 1 % of
laboratory and hydrogeological tests.

Two applications of the PERL dataset are presented to
highlight its potentiality and to show that a high-quality large
dataset could be critical to infer information in areas and/or
portions of the soil characterized by poor or sparse data. The
first examples pointed out the database potentials in over-
coming problems due to the uneven distribution of surveys

Nat. Hazards Earth Syst. Sci., 23, 1371–1382, 2023 https://doi.org/10.5194/nhess-23-1371-2023
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across the territory, while the second one spotlights its capa-
bility to provide information at subsoil depth not reached by
investigations.

Other major outcomes of the PERL project in the
Terre del Reno municipality included (i) a detailed re-
construction of the subsoil geology to examine the strati-
graphic control on earthquake-induced liquefaction (Tentori
et al., 2022); (ii) data-driven and automatic subsoil character-
ization through the analysis of CPT-based soil behavior type
(SBT) and soil behavior type indexes (Ic), combining geosta-
tistical and artificial intelligence genetic approaches (Baris et
al., 2022); and (iii) a third-level seismic microzonation study
of the Terre del Reno municipal area (Varone et al., 2022)
to mitigate seismic and seismically induced hazards through
sensible urban planning.

Ongoing studies currently focus on the definition of a com-
prehensive methodology to quantify liquefaction susceptibil-
ity in areas dominated by complex geostratigraphic condi-
tions by applying a multi-level approach laying on simplified
models and to promote the identification of potentially liq-
uefiable granular bodies, thus mitigating earthquake-induced
hazards to allow for a sustainable development of this urban
area.

Appendix A: List of investigation typologies and codes

CH Cross-hole test
CPT Cone penetration test
CPTE Electrical cone penetration test
CPTU Piezocone penetration test
CR Resonant column test
DH Down-hole test
DMT Dilatometric test
DN Dynamic cone penetration test
ESAC_SPAC Seismic array elaborated by ESAC/SPAC

methods
HVSR Ambient noise measurements elaborated

by HVSR technique
LF Lefranc test
MASW Multichannel analysis of surface waves
PA Borehole (water well)
S Non-destructive borehole
SC Borehole with collection of samples
SCPT Seismic cone penetration test
SD Borehole
SDMT Seismic dilatometer Marchetti test
SM Laboratory test on soil sample
SP Piezometer
SPT Standard penetration test
T Trench
TD Shear strength test

Appendix B: List of parameters and codes

AR Clay classification obtained from laboratory
test (%)
C Effective cohesion (MPa)
CAM Number of sample (–)
CU Undrained cohesion (MPa)
E1 Index of voids (–)
F1 Effective soil friction angle (◦)
FR Resonance frequency (Hz)
FS Skin friction (MPa)
G Shear modulus (MPa)
GH Gravel classification obtained from laboratory

test (%)
IP Plasticity index (–)
K Classification obtained from laboratory

test (m s−1)
L Layer lithology (–)
LID Lithology of the hydrolayer (–)
LM Silt classification obtained from laboratory

test (%)
PT Number of SPT blows (–)
PTM Number of DN blows (–)
PV Weight of the unit of volume (kN m−3)
QC Tip resistance (MPa)
SA Sand classification obtained from laboratory

test (%)
SG Water table level (m)
U Hydrostatic pressure (MPa)
VP Compressional waves velocity (m s−1)
VS Shear-waves velocity (m s−1)
W Water content (%)

Appendix C: List of lithologies (L) and codes

CH Inorganic clays with high plasticity
CL Inorganic clays with low-medium plasticity,

gravelly or sandy, silty clays
GP Clean gravel poorly graded, mixture of gravel

and sand
MH Inorganic silts, fine sands, micaceous or

diatomitic silts
ML Inorganic silts, silty or clayey fine sands,

silts clayey sands with low plasticity
OH Organic clays of medium-high plasticity,

organic silts
OL Organic silt, silty clays with low plasticity
PT Peats and peaty soils
RI Anthropogenic filling
SC Clayey sands, mixture of sand and clay
SM Silty sands, mixture of sand and silt
SP Sands poorly graded
SW Sands well graded, gravelly sands
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