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Abstract

In the past decade, artificial neural networks have seen unprecedented gains in
capabilities and applications. With their increased popularity, the need for a more
detailed understanding of how these models reach certain decisions emerged. The
field of explainable artificial intelligence has therefore attracted significant attention
in recent years, promising to provide insight into the decision-making process of deep
neural networks.

Of course, explainability has its own caveats, and results produced by explanation
methods are not always well understood. This curtails acceptance and effective
application of explanation methods.

In this thesis we therefore work towards a unified geometrical understanding of
explainability. We analyse undesired properties of explanation methods using concepts
from differential geometry, and find countermeasures that improve their robustness
and interpretability.

In the first part, we show that many popular gradient- and propagation-based
explanations can be arbitrarily manipulated to fit an attacker’s desired output.
We analyse this surprising behavior theoretically and connect the explanation’s
susceptibility to manipulation to the high curvature of the network’s output manifold.
Based on these insights, we propose β-smoothing, a novel explanation method that
is more robust against adversarial perturbations. Furthermore, we investigate how a
changed training regime can reduce the curvature of a neural network and derive
different regularizers which boost the robustness of explanations.

In the second part, we focus on another popular field of explainability, namely
counterfactual explanations. These can be interpreted very intuitively and are
therefore of tremendous value in medicine, finance, law, and other areas where
user-friendly explanations are paramount. However, finding counterfactuals with
structural differences to the query input, which stand in contrast to mere adversarial
examples, can be difficult. Investigating this challenge from a geometrical point
of view leads us to the insight that finding a suitable coordinate system for the
search process reduces the generation of counterfactuals to a simple gradient ascent
optimization. We then introduce an elegant, yet effective algorithm that makes use
of the latent space of a generative model to produce high-quality counterfactuals
which lie on the data manifold.
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Zusammenfassung

Künstliche neuronale Netze haben in den letzten zehn Jahren eine beispiellose
Renaissance erlebt, doch es ist noch immer schwierig den Entscheidungsprozess solcher
neuronalen Netze nachzuvollziehen. So haben kürzlich Methoden der erklärbaren
künstlichen Intelligenz viel Aufmerksamkeit auf sich gezogen, da diese dabei helfen
können die Entscheidungsprozesse besser zu verstehen.

Ergebnisse von Erklärmethoden sind allerdings selbst nicht immer gut verständlich.
Dies schränkt die Akzeptanz und den effektiven Einsatz von Erklärungsmethoden ein.
In dieser Arbeit arbeiten wir daher auf ein einheitliches geometrisches Verständnis
von Erklärbarkeit hin.

Mit Konzepten aus der Differentialgeometrie analysieren wir unerwünschte Eigen-
schaften von Erklärungsmethoden und finden Gegenmaßnahmen, welche die Robust-
heit und Interpretierbarkeit von Erklärungen verbessern.

Im ersten Teil zeigen wir, dass viele populäre gradienten- und propagationsbasierte
Erklärungen willkürlich manipuliert werden können. Dieses überraschende Verhalten
analysieren wir theoretisch und finden Parallelen zwischen der Manipulierbarkeit der
Erklärung und der Krümmung der Ergebnismannigfaltigkeit des neuronalen Netzes.
Basierend auf diesen Einblicken präsentieren wir β-smoothing, eine neue Erklärme-
thode, die robuster gegen adverserielle Störungen ist. Darüber hinaus untersuchen
wir, wie ein verändertes Trainingsregime die Krümmung eines neuronalen Netzes
reduzieren kann und leiten verschiedene Regularisierer her, welche die Robustheit
von Erklärungen verbessern.

Im zweiten Teil konzentrieren wir uns auf einen anderen populären Bereich der
Erklärbarkeit, nämlich kontrafaktische Erklärungen. Diese lassen sich sehr intuitiv
interpretieren und sind daher wichtig in der Medizin, im Finanzwesen, im Recht
und in anderen Bereichen, in denen benutzerfreundliche Erklärungen von größter
Bedeutung sind. Die Suche nach kontrafaktischen Erklärungen mit strukturellen
Unterschieden zur Eingabe, die im Gegensatz zu reinen adverseriellen Beispielen
stehen, kann allerdings schwierig sein. Die Untersuchung dieser Herausforderung aus
geometrischer Sicht führt uns zu der Erkenntnis, dass der Gebrauch eines geeigneten
Koordinatensystems für den Suchprozess die Generierung von kontrafaktischen Erk-
lärungen auf eine einfache Gradientenanstiegs Optimierung reduziert. Wir stellen
einen effektiven Algorithmus vor, der den latenten Raum eines generativen Mod-
ells nutzt, um hochwertige kontrafaktische Erklärungen zu erzeugen, die auf der
Datenmannigfaltigkeit liegen.
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1. Introduction

Machine learning models have made impressive progress at many different tasks, such
as generating high-quality text and images [1–5], predicting the three-dimensional
structure of proteins [6] and surpassing human performance in numerous games [7,8]
and classification tasks [9, 10].

Nearly all of these gains in ability can be attributed to deep neural networks which
are described by millions or billions of parameters, whose values are determined
during a training phase.

Although well-trained neural networks can produce highly accurate predictions, the
decision-making processes behind them lack transparency, rendering them incompre-
hensible to humans. This reduces confidence in decisions made by these models and
is problematic in safety-critical areas where we want to ensure that the prediction
was based on valid input features, for example in autonomous driving, or in areas
where a prediction alone is insufficient, for example in medical diagnostics.

Therefore, interest in visualizing, explaining, and interpreting deep neural networks
has soared in recent years and the field of explainable artificial intelligence (XAI) [11]
emerged. Explanation methods allow us to gain insights into the decision processes
of machine learning models, and understand how they infer certain predictions.
Identifying the patterns and strategies used for such predictions can promote new
scientific discoveries [12–14]. Furthermore, explainability could become an integral
part of the training and validation process of machine learning systems as explanation
methods can facilitate the detection—and subsequent correction—of failure modes
in deep learning. A recent example is the application of explanation methods to
discover that some classifiers base their predictions on spurious correlations in the data
set [15,16]. The model’s accuracy is then high on training and test data stemming
from the same distribution but quickly degrades when the data distribution changes
slightly.

Although explanation methods have provided valuable information about model
behavior, some aspects of explainability are poorly understood [17–20] which hinders
the potential acceptance and broad application of explanation methods. Especially
theoretical inspection of explanation methods is, with few exceptions [21,22], deficient
in explainability research.

In this thesis we address current limitations of explanation methods and establish
a precise understanding by analyzing the respective origins from a geometrical

1



Chapter 1. Introduction

perspective. Awareness of potential shortcomings of explanations is clearly essential
in scenarios where important decisions are based on the explanation. It is also crucial
for overcoming those limitations. We demonstrate this by using our theoretical
insights to derive efficient methods that boost the robustness and interpretability
of explanations. The research presented in this thesis is therefore an important
contribution towards the development of trustworthy, coherent, and intelligible
explanations for deep neural networks.

We focus on two popular sub-fields of explainability: attribution methods and
counterfactual explanations.

Attribution methods [23–28] provide explanation maps which highlight the areas
of the input deemed most important for a classifier’s decision. These methods are
widely used because of their straightforward implementation and quick results.

We demonstrate that many common attribution methods are not as reliable as hoped
as their explanation maps can be manipulated to match arbitrary targets by adding
adversarial perturbations to the input. This suggests gaps in our understanding of
attribution methods.

A geometrical perspective can reveal why such manipulations are possible. For
example, many attribution methods rely on the gradient of the neural network’s
output with respect to the input. This gradient can be thought of as a high-
dimensional vector which is perpendicular to the hypersurface of equal network
output. Our observation that explanation maps can be arbitrarily manipulated while
the output stays constant indicates a high curvature of the output manifold.

Within this thesis, we make the above statements precise using tools from differential
geometry and consequently accomplish a fundamental understanding of how expla-
nation methods respond to input modifications. We then use our insights to develop
effective counter measures. The resulting explanations are provably more robust
against input manipulation, which we confirm through numerous experiments.

Attribution methods have been proven to be useful in various applications [15,29,30]
but we sometimes desire explanations that are specific to selected targets or easier
to understand by laypeople. In these cases, counterfactual explanations [31–35] can
be beneficial. While attribution methods highlight relevant features in the query
input, counterfactual explanations provide hypothetical alternative instances for
selected targets and therefore offer more specific information. As counterfactuals are
contrastive to the query input and usually focus on a small number of input features,
they are regarded as easily interpretable, and thus, human-friendly explanations.

Counterfactuals are usually achieved by following the gradient of a specified target
classification with respect to the original query input [31]. While this approach works
reasonably well for low-dimensional (tabular) data, we run into complications when
applying it to high-dimensional data, such as images.

Performing simple gradient updates on image data usually leads to adversarial

2



1.1. Contributions

examples [36], which appear indistinguishable from the original image but cause a
switch in classification by the neural network. The added perturbations are highly
engineered and do not occur naturally. Consequently, we cannot hope to gain much
information about what features from the input data were important. Structural
alterations in the counterfactual, on the other hand, would improve our understanding
of what naturally occurring input would cause a change in classification.

The following geometrical considerations are central to comprehending the reasons
behind this problem. Natural images lie on a very low dimensional manifold (the
data manifold) embedded in high-dimensional space. When training a classifier,
the training images stem from this data manifold. However, the classifier can be
evaluated on any input with the correct dimensions and might give arbitrary results
on these inputs. The gradient of the classifier output with respect to the input points
in the direction that would locally cause the biggest change in the prediction. This
direction is generally not aligned with the data manifold. Following the gradient
thus leads off manifold and to inputs which would not occur naturally but cause a
large change in classifier output.

This leads us to question the choice of coordinate system in which the gradient
updates—to find counterfactuals—are most commonly performed. Ideally we would
perform such updates in a coordinate system in which the gradient is aligned with
the data manifold and we therefore avoid running into adversarial examples.

We prove that a suitable coordinate system can be found by leveraging the latent
space of a well trained generative model. This greatly facilitates the search for coun-
terfactuals on the data manifold. On the basis of these different coordinate systems
we investigate the connection between adversarial examples and counterfactuals
theoretically and propose an elegant method to find counterfactuals from which we
can gain valuable information about the decision process.

In the remainder of this chapter we will describe our contributions towards a unified
geometrical understanding of explanation methods in more detail.

1.1. Contributions

As outlined above, we need methods from explainable artificial intelligence for reliable
insight into the decision-making processes of deep neural networks in order to promote
scientific discovery and examine if these models work as intended. Some behaviors
of explanation methods are not properly understood, which limits trust in these
methods and therefore reduces their usefulness.

This thesis investigates properties of explanations from a geometrical perspective.
We are especially interested in how to assure that explanations are robust and easily
interpretable as these characteristics are desirable for all applications of explainability.
The research results were published at machine learning conferences and journals in
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Chapter 1. Introduction

the form of four papers (see Section 1.1.1 for details).

Our robustness analysis focuses on attribution methods. We research the vulnerability
of explanations when manipulating the input using concepts from differential geometry
and propose measures to overcome this unwanted behavior.

In [37], we show an alarming property of attribution methods: they can be arbitrarily
manipulated by adding small perturbations to the input, which, crucially, do not
alter the prediction. We find these perturbations by minimizing the mean squared
error between the explanation map and a given target map, iteratively updating the
input. The approach is analogous to conventional adversarial attacks, which aim to
change the neural network’s prediction. A non-trivial difference is that the target for
adversarial attacks on the explanation is usually orders of magnitude larger than for
conventional adversarial attacks, as the dimension of the explanation map normally
matches the input dimension.

We theoretically analyze the surprising susceptibility of explanations to adversarial
attacks using tools from differential geometry and derive an upper bound on the
maximal change in the explanation map. Based on these insights, we propose a
new explanation method—β-smoothing—that produces crisp attribution maps and
provably reduces the upper bound on the change in the explanation map. We confirm
experimentally that the newly found explanations are indeed more robust against
adversarial attacks.

While in [37] we change the explanation procedure for pre-trained neural networks,
in [38], we investigate techniques that can be incorporated into the training phase so
that applying methods from XAI to the newly trained networks results in robust
explanation maps. Our theoretical analysis is based on the findings from our previous
paper. The upper bound for the change in explanation, i.e., the upper bound on the
Hessian of the network, derived in [37] depends on the first and second derivatives of
the (smooth) activation function and the network’s weights.

We generalize this upper bound to the non-smooth ReLU activation and identify
three different interventions we can incorporate into the training, which all reduce
the upper bound. The first method uses weight decay, a regularization technique
usually applied to avoid overfitting and to improve accuracy. Our theoretical results
suggest that it can also boost robustness. As a second measure, we propose to
substitute ReLU activations with softplus activations during training and application,
as softplus activations do not have the typical kinks of ReLU activations that lead to
rapidly changing gradients when slightly perturbing the input. The third approach
aims to minimize the Hessian directly by penalizing its Frobenius norm, which we
estimate in each training step using a Monte Carlo sampling approach.

We perform extensive experiments, testing various combinations of hyperparameters
for our three proposed interventions and acquire best results when combining them.
The explanations of networks trained using our proposed methods are consequently
more robust against random input perturbations and targeted adversarial attacks.
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As described in the introduction to this chapter, we can gain additional, more
specific insights into the decision process of the machine learning model by studying
counterfactual explanations besides attribution methods. However, interpretable
counterfactuals can be hard to find and attempts can result in adversarial examples.

In the remaining two papers included in this thesis, we research the similarities and
differences between counterfactuals and adversarial examples and provide an effective
method to generate counterfactual explanations.

To this end, we leverage the recent advances by generative models to accurately
approximate the data manifolds of natural images.

In [39], we show how to use normalizing flows to create high-quality counterfactuals
that are classified as a target class with great confidence. We use the fact that
the flow induces a coordinate transformation more suitable for finding semantically
meaningful counterfactuals. We demonstrate theoretically how applying gradient
ascent in the base space of a well-trained flow corresponds to walking along the data
manifold while gradient ascent in image space quickly leads off the data manifold
and thus results in adversarial examples. Experiments on three different data sets
confirm that our counterfactuals exhibit structural changes and look like naturally
occurring images from the target class.

In [40], we refine our theoretical analysis and extend it to non-bijective generative
models such as variational autoencoders and generative adversarial networks. These
models come with fewer theoretical guarantees and might lead to some information
loss but can scale to very high-dimensional data. Furthermore, we considerably
broaden our experiments to include a regression task and high-resolution images.
Our modular approach is easy to apply and works well with independently trained
classifiers and generative models.

These contributions represent significant progress towards robust attribution methods
and interpretable, semantically meaningful counterfactuals. Differential geometry is
crucial in this research as it provides theoretical guarantees for our claims and equips
us with the necessary insights to find practical solutions to the current challenges in
explainable artificial intelligence.

1.1.1. Publications

The contents of this thesis have been published (or are about to be published) at ML
conferences and journals in the form of four peer-reviewed papers listed below. A
detailed description of the contributions of each author is added below the respective
publication.

• Explanations can be manipulated and geometry is to blame
by Ann-Kathrin Dombrowski, Maximillian Alber, Christopher J. Anders, Marcel
Ackermann, Klaus-Robert Müller and Pan Kessel, published in Advances in
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Neural Information Processing Systems (NeurIPS) 2019, (poster)

PK had the initial idea. AKD and PK further developed the project with input from all
authors. Experiments were planned, conducted and evaluated for the most part by AKD
with contibutions from PK, CJA, and MA. PK performed the mathematical proofs. PK and
AKD wrote the paper. KRM and CJA were involved in paper revisions.

• Towards robust explanations for deep neural networks
by Ann-Kathrin Dombrowski, Christopher J. Anders, Klaus-Rober Müller and
Pan Kessel, published in Pattern Recognition Journal, 2022

AKD and PK developed the paper idea. AKD planned, performed and evaluated experiments.
CJA helped with initial code development. PK performed mathematical proofs. PK and
AKD wrote the paper with revisions from KRM.

• Diffeomorphic explanations with normalizing flows
by Ann-Kathrin Dombrowski∗ , Jan E. Gerken∗ and Pan Kessel, published at
the Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit
Likelihood Models, ICML 2021, (contributed talk)

PK had the initial idea. All authors were involved in further developing this idea. AKD
planned, performed and evaluated experiments. PK and JEG performed mathematical
proofs. All authors were involved in writing the paper.

• Diffeomorphic counterfactuals with generative models
by Ann-Kathrin Dombrowski∗, Jan E. Gerken∗, Klaus-Rober Müller and Pan
Kessel, currently under review at IEEE Pattern Analysis and Machine Intelli-
gence Journal, 2022

All authors were involved in developing the paper idea. AKD planned, performed and
evaluated experiments. PK and JEG performed mathematical proofs with contributions
from AKD. All authors were involved in writing the paper.

Much of this thesis’s text and graphics were directly adopted from these papers, with
permission from all co-authors. Clarifications and additional experimental results
were added where appropriate and the related work sections were updated to include
the most recent relevant literature. As the explainability of deep neural networks and
the use of tools from differential geometry for the theoretical analyses are core to all
our contibutions, the topic-specific introductions for each paper concerning these two
areas were unified and extended to serve as two introductory chapters on explainable
AI (see Chapter 2) and differential geometry (see Chapter 3), respectively.

Additional papers by the author that are not included in this thesis are listed below.

• Fairwashing explanations with off-manifold detergent
by Christopher J. Anders, Plamen Pasliev, Ann-Kathrin Dombrowski and

∗ equal contribution
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Klaus-Robert Müller, published at the International Conference on Machine
Learning (ICML) 2020

• Automated dissipation control for turbulence simulation with shell
models
by Ann-Kathrin Dombrowski, Klaus-Robert Müller and Wolf-Christian Müller,
ArXiv preprint, 2021

1.2. Structure of the thesis

The thesis is structured into seven parts. Chapter 1 (Introduction) serves as a
preface describing organization and contributions of this thesis.

Chapter 2 (ML background) provides a general introduction to explainable artificial
intelligence, covering the goals of explanation methods and recent developments in
the field. We then give an overview of the different types of explanation methods.
This is followed by more specific introductions to the two subfields of explainability
on which this thesis focuses: attribution methods and counterfactual explanations.
We present several popular attribution methods and the motivation behind them.
For counterfactual explanations, we describe the general approach and delve into
connected concepts such as contrastive explanations, adversarial examples and feature
visualization. The chapter furthermore gives an overview of the image data sets and
similarity measures used throughout this thesis.

This is followed by Chapter 3 (Mathematical background), where we give an
introduction to the fundamental concepts of differential geometry, which we require
for theoretical derivations in later chapters. We start by reviewing the essential basics
of linear algebra before discussing more advanced topics of differential geometry
such as manifolds, the Riemannian metric, the Weingarten map, pushforward and
pullback.

The thesis’s central part is divided into three chapters based on four previously
published papers (see Section 1.1).

Chapter 4 (Manipulating explanations) shows that many popular explanation
methods can be arbitrarily manipulated. We introduce an algorithm that perturbs
the input with imperceptible noise so that the classifier’s prediction is unchanged,
but the explanation map reproduces an arbitrary target map. We analyse this
unexpected behavior theoretically and derive an upper bound on the maximal change
in the explanation map. Based on this upper bound, we propose β-smoothing, a
novel explanation method that is more robust against adversarial perturbations. Our
theoretical results are backed by experiments on various gradient- and propagation-
based explanation methods, different network architectures and two data sets.

We then extend our analysis of explanation robustness and investigate how to
incorporate robustness measures into the training regime in Chapter 5 (Towards
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networks with robust explanations). We expand on the theoretical results of
the previous chapter, generalizing the upper bound on the maximal change in the
explanation map. We then derive three different effective regularizers that can be
incorporated into the training processes of deep neural networks and provably lead
to more robust explanations. We test our regularizers thoroughly for random input
perturbations, training a vast number of neural networks with different configurations.
We achieve the best results when combining our proposed regularizers. Furthermore,
we show that our methods generalize to protection against adversarial attacks on
the explanation and are applicable to different network architectures, data sets, and
explanation methods.

While Chapter 4 and 5 focus on attribution methods, Chapter 6 (Counterfactual
explanations) discusses counterfactual explanations. As explained above, the search
process for counterfactuals can sometimes result in adversarial examples. We establish
a rigorous theoretical framework for applying gradient ascent in a more suitable
coordinate system induced by the latent space of a generative model. More specifically,
we prove that, for well-trained generative models, the induced metric effectively
rescales the gradient in image space so that directions perpendicular to the data
manifold are suppressed, and only gradient directions along the data manifold remain.
Update steps then move along the manifold and ultimately lead to structural changes
in the input, which are easy to interpret for a human. Depending on the bijectivity
of the generative model, we term the resulting explanations diffeomorphic and
approximately diffeomorphic counterfactuals. We apply our algorithm to normalizing
flows on four image data sets, spanning classification, and regression tasks. We achieve
visually striking results and conduct a thorough quantitative analysis. Furthermore,
we show how our algorithm can scale to high-dimensional data sets by leveraging
variational autoencoders and generative adversarial networks. Finally, we discuss
the advantages and drawbacks of the different generative models used.

To complete the thesis, Chapter 7 (Conclusion and outlook) provides a unified
conclusion of our work, summarizing the different contributions presented in this
dissertation, and discusses future research directions.
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2. ML background

This chapter serves as an introduction to the machine learning (ML) topics covered
in this thesis. We start with an overview of explainable artificial intelligence (XAI)
followed by more specific introductions to the subfields of attribution methods and
counterfactual explanations.

Furthermore we present the image data sets and similarity measures used throughout
this thesis.

2.1. Explainable AI

In recent years, deep neural networks have revolutionized many different areas in
research, medicine and industry, and triggered a renaissance of artificial intelligence
(AI), and machine learning (ML) in particular. The main drivers of this success
were the increased complexity—and therefore expressiveness—of these ML models
together with efficient learning algorithms for deep learning [41, 42], the collection of
large data sets [43], and the development of hardware [44,45] and software [46,47]
that make the training scalable.

Despite their impressive performance, the reasoning behind the decision processes of
deep neural networks remains difficult to grasp for humans. This opaqueness can
limit their usefulness in applications that require transparency. Transparency of the
decision process can be relevant for fostering trust in the system, confirming that
the system is working as intended, or identifying potential problems that would not
be apparent when looking merely at the model’s outputs. It can also enable us to
gain new insights into the application domain or deepen our understanding of how
neural networks work in general.

Consequently, the field of eXplainable AI (XAI) [11, 48] emerged, aiming to open
the black box of deep neural networks by making their decision processes more
interpretable. However, defining what it means for a model to be interpretable is
challenging. As an intuition, we can use the (non-mathematical) definition by Miller
et al. [49]:

“Interpretability is the degree
to which a human can understand the cause of a decision.” .

To that end, researchers have developed a vast and diverse collection of explana-
tion methods. Explanation methods have received considerable interest from the
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Chapter 2. ML background

international ML communities, practitioners, researchers and policy makers, as in-
terpretability is crucial for debugging, scientific understanding, and safety critical
applications, such as medicine, autonomic driving, or security. Development and
evaluation [50,51] of explanation methods as well as refinement of what we hope to
gain from them [52] remain active areas of research.

Many recent surveys [53–60] outline modern approaches to explainable AI in great
detail. We briefly introduce the most commonly discussed aspects in this section.

Goals and purpose of XAI Explanation methods provide an interface between
the human and the machine learning model. XAI aims to give accurate explanations
in a human understandable manner. Therefore, explanations may look very different
depending on their intended audience. A developer might want to use XAI to debug
and improve their ML model. People affected by automated model decisions, like
loan applicants, on the other hand, might want to understand their situation and
which aspects they need to change to reach a more desirable outcome. Policy makers
and regulatory entities need XAI to certify a model and ensure its decision processes
are lawful, i.e., not based on discriminatory features. Finally, other users and domain
experts, like medical doctors and analysts, intend to apply methods of XAI to find
causal connections to further scientific knowledge. Improving model interpretability
via XAI is thus an instrumental goal to achieve the improvement and expansive
application of trusted, safe, fair, and accurate ML models that facilitate our daily
lives.

Recent developments and applications of XAI With the introduction of various
explanation methods and libraries that allow easy implementation [61–64], the
application of XAI methods in various areas has seen a remarkable increase.

XAI facilitates the debugging and subsequent improvement of ML models in research
settings as explanation methods can help detect biases or other flaws in the data
collection and pre-processing steps that result in the ML model basing its predictions
on undesired features [15, 30, 65]. Furthermore, explanation methods can be used to
guide the training process [66] or prune a network after training [67].

Explanation methods show great results in medical applications [68–70]. Especially
in diagnostics [71], explanations are crucial for doctors and patients alike when
relying on the predictions of machine learning systems.

Another exciting field for XAI applications is finance [72–75] where one can use
explanation methods to gain insights into systems from market forecasting and
investment strategies to credit scoring and fraud detection.

Political debates about applications of ML systems and implications concerning
fairness [32, 76, 77] further increase the relevance of XAI. For example, the European
Union introduced a right to explanation in the General Data Protection Right
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(GDPR) [31, 78–81]. Therefore, explainability is relevant for automated decision-
making in insurance, hiring, loan assessment and predictive policing [82].

XAI is also becoming influential in industrial applications [83] as explanation methods
can be used for failure diagnosis [84, 85] and predictive maintenance [86]. This trend
is likely to grow further since machine learning systems offer valuable improvements
but must meet many requirements to ensure the stability and robustness necessary
for industrial production processes [87].

2.1.1. Explanation methods

Interpretable models vs post-hoc explainability Some models are interpretable
by design, meaning elaborate methods from XAI are not necessarily needed to
understand their decision-making processes. Linear and logistic regression fall into
this category. Both base their prediction on a weighted sum of the feature inputs.
This linear relationship makes them interpretable. Extensions to these models
include generalized linear models (GLMs) [88,89] and generalized additive models
(GAMs) [90].

Another example of a transparent model is the decision tree, which uses a hierarchical
structure of if/else statements to split the data repeatedly according to learned cutoff
values in the features [91]. Other rule-based machine learning systems [92–94] are
also considered interpretable by construction since humans easily understand the
learned rules.

Furthermore, there is the Naive Bayes classifier [95], which produces probabilities for a
class depending on the value of the features, assuming their conditional independence.
This naive assumption makes the model interpretable but also limited.

An interpretable non-parametric approach is the k-nearest neighbour (kNN) [96]
method, which uses the closest neighbouring training data points of a given data
point for classification or regression. These exemplary instances from the data set
can provide insights if the samples do not have too many variables.

In summary, the above models are usually considered interpretable since they relate
input features and predictions relatively simply. If the input features grow numerous
or convoluted, we might require additional support from XAI methods or more
traditional means of visualization to understand even these simple models.

On the other hand, we have ML models that are inherently non-linear and lack
explicit rules to quantify their decision processes. Such models are sometimes referred
to as opaque models or black boxes. Deep neural networks fall into this category.
To make their decision processes comprehensible, one needs to apply XAI methods
post-hoc, that is, after training the model.
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Types of explanations Explanations come in many forms. Attribution or feature
importance methods assign a score to each input feature and thus usually produce
a relevance score map of the same dimensionality as the input. We discuss some
variants of attribution methods in Section 2.1.2.

Counterfactual explanations produce alternative inputs that look similar to the
original query input but are assigned a different prediction. We give a detailed
introduction to counterfactual explanations in Section 2.1.3.

Other approaches rely on prototypes or other instances from the training data [97,98].

Furthermore, there are concept-based explanations [99–102] that can take quite
different forms than the original model inputs. For example, textual explanations
can be given for image classifiers.

Local vs. global explanations Global explainability provides insights into global
model behavior based on a holistic view of input features, model structure, and model
parameters [103], i.e., how features contribute to a model’s decision on average.

An example for a global explanation method is the partial dependence plot (PDP) [104,
105]. It averages over individual conditional expectation (ICE) plots which in turn
show how the prediction changes when the feature of interest is changed, assuming
independent features.

To measure interdependence between input features concerning the models’ predic-
tion, the Friedman’s H-statistic [106] was introduced. Accumulated local effects
(ALE) [107] take another approach to deal with correlation between features, calcu-
lating differences in predictions, based on the conditional distribution of the features,
instead of averages.

It is also possible to train an interpretable surrogate model which mimics the behavior
of the more complex opaque model. Furthermore, the Maximum Mean Discrepancy
(MMD)-critic [97] finds prototypes from high-density areas of the data distribution
and criticism from regions that are not well explained by the former, which are then
evaluated together with their model predictions.

Another quite different approach that does not depend on individual inputs or
predictions is feature visualization [108,109], usually used for convolutional neural
networks. This approach finds inputs that maximize the activations of a single
(hidden-layer) neuron in a network by iteratively updating an input starting from
random noise. We provide an example and discuss the connection to counterfactual
explanations in Section 2.1.3.

Furthermore, there are approaches with a strong focus on the training data. For
example, one can learn about model behavior by identifying influential training
instances [110,111] via deletion diagnostics and influence functions. An influential
instance is a data point whose removal strongly affects the behavior of the retrained
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model. The approach can also be applied to parameters or predictions of machine
learning models.

Yet another approach are concept-based explanations [99, 101, 112]. A concept is
any form of abstraction that helps the user understand the ML model and does not
necessarily depend on the training process for a specific task. For example “stripes”
can be a human-defined concept that might help to understand differences in the
classification of pictures of horses and zebras. To understand global model behavior,
one can then measure the influence of a concept on the prediction for a certain class.

The vastness of the input space, feature interdependence, and highly complex non-
linear models can make global interpretability hard to achieve or computationally
expensive. In many cases, practitioners are primarily interested in model behavior
for a particular instance, which is why a large part of explainability focuses on local
explanations which aim to explain predictions for individual inputs. The remainder
of this section will discuss such local explanations.

White-box and black-box explanations One can categorize explanations depend-
ing on how much access to the model is required. Model agnostic explanations treat
the model as a black box and only require access to a model’s decision. This makes
them readily applicable to any model and thus very flexible.

Some model agnostic approaches rely on perturbation or partial occlusion of the
input and the resulting change in the prediction [113–116].

Occlusion-based approaches “remove” input regions by setting them to zero and then
evaluate the model on the modified input. If the model output for the partially
occluded input differs considerably from the original model output, the occluded
region is deemed relevant. Gradually moving the occluded region can determine
a relevance map for the complete input. Usually, regions (rather than individual
dimensions) are set to zero, which means the resulting explanation maps are often
coarser than the input. One can consider occlusion techniques as a particular case
of input perturbation. Other input perturbations can include blurring or adding
random noise.

One popular perturbation-based method is the Local Interpretable Model-Agnostic
Explanation (LIME) [65]. LIME trains a simple interpretable model on perturbed
instances of the query input so that the prediction of the simple model locally matches
the prediction of the more complex model whose behavior we want to understand. If
there are many input features, it can be advantageous to cluster them into regions
(for example, superpixels for images), which are then jointly perturbed. An additional
perturbation-based approach is the anchors method [117], which uses reinforcement
learning techniques to distill features that are almost exclusively responsible for the
predicted outcome.

Another well-known technique called SHAP (SHapley Additive exPlanations) [22] is
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based on a concept from game theory, the Shapley value [118], which is the average
marginal contribution of a selected input feature across all possible combinations.

In contrast to black box or model agnostic explanations, white box explanations
require full access to the model and are often faster to compute. Those methods
usually fall under the category of feature attribution methods and are applied in
the context of image classification. For example Layerwise Relevance Propagation
(LRP) [21, 26] is an explanation method for which specific propagation rules need to
be implemented for hidden layers, for Pattern Attribution [119] one requires access
to the networks weights to learn specific patterns, Guided Backpropagation [120],
DeepLIFT [25], and DeconvNet [113] need access to individual activations of hidden
units, and Grad-CAM [121] uses the gradient with respect to the last convolutional
layer.

Explanations beyond attribution methods, for example, concept-based explana-
tions [99–102, 112, 122] may also require access to the hidden layers of a neural
network.

Other methods lie somewhere between model agnostic and white box explanations.
They do not require access to the complete model structure but are based on the
gradient of a prediction with respect to the input. Examples in this category include
explanation methods like Saliency and Gradient maps [23–25], SmoothGrad [28], and
Integrated Gradients [27]. Some methods [123] iteratively find regions relevant for the
classification or train an additional model to localize important features [124]. The
gradient is also needed for some counterfactual explanation methods [39,125,126].

In the remainder of this thesis, we focus on post-hoc, local, white-box explanations
for neural networks trained on image data.

2.1.2. Attribution methods

In Chapter 4 and 5 we investigate the robustness of some of the most common
attribution methods, which we introduce in this section. Example images with
explanation maps for all considered methods are shown in Figure 2.1.

To define the explanation maps we consider a neural network f : RN → RK with
ReLU non-linearities which classifies an image x ∈ RN into one of K categories with
the predicted class given by k = argmaxi f(x)i. The explanation map is denoted
by h : RN → RN and associates an image with a vector of the same dimension
whose components encode the relevance score of each pixel for the neural network’s
prediction.

Gradient The Gradient explanation or Saliency map [23, 24] is the most basic
explanation. It quantifies how infinitesimal perturbations in each pixel change the
prediction f(x) . To that end, the gradient of the class of interest (usually the class of
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Fig. 2.1.: Explanation maps for different methods applied to a pre-trained VGG16
network. The first row shows the input images (from ImageNet [43]) with
class and prediction confidence.
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highest probability k) is calculated with respect to the input pixels. The explanation
map is then defined as

h(x) =
∂fk
∂x

(x). (2.1)

Gradient × Input The explanation given by Gradient × Input [25] is defined as the
element-wise multiplication of the gradient of the neural network with the respective
input image. The explanation map is given by

h(x) = x⊙ ∂f

∂x
(x) . (2.2)

For linear models, this measure gives the exact contribution of each pixel to the
prediction.

Integrated Gradients (IntGrad) Integrated Gradients [27] is based on two funda-
mental axioms: sensitivity and implementation invariance. Sensitivity means that if
input and baseline differ in one feature and have different prediction, the differing
feature should have a non-zero attribution. Implementation invariance means that if
two networks are functionally equivalent (the outputs are equivalent for all inputs),
the attributions should also be identical.

The explanation map is defined as

h(x) = (x− x̄)⊙
∫ 1

0

∂f(x̄+ t(x− x̄))

∂x
dt , (2.3)

where x̄ is a suitable baseline. The integration over the difference between the
baseline and the image avoids problems with local gradients being saturated. The
baseline aims to represent the absence of features. For our purposes we use the zero
baseline, as proposed in the original paper. Using any constant color baseline can be
problematic since pixels that have the same color as the baseline will always have an
attribution of zero although they might belong to the object of interest [114,127,128].
Nonetheless, as we focus on analysing robustness of attribution methods, this simple
baseline is sufficient for our purposes.

Guided Backpropagation (GBP) This method is a variation of the gradient
explanation for which negative components of the gradient are set to zero while
backpropagating through the non-linearities [120]. The motivation for this procedure
is that explanation maps achieved by pure backpropagation [23,24] or by deconvolu-
tion [113] do not produce sharp, recognizable image structures for higher layers in
a neural network. By only allowing positive values to be backpropagated, guided
backpropagation reduces the influence of neurons which decrease the activation of
the higher layer unit for which we desire an explanation. The resulting explanation
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map is then sharper and more focused on features that contributed positively to the
classification. For the output layer, the relevance, i.e. how much a feature contributes
to the prediction, is defined by

RL
i = δi,kf(x)i , (2.4)

where we use the Kronecker symbol

δi,k =

{
1, for i = k

0, for i ̸= k
. (2.5)

The relevance for a convolutional or dense layer l and neuron i can then be computed
as

Rl
i =

∑
j

W l
jiR

l+1
j (2.6)

while the rule for propagating through a ReLU activation unit is defined as

Rl
i =

{
Rl+1

i , if Rl+1
i > 0 and xl+1

i > 0

0, otherwise
. (2.7)

Layer-wise Relevance Propagation (LRP) Layer-wise Relevance Propagation [26]
propagates the relevance backwards through the network. The approach is related
to the layer-wise application of the Taylor series [21], for which different choices of
root points correspond to different relevance propagation rules of LRP.

For the output layer, relevance is defined by

RL
i = δi,k . (2.8)

The relevance of the final layer is then propagated backwards through all layers using
specific propagation rules defined in [129]. For our purposes we use the z+ rule for
intermediate layers

Rl
i =

∑
j

xl
i(W

l)+ji∑
i x

l
i(W

l)+ji
Rl+1

j , (2.9)

where (W l)+ denotes the positive weights of the l-th layer and xl is the activation
vector of the l-th layer1. For the first layer, we use the zB rule to account for the
bounded input domain

R0
i =

∑
j

x0
jW

0
ji − lj(W

0)+ji − uj(W
0)−ji∑

i(x
0
jW

0
ji − lj(W 0)+ji − uj(W 0)−ji)

R1
j , (2.10)

where lj and uj are the lower and upper bounds of the input domain respectively.
1Note that the z+ rule is only defined for positive inputs and ignores biases. We only apply it to

simple CNNs. For more generally applicable rules see LRP-αβ [26].
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PatternAttribution (PA) This explanation method [119] was developed starting
from analysing the behavior of linear models on noisy data. More specifically the
authors construct an input x = s + d by adding a signal s and a distractor d
component together. The optimal model completely filters out the distracting noise
and bases the prediction solely on the signal. For a linear model this means that
the weight vector will be perpendicular to the noise and thus will not contain much
information about the signal by itself [130].

The authors aim to filter out the noise component of the data so that only the signal
remains (PatternNet) or relevance is only attributed to the signal (PatternAttri-
bution). An optimal signal would be a minimal selection of input features which
correlate with the output in the same way as the input itself. The authors then
propose a two-component signal estimator, which recovers the signal optimally in
the linear case and depends on learned patterns Al

+,ij and Al
−,ij. The patterns A+

(A− analogously) for layer l are defined as

Al
+,ij =

E+[x
l
jy

l
i]− E+[x

l
j]E[yli]∑

k

(
W l

ikE+[xl
ky

l
i]−W l

ikE+[xl
k]E[yli]

) , (2.11)

where E+[•] is the expected value of the argument within the positive regime (negative
values are set to zero), xl is the input, W l the respective weight matrix and yl is the
output (pre-activation).

PatternAttribution is then analogous to standard backpropagation upon element-wise
multiplication of the weights of each neuron with the respective patterns Al

+.

These patterns must be learned based on training data, after training of the neural
network and before the explanation method can be applied.

SmoothGrad The idea behind SmoothGrad [28] is to remove the noise from the
Gradient explanation by averaging over multiple Gradient explanations of slightly
perturbed inputs. Therefore, SmoothGrad is not a stand-alone explanation method
but is computed as the average

h(x) =
1

N

N∑
i

h̃(x+ ϵi) , (2.12)

where N is the number of samples over which we average, h̃ is the original explanation
map and ϵi ∼ N (0, σ) is a noise vector sampled from the Gaussian distribution. The
number of samples N is choosen between 10 and 50. The standard deviation σ is
chosen dependent on the desired noise level ν = σ

xmax−xmin
, which depends on the

maximum and minimum values of the input and is usually chosen to be between
10% and 20%. SmoothGrad can theoretically be applied to any explanation map h̃
but is most prominently used in combination with the gradient ∇f , which we also
show in Figure 2.1.

18



2.1. Explainable AI

β-smoothing The β-smoothing explanation method [37] was developed within
the scope of this thesis. The idea is to replace the ReLU activation functions with
softplus activations and then take the gradient of the original classification wrt the
input using the modified network. The β parameter of the softplus activation controls
how closely the ReLU is approximated and is a hyperparameter of the method. We
find the value β = 1 works well in practice. Just as SmoothGrad, β-smoothing can
be applied to various explanation methods. For the comparison in Figure 2.1 we
apply it to the standard gradient. We discuss the motivation for β-smoothing and
the relation to SmoothGrad in more detail in Chapter 4.

These presented methods cover two classes of attribution methods, namely gradient-
based and propagation-based explanations, and are frequently used in practice [29,
128,131]. To obtain a pixelwise relevance score, we sum over absolute values of the
three color channels so that the explanation map only has one channel where large
values indicate high relevance of the corresponding pixel (see Figure 2.1). To compare
explanations with each other we normalize the explanation to have

∑
i |h(x)i| = 1.

2.1.3. Counterfactual explanations

In Chapter 6 we analyse approaches which leverage generative models to find coun-
terfactual explanations. This section serves as an introduction to counterfactual
explanations in a broader sense.

Attribution-based explanation methods focus on the question “Why was this input
classified as A?”. While this approach seems intuitive, some studies show that humans
prefer counterfactual explanations which aim to answer questions like “Why was this
input classified as A and not as B” or “What would need to change in the input so
that it is no longer classified as A but instead as B?” [34,49,132]. A counterfactual
is similar to the original input but has a different prediction. Often we require the
prediction to change in a significant way, for example, to cause a change in the
predicted class. In addition to that, counterfactuals are sometimes required to be
minimal, i.e. to describe the smallest change in the input feature values that result
in the desired change of the prediction.

Counterfactuals are very easy to interpret by humans since they stand in contrast
to the original input and usually focus on a limited number of input features. The
following examples highlight their usefulness.

Example 1 Bob applies for a loan from a bank but is rejected by the automated
ML system. He is interested in knowing what he needs to change in order to improve
his chances to get a loan. One possible answer would be: if Bob was 5 years younger,
he would get the loan. This is a counterfactual, though not a very actionable one
since Bob cannot age backwards. Another possible counterfactual could be: if he
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earned 5000BC more per year, or if he had held his current job for one more year,
then he would get the loan. These counterfactuals are actionable since Bob can ask
for a raise or wait a year and then apply for the loan again.

Example 2 Alice is a doctor that does breast cancer screenings. The mammogram
of one of her patients is classified as clear from breast cancer by her ML assistance
system. However she notices that the probability of pathology has increased compared
to past mammograms. She runs the counterfactual XAI system and compares the
counterfactual to the original mammogram. One specific tissue area changed in the
counterfactual showing a small tumor. After a second glance Alice notices that the
same area also looks suspicious on the original mammogram and decides to run
additional tests.

Connection to contrastive explanations and prototypes Counterfactuals are
related to contrastive explations and the terms are sometimes used interchangeably.
A contrastive explanation is a data point from the data set that has a different
classification to the query sample. Thus contrastive explanations are related to pro-
totypes which are usually single points from the data set or averaged representations
of several points. One difference is that counterfactuals are generally not defined as
existing samples from the data set but regarded as hypothetical alternatives, hence
the name counterfactuals. They are similar to the original data point but differ in
distinct features so that the confidence with respect to a certain classification is
different.

Connection to adversarial examples Counterfactuals for tabular or numerical
data [32,133,134] can often be found relatively easily by optimizing the input data
to yield the desired classification while optionally enforcing constraints on features
to make the explanation actionable [31].

In contrast, applying this simple optimization to high-dimensional data such as
images usually leads to adversarial examples2. Adversarial examples are inputs that,
to a human observer, look (approximately) identical to the original input but result
in a drastically different classification [36]. In particular, adversarial examples are
usually unlikely in the underlying data distribution. Figure 2.2 shows an image from
the MNIST data set together with an adversarial example and a counterfactual, both
generated by maximizing the target class “nine”.

The relation between counterfactuals and adversarial examples has been pointed out
repeatedly [19,137,138] but a clear distinction on all data sets is not possible since
the data distribution is often not known precisely enough.

2Recent work [135,136] shows that for adversarially trained models, simple optimization leads to
less noisy “counterfactuals” than for standard models.
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original adversarial example counterfactual

Fig. 2.2.: Example from the MNIST data set. The original is classified as “four”. The
adversarial example and the counterfactual look similar to the original but
are both classified as “nine” with high confidence. While the counterfactual
looks like an image from the training data set, the adversarial example
contains noise that is untypical for the data distribution.

However, the intended use of counterfactuals and adversarial examples is very different:
counterfactuals are meant to provide an explanation, while adversarials are meant to
trick a neural network into misclassifying. Consequently, counterfactuals aim to be
human interpretable and adversarials are usually constructed to be indistinguishable
from the original for a human. This leads to different restrictions during their creation:
Counterfactuals are often constrained to lie on the data manifold, i.e. they look like
naturally occurring samples from the data distribution while adversarials include
specifically engineered perturbations that do not occur in a natural setting but lead
to high activation of some neurons in the network. One can regard counterfactuals as
natural adversarial examples [138] that lie on the data manifold and thus “generalize
to human agents”. Or one can regard adversarial examples as counterfactuals that lie
“off data manifold” and are indistinguishable from the original to a human observer.

To make sure that the optimization process results in a counterfactual, one introduces
further constraints, so that the modified data point lies on the data manifold. We
will look into this in greater detail in Chapter 6.

Connection to feature visualization Feature visualization [108,139] tries to solve a
similar problem to counterfactual explanations, namely to change an input iteratively
by maximizing the activation of a specific neuron. In the case of counterfactuals, we
maximize the activation of the target output neuron (up to a desired confidence).

Feature visualization faces the same problem as counterfactual generation when
it comes to optimization of high-dimensional inputs: we end up with some high
frequency pattern that seems nonsensical to humans but produces a significantly
increased activation in the target neuron, which is highly related to the concept of
adversarial examples [36, 140].

To avoid these high frequency structures, various degrees of regularization are
introduced, from frequency penalization to incorporating generative models [109,
141–143]. Similar efforts have also been made in the context of counterfactual
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explanations [40, 125].

One fundamental difference between counterfactual generation and feature visualiza-
tion is that feature visualization is intended to capture global model behavior. This
means, the visualized features are not specific to one particular data input, but are
generated from (several) random noise starting points.

We show an example of visualized features in Figure 2.3. The image stems from max-
imizing the pre-activation of a hidden neuron from the GoogLeNet architecture [144],
which was trained on ImageNet.

step 1 step 32 step 128 step 256 step 2048

Fig. 2.3.: Visualizing features by maximizing a hidden neuron in a neural network
(image source: [139]). Unregularized optimization (first row) produces high
frequency artifacts while regularized optimization (second row) leads to
smoother and more natural looking images.

2.2. Image data sets

Throughout this thesis we use images from various image data sets to test our
algorithms. In this section we briefly present the data sets that we use and the
pre-processing steps that we perform before applying our algorithms. Figure 2.4
shows four pre-processed example images for each data set.

MNIST The MNIST [145] data set from the Modified National Institute of Stan-
dards and Technology is a large image data set of hand written digits from zero
to nine. The database contains 70k grayscale images of resolution 28 × 28 pixels.
Modern neural networks usually achieve test accuracies above 99% after training.

CIFAR10 The CIFAR10 data set [146] from the Canadian Institute For Advanced
Research contains 60k color images of ten different classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The images have a resolution of
32× 32 pixels. Modern neural networks usually achieve test accuracies above 95%
after training.
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2.2. Image data sets

Fig. 2.4.: From left to right: columns show pre-processed images for data sets: MNIST,
CIFAR10, ImageNet, ImageNette, CelebA, CelebA-HQ, CheXpert and Mall.
Note that the images are rescaled for presentation purposes but do have
very different resolution, which is why some images appear pixelated.

ImageNet ImageNet [43] is a large database of high resolution images that is
continuously expanded. The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [147] focuses on approximately 1.3 million color images, cropped to a
resolution of 224 × 224 pixels, that are divided into 1000 object categories. We
use the same resolution in this thesis. Modern neural networks usually achieve test
accuracies of around 80-90% on this standardized benchmark.

ImageNette ImageNette [148] contains a subset of ImageNet pictures that are
divided into ten easily distinguishable classes (tench, English springer, cassette player,
chain saw, church, French horn, garbage truck, gas pump, golf ball, and parachute).
We rescale and crop the images to a resolution of 224× 224 pixels. Modern neural
networks usually achieve test accuracies of around 85-95%.

CelebFaces Attributes Dataset (CelebA) CelebA [149] is a data set of over 200k
celebrity images with 40 binary, non-exclusive attributes per image, which contain
information about the hair color, eyeglasses, make-up, or age of a person. For the
purposes of this thesis, we only use the blond attribute and rescale and crop images
to a resolution of 64× 64 pixels.

CelebA-HQ CelebA-HQ [150] is a selection of 30k high-quality images of resolution
1024 × 1024 from the original CelebA data set. Karras et al. [150] apply several
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preprocessing steps to ensure consistent quality like the removal of artifacts and
centering on the facial region. We then use the CelebA-HQ images without further
pre-processing.

CheXpert CheXpert [151] is a large data set of chest X-rays containing more than
224k chest radiographs of over 65k patients. The data set contains frontal and lateral
images. We only use frontal images, of which there are around 191k. The grayscale
images have 14 labeled observations of different pathologies. In this thesis, we focus
on the cardiomegaly (enlarged heart) attribute. We rescale and crop the images to a
resolution of 128× 128 pixels.

Mall The Mall data set [152] consists of 2000 video frames, collected from a publicly
accessible web cam in a shopping mall. In all frames the head positions of the
pedestrians are annotated. The color images have a resolution of 320× 240 pixels.
For the purpose of this thesis we resize the images so that the shortest side has 128
pixels. We then take a 64× 64 pixel cutout (starting from pixel [r = 64, c = 100])
and use these cropped images for our experiments.

2.3. Similarity metrics

Throughout this thesis, we assess the similarity between images and between expla-
nation maps using different similarity metrics, which we describe in this section. We
show examples of how the different similarity measures might convey the perceived
similarity of different pictures (see Figure 2.5) in Table 2.1.

For the formal definitions let x ∈ RN and x̂ ∈ RN be two data points that we want
to compare.

Euclidean distance The Euclidean distance

d(x, x̂) = ∥x− x̂∥2 =

√√√√ n∑
i=1

(x− x̂)2 (2.13)

measures the length of the line segment between two points x and x̂ in space by
adding up the squared differences of their coordinates and then taking the square
root. To apply it to images, we reshape the tensor representation of the image
and write the RGB values in a single column vector. The Euclidean distance is an
absolute error measure with values in [0,

√
n(xmax − xmin)2], where xmax and xmin

denote the maximum and minimum possible pixel values respectively. A Euclidean
distance close to zero indicates high similarity.

24



2.3. Similarity metrics

Mean squared error (MSE) The mean squared error

MSE(x, x̂) =
1

n

n∑
i=1

(x− x̂)2 (2.14)

measures the average squared difference between x and x̂.

Just like the Euclidean distance, the MSE is an absolute error measure with values
in [0, (xmax − xmin)

2], depending on the image representation, for which values close
to zero indicate high similarity. To apply the MSE to images we reshape the tensor
representation of the image and write the RGB values in a single column vector.

Structural similarity index measure (SSIM) The SSIM [153] is a similarity metric
introduced specifically for images. It aims to mimic human perception of image
similarity based on luminance, contrast and structure.

The SSIM is always calculated for a window, that slides over the image. The final
SSIM score is obtained by averaging over all windows. For a window a of image x
and a window b of image x̂ the SSIM is then defined as

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
, (2.15)

where µa and µb are the averages, and σ2
a and σ2

b are the variances of a and b,
respectively. The covariance of a and b is denoted by σab. The two constants
C1 = (0.01 ·R)2 and C2 = (0.03 ·R)2 are based on the data range of the input image
(distance between minimum and maximum possible values). For color images the
SSIM is calculated separately for each channel and then averaged over all channels.
The SSIM is a relative similarity measure with values in [0, 1], where high values
indicate high similarity.

Pearson correlation coefficient (PCC) The PCC measures the linear correlation
between two inputs x and x̂. It is a normalized measurement of the covariance and
thus has values in [−1, 1], where high values indicate high similarity. The formula is
then

PCC(x, x̂) =

∑n
i=1(xi − µx)(x̂i − µx̂)

σxσx̂

, (2.16)

where µx and µx̂ are the averages, and σx and σx̂ are the standard deviations of x and
x̂, respectively. To apply the PCC to images we reshape the tensor representation of
the image and write the RGB values in a single column vector.
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a) original b) blurred c) noisy d) shift e) color shift f) 2nd image

Fig. 2.5.: Different images on which we apply the similarity metrics (see Table 2.1).
a) the original image, b) added Gaussian blur (σ = 5), c) added Gaussian
noise (ϵ ∈ N (µ = 0, σ = 0.2)), d) shifting the image by 2 pixels to the right,
e) color shift in red channel by 0.4, f) a different image

Similarity metric x̂ = x blurred noisy shift color shift 2nd image

d(x, x̂) 0.0 0.0559 0.0615 0.1495 0.2286 0.3006
MSE(x, x̂) 0.0 0.0031 0.0355 0.0038 0.0523 0.0904
SSIM(x, x̂) 1.0 0.6236 0.1310 0.7149 0.9181 0.2845
PCC(x, x̂) 1.0 0.9552 0.6836 0.9453 0.6631 0.1648

Tab. 2.1.: Different similarity metrics applied to pictures shown in Figure 2.5. The
images have a value range of [0, 1], hence the MSE can be maximally 1.
For better comparison we divided the Euclidean norms by the maximal
Euclidean norm dmax(x, x̂) =

√
(224× 224× 3) two images can possibly

have, therefore the maximum Euclidean distance is also 1. Values close to
zero indicate high similarity for d(x, x̂) and MSE(x, x̂), while for SSIM(x, x̂)
and PCC(x, x̂) values close to one indicate high similarity (see second
column).
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In this thesis, we repeatedly use concepts from differential geometry to analyse
phenomenona we observe experimentally and, vice versa, to gain new insights that
then guide further development. This section will explain some of the fundamental
concepts of differential geometry and place them into context to serve as a foundation
for a more detailed, formal analysis in later chapters. For extended introductions to
differential geometry see [154–156].

3.1. Basics

Differential geometry relies heavily on linear algebra which is why this section reviews
some basic concepts from this field.

3.1.1. Change of basis

A vector space is a set V with axioms for vector addition and scalar multiplication,
which again yield elements v ∈ V . Scalars are elements of a field F , for example the
field of real numbers R.

A subset of elements {e1, . . . , en} of V is called a basis ei of V if the elements are
linearly independent and for any given element u ∈ V there exist scalars u1, . . . un

such that
u = u1e1 + · · ·+ unen . (3.1)

The scalars u1, . . . un are called the components of u with respect to ei (see Figure 3.1)
and n is called the dimension of V and is independent of the basis. With a change
of basis the components of u change as

uẽi = Auei , (3.2)

where the matrix A describes the change of basis so that

ẽi = (A−1)i
kek and ei = Ai

kẽk . (3.3)

We use Einstein notation to indicate summation over the repeated index k.
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The j-th component (ei)
j of the i-th standard, or canonical, basis vector ei is given

by
(ei)

j = δij , (3.4)

where i, j ∈ {1, . . . , n} and δij is the Kronecker delta

δij =

{
1, if i = j

0, if i ̸= j
. (3.5)

Fig. 3.1.: Representation of the same vector in different coordinate systems.

3.1.2. Vectors and dual vectors

The dual space V ∗ is the set of all linear maps α : V → F from the vector space V
to the underlying field F so that

α(au+ bv) = aα(u) + bα(v)

and
(aα + bβ)(v) = aα(v) + bβ(v) (3.6)

for all u, v ∈ V , a, b ∈ F and α, β ∈ V ∗. The dual space V ∗ is therefore itself a vector
space.

Given a vector space V we can define a dual space V ∗ so that for any given basis ei
for V there exist a dual basis ϵi for V ∗ satisfying

ϵi(ej) = δij . (3.7)

We can interpret V as the dual of V ∗ so that V ∗∗ = V :

v ∈ V : V ∗ → R by v(α ∈ V ∗) = α(v) . (3.8)
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A non-degenerate1 bilinear form on V , such as an inner product, induces an isomor-
phism, i.e. an equivalence relation, between V and V ∗ : v∗ =< v, . >. This is what
lets us raise and lower indices later with the metric tensor (see Section 3.2.2).

Elements of the dual space are also called covectors, dual vectors, linear forms or
one-forms.

Given a change of basis as in (3.3), where ei = Ai
kẽk, vector components transform

contra-variantly and dual vector components tranform co-variantly:

vei = A−1vẽi and αϵi = αϵ̃iA . (3.9)

To indicate this we write vector components with upper indices and dual vector
components with lower indices:

v = viei and α = αiϵ
i . (3.10)

Example 1: Velocity is a vector. If we scale our coordinate system by a factor
of λ (for example λ = 1000 to go from the basis vector length representing 1m to
representing 1km), we get the new basis vectors ẽi = λei. The vector components
of some vector representing velocity are then divided by λ in the scaled coordinate
system: vẽi = 1

λ
vei , as 1m

h
= 1

1000
km
h

. Thus the velocity vector is a vector that
contra-varies with a change of coordinates.

Example 2: The differential of a function is a dual vector. The total derivative
of a function f : Rn → R at point p is a dual vector Dfp =

[
∂f
∂x1

(p) . . . ∂f
∂xn

(p)
]
. This

could be for example the inclination of a mountain at each point. If we scale our
coordinate system by a factor of λ (for example λ = 1000 to go from the basis vector
length representing 1m to representing 1km), the dual basis is given by (3.7) as
ϵi(ej) =

1
λ
ϵi(λej) = ϵ̃i(ẽj). Any dual vector α then transforms in the same way as the

basis vectors ei, namely as αϵ̃i = λαϵi . Thus the inclination 1
m = 1000 1

km co-varies
with a change of coordinates.

3.1.3. Linear maps

Given two vector spaces V and W over the same field F a linear map is a function
f : V → W preserving vector addition

f(u+ v) = f(u) + f(v) (3.11)

and scalar multiplication
f(cu) = cf(u) , (3.12)

1A bilinear form f : V × V → F is non-degenerate if and only if f(x, y) = 0 ∀ y ∈
V implies, that x = 0.

29



Chapter 3. Mathematical background

where u, v ∈ V and c ∈ F .

If V and W are finite dimensional vector spaces of dimensions n and m respectively,
the linear map f : V → W can be represented as an m× n matrix

M i
j = f i(ej) , (3.13)

where ej are basis vectors of V and the images f(ej) are expressed in a basis of W ,
so that

f(u) = Mu . (3.14)

Under a change of basis ẽi = (A−1)i
kek, M transforms as

Mẽi = AMeiA
−1 . (3.15)

The dual transformation M∗ : V ∗ → W ∗ of a linear map represented by a matrix M
is given by

M∗(α) = α ◦M = β (3.16)

where βj = αiM
i
j.

3.1.4. Inner product

The scalar product, or dot product, is an inner product in Euclidean space which
maps two vectors u, v ∈ Rn onto a scalar

⟨u, v⟩ =
n∑

i=1

uivi , (3.17)

where ui, vi are the vector components in Cartesian coordinates.

The more general definition of an inner product is that of a map ⟨•, •⟩ : V × V → F
which satisfies following properties:

(i) positive-definiteness: ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0, where 0
denotes the zero vector,

(ii) conjugate symmetry: ⟨v, w⟩ = ⟨w, v⟩, and

(iii) bilinearity: ⟨au+ bv, w⟩ = a ⟨u,w⟩+ b ⟨v, w⟩,
where V is a vector space over field F , elements u, v, w ∈ V are vectors and a, b ∈ F
are scalars. A vector space V together with an inner product ⟨•, •⟩ : V × V → F is
called an inner product space and is a generalization of Euclidean space.
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3.1.5. Eigenvectors and eigenvalues

Given a linear map f : V → V from a vector space V over the field R into V , an
eigenvector v is a non-zero vector such that the application of f alters only the scale
of v by eigenvalue λ ∈ F :

f(v) = λv . (3.18)

Any rescaled eigenvector sv with s ∈ R is also an eigenvector with the same eigenvalue.
We therefore usually represent v as a unit vector.

For a linear map given by a square n × n matrix A with n linearly independent
eigenvectors, we can write the eigendecomposition of A as

A = QΛQ−1 , (3.19)

where Λ is a diagonal matrix with Λii = λi and Q is a square n × n matrix with
the corresponding eigenvectors qi as columns. If in addition A is a real symmetric
matrix, the eigenvalues are real and the eigenvectors qi are real and orthogonal.

Example 1: Rotation in R3. Rotations are linear operations and can thus be
represented as matrices. If we have a rotation in 3D, the rotation axis is an eigenvector
with eigenvalue λ = 1, since the space is only rotated and not stretched. The
remaining eigenvalues are complex.

Example 2: Uniformly stretching space. If we have a transformation in R2, given
by the matrix A = cI, where I is the identity matrix and c ∈ R, the only eigenvalue
is λ = c and all vectors v ∈ R2 are eigenvectors.

3.1.6. Directional derivatives

The directional derivative of a scalar valued function f : Rn → R at point p is the
instantaneous change of f when moving through p with a velocity v ∈ Rn and is
defined by

Dvf(p) = ∇vf = lim
ϵ→0

f(p+ ϵv)− f(p)

ϵ
=

d

dt
f(p+ ϵv)

∣∣∣∣
ϵ=0

= ∇f(p) · v , (3.20)

where ∇f(p) is the gradient of f at p. The directional derivative of a scalar-valued
function is itself a scalar.

If we have a vector valued function, f : Rn → Rm the directional derivative is given
by
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Dvf(p) = Df(p)v =


∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
... . . . ...

∂fm
∂x1

(p) . . . ∂fm
∂xn

(p)

 v, (3.21)

where Df(p) is the Jacobian matrix at p. The directional derivative of a vector
valued function yields itself a vector Dvf(p) ∈ Rm.

3.1.7. Tensors

The notion of a tensor is a generalization of vectors and dual vectors. A type (m,n)
tensor T is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
m times

×V × · · · × V︸ ︷︷ ︸
n times

→ R (3.22)

from a collection of vectors and dual vectors to an element of R. The symbol ×
denotes the Cartesian product with which we can combine vector spaces V and W
into a new vector space V ×W = {(v, w) | v ∈ V and w ∈ W}.
The space of all tensors of a fixed type (m,n) is itself a vector space with elements
that can be added together and multiplied by real numbers. A tensor is a basis
independent object in space that can be represented with respect to a basis by a
multidimensional array whose components transform according to the covariant and
contravariant transformation laws. We can find the components in a given basis by
applying T to basis vectors ei and dual vectors ϵi:

T µ1...µm
ν1...νn = T (ϵµ1 , . . . ϵµm , eν1 , . . . , eνn) . (3.23)

We then write T µ1...µm
ν1...νn with m contravariant (upper) and n covariant (lower)

indices.

If T is an (m,n) tensor and S is an (i, j) tensor we can combine them using the
tensor product ⊗. The resulting (m+ i, n+ j) tensor T ⊗ S takes m+ i dual vectors
α(i) and n+ j vectors v(i) and maps them onto a scalar

T ⊗ S(α(1), . . . , α(m+i), v(1), . . . v(n+j))

= T (α(1), . . . , α(m), v(1), . . . v(n))

× S(α(m+1), . . . , α(m+i), v(n+1), . . . v(n+j)) . (3.24)

We can straightforwardly construct a basis for T by taking tensor products of the
basis vectors and basis dual vectors so that

T = T µ1...µm
ν1...νneµ1 ⊗ · · · ⊗ eµm ⊗ ϵν1 ⊗ · · · ⊗ ϵνn . (3.25)
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Example 1: Linear map. A linear map L : V → V is a linear combination of
vector-dual vector tensor products so that L = Li

j(ei⊗ ϵj) ∈ V ⊗ V ∗ is a (1,1)-tensor.
In R2, the tensor products {e1⊗ ϵ1, e1⊗ ϵ2, e2⊗ ϵ1, e2⊗ ϵ2} form a basis for all linear
maps A : V → V since we can form any matrix A by a linear combination of the basis
elements. If ei and ϵi are the canonical vector and dual vector bases, respectively, we
get

A =

[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
.

Example 2: Bilinear form. A bilinear form B : V × V → R is a (0,2)-tensor, i.e. a
linear combination of dual vector–dual vector tensor products B = Bij(ϵi⊗ ϵj), which
maps two elements of a vector space to a scalar. The tensor product Bij(ϵi ⊗ ϵj) in
two dimensions, with ϵi as the canonical dual vector basis, gives

B(u, v) = Bijuivj =
[
u1 u2

] [B11 B12
B21 B22

] [
v1

v2

]
.

3.2. Differential geometry

Differential geometry is a mathematical discipline that studies the geometry of
smooth manifolds. In this section, we introduce some of the most common concepts
of differential geometry, which we will use for our theoretical analyses in later
chapters.

3.2.1. Manifolds

An n-dimensional manifold M is a topological space that locally resembles n-
dimensional Euclidean space. Manifolds are described by coordinate charts assembled
into an atlas. A coordinate chart is a homeomorphism x from an open subset U ofM
to an open subset of Euclidean space Rn and an atlas is the collection {(Ui, xi) : i ∈ I}
of charts, which completely covers M.

Manifolds naturally arise as graphs of functions. For our purposes we consider
smooth Riemannian manifolds as these allow us to define differentiable functions
and measure notions like lengths, and angles of vector fields on the manifold.

Example: Surface of the earth. The surface of the earth is approximately a
sphere and thus a two dimensional manifold, embedded in three dimensional space.
When zooming in on a particular point on the earth, for example Berlin, we can use
a two dimensional plane as an accurate map of the area. Globally though, we end
up with large distortions when we try to map the entire surface of the earth to a
single planar map (see Figure 3.2).
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Chapter 3. Mathematical background

Fig. 3.2.: Projection of the surface of the earth (image source: [157]). Latitude and
longitude intersect at 90° angles on the globe (left) but are distorted when
projected to a plane (right).

Tangent space

We can assign a vector space, called the tangent space TpM, to each point p that lies
on the manifold (see Figure 3.5). The dimension of the tangent space TpM is the
same as that of the manifold itself. The tangent space to a manifold at a point p can
be thought of as the space of possible velocities τ ′(t) at point p for a particle moving
along all possible curves τ(t) on the manifold and passing through p. A coordinate
chart induces a basis in the tangent space and a change of chart is called a change of
coordinates.

Example: Tangent plane. For the 2D surface of a sphere embedded in R3 the
tangent space at a point p is the plane that touches the sphere at p and is perpendicular
to the sphere’s radius through p.

Cotangent space

The cotangent space, or dual space T ∗
pM of a manifold M at point p consists of

all linear forms α ∈ T ∗
pM that map a vector of the tangent space to a real number

α : TpM→ R. The dimension of the cotangent space is the same as the dimension
of the tangent space and the manifold itself.

The differential df of a function f :M→ R at point p is the linear map

dfp(τ
′(0)) = (f ◦ τ)′(0) , (3.26)

where τ : R→M is a curve on M with τ(0) = p. It is an element of the cotangent
space as it maps a vector τ ′(0) ∈ TpM from the tangent space to the derivative of f
along τ ′, which is in R (see also 3.20).

3.2.2. Riemannian metric

A manifold can be endowed with a structure called a Riemannian metric. The
Riemannian metric γ provides a way of measuring distances and angles on manifolds
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3.2. Differential geometry

as it defines lengths of vectors and angles between vectors in a basis independent
manner. It is a smoothly varying inner product on the tangent space TpM at each
point p ∈M that maps two elements u, v ∈ TpM to γp(u, v) ∈ R.

The metric tensor is an object that exists independent of any coordinate system,
but the components γij of the matrix representation of the metric tensor change
depending on the coordinate system. This matrix is a symmetric positive definite
matrix whose entries co-vary with changes to the coordinate system. This makes
the metric tensor a special bilinear form as γ(u, v) = γ(v, u) and γ(u, u) > 0 for all
nonzero vectors u.

The metric tensor is also sometimes called the first fundamental form I(u, v).

The length of a tangent vector u is given by

∥u∥ =
√

γ(u, u) (3.27)

and the angle θ between two tangent vectors u and v at p is given by

cos θ =
γ(u, v)

∥u∥ ∥v∥ . (3.28)

Example 1: Length of a vector in R2. We are used to calculating the length of a
vector v = [v1, v2]T = v1e1 + v2e2 as ∥v∥2 = (v1)2 + (v2)2 but this only works if v is
given in orthonormal coordinates ei. The vector v itself is invariant, so the length
will stay the same even if the vector is represented in another coordinate system (see
Figure 3.1). If we choose a different coordinate system in which we represent the
vector as vẽi = ṽ1ẽ1 + ṽ2ẽ2, we need the more general definition of the inner product
to compute the vector length ∥v∥.

∥v∥2 = ⟨v, v⟩ = (ṽ1ẽ1 + ṽ2ẽ2) · (ṽ1ẽ1 + ṽ2ẽ2)

= (ṽ1)2 (ẽ1 · ẽ1) + 2ṽ1ṽ2 (ẽ1 · ẽ2) + (ṽ2)2 (ẽ2 · ẽ2)

=
[
ṽ1 ṽ2

] [ẽ1 · ẽ1 ẽ2 · ẽ1
ẽ1 · ẽ2 ẽ2 · ẽ2

] [
ṽ1

ṽ2

]
=
[
v1 v2

] [e1 · e1 e2 · e1
e1 · e2 e2 · e2

] [
v1

v2

]
.

The matrix used for the matrix vector multiplication is the representation of the
metric tensor in the respective coordinate system, i.e.

γei =

[
e1 · e1 e2 · e1
e1 · e2 e2 · e2

]
and γẽi =

[
ẽ1 · ẽ1 ẽ2 · ẽ1
ẽ1 · ẽ2 ẽ2 · ẽ2

]
.

We can also use the metric to define a canonical isomorphism between TpM and its
dual space T ∗

pM. This implies that contraction with the metric γij and its inverse
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γij is used to raise and lower indices:

vi = γijv
j and vi = γijvj . (3.29)

3.2.3. Curves

A parametrized curve is a smooth map τ : [t1, t2] → M, that maps the scalar
parameter t to points p = τ(t) on a manifold M. The set of points are called a
geometric curve and define the image of the parametrized curve. One geometric
curve can have many different parametrizations. A parametrized curve is called
regular when its velocity τ ′(t) is never zero in [t1, t2].

One can calculate the arc length of the curve by integrating over the norm of its
velocity τ ′(t):

l =

∫ t1

t0

∥τ ′(u)∥ du . (3.30)

We can use the arc length to parametrize any regular curve. For this we define the
arc length function s : [t0, t1]→ [0, l] as

s(t) =

∫ t

t0

∥τ ′(u)∥ du. (3.31)

As s(t) is a monotonically increasing function the inverse t(s) exists and we can write
the arc length parametrization of our regular curve τ(t) as τ(s) = τ(t(s)). This is
useful since it is a particularly simple parametrization of the curve, since

∥τ ′(s)∥ = ∥τ ′(t(s))∥ |t′(s)| = ds

dt

∣∣∣∣dtds
∣∣∣∣ = ∣∣∣∣dsdt dtds

∣∣∣∣ = 1 .

A curve that is parametrized by arc length is then equivalent to a unit speed curve
τ(t) that starts at t = 0.

A geodesic is a parametrized curve with minimal arc length, i.e. the shortest possible
path on the manifold M that connects two points p1 = τ(t1) and p2 = τ(t2). It is
thus the generalization of a “straight line” to curved surfaces. Figure 3.3 shows two
examples of curves on a cone. The geodesic corresponds to a straight line when the
cone rolls on a plane.

If the length of the tangent vector dτ(η)
dη

of a geodesic τ(η) is constant (as measured
by the metric) along τ(η), the geodesic is affinely-parametrized. The parameter η is
affinely related to the arc length s = aη + b. Importantly, the notion of an affinely
parametrized geodesic is coordinate independent and can therefore itself be used to
construct coordinates on M (see Chapter 6).
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curve on cone geodesic on cone

Fig. 3.3.: Two curves on a cone. The geodesic curve maps out a straight line, when
the cone rolls on the plane.

Curvature of a plane curve

For a curve in a plane τ : [0, l]→ R2 parametrized by arc length, the velocity vector
τ ′(s) has unit length and is tangent to τ at p = τ(s). The curvature at p is given by
the derivative of the tangent vector

τ ′′(s) =
dτ ′

ds
(s) .

As the parametrization imposes unit speed, the change in velocity τ ′′(s) can only
occur perpendicular to the velocity τ ′(s). Therefore τ ′′(s) must be a multiple of the
normal n:

τ ′′(s) = κn(s).

The normal n(s) is usually chosen so that the pair (τ ′(s), n(s)) is oriented positively
in the plane. If κ is positive the curve bends towards n and if κ is negative the curve
bends away (see Figure 3.4). The magnitude of κ tells us how much the curve bends.

Fig. 3.4.: The circle of curvature at two points of an oriented plane curve τ . The
curvature κ is inversely proportional to the radius, so that κp1 = − 1

R1
and

κp2 = 1
R2

.
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There are two possible arc length parametrizations, i.e. we can just switch start and
end point and traverse the curve in the opposite direction. Reversing the orientation
of the curve then translates to flipping the sign of the curvature at each point.

3.2.4. Surfaces

To generalize the notion of curvature to 2D manifolds M in Euclidean space R3,
imagine a curve τ(s) on M, parametrized by arc length, with τ(0) = p. We can
then imagine slicing the surface with the plane spanned by the unit normal Np and
the unit tangent vector Tp = τ ′(0) at point p (see Figure 3.5). The set of the unit
tangent vectors of all possible curves through p spans a circle S1 and we can define a
function κ : S1 → R as

κ(Tp) = ⟨τ ′′(0), Np⟩ , (3.32)

where ⟨•, •⟩ is the usual inner product in R3. The maximum and minimum values,
κ1 and κ2, over the choice of curve of this function are called the principal curvatures
of the surface at point p. Their product κ1κ2 is the Gaussian curvature K, which
is invariant under isometries (see Theorema Egregium of Gauss). The respective
directions are called principal directions.

Fig. 3.5.: The normal section spanned by unit normal Np and unit tangent Tp = τ ′(s)
at point p is marked in green. The tangent plane TpM at p spanned by the
velocity vectors of all possible curves through p is depicted in red.

In general, we have different notions of curvature for parametrized curves on curved
surfaces. The normal curvature describes how the surface bends and the geodesic
curvature describes how the curve bends if projected onto the tangent plane (Sec-
tion 3.2.3). If we denote normal curvature as kn and the geodesic curvature as kg, we
can define the ambient curvature as k =

√
k2
g + k2

n. For a plane curve, the normal
curvature is zero and k = kg. For a geodesic on a curved surface, the geodesic
curvature is zero and k = kn.
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3.2. Differential geometry

Example 1: Relation of curvature to acceleration of a car. Imagine we are
driving a car with constant speed. When driving on a curvy road on a plane (k = kg)
one can still feel the acceleration although its component in direction of the velocity
is zero. If we are driving straight ahead, but the underlying terrain is very hilly
(k = kn) we can feel the acceleration perpendicular to the surface.

Example 2: Flat metric. If a Riemannian manifold has a zero curvature tensor
we call it a flat manifold and the corresponding metric a flat metric. Euclidean space
itself has a flat metric.

3.2.5. Shape operator/Weingarten map

The Weingarten map generalizes the notion of curvature to higher dimensions. For a
smooth n-surface M in Rn+1, we define the directional derivative along a tangent
vector Tp ∈ TpM by

Lp(Tp) = −DTpN(p) , (3.33)

where N is the unit normal vector field on M. Lp is a directional derivative of a
vector field and is called the Weingarten map of the surface M at p. It is a linear
map TpM→ TpM that projects an element of the tangent space at p to an element
of that same tangent space. As a geometric intuition one can think of a curve τ(t)
through p = τ (t0). The Weingarten map Lp(τ

′(t0)) then measures the rate of change
of the normal vector N when passing through p along the curve τ(t) with velocity
τ ′(t0). Measuring the turning of the normal, and thus the turning of the tangent
space, provides information about the shape of the surface M, which is why Lp is
also called the shape operator.

In general, the eigenvectors and eigenvalues of the shape operator at each point
determine the directions in which the surface bends at each point. The eigenvalues
are called the principal curvatures of the surface and the eigenvectors are the
corresponding principal directions. The Gaussian curvature is the product of the
principal curvatures K(p) =

∏n
i=1 λi = det(Lp).

3.2.6. Second fundamental form

If Tp is a unit vector, tangential to a smooth n-surface M in Rn+1, i.e. it is the
velocity τ ′(0) = Tp at p = τ(0) of a curve τ(s) parametrized by arc length, then we
can express the normal curvature κn(Tp) = ⟨Lp(Tp), Tp⟩ with respect to the shape
operator.

We can generalize this to express the second fundamental form

II(Xp, Yp) = ⟨Lp(Xp), Yp⟩Np = −
〈
DXpNp, Yp

〉
Np , (3.34)

39



Chapter 3. Mathematical background

which is bilinear and symmetric.

While the first fundamental form tells us how to calculate distances on the manifold,
the second fundamental form describes the intrinsic and extrinsic curvature of the
manifold when embedded into the ambient space. Together they uniquely describe
the surface in space.

3.2.7. Pushforward and pullback

Every differentiable map ϕ : M → N between manifolds induces a linear map
ϕ∗ : TpM→ Tϕ(p)N at point p between the tangent spaces of these manifolds. This
is called the pushforward or the differential of ϕ. So while ϕ maps points on M to
points on N the pushforward ϕ∗ maps tangent vectors on M to tangent vectors on
N (see Figure 3.6):

ϕ∗(τ
′(0)) = dϕp(τ

′(0)) = (ϕ ◦ τ)′(0) , (3.35)

where τ is a curve with τ(0) = p.

Fig. 3.6.: The map ϕ carries every point on the manifoldM to a point on the manifold
N . The pushforward ϕ∗ of ϕ carries vectors in the tangent space at every
point in M to a tangent space at every point in N .

The pullback of a function f : N → R by ϕ is a linear map given by

(ϕ∗f)(x) = f(ϕ(x)). (3.36)

While the pushforward ϕ∗ : TpM→ Tϕ(p)N is a mapping between tangent spaces,
the pullback ϕ∗ : T ∗

ϕ(p)N → T ∗
pM maps between cotangent spaces in the reverse

direction. Given a dual vector α ∈ T ∗
ϕ(P )N we can calculate the pullback of α by ϕ

as
(ϕ∗α)(Xp) = α(ϕ∗Xp) , (3.37)
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where Xp ∈ TpM .

Similarly we can pull a metric γ defined on N back ontoM by

(ϕ∗γ)(Xp, Yp) = γ(ϕ∗Xp, ϕ∗Yp) , (3.38)

where Xp, Yp ∈ TpM .

3.2.8. Diffeomorphism

A bijective function ϕ :M→N is called a diffeomorphism if it is differentiable and
has an inverse ϕ−1 : N →M which is differentiable as well (see Figure 3.7). The
existence of a diffeomorphism implies that the dimensions of M and N agree. A
manifold M is equipped with coordinate charts x :M→ Rn.

A change of coordinates is a diffeomorphism and therefore induces a change of basis
in the tangent space. If we denote coordinates in one basis as xµ and in the other as
xα, the components of a vector v ∈ TpM transform as

vα =
∂ϕα

∂xµ
vµ (3.39)

under the diffeomorphism ϕ.

The components of the metric tensor γµν transform under the diffeomorphism ϕ as

γαβ =
∂ϕµ

∂xα

∂ϕν

∂xβ
γµν . (3.40)

Fig. 3.7.: The image of a diffeomorphism of a rectangular grid from the square onto
itself.
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Example Let us consider a one dimensional manifold given in polar coordinates by
the curve

τ(t) =

[
1
t

]
,

where t ∈ [0, 2π). This curve maps out the unit circle in Cartesian coordinates. The
tangent vector τ ′(t) = [0, 1]T in polar coordinates is constant. We can define a change
from polar to Cartesian coordinates as the diffeomorphism

ϕ(r, φ) =

[
r cos(φ)
r sin(φ)

]
,

with the Jacobian matrix

Jϕ(r, φ) =

[
∂ϕ1

∂r
∂ϕ1

∂φ
∂ϕ2

∂r
∂ϕ2

∂φ

]
=

[
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

]
.

We can then push the tangent vector τ ′(t) at point p = τ (t) forward to the respective
tangent vector Tϕ(p) in Cartesian coordinates at point q = ϕ(p) by

Tϕ(p) = Jϕ(p)τ
′(t) =

[
−r sin(φ)
r cos(φ)

]
(p) .

For an example point at t = π
4

consider the resulting numerical values:

p = τ(t) =

[
1
π
4

]
τ ′(t) =

[
0
1

]
q = ϕ(p) =

[
cos(π

4
)

sin(π
4
)

]
Tq = Jϕ(p)τ

′(t) =

[
− sin(π

4
)

cos(π
4
)

]
=

[
− 1√

2
1√
2

]
.
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4. Manipulating explanations

In this chapter we analyse the robustness of attribution methods. We propose
an algorithm which allows us to manipulate an image with hardly perceptible
perturbations such that the prediction is unchanged but the explanation map matches
an arbitrary target map. The approach works analogous to conventional adversarial
attacks that add imperceptible perturbations to an image which cause a drastic
change in the prediction of a neural network. The crucial difference is that we aim
to change the explanation of the image while keeping the prediction at its original
value. Figure 4.1 shows an image and a manipulated version of the same image. The
two pictures look identical but have drastically different explanation maps shown
below the respective images.

original image manipulated image

Fig. 4.1.: Original image with corresponding explanation map on the left. Manipulated
image with its explanation on the right. The chosen target explanation was
an image with a text stating “this explanation was manipulated”.

We demonstrate the effectiveness of these adversarial attacks on six different expla-
nation methods, covering propagation-based as well as gradient-based explanations,
and on four network architectures as well as two data sets.

Untrustworthy explanations are evidently problematic for various reasons. For a large
number of applications, one is interested in the prediction as well as in the explanation
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of a phenomenon. Examples include medical and natural science applications. As
some explanations are susceptible even to random input perturbations, it seems
questionable if much insight can be derived from inspecting such explanations. In
a setting where explanations are legally required [31], explanation manipulability
obviously raises serious concerns as they cannot be considered trustworthy evidence.
An example for this is credit risk assessment: The supplier can obfuscate that
a decision was made based on racist, sexist or other discriminating features by
manipulating the model [158]. Similarly, attacks from the user side are possible by
manipulating the input as they can create the impression that the decision was based
on unaccepted features and thus subvert the result.

Motivated by this unexpected susceptibility to manipulation, we provide a theoretical
analysis that establishes a relation of this phenomenon to the geometry of the neural
network’s output manifold. More specifically, we derive a bound proportional to two
differential geometric quantities: the principal curvatures and the geodesic distance
between the original input and its manipulated counterpart. This implies a constraint
on the maximal change of the explanation map due to small perturbations. Based on
these theoretical results we propose a modification applicable to all of the previously
investigated explanation method, which reduces susceptibility to manipulation.

4.1. Method

We manipulate an image xadv = x + δx so that the explanation map of a given
explanation method resembles a specified target map ht ∈ RN . We want the
manipulated image to have the following characteristics:

1. The output of the network stays approximately constant, i.e. f(xadv) ≈ f(x).

2. The explanation is close to the target map, i.e. h(xadv) ≈ ht.

3. The norm of the perturbation δx added to the input image is small, i.e.
∥δx∥ = ∥xadv − x∥ ≪ 1 and therefore not perceptible.

Such manipulations can be obtained by minimizing the loss function

L =
∥∥h(xadv)− ht

∥∥2 + α ∥f(xadv)− f(x)∥2 , (4.1)

with respect to xadv using gradient descent. We clip xadv after each iteration to
the valid range of pixel values for an image. The first term in the loss function
(4.1) ensures that the manipulated explanation map closely reproduces the target
explanation and the second term encourages the network to have the same output as
the original input. The relative weighting of these two terms is controlled by the
hyperparameter α ∈ R+.

To apply our method, we need to determine the derivative of the loss function
which includes the gradient of the explanation ∇h(x) with respect to the input. For
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ReLU-networks, this gradient usually depends on the vanishing second derivative
of the non-linearities which leads to problems during optimization. As an example,
consider the gradient method which leads to

∂xadv

∥∥h(xadv)− ht
∥∥2 ∝ ∂h

∂xadv
=

∂2f

∂x2
adv
∝ ReLU′′ = 0 .

We therefore replace the ReLU-functions with softplus non-linearities

softplusβ(x) =
1

β
log(1 + eβx) . (4.2)

For large β values, the softplus reproduces the output of the ReLU accurately (see
Figure 4.2) but has a well-defined second derivative. After optimization is complete,
we test the manipulated image with the original ReLU network.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

0.0

0.5

1.0

1.5

y

ReLU

Softplus β = 1

Softplus β = 10

Fig. 4.2.: The ReLU activation can be approximated by the softplus activation with
large β value.

4.2. Experiments

In this section we evaluate experimentally to which extend explanation methods
can be manipulated using the approach described in the previous section. We
demonstrate that many popular explanation methods are affected, including Gra-
dient, Gradient×Input, Integrated Gradients, Guided Backpropagation, Layer-wise
Relevance Propagation and Pattern Attribution. These explanation methods span
two sub-categories of attribution methods, namely gradient-based explanations and
propagation-based explanations. We refer to Section 2.1.2 for more detailed informa-
tion on each of these methods.

We apply our algorithm from Section 4.1 to 100 randomly selected images for each
explanation method. For each run, we select two images from the test set. One image
serves to generate the target explanation map ht. The other image is perturbed by
our algorithm with the goal of replicating the target ht using a few hundred iterations
of gradient descent. We sum over the absolute values of the colour channels of the
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explanation map to get the relevance per pixel. For a detailed description of the
hyperparameters, see Appendix A.

For an example we refer to Figure 4.3 where we apply our method to an image of
a dog while the target explanation is based on a cat image. For all explanation
methods, the target map is closely reproduced and the perturbation of the dog image
is small.

Original Map

Gradient

Gradient

x

Input

Target Map Manipulated Map Perturbed Image Perturbations

Original Image

Image used to

produce target map

LRP

IntGrad

GBP

PA

Fig. 4.3.: The explanation map of the cat is used as the target and the image of the
dog is perturbed. The first column corresponds to the original explanations
of the unperturbed dog image. The target map, shown in the second column,
is the corresponding explanation of the cat image. The red box contains the
manipulated images and the corresponding explanations. The last column
visualizes the perturbations.
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4.2.1. VGG

We perform our main experiments using a pre-trained VGG16 network [159] and
images from the ImageNet data set.
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Fig. 4.4.: Left: Similarity measures between target ht and manipulated explanation
map h(xadv). Right: Similarity measures between original image x and
perturbed image xadv. For SSIM and PCC large values indicate high
similarity while for MSE small values correspond to similar images. For
fair comparison, we use the same 100 randomly selected images for each
explanation method. Boxes denote 25th and 75th percentiles, whiskers
denote 10th and 90th percentiles, and solid lines show the medians.

Figure 4.3 illustrates qualitatively how our method works for different explanation
methods on one example image. For a quantitative assessment, Figure 4.4 summarizes
statistics for all 100 runs of our method using three different similarity metrics, namely
the mean squared error (MSE), the structural similarity index measure (SSIM), and
the Pearson correlation coefficient (PCC) (see Section 2.3 for an introduction to these
similarity metrics). We show the similarity measures between the target ht and the
manipulated explanation map h(xadv) as well as between the original image x and
perturbed image xadv. All considered metrics show that the perturbed images have
an explanation closely resembling the target explanations. At the same time, the
perturbed images are very similar to the corresponding original images. In addition,
the output of the neural network is approximately unchanged by the perturbations,
i.e. the classification of all examples is unchanged and the median of ∥f(xadv)− f(x)∥
is of the order of magnitude 10−3 for all explanation methods. We also verified
by visual inspection that the target map is closely reproduced while the image is
minimally perturbed. We have uploaded the results of all runs so that interested
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Chapter 4. Manipulating explanations

readers can assess their similarity themselves1 and published our code2 to reproduce
them.

4.2.2. Additional architectures and data sets

Manipulable explanations are not only a property of the VGG16 network. In this
section, we show that our algorithm to manipulate explanations can also be applied
to other architectures and data sets.

For the experiments, we optimize the same loss function (4.1) as before. We analyse
the explanation’s susceptibility to manipulations for the pre-trained ResNet [9],
AlexNet [160] and DenseNet [161] architectures and observe that our approach
generalizes well. Figure 4.5 shows how the Gradient explanation is manipulated for
the different network architectures.

Original Image

Image used to

produce target map

VGG

Original Map Target Map Manipulated Map Perturbed Image Perturbations

ResNet

AlexNet

DenseNet

Fig. 4.5.: Manipulating the Gradient explanation maps of different network architec-
tures.

Our method is also applicable to other data sets. To show this we trained the
adapted VGG16 architecture on the CIFAR10 data set, reaching a test accuracy of
approximately 92%. We then use our algorithm to manipulate the explanations for
the LRP method. Just as for conventional adversarial attacks, perturbations become

1https://drive.google.com/drive/folders/1TZeWngoevHRuIw6gb5CZDIRrc7EWf5yb?usp=
sharing

2https://github.com/pankessel/adv_explanation_ref
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4.2. Experiments

more visible when the input dimension is smaller. This can be seen for two examples
in Figure 4.6.

Target Image Perturbations

Target Map Original Map Manipulated Map Diff Maps

Image Perturbed Image Target Image Perturbations

Target Map Original Map Manipulated Map Diff Maps

Image Perturbed Image

Fig. 4.6.: Manipulating the LRP explanation maps of a network trained on CIFAR10.
Compared to higher dimensional (ImageNet) images, the perturbations are
more visible. This is analogous to conventional adversarial attacks on low
dimensional data.

4.2.3. Transferability

It is well-known that conventional adversarial examples (which aim to change the
classification) can generalize across a wide variety of network architectures [162].
Adversarial examples which change the explanation map can generalize in two ways:
firstly with respect to different explanation methods and secondly with respect to a
change of the architecture of the network.

Transferability between methods In this section, we consider the following setup:
we use the adversarial examples generated for the analysis of Section 4.2.1. We
denote an adversarial example for a given method m by

xm
adv m ∈ {Gradient, Gradient×Input, IntGrad,...}. (4.3)

We then calculate the explanation map of the manipulated image xm
adv with respect

to another method, i.e. hm′
(xm

adv) with m′ ̸= m. We then analyse the correlation of
this map with the target ht = hm′

(xt), where xt denotes the image used to generate
the target map. If this correlation is high, it implies that adversarial examples of
method m generalize to method m′.

Figure 4.7 (top) shows the results of the 100 runs using LRP to generate the
adversarial examples, i.e. m = LRP. For GBP and PA, we observe a pronounced
correlation between the manipulated map h(xadv) and the target explanation map ht,
while the correlation with the original explanation map is small. This implies that the
adversarial images of LRP generalize to GBP and PA. For Gradient, Gradient×Input
and Integrated Gradients this is not the case. We see a decrease of the correlation
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Chapter 4. Manipulating explanations

with the original explanation and the correlation with the target explanation map
stays small. This may be due to the fact that the target explanation maps for these
methods differ substantially from the LRP target explanation map and that these
methods are gradient-based as opposed to propagation-based.

Figure 4.7 (bottom) shows the results for the 100 runs using the Gradient method to
generate the adversarial image. For the method Gradient×Input, a small correlation
with the target explanation map is visible, which points to the close relation of these
two explanation methods as well as to the similarity between their explanation maps.
Correlations for the other explanation methods are substantially lower. This suggest
that while Gradient generalizes to Input×Gradient, it does not seem to generalize to
the other methods.

These experiments may suggest a possible defence mechanism against adversarial
attacks on the explanation, namely to combine gradient-based and propagation-based
explanation methods to obtain more robust explanation maps (see also [163]).
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Grad x Input

Grad x Input
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Fig. 4.7.: The adversarial images xadv generated by using LRP (top) and Gradient
(bottom) are used to calculate the explanation maps of all other methods.
We show the correlations of the explanation map of the manipulated image
h(xadv) with the original explanation map h(x) and with the target expla-
nation map ht for all explanation methods respectively.

Transferability between architectures We again consider the adversarial examples
generated for the analysis of Section 4.2.1 using a VGG16 network and assess how
well they generalize to the AlexNet architecture with pre-trained weights [160].
The explanation maps for VGG16 and AlexNet for a given unperturbed image
look fairly similar, especially for propagation-based methods. However, Figure 4.8
shows no significant correlation between the explanation map when using AlexNet
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in combination with xadv (generated with VGG) and the target ht for any of the
examined methods. This indicates that the adversarial examples calculated with
VGG16 do not generalize well to AlexNet. This is despite the fact that AlexNet and
VGG16 architectures are relatively similar and the predictions for the manipulated
images stay close to those for the original images.
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Fig. 4.8.: The adversarial images xadv of all methods generated with VGG16 are used
to calculate the explanation maps on AlexNet for the respective methods.
We show the correlations of the explanation map of the manipulated image
h(xadv) with the original explanation map h(x) and with the target expla-
nation map ht for all explanation methods respectively.

4.3. Theoretical considerations

In this section, we analyse the vulnerability of explanations theoretically. We argue
that the susceptibility to manipulation can be related to the large curvature of the
output manifold of the neural network. We start with an intuitive discussion of the
gradient method, before developing mathematically precise statements.

We have demonstrated that one can drastically modify the explanation map while
keeping the output of the neural network constant, adding only a small perturbation
δx to the input, i.e.

f(x+ δx) = f(x) = c . (4.4)

The perturbed image xadv = x + δx therefore lies on the hypersurface of constant
network output S = {p ∈ RN |f(p) = c}3. As the Gradient method (and, usually,
attribution methods in general) only depends on the winning class output, we
can exclusively consider this component of the output, i.e. f(x) := f(x)k with
k = argmaxi f(x)i. Therefore, the hypersurface S is of co-dimension one. The
gradient ∇f for every p ∈ S is normal to this hypersurface, since it is the direction
of steepest ascent. The fact that the normal vector ∇f can be drastically changed by
slightly perturbing the input along the hypersurface S suggests that the curvature of
S is large.

3It is sufficient to consider the hypersurface S in a neighbourhood of the original input x.
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Chapter 4. Manipulating explanations

While the above statement sounds intuitive, it requires non-trivial concepts of
differential geometry to make it precise, in particular the notion of the second
fundamental form (see Section 3.2.6). To this end, it is advantageous to consider a
normalized version of the gradient method

n(x) =
∇f(x)
∥∇f(x)∥ . (4.5)

This normalization does not change the relative importance of any pixel with respect
to the others and is thus merely conventional. For any point p ∈ S, we define
the tangent space TpS as the vector space spanned by the tangent vectors τ ′(0) =
d
dt
τ(t)|t=0 of all possible curves τ : R→ S with τ(0) = p. For u, v ∈ TpS, we denote

their inner product by ⟨u, v⟩. For any u ∈ TpS, the directional derivative of a function
f is uniquely defined for any choice of τ by

Duf(p) =
d

dt
f(τ(t))

∣∣∣∣
t=0

with τ(0) = p and τ ′(0) = u. (4.6)

We then define the Weingarten map as4

L :

{
TpS → TpS

u 7→ −Dun(p) ,

where the unit normal n(p) can be written as (4.5). This map quantifies how much
the unit normal changes as we infinitesimally move away from p in the direction u.
The second fundamental form is then given by

L :

{
TpS × TpS → R
u, v 7→ −⟨v, L(u)⟩ = ⟨v,Dun(p)⟩ .

It can be shown that the second fundamental form is bilinear and symmetric L(u, v) =
L(v, u). It is therefore diagonalizable with real eigenvalues λ1, . . . λd−1 which are
called principal curvatures.

We have thus established the remarkable fact that the sensitivity of the gradient map
(4.5) is described by the principal curvatures, a key concept of differential geometry.

This observation allows us to derive an upper bound on the maximal change of the
gradient map h(x) = n(x) as we move slightly on S. To this end, we define the
geodesic distance dg(p, q) of two points p, q ∈ S as the length of the shortest curve
on S connecting p and q. In the supplement A.1, we prove the following theorem:

Theorem 1. Let f : RN → R be a network with softplusβ non-linearities and
Uϵ(p) = {x ∈ RN ; ∥x− p∥ < ϵ} an environment of a point p ∈ S such that Uϵ(p) ∩ S

4The fact that Dun(p) ∈ TpS follows by taking the directional derivative with respect to u on
both sides of ⟨n, n⟩ = 1 .
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is fully connected. Let f have bounded derivatives ∥∇f(x)∥ ≥ c for all x ∈ Uϵ(p)∩ S.
It then follows for all p0 ∈ Uϵ(p) ∩ S that

∥h(p)− h(p0)∥ ≤ |λmax| dg(p, p0) ≤ β C dg(p, p0), (4.7)

where λmax is the principal curvature with the largest absolute value for any point in
Uϵ(p) ∩ S and the constant C > 0 depends on the weights of the neural network.

This theorem can intuitively be motivated as follows: for ReLU non-linearities, the
lines of equal network output are piece-wise linear and therefore have kinks, i.e.
points of divergent curvature. These ReLU non-linearities are well approximated by
softplus non-linearities (4.2) with large β. Reducing β smooths out the kinks and
therefore leads to reduced maximal curvature, i.e. |λmax| ≤ β C. For each point on
the geodesic curve connecting p and p0, the normal can at worst be affected by the
maximal curvature, i.e. the change in explanation is bounded by |λmax| dg(p, p0).
There are two important lessons to be learned from this theorem: Firstly, the geodesic
distance can be substantially greater than the Euclidean distance for curved manifolds
(see Figure 4.9). In this case, inputs which are very similar to each other, i.e. the
Euclidean distance is small between the original and the adversarially perturbed
input, can have explanations that are drastically different. Secondly, the upper
bound is proportional to the β parameter of the softplus non-linearity. Therefore, all
else equal, smaller values of β provably result in increased robustness with respect to
manipulations.

euclidean distance
geodesic distance

Fig. 4.9.: Two points p1 and p2 on a manifold S can have a large (geodesic) distance
along the manifold even if the Euclidean distance is small. The normal
vectors n, and thus the corresponding (Gradient) explanations at the points,
can be drastically different.

4.4. Smoothing explanations

After showing to what extend different explanation methods are susceptible to
adversarial perturbations experimantally, and analysing the problem of manipulability
of explanation methods theoretically, we are now interested in finding ways to mitigate
this behavior.
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Based on our theoretical analysis in the previous section, we propose a modification
that can be applied to any of the considered explanation methods, and results in
increased robustness against adversarial attacks on the explanation.

unsmoothed         smoothedUsing the fact that the upper bound (4.7) is pro-
portional to the β parameter of the softplus non-
linearities, we propose β-smoothing. This method
calculates an explanation using a network for which
the ReLU non-linearities are replaced by softplus ac-
tivations with a small β parameter to smooth the
principal curvatures (see figure on the right for an
intuition). The precise value of β is a hyperparameter
of the method, but we find that a value around β = 1
works well in practice.
We emphasize that we use the substituted activation functions only for the explanation
process. The prediction and therefore the winning class for which we calculate the
explanation is determined using the original ReLU network.

There exist a relationship between our proposed β-smoothing and the Smooth-
Grad [28] explanation method.

Theorem 2. For a one-layer neural network f(x) = ReLU(wTx) and its β-smoothed
counterpart fβ(x) = softplusβ(wTx), it holds that

Eϵ∼pβ [∇f(x+ ϵ)] = ∇f β
∥w∥

(x) , (4.8)

where pβ(ϵ) =
β

(eβϵ/2+e−βϵ/2)2
.

Since pβ(x) closely resembles a normal distribution with variance σ = log(2)
√
2π
β

,
β-smoothing can be understood as the N →∞ limit of SmoothGrad. We provide
the full proof of the above theorem in Appendix A.1.2. We emphasize that this
theorem only holds for a one-layer neural network, but for deeper networks we
empirically observe that both explanation methods, SmoothGrad and β-smoothing,
lead to visually similar maps as they are considerably less noisy than the Gradient
explanation. The theorem therefore suggests that SmoothGrad can similarly be used
to smooth the curvatures and can thereby make explanations more robust.

4.4.1. Experiments

We can use β-smoothing in several different scenarios. If an attacker manipulated
the image in order to evoke a specific explanation, β-smoothing allows us to recover
the original explanation map by substituting the ReLU activations with softplus
and decreasing the value of the β parameter. Figure 4.10 demonstrates this for the
explanation methods Gradient and LRP on one example. In Figure 4.11, we see
that this also holds when evaluated quantitatively: with decreasing β value the PCC
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between the target map and the explanation of the manipulated image (shown in
red) shrinks while the PCC between the original map and the explanation map of
the manipulated image (shown in green) increases. For LRP, the PCC between
original and manipulated explanation approaches one for small β values, since the
β-smoothed LRP explanations are very similar to the original LRP explanations.
For the Gradient explanation we do not reach a PCC of one as the β-smoothed map
is less noisy than the original Gradient map we compare it with (see Figure 4.10 for
an intuition).

We stress that this works for all considered methods. We also note that the same
effect can be observed using SmoothGrad by successively increasing the standard
deviation σ of the noise distribution (see Figure A.6). This further underlines the
similarity between the two smoothing methods.
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Fig. 4.10.: Network input and the respective explanation maps as β is decreased for
Gradient (center) and LRP (right).
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Fig. 4.11.: β dependence for the correlations of the manipulated explanation (here
Gradient and LRP) with the target and original explanation. For small β
values the similarity between h(xadv) and h(x) is recovered. Lines denote
the medians, 10th and 90th percentiles are shown in semitransparent color.

If an attacker knew that smoothing was used to undo the manipulation, they could
try to attack the smoothed method directly. However, both β-smoothing and Smooth-
Grad are substantially more robust than their non-smoothed counterparts as they do
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not suffer from drastically varying Gradients when moving along the hypersurface
of constant network output. We confirm this by running adversarial attacks on the
β-smoothed and SmoothGrad explanations for 100 images each. Figure 4.12 shows
that the correlation between the manipulated β-smoothed explanations and the
target maps is on average much lower than the correlation between the unsmoothed
Gradient explanation and the respective target maps. For SmoothGrad we observe
similar or slightly higher correlation between manipulated and target map showing
that both smoothing methods offer similar protection against adversarial attacks on
the explanation.

It is important to note that β-smoothing achieves this at considerably lower compu-
tational cost: β-smoothing only requires a single forward and backward pass, while
SmoothGrad requires as many as the number of noise samples (typically between 10
and 50).
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Fig. 4.12.: Left: markers are clearly left of the diagonal, i.e. explanations are more
robust to manipulations when β-smoothing is used. Center: SmoothGrad
has comparable results to β-smoothing, i.e. markers are distributed around
the diagonal. Right: β-smoothing has significantly lower computational
cost than SmoothGrad.

We can further analyse the performance of Gradient, β-smoothed Gradient, and
SmoothGrad by using the pixel flipping metric [26,164]. This framework progressively
removes information from the image by replacing the RGB pixel value with a
predefined value (we use zero). The order, in which pixel values are replaced, is
defined by the explanation map, so that the most relevant pixels are replaced first.

Figure 4.13 demonstrates that β-smoothing leads to better performance than the
Gradient method and to comparable performance with SmoothGrad on the pixel-
flipping metric [26, 164]. This suggests that β-smoothing is not only more robust
against adversarial attacks but also more reliable at highlighting features that are
truly relevant for the prediction.
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Fig. 4.13.: Pixel flipping performance compared to random baseline (the lower the
accuracy the better the explanation): the metric sorts pixels of images
by relevance and incrementally sets the pixels to zero starting with the
most relevant. In each step, the network’s performance is evaluated on
the complete ImageNet test set.

4.5. Related work

The concept of manipulating inputs to neural networks in a targeted way was first
introduced to alter a neural networks prediction [36, 162, 165]. These so called
adversarial attacks focus on altering the networks prediction adding imperceptible
perturbations to the image. While conventional adversarial attacks require computa-
tion of the gradient of the prediction with respect to the input, that same gradient
can itself be considered as an explanation for the network prediction [23,24]. In order
to manipulate a gradient-based explanation map, one thus needs to compute second
derivatives. Together with the fact that the input and thus the explanation have
generally much higher dimension than the network prediction makes our findings a
non-trivial extension to conventional adversarial attacks.

With rising popularity of explanation methods, research on their properties has also
emerged. In the remainder of this section we give an overview of works that have
investigated the robustness against manipulation of such methods.

In [17], Ghorbani et al. demonstrate that explanation maps can be sensitive to small
perturbations in the image which lead to an unstructured change in the explanation
map. They compare several different approaches, which all rely on perturbing the
input to a neural network and measuring the resulting change in explanation: adding
random perturbations serves as baseline, the top-k attack decreases the importance
of the k most relevant features, the mass-center attack aims to move the center of
relevance as far away from the original center as possible, and the targeted attack
maximizes the relevance in a predefined region.

Our method optimizes a much more specific objective, namely to accurately reproduce
a target map on a pixel-by-pixel basis. Compared to our method, Ghorbani et al. can
thus be considered as evoking unstructured changes in the explanation. Furthermore,
their attacks only keep the classification result the same which often leads to significant
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changes in the network output (see [17], Figure 1). It is therefore not clear from their
analysis whether the explanation or the network is vulnerable (and the explanation
map simply reflects the relevance of the perturbation faithfully). Our method on the
other hand keeps the output of the network (approximately) constant, which we also
use as a basis for our theoretical analysis in terms of differential geometry.

Zhang et al. [166] take a very similar approach to that of Ghorbani et al. In contrast to
our approach their attack aims to manipulate the prediction as well as the attribution
map for an example input. More specifically, in all their examples the explanation
is kept constant although the prediction changes. It is thus not clear from their
analysis if the explanation can be changed arbitrarily.

Subramanya et al. [167] use an adversarial patch (analogous to many conventional
adversarial attacks) to fool the classifier and the explanation method. The approach
is different to Zhang et al. and Ghorbani et al. since in this case the region of
the adversarial patch is solely responsible for the misclassification, which is also
apparent in the explanation when using conventional attacks. Their modification then
tricks the explanation into highlighting areas of the input apart from the adversarial
patch, and thus clearly not relevant for the prediction. In contrast to our work, the
patches make the manipulated images very clearly identifiable and the attack on
the prediction is again mixed with the attack on the explanation, blending the two
effects.

Yeh et al. [168] analyse fidelity and sensitivity of explanations pointing out that a
good explanation should accurately capture to which degree the prediction changes
in response to significant perturbations (fidelity) but not be overly sensitive to
small perturbations that do not change the prediction. Unlike our work, their
added perturbations are not adversarial, as in they are not targeted to change the
explanation in a specific way.

Other approaches modify the network’s parameters to produce a change in the
explanation. In [18], explanation maps are changed by randomization of (some of)
the network weights and in [169] the complete network is fine-tuned to produce
manipulated explanations while the accuracy remains high. Another approach [158]
finds alternative weights that provably keep the predictions constant on any input
data, but drastically alter the explanation. Kindermans et al. [127] manipulate input
and network parameters by adding a constant shift to the input image, which is
then eliminated by changing the bias of the first layer. For some methods, this leads
to a change in the explanation map. Many other works [170–172] research how to
manipulate an explanation by modifying the model parameters in a similar way.
These findings are concerning in a setting where biased models might be deployed
and we hope to use explainability to uncover these biases, since such biases can be
hidden and thus go undetected in the explanation [173].

These approaches are different from our method as they do not aim to change the
explanation to a specific target explanation map but instead modify the parameters
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of the network, effecting all explanations.

Susceptibility of explanations to manipulation is not only a problem in the setting of
image classification but has also been shown to be problematic in domains such as
natural language processing [174,175] and deep reinforcement learning [176].

Some explanations [28, 65] rely on input perturbation to create the explanation map
and are thus naturally more robust to input manipulation [177].

A few works [178,179] do not directly improve robustness of explanations but aim to
model uncertainty in explanations to enable the user to make informed decisions on
the trustworthiness.

Methods to counteract attacks on the explanations have been proposed in various
works [37, 38, 158, 163]. Within this thesis we investigate two approaches towards
better robustness of explanations: one based on the explanation process in Section 4.4
and another based on robust training of neural networks in Chapter 5.

4.6. Limitations

Attacks on the explanation have larger limitations than conventional adversarial
attacks, mostly due to the much higher dimensional target domain.

Generalization As discussed in Section 4.2.3, our manipulated images do not
generalize well between architectures or explanation methods. We suspect that this
is due to the more complex task of altering the complete explanation which has the
same dimension as the input and is thus typically much higher dimensional than the
output vector. Explanation maps for different explanation methods also significantly
diverge, in contrast to targets for a conventional adversarial attack, which renders
generalization difficult. The lack of generalization can be used to defend against
adversarial attacks on the explanation for example by averaging explanations over
several network architectures or explanation methods [163]. Although we do not test
this explicitly, we expect that the poor generalization of the manipulated images also
makes the success of a black box attack, i.e. where one does not have access to the
model and cannot directly compute the gradient, less likely.

Three channel explanations We test our manipulation method on three channel
explanations and found those much harder to manipulate. For three channel attacks
on gradient based explanations we end up with explanations that do not closely
reproduce the target map. For propagation based methods we got mixed results:
for LRP and Pattern Attribution the explanation maps are accurately reproduced
while for GBP we observe stronger perturbations in the manipulated image. We
show some examples in the appendix, Figure A.4. As explanations are usually used
for visual inspection, structural similarity (which can be achieved with attacks on
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the sum over absolute channel values) seems more relevant than the reproduction of
exact color channel values. Therefore the reduced potency of our method for three
channel explanations does not significantly reduce its relevance.

Robustness of the manipulated explanation In Section 4.4.1 we show how the
original explanation can be recovered using β-smoothing, and in Appendix A.4 we
show the same for SmoothGrad. While these two methods work exceptionally well for
the recovery of the original explanation, the manipulated explanation map is in general
not very robust, meaning any additional perturbation applied to the manipulated
image can lead to (partial) recovery of the original explanation. Therefore, we expect
approaches analogous to defenses against conventional adversarial attacks to be a
lot more effective when defending against an attack on the explanation. Again, we
suspect this is due to the much higher dimensional target domain requiring more
complex structured adversarial perturbations.

Evaluation of β-smoothed explanations We evaluate our proposed explanation,
on the one hand, by pointing out the similarity (and in the case of one-layer neural
networks the equivalence) to the broadly accepted SmoothGrad explanation and, on
the other hand, using the pixel flipping metric. The latter is widely used but comes
with a few drawbacks. For example, one can replace pixels with other values than
zero (for example averages) which might lead to different curves for the accuracy.
Another problem is that images with large areas of replaced pixels are not part
of the data distribution the network was originally trained on. The behavior of
the network on these out of distribution data might therefore be very different. A
related method [180] thus proposes retraining the network on the modified images.
We abstain from evaluating our explanations with this method due to the high
computational cost.

Limitations of our theoretical results Our theoretical analysis focuses on the
Gradient explanation, i.e. we derive our upper bound (4.7) for h(x) = ∇f(x). We do
not explicitly derive upper bounds on the change in explanation for other explanation
methods. We expect that our derived counter measure, β-smoothing, has positive
effects on the robustness of all considered explanations, since they depend on the
gradient. However, we only experimentally verify these assumptions. Furthermore,
we establish the relation between β-smoothing and SmoothGrad only for one-layer
networks.

4.7. Summary

Explanation methods have recently become increasingly popular among practition-
ers. In this chapter, we showed that dedicated imperceptible manipulations of the
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input data can yield arbitrary and drastic changes in the explanation map. We
demonstrated both qualitatively and quantitatively that explanation maps of many
popular explanation methods can be arbitrarily manipulated like this. Crucially, this
can be achieved while keeping the model’s output (approximately) constant. Not
being able to trust an explanation is problematic if we hope to gain insights into the
decision-making processes of deep neural networks by studying these explanations.

Our theoretical analysis revealed that the large curvature of the network’s decision
function is one important culprit for this unexpected vulnerability. Using this
theoretical insight, we can profoundly increase the resilience to manipulations by
smoothing only the explanation process while leaving the prediction process of
the model itself unchanged. To this end, we introduce β-smoothing, for which we
substitute the ReLU activations with softplus units with a small β value to calculate
the explanation map. We establish a connection to the well-known SmoothGrad
explanation theoretically and confirm the similarities experimentally. The resulting
β-smoothed explanations deliver smoother explanation maps and are more robust
against adversarial attacks.
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explanations

In the previous chapter we discussed the unexpected susceptibility of explanations
to adversarial attacks. We showed that by adding imperceptible perturbations
to the input the explanation maps of many popular explanation methods can be
arbitrarily manipulated. We analysed this phenomenon theoretically and proposed a
modification to the explanation process to mitigate the effects.

In this chapter, our focus lies on exploring how to make neural network models
themselves more robust against explanation manipulation. More specifically, we
analyse the difference between the original and the manipulated explanation maps
theoretically and provide a unified framework which allows us to derive bounds on
the maximal change in explanation map. Based on these theoretical insights, we
derive several techniques to make neural networks more resilient against attacks on
the explanation: We regularize during training using weight decay, we train with
smoothed activation functions and we minimize the Hessian norm of the network
with respect to the input during the training process.

All these methods reduce the curvature of the output manifold in different ways.
This leads to more stable gradients when moving along the output manifold. As
most explanation methods rely on the gradient for the explanation map, this effects
their robustness to input perturbation positively.

We emphasize that our robustness enhancing interventions lead to increased robust-
ness for all explanation methods.

We demonstrate the effectiveness of our proposed methods experimentally for several
different explanation methods and network architectures on the CIFAR10 and on
the ImageNette data set. Our main experiments focus on the gradient explanation
and random input perturbations to minimize secondary effects of hyperparameters,
which can appear for targeted adversarial attacks. However, we also show that our
methods lead to increased robustness against adversarial attacks on the explanation.

Figure 5.1 provides an intuition for why explanations are susceptible to manipulation
and how our methods lead to more robust explanations.
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Fig. 5.1.: Intuition and results for our approach. a) The gradient (red arrows) changes
drastically when moving along a line with high curvature but changes only
gradually when the curvature is low. b) We propose several techniques that
reduce curvature when incorporated in the training procedure. Weight decay
flattens the angles between piecewise linear functions, softplus smooths out
the kinks of the ReLU function, Hessian minimization reduces curvature
locally at the data points. c) For the vanilla net the gradient explana-
tion maps differ strongly. For networks trained with a combination of
our proposed methods the explanation maps become robust to the input
perturbations. d) A quantitative analysis on the complete test set confirms
our theoretical findings. The similarity between original explanation and
explanation of a perturbed input is significantly higher for networks trained
with our methods. We show results for three different noise levels ν.
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5.1. Theoretical considerations

In the previous chapter we derived an upper bound on the change in explanation
map (4.7) that depends on the maximal principal curvature and the geodesic distance
between the original and the manipulated input. In this section, we derive three
efficient ways to make neural networks more robust, namely by applying weight
decay, by using smooth activation functions and by directly regularizing the Hessian
norm. Before we address these effective counter measures, we recap briefly how we
derive an intermediate result for (4.7) that depends on the Hessian norm ||H(f)|| of
the neural network f .

We consider the gradient explanation for concreteness and restrict to the output of the
winning class, i.e. f(x) := f(x)k with k = argmaxi f(x)i, since the Gradient method
only depends on this component of the output. To manipulate the explanation
of an input x ∈ RN of a classifier f : RN → R, we construct a perturbed input
xadv = x+ δx such that the output of the network is (approximately) unchanged, i.e.

f(x) ≈ f(xadv) (5.1)

but the corresponding (Gradient) explanations h = ∇f are drastically different, i.e.

||h(x)− h(xadv)|| ≫ 1 . (5.2)

Typically, the perturbation is assumed to be small, i.e. ||δx|| ≪ 1, such that it is
imperceptible. For a theoretical analysis, we would like to derive upper bounds on
the change of Gradient map ||h(x)− h(x+ δx)|| by any such perturbation δx. To
this end, we consider a curve τ : R → RN with affine parameter t connecting the
unperturbed data point x with its perturbed counterpart xadv, i.e.

τ(t = −∞) = x , τ(t = +∞) = xadv . (5.3)

One can then use the gradient theorem to rewrite the change in the j-th component
of the explanation h as1

hj(x)− hj(xadv) = ∂jf(x)− ∂jf(xadv) =

∫
τ

∑
i

∂i∂jf(x) dxi

=

∫ ∞

−∞

∑
i

∂i∂jf(τ(t)) τ
′
i(t) dt , (5.4)

Let the Frobenius norm of the Hessian Hij(f) = ∂i∂jf be bounded, i.e.

||H(f)(x)|| ≤ H∗ ∈ R+ , ∀x ∈ RN .

1Here we assume that the classifier f is twice differentiable. However, this assumption can, under
certain circumstances, be relaxed as discussed in Section 5.1.1.
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It then follows immediately that the maximal change in explanation is also bounded:

||h(x)− h(xadv)|| ≤
∫ +∞

−∞
||H(f) τ ′(t)|| dt

≤ H∗
∫ +∞

−∞
||τ ′(t)|| dt = H∗ L(τ) , (5.5)

where L(τ ) =
∫ +∞
−∞ ||τ ′(t)|| dt is the length of the curve τ . We have therefore deduced

that bounding the Frobenius norm of the Hessian implies a bound on the maximal
possible change in explanation by input manipulation.

Based on this upper bound, we propose three approaches to reduce the Frobenius
norm of the Hessian and thereby increase the robustness of explanations against
manipulation.

5.1.1. Weight decay

The first approach starts from the observation that the Frobenius norm of the Hessian
depends on the weights of the neural network. More precisely, in Appendix B.1 we
prove the following theorem.

Theorem 3. Let f : RN → R be a fully-connected neural network with L layers.
The weights of the l-th layer are denoted by W (l) and its activation functions σ are
twice-differentiable and bounded

|σ′(x)| ≤ Σ1 , |σ′′(x)| ≤ Σ2 . (5.6)

The Hessian of the network is then bounded by

||H(f)||F ≤
L∑

m=1

(
m∏
l=1

||W (l)||2F
L∏

l=m+1

||W (l)||F
)

ΣL+m−2
1 Σ2 . (5.7)

As a practical consequence of the theorem, we can reduce the maximal possible change
in explanation by decreasing the Frobenius norms of the weights. Motivated by this
theoretical insight, we propose to use weight decay for training neural networks such
that their explanations are more robust to manipulation.

Note while it is well-known that weight decay can improve generalization of neural
networks [181–183], its effect on the manipulability of explanations has not previously
been established.

Weight decay can be implemented by adding an additional term to the loss function

L = L0 +
λ

2
||W ||22 , (5.8)
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where L0 is the unregularized loss, W contains all network weights and λ is a hyper-
parameter, influencing how strongly large weights are penalized. Implementations
for weight decay can deviate slightly from (5.8) and other regularizations that reduce
the weight norms (L1-regularization, variants of L2-regularization, etc [42]) may have
similar effects.

Note on ReLU non-linearites For Theorem 3 we require twice differentiable
activation functions. The popular ReLU non-linearity can be recovered from the
twice-differentiable softplus activation in the limit β → ∞. Note however that
the bound (5.7) diverges in this limit since Σ2 →∞, see (5.10). The fundamental
underlying difficulty is that the second derivative ReLU′′(x) is ill-defined at x = 0.
In Appendix B.2, we therefore generalize the bound (5.7) to the case of ReLU
non-linearities. For this, we use the fact that a distributional generalization of the
second derivative of the ReLU non-linearity can be defined, i.e. ReLU′′(x) = δ(x)
where δ denotes the Dirac distribution. The corresponding right-hand-side of this
generalized bound only depends on the weights of the neural network. Thus, this
result establishes theoretically that weight decay also certifiably improves robustness
for ReLU non-linearities.

5.1.2. Smooth activation functions

As a second approach, we note that the bound of the network’s Hessian (5.7)
also depends on the maximal values of the activation function’s first and second
derivatives (5.6). Choosing activation functions whose derivatives can be bounded
by smaller values will therefore lead to robuster explanations.

As a concrete example, consider the softplus activation function

σ(x) =
1

β
ln(1 + eβx) , (5.9)

where β ∈ R+ is a hyperparameter. Its first and second derivative are bounded by

|σ′(x)| ≤ 1 , |σ′′(x)| ≤ 1

4
β , (5.10)

and thus Σ1 = 1 and Σ2 =
1
4
β, see (5.6). From the bound (5.7), it then follows that

networks with softplus non-linearities with smaller β value have robuster explanations
compared to networks with larger values of β (provided that the Frobenius norms of
the weights is the same).

We hence propose to use smoother non-linearities when creating the neural network,
i.e. functions with small Σ1 and Σ2, so that after the training, these networks’
explanations are more robust.
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5.1.3. Curvature minimization

As a third approach, we propose to modify the training procedure such that a small
value of the Frobenius norm of the Hessian is part of the objective. To this end, we
add an additional term to the loss function which penalizes the Frobenius norm, i.e.

L = L0 + ζ
∑
x∈T

∥H∥2F (x) , (5.11)

where T denotes the training set, L0 is the unregularized loss function, and ζ
is a hyperparameter regulating how strongly the Hessian norm is minimized. A
related approach has been previously proposed in [184] in the context of conventional
adversarial attacks.

Calculating the Frobenius norm of the Hessian is expensive, i.e. to obtain the exact
second derivative we would have to backpropagate through the network once per
input pixel. For larger images, this becomes unfeasible, especially when we want to
include the norm minimization in the training procedure.

We therefore propose to estimate the Frobenius norm stochastically. Let v ∼ N (0, 1),
which implies that E[vi] = 0 and E[vivj] = δij. We can then rewrite the Frobenius
norm of the Hessian as follows

||H||2F =
∑
i,j

(
∂2f

∂xi∂xj

)2

=
∑
i,j

E
[
v2j
]( ∂2f

∂xi∂xj

)2

+
∑
i,j ̸=k

E [vjvk]
∂2f

∂xi∂xj

· ∂2f

∂xi∂xk︸ ︷︷ ︸
error

=
∑
i,j,k

E
[
vj

∂2f

∂xi∂xj

· vk
∂2f

∂xi∂xk

]

= E

∑
i

(
∂

∂xi

∑
j

vj
∂f

∂xj

)2
 .

We can estimate the final expected value using the Monte-Carlo method, i.e. we draw
a random vector v, and compute vT∇f(x) at the usual cost of a single backward
pass. Since the resulting expression is a scalar, we can calculate its derivative at the
cost of another single backward pass [185]. Multiple samples can be combined in
mini-batches. The average over the mini-batch is then an unbiased estimator for the
expected value.

5.2. Experiments

In this section, we compare the performance of the proposed methods experimentally.
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Briefly summarized, we measure the degree of robustness as follows: we perturb
an input sample x with Gaussian2 noise δx ∼ N (0, σ2). We then calculate the
explanation h(xadv) for the resulting perturbed input xadv = x+ δx, and measure its
similarity to the original explanation h(x). The standard deviation σ is chosen such
that the output of the neural network is approximately unchanged, i.e. f(x) ≈ f(xadv).
We repeat this procedure for various explanation methods.

In more detail, our experiments use the following setup:

Similarity Scores for Explanations In order to quantify the visual similarity of the
explanations, we use three different measures following [18]: the Pearson correlation
coefficient (PCC), the structural similarity index measure (SSIM) and the mean
squared error (MSE), introduced in Section 2.3. We apply these metrics to measure
the similarity between the original explanation h(x) and the explanation of the
perturbed input h(xadv).

Model and Dataset To demonstrate the proposed robustness effects generically,
in our main experiments we use the same convolutional neural network (CNN)
architecture for all our models and train on the CIFAR10 data set [146]. The models
achieve up to 88% test set accuracy. For more details on the network architecture
and training, we refer to Appendix B.4.1.

Noise Level We choose the level of noise such that it does not significantly change
the network’s output. To this end, we perturb all 10k images of the CIFAR10 test
set with Gaussian noise of a given standard deviation σ. It is convenient to express
the standard deviation σ in terms of the noise level ν by

σ = (xmax − xmin)ν , (5.12)

where xmax and xmin denote the maximum and the minimum values of the input
domain.

Figure 5.2 shows the classification accuracy and the PCC similarity score between
the original and the perturbed explanations for different noise levels ν. Smaller noise
levels (between 0.005 and 0.025) lead to a comparatively mild drop in accuracy but
result in a significant reduction in the similarity of the explanations. We therefore
restrict the noise levels to this interval for our experiments.

2For a discussion of other noise distributions, we refer to Appendix B.4.4.
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Fig. 5.2.: PCC(h(x), h(xadv)) between explanations drops more rapidly than accuracy
when adding noise with small ν to the original image. We show mean +/-
std for PCC.

5.2.1. Robustness from weight decay

Weight decay adds a regularizing term to the update rule of the network parameters
wi so that large values are penalized. The update is then given by

wi → wi − α(
∂L0

∂wi

+ λwi) (5.13)

where α is the learning rate and L0 is the unregularized loss. The hyperparameter λ
controls how strongly the network parameters are penalized. We choose five different
values for λ and train the CNN for each. Figure 5.3 shows higher PCC values
for larger values of λ, i.e. weight decay increases the robustness of explanations
with respect to input manipulation. As was to be expected, there is a trade-off
between robustness and accuracy of the networks. For networks trained with strong
weight decay (λ > 10−2), the accuracy decreases drastically. On the other hand,
networks trained with 5× 10−5 ≤ λ ≤ 5× 10−3 achieve comparable accuracy but are
significantly more robust to manipulations than a network trained with λ = 0.

5.2.2. Robustness from softplus activations

To see how the β value of the softplus activations (5.9) affects the robustness, we
train networks with four different β values. We do this for all but the largest value
of the weight-decay hyperparameter λ from the previous section; in total 4 · 5 = 20
networks. With decreasing β values, the explanations become less prone to input
manipulations. Figure 5.4 shows the results for networks trained with λ = 5× 10−4

and different values for β. For β values smaller than 5, the accuracy of the network
decreases slightly. Crucially, comparable accuracy is achieved for β values of 5 and
10, while the corresponding networks show increased robustness. Results for other
choices of the weight decay parameter λ look qualitatively similar. We list results
for all combinations in Appendix B.4.1.
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Fig. 5.3.: Left: PCC(h(x), h(xadv)) increases with stronger weight decay (higher λ).
Therefore, weight decay improves robustness of explanations. We show
mean +/- std for three different noise levels ν. Right: For moderate weight
decay (λ ≈ 5 × 10−4) accuracy increases, while for strong weight decay
(λ ≥ 10−2) accuracy drops.
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Fig. 5.4.: Left: PCC(h(x), h(xadv)) is higher for networks trained with softplus acti-
vation that have small β value. This means, replacing ReLU with softplus
activations improves robustness of explanations. We show mean +/- std for
three different noise levels ν. Right: Accuracy decreases if β is very small.
All networks were trained with weight decay (λ = 5× 10−4).

5.2.3. Robustness from curvature minimization

To evaluate the effectiveness of Hessian norm minimization, we train networks with
different values of the hyperparameter ζ which controls the degree of regularization
in the modified loss in Eq. (5.11).

We approximate the Hessian norm only for softplus networks since we need to
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calculate second derivatives and3

∂2f

∂x2
∝ ReLU′′ = 0

for ReLU networks. We consider six different values for ζ for each of the networks
from the previous section, i.e. we train 6 · 20 = 120 networks in total.

Figure 5.5 shows how curvature minimization affects the robustness against random
perturbations, when using weight decay with λ = 5× 10−4 and softplus activations
with β = 10. Even a small value for ζ results in significant improvement. For larger
ζ values, and low noise level, the PCC value slowly converges to (approximately) one
but the accuracy of the network decreases. We list results for all combinations of the
weight decay parameter λ and the softplus parameter β in Appendix B.4.1.
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Fig. 5.5.: Left: PCC(h(x), h(xadv)) is larger for networks trained with strong mini-
mization of the Hessian norm ∥H∥ (larger ζ values). Therefore, minimizing
∥H∥ improves robustness of explanations. We show mean +/- std for three
different noise levels ν. Right: accuracy decreases when ζ gets large. All
networks were trained with weight decay (λ = 5 × 10−4) and softplus
activations (β = 10).

To see the effects on the explanation more directly, we show a concrete example4

in Figure 5.6. In the top row, we show an image and several samples with added
Gaussian noise (with noise level ν = 0.025). Below, we show the Gradient explanation
maps of two different networks. For the first network (middle row) the explanations
appear noisy and vary strongly. This network was trained without any techniques to
enhance robustness (no weight decay, ReLU activations, no Hessian minimization).
For the second network (bottom row) the explanations stay relatively steady. This
network was trained with measures that enhance robustness (weight decay with
λ = 5× 10−4, softplus activations with β = 10, Hessian minimization with ζ = 10−7).

3More precisely, the second derivative ReLU′′(x) is not defined for x = 0 and the relation only
holds up to such root points of the non-linearity.

4Another example can be seen in Figure 5.1 c).
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Fig. 5.6.: Top row: original image and image with added noise (ν = 0.025). Middle
row: Gradient explanations for a network trained with λ = 0, ReLU
activations and ζ = 0. Bottom row: Gradient explanations for a network
trained with weight decay (λ = 5× 10−4), softplus activations (β = 10) and
Hessian minimization (ζ = 10−7). The explanations of the robust network
in the bottom row are clearly more resilient to random input perturbations.

5.2.4. Additional experiments

In this section we discuss additional architectures, data sets, and explanation methods
as well as robustness to adversarial attacks on the explanation.

Other explanation methods So far we have focused on Gradient explanation
maps. However, we can apply any other suitable explanation method to our networks.
In Table 5.1, we show results for different explanation methods. Specifically, PCC
values (mean and standard deviation over the complete test set) between original and
manipulated explanations, when perturbing images with a noise level of ν = 0.025,
are listed. In the first row, we show how the respective explanations change when
using the original, vanilla network (λ = 0, ReLU activations, ζ = 0) and in the
second row we show the values for a network trained with all our robustness measures
(λ = 5× 10−4, β = 10, ζ = 10−6). While the Gradient explanation is most vulnerable
to random perturbations, the results for Gradient×Input and Integrated Gradients
look qualitatively similar to the Gradient explanation. When using all our robustifying
measures, the PCC similarity between these explanations improves by around 30
to 40 percentage points. Guided Backpropagation (GBP) and Layerwise Relevance
Propagation (LRP) are noticeably more resilient to random input perturbations.
However, our robust network still achieves significantly higher PCC similarities,
demonstrating that even more robust explanation methods can profit from our
proposed methods.

Additional architectures and data sets In order to demonstrate that our results
also hold for input data with higher dimensions, we consider the ImageNet data
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Network Gradient Grad×Input IntGrad GBP LRP

vanilla 0.32± 0.12 0.44± 0.13 0.53± 0.12 0.78± 0.10 0.91± 0.06
robust 0.73± 0.08 0.76± 0.08 0.82± 0.06 0.94± 0.03 0.98± 0.01

Tab. 5.1.: PCC (mean ± std) between original explanations and explanations of
perturbed inputs (noise level ν = 0.025) for explanation maps: Gradient,
Gradient×Input, Integrated Gradients, Guided Backpropagation (GBP),
and Layerwise Relevance Propagation (LRP). High PCC values indicate
high robustness.

set. Due to the substantial computational costs, we restrict our analysis to the
ImageNette [148] classes. We train with the original train-test split, and use 50
images per class for testing. We then apply our methods to the network architectures
of VGG [159] and ResNet [9] trained on ImageNette. The results are illustrated in
Figure 5.7. We observe similar behavior as for the convolutional architecture used
on the CIFAR10 data set. Notably, the largest increase in robustness is obtained
by substituting ReLU with softplus activations while curvature minimization does
not seem to have a comparative effect. For a more detailed discussion, we refer to
Appendix B.6.
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Fig. 5.7.: VGG16 (left) and ResNet (right) trained on (a subset of) ImageNet.
PCC(h(x), h(xadv)) is larger for networks trained with robustness methods.

Adversarial manipulation In addition to perturbing the explanation by using
unstructured random noise, we also consider targeted manipulations. We apply the
same manipulation method we introduced in Chapter 4. For this, we use the CNN
model on CIFAR10 as well as VGG16 and ResNet trained on ImageNette. We choose
100 randomly selected test samples. For each of them, the target explanations is
chosen to be the explanation of another randomly selected test sample. As ReLU
networks are not twice differentiable, we substitute the ReLU with softplus activations
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with large β value during the attack. For the final comparison, we restore the original
ReLU activations. We stop an attack when the mean squared error between original
and manipulated input exceeds a specified threshold, i.e. we keep the perturbation
δx small. As shown in Figure 5.8, our methods for robust networks also significantly
increase the robustness against these targeted attacks.
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Fig. 5.8.: Targeted adversarial attacks on different models. Left: similarity between
manipulated explanation h(xadv) and original explanation h(x) is higher
for the robust nets trained with our methods. Right: similarity between
manipulated explanation h(xadv) and target explanation ht is lower for the
robust nets trained with our methods. This shows that our methods also
improve robustness against targeted adversarial attacks.

5.2.5. Comparison of proposed methods

All our proposed methods can improve robustness of explanations against input ma-
nipulations. We observe this trend for all considered explanation methods, similarity
measures, and noise levels.

We note that each method appears to improve robustness in a different manner. As
evident from our theoretically-derived upper bound (5.7), both weight decay and
small β values for the softplus activations affect the Hessian norm. Weight decay
leads to smaller Hessian norms by minimizing the weight norms. Replacing ReLU
activations with softplus activations with comparatively small β parameter also leads
to smaller Hessian norms but the weight norms stay approximately constant for
different β values. When minimizing the Hessian norm directly during training, the
Hessian norms decrease significantly while the weight norms decrease only minimally.
This shows that Hessian norm minimization does not just improve robustness by
indirectly minimizing the weight norms.

Figure 5.9 shows how weight norms and Hessian norms change when applying weight
decay (varying λ), substituting ReLU with softplus (varying β) and minimizing the
Hessian norm directly (varying ζ). We average over all softplus networks trained

75



Chapter 5. Towards networks with robust explanations

with ζ = 0 for the first two plots and we average over all networks trained with
Hessian minimization for the last plot.
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Fig. 5.9.: The connection between weight norms ∥W∥ and Hessian norms ∥H∥ is
different for our three methods. Left: ∥W∥ and ∥H∥ both decrease in a
similar manner when applying stronger weight decay (increasing λ). Middle:
∥W∥ stays relatively constant while ∥H∥ decreases with increasing softplus
β. Right: ∥W∥ decrease slightly while ∥H∥ decrease strongly with stronger
Hessian minimization (increasing ζ). We show mean ± std.

While we showed that each method separately improves robustness—we keep the
weight-decay hyperparameter λ constant when evaluating different smoothing pa-
rameters β for the softplus activations and we keep the weight-decay hyperparameter
λ and the smoothing parameter β constant when evaluating different values for
hyperparameter ζ for the Hessian norm minimization—we get most benefits when
combining them. Besides enhancing robustness, weight decay plays an essential role
for the accuracy—as expected and well-known in the literature [181]: all networks
trained without weight decay stay at an accuracy below 86.5%.

5.3. Related work

Attention towards (adversarial) manipulation of explanations has developed relatively
recently. We give a detailed overview of works that focus on manipulation of
explanations in Chapter 4, Section 4.5.

In this section we therefore focus on related works which aim to make explanations
more robust against input perturbations. More specifically, we are interested in
research related to our work, i.e. approaches that make the neural network itself
more robust against manipulation of the explanations by modifying the training
process.

Robust training of neural networks has mainly been researched in relation to
conventional adversarial attacks that aim to change the neural network’s out-
put [162,186–190].

As explanations and the manipulation thereof is a relatively new field, few works
have explored increasing robustness of neural networks during training in the context
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of attacks on the explanation.

Wang et al. [191] propose to include a penalty on the largest principal curvature in the
loss function to train networks that are more resilient to attacks on the explanation.
This is different to our Hessian norm training which can be roughly understood as a
penalty on all principal curvatures.

Lakkaraju et al. [192] propose adversarial training (analogous to adversarial training as
a defense against conventional adversarial attacks) to construct black box explanations
that are robust to input perturbations and distribution shifts.

Patro et al. [193] propose a method to obtain explanations for visual and textual
question answering which is robust to input perturbation. More specifically, they
develop a collaborative correlated module which simultaneously checks whether the
predicted answer and the corresponding explanation are correct or not. In contrast
to our work, their application requires the existence of ground truth explanations, as
their distance to the model generated explanations is minimized during training.

Zeng et al. [194] propose to train an explainer model that jointly outputs a prediction
and a corresponding explanation. They train a (conventional) adversarially robust
model. The SmoothGrad explanations of that model are then used as ground truth
to train the explainer model, which is applied to a pre-trained network for which the
explanations are desired. In contrast to our work, their approach requires training
two networks and does not generalize to arbitrary explanation methods.

5.4. Limitations

Adversarial perturbations The majority of our experiments focus on random
perturbations of the input rather than adversarial perturbations. This is crucial
for a fair analysis of the robustness of the network since networks with different
training procedures can be applied to inputs with the same perturbations. Adversarial
perturbations on the other hand depend on the specific network. Creating adversarial
examples thus depends on network specific hyperparameters. These could for example
include optimizer step size and number of iterations. It is thus not clear how a
fair comparison can be achieved and how much of the difference in robustness can
be attributed to the hyperparameter settings. We hence restricted our analysis of
robustness against adversarial attacks to only a few examples. We do observe a trend
that confirms our expectations but to reduce the probability of secondary effects due
to hyperparameter choices one might have to average over more attacks and training
runs.

Hyperparameters Even though we restrict our perturbations to random noise the
training process of the networks is still dependent on hyperparameters. It is not
entirely clear how to achieve a fair comparison between networks that are trained
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with very different regularization methods or different activation functions. For
example, do we consider two networks as comparable when they were trained for
the same number of epochs or when they reach the same training/validation/test
accuracy? This choice could have effects on the robustness of the network that is
independent of the approaches to increase robustness that we considered. To rule
this out one might have to perform even more training runs.

Other architectures and data sets Our main experiments focus on a relatively
simple network and the CIFAR10 data set. Our experiments with more complex
architectures and higher dimensional data sets are limited to a few configurations
due to the high computational cost. Therefore, our results on VGG16 and ResNet18
should be seen as a proof of concept and a trend observation rather than a careful
analysis like we performed with the simpler CNN architecture applied to the CIFAR10
data set.

Rescaling the network parameters One could argue that rescaling all network
parameters, i.e. multiplying all weights and biases with a value c ≤ 1, would result
in smaller weight norms and therefore a smaller Hessian norm. While this is true,
it does not affect the properties of the gradient which we are interested in. As
we normalize the explanation maps, only relative changes in the gradient, that is,
only changes to the direction of the gradient, matter. A rescaling of all network
parameters would affect only the gradient magnitude and not the gradient direction.
While we mention this in Section 4.3, we do not emphasize it in the current chapter.
To include this in the theoretical analysis one would have to divide Equation (5.7)
by the gradient magnitude or a lower bound thereof. This limitation might also
partially explain why we do not see significant improvement of the robustness for
VGG16 and ResNet18 when using weight decay (see Figure 5.7), although the weight
norms significantly decrease (see Figure B.16).

5.5. Summary

In this chapter, we have addressed the need for the robustness of explanation methods
against the manipulation of input data. Rather than introducing a new explanation
method, we focused on enhancing the robustness of the networks themselves. As a
result, any applied explanation method was shown to profit.

Based on the derived bounds for the maximal change in explanation, we proposed
three approaches to increase the robustness of explanations. Specifically, we showed
that weight decay, known to improve accuracy, can efficiently boost the robustness
of explanations. We furthermore propose to use networks with smoothed activation
functions and to include a regularizer for the network’s curvature in the training
process, which leads to significantly enhanced resilience against manipulated inputs.
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5.5. Summary

Our extensive experiments with a CNN architecture and the CIFAR10 data set,
as well as further experiments with ImageNet data and the VGG16 and ResNet18
architectures, demonstrated the validity and usefulness of our proposed methods.
We consider random input perturbations with different noise levels as well as tar-
geted adversarial attacks on the explanation and confirm that our methods improve
robustness in both settings.
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6. Counterfactual explanations
with generative models

While the previous two chapters treated attribution methods, in this chapter we
focus on counterfactual explanations.

We introduce a simple—yet effective—algorithm to construct counterfactual expla-
nations for neural network classifiers on high-dimensional input data such as images.
More specifically, we perform a suitable diffeomorphic coordinate transformation and
then apply gradient ascent in these coordinates to find counterfactuals which are
classified with great confidence as a specified target class. Leveraging different kinds
of generative models, we propose two methods to construct such suitable coordinate
systems that are either exactly or approximately diffeomorphic. We analyse the
generation process theoretically using Riemannian differential geometry and validate
the quality of the generated counterfactuals using various qualitative and quantitative
measures.

original
not blond

adversarial
blond (p ≈ 0.99)

counterfactual
blond (p ≈ 0.99)

Fig. 6.1.: Example from the CelebA data set. The original is classified as not blond.
The adversarial example and the counterfactual are classified as blond
with high confidence. The counterfactual shows semantic differences to the
original in the hair region. This stands in stark contrast to the adversarial
example, for which we only note hardly perceptible, seemingly unstructured
noise.

Figure 4.1 shows an image, a conventional adversarial example and an example of
a counterfactual which was generated with our method. The binary classifier in
this example differentiates between ‘blond’ and ‘not blond’. The original image is
classified as ‘not blond’. When we perform gradient ascent in image space, we usually
get an adversarial example (shown in the middle). The difference between the original
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and the adversarial example is almost imperceptible but the latter is classified as the
target class ‘blond’ with high confidence. Performing the gradient ascent updates in
the latent space of a generative model, we get a counterfactual (shown on the right).
In contrast to the adversarial example, the counterfactual shows semantic changes in
the hair region of the person, which suggests that the classifier has correctly identified
this region as most relevant for hair color classification. Crucially, the other facial
features remain unchanged.

6.1. Generative Models

In this section we give a short introduction to the generative models we use for
finding counterfactual images, namely variational autoencoders, generative adversarial
networks, and normalizing flows (see Figure 6.2). The idea for all these generative
models is to approximate the data distribution p(x) with a distribution q(x) which
is based on a simple base distribution pz(z) (for example a multivariate Gaussian).
The modeled distribution is an approximation of the data manifold, which we use in
our method to produce counterfactuals that lie on the data manifold.

real
or

fake

encoder decoder

discriminator generator

inverse flow flow

Generative
Adversarial
Network

Variational
Autoencoder

Normalizing
Flow

Fig. 6.2.: Schematic illustration of different structures for generative models.
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6.1.1. Variational autoencoders

A variational autoencoder (VAE) [195] has an architecture similar to an autoencoder,
including an encoder e that is usually only used during the training process and a
decoder g that is used to generate new samples after training.

The loss is based on the evidence lower bound

ELBO = log p(x)−DKL[qz(z|x)||pz(z|x)] . (6.1)

We want to maximize the likelihood of the data p(x). The second term in 6.1 is the
(reverse) Kullback–Leibler divergence

DKL(Q||P ) =
∑
x∈X

Q(x)(logQ(x)− logP (x)) , (6.2)

which can be seen as a regularizer that ensures that the encoder learns a distribution
qz(z|x) similar to the true posterior pz(z|x). As the KL divergence is always positive
or zero, maximizing the ELBO maximizes p(x). The VAE loss is then defined as the
negative ELBO and can also be written as

LVAE = DKL(qz(z|x)||pz(z))− Ez∼q(z|x)[p(x|z)] . (6.3)

When minimizing LVAE the KL divergence term in 6.3 regularizes the parameters
of the encoder so that the approximate posterior qz(z|x) is close to the prior pz(z),
usually a standard Gaussian pz(z) = N (z; 0, 1). The output of the encoder is therefore
divided into mean µe = µ(e(x)) and standard deviation σe = σ(e(x)) parametrizing
a Gaussian distribution qz(z|x) = N (z;µe, σe).

The second term ensures that the original image is likely under the learned probability
distribution p(x|z). This probability distribution is approximated by the decoder g,
that produces the parameters x̃ = g(z) for the distribution. The latent variable z is
sampled from the Gaussian z ∼ N (µe, σe). To enable computation of gradients this
sampling is re-parametrized to z = µe + σe ⊙ ϵ where ϵ ∼ N (0, 1). The probability
density p(x|z) is assumed to be Gaussian for real valued data and the generator
serves to parametrize µ, while σ is assumed to be 1. We can then calculate

− log p(x|z) = − logN (x; x̃, 1) = log
√
(2π)n +

1

2

n∑
i=1

(xi − x̃i)
2 , (6.4)

where x̃ = g(z) and n is the number of dimensions of x ∈ Rn. Minimizing this term
is equivalent to minimizing the squared Euclidean distance between the original
image x and the reconstructed image x̃.

Assuming Gaussian distributions for the approximate posterior qz(z|x) and the
probability density p(x|z) the actual loss that is then used for training simplifies to

LVAE = Ex∼p(x)[logN (z;µe, σe)− logN (z; 0, 1) + ||g(e(x))− x)||2] , (6.5)
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where z depends on the data sample x.

Improvements on the loss function and network architectures of decoder and en-
coder [196–199] have made high-quality image generation with VAEs possible. In
Section 6.4.2 we apply our method to a relatively simple convolutional VAE architec-
ture.

6.1.2. Generative adversarial networks

A generative adversarial network (GAN) [200] consists of two models: a generator
g : Z → X that is trained to map samples from a Gaussian distribution z ∼ N (µ, σ)
to the desired target distribution and a discriminator d : X → [0, 1] that is trained
to distinguish real data samples from generated ones.

During the training process, the two models compete against each other and conse-
quently improve their abilities. The loss function which we optimize is then given
by

min
g

max
d

LGAN = Ex∼p(x)[log d(x)] + Ez∼p(z)[log(1− d(g(z)))] (6.6)

where p(x) is the (real) data distribution and p(z) is the distribution over latent
variables z, which is usually chosen to be Gaussian or uniform.

A global optimum is reached when the real data distribution is closely approximated
by the generator and the discriminator therefore cannot distinguish between generated
and real images.

To use the generative model one does not require the discriminator d but only the
generator g.

GANs have made a lot of progress in their capabilities in recent years [3, 201–203].
In Section 6.4.2 we apply our method to three different GAN architectures.

6.1.3. Normalizing flows

While for VAEs and GANs the latent variable z is usually of lower dimension than
the data x, for normalizing flows [204] they have the same dimension. The flow
g : Z → X is then defined as a bijective function that maps a sample from the latent
distribution z ∼ qz to a sample x = g(z) from the approximated data distribution
q(x). This makes the flow invertible so that z = g−1(x).

By using the change of variables theorem one can express q in terms of qz and the
normalizing flow g:

q(x) = qz(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ = qz(g

−1(x))

∣∣∣∣det ∂g−1(x)

∂x

∣∣∣∣ , (6.7)
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where ∂g−1(x)
∂x

is the Jacobian of g−1. The probability qz is usually chosen to match
the standard Gaussian pz = N (0, 1). The flow can be trained by maximum likelihood,
i.e. by minimizing

Lflow = KL(p|q) = −Ex∼p log q(x) + const.

≈ − 1

N

N∑
i=1

log(q(xi)) + const. , (6.8)

where xi ∼ p are samples from the data density p. The flow g is implemented by a
neural network with a specific structure to ensure invertibility.

Normalizing flows have very recently become powerful image generators [205–208].
Our main theoretical results from Section 6.3.2 are based on normalizing flows and
we apply our method to two different flow architectures in Section 6.4.1.

6.2. Methods

In this section, we introduce diffeomorphic and approximately diffeomorphic counter-
factuals. We will start by briefly reviewing the basics of counterfactual explanations,
and then present the two methods. Figure 6.3 provides an intuition of how our
method works and showcases the difference between counterfactuals found using our
method and adversarial examples found when doing gradient ascent in data space.

6.2.1. Counterfactual explanations

We start with a classifier f : X → RC which assigns a probability f(x)c for class
c ∈ {1, . . . , C} to an input x ∈ X . A counterfactual explanation of this classifier is
an alternative input x′ = x+ δx with deformations δx such that the prediction of
the classifier is changed.

Usually the data lies approximately on a submanifold D ⊂ X which is of significantly
lower dimension ND than the dimension NX of the input space X . This is commonly
known as the manifold hypothesis (see e.g. [42]). For counterfactual explanations,
as opposed to adversarial examples, we are interested in inputs x′ which lie on the
data manifold. Additionally, we require the deformations to the original data to be
minimal as they should only target features that are relevant for the classification, i.e.
the perturbation δx should be as small as possible. The relevant norm should however
be measured along the data manifold and should not be calculated in the input
space. For example, a slightly shifted number in an MNIST image may have large
Euclidean distance between pixel values but should be considered an infinitesimal
perturbation of the original image.

We formalize the manifold hypothesis mathematically by assuming that the data is
concentrated in a small region of extension δ around D. As we will show in Section 6.3,
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source class

   decision boundary

desired: gradient ascent in  leads to 
counterfactuals that lie on the data manifold

undesired: gradient ascent in    leads
to adversarials off data manifold

starting point: original image 
lies on the data manifold

generative
model 

target class 

high 
data
density

low 
data
density

classifier 

classifier 

Fig. 6.3.: Intuition for our method. Blue box: Image data usually lies on a lower
dimensional manifold embedded in high-dimensional space. Red box:
Gradient ascent in X leads to adversarial examples. The changes to the
original image resemble unstructured noise. Green box: Gradient ascent in
Z leads to counterfactuals. The changes to the original image are semantic.
This is achieved by scaling the directions of the gradient leading off manifold
to effectively zero, using the inverse metric γ−1.
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this implies that the support S of the data density p is a product manifold

S = D × Iδ1 × · · · × IδNX−ND
, (6.9)

where Iδ = (− δ
2
, δ
2
) is an open interval of length δ (with respect to the Euclidean

distance in the input space X ). We assume that δ is small, i.e. the data lies
approximately on the low-dimensional manifold D and thus fulfills the manifold
hypothesis. We can think of the Iδ as arising from the inherent noise in the data.

Furthermore, we define the set of points in S classified with confidence Λ ∈ (0, 1) as
class t ∈ {1, . . . , C} by

St,Λ = {x ∈ S | t = argmaxjfj(x) and ft(x) > Λ} . (6.10)

A counterfactual x′ ∈ X for class t of the original sample x ∈ X then is the closest
point to x in St,Λ,

x′ ∈ St,Λ and argminydγ(x, y) = x′ , (6.11)

where dγ(x
′, x) is the distance computed by the Riemannian metric γ on S (which is

induced from the flat metric by the diffeomorphism given by the generative model).
We can think of this as the geodesic distance on the data manifold. We refer to
Chapter 3 for an introduction to the necessary concepts of Riemannian geometry.

6.2.2. Generation of counterfactuals

Counterfactuals are often generated by performing gradient ascent in the input space
X . More precisely, for step size η and target class t, one adapts the original input,
using the update

x(i+1) = x(i) + η
∂ft
∂x

(x(i)) , (6.12)

until the classifier has reached a desired confidence Λ for target class t, i.e. f(x(i+1))t >
Λ. However, the result will generally not lie on the data manifold and differs from
the original input x only in unstructured noise which, for high-dimensional data,
is usually imperceptible to humans. Inputs that were perturbed in this way are
broadly referred to as adversarial examples and not counterfactuals. For a valid
counterfactual we desire an alternative input x′ that differs from the original in an
interpretable, semantically meaningful manner.

Therefore, we propose to estimate the counterfactual x′ of the original data point
x by using a diffeomorphism g : Z → S. We then perform gradient ascent in the
latent space Z, i.e.

z(i+1) = z(i) + λ
∂(f ◦ g)t

∂z
(z(i)) (6.13)
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with step size λ ∈ R+. This has the important advantage that the resulting counter-
factual will lie on the data manifold. Furthermore, since we consider a diffeomorphism
g, and thus in particular a bijective map, no information will be lost by considering
the classifier f ◦ g on Z instead of the original classifier f on the data manifold S,
i.e. there exists a unique z = g−1(x) ∈ Z for any x ∈ S. Algorithm 1 shows pseudo
code for our approach.

Algorithm 1 Generating counterfactuals
Require: x, f, g, g−1, t,Λ, λ,N
1: z ← g−1(x)
2: for i in range(N) do
3: ∇z ← ∂(f◦g)t

∂z

4: z ← optimizer.step(λ, ∇z)
5: if f(g(z))t > Λ then
6: return g(z)
7: end if
8: end for
9: return None

Note: x is the input for which we desire to find a counterfactual
explanation, f the predictive model, g the generative model, g−1 the
(approximate) inverse of g, t the target class, Λ the target confidence, λ
the learning rate and N the maximum number of update steps.

The schematic illustration in Figure 6.4 shows, how gradient ascent in X and Z
are well-suited to generate adversarial examples and counterfactuals, as the (scaled)
gradient direction points off manifold and along the manifold respectively.

For regression tasks there is no explicit decision boundary, but we can still follow the
the same algorithm by directly maximizing (or minimizing) the output r of regressor
f(x) until we reach the desired target regression value.

6.2.3. Diffeomorphic counterfactuals

We propose to model the map g using a normalizing flow and will refer to the
corresponding modified inputs x′ as diffeomorphic counterfactuals in the following.

Since the flow is bijective on the entire input space X , it will, in particular, be
bijective on the data manifold S ⊂ X . Furthermore, a well-trained flow maps (to
very good approximation) only to the data manifold, i.e. g(Z) ≈ S, which we
thoroughly show in Section 6.3.2.

Normalizing flows thus guarantee that no information is lost when performing gradient
ascent in the latent space Z and also ensure that the resulting counterfactuals lie
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decision boundary

target class

source class 

counterfactual

data point

adversarial example

          data manifold

Fig. 6.4.: When the gradient ascent optimization of the target class is performed in
the input space of the classifier, one leaves the data manifold and obtains
an adversarial example. If instead the gradient ascent is performed in the
latent space of a generative model, one stays on the data manifold, resulting
in a counterfactual example.

on the data manifold S. Indeed, the flow can be understood as inducing a certain
coordinate change of the input space X which is particularly suited for the generation
of counterfactuals.

6.2.4. Approximately diffeomorphic counterfactuals

Using normalizing flows to model the data manifold seems very appealing as these
models come with strong theoretical guarantees. However, it is challenging to scale
them to very high-dimensional data. This is due to the fact that flows have a very
large memory footprint since each layer has the same dimension as the data space
X to ensure bijectivity, leading to high hardware requirements and long training
times. We therefore propose an alternative method, which we term approximately
diffeomorphic counterfactuals, which comes with less rigorous theoretical guarantees,
but can scale better to very high-dimensional data. Specifically, we propose two
kinds of approximately diffeomorphic counterfactuals:

VAE-based counterfactuals: The reconstruction loss, i.e. Ex∼p||g(e(x))− x||2, of
a VAE, with encoder e : X → Z and generator g : Z → X is minimal if the encoder
is the inverse of the generator on the data manifold S, i.e.

e|S = g−1|S . (6.14)

This implies, in particular, that g(Z) = S if dim(Z) = dim(S). Equivalent to
normalizing flows, the image of the autoencoder is the data manifold if the model
has been perfectly trained. However, an autoencoder will only be invertible on the
data manifold in this perfect training limit and if the latent space Z has the same
dimension as the data space S. This is in contrast to normalizing flows which are
invertible on all of X by construction. As a result, autoencoders will necessarily lead
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to loss of information unless the model is perfectly trained and the dimension of the
latent space perfectly matches the dimension of the data.

GAN-based counterfactuals: It can be shown (see Section 4.1 of [200] for a proof)
that the global minimizer of the GAN loss function (6.6) ensures that samples of the
optimal generator g are distributed according to the data distribution, i.e.

g(z) ∼ p for z ∼ qZ . (6.15)

However, the optimal generator g is not necessarily bijective on the data manifold.
This means that there may not exist a unique z ∈ Z for a given data sample x ∈ X
such that x = g(z), even if the GAN is perfectly trained. Furthermore, GANs have
no inherent mechanism to obtain the corresponding latent sample z ∈ Z for a given
input x ∈ X . In contrast to that, the inverse map g−1 : X → Z is explicitly known
for normalizing flows and approximately known for VAEs.

However, there is extensive literature for GAN inversion, see [209] for a recent
review. Approaches to GAN inversion may propose training an encoder network by
minimizing a reconstruction loss, similar to the autoencoder pipeline. Furthermore,
there are optimization-based approaches which update the latent representation
z ∈ Z for a specific data sample x ∈ X , so that x ≈ g(z). While a naive approach
would be to just directly minimize the Euclidean distance ||g(z)− x||, avoiding local
minima can often be accomplished to some extend by minimizing the difference
between the activations a(l) of an intermediate layer l of some auxiliary network, i.e.

z = argminẑ∈Z ||a(l)(g(ẑ))− a(l)(x)|| . (6.16)

For example, a(l) can be chosen to be an intermediate layer of an Inception net-
work [10], trained on samples from the data distribution p. Hybrid methods exploit
the advantages of both approaches, as an initial latent representation can be found
quickly using the trained encoder network and an optimization based approach can
then further improve upon the initially chosen z. Of course, there is no guarantee
for perfect inversion since the optimization objective is generally non-convex.

6.3. Theoretical analysis

In this section, we use tools from differential geometry to show that for well-trained
generative models, the gradient ascent update (6.13) in the latent space Z does
indeed stay on the data manifold. Intuitively, since in (6.13) we take small steps in
Z, where the probability distribution is, for example, a normal with unit variance,
we do not leave the region of high probability in the latent space and hence stay in a
region of high probability also in X .

We prove this statement for the case of diffeomorphic counterfactuals, i.e. for normal-
izing flows, and (under stronger assumptions) also for approximately diffeomorphic
counterfactuals, i.e. for VAEs and GANs.
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6.3.1. Mathematical setup

In this section we define the necessary manifolds and coordinates, in order to analyse
the gradient ascent (6.13) in the latent space Z.

As above, let X be an NX -dimensional manifold which is the input space of the
classifier f : X → RC with C classes. An implementation of the classifier corresponds
to a function on RNX and we denote the coordinates on X in which our classifier
is given by xα. These coordinates could e.g. be suitably normalized pixel values.
We furthermore use an NZ-dimensional manifold Z as the latent space for our
generative model g : Z → X . For GANs and AEs, we typically have NZ < NX and
for normalizing flows NZ = NX . In the latter case we have moreover X = Z and g
bijective with differentiable inverse implying that g is a diffeomorphism. Similarly to
the classifier, also the generative model is implemented in specific coordinates on Z
which we denote by za.

We equip Z with a flat Euclidean metric δab. Then, the generative model g induces
an inverse metric γαβ on g(Z) by

γαβ = δab
∂gα

∂za
∂gβ

∂zb
. (6.17)

in the case of NZ < NX , γ is singular. This metric is the crucial new ingredient
when performing the gradient ascent update in the latent space (6.13) as opposed to
in the input space (6.12), as the following calculation shows.

One step of gradient ascent in the latent space Z is given by the image under g of
the update step (6.13). In xα coordinates and to linear order in the learning rate λ,
it is given by

gα(z(i+1)) = gα(z(i)) + λ
∂gα

∂za
∂(f ◦ g)t

∂za
+O(λ2)

= gα(z(i)) + λ
∂gα

∂za
∂gβ

∂za
∂ft
∂xβ

+O(λ2)

= gα(z(i)) + λ γαβ ∂ft
∂xβ

+O(λ2) . (6.18)

If we start from the same points, x(i) = g(z(i)), the difference between gradient ascent
in latent space (6.13) and input space (6.12) is just given by the contraction of the
gradient of f with respect to x with the inverse induced metric γαβ = ∂gα

∂za
∂gβ

∂za
. Hence,

in order to understand why the prescription (6.13) stays on the data manifold, we will
in the following investigate the properties of γ for the case of well-trained generative
models.

Before returning to γ, we will first discuss the structure of the data. The probability
density of the data on X is denoted by p : X → R and the probability density
induced by g is denoted by q : X → R. For q in xα coordinates, we use the notation
qx : RNX → R. The data is characterized by S = supp(p) ⊂ X which becomes
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Fig. 6.5.: Construction of the yµ coordinates which are aligned with the data manifold
D.

Sx ⊂ RNX in xα coordinates. We will assume that the data lives approximately on a
submanifold D ⊂ S of X with dimension ND ≪ NX . In relation to the dimension of
our generative model, we assume that ND ≤ NZ ≤ NX . As a subset of X and in xα

coordinates, D will be denoted by Dx ⊂ RNX . To capture that the data does not
extend far beyond D, we assume that S has Euclidean extension δ ≪ 1, normal to
D in xα coordinates, i.e.1

Sx =

{
xD + xδ

∣∣∣ xD ∈ Dx, xα
δ ∈

(
− δ

2
,
δ

2

)}
. (6.19)

Next, we will define coordinates in a neighborhood of D which separate the directions
tangential and normal to D as illustrated in Figure 6.5. Our construction is similar
to the constructions of Riemannian and Gaussian normal coordinates, adapted for
a submanifold of codimension larger than one. First, we choose coordinates y∥ on
D and, for each p ∈ D, a basis {ni} for the tangent space TpD⊥ of the normal to
D at p. Following the usual construction of Riemannian normal coordinates, we
assign coordinates to a point q in some neighborhood of p ∈ D by constructing
an affinely parametrized geodesic σ : [0, 1] → X which satisfies σ(0) = p and
σ(1) = q and which has tangent vector σ′(0) ∈ TpD⊥. The coordinates of q are then
y(q) = (y∥(p), y⊥) ∈ RND ⊕ RNX−ND , where the ith component of y⊥ is given by the
ith component of σ′(0) in the basis {ni}. In a sufficiently small neighborhood around
D, we can find a unique basepoint p ∈ D and geodesic σ for every q.

One important aspect of this construction is that by rescaling the basis vectors
{ni}, we can rescale the components of σ′(0).2 This means we can rescale the y⊥

1The form (6.19) restricts the slices S⊥(xD) through S normal to D to be L1 balls whose size
is independent of xD. We make this restriction to simplify notation but the argument can
straightforwardly be extended to arbitrary shapes of S⊥(xD) by bounding it by an L2 ball of
radius δ/2.

2Note that this does not change the parametrization of the geodesic, hence we still have σ(0) = p
and σ(1) = q.
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coordinates arbitrarily and hence we can use this freedom to bound S in y coordinates
by the same δ that appeared in (6.19),

Sy =

{
(y∥, y⊥) ∈ RNX

∣∣∣ y∥ ∈ Dy, yi⊥ ∈
(
− δ

2
,
δ

2

)}
. (6.20)

Furthermore, in g(Z), we can choose the basis {ni} orthogonal with respect to the
(singular) metric γ and obtain in some neighborhood of D ∩ g(Z)

γµν(y) =


γ−1
D (y)

γ−1
⊥1

. . .
γ−1
⊥NX−ND


µν

. (6.21)

Note that this form of the metric together with (6.20) implies in particular that
S takes the product form mentioned in (6.9). In the following, we will show that
for well-trained generative networks and thin data distributions (i.e. for small δ),
γ−1
⊥i
→ 0. To understand the consequences for the gradient ascent update step,

consider (6.18) in yµ coordinates

γαβ ∂ft
∂xβ

=
∂xα

∂yµ
γµν ∂ft

∂yν

=
∂xα

∂yµ∥
(γ−1

D )µν
∂ft
∂yν∥

+
∂xα

∂yi⊥
γ−1
⊥i

∂ft
∂yi⊥

. (6.22)

For γ−1
⊥i
→ 0 and ∂x

∂y⊥
bounded, the second term vanishes and we arrive at

γαβ ∂ft
∂xβ
→ ∂xα

∂yµ∥
(γ−1

D )µν
∂ft
∂yν∥

(6.23)

and hence the orthogonal directions in the update step (6.18), leading away from the
data manifold D, are suppressed. Therefore, (6.18) produces counterfactuals instead
of adversarial examples.

6.3.2. Diffeomorphic counterfactuals

In this section, we show that for well-trained normalizing flows, the orthogonal
components of the inverse metric γ−1

⊥i
vanish for thin data manifolds, as formalized

in the following theorem.

Theorem 4. For ϵ ∈ (0, 1) and g a normalizing flow with Kullback–Leibler divergence
KL(p, q) < ϵ,

γ−1
⊥i
→ 0 as δ → 0

for all i ∈ {1, . . . , NX −ND}.
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Fig. 6.6.: Construction of the curve τ used in Section 6.3.3.

The main argument of the formal proof given in Appendix C.1.1 proceeds as follows:
First, we show that a small Kullback–Leibler divergence implies that most of the
induced probability mass lies in the support of the data distribution,∫

Sx

qx(x)dx > 1− ϵ . (6.24)

Next, we write qx as the pull-back of the latent distribution qz under the flow
g using the familiar change-of-variables formula for normalizing flows. In the yµ

coordinates introduced above, the resulting integral then factorizes according to the
block-diagonal structure (6.21) of the metric with integration domain [−δ/2, δ/2]
for the yi⊥ directions. As δ → 0, the bound (6.24) can only remain satisfied if the
associated metric component γ⊥i

diverges, implying that γ−1
⊥i
→ 0.

Following the steps at the end of Section 6.3.1, we see that this necessarily implies
that the gradient ascent update (6.13) stays on the data manifold, since ∂x

∂y⊥
is

constant (and therefore bounded) as δ → 0.

6.3.3. Approximately diffeomorphic counterfactuals

In Section 6.2.4, we introduced approximately diffeomorphic counterfactuals which
can be obtained using VAEs or GANs. To derive a theorem similar to Theorem 4
for the case of approximately diffeomorphic counterfactuals, we will, however, need
stronger assumptions since the generative models are in this case not bijective. In
particular, we will assume that the generative model captures all of the data, i.e.
that D ⊂ g(Z), implying that in y coordinates, although γ is singular for NZ < NX ,
the component γD is non-singular. Therefore, we split the y⊥,i directions into
NX −NZ singular directions and NZ −ND non-singular directions. Since the inverse
metric vanishes by definition in the singular directions, the theorem focuses on the
non-singular directions and can then be stated as follows,
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Theorem 5. If g : Z → X is a generative model with D ⊂ g(Z) and image g(Z)
which extends in any non-singular orthogonal direction yi⊥ outside of D,

γ−1
⊥i
→ 0

for δ → 0 for all non-singular orthogonal directions yi⊥.

The proof can be found in Appendix C.1.2 and proceeds as follows: First, we construct
a curve τ : [0, 1] → Z which cuts through S along the yi⊥-coordinate line and lies
completely in g(Z), as illustrated in Figure 6.6. Then, the length L(τ) of this curve
(with respect to γ) computed in yµ-coordinates is, for small δ, approximately given
by

L(τ) ≈
√
γ⊥i

(xD) (x1,⊥
i − x0,⊥

i) . (6.25)

Bounding the difference by δ and using that L(τ) is constant, yields the desired
result. As in the case of Theorem 4 above, this implies again that the gradient ascent
update (6.13) does not leave the data manifold as shown in (6.23).

6.4. Experiments

In this section, we show experimental results for our methods—diffeomorphic coun-
terfactuals and approximately diffeomorphic counterfactuals—on different data sets,
using various architectures for the generative models introduced in Section 6.1. For
comparison we also construct adversarial examples on the same data sets.

For all experiments, we use the same setup: We require a pre-trained classifier f
and start with a data point x from the test set that is predicted by the classifier
f as belonging to the source class. We define the target class t and the target
confidence Λ. To produce an adversarial example, we then update the original data
point following the gradient in X , ∂ft(x)

∂x
, until we reach the desired target confidence.

For the counterfactuals, we also require a pre-trained generator g. To produce a
counterfactual we then first project the original data point into the latent space
of the generative model g by applying the inverse generative model g−1(x) = z,
or an appropriate approximation (for GANs). We then update the original latent
representation z following the gradient in Z, ∂(ft◦g)(z)

∂z
, until we reach the desired

target confidence.

We first illustrate results for diffeomorphic counterfactuals using a toy example in
three-dimensional space. This allows us to directly visualize the data manifold and
the trajectories of gradient ascent in X and Z.

We then apply our diffeomorphic counterfactual method to four different image
data sets, introduced in Section 2.2. We use MNIST, CelebA and CheXpert for
classification tasks and the Mall data set for a regression task. We evaluate the results
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qualitatively and quantitatively. Furthermore we discuss approximately diffeomorphic
counterfactuals, which allow us to consider high resolution data.

For details on model configuration, training and hyperparameters we refer to Ap-
pendix C.2.

6.4.1. Diffeomorphic counterfactuals

6.4.1.1. Toy example

We consider a uniform data distribution along a one-dimensional manifold, a helix,
that is embedded in three-dimensional space and train a normalizing flow with a
RealNVP architecture [205]. We divide the data into two classes, corresponding to
the upper and the lower half of the helix, and train a simple classifier.

gradient ascend in X
gradient ascend in Z
data point x

adversarial x′

counterfactual g(z′)

Fig. 6.7.: Gradient ascent in X leads to points that lie significantly off-manifold while
gradient ascent in Z moves along the data manifold. The ground truth for
different classes is depicted in orange (source class) and gray (target class).

Figure 6.7 demonstrates the application of our method on this basic setup. Starting
from an original data point x on the helix, we apply gradient ascent in input space
X using (6.12), and in the latent space of the flow Z, using (6.13), respectively.
We observe that gradient ascent in X leads to points that lie significantly off data
manifold S. In contrast to that, the updates of gradient ascent in the latent space Z
follow a trajectory along the data manifold resulting in a point on the helix with the
desired target classification.

As, in this toy example, the data manifold can be described analytically, it is possible
to calculate the distances to the data manifold for any points found via gradient ascent
in X or Z. For a quick, quantitative evaluation of our toy setup, we perform 1000
optimizations in the input space X and latent space Z , respectively (all optimizations
reach the desired target confidence), and calculate the Euclidean distances between
the resulting points and the helix. The median distances when performing gradient
ascent in X and in Z are 2.34 and 0.01 respectively (see also Section C.2.1 in the
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Fig. 6.8.: Counterfactuals for MNIST (‘four’ to ‘nine’), CelebA (‘not-blond’ to ‘blond’),
and CheXpert (‘healthy’ to ‘cardiomegaly’). Columns of each block show
original image x, counterfactual x′, and difference h for three selected data
points. First row of each block is our diffeomorphic counterfactuals, i.e.
obtained by gradient ascent in Z space. Second row of each block is standard
gradient ascent in X space. Heatmaps h show the difference |x−x′| summed
over color channels.

appendix). This clearly illustrates the benefit of performing gradient ascent in the
latent space Z.

6.4.1.2. Image classification and regression

We now demonstrate how our method generates diffeomorphic counterfactuals for
classification and regression tasks on different image data sets.

We train a ten-class CNN on MNIST (test accuracy of 99%). For CelebA and
CheXpert, we train a binary CNN on the blond attribute (test accuracy of 94%) and
the cardiomegaly attribute (test accuracy of 86%), respectively.

For the Mall data set we choose a regression task that estimates the number of
pedestrians in the image. We train a U-Net [210] that outputs a probability map
of the size of the image and a scalar regression value, which corresponds to the

97



Chapter 6. Counterfactual explanations with generative models

Fig. 6.9.: Counterfactuals for Mall (‘few’ to ‘many’) and Mall (‘many’ to ‘few’).

approximated number of pedestrians in the picture. Following the definitions by
Ribera et al. [211], our trained U-Net reaches a RMSE for the head count of 0.63.
When we run our gradient ascent algorithm, we aim to maximize, or minimize, merely
the scalar regression value, i.e. the number of pedestrians.

For the generative models we choose a flow with RealNVP-type couplings [205] for
MNIST and the Glow architecture [206] for CelebA, CheXpert and the Mall data set.

The generation of adversarial examples and counterfactuals then proceeds as follows:
We start from original data points x of the classes ‘four’ for MNIST, ‘not blond’
for CelebA and ‘healthy’ for CheXpert. We select the classes ‘nine’, ‘blond’, and
‘cardiomegaly’ as targets t for MNIST, CelebA, and CheXpert, respectively, and
take the confidence threshold to be Λ = 0.99. For the Mall data set, we maximize
the regression value r (threshold at r = 10) if few pedestrians were identified in the
original image x and minimize the regression value (threshold at r = 0.01) if many
pedestrians were detected. We use Adam to optimize in X and Z until the confidence
threshold Λ for the target class t, or the desired regression value, is reached.

We show some examples of successful optimizations in Figures 6.8 and 6.9. Our
diffeomorphic counterfactuals indeed show semantically meaningful deformations, in
particular when compared to the adversarial examples. The counterfactuals resemble
images from the data set that have the target class as the ground truth label. At
the same time the counterfactuals are similar to their respective source images with
respect to features that are irrelevant for the differentiation between source and
target class.

For digits from MNIST, the stroke width and the writing angle remain unchanged
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in the counterfactuals while the gap in the upper part of the ‘four’ changes to the
characteristic upper loop of the ‘nine’.

For CelebA, the changes in the counterfactuals are focused on the hair area, as evident
from the heatmaps h, while facial features and background stay (approximately)
constant.

The counterfactuals for the CheXpert data set mostly brighten the pixels in the
central region of the picture leading to the appearance of an enlarged heart. The
other structures in the image remain mostly constant.

Also for pictures taken from the Mall data set, we observe that the counterfactuals
remain close to the original images while showing structural changes. When maxi-
mizing the regression value, pedestrians are generated at the picture’s edge or appear
around darker areas in the original image. When minimizing pedestrians, we observe
that the counterfactuals reproduce the darker parts of the floor and lines between
the tiles.

In summary, the counterfactuals in Figures 6.8 and 6.9 reproduce semantic differences
between classes that humans would deem important, suggesting that the predictive
models base their decisions on the correct features.

6.4.1.3. Quantitative analysis

For a quantitative assessment of our counterfactuals we run our algorithm on a few
hundred images per classification and regression task. We then use a variety of
approaches to evaluate the resulting counterfacutals and adversarial examples, as
detailed in the following.

Oracle As counterfactuals should resemble actual data points from the target class
while adversarial examples do not, we would expect counterfactuals to generalize
better to other, independently trained prediction models.

We therefore train a 10-class support vector machine (SVM) on MNIST (test accuracy
of 92%) and binary SVMs on CelebA (test accuracy of 85%) and CheXpert (test
accuracy of 70%). The counterfactuals found by performing gradient ascent in Z
generalize significantly better to these simple models suggesting that they indeed
use semantically more relevant deformations than conventional adversarial examples
produced by gradient ascent in X .

For the Mall data set, we train a slightly larger U-Net (RMSE for head count 0.72)
and calculate regression values for the original images, the adversarial examples
found in X and the counterfactuals found in Z. As expected, the regression values
for the counterfactuals are significantly closer to the target values (r = 10 when
maximizing and r = 0.01 when minimizing) than those of original images and
adversarial examples.
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Figure 6.10 summarizes these findings.
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Fig. 6.10.: Left: accuracy with respect to the target class k generalizes better to SVM
for diffeomorphic counterfactuals. Right: regression values for oracle are
closer to target values for Z-based counterfactuals (bars show means and
errors denote one standard deviation).

Nearest neighbours We expect valid counterfactuals to look like images from the
target class. If we consider nearest neighbours to these counterfactuals, we would
also expect the nearest neighbours to belong primarily to the target class. This is
in contrast to the nearest neighbours for the original images and the adversarial
examples, which we expect to belong mostly to the source class.

To verify these expectations, we compare the original images and the images modified
in X and Z with data from the data set. We find the k-nearest neighbours (with
respect to the Euclidean norm) and their respective ground truth classification or
regression value. For MNIST, CelebA and CheXpert, we then check what percentage
of the nearest neighbours was classified as the target class. For Mall, we check
the average number of pedestrians present in the nearest neighbours. Figure 6.11
shows that the ten nearest neighbours of the diffeomorphic counterfactuals for
MNIST, CelebA and CheXpert share the target classification more often than the
nearest neighbours for the original images or the adversarial examples, confirming our
assumptions. For the Mall data set the three nearest neighbours of each counterfactual
have, on average, regression values that more closely match the target regression
value (r = 10 when maximizing and r = 0.01 when minimizing).

IM1 and IM2 Van Looveren and Klaise [212] propose two metrics to test inter-
pretability: the first metric, IM1, is defined by

IM1 =
||x′ − AEt(x

′)||
||x′ − AEc0(x

′)||+ ϵ
, (6.26)

where AEc0 and AEt are two autoencoders which were each trained on data from
only one class (original class c0 and target class t, respectively) and ϵ is a small

100



6.4. Experiments

MNIST
9

CelebA
blond

CheXpert
cardiomegaly

0

25

50

75

original images grad asc in X grad asc in Z

Mall (max) Mall (min)
0

2

4

re
gr

es
si

on
va

lu
e

Fig. 6.11.: Left: ground truth class for the ten nearest neighbours (NNs) matches
the target value (‘9’, ‘blond’ and ‘cardiomegaly’) more often for the coun-
terfactuals found in Z. Right: ground truth pedestrian counts averaged
over the three nearest neighbours are closer to target values for diffeomor-
phic counterfactuals. Bars show means and errors denote one standard
deviation.

positive value. The second metric, IM2, is defined by

IM2 =
||AEt(x

′)− AE(x′)||
||x′||1 + ϵ

, (6.27)

where AE is an autoencoder trained on all classes.

IM1 and especially IM2 have been repeatedly critisized [213–215]. For IM2, one
divides by the one-norm ||x′||1 of the modified image. This value is large if the image
has more bright pixels. Consequently, images with brighter pixels will tend to have a
smaller IM2, even though they might not be more interpretable. We therefore limit
our evaluation to IM1. In Table 6.1, we show mean and standard deviation for the

data set images IM1

MNIST
original 2.250 ± 0.711

gradient ascent in X 1.603 ± 0.317
gradient ascent in Z 1.056 ± 0.233

CelebA
original 1.160 ± 0.303

gradient ascent in X 1.144 ± 0.287
gradient ascent in Z 0.807 ± 0.222

Tab. 6.1.: Interpretability metric IM1 values for MNIST and CelebA calculated for
original images, adversarial examples and counterfactuals. Low values
mean better interpretability. We show mean and standard deviation.

interpretability metric IM1 for the MNIST and CelebA data sets. We calculate the
values for the original images, the adversarial examples, produced by gradient ascent
in X space, and the diffeomorphic counterfactuals, produced by gradient ascent in Z
space. A low value for IM1 means the image is better represented by an autoencoder
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trained on only the target class. Diffeomorphic counterfactuals achieve a lower IM1
value than the adversarial examples, suggesting they are more interpretable.

Similarity to original images Counterfactuals are usually required to be minimal,
that is they should be the closest point to the original data point, that lies on the
data manifold and reaches the desired confidence Λ with respect to the target class
t. We do not encourage similarity explicitly by minimizing some distance function
between the counterfactual and the original image. Other approaches penalize, for
example, the Euclidean distance in X between the counterfactual and the original
input during the search process. We argue, that the relevant distance is to be
computed by the induced metric on the data manifold S or, equivalently, by the
flat metric in the latent space Z. Although we do not optimize for resemblance to
the original input, our counterfactuals still preserve high similarity to the respective
source images. We confirm this by calculating the Euclidean distances in X and Z
between counterfactuals and all images of the source class.
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Fig. 6.12.: Euclidean distances in X and Z for adversarial examples (first row) and
counterfactuals (second row) for the CelebA dataset. Counterfactuals lie
closer to their respective source image than adversarial examples when
measured in Z, i.e. along the data manifold.

The average Euclidean norm between counterfactuals and the respective source images
is significantly lower than the average Euclidean norm between counterfactuals and
all images of the source class. For adversarial examples, we expect the Euclidean
distances in X to the respective source image to be very small while the Euclidean
distances in Z should be larger. Figure 6.12 illustrates this by presenting the
distribution of distances in X and Z between counterfactuals or adversarials and their
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respective source images as well as distances between counterfactuals or adversarials
and all images of the source class for the CelebA data set.

We refer to the Appendix C.2.6 for graphs for the other data sets.

In Table 6.2, and Table 6.3 we show the averaged Euclidean norms of the distances
in X and Z for counterfactuals and adversarials respectively for all the considered
data sets, confirming our expectations.

data set img L2 source image L2 source class

MNIST in X 2.54 ± 0.61 8.77 ± 1.25
in Z 4.82 ± 1.20 9.27 ± 1.32

CelebA in X 2.84 ± 1.15 41.13 ± 10.03
in Z 19.10 ± 6.08 40.79 ± 9.19

CheXpert in X 1.59 ± 0.46 33.68 ± 6.49
in Z 13.69 ± 4.54 34.71 ± 6.51

Mall (min) in X 1.34 ± 0.39 19.11 ± 2.67
in Z 10.98 ± 3.66 17.39 ± 3.10

Mall (max) in X 1.33 ± 0.17 9.31 ± 3.40
in Z 15.90 ± 5.28 19.35 ± 6.36

Tab. 6.2.: Euclidean norms L2 in X for adversarial examples found via gradient ascent
in X and counterfactuals found via gradient ascent in Z. We show mean
and standard deviation.

data set img L2 source image L2 source class

MNIST in X 41.86 ± 2.00 42.12 ± 0.74
in Z 35.26 ± 4.68 39.91 ± 1.61

CelebA in X 473.72 ± 171.49 542.21 ± 149.63
in Z 138.35 ± 23.43 380.24 ± 41.23

CheXpert in X 355.50 ± 114.23 539.18 ± 88.40
in Z 64.90 ± 25.33 400.31 ± 48.49

Mall (min) in X 160.53 ± 33.67 199.45 ± 28.56
in Z 78.56 ± 11.84 180.39 ± 15.78

Mall (max) in X 142.50 ± 7.61 153.96 ± 8.80
in Z 116.85 ± 27.50 161.64 ± 23.99

Tab. 6.3.: Euclidean norms L2 in Z for adversarial examples found via gradient ascent
in X and counterfactuals found via gradient ascent in Z. We show mean
and standard deviation.

6.4.1.4. Tangent spaces

A non-trivial consequence of our theoretical insights is that we can infer the tangent
space of each point on the data manifold from our flow g. Specifically, we perform
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a singular value decomposition of the Jacobian ∂g
∂z

= U ΣV and rewrite the inverse
induced metric as

γ−1 =
∂g

∂z

∂g

∂z

T

= U Σ2 UT . (6.28)

As our theoretical analysis in Section 6.3 showed, for data concentrated on an ND-
dimensional data manifold D in an NX -dimensional embedding space X , the inverse
induced metric γ−1 has NX −ND small eigenvalues. Furthermore, the eigenvectors
corresponding to the large eigenvalues will approximately span the tangent space of
the data manifold.

For our toy example from Section 6.4.1.1, we can directly show the parallelepiped at
each point, spanned by the three eigenvectors in three-dimensional space. Figure 6.13
(left) indeed shows that the parallelepipeds are significantly contracted in two of
the three dimensions making them appear as lines. For the high-dimensional image
data sets, which are discussed in Section 6.4.1.2, we show the sorted eigenvalues,
averaged over 100 random data points per data set in Figure 6.13 (right). These
experiments confirm the theoretical expectation that the eigenvectors belonging to
the large eigenvalues indeed span the tangent space of the manifold.
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Fig. 6.13.: Left: As expected from the theoretical analysis, the parallelepiped spanned
by all three eigenvectors of the inverse induced metric scaled by the
corresponding eigenvalues is, to good approximation, one-dimensional, i.e.
of the same dimension as the data manifold, and tangential to it. Right:
The Jacobians of the trained flows have a low number of large and a large
number of small eigenvalues, suggesting that the images lie approximately
on a low-dimensional manifold. Both axes are scaled logarithmically.

6.4.2. Approximately diffeomorphic counterfactuals

In this section, we present our experimental analysis of approximately diffeomorphic
counterfactuals for which we use VAEs and GANs. As explained in Section 6.2.4,
an important downside of approximately diffeomorphic counterfactuls is that the
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latent representation z of the original image x is usually lossy, i.e. g(z) ̸= x,
since the diffeomorphism is only approximate and not exact. An advantage of this
approximation is that our method can be scaled to data of very high-dimensionality.
Both of these statements will be demonstrated experimentally in the following. We
use the same classifiers as before in Section 6.4.1.2.

MNIST and CelebA We use a simple convolutional VAE (cVAE) for the MNIST
data set and find counterfactuals using gradient ascent in the latent space of the
cVAE. Results are shown in Figure 6.14 in the left most block. The encoded and
decoded images x̃ (second column of the block) appear slightly fuzzy but reproduce
most characteristics of the original images. Evidently, approximately diffeomorphic
counterfactuals, found by gradient ascent in the latent space of the cVAE, replicate
features irrelevant for classification, such as stroke width and writing angle while
structurally modifying the image so that it resembles an image of the digit nine.

Fig. 6.14.: Counterfactuals for cVAE on MNIST (left block), dcGAN on MNIST
(middle block) and pGAN on CelebA (right block). Columns of each block
show original image, decoded latent representation of original, counterfac-
tual and absolute difference |x̃− x̃′| summed over color channels.

We furthermore apply our method to a simple convolutional GAN (dcGAN) [216]
for MNIST and a progressive GAN (pGAN) [150] for CelebA. As discussed in
Section 6.2.4, GANs do not require an encoder during the training process and we
apply GAN inversion methods to find an encoding of the source image. Specifically,
for MNIST and CelebA, as these are relatively low-dimensional data sets, we find
a fitting latent representation z by minimizing the Euclidean norm between the
decoded latent representation g(z) and the original image x. Results are shown in
Figure 6.14 in the middle and right block.

The dcGAN on MNIST produces some random pixel artifacts, but the generated
images are sharper than those produced by the cVAE.

For the CelebA images generated with pGAN, we see that the decoded optimized
latent representation of the original image deviates slightly from the original. This is
especially visible if the composition is not typical (arm is not properly reproduced
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in the first row) or the background is highly structured (second row). For the
approximately diffeomorphic counterfactuals, we observe even larger changes in the
background. This may be attributed to the imperfect inversion process and the
quality of the pGAN, i.e. the fact that the diffomorphism is only approximate and
not exact.

CelebA-HQ To demonstrate the scalability of approximately diffeomorphic expla-
nations to very high-dimensional data, we use a StyleGAN [3,4], pre-trained on the
CelebA-HQ data set, as a generator for images of resolution 1024× 1024. We use the
HyperStyle [217] GAN-inversion techniques to find the initial latent representation of
a given source image. In order to use the same classifier as before, we downscale the
images to 64×64 resolution before using them as input to the classifier. As illustrated
by Figure 6.15, approximately diffeomorphic counterfactuals lead to semantically
meaningful and interpretable results even on this very high-dimensional data set.

Fig. 6.15.: Counterfactuals generated with HyperStyle and Celeba-HQ. Columns
show original, decoded latent representation, counterfactual and absolute
difference |x̃− x̃′| summed over color channels.
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6.5. Related work

In this section, we compare our approach with existing methods. Our approach is
closest in spirit to the one taken by Joshi et al. [126], who introduce an algorithm
that applies gradient ascent in the latent space of a generative model (they mention
VAEs and GANs), while minimizing the difference between original and modified
data point. The application concentrates on recourse for tabular data. The examples
shown for image data are limited to a VAE (which results in relatively low quality
counterfactuals) and lack quantitative evaluation.

Our method is different to most other methods in a few key aspects:

• We introduce both diffeomorphic and approximately diffeomorphic counterfac-
tuals and theoretically analyse them in a unified manner which allows us to
compare the relative strengths and weaknesses of these approaches.

• Our approach is fully atomized and relies on gradients for the target class with
respect to the latent representation of the image.

• We do not require additional hyperparamters, beyond those also required for
finding adversarial examples.

• Our method is very modular, as we can combine pre-trained classifiers and
generative models and do not require retraining for any particular architecture.

• We consider a variety of quantitative metrics to evaluate the quality of our
generated counterfactuals.

A comparatively small number of publications consider normalizing flows, which
started to gain attention relatively recently, in the context of generating counterfac-
tuals.

Hvilshøj et al. [218] rely on classifier independent linear interpolation between two
class centres in the base space of a flow. Sixt et al. [219] train a linear binary classifier
directly in the base space of the flow. Adding the weight vector corresponding to
the target class to the base space representation and projecting back to image space
then produces a counterfactual with semantically changed features.

Other works use VAEs to generate counterfactuals.

Dhurandhar et al. [125] use elastic net regularization to keep the perturbation δ
to the original data small and sparse. Furthermore, they use an autoencoder to
minimize the reconstruction loss of the modified image and thus make sure the
counterfactual lies on the data manifold. This approach was expanded by adding
a prototype loss [212]. Both approaches test their algorithm on tabular data and
MNIST. Kim et al. [35] specifically train a “Disentangled Causal Effect Variational
Autoencoder” and then generate counterfactuals conditioned on the original image
and the label they aim to change.
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A number of approaches use GANs to generate counterfactuals.

Zhao et al. [138] find “natural adversarial examples” by perturbing the latent repre-
sentation of a Wasserstein GAN using exhaustive search or continuous relaxation
until they achieve a desired target classification.

Chang et al. [220] use a conditional GAN for infilling regions that were previously
removed from the original image. Their proposed algorithm aims to find an infilling
mask which maximizes or minimizes the classification confidence while penalizing
the size of the region that is replaced in the original.

In some works [221–223], the classifier is incorporated in the training process of the
GAN. After the training, the GAN generates counterfactuals without querying the
classifier.

Lius et al. [224] use a GAN specifically trained for editing that they condition on
the original query image and the desired attributes. They apply gradient descent to
find attributes that cause the GAN to generate an image that the classifier predicts
as the target class, while at the same time enforcing the image to be close to the
original.

Similarly to [219], Shen et al. [225] train a linear SVM in the latent space of a
GAN using generated images. They can then modify the latent representation of an
inverted image linearly along the normal directions of the learned SVMs.

6.6. Limitations

Dependence on generative model The quality of the counterfactuals obtained
with our method is largely dependent on the capacity of the underlying generative
model. Challenges with generative modeling, for example mode dropping, where
parts of the data manifold are not captured by the generative model, therefore also
impact the counterfactuals found with our method. As the the capacity of the
generative model is dependent on the underlying data set, we can see limitations for
our method when features of the original starting data point are rarely present in
combination with features, that are correlated in the training data with the target
class. For example: our method has difficulties finding high-quality counterfactuals
for the target class blond on the CelebA data set when starting from images that
show people with hats, people that are bald or people that have dark skin. We show
a few of these examples in Figure C.7.

Due to the dependence of our counterfactuals on the predictive model and the gener-
ative model, it might not always be clear if a correlation observed in a counterfactual
is due to the predictive model using the correlated features for the classification,
or due to the generative model combining the features in the approximated data
distribution, or both. For example we sometimes observe increased makeup or lighter
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skin tone in counterfactuals for the CelebA data set for the target class blond (see
Figure C.8).

Counterfactuals for different targets Our main experiments focus on a few
distinct classes. For some target classes the transition between original image and
counterfactual is quite easily understood and intermediate images seem likely under
the data distribution. For example when going from a picture of a person with brown
hair to a picture of the same person with blond hair, we can imagine very well how
intermediate pictures might look (see also Figure C.3). In contrast, some transitions
between pictures of two different classes do not seem continuous and might have
to traverse low probability areas. For example, going from a person not wearing
a hat to a person wearing a hat seems like the transition should be quite abrupt.
In addition to this, samples of images with specific attributes can be more or less
likely in the training distribution and therefore more or less easily captured by the
generative model. For some queries our approach might therefore work better than
for others. We show counterfactuals for different queries in Appendix C.3.3.

Simple loss function Our approach includes a very basic loss function with only
the hyperparameters of the optimizer (for example the learning rate) to tune. Other
works incorporate regularizers to achieve sparse counterfactuals or high similarity to
the source image. Our method can be seen as a baseline, which can be adapted for
specific use cases. We do not explore additional requirements, such as actionability
or proximity to another target class, beyond this simple loss function.

Evaluation of resulting explanations The quantitative assessment of counterfac-
tuals is still an active research area, a summary of quantitative measures can be
found in [213].

We evaluate our counterfactuals mainly with respect to two criteria: how they
compare to other images of the target class and how close they lie to the original
image or images from the source class, respectively. We do so by investigating how
counterfactuals generalize to other classifiers, by measuring their distances to data
points in X and Z , and by calculating the IM1 metric. We also do visual assessments
ourselves. As reference points we use our generated adversarial examples.

Other works on counterfactual explanations [33, 138, 219, 223] undertake user studies
to determining the interpretability of the generated counterfactuals. One could
extend our evaluation to a similar user study.

One could also evaluate the resulting counterfactuals using additional measures
like the Fréchet Inception Distance (FID) score [226], applied in [35, 222, 227] or
substitutability, applied in [35,221].
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Furthermore, an evaluation of the resulting heatmaps, that highlight the changed
areas between counterfactuals and original images, using pixel flipping and related
metrics [26,164,221,228,229] or evaluating the counterfactuals using the “Remove
And Retrain” (ROAR) algorithm [180] could be interesting.

Our quantitative analysis is limited to our main experiments using normalizing flows
as generative models. We do not provide quantitative results for counterfactuals
generated with GANs or VAEs. We also do not compare our method directly with
other methods that generate counterfactuals. A larger survey that compares several
approaches to generating counterfactuals on different evaluation metrics might be
very valuable for the ML community but is beyond the scope of this thesis.

Application beyond images Our experiments focus on different image data sets,
as for images the differences between counterfactuals and adversarial examples are
especially striking and easy to spot for a human. Another interesting application
domain for our method would be natural language processing, especially audio signals.
Audio signals (unlike written text) exist on a continuum, similar to pixel values for
images. Small perturbations of adversarial attacks can therefore change the prediction
of audio input without being perceptible for humans while valid counterfactuals
should be clearly identifiable. We leave experiments on data beyond images for future
work.

6.7. Summary

In this chapter, we proposed theoretically rigorous yet practical methods to generate
counterfactuals for both classification as well as regression tasks, namely exact and
approximately diffeomorphic counterfactuals. The exact diffeomorphic counterfac-
tuals are obtained by following gradient ascent in the base space of a normalizing
flow. While approximate diffeomorphisms are obtained with the help of either gen-
erative adversarial networks or variational autoencoders. Our theoretical analysis,
using Riemannian differential geometry, shows that for well-trained models, our
counterfactuals necessarily stay on the data manifold during the search process and
consequently exhibit semantic features corresponding to the target class. Approx-
imately diffeomorphic counterfactuals come with the risk of information loss but
allow excellent scalability to higher dimensional data. Our theoretical findings are
backed by experiments which both quantitatively and qualitatively demonstrate the
performance of our method on different classification as well as regression tasks and
for numerous data sets.

The application of our counterfactual explanation method is straightforward and
requires no retraining, so that it can be readily applied to investigate common
problems in deep learning like identifying biases for classifiers or training data or
scrutinizing falsely classified examples.
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7.1. Conclusion

Machine learning models, especially deep neural networks, are potent predictors
which have cracked many long-standing challenges in scientific research and industrial
applications. However, the way these models obtain their decisions remains incompre-
hensible to humans. As relevant information might hide in the decision process itself,
not having access to it restricts the potential for discoveries. Furthermore, machine
learning models might base their predictions on spurious correlations in the data,
which can go undetected during development but severely limits their performance
in practice.

The field of explainable artificial intelligence aims to solve these limitations by
allowing us to peek inside the black box of deep neural networks. Explanation
methods have already proven helpful in delivering insight into the reasoning processes
of neural networks and application areas are growing steadily. However, some aspects
of these methods are not adequately understood. This is problematic as we might
not be able to trust such explanations.

In this thesis, we presented steps towards a unified geometrical understanding of
explainability. We applied tools from differential geometry to discover limitations of
explanation methods and understand the underlying reasons for certain behaviors.
We then used our insights to develop robust attribution methods and interpretable
counterfactual explanations.

In Chapter 4, we showed that many popular attribution methods can be arbitrarily
manipulated by adding imperceptible perturbations to the input. Analyzing this
surprising property theoretically led us to identify the high curvature of the neu-
ral network’s output manifold as the source of the explanation’s susceptibility to
manipulation.

Awareness of shortcomings and unexpected properties of explanations is highly
critical in scenarios where crucial decisions are based on the explanation, in addition
to the prediction, of a neural network. Especially in medicine or law enforcement,
it is paramount to know the limits of explanation methods in order to apply them
effectively. Our discovery of how easily many popular attribution maps can be
arbitrarily manipulated is therefore a call for caution to not blindly trust any
explanation one might encounter.
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We proceeded by seeking to mitigate this undesired behavior from different angles.
We introduced a new explanation method, β-smoothing, which smooths out the kinks
with diverging curvature inflicted by the popular ReLU activation function. This
modification provably reduced the upper bound on the network curvature and led to
explanations that are less noisy and more robust against adversarial perturbations.
Furthermore, β-smoothing could be seen as a meta explanation method applicable
to all attribution methods we introduced in Section 2.1.2.

In Chapter 5, we tackled the question of robustness from a different angle—by
investigating how we can modify the training procedure so that the emerging neural
networks have robust explanations by default. We expanded on the theoretical results
of the preceding chapter and identified three approaches that limit a neural network’s
curvature in different manners: regularizing the weight norms, introducing smooth
activation functions, and directly minimizing the Hessian norm. We demonstrated
the effectiveness of these methods with numerous experiments.

Mitigating the susceptibility of explanations to manipulation and increasing their
robustness guarantees their dependable results during use and thus bolsters confidence
in explanation methods. Robustness against adversarial attacks is of especially great
importance in safety-critical applications. The rise of legal requirements for machine
learning systems, such as the ‘right to explanation’ in the European Union general
data protection regulation, also calls for reliable explanations, as our work advocates.

Attribution methods have become popular due to their straightforward implementa-
tion and rapid results. Depending on the application and the audience, other types
of explanations may offer additional insights or can be easier to understand. We
therefore expanded our research to the field of counterfactual explanations.

Counterfactual explanations are very natural to interpret, which makes them an
excellent choice for applications where laypeople desire explanations for the decisions
of machine learning systems. One of the main characteristics of counterfactuals,
as opposed to adversarial examples, is that they lie on the data manifold. Until
recently, the problem of achieving good approximations of data manifolds embedded
in high-dimensional spaces was still an open research question. Lately, the field of
generative modeling has made significant progress towards answering this question.

In Chapter 6 we focused on counterfactual explanations. Using concepts from
differential geometry, we showed how applying gradient ascent optimization of the
target class in the latent space of a well-trained generative model provably moves
along the data manifold. Based on these theoretical insights, we introduced an
algorithm that produces counterfactuals with semantic features that resemble the
target class but are otherwise very similar to the original query image. This is in
contrast to gradient ascent in data space, which quickly leads off the manifold and
results in adversarial examples which are indistinguishable from the original image
but are predicted to be of the target class.

Our results are part of pioneering work leveraging generative models’ capacity to
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find high-quality counterfactuals. Our method is notably modular and easy to use
since it requires no retraining. For these reasons, we expect that our method will be
widely adopted.

In conclusion, we have tackled various significant limitations of explainable artificial
intelligence and showed how to overcome them. Examining the problems from
the viewpoint of differential geometry has enabled us to make precise theoretical
statements about the properties of explanations. These abstract considerations have
given us the necessary insights to develop efficient methods to boost the robustness
of attribution methods and introduce an elegant algorithm to find interpretable
counterfactual explanations. Our theoretical findings are supported by numerous
experiments and thorough quantitative evaluations thereof.

7.2. Outlook

Research on the robustness of explanations will continue to play a major role in the
development and application of explanation methods. Previous work [17, 18, 127]
and our contributions [37, 38] have sparked significant interest in the unexpected
behaviors of many popular explanation methods. The full extent of how concerning
such manipulations of explanations are is yet to be determined. A pressing direction
for future research is, for example, to find out how vulnerable explanations are to
black box attacks, i.e., when there is no access to the model’s gradient or architec-
ture. This thesis already offers partial answers to this question, as we show that
random input perturbations can affect the explanation and discuss that adversarially
perturbed inputs generalize partially to different explanation methods but not to
different architectures. Recent work [163] also found that averaging over the expla-
nation maps of different methods increases robustness to adversarial perturbations.
However, more detailed studies are required as an arms race between defense and
offense concerning explanation manipulation could arise, analogous to conventional
adversarial attacks [230].

Investigating analogies between our attacks and conventional adversarial attacks
is a promising line of research in its own right, especially as there are similarities
between the robustness measures, as proposed in Chapter 5, and efforts to improve
the robustness of neural networks against adversarial attacks [231, 232]. Another
research direction, that could lead to defense mechanisms, is to study the noise
structure of the adversarial perturbations. These patterns might be easier to expose
than for conventional adversarial attacks, as the targets for explanation manipulation
are usually high dimensional and seem to correlate with the added perturbations
(see Figure 4.3 and A.4).

Though in this thesis we restricted our experiments to image data, we expect the
presented adversarial attack to generalize to audio and other high-dimensional
continuous data without many algorithm adaptations. However, manipulating
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explanations based on text could be challenging due to the discrete nature of written
words. If this was confirmed, text-based explanations for images could be an excellent
choice in settings where robustness against adversarial manipulation is paramount.

As our work showcases, we can counteract the manipulability of explanations by
introducing robust explanation methods, like β-smoothing, or by making the network
intrinsically less susceptible to input perturbations. Hybrid approaches might offer
additional advantages but have gained little attention so far.

Our experimental analysis in Section 5.2.4 revealed that the effect of our robustness
enhancing measures differs depending on which network architecture they are applied
to. A more extensive study of how the geometry of decision surfaces differs between
architectures could unveil further influences on explanation robustness. For more
experimental evaluation approaches it would be advantageous to develop a unified
framework for testing the robustness of explanations. First promising projects [233]
are already heading in this direction.

Another research direction could investigate connections between robustness and
related evaluation measures for explanations. For example, recent work [179] has
aimed to quantify the uncertainty for attribution maps. It would be interesting to
explore how uncertainty in explanations relates to the robustness of neural networks
against manipulations of the explanation.

Research into counterfactuals for high dimensional data is only beginning to thrive
and offers many exciting directions to explore. With the rise of generative models,
many works have studied the latent space of these models [234–236]. Our approach
to counterfactuals relates generative models to predictive models. This connection
could offer interesting new directions when analyzing latent spaces. Future work
could, for example, study how decision boundaries of predictive models translate into
latent spaces or examine the trajectories taken by our algorithm when generating
counterfactuals.

Counterfactuals can, in theory, be very diverse since multiple, quite different al-
ternative inputs could cause a similar change in prediction. Current approaches
guide the search for counterfactuals by adding additional restrictions to the loss
function. Our approach offers the possibility to access directions in latent space
directly. One could implement this by only calculating the gradients for specific
dimensions of disentangled latent space vectors. Some generative models also have
latent encodings on different structural levels (for example, the Glow architecture for
normalizing flows [206] or the structure induced by progressively growing GANs [150]).
For images, these different levels of latent encodings could correspond to low-level
features, such as object compositions, and high-level structures, such as detailed hair
structure in the CelebA data set. One could then imagine low-level and high-level
counterfactuals, respectively.

We have used latent spaces of normalizing flows, GANs, and VAEs. Interesting
extensions to our work could explore adaptations of our approach to generative
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models without clear latent representations, such as diffusion models [237,238] and
autoregressive models [239,240].

Our algorithm uses the gradients calculated through the generative and predictive
models. In some cases, access to the predictive model might not be possible. It
would be interesting to explore if high-quality counterfactuals can still be obtained if
the gradient of the predictive model could only be estimated.

While we have covered methodology and theoretical justifications for diffeomorphic
and approximately diffeomorphic counterfactuals we have not exhaustively explored
possible applications of our method. The modularity of our proposed algorithm makes
it an excellent choice for applications in medicine and industrial settings as well as for
scientific research. Similar to recent approaches to detect spurious correlations with
attribution methods [15, 30], counterfactuals can be used to detect such correlations
in data. As counterfactuals are alternative inputs one can furthemore use these
generated data samples for active learning approaches. In combination with efficient
methods for human-in-the-loop strategies, our counterfactuals could help improve
model accuracy. For example in medical diagnostics, a doctor could verify if the
prediction model is working as intended by examining several counterfactuals. If
these counterfactuals reveal that the prediction was based on dubious features, they
could be labeled by the doctor and be reintroduced into a fine-tuning step. We
can imagine similar procedures in industrial settings, where counterfactuals could
improve the accuracy of predictive maintenance or propose actionable steps to fix a
faulty system.

With recent progress in natural language processing and impressive gains in per-
formance of text generation [2], our method to produce counterfactuals might be
extended to text-based data. They could greatly facilitate the editing process, as
changing a text’s tone or complexity could be easily obtained if a suitable prediction
model was applied. Applications involving audio data could also profit from this as
our method can be used to modify recordings to be more acoustically comprehensible
or change the sentiment.

We also expect our work to influence research in explainability to increasingly
include theoretical considerations. We have demonstrated the value of a geometrical
perspective on explainability for attribution methods and counterfactual explanations.
Theoretical approaches to deepen the understanding of even more approaches to
explainability, for example, concept-based explanations, could prove valuable.

In summary, this thesis has developed a theoretical understanding of general expla-
nation methods using differential geometry. These theoretical insights allowed us to
shed light on various pathological properties of explanations, such as their surprising
susceptibility to manipulations. Furthermore, our theoretical insights allowed us
to propose practical methods to improve the robustness of attribution methods as
well as to generate high-quality counterfactuals in a provably information-preserving
(diffeomorphic) fashion.
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A. Appendices for Chapter 4

A.1. Proofs

In this section, we collect the proofs of the theorems stated in Chapter 4.

A.1.1. Theorem 1

Theorem 1. Let f : RN → R be a network with softplusβ non-linearities and
Uϵ(p) = {x ∈ RN ; ∥x− p∥ < ϵ} an environment of a point p ∈ S such that Uϵ(p) ∩ S
is fully connected. Let f have bounded derivatives ∥∇f(x)∥ ≥ c for all x ∈ Uϵ(p)∩ S.
It then follows for all p0 ∈ Uϵ(p) ∩ S that

∥h(p)− h(p0)∥ ≤ |λmax| dg(p, p0) ≤ β C dg(p, p0), (A.1)

where λmax is the principal curvature with the largest absolute value for any point in
Uϵ(p) ∩ S and the constant C > 0 depends on the weights of the neural network.

Proof: This proof will proceed in four steps. We will first bound the Frobenius
norm of the Hessian of the network f . From this, we will deduce an upper bound on
the Frobenius norm of the second fundamental form. This in turn will allow us to
bound the largest principal curvature |λmax| = max{|λ1| . . . |λd−1|}. Finally, we will
bound the maximal and minimal change in explanation.

Step 1: Let softplus(l)(x) = softplus(W (l)x) where W (l) are the weights of layer l.1
We note that

∂ksoftplus(
∑
j

Wijxj) = Wik σ(
∑
j

Wijxj) (A.2)

∂lσ(
∑
j

Wijxj) = β Wil g(
∑
j

Wijxj)) (A.3)

where

σ(x) =
1

(1 + e−βx)
, g(x) =

1

(eβx/2 + e−βx/2)2
. (A.4)

1We do not make the dependence of softplus on its β parameter explicit and ignore biases to ease
notation.
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The activation at layer L is then given by

a(L)(x) = (softplus(L) ◦ · · · ◦ softplus(1))(x) (A.5)

Its derivative ∂ka
(L)
i is equal to

∑
s2...sL

W
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isL
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As |σ(•)| ≤ 1 we therefore obtain

∥∥∇a(L)∥∥ ≤ L∏
l=1

∥∥W (l)
∥∥
F

(A.6)

Deriving the expression for ∂ka
(L)
i again, we obtain
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We now restrict to the case for which the index i only takes a single value and use
|σ(•)| ≤ 1 and |g(•)| ≤ 1

4
. The Hessian Hij = ∂i∂ja

L(x) is then bounded by

∥H∥F ≤ βC̃ (A.7)

where the constant is given by

C̃ =
∑
m

∥∥W (L)
∥∥
F

∥∥W (L−1)
∥∥
F
. . .
∥∥W (m)

∥∥2
F
. . .
∥∥W (1)

∥∥2
F
. (A.8)

Step 2: Let {e1, . . . , ed−1} be a basis of the tangent space TpS. Then the second
fundamental form for the hypersurface f(x) = c at point p is given by

L(ei, ej) = −⟨Dein(p), ej⟩ (A.9)

= −⟨Dei

∇f(p)
∥∇f(p)∥ , ej⟩ (A.10)

= − 1

∥∇f(p)∥⟨H[f ]ei, ej⟩+ (. . . )⟨∇f(p), ej⟩ (A.11)
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We now use the fact that ⟨∇f(p), ej⟩ = 0, i.e. the gradient of f is normal to the
tangent space. This property was explained in the main text. This allows us to
deduce that

L(ei, ej) = −
1

∥∇f(p)∥H[f ]ij . (A.12)

Step 3: The Frobenius norm of the second fundamental form (considered as a matrix
in the sense of step 2) can be written as

∥L∥F =
√

λ2
1 + · · ·+ λ2

d−1 , (A.13)

where λi are the principal curvatures. This property follows from the fact that the
second fundamental form is symmetric and can therefore be diagonalized with real
eigenvectors, e.g. the principal curvatures. Using the fact that the derivative of the
network is bounded from below, ∥∇f(p)∥ ≥ c, we obtain

|λmax| ≤ β
C̃

c
. (A.14)

Step 4: For p, p0 ∈ Uϵ(p) ∩ S, we choose a curve τ with τ(t0) = p0 and τ(t) = p.
Furthermore, we use the notation u(t) = τ ′(t). It then follows that

n(p)− n(p0) =

∫ t

t0

d

dt
(n(τ(t))) dt =

∫ t

t0

Du(t)n(τ(t)) dt (A.15)

Using the fact that Du(t)n(τ (t)) ∈ Tτ(t)S and choosing an orthonormal basis ei(t) for
the tangent spaces, we obtain∫ t

t0

Du(t)n(τ(t)) dt =

∫ t

t0

∑
j

⟨ej(t), Du(t)n(τ(t))⟩ ej(t) dt (A.16)

=

∫ t

t0

∑
j

L(ej(t), u(t)) ej(t) dt . (A.17)

The second fundamental form L is bilinear and therefore∫ t

t0

∑
i

L(ej(t), u(t)) ej(t) dt =
∫ t

t0

∑
i,j

L(ej(t), ei(t)) ui(t) ej(t) dt . (A.18)

We now use the notation Lij(t) = L(ej(t), ei(t)) and choose its eigenbasis for ei(t).
We then obtain for the difference in the unit normals:

n(p)− n(p0) =

∫ t

t0

∑
i

λi(t) u
i(t) ei(t) dt , (A.19)
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where λi(t) denote the principal curvatures at τ(t). By orthonormality of the
eigenbasis, it can be easily checked that

⟨
∑
i

λi(t) u
i(t) ei(t),

∑
j

λj(t) u
j(t) ej(t)⟩ ≤ |λmax|2

∑
i

ui(t)2

⇒
∥∥∥∥∥∑

i

λi(t) u
i(t) ei(t)

∥∥∥∥∥ ≤ |λmax| ∥u(t)∥

Using this relation and the triangle inequality, we then obtain by taking the norm
on both sides of (A.19):

∥n(p)− n(p0)∥ ≤ |λmax|
∫ t

t0

∥τ ′(t)∥ dt . (A.20)

This inequality holds for any curve connecting p and p0 but the tightest bound follows
by choosing τ to be the shortest possible path in Uϵ(p)∩ S with length

∫ t

t0
∥τ ′(t)∥ dt,

i.e. the geodesic distance dg(p, p0) on Uϵ(p)∩S. The second inequality of the theorem
is obtained by the upper bound on the largest principal curvature λmax derived above,
i.e. (A.14).

A.1.2. Theorem 2

Theorem 2. For one layer neural networks f(x) = ReLU(wTx) and fβ(x) =
softplusβ(wTx), it holds that

Eϵ∼pβ [∇f(x− ϵ)] = ∇f β
∥w∥

(x) , (A.21)

where pβ(ϵ) =
β

(eβϵ/2+e−βϵ/2)2
.

Proof: We first show that

softplusβ(x) = Eϵ∼pβ [ReLU(x− ϵ))] , (A.22)

for a scalar input x. This follows by defining p(ϵ) implicitly as

softplusβ(x) =
∫ +∞

−∞
p(ϵ)ReLU(x− ϵ) dϵ . (A.23)

Differentiating both sides of this equation with respect to x results in

σβ(x) =

∫ +∞

−∞
p(ϵ)Θ(x− ϵ) dϵ =

∫ x

−∞
p(ϵ) dϵ , (A.24)

where Θ(x) = I(x > 0) is the Heaviside step function and σβ(x) =
1

(1+e−βx)
. Differen-

tiating both sides with respect to x again results in

pβ(x) = p(x) . (A.25)
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Therefore, (A.22) holds. For a vector input x⃗, we define the distribution of its
perturbation ϵ⃗ by

pβ (⃗ϵ) =
∏
i

pβ(ϵi) , (A.26)

where ϵi denotes the components of ϵ⃗. We will suppress any arrows denoting vector-
valued variables in the following in order to ease notation. We choose an orthogonal
basis such that

ϵ = ϵpŵ +
∑
i

ϵ(i)o ŵ(i)
o with ŵ · ŵ(i)

o = 0 and w = ∥w∥ ŵ . (A.27)

This allows us to rewrite

Eϵ∼pβ

[
ReLU(wT (x− ϵ))

]
= Eϵ∼pβ

[
ReLU(wTx− ∥w∥ ϵp))

]
=

∫
pβ(ϵp)

(
ReLU(wTx− ∥w∥ ϵp)

)
dϵp

By changing the integration variable to ϵ̃ = ∥w∥ ϵp and using (A.22), we obtain

Eϵ̃∼pβ

[
ReLU(wTx− ϵ̃)

]
= softplus β

∥w∥
(wTx) , (A.28)

The theorem then follows by deriving both sides of the equation with respect to x.

A.2. Details on experiments

We summarize the choices for the maximum number of iterations and the learning
rate, used in our quantitative analysis in Table A.1. The α parameter, introduced in
Equation 4.1, that determines the weighting between the mean squared error of the
explanation maps and the network outputs is set to 10−5.

method iterations learning rate

Gradient 1500 10−3

Gradient×Input 1500 10−3

Integrated Gradients 500 5× 10−3

Layerwise Relevance Propagation 1500 2× 10−4

Guided Back Propagation 1500 10−3

Pattern Attribution 1500 2× 10−3

Tab. A.1.: Hyperparameters for VGG16 used in our analysis.

The patterns for the Pattern Attribution explanation method are trained on a subset
of the ImageNet training set.

145



Appendix A. Appendices for Chapter 4

The baseline x̄ for Integrated Gradients was set to zero. To approximate the integral,
we use 30 steps for which we verified that the attributions approximately adds up to
the score at the input.

Besides the VGG16 architecture, we test our method on the AlexNet, Densenet and
ResNet architectures. Figure A.1 shows that the similarity measures are comparable
for all network architectures for the Gradient method. The hyperparameter choices
used in our experiments are summarized in Table A.2. The α parameter is set to
10−5, like before for the VGG16 architecture. For experiments on CIFAR10 we
perform 1500 iterations with a learning rate of 2× 10−4 and α = 10−5.

network iterations lr

VGG16 1500 10−3

AlexNet 4000 10−3

Densenet121 2000 5× 10−4

ResNet18 2000 10−3

Tab. A.2.: Hyperparameters used in our analysis for all networks for the Gradient
explanation.

A.2.1. β–growth

In practise, we observe that we get slightly better results by increasing the value
of β of the softplus activation sp(x) = 1

β
ln (1 + eβx) during the optimization of the

adversarial inputs from a start value β0 to a final value βe using

β(t) = β0

(
βe

β0

)t/T

, (A.29)

where t is the current optimization step and T denotes the total number of steps.

We use this incremental adaptation of the β value for all methods except LRP for
which we do not find any speed-up in the optimization as the LRP rules do not
explicitly depend on the second derivative of the ReLU activations. Figure A.2
demonstrates that for large β values the softplus networks approximate the ReLU
network well. Figure A.3 shows this for an example for the Gradient explanation
method. We also note that for small β, the Gradient explanation maps become more
similar to LRP/GPB/PA explanation maps.

A.3. Three channel attacks

For three channel attacks we aim to accurately reproduce the explanation map prior
to taking its absolute values and summing over the color channels. Experiments
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Fig. A.1.: Similarity measures between target map and manipulated map (left) and
original image and manipulated image (right) for the Gradient explanation
method applied to various architectures.

100 101 102 103 100 101 102 103 100 101 102 103
0.0

0.5

1.0

1.5

2.0

M
S
E

10-9

0.6

0.8

1.0

S
S
IM

0.2

0.4

0.6

0.8

1.0

P
C
C

Fig. A.2.: Error measures between the gradient explanation map produced with the
original network and explanation maps produced with a network with
softplus activation functions using various values for β.
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Image ReLU β = 10 β = 3 β = 2 β = 1

Fig. A.3.: Gradient explanation map produced with the original network and a network
with softplus activation functions using various values for β.

show that this is a much harder optimization problem than producing the more
commonly used explanation maps. We get mixed results for the different explanation
methods. While LRP and Pattern Attribution seem to be vulnerable to three channel
attacks, gradient-based explanations seem more robust. For GBP we observe large
structured perturbations in the manipulated image. We show some examples in
Figure A.4. A thorough hyperparamter search might still improve the effectiveness
of three channel attacks. As explanation maps are usually not used as three channel
images and, furthermore, structural reproduction of the target explanation seems far
more relevant than exact color channel values, the limited effectiveness of our method
for three channel explanations does not seem relevant in practice. LRP and Pattern
Attribution were not originally defined as three channel explanations. Both methods
yield mostly positive relevances in contrast to the other explanation methods. This
might be the reason why they are more susceptible to manipulation even when
attacking the three channel explanation. For the visualization in Figure A.4 we
adapt the normalization for LRP and PA so that the mean value of the explanations
roughly matches the mean value for the other explanation methods.

A.4. β-smoothing

One can achieve a smoothing effect when substituting the ReLU activations with
softplus activations with small β value and then applying the usual rules for the
different explanation methods.

Using softplus activations leads to a reduced curvature of the output manifold.
In Figure A.5 we show this for a two layer neural net. When moving along the
hypersurface of equal network output the gradient, i.e. the normal vector which is
perpendicular to the hypersurface, consequently changes less abruptly than when we
use ReLU activations.

A smoothing effect can also be achieved by applying SmoothGrad, see Figure A.6.
We average over 10 perturbed images with different values for the standard deviation
σ of the Gaussian noise. The noise level ν is related to σ by σ = ν · (xmax − xmin),
where xmax and xmin are the maximum and minimum values the input image can
take.
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Fig. A.4.: Adversarial attacks on the 3-channel explanations for all considered expla-
nation methods.

Fig. A.5.: Contour plot of a 2-layer neural network f(x) = V ⊤softplus(W⊤x) with
x ∈ [−1, 1]2, W ∈ R2×50, V ∈ R50 and Vi,Wij ∼ U(−1, 1). Using a softplus
activation with β = 1 visibly reduces curvature compared to a activation
with β →∞, i.e. ReLU activations.
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Fig. A.6.: Recovering the original explanation map with SmoothGrad. Left: Recovery
is dependent on added noise. Line denotes median, 10th and 90th percentile
are shown in semitransparent color. Center and Right: network input and
the respective explanation maps for Gradient (center) and LRP (right).

The PCC between the manipulated explanation and the target explanation is lower
for the smoothed explanation (see Figure A.7). This indicates that the target map is
not closely reproduced. For fair comparison we also show the PCC between original
and manipulated image, which is lower or equal for the manipulations produced
using the smooth explanation methods. The smoothed explanations are therefore
more robust than their unsmoothed counterparts when we add perturbations of the
same size or even higher. We find equivalent results for SSIM and MSE.

For manipulation of SmoothGrad, we use β growth with β0 = 10 and βe = 100. For
manipulation of β-smoothing, we set β = 0.8 for all runs. The hyperparameters for
SmoothGrad and β-smoothing are summarized in Table A.3. The weighting of the
loss terms was set to α = 10−5.

meta method method iterations lr

β-smoothing

Gradient 500 2.5× 10−4

Grad x Input 500 2.5× 10−4

IntGrad 200 2.5× 10−3

LRP 1500 2.0× 10−4

GBP 500 5.0× 10−4

PA 500 5.0× 10−4

SmoothGrad Gradient 1500 3× 10−3

LRP 1500 3× 10−4

Tab. A.3.: Hyperparameters used in our analysis for β-smoothing and SmoothGrad.

In Figure A.8, we directly compare the original explanation methods with the β-
smoothed explanation methods. An increase in robustness can be seen for all methods:
explanation maps for β-smoothed explanations have higher MSE and lower SSIM
and PCC than explanation maps for the original methods. We always compare the
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Fig. A.7.: Left: PCC between target map and manipulated map. Right: PCC between
original and manipulated image.

target maps with the manipulated maps. We make sure that the similarity measures
for the manipulated images are of comparable magnitude.

0

2

4

M
S

E

×10−9

0.4

0.6

0.8

S
S

IM

Gradien
t

β-sm
oothed

G

Gradien
t

x Input

β-sm
oothed

GxI

Integ
rated

Gradien
ts

β-sm
oothed

IG LRP

β-sm
oothed

LRP
GBP

β-sm
oothed

GBP PA

β-sm
oothed

PA

0.25

0.50

0.75

1.00

P
C

C

Fig. A.8.: Similarities to target map for the original and the β-smoothed explanation
methods.

151





B. Appendices for Chapter 5

B.1. Proof of Theorem 3

Theorem 3. Let f : RN → R be a fully-connected neural network with L layers.
The weights of the l-th layer are denoted by W (l) and its activation functions σ are
twice-differentiable and bounded

|σ′(x)| ≤ Σ1 , |σ′′(x)| ≤ Σ2 . (B.1)

The Hessian of the network is then bounded by

||H(f)||2F ≤
L∑

m=1

(
m∏
l=1

||W (l)||2F
L∏

l=m+1

||W (l)||F
)

ΣL+m−2
1 Σ2 . (B.2)

Proof: The activation at the final neural network layer L is given by

a(L)(x) = (σ(L) ◦ · · · ◦ σ(1))(x) (B.3)

Its derivative ∂ka
(l)
i is equal to

∑
s2...sl

W
(l)
isl
σ′

(∑
j

W
(l)
ij a

(l−1)
j

)
W (l−1)

slsl−1
σ′

(∑
j

W
(l−1)
slj

a
(l−2)
j

)

. . .W
(1)
s2k

σ′

(∑
j

W
(1)
s2j

xj

)
.

We therefore obtain

∥∥∇a(l)∥∥
F
≤ (Σ1)

l
l∏

i=1

∥∥W (i)
∥∥
F

(B.4)
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From the expression for ∂ka
(l)
i , we can straightforwardly derive that

∂l∂ka
(L)
i =

∑
m

∑
s2...sL

{
W

(L)
isL

σ′

(∑
j

W
(L)
ij a

(L−1)
j

)
W (L−1)

sLsL−1
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(∑
j
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(L−1)
sLj
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(L−2)
j

)

· · ·
∑
p

W (m)
sm+1p

W (m)
sm+1sm

σ′′

(∑
j

W
(m)
sm+1j

a
(m−1)
j (x)

)
∂la

(m−1)
p (x)

. . .W
(1)
s2k

σ′

(∑
j

W
(1)
s2j

xj

)}
.

Restrict to the case for which the index i only takes a single value, i.e. Hij(f) =
∂i∂ja

L(x), we get the bound (5.7) of Theorem 3.

B.2. Relu networks

As was discussed in the main text the bound (5.7) for softplus non-linearities diverges
for ReLU non-linearities.

In the following, we will discuss how to generalize the analysis to networks with ReLU
activations. We will establish that a distributional generalization of the Hessian can
be derived for ReLU networks. A distributional form of the Hessian is sufficient for
our purposes because in deriving a bound for the maximal change in explanation we
only need to consider the Hessian under an integral, see (5.4). Since integrals over
distributions are well-defined, the resulting expression is also well-defined. We will
first illustrate this for a simple toy model before considering the general case.

B.2.1. Toy example

Consider the network (depicted in Figure B.1)

f(x) = ReLU(w(1)Tx) + ReLU(w(2)Tx) (B.5)

with input vector x ∈ R2 and weight vectors w(1) = 1√
2
[1, 1]T and w(2) = 1√

2
[1,−1]T .

The first derivative with respect to xj is

∂jf(x) = w
(1)
j θ(w(1)Tx) + w

(2)
j θ(w(2)Tx) , (B.6)

where we have defined the Heaviside step function

θ(x) =

{
1 x ≥ 0 ,

0 x < 0 .
(B.7)
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We note that the derivative of the step function is not well-defined at zero. However,
a distributional generalization thereof can be defined, i.e.

θ′(x) = δ(x) , (B.8)

where δ denotes the Dirac delta distribution.

With this definition, the ij-th entry of (the distributional generalization of) the
Hessian matrix can formally be written as

∂i∂jf(x) = w
(1)
i w

(1)
j δ(w(1)Tx) + w

(2)
i w

(2)
j δ(w(2)Tx) . (B.9)

By (5.4), the change in (Gradient) explanation when moving from point x to xadv is
then given by

(h(x)− h(xadv))j =

∫ ∞

−∞

∑
i

(
w

(1)
i w

(1)
j δ(w(1)Tx) + w

(2)
i w

(2)
j δ(w(2)Tx)

)
ẋi dt , (B.10)

where we have used the notation x(t) for the curve connecting the unperturbed and
perturbed data points.

For integrating over the delta distribution in composition with a (scalar-valued)
function, we use ∫ ∞

−∞
f(t)δ(y(t))dt =

∑
tN

f(tN)

|y′(tN)|
(B.11)

with tN being the roots of y(t). Using this expression, we then obtain the following
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change in saliency map

(h(x)− h(xadv))j =
∑
tN

∑
i w

(1)
i w

(1)
j ẋi∣∣∣∑i w

(1)
i ẋi

∣∣∣ +
∑
tN

∑
i w

(2)
i w

(2)
j ẋi∣∣∣∑i w

(2)
i ẋi

∣∣∣
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sgn

(∑
i

w
(1)
i ẋi

)
w

(1)
j +

∑
tN

sgn

(∑
i

w
(2)
i ẋi

)
w

(2)
j .

Consider the blue path in Figure B.2 whose root points are denoted by t1 and t2.
We note that these root points correspond to kinks in the curve x(t) connecting the
unperturbed and perturbed data point. Their corresponding normalized velocity
vectors are given by ẋ(t1) = w(2) and ẋ(t2) = (0,−1)T respectively. We therefore
obtain

h(x)− h(xadv) = sgn
(
⟨w(1), ẋ(t2)⟩

)
w(1) + sgn

(
⟨w(2), ẋ(t1)⟩

)
w(2)

= sgn

(
− 1√

2

)
w(1) + sgn (1)w(2)

= w(2) − w(1)

which is correct as h(x) = w(2) and h(xadv) = w(1). It is important to stress that we
have obtained this result despite the fact that the Hessian of the neural network g is
only given in generalized distributional form.

B.2.2. General case

The argument of the previous section can be generalized to arbitrary fully-connected
networks with weights W l of layer l ∈ {1, . . . , L}. The general logic follows closely
the toy model discussed in the previous section, i.e. a distributional generalization
of the Hessian is derived and since on the right-hand-side of (5.4) the Hessian only
appears under an integral, this distributional form is sufficient to obtain a bound on
the maximal change in explanation due to a perturbation of the input. Using this
technique, we derive the following theorem:

Theorem 4. Let x and xadv = x+δx denote the unperturbed and perturbed data points
respectively. We denote by x(t) the curve connecting the unperturbed and perturbed
points, i.e. x(t = −∞) = x and x(t = +∞) = xadv. Furthermore, we assume that
all points on the curve have the same network output, i.e. f(x(t1)) = f(x(t2)) for all
t1, t2 ∈ R. The maximal change of explanation is then given by

||h(x)− h(xadv)| |2 ≤
∑

kinks(x(t))

(
L∏
l=1

∥∥W (l)
∥∥2
F

)
, (B.12)

where the sum runs over all kinks of the curve x(t).
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We can give an intuition for the theorem by considering the blue curve of Figure B.2
for the toy model of the previous section. In this case, the sum over the kinks would
run over x(t1) and x(t2), see Figure B.2. Only at these kinks, the gradient of the
network will change. In the theorem, we then estimate this change by its maximal
value, i.e. the change is equal to the product of all weights.

As a practical consequence of the theorem, we can make explanations more robust
by weight decay also in the case of ReLU non-linearities.

Proof: Let W (l) be the weights of layer l. We denote the l-th layer by ReLU(l)(x) =
ReLU(W (l)x). It then follows that

∂k ReLU

(∑
j

Wijxj

)
= Wik θ

(∑
j

Wijxj

)
(B.13)

∂l θ

(∑
j

Wijxj

)
= Wil δ

(∑
j

Wijxj

)
(B.14)

where θ and δ are the Heaviside step function and the delta distribution respectively.
The activation at layer L is then given by

a(L)(x) = (ReLU(L) ◦ · · · ◦ ReLU(1))(x) (B.15)

Its derivative ∂ka
(L)
i is equal to

∑
s2...sL

W
(L)
isL

θ

(∑
j

W
(L)
ij a

(L−1)
j

)
W (L−1)

sLsL−1
θ

(∑
j

W
(L−1)
sLj

a
(L−2)
j

)

. . .W
(1)
s2k

θ

(∑
j

W
(1)
s2j

xj

)

Deriving this expression for ∂ka
(L)
i again, we obtain

∂l∂ka
(L)
i =

∑
m

∑
s2...sL

{
W

(L)
isL

θ

(∑
j

W
(L)
ij a

(L−1)
j

)
W (L−1)

sLsL−1
θ

(∑
j

W
(L−1)
sLj

a
(L−2)
j

)

· · ·
∑
p

W (m)
sm+1p

W (m)
sm+1sm

δ

(∑
j

W
(m)
sm+1j

a
(m−1)
j (x)

)
∂la

(m−1)
p (x)

. . .W
(1)
s2k

θ

(∑
j

W
(1)
s2j

xj

)}
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We now restrict to the case that a(L) has only a single output value. As a result, the
index i in the expression above only takes one value, i.e. i = 1. We define f(x) =

a
(L)
1 (x) to ease notation. We then substitute this expression for ∂l∂kf = ∂l∂ka

(L)
1 in

(5.4) and obtain

(h(x)− h(xadv))k =
∑
m

∑
s2...sL

∫ ∞

−∞
dt
{

W
(L)
1sL

θ

(∑
j

W
(L)
ij a

(L−1)
j

)
W (L−1)

sLsL−1
θ

(∑
j

W
(L−1)
sLj

a
(L−2)
j

)

· · ·
∑
ŝm

W
(m)
sm+1ŝm

W (m)
sm+1sm

δ

(∑
j

W
(m)
sm+1j

a
(m−1)
j (x)

)
ȧ
(m−1)
ŝm

(x)

. . .W
(1)
s2k

θ

(∑
j

W
(1)
s2j

xj

)}
,

where we have used the notation ∂ta
(m−1) = ȧ(m−1) for notational simplicity. Using

the identity (B.11), we then obtain

(h(x)− h(xadv))k =
∑
m

∑
xm
N

∑
s2...sL

{

W
(L)
1sL

θ

(∑
j

W
(L)
ij a

(L−1)
j

)
W (L−1)

sLsL−1
θ

(∑
j

W
(L−1)
sLj

a
(L−2)
j

)

. . .W (m)
sm+1sm

sgn

(∑
j

W
(m)
sm+1j

ȧ
(m−1)
j (xm

N)

)

. . .W
(1)
s2k

θ

(∑
j

W
(1)
s2j

(xm
N)j

)}
,

where the sum over xm
N runs over all zeropoints of

∑
j W

(m)
sm+1j

a(m−1) along the tra-
jectory connecting x with xadv. Using the fact that |θ(•)| ≤ 1 and |sgn(•)| ≤ 1, we
obtain

||h(x)− h(xadv)| |2 ≤
∑
m

∑
xm
N

∥∥W (L)
∥∥2
F

∥∥W (L−1)
∥∥2
F
. . .
∥∥W (m)

∥∥2
F
. . .
∥∥W (1)

∥∥2
F
.

(B.16)

As in the case of the toy model, the summands run over all kinks of the trajectory.
This bound for ReLU networks depends purely on the network weights and the
number of kinks passed when moving from x to xadv. If we reduce the Frobenius
norms of the weights, we also reduce the maximal possible change in explanation.
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B.3. Interchangeability of softplus β

When training softplus networks with different β values it is interesting to consider
how they differ as the beta values partially cancel out or can be absorbed into the
weights and biases.

The softplus function is defined as:

spβ(x) =
1

β
ln (1 + eβx) (B.17)

Therefore, we can relate two softplus functions with different β values, β1 and β2, as
follows:

spβ1
(x) =

β2

β1

spβ2
(
β1

β2

x) (B.18)

A network consisting of linear layers and softplus activations with β = β1 has weights
W (i) and biases b(i). We can define a network with the same structure but a different
softplus β = β2 and weights W̃ (i) and biases b̃(i). The networks give identical outputs
for all inputs if we define the weights and biases of the second network in the following
way:

W̃ (1) =
β1

β2

W (1)

W̃ (i) = W (i), ∀i : 1 < i < n

W̃ (n) =
β2

β1

W (n)

b̃(i) =
β1

β2

b(i), ∀i : i < n

b̃(n) = b(n)

However, this mapping is not learned when training networks with different β
values from scratch as the distribution over weight norms stays very similar while the
distribution changes drastically when artificially changing the β value as demonstrated
above. We show this effect for a few examples in Section B.3.1.

B.3.1. Examples

Artificially constructing networks, as explained above, leads to a larger variance in
the weight norms. Even when no weight decay is used during training, the weight
norms of the different network layers in one network tend to vary within one order
of magnitude.
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Figure B.3 shows the weights and biases for two networks from Table B.1 with β = 1
and β = 10 and the respective weights and biases for two networks that produce
identical outputs but have changed β values. In both cases the average weight norm
of the constructed network is higher than of the original.
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||b
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||W
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layers
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||b
||

β1 = 10

β2 = 1

Fig. B.3.: Weights and biases for networks with identical outputs but different β value
for the softplus activation. Left: β was changed from 1 to 10. Right: β
was changed from 10 to 1.

Figure B.4 shows weights and biases for some of our networks from Table B.1. The
weight and bias norms for each network are normalized with the respective maximum
value over all layers. Without exception the highest weight norm is found in layer 5
in contrast to the maximum weight norm when we do the artificial β value switch.
Thus training softplus networks from scratch does produce fundamentally different
networks, that cannot be obtained by a mere rescaling of weights and biases.

B.4. Experimental analysis

B.4.1. Network structure

The structure of all simple CNNs, trained within the scope of Chapter 5, is depicted
in Figure B.5. The activation function is either ReLU or softplus (for the networks
trained with β-smoothing or Hessian minimization). In order to focus on the
robustness we aimed to train the different networks to similar accuracy (albeit no
longer than 200 epochs). We use Stochastic Gradient Descent with momentum and
learning rate decay. We do not perform any further hyperparameter optimization.
Statistics for all trained networks are summarized in Table B.1.
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Fig. B.4.: Weights and biases plotted over layers for different networks (left column:
networks with weight decay, middle column: networks with different β
values, right column: networks trained with curvature minimization)

λ β ζ accuracy PCC for different ν ||W || ||H||
0.005 0.01 0.025

0 ReLU 0.0 85.75 0.73 0.57 0.32 30.79 -
5e-5 ReLU 0.0 86.38 0.77 0.62 0.36 23.28 -
5e-4 ReLU 0.0 88.63 0.84 0.70 0.45 11.37 -
5e-3 ReLU 0.0 86.10 0.89 0.80 0.62 4.80 -
1e-2 ReLU 0.0 81.41 0.89 0.80 0.64 3.61 -
0 10 0.0 85.61 0.81 0.63 0.34 30.01 503.61
0 5 0.0 85.60 0.88 0.73 0.39 28.70 280.71
0 1 0.0 85.60 0.93 0.85 0.61 27.76 59.21
0 5e-1 0.0 84.51 0.94 0.88 0.67 28.84 39.06

5e-5 10 0.0 86.36 0.86 0.70 0.39 22.91 298.79
5e-5 5 0.0 86.33 0.91 0.78 0.46 22.97 154.94
5e-5 1 0.0 86.03 0.94 0.86 0.62 22.73 51.63
5e-5 5e-1 0.0 85.34 0.94 0.88 0.67 23.76 36.43
5e-4 10 0.0 88.84 0.88 0.75 0.49 11.24 91.68
5e-4 5 0.0 88.76 0.91 0.79 0.53 11.36 59.57
5e-4 1 0.0 86.80 0.93 0.86 0.63 11.93 28.45
5e-4 5e-1 0.0 85.36 0.93 0.86 0.67 10.62 16.78
5e-3 10 0.0 86.13 0.91 0.82 0.64 4.81 9.54
5e-3 5 0.0 85.44 0.91 0.83 0.64 4.76 7.49
5e-3 1 0.0 83.35 0.92 0.86 0.71 4.86 3.79
5e-3 5e-1 0.0 77.60 0.96 0.93 0.85 4.66 2.02
1e-2 10 0.0 80.44 0.90 0.82 0.66 3.48 5.42
1e-2 5 0.0 77.57 0.89 0.82 0.65 3.33 5.27
1e-2 1 0.0 71.74 0.97 0.94 0.86 3.21 1.26
1e-2 5e-1 0.0 72.03 0.98 0.95 0.89 3.35 0.97
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λ β ζ accuracy PCC for different ν ||W || ||H||
0.005 0.01 0.025

0 10 1e-7 85.65 0.95 0.87 0.60 24.72 56.77
0 10 1e-6 85.74 0.97 0.92 0.73 22.45 21.47
0 10 1e-5 85.56 0.98 0.95 0.84 20.59 8.49
0 10 1e-4 84.12 0.99 0.97 0.90 19.14 3.23
0 10 1e-3 82.40 0.99 0.98 0.94 17.91 1.19
0 10 1e-2 80.07 0.99 0.98 0.94 17.08 0.43
0 5 1e-7 86.26 0.95 0.88 0.64 25.44 49.58
0 5 1e-6 85.94 0.97 0.92 0.74 23.41 20.85
0 5 1e-5 85.87 0.98 0.95 0.83 21.88 7.91
0 5 1e-4 84.81 0.98 0.97 0.90 20.74 2.96
0 5 1e-3 83.12 0.99 0.98 0.93 19.72 1.29
0 5 1e-2 80.95 0.99 0.98 0.94 19.02 0.41
0 1 1e-7 85.24 0.94 0.88 0.69 27.69 31.61
0 1 1e-6 85.17 0.95 0.90 0.75 26.29 17.67
0 1 1e-5 84.85 0.97 0.94 0.83 25.11 7.62
0 1 1e-4 84.70 0.98 0.95 0.87 24.25 3.03
0 1 1e-3 82.68 0.98 0.96 0.90 23.23 1.16
0 1 1e-2 81.57 0.98 0.95 0.89 22.20 0.42
0 5e-1 1e-7 81.90 0.95 0.90 0.77 12.05 9.28
0 5e-1 1e-6 85.46 0.96 0.91 0.77 28.07 15.20
0 5e-1 1e-5 84.41 0.97 0.93 0.82 26.81 6.79
0 5e-1 1e-4 84.08 0.98 0.96 0.89 25.59 2.86
0 5e-1 1e-3 82.84 0.98 0.96 0.89 22.21 1.12
0 5e-1 1e-2 81.04 0.98 0.96 0.90 23.36 0.41

5e-5 10 1e-7 86.68 0.95 0.87 0.62 20.24 52.22
5e-5 10 1e-6 86.47 0.97 0.92 0.74 18.75 21.36
5e-5 10 1e-5 85.87 0.98 0.95 0.84 17.28 8.18
5e-5 10 1e-4 84.55 0.99 0.97 0.90 16.05 3.29
5e-5 10 1e-3 83.03 0.99 0.98 0.93 15.01 1.14
5e-5 10 1e-2 80.47 0.99 0.98 0.94 13.88 0.43
5e-5 5 1e-7 86.76 0.95 0.87 0.62 21.05 45.57
5e-5 5 1e-6 86.41 0.97 0.92 0.74 19.57 19.16
5e-5 5 1e-5 86.16 0.98 0.95 0.84 18.29 8.00
5e-5 5 1e-4 85.21 0.99 0.97 0.90 17.20 3.24
5e-5 5 1e-3 82.69 0.99 0.98 0.93 16.41 1.17
5e-5 5 1e-2 80.91 0.99 0.97 0.93 15.35 0.45
5e-5 1 1e-7 85.78 0.95 0.89 0.70 22.42 29.93
5e-5 1 1e-6 86.31 0.96 0.92 0.77 21.76 16.98
5e-5 1 1e-5 85.54 0.97 0.93 0.82 20.53 7.38
5e-5 1 1e-4 84.62 0.98 0.95 0.88 18.94 2.99
5e-5 1 1e-3 83.82 0.98 0.97 0.91 18.00 1.17
5e-5 1 1e-2 80.49 0.98 0.97 0.92 17.10 0.43
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λ β ζ accuracy PCC for different ν ||W || ||H||
0.005 0.01 0.025

5e-5 5e-1 1e-7 84.84 0.95 0.89 0.70 23.02 26.39
5e-5 5e-1 1e-6 85.21 0.96 0.91 0.75 20.38 16.81
5e-5 5e-1 1e-5 82.98 0.96 0.92 0.81 12.51 6.07
5e-5 5e-1 1e-4 84.29 0.97 0.95 0.87 15.54 3.02
5e-5 5e-1 1e-3 82.67 0.98 0.96 0.89 14.95 1.12
5e-5 5e-1 1e-2 80.35 0.98 0.96 0.89 11.56 0.42
5e-4 10 1e-7 88.96 0.94 0.87 0.62 10.95 35.47
5e-4 10 1e-6 88.24 0.96 0.91 0.73 10.76 17.68
5e-4 10 1e-5 87.61 0.98 0.94 0.83 9.98 7.27
5e-4 10 1e-4 86.54 0.98 0.96 0.88 9.20 3.08
5e-4 10 1e-3 84.80 0.98 0.96 0.90 8.42 1.10
5e-4 10 1e-2 82.72 0.98 0.96 0.90 7.67 0.41
5e-4 5 1e-7 88.68 0.94 0.87 0.63 11.07 32.80
5e-4 5 1e-6 88.31 0.96 0.91 0.73 10.78 16.68
5e-4 5 1e-5 87.75 0.97 0.94 0.83 10.03 6.97
5e-4 5 1e-4 86.35 0.98 0.96 0.88 9.70 2.96
5e-4 5 1e-3 84.74 0.98 0.96 0.91 8.97 1.16
5e-4 5 1e-2 82.12 0.98 0.96 0.91 8.04 0.44
5e-4 1 1e-7 87.11 0.94 0.86 0.64 11.67 25.09
5e-4 1 1e-6 87.08 0.96 0.91 0.75 11.34 14.06
5e-4 1 1e-5 86.72 0.97 0.94 0.82 11.13 7.31
5e-4 1 1e-4 85.64 0.98 0.96 0.88 9.81 2.92
5e-4 1 1e-3 83.48 0.98 0.97 0.91 9.49 1.20
5e-4 1 1e-2 81.87 0.98 0.96 0.91 8.11 0.44
5e-4 5e-1 1e-7 78.10 0.93 0.87 0.73 7.07 4.57
5e-4 5e-1 1e-6 85.76 0.95 0.90 0.75 11.03 12.23
5e-4 5e-1 1e-5 85.56 0.97 0.93 0.82 10.82 6.20
5e-4 5e-1 1e-4 85.21 0.98 0.96 0.88 10.21 2.86
5e-4 5e-1 1e-3 81.05 0.96 0.93 0.84 6.99 0.94
5e-4 5e-1 1e-2 81.98 0.98 0.97 0.91 8.12 0.46
5e-3 10 1e-7 86.09 0.91 0.83 0.65 4.79 8.23
5e-3 10 1e-6 85.92 0.91 0.83 0.66 4.74 6.31
5e-3 10 1e-5 85.59 0.93 0.87 0.72 4.66 3.73
5e-3 10 1e-4 84.53 0.95 0.91 0.79 4.50 1.88
5e-3 10 1e-3 83.11 0.96 0.93 0.84 4.30 0.86
5e-3 10 1e-2 80.16 0.97 0.95 0.88 4.00 0.33
5e-3 5 1e-7 85.90 0.90 0.82 0.64 4.78 7.09
5e-3 5 1e-6 85.43 0.91 0.84 0.67 4.79 5.57
5e-3 5 1e-5 85.26 0.92 0.86 0.71 4.67 3.48
5e-3 5 1e-4 84.51 0.95 0.90 0.78 4.52 1.76
5e-3 5 1e-3 83.07 0.96 0.93 0.84 4.32 0.82
5e-3 5 1e-2 80.53 0.97 0.94 0.87 4.06 0.32
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λ β ζ accuracy PCC for different ν ||W || ||H||
0.005 0.01 0.025

5e-3 1 1e-7 82.84 0.91 0.85 0.70 4.76 4.11
5e-3 1 1e-6 83.40 0.92 0.86 0.72 4.85 3.37
5e-3 1 1e-5 81.72 0.93 0.88 0.75 4.65 2.62
5e-3 1 1e-4 82.19 0.95 0.91 0.81 4.68 1.52
5e-3 1 1e-3 81.14 0.96 0.93 0.86 4.43 0.74
5e-3 1 1e-2 79.13 0.96 0.94 0.86 4.16 0.32
5e-3 5e-1 1e-7 77.41 0.96 0.93 0.85 4.59 2.03
5e-3 5e-1 1e-6 77.42 0.97 0.94 0.85 4.57 1.91
5e-3 5e-1 1e-5 76.88 0.97 0.94 0.86 4.47 1.57
5e-3 5e-1 1e-4 77.17 0.97 0.94 0.86 4.49 1.24
5e-3 5e-1 1e-3 76.68 0.97 0.95 0.89 4.29 0.64
5e-3 5e-1 1e-2 75.01 0.98 0.97 0.92 3.89 0.27
1e-2 10 1e-7 64.43 0.94 0.87 0.65 3.37 7.11
1e-2 10 1e-6 79.77 0.90 0.83 0.66 3.46 4.06
1e-2 10 1e-5 79.87 0.91 0.84 0.69 3.46 2.47
1e-2 10 1e-4 78.86 0.94 0.88 0.75 3.37 1.34
1e-2 10 1e-3 77.68 0.95 0.92 0.82 3.25 0.63
1e-2 10 1e-2 75.75 0.97 0.94 0.87 3.12 0.25
1e-2 5 1e-7 78.63 0.89 0.81 0.65 3.40 4.42
1e-2 5 1e-6 77.74 0.90 0.83 0.66 3.34 4.21
1e-2 5 1e-5 78.16 0.90 0.83 0.68 3.35 2.34
1e-2 5 1e-4 78.18 0.92 0.86 0.73 3.31 1.20
1e-2 5 1e-3 77.43 0.96 0.92 0.82 3.25 0.59
1e-2 5 1e-2 74.45 0.96 0.93 0.85 3.02 0.25
1e-2 1 1e-7 71.74 0.97 0.94 0.86 3.21 1.26
1e-2 1 1e-6 71.92 0.97 0.95 0.88 3.24 1.18
1e-2 1 1e-5 73.02 0.97 0.94 0.86 3.30 0.98
1e-2 1 1e-4 72.02 0.97 0.95 0.88 3.16 0.77
1e-2 1 1e-3 71.16 0.98 0.95 0.89 3.08 0.43
1e-2 1 1e-2 69.64 0.98 0.97 0.92 2.90 0.19
1e-2 5e-1 1e-7 70.53 0.98 0.96 0.90 3.20 0.87
1e-2 5e-1 1e-6 70.07 0.98 0.96 0.90 3.21 0.89
1e-2 5e-1 1e-5 70.46 0.98 0.96 0.89 3.20 0.79
1e-2 5e-1 1e-4 71.49 0.98 0.96 0.91 3.31 0.72
1e-2 5e-1 1e-3 70.06 0.99 0.97 0.93 3.11 0.41
1e-2 5e-1 1e-2 67.76 0.99 0.98 0.94 2.84 0.19

Tab. B.1.: Statistics of all network configurations. Columns show weight decay (λ),
activation function (ReLU or β parameter for softplus), parameter for
curvature minimization ζ, test accuracy (acc), mean Pearson correlation
coefficient (pcc) for Gaussian noise with different noise levels ν, average
weight norm (∥W∥) and average approximated Hessian norm (∥H∥).
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CNN_CIFAR(
(features): Sequential(

(conv0): Conv2d(3, 32, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))

(acti0): ActivationFunction()
(conv1): Conv2d(32, 32, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(acti1): ActivationFunction()
(pool2): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1,
ceil_mode=False)

(conv3): Conv2d(32, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))

(acti3): ActivationFunction()
(conv4): Conv2d(64, 64, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(acti4): ActivationFunction()
(pool5): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1,
ceil_mode=False)

)
(classifier): Sequential(

(view0): Reshape()
(dens0): Linear(in_features=4096,

out_features=256,
bias=True)

(acti0): ActivationFunction()
(dens1): Linear(in_features=256,

out_features=10,
bias=True)

)
)

Fig. B.5.: Setup of simple CNN for CIFAR10
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B.4.2. Gradient explanation

In Figures B.6, B.7, and B.8, we show additional error measures for the Gradient
explanation. PCC and SSIM increase with robustness while MSE decreases.
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Fig. B.6.: PCC, SSIM and MSE between original Gradient explanation map and
explanation after adding random noise to the image. PCC and SSIM are
higher and MSE is lower for networks trained with weight decay λ. That
means weight decay improves robustness of explanations. We show mean
+/- std.
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Fig. B.7.: PCC, SSIM and MSE between original Gradient explanation map and
explanation after adding random noise to the image. PCC and SSIM are
higher and MSE is lower for softplus networks trained with a small β value.
That means softplus activations improve robustness of explanations. All
nets were trained with weight decay (λ=5e-4). We show mean +/- std.

B.4.3. Other explanation methods

In Figures B.9, B.10, B.11, and B.12, we show how our proposed methods effect
other explanation methods. The trend towards increased robustness is clearly visible
for all considered explanation methods. We note that the explanations start from
different levels of robustness but can still profit from our methods. The most resilient
method against random input perturbations is Layerwise Relevance Propagation,
followed by Guided Backpropagation, Integrated Gradients, Gradient×Input and
Gradient in descending order.
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Fig. B.8.: PCC, SSIM and MSE between original Gradient explanation map and
explanation after adding random noise to the image. PCC and SSIM
are higher and MSE is lower for networks trained with strong curvature
minimization. That means minimizing the curvature improves robustness
of explanations. All nets were trained with softplus activations (β = 10)
and weight decay (λ=5e-4). We show mean +/- std.
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Fig. B.9.: PCCs (mean +/- std) between original Gradient×Input explanation map
and explanation after adding random noise to the image. left: effect of
weight decay λ, middle: effect of softplus β (for λ = 5e-4), right: effect of
curvature minimization (for λ = 5e-4, β=10).

B.4.4. Other types of noise

In the main text we only consider Gaussian noise. We repeat our experiments from 5.2
for the Gradient explanation when we perturb the input images with Laplacian noise
and salt-pepper noise.

B.4.4.1. Laplace noise

We sample random noise from the Laplace distribution

p(x|µ, b) = 1

2b
exp−|x− µ|

b
(B.19)

where µ is the data mean and b = (xmax− xmin)ν is a scale parameter which depends
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Fig. B.10.: PCCs (mean +/- std) between original Integrated Gradients explanation
map and explanation after adding random noise to the image. left: effect
of weight decay, middle: effect of softplus β (for λ = 5e-4), right: effect of
curvature minimization (for λ = 5e-4, β=10).
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Fig. B.11.: PCCs (mean +/- std) between original Guided Backpropagation explana-
tion map and explanation after adding random noise to the image. left:
effect of weight decay, middle: effect of softplus β (for λ = 5e-4), right:
effect of curvature minimization (for λ = 5e-4, β=10).
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Fig. B.12.: PCCs (mean +/- std) between original Layerwise Relevance Propagation
explanation map and explanation after adding random noise to the image.
left: effect of weight decay, middle: effect of softplus β (for λ = 5e-4),
right: effect of curvature minimization (for λ = 5e-4, β=10).
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B.5. Hessian norm approximation

on the noise level ν. Figure B.13 shows effects on the Gradient explanation when
adding Laplace noise to the input images. We see that the results look statistically
very similar to the results for Gaussian noise.
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Fig. B.13.: PCCs (mean +/- std) between original Gradient explanation map and
explanation after adding Laplace noise to the image. left: effect of weight
decay, middle: effect of softplus β (for λ = 5e-4), right: effect of curvature
minimization (for λ = 5e-4, β=10).

B.4.4.2. Salt-pepper noise

To perturb an image with salt-pepper noise we randomly select 50 · ν % of the pixels
in the image and switch them to xmax (white) or xmin (black) at random. We select a
very small amount of pixels (for noise level ν = 0.005 only 3 pixels) to be perturbed
as salt-pepper noise has a very strong effect on the classification accuracy which we
aim to keep approximately constant.

Figure B.14 shows effects on the Gradient explanation when adding salt-pepper
noise to the input images. We can still see a significant improvement in robustness
when training networks with our proposed methods. However the effect for softplus
activations and Hessian minimization is less pronounced than for Laplace or Gaussian
noise.

B.5. Hessian norm approximation

In Section 5.1.3, we showed that for the number of samples N →∞ the sampling
approximation approaches the true Hessian norm. To include the Hessian approxima-
tion in our training procedure, we need to fix a certain number of samples and then
perform a Monte-Carlo estimate. Figure B.15 shows the relative error between the
sampled and the true Hessian norm. Increasing the sample size noticeably reduces
the error, but a sample size of one already has a relative error of only 6%. If we
average over a batch of images, the error reduces further. This means that for
training and validation sampling once per image is in practice sufficient.
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Fig. B.14.: PCCs (mean +/- std) between original Gradient explanation map and
explanation after adding salt-pepper noise to the image. left: effect of
weight decay, middle: effect of softplus β (for λ = 5e-4), right: effect of
curvature minimization (for λ = 5e-4, β=10).
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Fig. B.15.: Relative error (mean and standard deviation) between True Hessian norm
and approximation via sampling

B.6. Additional network structures and data sets

Network architectures: In addition to our simple CNN we use two different
architectures to test our methods: VGG16 [159] without batch normalization and
ResNet18 [9].

Configuration: We select the most promising parameters for each of our proposed
methods and train with four different parameter configurations for each network
architecture. We train a vanilla network without weight decay (λ = 0), a network
with moderate weight decay (λ = 5e-4), a network with softplus activations (λ = 5e-4,
β = 10) and a network with curvature minimization (λ = 5e-4, β = 10, ζ = 1e-6).
All networks were trained for 60 to 70 epochs to make them more comparable and
selected based on their validation set accuracy. We list test accuracies for the different
networks in Table B.2.
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B.6. Additional network structures and data sets

architecture λ β ζ accuracy

VGG16 0.0 ReLU 0.0 84.0
VGG16 5× 10−4 ReLU 0.0 84.2
VGG16 5× 10−4 10 0.0 79.6
VGG16 5× 10−4 10 10−6 80.8

ResNet18 0.0 ReLU 0.0 89.0
ResNet18 5× 10−4 ReLU 0.0 89.8
ResNet18 5× 10−4 10 0.0 88.6
ResNet18 5× 10−4 10 10−6 89.2

Tab. B.2.: Accuracies on ImageNette test set for VGG16 and ResNet18 with different
parameter configurations.

In Figure B.16 we compare weight norms and hessian norms between the three network
architectures we analyse. Compared to the CNN trained on CIFAR, approximated
Hessian norms for VGG16 are an order of magnitude smaller even without curvature
minimization. For ResNet18 they are two orders of magnitude smaller.
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Fig. B.16.: Left: effect of weight decay on different architectures. Right: effect
of curvature minimization on different architectures (a weight decay of
λ = 5e-4 was used)
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C. Appendices for Chapter 6

C.1. Proofs

C.1.1. Proof of Theorem 4

In this section, we provide the proof for Theorem 4, which we repeat here for
completeness.

Theorem 4. For ϵ ∈ (0, 1) and g a normalizing flow with Kullback–Leibler divergence
KL(p, q) < ϵ,

γ−1
⊥i
→ 0 as δ → 0

for all i ∈ {1, . . . , NX −ND}.
Since normalizing flows are diffeomorphisms, g−1 exists and is differentiable, Z = X
and γ is a non-singular metric on all of X . Furthermore, the base distribution
q : X → R transforms like a density,

qx(x) = qz(g
−1(x))

∣∣∣∣ ∂za∂xα

∣∣∣∣ , (C.1)

where qx,z denote q in za and xα coordinates, respectively, qx,z : RNX → R. We will
assume that qz is the univariate Gaussian distribution.

We assume that the Kullback–Leibler divergence between p and q is small, i.e. that

KL(p, q) < ϵ (C.2)

for some small ϵ ∈ (0, 1). Then, since ln(1/a) ≥ 1− a,

ϵ >

∫
Sx

px(x) ln

(
px(x)

qx(x)

)
dx

≥
∫
Sx

px(x)

(
1− qx(x)

px(x)

)
dx

= 1−
∫
Sx

qx(x)dx (C.3)

and therefore ∫
Sx

qx(x)dx > 1− ϵ . (C.4)
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Intuitively, this means that most of the induced probability mass lies in the support
of p.

We now write q in za coordinates using (C.1) and then evaluate the integral in yµ

coordinates,

1− ϵ <

∫
Sx

qz(g
−1(x))

∣∣∣∣ ∂za∂xα

∣∣∣∣ dx
=

∫
Sy

qz(g
−1(x(y)))

∣∣∣∣ ∂za∂xα

∣∣∣∣ ∣∣∣∣∂xα

∂yµ

∣∣∣∣ dy . (C.5)

Using the block-diagonal form (6.21) of the metric in yµ coordinates, the integration
measure simplifies to∣∣∣∣ ∂za∂xα

∣∣∣∣ ∣∣∣∣∂xα

∂yµ

∣∣∣∣ =√|γµν | =√|γD| NX−ND∏
i=1

√
|γ⊥i
| . (C.6)

Therefore, we have

1− ϵ <

∫
Dy

√
|γD|

NX−ND∏
i=1

∫ δ/2

−δ/2

√
|γ⊥i
|qz(z(y))dyi⊥dy∥ . (C.7)

Since qz is bounded, as δ → 0, we need |γ⊥i
| → ∞ in order to keep the integral above

the bound. Therefore, γ−1
⊥i
→ 0 for δ → 0.

C.1.2. Proof of Theorem 5

In this section, we provide the proof for Theorem 5, which we repeat here for
convenience.

Theorem 5. If g : Z → X is a generative model with D ⊂ g(Z) and image g(Z)
which extends in any non-singular orthogonal direction yi⊥ outside of D,

γ−1
⊥i
→ 0

for δ → 0 for all non-singular orthogonal directions yi⊥.

For any xD ∈ D, let x0 ∈ S be on the negative yi⊥(xD) coordinate line such that
p(x0) < ϵ for some small ϵ and let x1 ∈ S be on the positive yi⊥(xD) coordinate line
such that p(x1) < ϵ, as illustrated in Figure 6.6. Then, the assumption that g(Z)
extends beyond D in non-singular directions implies that the segment of the yi⊥(xD)
coordinate line between x0 and x1 lies entirely in g(Z).
Let τ : [0, 1]→ S be the coordinate-line segment between x0 and x1. In summary,
we have

1. τ(0) = x0 and τ(1) = x1 with p(x0) < ϵ and p(x1) < ϵ
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2. ∃ tD ∈ [0, 1] such that τ(tD) = xD ∈ D
3. τ j⊥ = 0 for j ̸= i, τ∥ = const.

In particular, 3) implies that the tangent vector of τ points along the yi⊥ coordinate
vector: τ ′(t) ∝ ∂yi⊥ .

Let L(τ) denote the length of τ , i.e.

L(τ) =

∫ 1

0

√
γ(τ ′(t), τ ′(t)) dt (C.8)

=

∫ 1

0

√
γµν(τ(t))

dτµ

dt

dτ ν

dt
dt . (C.9)

Following point 3) above, we can perform the implicit sums over µ and ν and get

L(τ) =

∫ 1

0

√
γ⊥i

(τ(t))
∣∣∣dτ i
dt

∣∣∣ dt (C.10)

=

∫ x1,⊥
i

x0,⊥i

√
γ⊥i

(yi⊥) dy
i
⊥ . (C.11)

Since S has, by construction, (Euclidean) extension δ orthogonal to D in yµ coordi-
nates, with δ ≪ 1, we perform a Taylor expansion of the metric around xD

γµν(τ(t)) = γµν(xD) +O(τ ρ(t)− xρ
D) (C.12)

and obtain to first order

L(τ) ≈
√
γ⊥i

(xD) (x1,⊥
i − x0,⊥

i) . (C.13)

Again, since S has range δ in yi⊥-direction, we have (x1,⊥
i − x0,⊥

i) < δ and therefore

γ⊥i
>

L2(τ)

δ2
. (C.14)

We now change the xα- and yµ coordinates such that δ → 0, corresponding to a data
distribution which is more and more concentrated on D. As we change coordinates,
L(τ) is constant as a geometric invariant1 and we obtain from (C.14)

lγ−1
⊥i
→ 0 , (C.15)

as desired.

1Since τ lies entirely in g(Z), there is a curve σ in Z whose image under g is τ . Together with the
properties 1) and 2) of τ this implies in particular that L(τ) = L(σ) is not infinitesimal.
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Fig. C.1.: From left to right: distribution in the base space of the flow, target
distribution, learned distribution

C.2. Details on Experiments

C.2.1. Toy Example

The flow used for the toy example is composed of twelve RealNVP-type coupling layer
blocks. Each of these blocks includes a three-layer fully-connected neural network
with leaky ReLU activations for the scale and translation functions.

For training, we sample from the target distribution defined by

x3 ∼ U(−4, 4) ,
x2 = cos(x3) ,

x1 = sin(x3) .

We train for 5000 epochs using a batch of 500 samples per epoch. We use the
Adam optimizer with standard parameters and learning rate λ = 1 × 10−4. This
takes around 10 minutes on a standard CPU. After successful training, we can map
samples from a multivariate standard normal distribution to the data distribution,
see Figure C.1.

In order to train a classifier we first define the ground truth: points with z-coordinate
smaller than zero belong to the one class and points with z-coordinate bigger than
zero belong to the other class. We train a neural network with 256 hidden neurons
with ReLU activations and one output neuron with sigmoid activation to near perfect
accuracy on this classification task.

We then run the gradient ascent optimization in image space X and in the base
space of the flow Z. We start from samples from the true data distribution and set
the target to 0.1 if the network predicted a value larger than 0.5 for the original data
point, otherwise we set the target to 0.9.
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As we have an analytical description of the helix
which serves as the data manifold in this toy
example, we can calculate the shortest distance
between any point and the helix. The figure on
the right shows that the counterfactuals found in
Z lie significantly closer to the data manifold than
adversarials found in X . We test this for 1000
optimizations in Z and X respectively. Boxes
in the plot extend from lower to upper quartile,
red lines mark the medians, whiskers mark the
1.5×IQR (interquartile range) and circles mark
outliers.

For more details we refer to our github implementation2.

C.2.2. Generative models

Flows

We show generated samples for all Flows in Figure C.2. We use the RealNVP3

architecture for MNIST and the Glow4 architecture for CelebA and CheXpert. For
the training, we use the Adam optimizer with a learning rate of 1× 10−4 and weight
decay of 5× 10−4 for all flows.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: we train for 30 epochs on all available training images. Bits per dimension
on the test set average to 1.21.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: we train for 8 epochs on all available training images. We use 5 bit images.
Bits per dimension on the test set average to 1.32.

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: we train for 4 epochs on all available training images. Bits per dimension
on the test set average to 3.59.

Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall: we train for 47 epochs on all available training images. Bits per dimension on
the test set average to 0.96.

GANs

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We use a deep convolutional GAN5 that we train for 170 epochs using the
Adam optimizer with weight decay of 5× 10−4 and learning rate of 2× 10−4.

2https://github.com/annahdo/counterfactuals/blob/main/toy_example.ipynb
3https://github.com/fmu2/realNVP
4https://github.com/rosinality/glow-pytorch
5https://github.com/AKASHKADEL/dcgan-mnist
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Fig. C.2.: Generated samples for all normalizing flows used in the paper. From left
to right: RealNVP on MNIST, Glow on CelebA, Glow on CheXpert and
Glow on Mall.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We use a progressively grown GAN6 and train on 600000 randomly selected
training images.

CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ: We use the pre-trained HyperStyle7 GAN.

VAEs

We use Adam without weight decay and with a learning rate of λ = 5× 10−3 for all
VAEs.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We train a simple convolutional VAE for 80 epochs. To evaluate the IM1
measure we train two additional VAEs with the same structure on only the training
images with label four and nine respectively for 100 epochs.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: The VAEs for CelebA are only used to evaluate the IM1 measure. We train 2
simple convolutional VAEs for 100 epochs on all training images with blond attribute
equal to one and all training images with blond attribute equal to 0 respectively.

C.2.3. Classifiers

All classifiers have a similar structure consisting of convolutional, pooling and fully
connected layers. We use ReLU activations and batch normalization. For MNIST
we use four convolutional layers and three fully connected layers. For CelebA and
CheXpert we use six convolutional layers and four fully connected layers. For the
training, we use the Adam optimizer with a weight decay of 5×10−4 for all classifiers.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We train for 4 epochs using a learning rate of 1 × 10−3. We get a test
accuracy of 0.99.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We train a binary classifier on the blond attribute. We partition the data
sets into all images for which the blond attribute is positive and the rest of the

6https://github.com/rosinality/progressive-gan-pytorch
7https://github.com/yuval-alaluf/hyperstyle
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images. We treat the imbalance by undersampling the class with more samples.
We train for 10 epochs using a learning rate of 5 × 10−3. We get a balanced test
accuracy of 93.63% by averaging over true positive rate (93.95%) and true negative
rate (93.31%).

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: We train a binary classifier on the cardiomegaly attribute. For the training
data the cardiomegaly attibute can have four different values: blanks, 0, 1, and
-1. We label images with the blank attribute as 0 if the no finding attribute is 1,
otherwise we ignore images with blank attributes. We also ignore images where the
cardiomegaly attribute is labeled as uncertain. Using this technique, we obtain 25717
training images labeled as healthy and 20603 training images labeled as cardiomegaly.
We do not treat the imbalance but train on the data as is. We train for 9 epochs
using a learning rate of 1 × 10−4. We test on the test set, which was produced in
the same way as the training set. We get a balanced test accuracy of 86.07% by
averaging over the true positive rate (84.83%) and true negative rate (87.27%).

C.2.4. U-Net:

The U-Net [210] follows an hourglass structure. The first part consists of multiple
convolutional, batch normalization, ReLU, and pooling layers that gradually reduce
the spatial dimensions while increasing the channel dimensions. The second block
consists of upsampling, concatenation of feature maps from the first part, convolu-
tional, batch normalization and ReLU activation layers. The last layer has the same
spacial dimension as the input but only one channel corresponding to a probability
map. For using the U-Net in order to count pedestrians, Ribera et al. [211] add an
additional fully connected layer with ReLU activations that combines the information
from the last layer and the central encoding layer to estimate the number of objects
of interest present8.

C.2.5. Optimization of counterfactuals and adversarial
examples

Counterfactuals and adversarial examples are found using the Adam optimizer with
standard parameters. We vary only the learning rate λ. For our main experiments,
we use the base space of normalizing flows to find the counterfactuals. We set the
threshold for the confidence of the target class high when searching for counterfactuals
and adversarial examples. We therefore get more visually expressive results. Of
course in practice, one might wish to find counterfactuals with lower target confidence.
We show an example optimization with different confidence thresholds in Figure C.3.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We use λ = 5×10−4 for conventional adversarial examples and λ = 5×10−2

for counterfactuals found via the flow. We do a maximum of 2000 steps stopping

8https://github.com/javiribera/locating-objects-without-bboxes
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0.1 0.25 0.5 0.75 0.99

Fig. C.3.: Top row: original image and evolution throughout optimization. Numbers
indicate confidence with which the image is classified as ‘blond’. Second
row: absolute differences to original image summed over color channels.

early when we reach the target confidence of 0.99. We perform attacks on 500 images
of the true class ‘four’. All conventional attacks and 498 of the attacks via the flow
reached the target confidence of 0.99 for the target class ‘nine’.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We use λ = 7× 10−4 for conventional adversarial examples and λ = 5× 10−3

for counterfactuals found via the flow. We do a maximum of 1000 steps stopping
early when we reach the target confidence of 0.99. We perform attacks on 500 images
of the true class ‘not-blond’. 492 conventional attacks and 496 of the attacks via the
flow reached the target confidence of 0.99 for the target class ‘blond’.

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: We use λ = 5×10−4 for conventional adversarial examples and λ = 5×10−3

for counterfactuals found via the flow. We do a maximum of 1000 steps stopping
early when we reach the target confidence of 0.99. We perform attacks on 1000
images of the true class ‘healthy’. All conventional attacks and 990 of the attacks
via the flow reached the target confidence of 0.99 for the target class ‘cardiomegaly’.

Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall: We use λ = 1×10−4 for conventional adversarial examples and λ = 5×10−3 for
counterfactuals found via the flow. We do a maximum of 5000 steps stopping early
when we reach the target regression value of 10 when we are maximizing pedestrians
and 0.01 when we are minimizing pedestrians. We perform attacks on 100 images
with few people (average regression value of 0.7) and 100 images with many people
(average regression value of 3.6). All attacks reached the target values.

GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs: For counterfactuals found in the latent space of GANs we do a maximum of
1000 steps with λ = 5× 10−3 for MNIST, CelebA and CelebA-HQ.

VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs: For counterfactuals found in the latent space of the VAE trained on MNIST
we do a maximum of 1000 steps with λ = 5× 10−3.
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Pedestrians’ head positions for counterfactuals and adversarial examples with
original and oracle U-Net

In Figure C.4, we show the localization of heads for the counterfactuals and the
adversarial examples for the Mall data set from Figure 6.9 using the original and the
oracle U-Net. In order to find the head locations, the regression value is rounded to
the closest integer representing the number of pedestrians in the image. A Gaussian
mixture model with the number of pedestrians as components is then fitted to the
probability map. Finally the head positions are defined as the means of the fitted
Gaussians.

original oracle original oracle

Fig. C.4.: Head locations detected with original and oracle U-Net.

Figure C.4 shows that the original U-Net is deceived by the adversarial examples
(rows marked by X ): When maximizing pedestrians (first column) the original
U-Net produces false positives, leading to markers at locations where there are no
pedestrians. When minimizing pedestrians, the adversarial examples (third column)
fool the original U-Net into making false negative errors, that is failing to detect
pedestrians, although they are clearly present. The oracle U-Net on the other hand
produces regression values and probability maps that enable correct identification
of pedestrian’s head positions (or lack thereof) for the adversarial examples when
maximizing (second column) and minimizing (forth column) pedestrians. For the
diffeomorphic counterfactuals (rows marked by Z), the predictions of the two U-
Nets are similar, showing that these counterfactuals generalize to the independently
trained oracle U-Net.
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C.2.6. Similarity to source images

To evaluate the proximity between counterfactuals/adversarials and their correspond-
ing source images we calculate the Euclidean differences in X space as well as in
Z space and compare them to the respective Euclidean differences for all images
of the source class. For MNIST, CelebA and CheXpert we calculate the Euclidean
differences for a maximum of 2000 test images for each counterfactual/adversarial.
For the Mall data set we calculate the distances to 400 training images with r < 1
when considering counterfactuals/adversarials for which we maximized r and we
calculate the distances to 400 training images with r > 3 when considering counterfac-
tuals/adversarials for which we minimized r. In addition we calculate all Euclidean
differences between counterfactuals/adversarials and their respective source images.
We show the distribution of distances to the respective source images and to all
images of the source class in Figure C.5.

As expected the Euclidean differences between adversarial examples and their respec-
tive source images are very small when measured in X space but a lot larger when
measured in Z space. The Euclidean differences for counterfactuals measured in X
are larger than those for adversarials but we can still observe that counterfactuals
are significantly closer to their respective source image than to other images of the
same class. The Euclidean distances measured in Z space are significantly smaller
for counterfactuals than for adversarials, indicating that adversarial examples lie off
manifold.

The effect is less pronounced for images from the Mall data set, as those have little
variance in the background. Comparing similarities between source image and images
of the source class might therefore not be as meaningful as for the other datasets.

C.2.7. Similarity between all images

We calculate the Euclidean distances in X and Z of randomly selected test images
(all classes), adversarial examples and counterfactuals to randomly selected images
from the training data set (all classes). Figure C.6 shows the distribution of distances
for the data sets MNIST, CelebA and CheXpert. We note that for distances in X
the distributions for original images, adversarial examples and counterfactuals are
very similar while for distances in Z the distribution of distances for adversarial
examples is notably shifted to the right, meaning that adversarial examples are
further away from random data samples when the distances are measured in Z , that
is on the manifold. The effect is most notable for CelebA and CheXpert, for which
the distances in Z of counterfactuals closely match the distribution of distances
between images from the data set.

The original distribution of images from the Mall data set is strongly skewed towards
few pedestrians. We can therefore not expect to achieve insights from comparing
distributions of manipulated images.
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Fig. C.5.: Euclidean distances in X and Z for adversarial examples (uneven rows)
and counterfactuals (even row) for the MNIST (top left), CheXpert (top
right), Mall from few to many (bottom left) and Mall from many to few
(bottom right).

C.3. Additional experiments

C.3.1. Unsatisfactory results

For some images it seems like our method does not obtain satisfactory counterfactuals.
We show some examples for the CelebA data set in Figure C.7. Possible explanations
from left to right could be: It is unclear what should happen to a bald person when
going blond. People with dark skin and blond hair are rarely seen in the data set so
the generative model has difficulty generating such images. People with hats are not
very common in the data set, so the hat is mistaken for hair and made blond.

C.3.2. Revealed class correlations

Counterfactuals can reveal biased classifiers or data sets. For the CelebA data set the
blond attribute seems correlated with light skin and make up, see Figure C.8. This
can be a feature rather than a bug if one aims to discover said biases. If the behavior
is unwanted one could include additional regularizers that keep the prediction for
attributes other than the target attribute close to their initial values.
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Fig. C.6.: Distributions of Euclidean distances in X and Z for test images, adversarial
examples and counterfactuals for three data set.

Fig. C.7.: For these examples our method did not achieve satisfactory results.

C.3.3. Different target queries

Different classes for source and target images lead to qualitatively different results.
For MNIST (see Figure C.9) transitions from ‘6’ to ‘2’ or from ‘5’ to ‘1’ yield
counterfactuals that are not easily identified as the target class by a human.

For Glow used with CelebA we observe that our approach fails to generate satisfactory
images for target classes ‘hat’ and ‘glasses’ (see Figure C.10). These failures may
be due to the quality of the generative model as images of people with hats (≈ 5%)
and glasses (≈ 6%) are comparatively rare in the CelebA training set. Generating
counterfactuals in the opposite direction (from ‘hat’ to ‘no hat’ or ‘glasses’ to ‘no
glasses’) gives more satisfactory results.
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Fig. C.8.: Counterfactuals reveal correlations. Left: blond hair is associated with
light skin. Middle and right: blond hair is associated with makeup.

Fig. C.9.: Randomly selected counterfactuals for different source and target classes
for the MNIST data set. Optimization tasks for blocks from left to right:
6→ 2, 3→ 8, 5→ 1, 7→ 0.

Fig. C.10.: Randomly selected counterfactuals for different source and target classes
for the CelebA data set. Optimization tasks for blocks from left to right:
‘male’ to ‘not male’, ‘not smiling’ to ‘smiling’, ‘no hat’ to ‘hat’, ‘no glasses’
to ‘glasses’.
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