
AI-enabled Log Analysis for Improving IT
System Dependability

vorgelegt von
M. Sc.

Jasmin Bogatinovski

an der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Sahin Albayrak
Gutachter: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Roberto Natella
Gutachter: Prof. Dr. David Bermbach
Gutachter: Prof. Dr. Gjorgji Madjarov

Tag der wissenschaftlichen Aussprache: 20. Februar 2023

Berlin 2023

Dedication

To my family.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Odej Kao. Without

our vivid discussions and insightful questions, this work would not have been done.

Prof. Odej, I am sincerely thankful for your patience, supportiveness, thoughtfulness,

and guidance through my PhD. Thank you for all the given chances for personal and

professional development. Thank you for accepting me as a part of your group and

showing me various aspects of academia and life. Many of the shared life lessons and

experiences will always stay with me and for sure will help me in my future professional

and private endeavours. I am honoured, glad and lucky to have you as my supervisor.

I sincerely believe that the superb workshops we organized will stick with you as small,

but memorable wins.

I would also like to thank Jorge Cardoso from Huawei Munich Research, with whom I have

had the pleasure to work for more than three years on high-impact industry problems.

I am thankful for his support through all aspects of our collaborations including the

unselfish sharing of his rich expertise and experience.

The thesis was financially supported by Huawei Technologies Co., Ltd. I am grateful for

their recognition as a suitable collaborator during my PhD.

My special gratitude extends to Sasho Nedelkoski. I am very grateful for our collab-

orations and the many discussions on different topics, which improved my professional

abilities and helped me to become a better person.

I would also like to thank my colleagues that helped me with the adaptation, advice,

and all the other peculiarities within a working environment. Particularly, I would call

out the names of Alexander Acker, Soeren Becker, Yevhen Yazvinskyi, Petar Ilijeski,

Mihail Bogojeski, Li Wu, Dominik Scheinert, Jonathan Bader, Kevin Styp-Rekowski

and Florian Schmidt from the Technical University Berlin, Ilya Shakat, Soroush Harari,

Qiao Yu and Erekle Shishniashvili from Huawei Munich Research, Tome Eftimov, Ana

Kostovska, Ljupčo Todorovski and Dragi Kocev from Jožef Stefan Institute, Ljubljana

v

Slovenia. Many thanks to all the people who voluntarily or involuntarily volunteered in

the long-lasting process of my studies.

Special thanks to Jana Bechstein for helping me with all the administration and for the

pleasant conversations and warm advices when there was nobody else. Jana, thank you.

The greatest burden of my PhD journey fell onto my wonderful parents and lovely sister.

Thank you for being brave and supportive in every aspect of my life. Thank you for your

contribution to shaping me to become the person I am today. My endless love belongs

to you.

Last but not least, I am thankful to Alisa Krstova for her love, support and patience

during the greatest hardships of my PhD process. Thank you.

vi

Abstract

Modern IT systems play an indispensable role in industrial infrastructure and affect hu-
man society, as billions of users and devices constantly compute, exchange and store data.
Their characteristics, such as large complexity, fast evolution, and geo-distributed devel-
opment, among others, challenge the availability and the correctness of service offerings
while increasing failure proneness. Failure to deliver the correct service can have severe
implications. This is particularly the case for critical systems in medicine, transporta-
tion, or energy, leading to hazardous effects. The increased complexity surpasses the
developers’ and operators’ capabilities for timely issue resolution increasing the chance
of frequent failure impact.

To support the system development and operation, as means to ensure the provisioning
of correct service that can justifiably be trusted (system dependability), automation of
different tasks is needed. One important aspect of automation is the IT system’s capabil-
ity to externalise the system state via monitoring data such as system logs. These data
are used by intelligent methods that can learn to discern frequent normal and anomalous
patterns from the data. Therefore, intelligent methods can automate parts of the devel-
opment and operational processes, e.g., by generating alerts about potential issues. In
this context, Artificial Intelligence for IT operations (AIOps) emerged as a research area
concerned with using the system (e.g., source code) and monitoring data (e.g., system
logs) and methods from artificial intelligence (AI), big data, machine learning and data
mining to support the automation of IT operational activities.

This thesis introduces AI-enabled methods that address different AIOps tasks during sys-
tem development and operation. The methods focus on the logging process and system
logs as an intrinsic data source for the IT systems. From a system development per-
spective, the main contributions reside in formalizing and addressing the problem of log
instruction quality, as logs with sufficient quality are a precondition for successfully tack-
ling downstream log-related tasks. (1) The thesis proposes a deep learning-based method
to automatically evaluate the quality of log instructions from the system’s source code.
From a system operation perspective, the thesis contributes by proposing novel meth-
ods for log analysis, specifically, log-based anomaly detection. The log-based anomaly
detection methods learn anomaly-related log properties that improve the (2) sentiment
and (3) sequential log representations. This category of methods studies how leveraging
the individual log properties impacts anomaly detection and classification in modern IT
systems. The extensive evaluations with data from open-source, production systems,
and testbeds show the usefulness of the proposed methods in addressing the challenges
of modern IT systems while demonstrating desirable practical properties. The proposed
methods and results were published in peer-reviewed international conferences, while
parts were patented at the European Patent Office.

vii

viii

Zusammenfassung

Moderne IT-Systeme spielen eine unverzichtbare Rolle in industriellen Infrastrukturen
und beeinflussen menschliche Gesellschaften, da Milliarden von Nutzern und Geräten
ständig Daten berechnen, austauschen und speichern. Diese Systeme weisen Merkmale
wie hohe Komplexität sowie schnelle und geografisch verteilte Entwicklung auf, womit sie
eine Herausforderung für die Verfügbarkeit und Korrektheit von Dienstangeboten dar-
stellen und die Fehleranfälligkeit erhöhen. Wird ein Dienst nicht korrekt erbracht, kann
dies schwerwiegende Folgen haben. Dies gilt insbesondere für kritische Systeme in der
Medizin, im Transportwesen oder im Energiesektor, was zu gefährlichen Auswirkungen
führen kann. Die zunehmende Komplexität übersteigt die Möglichkeiten der Entwickler
und Betreiber zur rechtzeitigen Problemlösung und erhöht die Wahrscheinlichkeit häufi-
ger Ausfälle.

Zur Unterstützung der Systementwicklung, des Systembetriebs und als Mittel zur Si-
cherstellung der Bereitstellung eines korrekten Dienstes, dem man berechtigterweise ver-
trauen kann (Systemzuverlässigkeit), ist die Automatisierung verschiedener Aufgaben
erforderlich. Ein wichtiger Aspekt der Automatisierung ist die Fähigkeit des IT-Systems,
den Systemzustand über Überwachungsdaten wie System-Logs zu externalisieren. Diese
Daten werden von intelligenten Methoden verwendet, die lernen können, normale und
anomale Muster aus den Daten zu erkennen. Intelligente Methoden können daher Teile
der Entwicklungs- und Betriebsprozesse automatisieren, indem sie z. B. Warnungen oder
Korrekturmaßnahmen zu potenziellen Problemen erzeugen. In diesem Zusammenhang
hat sich Künstliche Intelligenz für den IT-Betrieb (AIOps) als Forschungsgebiet heraus-
kristallisiert, das sich mit der Nutzung von System- (z. B. Quellcode) und Überwachungs-
daten (z. B. System-Logs) und Methoden aus den Bereichen KI, Big Data, maschinelles
Lernen und Data Mining beschäftigt, um die Automatisierung von IT-Betriebsaktivitäten
zu unterstützen.

In dieser Arbeit werden KI-gestützte Methoden vorgestellt, die verschiedene AIOps-
Aufgaben während der Systementwicklung und des Betriebs adressieren. Die Methoden
konzentrieren sich auf den Log-Prozess und die System-Logs als intrinsische Datenquelle
für die IT-Systeme. Aus der Perspektive der Systementwicklung liegen die Hauptbeiträge
in der Formalisierung und Behandlung des Problems der Qualität von Log-Instruktionen,
da Logs mit ausreichender Qualität eine Voraussetzung für die erfolgreiche Bewältigung
nachgelagerter logbezogener Aufgaben sind. (1) Die Arbeit schlägt eine auf Deep Learning
basierende Methode zur automatischen Bewertung der Qualität von Log-Anweisungen
aus dem Quellcode des Systems vor. Aus Sicht des Systembetriebs leistet die Arbeit
einen Beitrag, indem sie neuartige Methoden zur Log-Analyse vorschlägt, insbesonde-
re zur log-basierten Anomalie-Erkennung. Die log-basierten Methoden zur Erkennung
von Anomalien lernen anomalitätsbezogene Log-Eigenschaften, die die (2) Sentiment-

ix

und (3) sequentielle Darstellung von Logs verbessern. Diese Kategorie von Methoden
untersucht, wie sich die Nutzung der individuellen Log-Eigenschaften auf die Anomali-
eerkennung und -klassifizierung in modernen IT-Systemen auswirkt. Die umfangreichen
Auswertungen mit Daten aus Open-Source- und Produktionssystemen sowie Testumge-
bungen unterstreichen die Nützlichkeit der vorgeschlagenen Methoden bei der Bewälti-
gung der Herausforderungen moderner IT-Systeme und demonstrieren gleichzeitig die
wünschenswerten praktischen Eigenschaften. Die vorgeschlagenen Methoden und Ergeb-
nisse wurden von Fachleuten überprüft und auf internationalen Konferenzen in Form von
Fachbeiträgen veröffentlicht, sowie in Teilen beim Europäischen Patentamt patentiert.

x

Contents

1 Introduction 1
1.1 Problem Statement . 4
1.2 Main Contributions . 5
1.3 Thesis Outline . 9

2 Background 11

2.1 System Dependability . 11

2.2 System Observability . 14

2.2.1 Software Logging . 14

2.2.2 Software Log Instrumentation . 16

2.3 Artificial Intelligence for IT Operations . 19

2.3.1 Intelligent Methods . 21

2.3.2 Anomaly Detection . 23

3 Related Work 35
3.1 Logging Code Composition Quality . 35

3.1.1 What-to-Log . 36

3.1.2 Where-to-Log . 38

3.1.3 How-to-Log . 39

3.2 Log Analysis . 41

3.2.1 Log Parsing . 42

3.2.2 Log-based Anomaly Detection . 44

3.2.3 Log-based Anomaly Classification 49

4 AI-enabled Dependability Framework with Log Data 51

4.1 Challenges and Assumptions . 51

4.1.1 Challenges . 52

xi

xii CONTENTS

4.1.2 Assumptions . 55

4.2 Conceptual Overview . 56

4.2.1 Automatic Log Instruction Code Improvement 58

4.2.2 Log Analysis: Log-based Anomaly Detection and Classification . . 60

5 Automatic Logging Code Composition Quality Assessment 67

5.1 Logging Code Composition Quality Properties 69

5.1.1 Log Level Assessment . 70

5.1.2 Linguistic Quality Assessment . 71

5.2 QuLog: Automatic Method for Logging Code Composition Quality As-
sessment . 73
5.2.1 Log Instruction Preprocessing . 75

5.2.2 Deep Learning Framework . 76

5.2.3 Prediction Explainer . 77

5.3 Evaluation . 79
5.3.1 Log Level Assessment . 80

5.3.2 Linguistic Quality Assessment . 84

5.3.3 Prediction Explainer . 86

5.4 Chapter Summary . 88

6 Single Line Log-based Anomaly Detection and Classification 91

6.1 Semantic Log Analysis . 93

6.1.1 Log Instructions Usage for Anomaly Detection 94

6.1.2 ADLILog: Semantic Anomaly Detection with Log Instructions . . . 97

6.1.3 Semantic Anomaly Classification 102

6.2 Performance Log Analysis . 102

6.2.1 NuLog: Self-Attentive Log Parsing 103

6.2.2 Performance Anomaly Detection 106

6.3 Evaluation . 106
6.3.1 Semantic Log Analysis . 107

6.3.2 Performance Log Analysis . 114

6.4 Chapter Summary . 120

7 Sequential Log-Based Anomaly Detection and Classification 123

7.1 Log Sequence Representation with Event Groups 125

7.2 CLog: Method for Sequential Log-based Anomaly Detection and Classifi-
cation . 127
7.2.1 PLog: Context-aware Event Group Extraction 128

7.2.2 Sequential Anomaly Detection . 133

7.2.3 Sequential Anomaly Classification 135

7.3 Evaluation . 136
7.3.1 Sequential Anomaly Detection . 138

7.3.2 Sequential Anomaly Classification 142

7.4 Chapter Summary . 143

8 Conclusions 145

A Online Services Failure Study 149

B Log Level Quality Assessment: Additional Evaluation 153

Bibliography 155

xiii

xiv

List of Tables

3.1 Summary of related works for log-based anomaly detection. 44

5.1 Overview of the studied systems for log quality assessment. 70

5.2 Empirical study: Log level assignment. 71

5.3 Empirical study: Linguistic quality assessment. 72

5.4 Log level quality assessment evaluation on accuracy. 82

5.5 Log level quality assessment evaluation on AUC. 83

5.6 Sufficient linguistic structure quality assessment evaluation 85

5.7 Sufficient linguistic quality additional evaluation on systems from the ex-
tended log quality database. 85

6.1 Log instructions static texts uniqueness analysis results. 95

6.2 Log instructions static texts sentiment analysis results. 96

6.3 Datasets properties. 107

6.4 Difference between the train-test splits for the two datasets. 108

6.5 Semantic anomaly classification results. 114

6.6 Datasets and NuLog hyperparameter settings. 115

6.7 Comparisons of log parsers on parsing accuracy. 116

6.8 Comparisons of log parsers on edit distance. 117

7.1 Example of event groups in the context of the VM creation event. 126

7.2 Datasets statistics. 136
7.3 Comparison of CLog against competing methods on sequential anomaly

detection. 138
7.4 CLog anomaly detection evaluation on unstable log sequences. 142

7.5 Comparison of CLog against baselines on sequential anomaly classification. 143

B.1 Log level misclassification contingency table. 153

B.2 Performance scores on the task of log level assignment. 154

xv

List of Figures

2.1 Fault-error-failure model as an aspect of dependability. 12

2.2 An example of logging code in the method MyServer.java. 15

2.3 An example of logs from the logging code given in Figure 2.2. 16

2.4 Examples of different anomaly types in computer systems. 25

2.5 Model architecture of the Transformer’s encoder. 30

3.1 General workflow of log analysis. 42

3.2 Sequential methods usage in single log line anomaly detection. 46

4.1 Overview of the thesis contributions within the overall AIOps framework
on log data. 57

4.2 Log instructions quality evaluation component. 59

4.3 Single log line analysis module overview. 62

4.4 Sequential log analysis module overview. 65

4.5 Example of the log analysis reporting component. 66

5.1 Examples of issues related to log instructions quality. 68

5.2 Internal architectural design of QuLog. 74

5.3 Prediction explainer working procedure example. 78

5.4 Quantiative evaluation of the explanation module. 87

5.5 Qualitative analysis of QuLog’s explanation module. 88

6.1 Overview of the single log line analysis. 92

6.2 ADLILog: Detailed design of the single log line anomaly detection method. 97

6.3 Performance anomaly detection architecture details. 103

6.4 An instance of parsing a single log message. 104

6.5 Comparison of ADLILog against unsupervised methods. 109

6.6 Comparison of ADLILog against supervised methods. 110

xvi

6.7 Sensitivity analysis of the influence of batch and model size over the pre-
dictive and runtime performances. 112

6.8 Robustness evaluation on the parsing accuracy. 117

6.9 Robustness evaluation on the edit distance. 118
6.10 Performance anomaly detection results. 119

7.1 Influence of the log sequence representations on the entropy. 127

7.2 CLog architecture overview. 128

7.3 Internal design of the context-aware event group extraction subcomponent. 129

7.4 Internal architectural design of the anomaly detection and classification
subcomponent. 134

7.5 Comparison of the different representations on the training time of HMM
as anomaly detector. 140

7.6 Window size impact on the anomaly detection performance. 141

A.1 Availability of the services in a period of four years. 150

A.2 Mean and median time to failure of the 70 services. 150

xvii

xviii

Abbreviations

AD Anomaly Detection

AIOps Artificial Intelligence for IT
operations

AOP Aspect Oriented Programming

AI artificial intelligence

ASGD Alternating Stochastic Gradient
Descent

DevOps Development and Operation

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DT Decision Trees

EPO European Patent Office

GRU Gated Recurrent Unit

HMM Hidden Markov Model

kNN k-Nearest Neighbour

LDAP Lightweight Directory Access
Protocol

LSTM Long Short Term Memory

ML Machine Learning

IT Information Technologies

NEP Next Event Prediction

NLP Natural Language Processing

OM Operation and Maintenance

OS Operating System

PA Parsing Accuracy

perAD Performance Anomaly Detection

PCA Principle Component Analysis

PU Positive Unlabeled

POS Part of Speech

PIDs Process Identifiers

RF Random Forest

RELU Rectifier Linear Unit

semAD Semantic Anomaly Detection

semATC Semantic Anomaly Type
Classification

seqAD Sequential Anomaly Detection

seqATC Sequential Anomaly Type
Classification

SLA Service Level Agreements

SRE Site Reliability Engineering

SSD Solid State Drives

SVM Support Vector Machines

TFILF Term Frequency Inverse
Location Frequency

xix

xx

Chapter 1

Introduction

Contents
1.1 Problem Statement . 4

1.2 Main Contributions . 5

1.3 Thesis Outline . 9

Modern IT systems play an important role in the industrial and human-social infras-
tructure. Search engines, instant messaging applications, banking software, e-commerce
platforms, and others, are examples of modern IT systems humans vastly rely on. They
support the continual computation, exchange and storage processes between billions of
devices and users. Thereby, humans indispensably rely on the dependability of the sys-
tems - as a system’s ability to deliver a service that is justifiably trusted. To support
the ever-growing industrial and social demands, the overall IT ecosystem is projected
to increase the number of interconnected components while diversifying the underlying
hardware. For example, market analysis reports from Cisco and Gartner suggest that
the number of interconnected devices by 2025 will increase to 27.3-30 billion [48, 77].
From a software development perspective, the support of the development and scala-
bility demands shifts the focus from a monolithic system design toward a decentralized
service-based design [159]. Decentralized software allows agile and reliable development
of dedicated services. This improves scaling and enables large data volume processing.
While the decentralized design of modern IT systems significantly improves business
agility, it comes at the cost of magnified system complexity [130].

The omnipresence of IT systems in daily human activities imposes high user expecta-
tions for system dependability. However, the inevitable weaknesses in hardware and
software lead to failures. Failures are events where a system component (hardware or
software) omits the execution of the expected or required action, making them one of

1

2 Chapter 1. Introduction

the key threats to system dependability [4]. The downtime they cause can lead to cus-
tomer dissatisfaction and economic losses [70]. Failures in emerging critical systems (e.g.,
autonomous driving and smart cities) can endanger human safety and threaten human
lives. For example, software issues in the intelligent software of a Tesla (an electric car
producing company) vehicle are speculated to be a direct cause for collisions with fatal
consequences [138]. In addition to the term failure, the term anomaly is used to refer not
just to failures, but to additional events that describe a degraded state [2]. As the rich-
ness of the IT systems in terms of both hardware and software grows, so does the failure
proneness. Different studies examine the anatomy of the anomalies in large-scale systems
(e.g., HPC systems, clouds) [53] and different types of services and components (e.g., vir-
tual machines, network components, storage subsystems, and data mining services) [163,
171]. They show that failures are frequent and their nature is very diverse.1 Recognizing
the persistence and the polymorphic nature of the anomalies, their frequency, and haz-
ardous effects require non-trivial efforts and expertise from the developers, and operators
of the IT systems to detect them and guarantee systems’ dependability. Therefore, the
correct detection and classification of the system state different than the normal (i.e.,
anomaly detection and classification) are important for trusted service delivery.

To regulate and improve the system’s dependability, developers and Operation and Man-
agement (O&M) teams rely on observability data obtained during system execution [70].
Two commonly used categories of observability data are the metric data (e.g., CPU us-
age) and system log messages (logs, e.g., "VM created") [157]. System logs are often used
as observability data for on-field analysis, as they are intrinsic monitoring tools for every
computer system (e.g., control register status bits in the CPU) [70, 92]. They are gener-
ated from log instructions that developers insert in the source code to visualise important
system events and to give hints to the operators running the system as a black box. For
example, the log instruction: log.info(”VM took %f seconds to spawn.”, createSeconds)
shows the time needed to create a virtual machine. It is composed of a log level (i.e.,
info), static text describing the event (i.e., "VM took < ∗ > seconds to spawn."), and
variable parameter (i.e., createSeconds), denoting important variable runtime informa-
tion. Logs give meaningful clues for potential failure, as they are semantically rich data
written by humans for humans (i.e., they are human-centric). For example, when a
switch generates the log ’System is rebooting now’, the operator understands by the se-
mantics that the switch is failing, and obtains a hint that the potential anomaly may be
caused by switch rebooting. In addition, despite the semantics, the event co-occurrence
is another log property adding to log richness as a data source. For example, several
sequential repetitions of the two logs a) "Interface change state to up", and b) "Interface
change state to down", reveal that the interface is flapping. Given that the most frequent

1Appendix A shows a replication study we performed to study the failure’s impact on online service
dependability.

3

reason for a flapping interface is a bad cable connection, the operators can diagnose and
classify the failure on time, and act accordingly [29]. Notably, different anomalies reflect
in various ways in logs [44]. Therefore, analysing the log properties jointly over the dif-
ferent properties (i.e., semantics and sequential) should provide maximal visibility over
the failures.

The practical importance of logs has led to the appearance of the research area of log
analytics. Log analytics covers the whole cycle of the logging process during both de-
velopment and operation, including the creation, storage, and analysis of logs [70, 183].
Log analytics aids development by improving the writing of log instruction in the source
code, i.e., the logging code composition. During operation, log analytics is concerned with
the processing and analysis of the generated logs to detect and classify anomalies, find
root causes, predict future anomalies, and similar [70]. For example, the task of anomaly
detection considers detecting specific system behaviours where the system produces un-
expected out-of-normal behaviour. In the task of anomaly classification (as an example
of another operational task), the aim is to relate the past experiences of the anomalies
with a particular anomaly class enabling the reuse of past anomaly-resolving techniques.
Traditionally, in the context of supporting system dependability, log analytics depends on
the domain expertise of developers and operators alike [187]. For example, during devel-
opment, the log instruction writing (e.g., choosing the log instruction level) is intrinsically
subjective as it depends on the experience of the developers [100]. During runtime, the
system operation is concerned with the analyses of the generated logs to extract rules
for the different log analytics tasks by relying on heuristics (e.g., search for "error" log
levels or words like "failure", and "rejected") to detect or classify anomalies [102].

Modern systems’ characteristics, i.e., increased complexity due to the increased scale, the
heterogeneous hardware/software, and increased interconnectivity, render the traditional
approaches based on ad-hoc rules inefficient and ineffective [131]. The inefficiency and
ineffectiveness are direct consequences of the need to constantly update, or the inability to
construct comprehensive rules. To account for the characteristics of modern IT systems,
the automation of log analytics is being vastly researched [70, 183, 187]. The core idea of
automation is inventing and using intelligent methods from machine learning, big data,
and artificial intelligence on log-related data to learn task-specific patterns (as learned
rules). Therefore, automation replaces handcrafted rules while improving the robustness
and capabilities for extracting comprehensive patterns. Ultimately, it aids human efforts
to improve system dependability [130].

Despite the vast body of research on automatic log analysis, there are several aspects of
the automation of log analytics that can be further improved (during both development
and operation). As modern IT systems are complex and often developed by many devel-
opers with different levels of expertise and different understanding of logging purposes,

4 Chapter 1. Introduction

the logging code compositions are of varying quality. Low-quality logs can hide or even
present wrong information which can hurt log usability [23]. Therefore, the automation
of the quality assessment of log instruction emerges as an important problem during
development. Log instruction quality assessment refers to the evaluation of the align-
ment of the log instructions properties against the log instructions with assumed good
quality. The automation of log quality assessment during development should consider
and is therefore challenged by (a.1) heterogenous events (e.g., different vocabulary for
diverse events, different writing styles) and (a.2) different programming languages used
for developing a single system. These aspects further raise the challenge of (a.3) which
logging code composition quality assessment properties can be automated.

From a system operation perspective, the automation of log analysis addresses different
tasks. The timely detection and classification of anomalies are of particular interest, as
they are the first step towards limiting the downtime duration, thus preventing Service
Level Agreements (SLA) violations. Therefore, these two tasks are the main research
focus in AIOps [130]. As the scale and update frequency of modern software increases,
so does the rate of addition of (new) logs and log dependencies. This challenges the
automation of methods, as it requires robust method performance, leading to many false
alarms otherwise. Therefore, from the system operation perspective, the two challenges
of (b.1) reducing the false alarm rates, and (b.2) limited usability of past experiences (as
labels) exist. In addition, logs are complex data as they are both textual and sequential.
Naturally, different anomalies affect the log data differently. The automatic methods,
thereby, (b.3) are challenged with efficient utilization of the log properties (e.g., dealing
with single log lines and log sequences). Considering the characteristics of modern IT
systems, and the challenges from the system development (challenges a1 - a3) and system
operation (challenges b1 - b3) perspectives impose the need for an automatic log analytics
framework that supports the full logging cycle, from logging instrumentation to timely
failure identification as support in improving system dependability.

1.1 Problem Statement

An automatic log analytics framework supports the two stages of the system lifecycle,
i.e., development and operation. The research objective of this thesis is to:

"Improve the IT system development, operation and dependability by developing
intelligent methods for logging code composition, anomaly detection and classification

with log data."

As development and operation are two different phases in the lifecycle of the system,
they face unique challenges and are addressed independently. During system runtime,
the anomalies are observable in different properties of the log data (e.g., single log lines or
log sequences), which prompts the need to examine the individual properties separately.

1.2. Main Contributions 5

Considering this, we decompose the objective of this thesis into three parts discussed in
the following text.

Logging Code Composition Quality. Modern IT systems are developed by multi-
ple developers with diverse experiences that have different understandings of logging a
particular event. The diversity leads to the existence of events written with different
styles, diverse vocabulary and originating from various programming languages, all of
which impose difficulties on the automation of logging code composition. Similarly, it is
challenging to identify the empirically testable instruction properties as constituents of
the logging code composition subject to automation. We aim to address these challenges
to support the writing of quality logging code.

Single Line Log Analysis. Operators analyse the static text and the variable param-
eters of the individual logs to detect and classify anomalies. The dynamic changes in
IT systems result in fast system evolution leading to novel logs. Therefore, the anomaly
detection methods should generalize well. As the anomalies can be reflected in the pa-
rameter values, better anomaly detectability is achieved by analysing the parameters as
well. The first step for performance anomaly is to correctly parse the logs and extract
the parameters and the events. In this regard, log parsing is expected to have robust
performance for different systems as incorrect parsing can miss the relevant parameters
and the anomalies will not be detected. We aim to ameliorate the usage of single log line
properties (e.g., sentiment) and log parsing to improve the generalization and robustness
in single log line analysis, (e.g., log parsing, and single log line anomaly detection).

Sequential Log Analysis. As developers may have an insufficient understanding of
the complexities of the running system environment during development, not all failures
can be logged. Consequently, there is insufficient anomaly logging coverage. As a result,
the single log line analysis misses anomalies that are not explicitly logged. Neverthe-
less, some anomalies are observable in log sequences, prompting sequential log analysis.
Sequential log analysis is challenged by the sequence diversity due to novel events and
event dependencies caused by system updates, missing events, and incorrect preprocess-
ing. We aim to improve the sequential log analysis by improving the representation of
the log sequences, which potentially decreases the negative effects of the challenges on
the log sequences.

1.2 Main Contributions

This thesis contributes to the general scientific discipline of computer science. Specifically,
it contributes to the fields of software (reliability) engineering and artificial intelligence. It
proposes methods to aid IT system development and operational activities by advancing
intelligent logging code composition, and automatic log-based anomaly detection and

6 Chapter 1. Introduction

classification, with the end goal to improve the support of system dependability. The
three main contributions of the thesis are given as follows:

Logging Code Composition Quality. An important prerequisite in log analysis is
access to logs of good quality. To that end, we develop an approach to automatically
assess the quality of log instructions from software systems. The development of such an
approach is challenged by the heterogeneity of the systems, the unique writing styles of
developers, and different programming languages. To assess the logging quality, first, we
identify a set of two automatically empirically testable quality properties in a system-
agnostic manner. Second, we introduce and formalize the problem of quantification
of log instruction quality assessment. Third, by leveraging our observations and the
textual nature of the logs, we propose a framework for automatic model-driven log quality
assessment as an intelligent tool to aid the writing of log instructions. Finally, we propose
an approach to giving feedback for granular quality improvement of the log instructions.

Single Log Line Analysis. As the anomalies in single log lines can be reflected in
the semantics of the static text or as abnormal parameter values, we contribute novel
methods for the two. First, by analyzing log instructions from public systems we observed
and show that the log instructions contain rich anomaly-related information from many
different systems. The proposed method utilizes the data from the system of interest
(target system data) alongside the extracted anomaly-related information as auxiliary
data to learn anomaly-discriminative log representations to improve the generalization
performance. As the correct extraction of the parameters from the logs is a vital step
for parameter anomaly detection, we contribute with a novel method for robust log
parsing. The parser formulates the problem as a masked language modeling task to learn
the templates and the variable parts. The extracted events are used to create lists of
parameter values where parametric anomaly detection is performed.

Sequential Log Analysis. To address the sequential properties of the logs, we introduce
a novel method for improving the sequential representation. By representing the log
sequences as sequences of event groups, we found that the uncertainty in the overall
log event sequence is reduced. We propose a novel method that extracts event groups
from a given event sequence. The learned sequences of event groups are used in anomaly
detection and classification. The evaluation results demonstrate that the modified input
representation improves practical properties during sequential log analysis.

The methods presented herein are implemented as prototypes and evaluated on bench-
mark datasets, publicly collected datasets, data from testbeds, and large-scale production
data, whenever possible. In addition, the thesis contributes with two datasets 1) a dataset
with more than 100 thousand log instructions from public open-source systems; and 2)
a collection of online failure incidents from 70 services. Parts of this thesis have been

1.2. Main Contributions 7

published in peer-reviewed articles and a patent accepted at the European Patent Office.
We list the relevant contributions in the following:

[1] Jasmin Bogatinovski and Odej Kao. “Auto-Logging: AI-centred Logging Instru-
mentation”. In: 45th International Conference on Software Engineering, (ICSE
’23). To appear. 2023.

[2] Jasmin Bogatinovski and Sasho Nedelkoski. “Multi-source Anomaly Detection
in Distributed IT Systems”. In: Service-Oriented Computing – ICSOC 2020 Work-
shops. Cham: Springer International Publishing, 2021, pp. 201–213. doi: https:
//doi.org/10.1007/978-3-030-76352-7_22.

[3] Jasmin Bogatinovski, Sasho Nedelkoski, Alexander Acker, Jorge Cardoso, and
Odej Kao. “QuLog: Data-Driven Approach for Log Instruction Quality Assess-
ment”. In: 30th International Conference on Program Comprehension (ICPC ’22).
USA: ACM, 2022. doi: https://doi.org/10.1145/3524610.3527906.

[4] Jasmin Bogatinovski, Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. “Self-
Supervised Anomaly Detection from Distributed Traces”. In: 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). 2020,
pp. 342–347. doi: 10.1109/UCC48980.2020.00054.

[5] Jasmin Bogatinovski, Sasho Nedelkoski, Gjorgji Madjarov, Jorge Cardoso, and
Odej Kao. “Leveraging Log instructions for Log-based Anomaly Detection”.
In: 2022 IEEE International Conference on Services Computing (SCC). 2022,
pp. 321–326. doi: 10.1109/SCC55611.2022.00053.

[6] Jasmin Bogatinovski, Sasho Nedelkoski, Li Wu, Jorge Cardoso, and Odej Kao.
“Failure Identification from Unstable Log Data using Deep Learning”. In: 22nd
International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
NY: IEEE Press, 2022. doi: 10.1109/CCGrid54584.2022.00044. eprint:
1646836319158.

[7] Jorge Cardoso, Jasmin Bogatinovski, and Sasho Nedelkoski. Distributed Trace
Anomaly Detection with Self-Attention based Deep Learning. Approved by the
European Patent Office, WO2022053163A1. 2022.

[8] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. “Self-Attentive Classification-Based Anomaly Detection in Unstruc-
tured Logs”. In: 2020 IEEE International Conference on Data Mining (ICDM).
2020, pp. 1196–1201. doi: 10.1109/ICDM50108.2020.00148.

https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_22
https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_22
https://doi.org/https://doi.org/10.1145/3524610.3527906
https://doi.org/10.1109/UCC48980.2020.00054
https://doi.org/10.1109/SCC55611.2022.00053
https://doi.org/10.1109/CCGrid54584.2022.00044
1646836319158
https://worldwide.espacenet.com/patent/search/family/072474335/publication/WO2022053163A1?q=WO2022053163A1
https://doi.org/10.1109/ICDM50108.2020.00148

8 Chapter 1. Introduction

[9] Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker,
Jorge Cardoso, and Odej Kao. “Multi-source Distributed System Data for AI-
Powered Analytics”. In: Service-Oriented and Cloud Computing. Cham: Springer
International Publishing, 2020, pp. 161–176. doi: https://doi.org/10.
1007/978-3-030-44769-4_13.

[10] Sasho Nedelkoski 2, Jasmin Bogatinovski2, Alexander Acker, Jorge Cardoso, and
Odej Kao. “Self-supervised Log Parsing”. In: Machine Learning and Knowledge
Discovery in Databases: Applied Data Science Track. Cham: Springer Interna-
tional Publishing, 2021, pp. 122–138. doi: https://doi.org/10.1007/978-
3-030-67667-4_8.

[11] Harold Ott, Jasmin Bogatinovski, Alexander Acker, Sasho Nedelkoski, and
Odej Kao. “Robust and Transferable Anomaly Detection in Log Data using
Pre-Trained Language Models”. In: 2021 IEEE/ACM International Workshop
on Cloud Intelligence (CloudIntelligence). 2021, pp. 19–24. doi: 10 . 1109 /
CloudIntelligence52565.2021.00013.

[12] Thorsten Wittkopp, Alexander Acker, Sasho Nedelkoski, Jasmin Bogatinovski,
Dominik Scheinert, Wu Fan, and Odej Kao. “A2Log: Attentive Augmented Log
Anomaly Detection”. In: Proceedings of the 55th Annual Hawaii International
Conference on System Sciences. Honolulu, HI: ScholarSpace, University of Hawaii
at Mano, Hamilton Library, 2022. doi: 10.24251/HICSS.2022.234.

Other publications:

[1] Acker Alexander, Wittkopp Thorsten, Nedelkoski Sasho, Bogatinovski Jasmin,
and Kao Odej. “Superiority of Simplicity: A Lightweight Model for Network Device
Workload Prediction”. In: Proceedings of the 2020 Federated Conference on Com-
puter Science and Information Systems (FedCSIS 2020). Institute of Electrical and
Electronics, 2020, pp. 7–10. doi: https://doi.org/10.15439/2020F149.

[2] Jasmin Bogatinovski, Dragi Kocev, and Aleksandra Rashkovska. “Feature Ex-
traction for Heartbeat Classification in Single-Lead ECG”. In: 2019 42nd Inter-
national Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). Best Paper Award. 2019, pp. 320–325. doi:
10.23919/MIPRO.2019.8757135.

[3] Jasmin Bogatinovski, Yu Qiao, Jorge Cardoso, and Odej Kao. “First CE Mat-
ters: On the Importance of Long Term Properties on Memory Failure Prediction”.
In: 2022 IEEE International Conference on Big Data (Big Data). To appear. 2022.

2Equal Contribution

https://doi.org/https://doi.org/10.1007/978-3-030-44769-4_13
https://doi.org/https://doi.org/10.1007/978-3-030-44769-4_13
https://doi.org/https://doi.org/10.1007/978-3-030-67667-4_8
https://doi.org/https://doi.org/10.1007/978-3-030-67667-4_8
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.24251/HICSS.2022.234
https://doi.org/https://doi.org/10.15439/2020F149
https://doi.org/10.23919/MIPRO.2019.8757135

1.3. Thesis Outline 9

[4] Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev.
“Comprehensive comparative study of multi-label classification methods”. In: Ex-
pert Systems with Applications 203 (2022). doi: https://doi.org/10.1016/
j.eswa.2022.117215. eprint: 117215.

[5] Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev. “Ex-
plaining the performance of multilabel classification methods with data set prop-
erties”. In: International Journal of Intelligent Systems 37 (), pp. 6080–6122. doi:
https://doi.org/10.1002/int.22835.

[6] Tome Eftimov, Gašper Petelin, Gjorgjina Cenikj, Ana Kostovska, Gordana
Ispirova, Peter Korošec, and Jasmin Bogatinovski. “Less is more: Selecting the
right benchmarking set of data for time series classification”. In: Expert Systems
with Applications (2022), p. 116871. doi: https://doi.org/10.1016/j.
eswa.2022.116871.

[7] Ana Kostovska2, Jasmin Bogatinovski2, Sašo Džeroski, Dragi Kocev, and Panče
Panov. “A catalogue with semantic annotations makes multilabel datasets FAIR”.
In: Nature Scientific Reports 12 (). doi: https://doi.org/10.1038/
s41598-022-11316-3. eprint: 7267.

[8] Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Tordsson, and Odej Kao.
“Performance Diagnosis in Cloud Microservices Using Deep Learning”. In: Service-
Oriented Computing – ICSOC 2020 Workshops. Cham: Springer International
Publishing, 2021, pp. 85–96. doi: https://doi.org/10.1007/978-3-030-
76352-7_13.

[9] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. “Mi-
croDiag: Fine-grained Performance Diagnosis for Microservice Systems”. In: 2021
IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence).
2021, pp. 31–36. doi: 10.1109/CloudIntelligence52565.2021.00015.

1.3 Thesis Outline

Chapter 2 provides the background on system dependability, observability and artificial
intelligence for IT system operations. It focuses on the process of logging instrumenta-
tion, intelligent data-driven methods and the tasks of log-based anomaly detection and
classification as key concepts required for understanding the contents of the thesis.

Chapter 3 presents a literature review on the automation of log analysis tasks related
to the system’s development and operation activities. Specifically, it first discusses the
logging code composition approaches as part of the logging instrumentation during de-
velopment. Afterwards, it describes the literature on log-based anomaly detection and
classification related to system operation.

https://doi.org/https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117215
117215
https://doi.org/https://doi.org/10.1002/int.22835
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116871
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116871
https://doi.org/https://doi.org/10.1038/s41598-022-11316-3
https://doi.org/https://doi.org/10.1038/s41598-022-11316-3
7267
https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/10.1109/CloudIntelligence52565.2021.00015

10 Chapter 1. Introduction

Chapter 4 describes the main challenges and assumptions for automation of log-related
activities in the support of dependability through both phases of development and oper-
ation. It introduces a reference architecture positioning the methods and ideas described
in the thesis. Finally, it formalizes the addressed tasks and gives an overview of the
proposed methods and ideas concerning the challenges.

Chapter 5 introduces the concept of automatic log instruction quality assessment as
a way to directly support the development process. It starts by presenting a prelimi-
nary study, where we examine the empirically testable properties of the log instructions.
Based on the observations, it introduces a method for assessing their quality. Finally,
it presents the experimental results concerning the evaluated quality properties from
publicly available data.

Chapter 6 introduces the single log line anomaly detection and classification methods
to directly support system operation. The single log line analysis is split into two parts,
i.e., semantic and performance log analysis. The semantic log analysis is first introduced.
It starts with a study on how to extract anomaly-related log information from the log
instruction of public code projects. Based on the observations, it introduces a novel
method for semantic log-based anomaly detection. Afterwards, it presents the experi-
mental results and a study of its important practical properties. Next, the performance
log analysis is discussed. The method for log parsing is presented. In continuation, a
description of how the extracted templates are used to construct learning data that is
used for anomaly detection is given. Finally, the experimental results are presented.

Chapter 7 introduces the sequential log analysis method to directly support the system
operation. It starts by comparing the difference in the uncertainties of the log event
sequences by using the original event sequences and a representation with event groups.
Following the observations from the comparison, a novel method for learning the sequen-
tial log event groups is introduced. Furthermore, the method for log-sequence anomaly
classification is discussed. The chapter concludes with a presentation of the experimental
results.

Chapter 8 concludes the thesis, summarizes the findings and identifies directions for
future research.

Chapter 2

Background

Contents
2.1 System Dependability . 11

2.2 System Observability . 14

2.2.1 Software Logging . 14

2.2.2 Software Log Instrumentation 16

2.3 Artificial Intelligence for IT Operations 19

2.3.1 Intelligent Methods . 21

2.3.2 Anomaly Detection . 23

This chapter presents the background as a prerequisite for understanding the concepts
discussed within the thesis. We first discuss the general concepts related to system
dependability. Second, we discuss system observability by focusing on log-based system
instrumentation and logging code composition. Third, we describe intelligent data-driven
methods as means to support system dependability, particularly emphasising the task of
anomaly detection as one of the central problems considered in the thesis.

2.1 System Dependability

Computer systems are expected to fail over time and, therefore, experience reduced
dependability [90]. System dependability is defined as the ability of the system to de-
liver correct service that can justifiably be trusted [5]. Dependability has three aspects.
These are (a) attributes (constituents to system dependability), (b) threats (challengers
to system dependability), and (c) means (approaches to enable system dependability).
Following the definitions introduced in Avižienis et al. [5], we discuss the different aspects
of dependability and point out the dependability aspects addressed within the thesis.

11

12 Chapter 2. Background

As an integrating concept, dependability encompasses several attributes, i.e., availability,
reliability, safety, integrity, and maintainability [5]. Availability is defined as the system’s
readiness for correctly providing the agreed services. It is quantified as the percentage
of the execution time during which the service is delivered correctly. Reliability is the
capability for the continual support of correct services. In quantifiable terms, it is the
likelihood that the system performs without failure for a predefined time. Safety ex-
presses the system’s capability to deliver services without catastrophic consequences for
the user(s) and the environment. Integrity refers to the lack of ability for improper or
unauthorized system alterations. Maintainability is the system’s capability to be sub-
jected to modifications and repairs.

The system delivers a correct service when it is correctly externalising the system state to
implement (agreed) system functions. Failures, errors and faults are the crucial threats
that affect the correctness, thereby, directly affecting system dependability during both
development and its usage/operation. A failure is an event that occurs when the de-
livered service deviates from the correct service. The deviation may assume different
forms that are referred to as service failure modes [35, 89]. The total system state that
leads to a deficit between the corrected and expected service state is called error. The
hypothesised or considered cause for the error(s) is called fault.

Figure 2.1 illustrates the causal model of a failure developing from fault through errors.
This model is commonly referred to as Laprie’s fault-error-failure model [90]. Three unit
blocks, each corresponding to the three model components, can be identified. The top
box descriptions of each box represent the block purpose, while the appropriate detection
tools are shown at the bottom.

The causes for the faults are diverse. They can be events from outside (e.g., shortages

Fault Failure

Root Cause

Auditing

Event

Observation

activation

side effects

affects
external

state

affects
external

state

Anomaly

Error Error

Undetected Detected

State

side effects

detection

Symptoms

Monitoring

Figure 2.1: Fault-error-failure model as an aspect of dependability
(adopted from Acker [2]).

2.1. System Dependability 13

in electricity supply), or changes in system functional requirements (e.g., outdated func-
tionality). Faults can be either active (when faults manifest as an error) or dormant. The
detection of dormant faults is subject to processes known as auidition [2]. A dormant
fault may persist through the system life-cycle and be undetected if the conditions for its
activation are not fulfilled. The active faults appear when certain system conditions are
fulfilled. They are manifested as a deficit between the expected and manifested system
state, i.e., cause errors. Errors can be detectable or non-detectable/latent. If there exists
a signal indicative of an error presence, the error is detectable. One way to detect errors is
by monitoring the components that expose the internal system state [89]. The detectable
and non-detectable errors can cause a chain of system state inconsistencies manifestable
as other errors, or symptoms. They can ultimately externalise to the end-users and
cause failures. Usually, the mapping between the faults, errors, and failures is m-to-n.
For example, several faults may result in one error, or one fault may result in several
errors. Although not part of the general fault-error-failure model, the term anomaly
is used to refer to the detectable errors and failures as an out-of-normal (anomalous)
system behaviour [2]. Figure 2.1 illustrates part of Laprie’s model with a dashed line
to the term anomaly refers. The analysis of the monitoring data is one way to identify
anomalous system behaviour, i.e., enable the detection and classification of anomalies.

To provide dependable service, several means of dependability exist including fault preven-
tion, fault tolerance, fault removal and fault forecasting. Fault prevention aims to improve
the development processes (of both hardware and software) by reducing the number of in-
troduced faults. It is achieved by aiding system development in writing code with fewer
faults/bugs (e.g., by introducing quality indicators during development [7, 33]) or by
eliminating the causes of the faults in the case of hardware production (e.g., via process
modifications) [32]. Fault tolerance focuses on avoiding the faults and errors externalising
as service failures. Therefore, faults and errors are assumed to exist and fault tolerance
mechanisms strive to prevent their manifestation in the outside world. Commonly, it
is achieved by error/anomaly detection and system recovery activities. Fault removal
methods aim at addressing the faults either during development (by verification testing,
diagnosis and correction) or during system operation by corrective (removing faults that
cause one or more errors) or preventive (uncovering faults before their manifestation as
errors) means. Finally, fault forecasting analyses system behaviour, most commonly by
using past information for the faults. It attempts to identify, classify, and rank failure
modes or co-occurring events that lead to failures.

The diversity and the polymorphic manifestation of the faults (which cause failures) chal-
lenge the system’s dependability. As seen from the previous discussion, dependability
covers many tasks during system operation and development. From the system opera-
tion perspective, the focus of this thesis is the fault tolerance aspect of dependability.

14 Chapter 2. Background

Specifically, we consider the detection and classification of anomalies, in the context
of fault tolerance, as their timely detection enables longer time intervals for handling
the failures, errors and ultimately their faults [90]. The precondition to detect anoma-
lies resides in the system observability, i.e., the system’s capability to externalize the
inner system state, for example, by means of monitoring data. From the system de-
velopment perspective, the thesis focuses on improving the quality of the monitoring
data – the logging data, indirectly aiding the tasks stemming from logs, e.g., log-based
fault-tolerance-related methods. In the following, we describe concepts related to system
observability and monitoring data as mediums to externalise the inner system state and
enable the detection and classification of anomalies.

2.2 System Observability

System observability is the system’s ability to externalize the system state [157]. The
monitoring data enable the analyses of system behaviour. They are one mechanism to
achieve observability. Concerning IT systems, there are many used data for modeling,
with the two commonly used monitoring data sources being the metrics and log mes-
sages (logs) [157]. Metrics are numeric values describing the utilization of the system
or its components through time. Typical metric data are the CPU/memory/network
utilizations, service latency, and diverse error rates, among others [124]. Logs are textual
descriptions recording events during system runtime. Alongside the event descriptions,
other information such as event timestamp, task identifier the event is part of, the sys-
tem component that produced the event, and similar meta information, are also recorded.
Considering logs, a special log subcategory is (distributed) traces [25]. Traces represent
a series of causally related events in response to requests. Due to their specifics, they are
sometimes recognized as separate monitoring data [157]. They are predominantly used
in distributed systems to cross-link events across different processes or machines (where a
scenario can be executed multiple times). However, suggestions for their applicability in
complex applications, where there are nontrivial interactions between components (e.g.,
network, disk), also exist [124]. In the following text, we discuss the logging process and
logging practices in modern IT systems.

2.2.1 Software Logging

Logging is important programming practice in modern software development, as software
logs – the end product of logging – are frequently adopted in diverse development and
maintenance tasks [92]. Logs record system events at different granularity, and give
insights into the inner working state of the running system. The rich information they
provide enables the developers and operators to analyze events and perform a wide
range of tasks. Notable tasks relying on logs are comprehending system behaviour [92],

2.2. System Observability 15

troubleshooting [41] (e.g., anomaly detection), and tracking execution status [154]. The
importance of logs is recognized by introducing legislation acts, e.g., Sarbanes-Oxley
Act [151], which require logging of mandatory system information for privacy protection.

Logs are textual event descriptors generated by log instructions in the source code. Fig-
ure 2.2 depicts an example of a logging code that records two events related to receiving
information from a client and sending an appropriate response to a certain address. The
instructions are written in the programming language Java. As seen from lines 1 and 2,
Log4J [49] a popular Java-based library, is used as a logging library. In line 5, an object
that handles the logging is created. Lines 8 and 14 show two log instructions that are
used to record the events of receiving from the client and sending a response to a certain
address. Despite the logging object, there are three other parts of the log instructions,
i.e., 1) static text describing the event (e.g., Receive from client), 2) variable text
giving dynamic information about the event (e.g., reg.userName as client name), and
3) log level (e.g., info), denoting the subjective developer opinion for the severity degree
of the recorded event. The importance of log instructions makes them widely present
within the source code. For example, HBase (a popular Java software system) has more
than 5000 log instructions. Notably, in the example, a functional code that performs
client authentication between the two logging instructions exists. This practice of inter-
winding logging and functional code is commonly used by developers, making logging a
cross-cutting concern [85]. Figure 2.3 shows the generated logs when the instructions are
executed. The logs are often stored in files, referred to as log files.

1 import org. apache . logging .log4j. LogManager ;
2 import org. apache . logging .log4j. Logger ;
3 ...
4 class MyServer {
5 Logger logger = Logger . getLogger (MyServer .class);
6 void authentication (Request req , ...) {
7 Configurator . setLevel (logger . getName (), level. DEBUG);
8 logger .info(" Receive from client " + req. userName);
9 OKHttpClient . Builder builder = new OKHttpClient . Builder ();

10 HttpLoggingInterceptor logInter = new HttpLoggingInterceptor ();
11 builder . addInterceptort (logInter);
12 // authentication process
13 reply (response , ...);
14 logger .info("Send response to " + req.IP);
15 }
16
17 private void start () {
18 Server server = new Server ();
19 }

1

Figure 2.2: An example of logging code in the method MyServer.java.
Adapted from Chen et al. [25].

16 Chapter 2. Background

Jun 20, 2022 10:30:01 AM user.MyServer Receive from client Bob

…

Jun 20, 2022 10:30:02 AM user.MyServer Sent response to 192.168.0.1

…

Jun 20, 2022 10:30:03 AM user.MyServer Receive from client Alice

…

Jun 20, 2022 10:30:04 AM user.MyServer Sent response to 192.168.0.2

Figure 2.3: An example of logs from the logging code given in Figure 2.2.

The logs allow a more insightful analysis and interpretation than the metric data [119].
For example, a sharp increase in the network packet loss (a commonly used metric for
network monitoring) only indicates a problem with the network but does not provide
a clue why it happens. In comparison, logs give semantically meaningful clues for the
anomaly. For example, when a switch generates the log “System is rebooting now.”,
the operator detects that the switch is failing (potentially anomalous) and obtain a clue
that the potential anomaly is caused by the switch rebooting. Furthermore, distributed
tracing logging enables the causal tracing of events on a system level. In contrast, met-
rics can monitor just individual component states, requiring additional techniques to
extract information about connected services. In addition, as the number of components
increases, choosing the right metrics to track can be cumbersome because of the many
possible metrics that can be subject to analysis. While logs have their challenges (e.g., the
trading of the verbosity of logging and the excessive logging storage), this thesis focuses
on system logs because of their (1) wide availability (frequently, they are the only data
source for on-field analysis [92]); (2) rich properties (e.g., semantics, event co-occurrence,
parameters, sequences); (3) different granularity of event recordings (up to atomic system
events, e.g., control status bits in CPUs); and (4) the human-understandable clues for
the anomalies and their types that potentially can speed up the processes of anomaly
detection, classification and error handling [119].

2.2.2 Software Log Instrumentation

An important aspect of software logging is log instrumentation. Log instrumentation is
the process of developing and maintaining logging code. It is composed of a three-stage
sequential process concerning the choices of (1) logging approach, (2) logging utility and
(3) logging code composition [25]. Given that logging and functional code (i.e., the code
that is executing the function) are intertwined, each of the three stages requires careful
consideration during both development and operation to provide maximal utilization at
minimal performance overhead. Following Chen et al. [25], we discuss the three logging
stages in the remaining part of this section.

2.2. System Observability 17

Logging Approaches

Logging is a cross-cutting concern, meaning that functional code is often intertwined with
the logging code snippets [85] (code snippet - a set of consecutive instructions). Choosing
the most suitable logging approach is the first step when instrumenting the source code.
There exist three approaches for logging (1) conventional logging, (2) rule-based logging
and (3) distributed tracing. In conventional logging, developers insert logging statements
in the source code intertwined with the functional code. Rule-based logging modularizes
the logging by splitting the functional from the logging code. For example, in one specific
implementation of a rule-based approach using the Aspect-Oriented Programming (AOP)
design pattern, the logging is implemented in a separate source code file. Alongside the
actionable logging code, a set of rules on when to invoke logging instructions are also
specified within the logging library. When methods in the main function are invoked, the
logging instructions from the logging source code are executed according to the specified
rules. Distributed tracing alongside the information for the event, additionally cross-links
the logs across different processes and machines in a response to a certain request. It
is commonly used in distributed systems, where one scenario may be executed multiple
times, and it is important to know the relation between the different events and the
execution scenarios they appear in [25].

All three logging approaches have pros and cons. For example, distributed tracing pro-
vides structured logging as opposed to the free-form logging associated with traditional
and rule-based approaches. The structured information reduces the post-processing over-
head introduced by mixing the parameters and the static text in the instructions. How-
ever, distributed tracing and rule-based logging have lower flexibility and higher effort to
be applied in various instrumentation scenarios. Distributed tracing is bounded to soft-
ware components, while the rule-based approach can be applied just for the prespecified
rules defined within the supporting logging library. In contrast, the traditional approach
is more flexible as it allows inserting instructions at any point in the code. The rule-
based approach modularizes the logging and functional code, making them both easier
to update. Therefore, it is less bug-prone in comparison to the traditional approach.
Ultimately, as the first step in logging instrumentation, the logging approach choice is
important and should consider the advantages and disadvantages of the existing possi-
bilities. Once the logging approach is selected, the next step is to select the appropriate
logging utility [25].

Logging Utility

To implement the logging, developers usually consider different logging utilities, e.g.,
SL4J [141], Log4J [49] for Java, spdlog [134] for C++, logging [133] for Python and
similar. The logging utilities unify the logging procedure while providing additional

18 Chapter 2. Background

capabilities such as log levels (to regulate verbosity) or enable the synchronization of
logging in multi-threaded systems, which can be critical for high data volume processing
systems. For various programming languages, there are many different logging utilities.
For example, Chen et al. [27] studied more than 11 000 Java systems available from
GitHub and identified that there are more than 800 third-party logging utilities used.
Also, it is often a case that developers implement their own logging libraries. This is par-
ticularly emphasised for safety-critical systems, where system safety is of key importance.
For example, in the issue CVE-2021-442281 of the National Vulnerability Database, it
is reported that a vulnerability in the library Log4J allowed the execution of any Java
method through the log instruction from an LDAP server. The violation of the integrity
of the logging library in the aforenamed case motivates the need for developers to imple-
ment system-specific logging libraries. The choice of what is the most suitable tool is a
major concern concerning logging utility.

Another important aspect with respect to logging utility is related to how to configure the
selected tool [184]. The most frequent concerns in that regard are related to the reliability
and performance of the logging storage. Other challenges arise with setting the right
thresholds on verbosity or the different choices of handlers/appenders (as responsible
objects to record logging requests to the destinations, e.g., files, databases and similar).

The two decisions on what is the most suitable tool and how to configure it are predom-
inantly dependent on the type of software, security and correctness considerations, as
well as the expected use of the logged information. The careful consideration of logging
utility affects the overall purpose of logging and should be performed with caution [184].

Logging Code Composition

Once the logging approach and logging utilities are chosen and configured, the last step
of the logging instrumentation is inserting log instructions into the source code, i.e.,
composing the logging code. In this regard, there exist three essential properties of the
logging code composition: (1) where-to-log, (2) how-to-log, and (3) what-to-log.

Where-to-log, also known as log placement [19], refers to the correct placement of the
log instruction in the source code. Although logs provide rich information, excessive
logging leads to additional overhead concerning storage and communication that can
degrade overall system performance [24]. Furthermore, the excessive log information is
challenging for the log analyses as not all logs are related to issues [80]. Therefore, the
developers need carefully to consider where to place the log instructions.

How-to-log is concerned with developing and maintaining high-quality logging code.
While aspects of software development such as code refactoring and release management

1https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

2.3. Artificial Intelligence for IT Operations 19

have well-defined practices, logging does not [52, 137]. One reason for this is the cross-
cutting nature of logging and its frequent update with the functional code (e.g., more
than 80% of log-related commits are a consequence of functional code updates [24]).
The term anti-pattern in logging code is used to refer to the recurrent mistakes that
may hinder the understanding and maintainability of the logs (e.g., return of nullable or
byte-like function calls). In addition, how-to-log is concerned with the log-bug resolution
times, frequency of log instructions-related issues, or changes in logging configuration as
aspects of logging code evolution.

What-to-log refers to writing log instructions with appropriate log levels, comprehensive
static texts and sufficient variable contents. Log levels control the verbosity of the output
information. If the log level is overvalued, it can lead to excessive logging reporting, while
if it is undervalued important information may be missed [80]. Both cases can hurt the
subsequent log analyses [100]. Therefore, it is important to set the log level to its ap-
propriate value. The static text and variable parameters give the human-understandable
information within the log instruction used as clues in analysis. Poorly written and out-
dated event descriptions and inconsistent dynamic variables could affect the effectiveness
of log analysis [108, 117]. If the static text of the log message is incomplete or crucial
variables are missing (e.g., endpoints), the end-users may be misled by log content which
leads to long resolution times for emerging issues. The careful consideration of the three
aspects of the what-to-log problem is vital for analysis as they provide the atomic units
on top of which most of the analyses are executed. Thereby, having good logging code
composition is a basic requirement for ensuring logs fulfilling their purpose.

2.3 Artificial Intelligence for IT Operations

Despite the monitoring data, another aspect of automating the dependability means
and their subtasks (e.g., logging code quality assessment, anomaly detection, anomaly
classification and similar) is the adoption and development of intelligent data-driven
methods [130]. The need for intelligent methods is motivated by the cumbersome manual
effort human operators invest to analyze the monitoring data [70]. For example, the
logs from modern software systems are generated in large volumes (e.g., several TB per
day [70]), while the suspicious logs may be hidden among a few logs describing normal
events. Therefore, the operators can easily be overwhelmed by the manual analysis of
thousands of logs when detecting and classifying anomalies.

AIOps is a term used to describe the combined (or sole) usage of intelligent methods,
from the areas of artificial intelligence, data mining, and machine learning on one side
and system data on the other side, to support the automation of IT operations and
system dependability [38, 130]. Intelligent data-driven methods can glean meaningful

20 Chapter 2. Background

patterns and uncover informative trends in the data. The extracted patterns can guide
the monitoring, administrating and troubleshooting of software systems, therefore, help-
ing the Site Reliability Engineering (SRE), Development and Operation (DevOps) and
O&M teams to enhance the quality of the IT system offerings.

AIOps encompasses several different tasks, i.e., anomaly detection [154], root cause anal-
ysis [116], failure remediation [185], failure prediction and prevention [149], and resource
provisioning [130]. The first four tasks are further conceptualized as failure management,
as they are concerned with the analyses of system failures/anomalies. They are further
conceptualized as reactive and proactive concerning the phases of methods application,
i.e., after or before the failure occurs [130]. In the following, in accordance with Notaro
et al. [130], we discuss the two groups of failure management tasks.2

The reactive group considers tasks that aim to detect and handle the failures/anoma-
lies after their manifestation. This group covers the tasks of anomaly detection, root
cause analysis and failure remediation, typically executed in the given order. The task
of anomaly detection in system data is concerned with the detection of anomalies [70].
The timely detection allows the operators to spend more time identifying the underlying
root cause or to provide insights on different failures prioritization to speed up failure
diagnosis. Commonly, the task of anomaly classification can offer a more concrete nar-
rowing down of the failures enabling the usage of past experiences in failure diagnosis.
The task of root cause analysis is concerned with localizing the set of faults that caused
the system errors and the observed failures. The remediation is concerned with initiating
a sequence of repair actions once the root cause has been identified.

The proactive group considers tasks that aim to anticipate failures before their manifes-
tation [5]. This can be done during system development (prevention) or during operation
by assessing the system state before the failure (prediction). Accordingly, it covers the
task of failure prediction and prevention. The task of failure prediction is concerned with
the anticipation of failures by assessing the current state of the system (the detectable
errors) [149]. The task of failure prevention during system development is concerned
with the analysis of code or system states before its deployment, where different aspects
of the software files are examined in an attempt to reduce the occurrence of failures (e.g.,
verification testing). In addition, intelligent methods that aim to improve the monitoring
data indirectly address failure prevention. They are categorized into the proactive group.

The remaining text is structured into two parts. We first give an overview of the intelli-
gent methods as they form the basis of all the proposed approaches. In the second part,
we discuss the task of anomaly detection as one of the key tasks considered in the thesis.

2Note: The task in the literature are introduced concerning failures and anomalies. However, as the
errors manifest in the logs before they manifest failures, without loss of generality, we use the words
failures and anomalies interchangeably in the description of the tasks.

2.3. Artificial Intelligence for IT Operations 21

2.3.1 Intelligent Methods

The diverse AIOps tasks apply data-driven methods developed in different research dis-
ciplines, such as data mining, artificial intelligence, big data, and machine learning. To
keep the discussion focused, we consider the machine learning perspective on intelligent
data-driven methods and present relevant concepts in the following text.

Machine Learning (ML) is a subarea of Artificial Intelligence. It is associated with activi-
ties related to developing algorithms/methods that are able to improve their performance
on a given task by gaining experience about the problem instance being addressed [122].
For such algorithms, it is said that they learn from experience. They are referred to as
intelligent algorithms or intelligent methods [56]. The experience is provided in terms
of data, referred to as learning or training data. Each element of the learning data
represents a training/learning sample denoting an instance of the given problem. The
problem instances come from different domains, like computer science (e.g., failure detec-
tion [12], shell code writing [101]), medicine (e.g., drugs-interaction side effects prediction
[189]), biology (e.g., predicting protein folding [82]), mathematics (e.g., aiding mathe-
maticians in theorem proving [39]), physics (e.g., calculating electrical energy properties
of molecules [13]) and similar.

The first key concept in machine learning is finding a suitable representation of the
training data samples. The data can come in very different formats, including vectors of
elementary data types (e.g., numeric, ordinal, binary or categorical values), sequences of
characters (e.g., text) or numbers (e.g., time series from sensory measurements), images
and image sequences (e.g., videos), graphs with homogeneous or heterogeneous nodes
and similar. The goal of feature representation is to find and expose the most relevant
information from the data for the corresponding task and the addressed problem. In
general, there are two main directions on how to extract features (a) expert-constructed
features and (b) feature learning. Expert-constructed features involve manual feature con-
struction. This extraction process attempts to capture relevant problem characteristics
by using expert knowledge of the domain to the learning method. The feature learning
approach automatically learns features from the input data. Both approaches have their
pros and cons. For example, the features constructed by an expert can lead to smaller
and easily-interpretable models if good features are found. However, this activity is
cumbersome and requires significant time and cross-discipline collaborative efforts. The
feature learning approach is often fruitful when large amounts of data are available [40,
82]. Nevertheless, the learned features often lack interpretability, and their application
may be limited in some domains (e.g., financial), where model transparency is important.

Considering the assumptions for the type of the experience, three groups of learning
exist (1) supervised, (2) unsupervised, and (3) reinforcement learning [66]. Supervised

22 Chapter 2. Background

learning assumes that for the training instances, there is available information in a form
of a label(s) (output(s) or target(s)) subject to prediction. For example, in the case
of logs, a label can be the information for the log level of a given log instruction [9].
Unsupervised learning assumes that there is no available information during learning
from the exact problem instance being addressed. Identifying groups of similar logs
based on their static text is one example of this type of task. Reinforcement learning is
concerned with the learning of a set of actions on how an agent (e.g., computer hardware
or software) interacts with the environment given the input sensory information and/or
prior episodes.3

Considering the experience type and the problem being addressed, different tasks exist.
For example, in the case of supervised learning, if the label is of binary type (i.e., has two
classes), the task is referred to as binary classification. Assuming that the majority of the
samples belong to one of the two classes, the resulting binary classification problem can
be seen as a problem of (unbalanced) classification of rear samples (as non-conforming
samples). If there are multiple classes a model can learn to classify, the task is called
multiclass classification. Similarly, if the label has a numeric value, then the task is called
regression. In the case of unsupervised classification there exist multiple tasks, with
clustering being among the most popular [66]. The goal of clustering is to group samples
based on their similarities into (most often) an unknown number of groups. Notably,
based on the assumptions and the modeling choices, a single task can be defined under
different learning paradigms. For example, the task of anomaly detection can be defined
as a special case of extremely unbalanced binary classification or as a clustering task
where distant clusters with a small number of samples can be considered anomalies [102].
Without loss of generality, Equation 2.1 defines the general problem addressed by machine
learning methods:

min
f̂∈H
J (f(xi), f̂(xi;Dt)) (2.1)

where J is a loss function evaluating the similarity between the ground truth function
f(xi) of the observed problem phenomena, and the function f̂(xi;Dt) that is learned on
the training data Dt, with xi being a learning instance. The learned function f̂ ∈ H
is an element of H, which is the set of hypothesis functions modeled by the intelligent
algorithm. Therefore, the goal of machine learning is to find the most suitable model
f̂(xi) from the set of possible functions that best represents the ground truth function
phenomena f(xi) as evaluated by the loss J .

The last important aspect of Machine Learning (ML) definition is evaluating the perfor-
mance of the method. It is assessed by performance functions on a separate test dataset.
Evaluating the method on a separate dataset assesses model capabilities when dealing

3The reinforcement learning paradigm is not part of the scope of the thesis and is not discussed
further.

2.3. Artificial Intelligence for IT Operations 23

with new instances of the problem being modeled. The choice of performance functions
depends on the properties of the task and the problem itself. A natural evaluation can
be the value of the loss function J . While for certain problems (e.g., regression) the
optimized loss is a convenient choice, for other problems (e.g., classification), other per-
formance scores may be better suited [54]. For example, in the case of binary classification
common choice for performance criteria is the model accuracy. If the structure of the
problem is such that there is a great imbalance between the two classes, accuracy over-
estimates the performance [66]. In those cases, more desirable performance functions are
criteria that can account for both, the correct and the incorrect model predictions. Ef-
fective application and design of machine learning methods should carefully consider the
problem formulation, its representation, and careful choice of performance criteria based
on the task and type of available experience/data. The end of this chapter discusses the
performance criteria used to evaluate the proposed intelligent methods.

2.3.2 Anomaly Detection

Anomaly Detection (AD) as a multidisciplinary task that has been researched within
diverse research areas and application domains from natural sciences and engineering
disciplines [22]. Examples of different applications include fraud detection in finance,
insurance, and telecommunication [3, 15], industrial fault detection [110, 143], event de-
tection in the earth sciences [47], scientific discovery in natural sciences as chemistry [57],
genetics [162], physics [21, 72] and others. Formal definitions date back to the 19th cen-
tury in which the term "discoherent observations" is used, although, it is likely that it
is being studied informally even earlier [45]. Other terms such as novelties and outliers
are also used to describe non-conforming observations.

Anomaly detection is extensively applied in computer science as well. Examples include
the monitoring of IT infrastructure [70], cybersecurirty [44], code defect prediction [105],
or as preprocessing step when analyzing monitoring data or mining common execution
patterns. The type of data in computer science is commonly in the form of time series,
sequences of events, textual descriptions (e.g., source code) or graphs. As the software
systems increase in size and heterogeneity, the anomaly detection task likewise is expected
to have persistent importance.

The multidisciplinary omnipresence of anomaly detection comes from the universality of
the challenge of finding anomalies as "deviating observations from the assumed concept of
normality" [146]. There are two important aspects of this definition of anomalies, i.e., the
"concept of normality" and "deviating observations". The term "concept of normality"
refers to the law of normality represented by the observations. The term "deviating
observations" refers to existing observation properties that are considerably different
from the ones given with the assumed normality law. Thereby, the main challenge in

24 Chapter 2. Background

anomaly detection is to most suitably represent the normal observations, such that the
observations with deviating properties are detectable. Equation 2.2 formalizes the task
of anomaly detection as:

A = {x|a1 > p+(ϕ(x))||p+(ϕ(x)) > a2,x ∈ X} (2.2)

where A denotes the set of detected anomalies, p+(ϕ(x)) : Rd 7→ R is a function denoting
the law of normality (normality function), ϕ(x) : X 7→ Rd denotes the representation
function for the observation x in a d-dimensional vector space, a1, a2 ∈ R denote thresh-
olds of what is considered a significant deviation (a1 < a2), and X is the observation
object set of arbitrary data type. The main goals in anomaly detection are, therefore, to
find suitable estimates for the normality function p+(.), discriminative representation of
the observations ϕ(x) and good estimates for the thresholds a1, a2.

Defining the former three goals in a practical application depends on the anomaly
type and information type available for modeling. Conditioned on the structure of the
anomaly, there are three anomaly types [22, 146]:

1. Point anomaly is an anomaly type where an individual observation significantly
deviates from the remaining normal observations.

2. Contextual anomaly is an anomaly type where the observation is considered an
anomaly within the context of an external invariant, such as time, space, a graph
of an arbitrary object, or additional attributes.

3. Group anomaly is an anomaly type where a set of observations exhibit some form
of dependency between themselves and can be considered anomalous just within
the observed dependency. The anomalous behaviour does not necessarily occur if
the observations are examined individually.

Given the heterogeneous information exposed by computer systems, all three types of
anomalies occur within them. Figure 2.4 illustrates an example of three different anomaly
types reflected in logs. Figure 2.4a shows a point anomaly of the event booting an OS
system. As seen, the majority of the booting time takes 40 seconds on a traditional
HDD, however, one of the events took 60 seconds. Therefore, it can be considered
anomalous. However, if the OS is stored on an SSD, as depicted on Figure 2.4b, the
event of booting the OS for 40 seconds may be considered anomalous, as the booting
time on SSD is faster (e.g., normally it takes around 20 seconds). The latter is an
example of contextual anomaly, where the context is given by the type of storage used
for the OS. Figure 2.4c depicts an example of a group anomaly. Specifically, it shows the
flapping of a switch interface [119]. When the switch is flapping, a sequence of log events
denoting the repeated sequential change of the interface’s state from up to down (and
vice versa) in short time intervals is observed. This implies that different anomaly types

2.3. Artificial Intelligence for IT Operations 25

occur in computer systems, therefore, the anomaly detection methods should consider
the uniqueness of the anomaly types.

0 20 40 60 80 100
BOOT ID

40

45

50

55

60

D
U

RA
TI

O
N

 T
IM

E
[s

]

E1: Time to boot took <*> seconds.

(a) Point Anomaly (OS stored on HDD)

0 20 40 60 80 100
BOOT ID

15

20

25

30

35

40

D
U

RA
TI

O
N

 T
IM

E
[s

]

E1: Time to boot took <*> seconds.

(b) Contextual Anomaly (OS stored on SSD)
Jun 20, 2022 10:30:02 [SIF pica_sif] Interface te-1/1/11, changed state to down

Jun 20, 2022 10:30:03 [SIF pica_sif] Interface te-1/1/11, changed state to up

Jun 20, 2022 10:30:04 [OSPF] Neighbour(rid:, addr:) on vlan20, changed state from Init to ExStart

Jun 20, 2022 10:30:06 [OSPF] Neighbour(rid:, addr:) on vlan20, changed state from ExStart to Exchange

Jun 20, 2022 10:30:07 [OSPF] Neighbour(rid:, addr:) on vlan20, changed state from Exchange to Loading

Jun 20, 2022 10:30:08 [OSPF] Neighbour(rid:, addr:) on vlan20, changed state from Loading to Full

Jun 20, 2022 10:30:08 [OSPF] Neighbour(rid:, addr:) on vlan20, changed state from Full to Down

Jun 20, 2022 10:30:10 [SIF] Vlan-interface vlan20, changed state to down

Jun 20, 2022 10:30:11 [SIF] Vlan-interface vlan20, changed state to up

(c) Group Anomaly

Figure 2.4: Examples of different anomaly types in computer systems.

Despite the anomaly type, the information type available during modeling is another
aspect to consider. In this regard, there are two important considerations, i.e., (1) infor-
mation availability (or lack thereof) for the observations, and (2) the data representation.
The availability of information is concerned with the existence of labels for individual
samples regarding which observations are anomalous. It determines the approach to-
wards modeling, such as the choices of modeling objectives. The data representation
determines the set of representation functions used to describe the observations. In the
following text, we discuss these two aspects with a focus on logs having both textual and
sequential properties.

26 Chapter 2. Background

Anomalous Information Availability

Concerning the availability of anomalous information, there are three groups of anomaly
detection methods (a) unsupervised, (b) semi-supervised, and (c) supervised. The un-
supervised methods assume that there is no available information about the anomalies.
Since anomalous observations originate from arbitrary generating phenomena different
from normal ones, they have very diverse properties. Given that the anomalies reflected
in system logs are infrequent and diverse, it is challenging to obtain labels for them.
Thereby, the unsupervised assumption is the closest to a real-world scenario and it is
arguably the most frequently considered in anomaly detection literature [22, 136, 146].

In the semi-supervised setting the assumption is that despite the given unlabeled
observations X = {x1, x2 . . . xn}, we are also given a small set of labeled samples
(x̂1, ŷ1), . . . (x̂m, ŷm) ∈ X × Y (ŷ ∈ {0, 1}, (where 0 stands for normal, and 1 for anoma-
lies), some of which may be anomalies (with n >> m). The labels can be obtained
by domain experts or from prior manifestations of anomalies. The key idea in semi-
supervised anomaly detection is to use the labeled and the large set of unlabeled data
when learning a model of normality. The most common approach is to use the normal la-
beled samples and the unlabeled samples when learning a model (e.g., Positive Unlabeled
(PU) Learning) [104]. Although it is possible to use anomalous and unlabeled data, due
to the lower number of anomalous samples it is usually a less popular approach [148].

The supervised approach assumes the availability of representative labels for the normal
and anomalous data. Given this, the anomaly detection task can be defined as a binary
classification problem and be addressed with standard binary classification methods.
One should consider that often in this setting the learning is extremely imbalanced,
therefore, suitable method adaptation should be done. Due to the expensiveness of
labeling anomalies, the supervised setting is the least common [146].

Data Representation

Good data representation is another important aspect of anomaly detection. One im-
portant aspect of good data representation for log-based anomaly detection is related to
common procedures for their preprocessing. The static text and the variable parameters
can both convey useful information for the analysis [44]. As the log messages are com-
posed of intertwined static texts and parameters, the raw log messages are characterized
by greater diversity. Therefore, to extract useful information for the analysis and reduce
the uncertainty in the modeling data, it is important to decouple them from one another.
Log parsing is a general procedure concerned with the decoupling of the static text and
log parameters, which is commonly used by different log analysis methods to represent
the generated logs [187]. The parsing can be done either by regular expressions or by

2.3. Artificial Intelligence for IT Operations 27

learning models to capture the characteristics of the log parsers, referred to as automatic
log parsing. Constructing good parsers is generally considered a challenging problem as
it is expected to be useful logs from different systems that are characterized by diverse
events and thus diverse log messages [187].

In general, there are no constraints on the considered representation approaches for log-
based anomaly detection. Both, expert-driven and feature-learning representations are
used [44, 172]. Despite that expert-driven approaches can provide strong performance, in
the case when large volumes of high-dimensional homogeneous data (as for logs), learning
of feature representations often leads to superior performance [136, 146]. The key advan-
tage of the feature learning approach is the possibility to enforce certain properties over
the learned representations (e.g., compactness, reduced dimensionality). The importance
of these approaches is recognized as a separate research direction, named deep anomaly
detection [136]. In the following, in accordance with Pang et al. [136], we discuss relevant
aspects of deep anomaly detection.

Deep anomaly detection refers to the deep learning-based methods for anomaly detec-
tion [136]. Deep learning-based methods are a family of machine learning methods that
are universal function approximators, modeled as computational graphs [56]. The basic
blocks of deep learning methods are neurons. They are singleton computational units
that summarize the input by linear combinations (multiplication and addition). The
neurons propagate information between themselves through their connections which are
called network parameters. The parameters are updated during the learning procedure.
The neurons are organized in layers, where each layer models a multivariate function.
By stacking multiple layers and sequentially propagating the information between them
(output from one layer is input to another), a (deep) neural network is created. By
introducing diverse special dependencies between the neurons different types of layers
are formed. Examples include linear layers, recurrent layers (tailored for modeling se-
quences), convolutions layers (tailored for learning image features), self-attention layers
(suitable for sequences), graph neural layers (for graph modeling) and similar. The out-
put of the neurons is often followed by activation functions. They increase the modeling
power of the network by introducing nonlinearities. There are different activation func-
tions, such as ReLU (Rectifier Linear Unit), sigmoid, tanh and similar. All of them
have their properties and usages. The parameters of the network are updated using the
backpropagation learning algorithm [103]. The backpropagation algorithm optimizes the
design-chosen learning objective to best approximate the data.

The state of the neurons of the last layer of the network is called the neural network’s
output. By careful construction of the learning objective, the parameters of the network
can be learned such that the output preserves a desired property. The neural network
output can serve as a numerical representation of the presented input. In addition, the

28 Chapter 2. Background

output of any other layer can be considered as an input representation (e.g., a bottle-
neck of an autoencoder – a type of neural network architecture [56]). The flexible design
choices enable the learning of discriminative input representations. The availability of
a large set of training data enables the learning of rich properties of the input. For-
mally, for a given observation dataset Dt = {x1, . . . , xn}, with xi ∈ X the goal of the
deep learning methods, as most frequently considered here, is to find the representation
function ϕ(x; θ) : X|Dt

7→ Rd, where XDt denotes that the representation is learned on
the given observation data Dt, and θ are the parameters of the neural network. In the
context of anomaly detection, the learned representation should characterize the assumed
normality concept in the data well. Whenever an anomalous observation is presented to
the network, ideally, it will represent the input significantly different from the normal
ones. The learned representations are given as input to the normality function p+ to
calculate the normality score. In some cases, it is possible to construct an optimization
function that directly calculates the normality function p+ for the input sample (where
the representation is calculated implicitly) in an end-to-end manner [136].

When learning the representations, the objective function may or may not involve a
term that enforces learning certain representation properties. If the objective function
does not include a term for an explicit constraint, the deep learning method acts as
a dimensionality reduction technique. It means that, given the high-dimensional com-
plex input, it extracts low-dimensional feature representations. One advantage of this
approach is that for many domains, there are already pretrained deep learning models
(e.g., BERT [40] for textual data) that can be used to extract good representations fast.
However, for the normality function, it may be more challenging to assign smaller val-
ues for the anomalies because the learned representations do not account for the exact
specifics of the normal input data Dt [136]. If the learning objective includes explicit
constraints over the learning data, the learned representations are better suited for the
given observational data as they capture the underlying data regularities. To achieve the
latter, several different approaches are being considered including data reconstruction,
generative modeling, predictability modeling, and self-supervised classification.

A final consideration for the data representation, with regard to the specifics of logs, is
the choice of the structural dependency between the parameters θ within the network.
Given the observed similarities between logs and textual data [68], the network should
enable preserving and exploiting the log properties. Some of these properties are word
vocabularies, log semantics, the position of a textual event within a sequence, and differ-
ent representations for different contexts, among others. Therefore, an important aspect
of this work is the effective construction of deep learning architectures and their learning
objectives that most effectively exploit the aforenamed properties of the log data. In the
next section, we describe one architecture the proposed methods in this thesis rely on.

2.3. Artificial Intelligence for IT Operations 29

Transformer’s Encoder Architecture

Studies show that system logs experience high similarity with general language [68, 70].
A natural choice for modeling the textual and sequential data is therefore architectures
from the Natural Language Processing (NLP) domain. Of particular interest in contem-
porary literature is the Transformer architecture [166]. Since its introduction, different
modifications using different parts of the architecture are being proposed to advance the
state-of-the-art research in NLP [17, 40]. Although different modifications are being pro-
posed for different tasks, we describe and use its original implementation. Particularly,
we focus on the encoder part of this architecture as a core building block of the proposed
methods.

Figure 2.5 depicts the encoder architecture. The encoder is composed of two main el-
ements: the self-attention layer and the feedforward layer. The encoder is fed with
tokenized input. Depending on the input type (e.g., sequence or string), the token can
refer either to a word or an event. The encoder first applies two operations on the in-
put token vectors: token vectorization and positional encoding. The subsequent encoder
structure takes the result of these operations as input. The output from the encoder usu-
ally proceeds toward the next step (which can be a similar architecture to the encoder,
or as simple as a linear layer with softmax activation). In the following, we provide a
detailed explanation of each model element.

Since all subsequent elements of the model expect numerical inputs, initially the tokens
are transformed into randomly initialized numerical vectors x ∈ Rd. These vectors
are referred to as token embeddings and are part of the training process, which means
they are adjusted during training to represent the meaning of tokens depending on their
context. These numerical token embeddings are passed to the positional encoding block.
In contrast to, e.g., recurrent architectures, self-attention-based models do not contain
any notion of input order. Therefore, the positional information needs to be explicitly
encoded and added with the input vectors to account for the token positions. This block
calculates a vector p ∈ Rd representing the relative position of a token. The positional
encoding is achieved by adding sine and cosine functions.

p2k = sin

(
j

10000
2k
v

)
, p2k+1 = cos

(
j

10000
2k+1

v

)
. (2.3)

Here, k = 0, 1, . . . , d − 1 is the index of each element in p and j = 1, 2, . . . ,M is the
positional index of each token. Within the equations, the parameter k describes an
exponential relationship between each value of vector p. Additionally, sine and cosine
functions are interchangeably applied. Both allow better discrimination of the respective
positions by a specific vector p. Furthermore, both functions have an approximately

30 Chapter 2. Background

Layer normalization

Feed Forward network (w1)
with activation

Feed Forward network (w2)

Layer normalization

Multi-head attention

key value query

out

self-attention

G
en

er
at

or

p(t1)

...

p(t2)

p(t|T|)

[m]

t2

tl-2

tl-1

po
si

tio
na

l e
nc

od
in

g

So
ftm

ax

t1

t2

[m]

tl-1

log 1 log 2

... ...

Output:

Input:

Figure 2.5: Model architecture of the Transformer’s encoder.

linear dependence on the position parameter j, which is considered to make it easy for
the model to attend to the respective positions. Finally, both vectors can be combined
as x′ = x+ p.

The encoder block starts with a multi-head attention element, where a softmax distri-
bution over the token embeddings is calculated. Intuitively, the softmax calculates the
significance of each embedding vector for the prediction of the target within its context.
All token embedding vectors are summarized as rows of a matrix X ′ and are transformed
as in Equation 2.4.

X ′′
l = softmax

(
Ql ×KT

l√
w

)
× Vl, for l = 1, 2, . . . , L, (2.4)

where L denotes the number of attention heads, d is a token embedding size, w = d
L

is the size of a subtoken (part of the token that represents a key, value or query), and
dmodL = 0. The parametersQ, K and V are matrices, that correspond to the query, key,
and value elements in Figure 2.5. They are obtained by applying matrix multiplications
between the input X ′ and respective learnable weight matrices WQ

l , WK
l , W V

l :

Ql = X ′ ×WQ
l , Kl = X ′ ×WK

l , Vl = X ′ ×W V
l , (2.5)

where WQ
l , W

K
l , W

V
l ∈ RM×w. The division by

√
w stabilizes the gradients during

training. After that, the softmax function is applied and the result is used to scale each
token embedding vector Vl. The scaled matrices X ′′

l are concatenated to a single matrix
X ′′ of size M × d. As depicted in Figure 2.5 there is a residual connection between the
input token matrix X ′ and its respective attention transformation X ′′, followed by a
normalization layer norm. These are used for improving the performance of the model
by tackling different potential problems encountered during the learning such as small
gradients and the covariate shift phenomena. Based on this, the original input is updated
by the attention-transformed equivalent as X ′ = norm(X ′ +X ′′).

2.3. Artificial Intelligence for IT Operations 31

The last element of the encoder consists of two feed-forward linear layers with a ReLU
activation in between. It is applied individually on each row of X ′. Thereby, identi-
cal weights for every row are used, which can be described as a convolution over each
attention-transformed matrix row with kernel size one. This step serves as additional
information enrichment for the embeddings. Again, a residual connection followed by a
normalization layer between the input matrix and the output of both layers is used. This
model element preserves the dimensionality X ′. The output from the encoder is used as
input to other layers depending on the task being addressed. In each of the proposed
methods, different modifications of the encoder architecture and the learning procedures
are considered. These specifics are appropriately discussed for each proposed method.

Performance Evaluation Criteria

The final important consideration related to the intelligent methods is the correct choice
of evaluation performance criteria. To evaluate different aspects of the proposed methods,
we consider diverse performance evaluation criteria that evaluate different aspects of the
methods. In the following, we discuss their definitions and usages [54].

After a certain model generates the predictions, there exist two sets of labels, i.e, true
labels and predicted labels. In the case of binary classification and anomaly detection,
this results in a contingency matrix with four different category groups, i.e., true positives
(tp), true negatives (tn), false positives (fp) and false negatives (fn). In the case of multi-
class classification, there is a contingency table for each class, prompting the need for
aggregation. It is also possible to create a single contingency matrix with a size equal
to the number of classes, where each column corresponds to the prediction made for one
class, and each row corresponds to the true class predictions. Depending on the type of
aggregation there are two approaches, micro and macro. The macro approach calculates
the single-label measure for each of the classes and averages the result over them. The
micro approach considers predictions from all instances together (aggregating the values
for all the contingency tables), and then it calculates the criteria across all of the classes.

The single-label criteria considered in this thesis are accuracy, specificity, precision, recall
and F1. Their definition is given further on. The index st emphasizes that they are
calculated for two classes (positive and negative).

Accuracy (single target) is the fraction of correctly predicted labels. It gives the per-
centage of correct predictions out of all of the predictions. Due to the imbalances of the
target classes (e.g., different systems have a diverse number of "error", "warning", and
"info" instructions or the anomaly ratios), accuracy can be misleading [54].

accuracyst =
tp+ tn

tp+ tn+ fp+ fn
(2.6)

32 Chapter 2. Background

For anomaly detection, due to class imbalance, of interest are metrics that consider the
correct and the incorrect predictions. To that end, we use precision, recall, and F1 score.
We give their definitions in the following.

Precision (single target) evaluates the fraction of correct predictions out of all class pre-
dictions.

precisionst =
tp

tp+ fp
=

#DetectedAnomalies

#ReportedAnomalies
(2.7)

Recall (single target) evaluates the correct predictions out of all true observations.

recallst =
tp

tp+ fn
=

#DetectedAnomalies

AllAnomalies
(2.8)

F1 (single target) is the harmonic mean of the precision and recall evaluating the trade-off
between correct class predictions and the miss-classifications [54]. For anomaly detection
in logs, on one side, it is important not to miss anomalies (missing an anomaly can
lead to severe outages). On the other side, reporting many false positives overwhelms
the operators, leading to alarm fatigue [92], making the method’s practical usability
questionable. Therefore, F1 is used as the primary evaluation criterion for anomaly
detection.

F1st =
2× precisionst × recallst
precisionst + recallst

(2.9)

Specificity is the measure of correct predictions of the negative class.

specificityst =
tn

fp+ tn
(2.10)

If B denotes one of the previously mentioned single label criteria (without accuracy), and
|L| denotes the number of classes, then macro and micro criteria are defined as follows:

Bmacro =
1

|L|

|L|∑
i=1

B(tpi, tni, fpi, fni) (2.11)

Bmicro = B(

|L|∑
i=1

tpi,

|L|∑
i=1

tni,

|L|∑
i=1

fpi,

|L|∑
i=1

fni) (2.12)

The aforenamed criteria take values within the 0-1 range, and a higher value indicates
better performance.

Additionally, the calculation of the tp, fn, fp, tn provides an opportunity to plot the ROC
(receiver operating characteristic) curve. This curve is obtained such that tp, fn, fp, tn
are re-calculated for varying the threshold used to obtain the prediction. ROC is obtained
with plotting of the FPR (false positive rate) on the x-axis and TPR (true positive rate,

2.3. Artificial Intelligence for IT Operations 33

sensitivity, recall) on the y-axis. Integral under the curve is another measure used to
access the performance, the AUC score. We additionally considered the AUC [61] score.
AUC is the area under the ROC (receiver operating characteristic) curve. It is bounded
in the 0-1 range, with a high value indicating better performance. The AUC value of
0.5 indicates a model performing not better than a random guess in the case of binary
classification. Notably, we do not use AUROC for evaluation of anomaly detection as they
evaluate its goodness, without considering the threshold decisions. Since the thresholds
are an important step for practical usability we consider the joint evaluation.

As the last performance criteria to evaluate some aspects of the proposed methods, we
used the error@k score. It measures the number of incorrect predictions when k-degrees
of freedom are considered [81]. The smaller values indicate better performance.

To evaluate the log parsing we used the parsing accuracy and edit distance. Their defi-
nitions are given in the following.

Parsing Accuracy (PA) is a commonly used performance criterion to evaluate parsing.
It is defined as the ratio of correctly parsed log messages over the total number of log
messages. After parsing, each log message is assigned to a log template. A log message
is considered correctly parsed if its log template corresponds to the same group of log
messages as the ground truth does. For example, if a log sequence [e1, e2, e2] is parsed to
[e1, e4, e5], we get PA = 1

3 since the second and third messages are not grouped together.
The larger values indicate better performance [187].

Edit distance. The PA metric is considered the standard for the evaluation of log parsing
methods, but it has limitations when it comes to evaluating the template extraction in
terms of string comparison. Consider a particular group of logs produced from a single
print("VM created successfully") statement that is parsed with the word VM <*>. As
long as this is consistent over every occurrence of the templates from this group through-
out the dataset, PA would still yield a perfect score for this template parsing result,
regardless of the obvious error. To address this limitation, edit distance is used [128].
This is a way of quantifying how dissimilar the two log templates (the produced and
the ground truth) are to one another by counting the minimum number of operations
required to transform one template into the other. We used as operations insert, delete
and replace, with costs 0.5, 0.5 and 1. The lower values indicate better performance.

34 Chapter 2. Background

Chapter 3

Related Work

Contents
3.1 Logging Code Composition Quality 35

3.1.1 What-to-Log . 36

3.1.2 Where-to-Log . 38

3.1.3 How-to-Log . 39

3.2 Log Analysis . 41

3.2.1 Log Parsing . 42

3.2.2 Log-based Anomaly Detection 44

3.2.3 Log-based Anomaly Classification 49

This chapter discusses the related work. We divide the discussion into two parts. In the
first part, we elaborate on the related works on the current state of logging instrumenta-
tion, the quality properties of the code composition of log instructions and the different
logging practices. In the second part, we discuss the related work on log analysis tasks
that enable the automation of anomaly detection and anomaly classification. Specifically,
we focus on the tasks of log parsing (as a preprocessing step), and log-based anomaly
detection and classification.

3.1 Logging Code Composition Quality

An important aspect concerning the logging code composition is the quality of the log-
ging instructions. The lack of sufficient information can hurt the comprehensibility of the
generated logs, directly affecting their usability in all log analytics tasks. From a system
development perspective there are four important considerations about placing log in-
structions within the source code, i.e., (1) correct log level assignment, (2) comprehensive

35

36 Chapter 3. Related Work

content of the static text and parameters, (3) correct log instruction placement, (4) cor-
rectness of the supporting logging code (e.g., log level guard checking) [64]. The correct
log level assignment and the comprehensive content of the static text and parameters
are also known as what-to-log, while correct location placement is known as where-to-log,
the correct log level checker is part of how-to-log. In the following, we discuss the related
work on what-to-log as the main contribution relates to this area. In addition, we com-
plement the discussion by describing different logging practices and demonstrating the
evolution of the logging code. The latter studies are further referred to as how-to-log and
we describe the contribution and the relation of the work with it. For completeness on
the logging code practices, we also give an overview of the approaches for where-to-log.

3.1.1 What-to-Log

The methods on what-to-log are separated based on the part of the log instructions they
address, i.e., log level, static text or variable parameters. Concerning the log level, there
exist several approaches. Li et al. [94] propose to recommend the most appropriate
log level treating the problem as ordinal regression, where the order of log levels (e.g.,
debug, info, warning, error, critical) is considered in the model training. Different features
from the file (e.g., existing logging instructions in the file), method changes (e.g., newly
added logging code) and historical information are collected and used to train a linear
ordinal model for log level recommendations. Similarly, DeepLV [100] considers the
problem of log level recommendation as a problem of ordinal regression. DeepLV extracts
syntactical features using an abstract syntax tree (AST) as a structural representation of
the nearby logging code. It also extracts semantic features from the static text of the log
instructions represented in a numerical vector format. LSTM [74] model (a type of deep
learning architecture) is used to learn dependencies between the input features (both
syntactical and semantical), and the log level. Kim et al. [86] consider the problem of log
level prediction as a multi-class classification. They use semantic features of the static
text (obtained by word2vec [121] textual representation) and syntactic features from the
nearby code structure (e.g., the number of log levels in the file, the code block type,
i.e., for/if/while blocks) as input representation. Different from the previous works, the
authors consider the problem as a problem of multiclass classification (instead of ordinal
regression) and train multiclass models (i.e., RandomForest [16] and k-Nearest Neighbour
(kNN) [155]) accordingly. Anu et al. [59] propose VerbosityLevelDirector as a method for
log level assessment. It uses different numerical features describing the code snippets (e.g.,
triggered methods, logging content, exception type, code comments) to train a multiclass
classification model for log level prediction (e.g., Support Vector Machines [34] and RF).
The method was evaluated on in-house production software systems. The results show
that the method detected eight incorrect logging levels unknown to developers. Yuan
et al. [177] observe that if the logging code within similar code snippets is inconsistent

3.1. Logging Code Composition Quality 37

in terms of log levels then at least some of the levels are incorrect. Based on this, they
propose LevelChecker which first identifies all the code clones in the source code. Then
it performs a pairwise code clone comparison to find if they contain logging code and if
the log levels are consistent.

The problems of what-to-log from the perspectives of static text and variable parameters
have a generative and relevance ranking nature, i.e., require generating texts and ranking
variable parameters based on their relevance. Concerning the static text, He et al. [68]
propose using an Natural Language Processing (NLP) approach to generate static text
for new log instructions. They observe that the static texts in logging code are endemic,
i.e., the static texts in the same file or the same contexts tend to use similar static texts
to describe system behaviour. Specifically, they represent the source code as n-grams
(groups of tokens). A target code snippet (Snippet A) is matched against a corpus of
code snippets with log instructions, and the most similar code snippet (snippet B) is
extracted. The matching is performed based on the Levenshtein distance. The static
text of snippet B is then used as a candidate static text for snippet A. Liu et al. [107]
assume that a similar code context should share a similar log description. Based on
this observation they consider the problem of static text generation as a retrieval Q&A
task, where the question is the code snippet, and the answer is the log instruction. The
relationships between the code and the text are learned by neural networks (pretrained
on a large corpus of data). As a retrieval task, the static text is generated based on
the most similar existing static text in the knowledge base. Ding et al. [42] propose to
consider the problem of static text generation as a translation task, where the input is a
code context, and the target output is the static text. They utilize a machine-learning
approach for the translation task. While the prior two approaches cannot generate new
static text, the flexibility provided by learning many diverse code contexts allows the
third method to automatically generate new static text. The usefulness of the approach
is performed by an additional user study of 42 participants that find the quality of the
static text useful as reported by the authors.

Another aspect of what-to-log is finding the most relevant variables to log. Logging ex-
cessive information can cause confusion when examining the logs or hurt the application
performance due to logging overhead. To address the issue, several works have been
proposed. Rabkin et al. [144] propose a visualization-based solution to log important
variables. First, they extract all the variables from the logs and link them based on the
same identifiers (e.g., endpoints), extracting graphs. Since the identifiers can be missing,
inconsistent or ambiguous, the graph is subjected to human inspection to identify the
missing information (e.g., missing edges in the graph may indicate a lack of important
variable information). LogEnhancer [178] augments the log instructions by analysing
control and data flow paths in the source code to identify missing information. Liu et

38 Chapter 3. Related Work

al. [109] try to predict if a variable in a given code snippet should be logged or not based
on historic information from the same or code from other software projects. They propose
to use a binary classifier that recommends (ranks) the variables that should be logged
by treating the code as a sequence of code snippets. One problem when recommending
the variables to log is the existence of new words that describe the variables, i.e., out-
of-vocabulary words. To address this issue, the authors use word vector representations
from general language for the individual words within the instructions. In the case of
compound words (e.g., errorMessage), the text is represented as an average of the indi-
vidual tokens. The evaluation results show that this method achieves high performance
in suggesting the correct logging variables for nine popular open-source systems.

3.1.2 Where-to-Log

Several approaches to the log placement problem exist. They can be split into two
groups 1) static analysis ; and 2) runtime placement tools. The static analysis tools do
not require running of the system when instrumenting, while the runtime placement tools
involve system running to perform the instrumentation. We first discuss the category of
static analysis tools. SmartLog [78] gives recommendations for placing log instructions
as a static code analysis tool. Different code snippets (sets of code instructions) are
analyzed and characterized to generate log intention models. The log intention models
represent the logging decisions, i.e., if the code snippet has log instructions or not. By
training intelligent models from the constructed dataset, logging intention models can be
learnt. The new code snippet is then given as input to decide if they need to be logged
or not. Errlog [176] is another approach that is concerned with the placement of log
instructions with log level error. By first studying 250 bug reports, the authors identify
exception patterns that require additional logging (e.g., function return errors, exception
signals and unexpected cases). Errlog is then proposed as a static code-checking tool
to scan the code for these types of error blocks and to suggest log locations. Zhu et
al. propose LogAdvisor [186], which constructs a set of features describing relevant code
properties that are used as input to machine learning techniques to make the log decisions.
The extracted features are grouped into three groups, i.e., structural features (e.g., error
type, method name), textual features (e.g., using code as flat text) and syntactic features
(e.g., binary value if a method throws an exception or not). The authors conducted a
user study and found that 68% out of 37 participants consider LogAdvisor useful. Li
et al. [99] propose using deep learning methods to learn block locations (e.g., if/for
branching blocks) by representing the source code as a sequence of such blocks. They
aim to predict if the next block requires a log statement or not. Cândido et al. [19]
combine code metrics on a method level (e.g., depth of a method, coupling between
objects) as features and machine learning techniques to learn when a method requires a
log statement. In another work, Li et al. [93] use code snippets to automatically calculate

3.1. Logging Code Composition Quality 39

the topic of a method in the source code. By training a machine learning model with the
calculated topic features and 14 other method-based features (e.g., number of for loops
in a method, line of codes, and similar), they obtain high values (more than 80%) on
correct log placement suggestions for diverse systems. Similarly, Fu et al. [52], focus on
predicting which catch and return-value-check code snippets need logging. First
unlogged code snippets are collected and labeled. Second, contextual keywords, such as
the residing function name are extracted as features. Finally, a decision tree model is
learnt to predict if a code snippet needs to be logged.

Despite the static analysis tool, several methods that involve source code execution, be-
fore deciding the log instruction locations are proposed [175, 181]. Zhao et al. [181]
propose Log20 as a tool to automatically suggest where-to-log. It attempts to find the
points in the execution paths that resolve the largest uncertainty when diagnosing a
problem. To achieve full logging placement, Log20 requires several workloads that in-
voke all the execution paths within the system. Log4Pref [175] is another approach for
suggesting logging points. It starts by building performance models by running perfor-
mance tests. The performance influencing points in the source code are then identified,
and their points of method entrance and exit are instrumented with a logging code. The
performance tests are re-executed, and the newly logging code of the methods is filtered
based on predefined criteria (e.g., methods with constant execution time). Due to the
diverse syntax used by the programming languages, the proposed methods are specific
for each programming language (predominantly Java is used in the studies).

3.1.3 How-to-Log

Despite the initial writing of log instructions, another important aspect is the overall life
cycle changes of the logs during system usage. In the following, we review the related
work on "how-to-log". Yuan et al. [177] present one of the earliest comprehensive works
on how developers perform and maintain logging. They find that logging is pervasive
(omnipresent) in the source code. Therefore, it is actively maintained by developers.
However, its updates are commonly performed as after-thoughts, implying that devel-
opers do not consider it of primary importance. Chen et al. [23, 26] in two consecutive
studies examine the logging evolution by studying issues from 21 Java projects. They
consider both the log-instruction specific issue [23] and feature plus log-instruction is-
sues [26] to cover the different aspects of log evolution. Based on their observation, they
propose a six-level taxonomy of log-related updates covering the log evolution aspects.
Another study of log-related issues [65] from two software systems identifies four impor-
tant observations concerning log instruction updates given in the following. Firstly, the
log-related issues are identified as relatively long (median of around 300 days), but their
resolution time is fast (e.g., the median time is five days). Next, the root causes of the

40 Chapter 3. Related Work

log-related issues are related to inappropriate log levels, runtime issues, library changes
or an overwhelming number of log lines. They also find that the files most related to log
issues have undergone significantly more changes than other files. Finally, the log-related
updates are most often (in more than 70% cases) performed by developers that are not
original authors of the instructions. This indicates that the developers may not have a
sufficient understanding of the purpose of logging a particular event. Shang et al. [153]
makes a similar observation. Chen et al. [24] identifies four anti-patterns in logging code,
i.e., checking for double method invocation (e.g., the method is invoked once in a function
and again in the log instruction), explicit casting, nullable object return and malformed
output. Based on their observations, they propose LCAnalyizer as a tool that identifies
these anti-patterns and reports them to developers. It is claimed that 72% of the sugges-
tions are confirmed and fixed by developers on unseen projects. Shang et al. [152] study
the evolution of the communicated information from the log instructions. They find
that two types of information are communicated with logs, i.e., long-lived (information
about domain-level activities, e.g., opening a bank account) and short-lived information
(information about implementation-level details, e.g., database connection establishing).

Despite the studies on open-source projects, there are also studies on industrial produc-
tion systems. We discuss them in the following text. Fu et al. [52] study how developers
in Microsoft use logging. By examining two online systems, they find that logging in com-
mercial systems is pervasive (around 1% of all the instructions are logging instructions).
They identify five key points when developers use logging, i.e., during assertion checks,
return-value checks, exception logging, logic branch and additional non-classified logging
types (referred to as observing-point logging). Additional analysis of individual cases fur-
ther aims to discriminate causes for the developer’s decisions to log. Pecchia et al. [137]
study more than two million log instructions from the software systems of an industrial
company for critical software. They find similarities in the logging process among differ-
ent software systems. For example, common developers’ objectives with logging are to
dump the program state, trace the program execution, and report events. Li et al. [96]
observe that log code snippets that share similar contexts frequently undergo similar
code modifications. Based on this, they propose LogTracker as a tool to automatically
learn log revision rules based on the semantics of the context. The rules are extracted
by hierarchical agglomerative clustering. The rules are used to suggest modification of
the log code snippets. Kabina et al. [83] identify that 20%-45% of the logging statements
in four studied systems are changed. They also report that the median time between
adding a log instruction and its first update is between 1 and 17 days conditioned on the
system. This gives insights into the log-related bug resolution issues. Salfner et al. [150]
propose to measure the quality of log files as a post-product of logging. Specifically, they
propose a set of several metrics that evaluate the frequency of logs (the rearer are more
informative), logline information, logfile quality and the logfile information entropy. To

3.2. Log Analysis 41

calculate the metrics domain knowledge for the required event information is needed. In
addition, they specify five types of information a comprehensible log file should have.
Those are (1) general information (common for all log files, e.g., timestamp), (2) struc-
tural information (that identifies entities in the structure of the software, e.g., cluster
node reference), (3) runtime environment (information that is dependant on the system
state when the event is logged, e.g., cluster node), (4) resource information (resource the
event is associate with, e.g., resource usage) and (5) event characterization (describing
the event itself, e.g., state information).

The work presented within the thesis draws inspiration from the area on how-to-log on
existing issues related to writing quality log instructions. We examined diverse issues
discussed in various related works [1, 23, 24, 26, 64, 100, 177], among other public log-
related Jira issues, to better understand the properties of the log instructions in modern
systems and reason for their quality. We observed that it may be possible to combine
the similarities of the log instructions among different programming languages with the
general language [68], and the general expressions for the logging intent to assess diverse
properties of the log instructions. The work in this thesis further shares close relations
with the methods from what-to-log, specifically, to the works on log level, and static
texts [59, 95, 100]. The major differences and similarities from the related works are
further discussed in the corresponding chapter.

3.2 Log Analysis

Log analysis is the process of collecting and analyzing log data to visualize, comprehend,
identify, diagnose, classify, detect, predict and mine diverse systems events to aid devel-
opers and operators in developing, operating and maintaining IT systems [70]. Figure 3.1
illustrates a typical approach in log analysis [70]. It is composed of three steps: log col-
lection, log parsing and log mining. Once the system is instrumented with logs and it is
running, the logs are generated. Depending on the application, different tools are used
to retrieve, compress, and store the generated logs. Since the logs are unstructured (e.g.,
due to intertwined parameters and static text, or different system information exposed
by different logging utilities), they are processed by log parsing. Log parsing is a log
preprocessing technique that separates the static text and variable parameters from the
unstructured logs [187]. Once the logs are parsed they are used to address different tasks
such as anomaly detection, classification, and failure diagnosis among others.

The effective addressing of the collection, compression and storage involves reducing
memory occupancy while preventing information loss, among the most significant chal-
lenges [70]. For example, many logs (e.g., if written in a for block) are redundant,
and storing all of them may lead to overhead and degrades system performance. On

Logging
Log

Generation
Log

Parsing
Log

Mining
Log

Collection

Anomaly Detection
Anomaly Classification
Failure Prediction
Failure Diagnosis
Visualization
Others…

42 Chapter 3. Related Work

Figure 3.1: General workflow of log analysis (adopted from He et al. [70]).

the other side, some legislation acts require up to two years of log storage for auditing
purposes [151]. Therefore, a natural trade-off between the log generation and storing the
relevant information from the logs emerges. Addressing each of these questions is beyond
the scope of the thesis. In the following text, we discuss the related works on log parsing
and log mining parts, with a focus on anomaly detection.

3.2.1 Log Parsing

The generated raw system log message texts are unstructured, i.e., the static text and the
parameters are intertwined. Since both the static text and the parameters can convey
useful information they need to be decoupled [44]. For example, the parameter anomaly
detection is executed on the variable parts of the logs. Therefore, their correct disen-
tanglement from the static text is an important step to detect them [44]. Log parsing
is a log preprocessing procedure that decouples the log templates from log parameter-
s/variables (the variable part in a log), directly extracting input in a usable modeling
format. Furthermore, the parsed texts are characterized by lower variability than their
intertwined complements. A common way to log parsing is to extract the templates by
regular expressions or grock patterns. However, a great number of logs requires main-
taining a large database of regular expressions. In addition, the frequent updates of the
log instructions impose constant updating of the regular expressions making them hard
to maintain. Therefore, automatic log parsing is preferred [187]. Due to the importance
of log parsing, and its relevance to our contributions, we give an overview of the related
log parsing methods in the following text.

There exist a plethora of log parsing techniques. They can be categorized in various
aspects, based on the choice of modeling approach, the operation mode, and if they use
additional preprocessing [187]. Considering the operational mode, the parsers can be
offline (require all the data in advance to execute) or online (can parse the logs as
they arrive). Preprocessing refers to the need to additionally preprocess the logs, before
executing the parsing. With respect to the choice of modeling approach, there are four
identifiable groups, i.e., (1) frequent-pattern mining, (2) clustering, (3) heuristics, and (4)
evolutionary. In the following, we discuss the related log parsing methods based on the
choice of modeling approach.

3.2. Log Analysis 43

The frequent pattern mining log parsing group assumes that a log message type (e.g.,
the static text of the log instruction) is a frequent set of tokens that appear throughout
the logs. Representative parsers for this group are SLCT [164], LFA [125], and Log-
Cluster [126]. The general procedure these methods follow is to iterate several times
over the logs. During the first iteration, usually, a data summary is built. Afterwards,
groups of similar logs are built using the summary information. Finally, groups with
certain properties are filtered, and the remaining candidates are represented with the
corresponding prototype. Different rules for variable selection are implemented, e.g., the
threshold over the frequency token counts. These methods are all offline because they
require the presence of the data before building a model.

The clustering group considers the log parsing problem as a clustering problem. The
logs that describe the same event are forming natural cluster groups because of the same
words a message type is composed of. The general approach of these methods is to first
find a suitable representation for the logs and apply some clustering algorithm to extract
the message types. For example, LKE [51] considers the logs as sequences of words and
applies weighted edit distance to calculate similar data groups. LogMine [58] similarly
applies parallel implementation of a hierarchical clustering method where the distance
is calculated based on a proposed equation. LogSig [160] considers a signature-based
method to find the predefined number of cluster groups within the input log files. In
contrast to the prior three methods that are offline, SHISO [123] and LenMa [84] are
online parsing methods. They are building the groups by examining different properties
of the logs (e.g., the number of words in the log, the number of characters in the words
and similar) as they arrive. They aim to identify and append the most similar groups
for each log. If no match is found new clusters are formed. Finally, the templates are
updated to account for the specifics of all the logs in the group.

The evolutionary group considers the methods that adopt evolutionary algorithms for
template extraction. MoLFI [120], as representative of this group, defines the problem
of log parsing as maximizing the number of log messages matched by a single template
while at the same time maximizing the number of unchanging tokens within the produced
templates. To do so, it uses an evolutionary approach to find the Pareto optimal template
set. It is an offline approach because it requires the log messages presented before
producing the templates.

Log-structure heuristics methods exploit different properties that emerge from the struc-
ture of the log. The state-of-the-art algorithm, Drain [69] (in terms of accuracy), assumes
that at the beginning of the logs the words do not vary too much. Relying on it, Drain
creates a tree of fixed depth which can be easily modified for new groups. IPLoM [115] is
another method from this group. It performs iterative partitioning of the log messages in
the given log file. The partitioning is performed on three levels, token count, token po-

44 Chapter 3. Related Work

sition and partitioning by bijective relationships. Afterwards, the logs in similar groups
are filtered based on the frequency counts. AEL [79] finds templates by a three-step pro-
cedure of anonymization (parameter masking), grouping the logs based on the number
of words and a number of parameters, and template extraction. While Drain supports
both, online and offline parsing, the latter two are offline parsers. The last method from
this group, Spell [43], considers the problem of log parsing as the problem of finding
the longest-common subsequence. It extracts templates from log messages having the
longest-common subsequence match.

While there exists a plethora of approaches, we observed that there exists an alternative
way towards parsing events, i.e., one that aims to mimic the operator’s comprehension of
the differences between the events and parameters from logs. Specifically, given the task
of identifying all event templates in the logs, a possible approach to extract a template
is to focus on constantly reappearing parts, while ignoring parts that change frequently
within a certain context (e.g., per log message). The constantly repeating/changing parts
can be determined from nearby words/tokens that form the context. Therefore, the task
of log parsing can be framed as determining the variability degree of the log parts. By
calculating the conditional probability of a particular token on a given position, where the
conditioning is on its context it is expected that the tokens with high probability values
will constitute the static text, while the tokens with low probability are the parameters.
By this view, we propose a solution and complement the existing work on log parsing. The
differences between the proposed methods and the related group categories are discussed
in the corresponding chapter.

3.2.2 Log-based Anomaly Detection

Table 3.1: Summary of related works for log-based anomaly detection.

ID Method Parser Input Type Representation Output Type Semantic Auxiliary Task Threshold Type

1 DT Yes
Event Sequence
Time Window

Event
Count

Anomalous
Event Count

NA NA
Model

Prediction
Supervised

2 LR Yes
Event Sequence
Time Window

Event
Count

Anomalous
Sequence

NA NA
Model

Prediction
Supervised

3 LogRobust Yes Event Sequence
Event

Sequences
Anomalous
Sequence

True NA
Model

Prediction
Supervised

4 CNN Yes Event Sequence
Event

Sequences
Anomalous
Sequence

True NA
Model

Prediction
Supervised

5 PCA Yes
Event Sequence

Event Parameters
Time Window

Event
Count

Anomalous
Sequence

NA NA
Automatic
Threshold

Unsupervised

6 LogCluster Yes
Event Sequence
Time Window

TF-IDF
Events

Anomalous
Sequence

NA NA
Automatic
Threshold

Unsupervised

7 DeepLog Yes
Event Sequence

Event Parameters
Event

Sequences
Anomalous

Event
NA NEP

Top_k
Prediction

Unsupervised

8 LogAnomaly Yes Event Sequence
Event

Sequences
+Event Count

Anomalous
Event

True NEP
Top_k

Prediction
Unsupervised

3.2. Log Analysis 45

Multiple methods to the problem of log-based anomaly detection exist [154]. We identify
eight properties of how to characterize the methods. Table 3.1 summarizes the related
methods following our categorization. The parser property denotes if the method uses
a specialized preprocessing technique on the raw logs to extract events, i.e., log parsing.
The majority of the methods use log parsing because it reduces the variation in the
data. The input type denotes the input format expected by the method. As input,
single log events or event sequences can be given. The event sequences can be formed
by external identifiers or time window grouping. Regarding the representation type,
different approaches in the literature are considered, including event sequences, sequence
events counts, single log events, or parameter values of individual events. Notably, some
of the methods have multiple values for this parameter as it is possible for some of them
to be composed of several components addressing different anomaly types. The semantic
property is tightly related to the representation aspect of the logs. It denotes if general
language modeling approaches are used to represent logs. Notably, some methods apply
auxiliary learning objectives, e.g., supervised objectives in unsupervised model training.
This can lead to ambiguities if a method should be considered supervised or unsupervised.
Therefore, we find that it is important to make this property explicit. Thereby, the
auxiliary task property denotes the usage of additional auxiliary tasks to support anomaly
detection. With respect to the output, there are two important properties. The first one
is output type which demonstrates the type of prediction, i.e., if the prediction refers to
a single event or sequence of events. The second property related to the output is the
approach for making a decision, i.e., how the output threshold is calculated. Considering
the information type available during learning, similar to He et al. [154], we group the
methods into two groups: supervised, and unsupervised. We use this property as the
main discussion line to describe the methods in greater detail.

The supervised methods assume the existence of labels from the system when learning an
anomaly detection model. Notably, the labels originate from the system of interest, which
we refer to as the target system. In one of the earliest applications of these methods,
Bodik et al. [6] consider the anomaly detection problem as a problem of binary classifica-
tion. The authors apply Logistic Regression (LR) to detect anomalies from logs in data
centres. Decision Trees (DT) [28] as another popular binary classification method is also
used in detecting anomalous web requests from access logs. These two methods start
with log parsing, i.e., extracting event templates from the raw input logs. Afterwards,
they count the event templates in a fixed time interval to construct learning samples
that proceeded as input to the anomaly detection method. They directly predict if the
observed time window is anomalous. We refer to these two methods as traditional super-
vised approaches. The advances in deep learning resulted in the appearance of several
supervised deep learning-based methods, i.e., LogRobust [180] and CNN [112]. LogRo-
bust uses bidirectional Long Short Term Memory (LSTM) architecture [74] (a type of

46 Chapter 3. Related Work

LSTM architecture), augmented with attention [14]. These two are popular deep learning
architectures often combined for modeling sequences. LogRobust, as input, receives a se-
quence of events, and as output, it directly predicts if the observed sequence is anomalous
or not. An interesting feature of this method is that by careful construction of the se-
quences, i.e., with incremental growth by one element, the method can be used to predict
single log line anomalies [44]. Figure 3.2 illustrates this process. An additional feature
of LogRobust is the utilization of vector embeddings from general-purpose languages to
represent logs (instead of template indices). Owing to the similarities of the natural lan-
guage and logs [68], the authors show that semantic augmentation can slightly improve
detection performance. Lu et al. [112] use the Convolutional Neural Network (CNN), an-
other type of deep learning architecture, to learn normal and abnormal sequences based
on template indices. Similar to LogRobust by careful sequence construction, CNN can
be used to detect anomalies from a single log message. All of the supervised methods use
parsing and the prediction of the trained model to detect anomalies. While having strong
detection performance (due to the superior modeling objectives), the large dynamics of
the software update and the large volume of the produced logs make the labeling process
expensive. Therefore, supervised methods are often considered impractical [70].

E5 E1 E10 E6 E7 E1 E8

0 0 0 0 1 0 1
Event
Labels
Event

Sequences

window w

E1 E10 E6 E7 E1 E8

0 0 0 1 0 1

E10 E6 E7 E1

0 0 1 0
…

w

w

stridelabel

Figure 3.2: Example for how to use sequential log methods for single log
line anomaly detection (window size is four, and the stride is one).

In contrast, the unsupervised methods assume an absence of labeled target system data.
This assumption gives an important practical advantage because it eliminates the need
for labeling, effectively making the unsupervised methods easier to adopt in practice.
Many of these methods approach the problem as a one-class classification task. They
model the normal system state (hence one class) and detect anomalies when significant
deviations from it are detected. In one of the earliest works, Xu et al. apply the popular

3.2. Log Analysis 47

unsupervised method Principle Component Analysis (PCA) [172] to learn the normal
state of the log event counts. PCA projects the input data of size n into k principal
components (i.e., k dimensions), such that k < n. The projection is done such that a
large proportion of the variance of the input data is preserved (e.g., 95%). However,
the remaining (n − k) components describe the variation in the data that lie outside
the major dimensions of variation. PCA leverages this observation. It first finds the
top-k principal components, where the top-k is defined by the number of components
such that 95% of data variation is preserved. By measuring the length of the projections
of the anomalous space (the space formed by the (n − k) components), the anomalous
score is calculated. Afterwards, the new template event counts are projected in the same
numerical space, and the anomalous score is calculated. The new event counts are labeled
as anomalies if the anomaly scores are larger than a predefined threshold. Lin et al. [102]
introduce LogCluster to model the normal state. LogCluster represents the sequences as
numerical vectors of n elements, where n corresponds to the total number of events. The
events are represented as a weighted average between their frequency of appearance in
production as compared to their appearance in the system verification step during testing,
and the frequency of appearance of an event within a single sequence (Term Frequency-
Inverse Document Frequency (TFIDF)) analogue to word representations, on a sequence
level. The obtained sequence representations are used to construct a knowledge base of
normal/anomalous event sequences using agglomerative clustering and human domain
knowledge. An automatic thresholding calculation technique is used in the construction
of the knowledge base. When a new event sequence is introduced, the anomaly is detected
if it is clustered into the anomalous cluster groups.

Several unsupervised methods directly model the normal sequences to learn the normal
system state. Yamanishi et al. [173] introduce an unsupervised sequential method for
anomaly detection that uses Hidden Markov Model (HMM) on log event sequences to
model the normal state. The probability under the HMM is used as a normality score.
Furthermore, there are two popular unsupervised methods of deep learning. Those are
DeepLog [44] and LogAnomaly [117]. The innovative feature of these two methods is
the introduction of an auxiliary task called Next Event Prediction (NEP). NEP is a su-
pervised task that given a sequence of events, forecasts the most probable next event
as a target. Notably, the targets originate from the input data itself, i.e., no labeling is
performed, which makes these methods unsupervised. Any input presented at test time
with an incorrect prediction for the next event is considered anomalous. The prediction
is considered incorrect if the output scores do not rank the predicted next event within
the top-k predictions. The latter is a hyperparameter of the method. As stated by the
authors, DeepLog can be applied for sequential and single logs given as inputs. To learn
the normal state, an LSTM architecture is learned on the NEP task. DeepLog also con-
siders the problem of anomaly detection in the parameters of single events, referred to

48 Chapter 3. Related Work

as performance anomaly. To address the latter task, it trains an LSTM model on the
parameters from a single event generated from the repetitive execution of events with
numeric parameters. LogAnomaly addresses problems just within sequences. It has two
additional features over the sequential part of DeepLog. These are 1) leveraging the
semantics of the single log lines by applying general language embeddings, and 2) aug-
menting the input by event counts. The empirical results show that the improvements
over DeepLog are not significant [31, 117]. Unsupervised methods are often criticized
for their lower performance in comparison to the supervised ones [154]. The lower per-
formance can lead to reporting many false alarms, leading to the phenomena of alarm
fatigue [44], discouraging their wide applicability.

The given list of methods is not exhaustive. There are other methods for log-based
anomaly detection in both industry and research [62, 76, 97, 98, 179, 188]. However,
some of those solutions are part of production systems [97, 179], and have specific imple-
mentation challenges, and as demonstrated in Landauer et al. [88], not all provide public
implementations. Therefore, due to the inability of a transparent comparison, we do not
compare with them in our experiments. Instead, we give a short high-level overview of
approaches with rather complementary undertakings on the task of log-based anomaly
detection. OneLog [62] similar to Lu et al. [112] uses a hierarchical CNN where the
words (their characters) and log sequences are learned in an end-to-end supervised man-
ner. SwissLog [98] extracts temporal, semantic embeddings from the input sequences and
trains bidirectional LSTM attention augmented network in a supervised manner to de-
tect anomalies. UniLog [188] is a log analysis framework addressing three different tasks,
alongside anomaly detection. The unique feature of this framework is that the four tasks
are trained jointly and later, fine-tuned for a specific task. Despite the LSTM-based and
CNN-based methods being the most popular choice for deep learning log-based anomaly
detection, there exist other deep learning ideas adopted for the task. For example, Han
et al. [60] use Generative Adversarial Networks (GAN) training of an LSTM for anomaly
detection. Specifically, the authors propose to jointly learn a representation space of
the normal source and target system data via an adversarial training procedure with
hyperspherical loss. The training enables the concentration of the normal data close to
a centre of a hypersphere, allowing the detection of the anomalies as points with large
distances to the hypersphere centre. Zhao et al. [182] propose to use three Transformer
encoder architectures with adversarial training to learn a model for anomaly detection.
In contrast to the previous methods that rely on LSTM, CNN or Transformers, Wan
et al. [167] adopt Graph Neural Networks (GNN) for log-based anomaly detection. The
authors consider the individual log events within a session as nodes of a graph and use
the data and the NEP task to learn vector embeddings for the individual nodes. The
node embeddings of the session graph are aggregated within a session graph vector and
used to rescale the individual node scores. If the next event is not ranked within the

3.2. Log Analysis 49

top-k-ranked events, the session is considered anomalous.

Complementary to the aforenamed studies, three experience reports [31, 91, 154] give an
independent empirical evaluation of the log anomaly detection methods. He et al. [154]
studied three supervised and three unsupervised methods, making five observations. In
one of the observations, the authors find that supervised methods are better performing
than the unsupervised, however, in a second observation, the unsupervised are referred
to have better practical properties. In another study, Chen et al. [31] examine four deep
learning methods for log-based anomaly detection. They give four observations for the
performance of the studied methods, with one of them providing a conclusion for the
current state-of-the-art methods. Le et al. [91] study five deep learning methods on three
benchmark datasets. The paper studies the methods through five different questions.
Similarly, as in the previous cases, DeepLog, LogAnomaly and LogRobust are identified to
be the most robust methods alongside all the addressed questions. In our work, we lever-
age the observation that an LSTM-based architecture for both unsupervised (DeepLog,
LogAnomaly) and supervised (LogRobust) achieves superior performance from the deep
learning methods and six other methods studied in He et al. [154].

In comparison to the related works on log-based anomaly detection, we found that there
are possibilities for further improvement. We found that there exist higher-level proper-
ties of the individual log message (e.g., their semantics in the description of normal and
anomalous events) or the generated log files (e.g., the existence of similar event groups)
which can be used to learn anomaly detection models. Specifically, we contribute with
two methods that attempt to improve the single textual representation of the log mes-
sages and their sequential characteristics when learning a model. The further specifics
of the methods and their uniqueness in relation to the other works are given in the
corresponding chapters.

3.2.3 Log-based Anomaly Classification

While anomaly detection is the first step toward failure resolution, there are additional
steps between detection and diagnosing the root cause. The anomaly diagnosis is referred
to the process of narrowing down the set of causes that led to the anomaly [70]. In
general, the complexity of the modern system challenges the automation the anomaly
diagnosis [170]. Nevertheless, studies on online systems (e.g., from Microsoft [102]) show
that some anomalies are redundant, i.e., can occur repeatedly. Therefore, historical
information can be used to speed up failure diagnosis. One approach toward anomaly
diagnosis is anomaly classification. It is the task of finding the class of the anomaly
from the known anomaly classes. The idea is that once the detected anomaly is correctly
classified, past experiences can be applied to effectively resolve the anomaly.

50 Chapter 3. Related Work

A common way to diagnose the anomaly class, as in modern practices is by keyword
search for finding a matching category [70] for a single log line. For example, in one
of the earliest works, Oliner et al. [132] use keyword search of common words (e.g.,
"interface failure", "error", and similar) to identify different classes of anomalies within
single logs of four different supercomputer systems. Meng et al. [118] use single log lines
represented as bag-of-words, alongside the Random Forest method to classify different
types of system logs. LogClass [119] proposes and uses TFILF as a representation method
and supervised information for the anomaly class of the logs to categorize it.

As opposed to these approaches, there are several works addressing anomaly classification
by using event sequences. The previously described method LogCluster [102] despite be-
ing used for anomaly detection, is also used for anomaly classification. The classification
is achieved by assigning labels to extracted cluster groups. Whenever a new sequence
is clustered to an anomalous cluster, the closest class label is assigned. Cotroneo et
al. [35] propose to use a deep clustering approach to identify different failure modes of
the event counts distributed tracing logging technology. Expert knowledge is then used
to identify the different failure groups. In related work, Pham et al. [139] use k-Nearest
Neighbours (kNN) with edit distance between observed anomalous sequence and the set
of known prototypes anomalies for classification. Lu et al. [111] rely on domain expertise
to extract five feature categories that categorize anomalies from Spark logs. By fitting
linear models, they successfully categorize four different types of anomalies on a resource
level (i.e., disk, CPU, memory and network). The first two methods belong to the un-
supervised category, while the latter two are supervised approaches. Although some of
the approaches require labels for training, while others do not, due to the nature of the
task, method usage requires the involvement of human experts to categorize the anomaly.
Therefore, the application of anomaly classification is bounded to scenarios where expert
information even for past experiences is available.

Chapter 4

AI-enabled Dependability
Framework with Log Data

Contents
4.1 Challenges and Assumptions . 51

4.1.1 Challenges . 52

4.1.2 Assumptions . 55

4.2 Conceptual Overview . 56

4.2.1 Automatic Log Instruction Code Improvement 58

4.2.2 Log Analysis: Log-based Anomaly Detection and Classification 60

This chapter describes the main challenges imposed by modern IT systems, the addressed
problems, and a set of assumptions as enablers of methods design. The chapter is struc-
tured into two parts. In the first part, the challenges imposed by modern IT systems and
the assumptions we considered to enable methods design, are presented. In the second
part, we discuss how the proposed methods address the challenges by relying on the set of
assumptions. Furthermore, the methods and ideas are conceptualized within the general
AIOps platform, and a high-level overview of the proposed methods is discussed.

4.1 Challenges and Assumptions

The work presented herein aims to improve the logging code composition and anomaly
detection and classification in IT systems as log analysis tasks. There exist two im-
provement aspects: 1) system development and 2) system operation. From the system
development aspect, the improvement is achieved by improving logging instructions by

51

52 Chapter 4. AI-enabled Dependability Framework with Log Data

means of automatic logging code quality evaluation. From the system operation aspect,
the improvement is achieved by introducing novel methods and datasets for anomaly
detection that use system logs and external log-related data more effectively. The two
aspects are associated with different challenges and require several assumptions, which
we discuss in the remainder of this section.

4.1.1 Challenges

System Development Aspect

Automatic logging code quality evaluation is concerned with improving the logging code
by detecting log instructions with insufficient quality. As such, it reduces the possibility
that during development incorrect or insufficient information within the log instructions
is inserted, which will be reflected in the generated logs. Therefore, the downstream
tasks are indirectly improved. The automatic code improvement addresses the source
code during development, leading to several challenges, given in the following:

1. Heterogeneity of software events : Different software systems provide different ser-
vices. Naturally, their behaviour is described by diverse events. Since modern IT
systems are commonly developed by many developers, their unique writing styles
and cross-lingual biases lead to variations of the log instruction properties (e.g.,
the static text). Improving logging during development should consider diverse
properties in the event descriptions (e.g., their vocabulary, writing styles, etc.).

2. Different programming languages : Software systems can provide similar services
and functionality, but they can be written in different programming languages.
The programming languages have a clearly defined but unique syntax. For exam-
ple, a for code snippet in Python uses the tab character, as opposed to brackets
({}) in Java. The different syntax poses the question if 1) the developed tools
for automatic logging quality evaluation should be specific for a programming lan-
guage, or 2) one should limit the set of possible logging code quality assessment
properties. For example, the different syntax of the neighbouring code around the
log instructions from two programming languages (e.g., Java and Python) questions
the applicability of log instruction placement methods that depend on the struc-
ture of the source code on arbitrary system [19]. The specifics of the programming
language, thereby, challenge the design of automatic tools for improving logging
code composition.

3. Unknown empirically testable properties : While there are universal aspects of log-
ging code instrumentation, the system-agnostic set of properties subject to em-
pirical evaluation is generally unknown. For example, the log level and static
text syntax are common categories for the log instructions of many libraries (e.g.,

4.1. Challenges and Assumptions 53

Python, and Java). However, it is not clear which syntactical elements of the static
text can be evaluated empirically. Therefore, finding the set of empirically testable
properties, e.g., by an empirical study, is needed.

System Operation Aspect

The system operation aspect is concerned with the efficient utilization of the generated
system logs to detect and classify anomalies. The automatic approaches for anomaly
detection and classification are challenged by:

1. Diverse anomaly manifestation in logs : The anomalies can reflect in the log data
in different ways [44]. An anomaly may be explicitly recorded in one log message
(e.g., connection lost), observed in a sequential change of the logs (e.g., flapping
interface), or given as a parameter value of an individual event (e.g., log message
reporting a long time to create a VM). Modeling one log property may lead to
omitting important anomalies residing in the remaining properties. For example,
for individual parameter values of a single event, an anomaly may be observed in
the context of several manifestations of that event rather than a sequence of neigh-
bouring ones. Its detection is possible within the context of the events generated
from the same logging instructions. Therefore, careful consideration of the different
properties exposed by the logs should be accounted for when analyzing the logs for
anomaly detection and classification.

2. Insufficient Logging Failure Coverage : Developers may have an insufficient under-
standing of the complexities of the running system environment during develop-
ment [92]. Inevitably not all failures can be logged. Therefore, there exist insuffi-
cient anomaly logging coverage. For example, in the previously described anomaly
with type "Interface Flapping", none of the two logs has a log level with greater
severity (i.e., "error" or "critical"), nor do they explicitly describe an anomaly.
The anomaly can be detected just within the context of several repetitions of the
specific pair of logs. Furthermore, these types of contextual anomalies occur often.
For example, in Pike (version 3.12.1 of the popular cloud resource managing system
OpenStack), there are more than 20% of anomalies that are not explicitly logged
within a single log line [36].

3. Complex Data Representation : One complexity related to the input data type
representation emerges when dealing with the complex nature of the logs. Logs
have textual and sequential properties [117]. Therefore, the relevant information
is contained within one or both. When analyzing log sequences, due to various
reasons (e.g., different log preprocessing techniques, network errors, limited system
throughput, and others), there is a possibility to drop or delay the reporting of
certain events during monitoring. It results in log sequences having increased un-

54 Chapter 4. AI-enabled Dependability Framework with Log Data

certainty in the event order [180]. Despite the need to model sequences as complex
data, the diverse log sequence appearance imposes an additional challenge.
Another challenging aspect related to the complexity of the input is concerned with
the representation of a single log as a textual data format. Therefore, the support-
ing tools should consider their textual properties. Often the textual representation
is obtained from general language models (e.g., BERT [40], word2vec [121]), where
many dimensions are used to describe the textual properties – high dimensional
representation. However, from an anomaly detection perspective, the detection of
anomalies in high dimensional space is challenging due to the properties of such
spaces [146]. Specifically, high-dimensional spaces are characterized by the property
of large distances and sparsely populated regions. By definition, anomalies have
large distances from the normal samples, therefore, it is difficult to disentangle the
anomalies from normal data in high-dimensional sparse spaces.

4. Software Evolution : Agile software development leads to the insertion, modifica-
tion or removal of logs at fast rates [70]. For example, a study on logging practices
shows that 20-35% of the log code changes through the lifecycle of the software
systems [83]. From the system operation perspective, this results in novel events
and log sequences. Therefore, the data generation process describing the system
behaviour changes. The log analysis should account for the novel, predominantly
normal patterns and reduce their impact on the detection performance of the op-
erational methods.

5. Labeling : A direct impact of software evolution is the increased cost of labeling.
Since logs evolve at high rates, labeling new log sequences and log messages requires
constant identification of novel normal or anomalous individual logs or log sequences
from human experts. By further considering that logs not only evolve but are
also generated in large volumes, labeling becomes an expensive task [154]. In
addition, there is a possibility of deprecation of labels. Therefore, the reusing of
past information is limited.

6. Low Detection Performance : A large number of logs and different operational fre-
quencies (e.g., working-hours-related user-request patterns) make the detection and
classification of anomalies similar to finding a "needle in a haystack" [70]. The op-
erator’s constructed rules and intelligent methods often result in a high alarm rate
challenging their applicability to production [183], i.e., have low detection perfor-
mance. The latter also extends to log parsing. If the alerts occur too frequently,
operators second guess, skim, or even ignore incoming alerts. This problem is
known as alarm fatigue [92] and increases the chances of important anomalies be-
ing missed. This can lead to severe implications for the system and its environment.
Therefore, automatic methods are challenged by achieving an effective trade-off be-
tween high-alarm reporting and not-missing crucial events.

4.1. Challenges and Assumptions 55

4.1.2 Assumptions

In the following, we discuss the assumptions enabling the development of intelligent
methods to support the logging code quality evaluation and log-based anomaly detection
and classification.

1. Existence of open source code of systems with sufficient quality logging properties :
To examine the quality logging properties of a system, we assume that there exist
software systems with sufficient logging quality. Following general literature on
logging practices [24, 26, 68], the systems that a) are serving a vast set of industries,
b) have many contributors, and c) are developed for a long period should have
logging instructions of sufficient quality. The rationale is that given their vast
application, the logging instructions have fulfilled their purpose for monitoring,
debugging and troubleshooting. Therefore, the log instructions of the systems can
be considered instructions with sufficient quality. They serve as a basis for quality
evaluation. In addition, open-source code availability is important to enabling
access to the source code of software systems with sufficient quality in the logging
instrumentation. This assumption is important from the developer’s aspect.

2. Normality : For the anomaly detection methods we assume that the majority of
the logs originate from normal system operation. Since most of the time systems
operate normally (as we observe in our service dependability study in Appendix A),
and anomalies are rare events, the entirety of logs obtained during normal operation
can be assumed as normal [183]. Further, following the availability of a large
amount of data, the existence of a sufficient amount of normal data is assumed.
Unless otherwise stated, anomaly labels are not available. These assumptions for
the anomaly detection methods have important practical value as they demand the
unsupervised design of the anomaly detection methods.

3. Anomaly Detectability : As described earlier in the text, the anomalies can be
reflected differently in the log data. We do not impose constraints on how the
anomalies are reflected in the log data beyond the three log properties. However,
we consider the class of detectable anomalies. An anomaly is said to be detectable
if it is reflected in at least one of the aforenamed log properties.

4. Open-source Severity Level Data : Considering that the severity/log levels are used
to identify anomalies [102], we can consider that they have informative properties
for anomaly detection. Furthermore, there are many publicly open-source codes
with thousands of log instructions with available severity levels. Therefore, there
exists a dataset of log instructions we refer to as severity level data. Although
by leveraging this observation we can create potentially useful data it is not clear
if there is merit in using it. Nevertheless, we can assume that we can access log
instructions (i.e., their static text and severity level) from open-source systems.

56 Chapter 4. AI-enabled Dependability Framework with Log Data

5. Recurrence: Following previous studies [102, 119], for software systems, particu-
larly online and large-scale ones, the anomalies are characterized by the recurrent
property. It means that the same anomaly can occur more than one time. Sev-
eral reasons are suggested for the validity of this assumption, including a) when
a service fails, a common practice is to restore the service availability, typically
by identifying a workaround solution (such as restarting a server). Given this, it
is expected that similar log patterns leading to the observed issue will re-occur
before the root cause is fixed; b) Online services are usually modular with diverse
components running in different computing environments. Therefore, an issue oc-
curring in one environment may repeat itself in other environments as well; c) Due
to weaknesses in hardware and software, similar events (e.g., machine down, switch
failure, or network disconnection [102, 119]) occasionally occur. They can lead to
similar repetitive patterns in logs. Since the recurrent anomalies are previously
addressed, there can be a lot of redundant effort in diagnosing them. Thereby,
the recurrence assumption enables reusing past information to speed up the overall
anomaly resolution. Notably, this assumption implies that generalization besides
the set of already seen problems is not possible, thereby, limiting the generalization
requirement to novel anomaly classes. Furthermore, labels from a domain expert
for the anomaly types are also assumed. As such the automatic classification of
anomalies is enabled.

4.2 Conceptual Overview

To address the challenges, in this thesis, we propose intelligent data-driven methods and
ideas that support log-related activities during system development and operation. The
proposed methods support the whole logging cycle during system log instrumentation and
the analysis of the generated logs. They are basic components of a broader platform,
referred to as an AIOps platform. Figure 4.1 gives an overview of a reference architecture
based on the target system under development and operation. The term system under
development and operation refers to an individual component of a larger system, or in
certain scenarios, the whole system itself that is subject to analysis. In the following
text, we give an overview of the presented methods and ideas, and their integration into
the AIOps platform.

Since the presented methods and ideas support the two phases of the system life-cycle,
there exist two main modules, i.e., 1) automatic log code improvement, and 2) log anal-
ysis modules. The contributions from the automatic log code improvement module are
contained within the component log instruction quality evaluation. This component im-
plements methods to evaluate the logging code composition quality. It analyzes the
source code, extracts the log instructions, evaluates their quality and reports them to

4.2. Conceptual Overview 57

Logging
Approach

Log
Collection

Logging Utility
Integration

Logging Code
Composition

Logging Instrumentation

Functional Code

Computer System under Development & Operation

Log
Management

Log Analysis Module

Provided
Service

End
Users

Automatic Log Code
Improvement Module

Knowledgebase

Sequential Log Analysis

Automatic
Log Instruction Code

Corrections

Log Instruction
Quality Evaluation

Log Generation

Root Cause
Analysis and
Remediation

Decided
Actions

Log Analysis
Report

AIOps Platform

Decided
Actions

Single Line Log Analysis
Log

Parsing

Figure 4.1: Overview of the thesis contributions within the overall AIOps
framework on log data.

other components of the module. The other components act upon the suggestions to im-
prove the logging code. In the AIOps platform, the automatic improvement components
require additional decision-making processes on logging improvement and are outside the
scope of the thesis.1

The log analysis module receives the generated logs from the running system. The main
goal of the log analysis module is to correctly detect anomalies, potentially identify
their class and report them. Therefore, it proposes novel methods for log processing
(parsing) and anomaly detection. The greatest strength of the proposed methods is the
improvement of the log representation by learning features suitable for anomaly detection
with deep learning methods. As the anomalies reflect in different log properties, the log
analysis is split into two components performing 2.1) single log line and 2.2) sequential
log analysis. The two components follow a sequential chain of first detecting and then
identifying the class of the anomaly. The reported output is given to external components
of this module. These components involve an additional decision-making process to
decide on the most suitable action for eliminating the anomaly and are outside the scope
of the thesis. Although the two modules are parts of the AIOps platform, their output

1Dashed lines illustrate the components that are outside the scope of the contributions, however, they
are important to describe the concepts and define the boundaries of the contributions.

58 Chapter 4. AI-enabled Dependability Framework with Log Data

can be reported directly to the operators. Note that although debuggers are a primary
source for error reporting during development, the log analysis methods may be used by
developers during debugging. We discuss the two main modules in greater detail in the
remainder of this section.

4.2.1 Automatic Log Instruction Code Improvement

Log Instruction Code Quality Evaluation

Part of the development of a software system includes writing log instructions in the
source code. The log instruction quality assessment submodule analyses the source code
of the system to evaluate the log instruction quality. From the perspective of logging,
we can separate the code instructions into functional (non-logging) and logging instruc-
tions. The functional code implements the functions the system/component is serving.
Once developers choose the logging approach and logging utility, they instrument the
source code with logging instructions, most often in an afterthought process [23]. The
examination of the log instructions, therefore, requires access to the system’s source code.

Once the logging instructions are written in the source code, their quality can be evalu-
ated. Specifically, under the term log quality evaluation, we understand the correctness of
the logging properties (e.g., correct log level concerning the static text, sufficiently rich
static text and similar) compared to software systems with assumed sufficient-quality
logging properties. There are two central questions with respect to this. The first ques-
tion refers to which software systems are assumed to have sufficient logging quality. We
address this question by referring to the assumption of the existence of open source code
of systems with sufficient quality logging properties. The second question attempts to
answer which quality properties can be automatically evaluated, given the different real-
world complexities, i.e., the challenges of different programming languages, heterogeneity
of software events, and unknown empirically testable properties. To address the second
question, we conduct an empirical study to identify empirically testable properties.

Figure 4.2 depicts a detailed overview of the log instruction quality submodule. As
input, it receives source code snippets (set of instructions) with logging instructions. It
consists of four components, i.e., 1) quality knowledge base, 2) log instructions extraction
and preprocessing component, 3) quality evaluation, and 4) quality reporting component.
The quality knowledge base is composed of code snippets with logging instructions from
systems with sufficient quality logging. It is used to create the training data for quality
properties evaluation of the system under development and operation. The log instruction
extraction and preprocessing component extracts the log instructions from the source files
of the system under development and operation and proceeds it as input to the quality
evaluation component. The quality evaluation component consists of a set of individual

Log Instruction Extraction &
Preprocessing

Type equation here.Log Quality Property 1

Quality Knowledge Base

𝐷𝑞1

𝐷𝑟𝑞

𝐷𝑞2

Type equation here.Log Quality Property 2

Type equation here.Log Quality Property 𝑁𝑞

Type equation here.Log Quality Property 𝑖

…

…

Quality Evaluation

Quality
Reporting

𝑓𝑞1(𝐷𝑞𝑛𝑒𝑤)

Code Snippet:
log.error(“Connection refused”)

𝑓𝑞2(𝐷𝑞𝑛𝑒𝑤)

𝑓𝑞𝑖 (𝐷𝑞𝑛𝑒𝑤)

𝑓𝑞𝑁𝑞
(𝐷𝑞𝑛𝑒𝑤)

𝐷𝑞𝑛𝑒𝑤

4.2. Conceptual Overview 59

Figure 4.2: Log instructions quality evaluation component.

subcomponents, each of which evaluates a single quality feataure. The evaluation results
from the quality component proceed to the quality reporting component. The quality
reporting component reports the output results to external entities for improvement. An
example of an external entity is an autonomous tool of the AIOps platform that decides
on the suggestions (e.g., replacing the wrong log level with the log level given by the
model, enriching the static text, and similar).

Without loss of generality, we can formally define the log instruction quality evaluation as
follows. LetDq = {Dq1, Dq2, . . . , Dqj , . . . Dqrq} is a set of rq snippets from the source code
of software systems with assumed sufficiently good logging quality having one and only
one log instruction, Nq denotes the set of empirically testable properties expressed with a
categorical data type (Ci) with |Ci| categories each, and Fq = {fqi|fqi : Dq 7→ Ci, i ∈ Nq}
is a set of empirically quality testable properties, such that Dqj is a structured string
defined by the syntax of the programming language Pq it originates from, and fqi is a
function of the quality feature i. The quality vector of a novel code snippet Dqnew from a
target system is then given as Q̂q(Dqnew) = (I(C1, Ĉ1), . . . , I(Ci, Ĉi), . . . I(C|Nq |, Ĉ|Nq

|),
where I is an indicator function having value 1 when Ci = Ĉi, and 0 otherwise. The Ci

denotes the observed manifestation of the quality in the codding snippet Dqnew, while
Ĉi its prediction obtained when the elements of the set Fq are applied on Dqnew.

The key benefit of automatic log instruction quality evaluation is that by detecting in-
consistencies within the logging instructions (e.g., writing static text with a minimal
linguistic structure to preserve comprehensiveness) and resolving them during develop-
ment, the downstream tasks can be improved. For example, a frequent practice when
debugging/detecting anomalies is to search for log levels with the value "error" [102].
If the log level is lower (e.g., "info"), the time for locating the failure may increase if

60 Chapter 4. AI-enabled Dependability Framework with Log Data

the above strategy is adopted for failure resolution. By including an independent auto-
matic evaluation step, the chances that such inconsistencies are present in the generated
logs can be minimized. Therefore, the automatic control for quality indirectly aids the
subsequent steps of log analysis.

4.2.2 Log Analysis: Log-based Anomaly Detection and Classification

Once the system is instrumented and it is running, logs are generated. The users interact
with the system with different rates conditioned on the working hours, service types and
similar, defining system working frequencies. The generated logs are collected and passed
for analysis. We assume that the logs are aggregated on the component level. Further-
more, we assume that the collected logs have at least two attributes, i.e., timestamp and
event description (the log message). These are realistic expectations as most of the log
collection procedures consider this information as important and retrieve it. Some of the
proposed methods (i.e., the semantic anomaly detection method) within this thesis can
work with just the log message but others require at least the information on time. In
addition, logs can have external identifiers (e.g., taskIDs, Process Identifiers (PIDs)) that
can be used, e.g., for constructing log sequences. Note that we implicitly assume that
each log is a function of time, as the event must have happened at one point in time.

The collected logs are given as input to the log analysis module. The log analysis module
is composed of three components. These are: 1) single log line analysis, 2) sequential log
analysis and 3) log analysis reporting. Since the anomalies can be reflected in individ-
ual logs (including log parameters) or log sequences (the challenge of diverse anomaly
manifestation in logs), we split the log analysis into two components, i.e., single line
and sequential log analysis. The collected logs first are proceeded to the single log line
analysis module and are parsed such that the static text and parameters are extracted.
Log parsing should be performed with as little information loss as possible as the parsing
errors compound, and affect the remaining tasks. As parsing is performed on a single log
event it is part of the single log analysis module. Despite the log parsing, the remain-
ing part of the single and sequential log analysis components are conceptually equivalent.
Within both, there are two subcomponents a) anomaly detection and b) anomaly classifi-
cation. The single line subcomponents exploit the single log line property. The sequential
subcomponents exploit the co-occurrence of the events, i.e., the sequential (contextual)
log property. By referring to the assumption of anomaly detectability we assume that
the anomalies that are within the scope of the detectable anomalies can be detected. As
the software logs are generated in large volumes and the system most of the time oper-
ates normally (as seen by the failure study in Appendix A) we consider the normality
assumption as valid. Once the anomalies are detected, independent of the sequential or
single log analysis component, they proceed towards the classification subcomponents for

4.2. Conceptual Overview 61

the two properties separately. The classification subcomponents use past information to
classify the type of detected anomalies. Notably, we refer to the recurrence assumption
when anomaly classification is performed for both the single and sequential log analysis.
The logs classification as a precondition requires knowledge about the unique properties
of the detected anomalies, i.e., their classes. Due to the labeling challenge, the classifica-
tion cannot be performed on each of the detected anomalies because it requires external
information about the anomaly classes. The results from the anomaly detection and
classification proceed towards the log analysis reporting component. From there, they
are presented towards other modules for automatic remediation of the anomaly or to the
entities performing the system operation/development. The log analysis methods aim
to address the challenges during system operation (i.e., software evolution, complex data
type representation, low detection performance) by considering different approaches for
improving the representation of the logs. Another important aspect during the devel-
opment of methods is associated with the labeling challenge. Owning to the expense of
obtaining labels, we opt for the unsupervised design of the anomaly detectors. In the
following, we discuss the components in more detail.

Single Log Line Analysis

Log Parsing; Since each system has a finite number of logging instructions, there is a
finite number of possible log events in the generated logs. The parsing aims to extract
the set of events from the log instructions. One important aspect of a good log parser is
that it should produce robust performance over a diverse set of software systems (e.g.,
from mobile applications up to cloud systems). Literature reports suggest that incorrect
parsing can drop the performance for anomaly detection up to 60% [91] (i.e., the challenge
of low performance of related methods). Thereby, the correctness of parsing affects the
remaining log analysis tasks stemming from it. To address the problem, we propose a
novel log parsing method. The raw logs are given as input to the log parsing. As output,
the log parsing proceeds with the raw logs, augmented with two columns for the event’s
template and parameter list.

Formally the problem of log parsing is defined as follows. Let Lp = {l1, l2 . . . li . . . ln} be
a set of n time-ordered logs from the computer system under development and operation,
and Tp = {(sp1, pp1), . . . (spj , ppj) . . . , (spt, ppt)} = Sp × Pp is the set of log instructions
in the source code, such that li is a generated log message, spj is a correct static text of
the j-th log instruction, ppj is the parameter set associated with the log instruction with
index j, Sp and Pp are the sets of static texts and parameters. The goal of log parsing
is finding fp : Lp 7→ Sp. The elements of the set Sp are sequences of characters. The
elements of Pp are lists of variables, where the variables can have different data types
(e.g., strings, floats, or other objects (considered as strings)).

62 Chapter 4. AI-enabled Dependability Framework with Log Data

The parsed logs proceed as inputs for the parametric anomaly detection and the se-
quential log analysis and reporting components. The proposed log parsing method is
discussed jointly within the single log analysis part. We discuss the remaining log anal-
ysis components in the following text.

Anomaly Detection and Classification; To detect anomalies during system develop-
ment and operation, single log lines are often used [102]. For example, developers/oper-
ators search the logs with different keywords like "failure", "error", "unable", "dropped"
and similar. Therefore, analyzing single logs is useful for system operational activities.
Figure 4.3 depicts the single line component for log analysis. Despite the log parsing,
there are two parts, i.e., 1) single log line anomaly detection and 2) single log line anomaly
classification. Individual logs expose two categories of information, i.e., semantics and
parameter values. Accordingly, the single log detection consists of two subcomponents
a) semantic anomaly detection and b) performance/parameter anomaly detection. The
anomaly detectors receive the raw logs and the extracted events and parameters as input.
Notably, the semantic anomaly detector presented herein with suitable preprocessing of
the logs can be applied to the raw log messages eliminating the potential inaccuracies
from log parsing. The performance anomaly detector compares the events generated
from single log instruction through time. Any significant deviations in the parameters
are reported as performance anomalies. To train single line anomaly detection models,
we refer to the normality assumption, i.e., we assume that there exist representative
normal data from the system. Furthermore, the proposed semantic model refers to the
assumption of the availability of the open-source severity level data. Since the severity
level data describes diverse normal and anomalous events from many different systems, it
encodes discriminative properties between the normal and anomalous event types. The
proposed method combines the system and the open-source data to learn good features
for the semantic anomaly detection model.

Performance
(Parameter) Log

Anomaly Detection

Semantic Log
Anomaly Type
Classification

Single Line Anomaly Detection
Timestamp, Log Message, Log Template, Parameter List
00:00:01, Network interface up, Network interface up, []
00:00:05, VM created 8 seconds, VM created <*> seconds!, [8]
…
00:12:01, Connection failed!, Connection failed!, []
…
01:12:51, VM created 8 seconds, VM created <*> seconds, [8]
01:42:01, VM created 16 seconds, VM created <*> seconds, [16]
…

Single Line Log Analysis

Semantic Log
Anomaly Detection

Knowledge Base of
Single Line Anomaly Classes

Figure 4.3: Single log line analysis module overview.

Once the semantic anomaly is detected in the log, it proceeds to the anomaly classifica-
tion subcomponent. The anomaly classification sub-component assumes the existence of

4.2. Conceptual Overview 63

a knowledge base which stores prior observed log events with their class label. There-
fore, the detected anomaly can be classified. Note that the anomaly detectors can detect
anomalies that the classification components cannot classify (recall that the recurrence
assumption is valid just for the classification sub-component). The classification of per-
formance anomalies is redundant as the parameters directly identify the anomaly class
type. In case no class is identified, the log message is assigned to an unknown class. In the
following, we formalize the semantic and performance anomaly detection. Afterwards,
we define the task of single log line classification as well.

Semantic Anomaly Detection (semAD); Let L = {l1, l2 . . . li . . . ln} be a set of n
time-ordered logs from the system under development and operation, and there exist a
function p+sem(.) denoting the normality score of the individual log lines of the system
p+sem(ϕsem(li)) : Rd 7→ R, where ϕsem : L 7→ Rd is the representation function of the log
li into d-dimensional numerical vector space. The task of single line anomaly detection
is defined as finding the set Asem = {li|a1 > p+sem(ϕsem(li))||p+sem(ϕsem(li)) > a2, li ∈ L},
where a1, a2 are constants such that a1 < a2, and a1, a2 ∈ R+.

Performance Anomaly Detection (perAD); Let L = {l1, l2 . . . lr . . . ln} be a
set of n time-ordered logs from the system under development and operation, E =

{e1, . . . ei . . . ev} is the set of v possible events, such that lr(tj) = (ei, pik(tj)), where ei is
the static text of the event, while pik(tj) is the k-th parameter for the event ei at time tj .
Let there exist set of function P+ = {p+ik(pik(tj); ei)|p

+
ik(pik(tj); ei) : Pik 7→ R, ei ∈ E},

where p+ik(pik(tj); ei) denotes the normality score of the k-th parameter of the event ei,
and Pik is the set of allowed values for the parameter pik. The goal of performance
anomaly detection is finding the logs li with deviating parameter values, i.e., Aper =

{lr|aik1 > p+ik(pik(tj); ei)||p
+
ik(pik(tj); ei) > aik2, lr = (ei, pik(tj)), p

+
ik ∈ P+, lr ∈ L}. The

thresholds aik1, aik2 are calculated for each parameter pik separately and aik1 < aik2,
aik1, aik2 ∈ R+. Notably, in the definition, each event ei is associated with at most
k-parameters.

Semantic Anomaly Type Classification (semATC); Given a set of detected single
line anomalies Asem and the set of anomaly types classes Tsem = {t1, t2 . . . tw}, where
w denotes the number of unique anomaly type classes, the task of single anomaly type
classification is finding a function fsem(ϕsem(li)) : Asem 7→ Tsem.

The detected anomalies and their classes proceed toward the logging analysis report.
They augment the input data with three columns. The first column indicates the pres-
ence of a semantic anomaly for the corresponding event. The second column has a
JSON structure with keys being the event parameters and their values information for
performance anomaly. The third column shows the class of the semantic anomaly.

64 Chapter 4. AI-enabled Dependability Framework with Log Data

Sequential Log Analysis

While single log line analysis is useful for detecting and classifying anomalies, it is not
sufficient for comprehensive log analysis. Recognizing that anomalies reflect differently in
the log data (i.e., the challenge of diverse anomaly manifestation in logs) and that there
is insufficient logging failure coverage, it is clear that not all events denoting anomalies
are written in the source code. Correspondingly, some anomalies cannot be detected in
a single log line. Nevertheless, a set of anomalies in these cases can still be detected,
e.g., by comparing the events’ cooccurrence (the assumption of anomaly detectability) in
form of sequences or counts. One challenge in this context is related to how to represent
the complex sequences, in the circumstances of parsing inaccuracies, dropping or delaying
event reporting. These circumstances cause diverse normal sequences, which are referred
to as unstable sequences [180].

The sequential log analysis component works in parallel with the single line component.
Figure 4.4 illustrates the inner structure of the sequential log analysis component. It
has three subcomponents, 1) sequence creation, 2) sequential anomaly detection and 3)
sequential anomaly classification. As input, it receives the parsed log events and the
other meta information for the events (e.g., timestamps). They are given as input to
the sequence creation subcomponent. If the log identifiers are available, they are used to
create the log sequences (e.g., task identifiers (taskIDs)). In the cases where no identi-
fiers are available, the sequences are created based on predefined time windows. A time
window is defined as a hyperparameter of the sequential component (e.g., 60 seconds).
It groups all the logs within the specific window to create sequences. Similar approaches
for log sequence creation are existent in related works [91, 154]. The sequences are given
as input to the sequential anomaly detector and anomaly classification subcomponents.
The anomaly detector implements a method that improves the representation of the
log sequences by representing them as a sequence of event groups. By improving the
representation, the detection and classification performance can also be improved. The
detected anomalies proceed toward the sequential classification subcomponent. The lat-
ter is related to a knowledge base of past sequential anomalies. As output, it provides a
class label for the detected sequential anomaly and its class. These two proceed towards
the log analysis reporting component.

In the following, we formally define the two tasks addressed by the sequential log analysis
component.

Sequential Anomaly Detection (seqAD); Let L = {l1, l2 . . . li . . . ln} be a set of n
time-ordered logs from the system under development and operation, and there exist an
index set J ∈ N capturing dependency relation between the logs, i.e., sj = (lji ∈ L|j ∈ J),
where lji denotes individual log of the sequence sj . Further, we assume that there exist

Sequential Log Analysis

Log Sequence
Anomaly
Detection

Timestamp, Log Message, Log Template, Parameter List
00:00:01, Network interface up, Network interface up, []
00:00:05, VM created 8 seconds, VM created <*> seconds!, [8]
…
00:12:01, Connection failed!, Connection failed!, []
…
01:12:51, VM created 8 seconds, VM created <*> seconds, [8]
01:42:01, VM created 16 seconds, VM created <*> seconds, [16]
…

Log Sequence
Creation

Log Sequence
Anomaly Type
Classification

Knowledge Base of
Sequential Anomaly Classes

4.2. Conceptual Overview 65

Figure 4.4: Sequential log analysis module overview.

a function p+seq(.) denoting the normality score of the sequence p+seq(ϕ(sj)) : Rd 7→ R,
where ϕseq(.) : S 7→ Rd is the representation function of sequence sj into d-dimensional
numerical vector space, and S is the available sequence set. The task of sequential
anomaly detection is defined as finding the set Aseq = {sj ∈ S|a1 > p+seq(sj)||p+seq(sj) >
a2, j ∈ J}, where a1, a2 are constants such that a1 < a2 and a1, a2 ∈ R+. Although the
individual logs li in the sequence sj can describe normal events, the overall sequence can
be anomalous. The index set J in the context of logs can represent task ID or workload
ID. It can be given apriori or reconstructed by an additional sequence creation procedure.

Sequential Anomaly Type Classification (seqATC); Given a set of detected
anomalous sequences Aseq and the set of anomaly types identifiers Tseq = {t1, t2 . . . tw},
where w denotes the number of unique anomaly type identifiers, the task of sequential
anomaly type classification is finding a function fseq(ϕseq(si)) : Aseq 7→ Tseq.

Notably, the single log line and sequential analysis components have different working
frequencies. The sequential method has a minimal working frequency defined on the task
identifier or the defined time window. In contrast, the single log line can report results
after each input log.

Log Analysis Reporting

The log analysis reporting component serves as a connector of the log analysis toward
the modules of the AIOps platform. Figure 4.5 shows how the input logs are transformed
by the log analysis module and proceeded as output from the log reporting component.
The log reporting component receives the information for the detected anomalies/alarms
(both single line and sequential) and potentially their classes. Also, the corresponding
anomalous time intervals are reported. In the context of the AIOps system, the report
proceeds toward the root cause analysis, remediation and recovery components to realize
the fully autonomous system operation. These components are outside of the scope of the
thesis and are not discussed further. In addition, the reported information can proceed
to the operators or the end-user for further analysis or to enrich the knowledge base.

66 Chapter 4. AI-enabled Dependability Framework with Log Data

Timestamp Log Message

00:00:01 Network interface up

00:00:05 VM created 8 seconds

…

00:12:01 Connection failed

…

01:12:51 VM created 8 seconds

01:42:01 VM created 16 seconds

…

(a) Collected logs.

Timestamp Log Message Log Template
Parameter

List
Semantic
Anomaly

Semantic
Anomaly Class

Performance
Anomaly

00:00:01 Network interface up Network interface up
[]

0 0 {}

00:00:05 VM created 8 seconds VM created <*> seconds
[8]

0 0 {“param1”: 0}

…

00:12:01 Connection failed Connection failed [] 1
Connection

Failure
{}

…

01:12:51 VM created 8 seconds VM created <*> seconds [8] 0 0
{“param1”: 0}

01:42:01 VM created 16 seconds VM created <*> seconds [16] 0 0 {“param1”: 1}

…

Sequential Anomaly Summary:
Anomaly Detection: Sequential anomaly was observed in the period, 00:12:00– 00:13:00, Time Window: # 12
Anomaly Type Class: Network Failure

(b) Output from the log reporting component (log analysis module).

Figure 4.5: Illustrative example of the log analysis reporting component.

In the following three chapters, we delineate the specifics of each of the introduced
methods. We first discuss the contributions to system development, and afterwards, the
contributions to system operation.

Chapter 5

Automatic Logging Code
Composition Quality Assessment

Contents
5.1 Logging Code Composition Quality Properties 69

5.1.1 Log Level Assessment . 70
5.1.2 Linguistic Quality Assessment 71

5.2 QuLog: Automatic Method for Logging Code Composition
Quality Assessment . 73
5.2.1 Log Instruction Preprocessing 75
5.2.2 Deep Learning Framework . 76
5.2.3 Prediction Explainer . 77

5.3 Evaluation . 79
5.3.1 Log Level Assessment . 80
5.3.2 Linguistic Quality Assessment 84
5.3.3 Prediction Explainer . 86

5.4 Chapter Summary . 88

Developers are adopting diverse logging utilities and specify guidance on the quality
requirements when writing log instructions [19]. The quality requirements define dif-
ferent properties of log instructions quality, such as 1) assignment of correct log levels,
2) writing static text with sufficient information (i.e., sufficient linguistic properties),
3) appropriate log instruction formats, and 4) correct log instruction placement within
the source code [23]. The quality guidelines enable writing log instructions with good
quality [19]. However, as discussed in Chapter 3, the studies on industrial [19] and open-
source software systems [23] suggest that developers make recurrent log-related commits

67

68 Chapter 5. Automatic Logging Code Composition Quality Assessment

during development. This implies that writing quality log instructions is often followed
by additional improvements even with given quality guidelines [24].

LOG.info(“Cannot access storage directory {}.” + rootPath);

Reported Log Instruction

LOG.error(“Cannot access storage directory {}.” + rootPath);

Fixed Log Instruction

(a) Jira issue HDFS-4048: Example of wrong
log level assignment and its fix.

LOG.info(“EventThread shut down.”);

Reported Log Instruction

LOG.info(“EventThread shut down for sessionID: {}.”+getSId());

Fixed Log Instruction

(b) Jira issue ZOOKEEPER-2126: Insufficient in-
formation hurts event understanding.

Figure 5.1: Examples of issues related to log instructions quality.

In modern system development, the decisions about the log instructions are most com-
monly human-centric, which sometimes can result in log instructions with insufficient
quality (e.g., wrong log level assignment or insufficient linguistic structure) [1, 94]. For
example, in the Jira issue HDFS-40481 (depicted in Figure 5.1a), the wrong log level of
the instruction LOG.info("Cannot access storage directory " + rootPath); resulted in a
long time for localization of the failure. The developer used the log levels "error" and
"warning" for log-based failure localization, but the event initially was logged on log
level "info", not "error". Similarly, in the Jira issue ZOOKEEPER-21262 (depicted in
Figure 5.1b), the log instruction has insufficient information about which EventThread
is terminated. As reported by the developers in the aforenamed issue, it becomes confus-
ing when a new EventThread is created before terminating the previous one. The lack
of a session identifier was pointed to as the main concern. The problem is resolved by
adding additional words in the static text to give minimal information about the event
which can be understood/comprehended by the developers. Notably, in linguistic terms,
this means enriching the linguistic structure of the static text. The aforenamed issues
are not isolated events. Previous works on logging practices [23, 94] suggest that it is
surprisingly common for the log levels to be over/under-estimated or the logs to have
missing or excessive information. Although the human-centric approach in log quality
assessment is the golden standard, the existing issues imply the need for an automatic
approach to access the quality of the logging code.

The automation of log instruction quality is challenged by the heterogeneity of software
events, unknown empirically testable properties, and the different programming languages.
To address the challenges we assume the existence of open source code of systems with suf-
ficient quality properties as a minimal prerequisite for automation. This chapter presents
the contributions towards aiding the development of software systems in improving their

1https://issues.apache.org/jira/browse/HDFS-4048
2https://issues.apache.org/jira/browse/ZOOKEEPER-2126

https://issues.apache.org/jira/browse/HDFS-4048
https://issues.apache.org/jira/browse/ZOOKEEPER-2126

5.1. Logging Code Composition Quality Properties 69

logging code composition as follows3:

1. We observe that some of the properties (i.e., log level assignment and linguistic
evaluation) depend on and can be assessed from the content of log instructions.
Therefore, they can be evaluated irrespective of the structure of the source code
and the remaining logging code properties. To verify our observation, we study
the log instructions from nine open-source systems, with assumed good logging
practices (similar to [23, 100, 154]) that form an initial quality knowledge base.

2. We formalize the problem of assessing the log instruction quality.
3. By leveraging our observations and the textual nature of the log instructions, we

propose a deep learning method for model-driven log quality assessment as an
intelligent tool to aid the writing of log instructions.

4. We adopt an approach from explainable machine learning to provide augmented
feedback for possible places for log instructions quality improvement.

5. The experimental results conducted on logging instructions from open-source sys-
tems with varying quality demonstrate the usability of the proposed approach.

The remainder of this chapter describes our approach toward automating the logging code
quality assessment. Section 5.1 describes the system-agnostic testable log instructions
quality properties. Section 5.2 introduces QuLog as a method for automatically assessing
log instructions quality. Section 5.3 provides the evaluation of the individual parts of the
proposed method. Section 5.4 summarizes the chapter.

5.1 Logging Code Composition Quality Properties

To assess the quality of the log instructions, we examined literature studies on logging
practices [23, 26, 181]. We identified two views on logging code quality: explicit (or
system development), and implicit (or system operation). The explicit view is related
to (a.1) correct log level assignment, (a.2) comprehensive content of the static text and
parameters, (a.3) correct instruction placement and (a.4) supporting logging code place-
ment [64]. The implicit view is related to the system operation expectations for the
quality of the logs. For the implicit view, there are four properties, given as follows:
(b.1) trustworthiness - refers to the valid meta information of the log (e.g., correct log
level), (b.2) the semantics of the log - relates the word choice in the verbose event expres-
sion, (b.3) completeness - reflects the co-occurring of logs to describe an event, and (b.4)
safeness - refers to the log content being compliant with user safety requirements [1].

Some of the aforenamed properties (i.e., relevant variable selection, log instructions place-
ment, safeness, and completeness) depend on the different programming languages, design
patterns, and other source code structures [1, 100]. These properties are challenging to

3Parts of this chapter are published in [9].

70 Chapter 5. Automatic Logging Code Composition Quality Assessment

assess across different systems and programming languages because of the heterogeneity
of software systems and the ways programming languages organize the source code, i.e.,
their syntax. For example, safeness requires reasoning across a complex chain of method
invocations. In the issue CVE-2021-442284 the bug allows execution of any Java method
through the log instruction from an LDAP server decreasing the safeness. Identifying
safeness in this example requires a deep understanding of potential method invocation
chains, which do not even require the method’s presence within the source code. The
latter is against our effort in automatic log quality assessment. However, by considering
various studies on logging practices [23, 24, 26] and Jira issues, we observe that some
of the properties (i.e., correct log level assignment and linguistic evaluation) depend on
and can be assessed just from the content of log instructions. Therefore, they can be
evaluated independently to the structure of the source code and the remaining logging
code. To examine the observation, we conducted an empirical study of the logging in-
structions from nine open-source systems (considered in Li et al. [100]), with presumably
good logging practices (similarly assumptions exist in related works [64, 100]). Table 5.1
enlists the properties of the studied systems. These systems form the initial (quality)
knowledge base.

Table 5.1: Overview of the studied systems for log quality assessment.
These systems form the initial quality knowledge base.

Software System Version LOC NOL
Cassandra 3.11.4 432K 1.3K
Elasticsearch 7.4.0 1.50M 2.5K
Flink 1.8.2 177K 2.5K
HBase 2.2.1 1.26M 5.5K
JMeter 5.3.0 143K 1.9K
Kafka 2.3.0 267K 1.5K
Karaf 4.2.9 133K 0.7K
Wicket 8.6.1 216K 0.4K
Zookeeper 3.5.6 97K 1.2K

Note: LOC and NOL stand for the number of code and log lines accordingly.

5.1.1 Log Level Assessment

In the conducted study, we observed that the static text of the log instructions may
have relevant features for log level assessment. Intuitively, when describing an event
with the "error" log level, the static text commonly contains words like "error", "failure",

4https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

5.1. Logging Code Composition Quality Properties 71

"unexpected exit", and similar. Whenever these words occur within the static text, it
is more likely that the level is "error" than "info". Similar to Hassani et al. [64], we
considered an approach from information theory that defines the amount of uncertainty
of information in a message [37] to investigate the relation between the static text and
the log levels. We extend the experiments to nine systems, as opposed to the two studied
in the corresponding study. We analyze the relation of word groups (n-grams, n =

{3, 4, 5}) from the static text in relation to the log level. N-grams are simple, yet effective
representations for texts that can successfully model relationships between words based
on their co-occurrence [158]. For all the n-gram groups, we try to identify the log level
using n-grams from the given static text of the log instructions. At first, given an n-gram,
there is high uncertainty for the assigned log level. As we receive more information about
the n-gram, we update our belief for its commonly assigned log level, reducing the entropy
(uncertainty) associated with the n-gram. To measure the uncertainty, we used Shanon’s
entropy [63]. This approach enables to study of the uniqueness of the n-grams in relation
to the different log levels. We calculated the log level entropy for each n-gram from all
the log instructions of the nine software systems and reported the key statistics for the
distribution. For example, the n-gram "Machine failure" may appear 100 times, from
which 99 times is associated with "error", and once with "info". By calculating the
entropy we obtain a low number (0.05), which reflects low uncertainty about the n-gram
word association with a level other than "error". To limit the influence of the rear n-
grams, similar to He et al. [68], we further analysed the n-grams that appear at least
three times.

Table 5.2: Empirical study: Log level assignment.

Min 1st Qu. Median 3rd Qu. Max
Average Entropy 0.00 0.00 0.00 0.56 0.91

Table 5.2 summarizes the n-grams entropy distribution. It is seen that the majority of
the static texts of the log instructions have low entropy with respect to the log levels.
Specifically, more than 50% (the median) of the population of static text n-grams have
zero entropy. The zero entropy means that most of the n-grams are associated with a
single log level. By using the static text as input, one can distinguish among the different
log levels across the different systems. Thereby, the static text has relevant features useful
to discriminate the log levels across the studied systems.

5.1.2 Linguistic Quality Assessment

A quality log instruction should describe the event concisely and verbosely [23]. From
a general language perspective, complete and concise short texts should have a minimal

72 Chapter 5. Automatic Logging Code Composition Quality Assessment

linguistic structure (e.g., usage of nouns, verbs, prepositions, adjectives) [46]. Under the
term log linguistic structure, we understand the representation of the static text by gen-
eral linguistic properties such as linguistic concepts (e.g., verbs, nouns, adjectives etc.).
For example, in the log instruction from the Jira issue ZOOKEEPER-2126 (depicted
in Figure 5.1b), the static text "EventThread shut down." linguistically is composed of
"noun verb particle". Since the general English language and language used in log in-
structions share similar properties, we point out that an informative event description
may also have a minimal linguistic structure. The following example explains our in-
tuition. In the aforenamed Jira issue (Zookeeper-2126), developers reported that the
event information is insufficient. This issue is resolved by static text augmentation with
additional linguistic properties, i.e., "EventThread shut down for session: {}", linguisti-
cally composed of "noun verb particle preposition noun: -LRB- -RRB-" (where "-LRB-
-RRB-" denote brackets). Linguistically speaking, static text with insufficient linguistic
structure is transformed into static text with sufficient structure, improving the event
description and potentially its comprehensibility.

To examine the extent of validity of our observation, we perform the following experiment.
For the static text of each log instruction, we first extract their linguistic structure. To do
so, we use part-of-speech (POS) tagging – a learning task from NLP. It allows extraction
of the linguistic structure of the static text by linking the words to linguistic concepts
from an ontology of the English language (OntoNote5 [145]). We use the pretrained
POS tagging model introduced in Honnibal et al [75] because it has high performance
on the POS tagging task (>97% accuracy score). It is also part of a popular language
modeling library Spacy [75]. Second, we group the extracted linguistic structures such
that the static texts with the same linguistic group are placed together. Afterwards,
the linguistic groups of the raw static text are evaluated by two experienced developers
answering the question: "Does the static text from the examined linguistic group contain
minimal information required to comprehend the described event?". This question hints
at our intuition that the quality and self-sustained static text has a minimal linguistic
structure aligned with expert intuition for a comprehensible event description.

Table 5.3: Empirical study: Linguistic quality assessment.

Linguistic Group
Total Log

Instructions
Static Text
(Example)

VERB NOUN 106 serialized regioninfo
VERB 67 deleted

VERB PUNCT 49 interrupted *
NOUN 47 return

NOUN NOUN 41 updating header

5.2. QuLog: Automatic Method for Logging Code Composition Quality Assessment 73

Table 5.3 gives the top-5 frequent linguistic groups alongside representative examples. In
total, we found more than 5K linguistic groups from the studied systems. As the number
of obtained linguistic groups is high, to make the analysis feasible we subsampled the
groups, following similar practices on studies on logging code properties [100]. Specif-
ically, we randomly sample 361 groups based on a 95% confidence interval and a 5%
confidence level [168]. These values are commonly used to make the large input feasible
for manual analysis [100]. Two human experts examined the samples and identified 24
linguistic groups with insufficient linguistic structure. The agreement between the two
experts assessed by Cohen’s Kappa score is sustainable (>0.7) [156]. The high score val-
ues show mutual agreement between the experienced developers concerning the relation
between comprehensible event information within the static text and its linguistic struc-
ture. Therefore, the linguistic structure of the static text can be useful in representing a
minimal informative description of the log instruction.

Due to the identified relationships between the static text and log level and sufficient
linguistic structure on one side, and the dependence of the other quality properties on
the remaining parts of the source code on the other side, we consider the log quality
assessment in the narrower sense, expressed of the former two quality properties.

5.2 QuLog: Automatic Method for Logging Code Compo-
sition Quality Assessment

Inspired by our findings in the empirical study, we propose an approach for automatic
system-agnostic log instruction quality assessment. We formulate the problem in the
scope of 1) evaluating the correct log level assignment and 2) evaluating the sufficient
linguistic structure of the log instructions. Given the static text of the log instruction, we
apply a deep learning method to learn static text properties concerning the correct log
level and sufficient linguistic structure. Although other design choices for the methods are
possible (e.g., n-gram [158]), we considered deep learning methods, as they are demon-
strated to exploit the rich textual dependencies effectively, achieving high-performance
results across different tasks involving text [17]. By training the models on systems with
high quality logging properties, the models learn information for the log level and suffi-
cient linguistic structure qualities. Comparing the predicted log levels and the log levels
assigned by developers allows a statement on the log level quality: the less deviation,
the better the quality. Similarly, the sufficient linguistic structure incorporates proper-
ties of comprehensible log instructions, and its predictions directly are used to assess
linguistic quality. Following our formal definition of the problem of automatic log qual-
ity in Chapter 4, the number of quality properties is Nq = 2. The log level assessment
has |C1| = 5 classes ("debug", "trace", "info", "warning", "error"), while the sufficient
linguistic structure has |C2| = 2 classes ("sufficient" and "insufficient").

Source Code:
174: if condition==False:
175: log.error(“connection refused %f !”, time)

Target Software Code Repository

(“connection refused”,
error,
“noun, verb”)

log.error(“connection refused %f !”, time)

Log Instruction Preprocessing
Log Instruction Extractor:

Preparation:

1: [LMT]
2: connection
3: refused

Tokenization

1: [LMT]
2: noun
3: verb

𝑥1:[0.29, … , 0.61]

𝑥2:[0.01, … , 0.32]

𝑥3:[0.31, … , 0.69]

Deep-Learning Framework

Embedding
Layer:

Linguistic Structure
Assessment Self-attention NN

Tokenization
Multi-head

Self-attention NN:

{"𝑖𝑛𝑓𝑜", "𝑤𝑎𝑟𝑛𝑖𝑛𝑔", "𝑒𝑟𝑟𝑜𝑟"}Output Layer:

{"𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡", "𝑖𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡"}

𝑥1:[0.19, … , 0.72]

𝑥2:[0.31, … , 0.24]

𝑥3:[0.41, … , 0.89]

Log Level Assignment
Self-attention NN

Embedding
Layer:

Multi-head
Self-attention NN:

Output Layer:

Prediction Explainer

𝑡3

Aggregation
Functions

𝑡2

SHAP
Shapley values for
individual vectors

2: connection 𝑥2
3: refused 𝑥3

favorable for info
non-favorable for info

Token Importance Scores

Learned Embeddings

74 Chapter 5. Automatic Logging Code Composition Quality Assessment

Figure 5.2: Internal architectural design of QuLog.

Figure 5.2 illustrates the overview of the approach, named QuLog. Logically, it is com-
posed of (1) log instruction preprocessing, (2) deep learning framework and (3) prediction
explainer. The role of the log instruction preprocessing is to extract the log instructions
from the input source code files and process them into a suitable learning format for
the deep learning framework. The deep learning framework is composed of two neural
networks (one for each of the two quality properties). The neural networks are trained
separately on the two tasks. As a deep neural network method we choose the encoder of
the Transformer architecture. As Transformer-based architectures are considered state-
of-the-art in many text-related tasks [17], due to their ability to encode the characteristics
of the textual data better, we consider them as most suitable for the problem of log in-
struction quality. After training, the networks learn discriminative features for the log
instructions with different log levels and a sufficient linguistic structure. The prediction
explainer explains a certain prediction. Specifically, given the static text and predicted
log level, it shows how different words contribute to the model prediction.

QuLog has two operational phases: offline and online. During the offline phase, the pa-
rameters of the neural networks and explanation part are learned on representative data
from other software systems. This training procedure allows learning diverse developers
writing styles as it incorporates log instructions from different systems, important for
generalization. The learned models are stored. In the online phase, the source files of
the target software system are given as QuLog’s input. QuLog extracts the log instruc-
tions, the static texts and log levels, proceeding them towards the loaded models. As
output QuLog provides the predictions for the log levels, sufficient linguistic structure,
and prediction explanations as word importance scores. Therefore, QuLog serves as a

5.2. QuLog: Automatic Method for Logging Code Composition Quality Assessment 75

standalone recommendation approach to aid developers in improving the quality of the
log instructions. The developers may reconsider improving the log instructions given
QuLog’s suggestions or reject them. In the following, we delineate the details of QuLog.

5.2.1 Log Instruction Preprocessing

The purpose of the log instruction preprocessing is twofold. First, it extracts the log
instructions from the source files. Second, it parses the log instructions to separate the
static text and the log level. In addition, the static text is processed by the linguistic
features extractor, to obtain its linguistic representation. These operations are performed
by two modules, namely (1) log instructions extractor and (2) log instructions preparation,
described in the following.

Log Instructions Extractor

The extractor module extracts the log instructions from the source code of the software
system. To that end, it iterates over all of the source files in the target software’s source
code and applies regular expressions to find all log instructions. Considering the diversity
of the programming languages, and developers writing styles challenges the extraction
process. The output of the extraction module is a set of log instructions of the input
software system. Although our goal is to help the development process with writing
correct log levels, we consider three levels ("info", "warning", and "error"). Related
work reports that the three log levels are practically useful when different stakeholders
(other than developers) examine logs [23, 100]. For example, operators care more for the
high severity levels (i.e., "info", "warning", "error") [100]. Formally, from the initial five,
we analyze a total of |C1| = 3 classes for the log level.

Log Instructions Preparation

The goal of the preparation module is to prepare the data in a suitable learning format.
As input, it receives the set of log instructions from the extractor. The preparation
module first iterates over the log instructions and separates the static text of the log
instructions from the log level. The diverse programming languages use different names
for the log levels. For example, Log4j (a Java logging library) uses the tag ”warn” for
warning logs, while the default Python logging library uses the tag ”warning”. To that
end, the preparation submodule unifies the levels for all log instructions. To the static
texts of the log instructions, we apply Spacy [75] for preprocessing. We split the words
using space. We preprocess the static text by following text preprocessing techniques,
including removing all ASCII special characters and applying lowercase transformation
of the words [30]. Once processed, we give the static text as input to a pre-trained
POS tagging model from Spacy, as it is reported to achieve high scores on the POS

76 Chapter 5. Automatic Logging Code Composition Quality Assessment

tagging task [75]. We extract the POS tag of each word from the static text to create its
linguistic structure. Finally, the output of this module is a set of tuples, where each tuple
is composed of the static text of the instruction, the linguistic structure of the static text
and the log level.

5.2.2 Deep Learning Framework

Overall Architecture

QuLog has two independent neural networks to assess the two quality properties. They
share the same architectural design and are composed of an embedding layer, encoder
network from Transformer architecture [166] and output layer. For a clearer description,
we explain the working principle for the log level assignment. Alongside it, in parenthesis,
we give the mapping for sufficient linguistic structure assessment. Given the preprocessed
static text (linguistic structure) at the input, the embedding layer learns numerical vector
representation of the individual words (linguistic categories), which we referred to as
tokens. The vector embeddings of the tokens are numerical features in a suitable learning
format for the network. We then use the encoder of the Transformer architecture to learn
relationships between the vector embeddings of the input tokens from the embedding
layer and the log levels (sufficient/insufficient linguistic structure). The output from the
encoder layer is a vector embedding of the static text (linguistic structure). After that,
the output layer predicts the level (sufficient linguistic structure) from the output of the
encoder’s layer.

Embedding Layer

The embedding layer receives the preprocessed instructions as input. We first transform
the static text (linguistic structure) from a sequence of words to a sequence of token-
s/indices, as each token receives one embedding vector. Figure 5.2 gives an example of
this transformation. It enables the transition from textual into a numerical format as a
prerequisite to applying neural networks. We further prepend the tokenized static text
(linguistic structure) with a special token we refer to as Log Message Token ([LMT]).
Note that this is an important detail we discuss further when describing the neural net-
works. Since the static texts can be of different lengths, while the neural network requires
fixed-size input, we specify a hyperparameter max_len to unify the lengths. The shorter
static texts (linguistic structures) are appended with a special pad token ([PD]), while
the longer ones are truncated at max_len value. The embedding layer maps the input
tokens into a numerical vector representation, such that each unique token is assigned a
specific vector. In QuLog, these embeddings are learned during training and adjusted to
preserve the log properties (e.g., frequently co-occurring words for a certain log level).

5.2. QuLog: Automatic Method for Logging Code Composition Quality Assessment 77

Neural Network Encoder

We model the dependencies between the tokens and the two quality properties with non-
linear parametric functions represented as neural networks. As a suitable architecture, we
identified the encoder of the Transformer [166] architecture. 5 It provides state-of-the-art
results in many NLP tasks [17]. By pointing to the similarities between the static text
of logs and natural language [68], we further justify our design of choice. The encoder
implements a multi-head self-attention mechanism that exploits higher-order relations
between tokens within the static text. This property captures discriminative features be-
tween the words (linguistic concepts) and the different contexts they appear in, relating
them to the appropriate log levels (sufficient linguistic structures). During training, the
token embedding vectors and the network parameters are updated via backpropagation,
as a common learning algorithm for neural networks [103]. At the output of the encoder,
we provide the vector embedding of the [LMT] token. Due to the architectural design,
the vector of the [LMT] token attends over all the other token vector embeddings dur-
ing training. This allows for summarizing the most relevant information from the input
concerning the log level (sufficient linguistic structure). Therefore, it embeds diverse
contexts preserving the properties of the static text (linguistic structure). The number
of heads in the multi-head self-attention, the number of layers and model size are three
hyperparameters of the network.

Output Layer

The output layer is a three-dimensional linear layer for predicting the log level (two-
dimensional for sufficient linguistic structure). It accepts the [LMT] vector embedding
and applies a linear transformation. Each of the output dimensions corresponds to one
of the log levels (i.e., "info", "warning", "error") or one of the two linguistic structure
qualities (i.e., "sufficient" and "insufficient"). We apply a softmax function at the output
neurons to produce score estimates. Each neuron gives a score estimate for a class (i.e.,
a number between 0-1 indicating class relevance). The scores give insights into the
model’s confidence for the log level (sufficient linguistic structure) prediction. As a class
prediction, we considered the class related to the neuron with the highest score.

5.2.3 Prediction Explainer

The prediction explainer is used to explain the prediction of the models. The main
idea is that by explaining the decisions to the developers, the most relevant tokens that
contribute to the decision can be examined in the potential of misalignments between the
model prediction and the written log level. The prediction explainer uses SHAP [114]

5The details of the architecture are discussed in Chapter 2.

log.info(“connection established!”) log.error(“connection refused!”)

connection: (1.21, 0.41, -0.12, 0.14)
established: (2.12, 2.34, 3.01, 0.12)

Log Instruction:

Shapley Values
(for class info):

connection: (0.21, -0.20, 0.42, 0.56)
refused: (0.12, 2.30, 3.42, -5.22)

connection 𝑟11= 1.34; 𝑒11 = +
established 𝑟12= 4.36; 𝑒12= +

connection 𝑟21 = 0.76;
refused 𝑟22 = 6.65;

𝑒21 = +
𝑒22 = −

78 Chapter 5. Automatic Logging Code Composition Quality Assessment

Figure 5.3: Prediction explainer working procedure example.

(Shapley additive explanations) – an approach from explainable artificial intelligence,
to provide recommendations for improvement. We selected SHAP as one of the most
widely popular tools for an explanation of a decision of a machine learning model due to
its capability to provide good explanations for a wide range of problems [18].

SHAP - Shapley Additive Explanations ; SHAP calculates feature importance scores (how
relevant is a feature for the prediction) by defining the problem as a coalitional game
between the features [114]. The goal is to find the Shapley values for each feature defined
as the fairest distribution of the "payout" (as importance score) for the prediction. The
larger the value, the more important the feature of the prediction. The signs of the
Shapley values show the feature’s favorableness (or lack of it in the case of a negative
sign) for the model prediction. Therefore, each Shapley has intensity and sign score.

Implementation; We used the original SHAP implementation with the default values for
its parameters [113]. One required parameter of SHAP is a differentiable learning model
(a model with gradients calculated for each network layer). To apply SHAP, we used
a distilled trained encoder network as input [73]. While the explanation procedure is
applicable for both quality properties (log level and linguistic quality), we implemented
just the log level prediction explainer because of the intuitive meaning of the importance
scores concerning the predictions.

Token Importance Scores ; The Shapley values are calculated for each neuron of the
input vector embeddings. Figure 5.3 illustrates a running example. There are two log
instructions l1 : "Connection established!" with the level "info", and l2 : "Connection
refused!" with the level "error". After running the two instructions through SHAP, each
token is assigned a vector of Shapley values (with size d = 4 in the example). However,
to reason about the influence of the token in unity, we express the token importance as
a single number. We refer to this as a token importance score. To calculate the token
importance score, we aggregate the individual Shapley values for each token. The token
importance score has two parts: 1) intensity and 2) sign. The intensity shows the influence
strength of the token for the prediction. The sign shows the token direction influence
for the prediction (favouring or not-favouring a prediction). After experimentation with

5.3. Evaluation 79

different aggregation functions, we find that the second norm of the Shapley value vector
and the sign of the Shapley value with the highest absolute score, are suitable for intensity
and sign aggregation functions. Formally, they are given in Eq. 5.1 and Eq. 5.2.

r(tji) = ||Sji(tji)||22 (5.1)

e(tji) = sign(max
k
|Sjik(tji)|) (5.2)

where r(tji) is the token’s ti importance score intensity, e(tji) is the token importance
sign for the log instruction lj . Sjik denotes the Shapley value for the "k-th" position of
the "i-th" token of the log instruction static text (i.e., in the example the token "refused"
has a Shapley value S224 = −5.22).

In the example, the difference between the two instructions distinguishing the levels
"info" from "error" is in the second token. We first calculate the individual Shapley values
and then calculate the intensity and sign of the token importance scores. As seen by the
score values, the following inequalities hold r12 > r11, r22 > r21. The second token in both
of the instructions ("established", "refused") has greater intensity compared to the first
("connection"), thereby, contributing more to the model prediction. Additionally, the
token signs show that the token "established" is favourable for the class "info" (e12 = +),
while the token "refused" is not favourable for the class "info" (e22 = −). Therefore,
if there is a discrepancy between the developers’ decision on the log level and QuLog’s
log level assignment, the developer examines the highlighted word, e.g., "refused", and
considers changing either the level or the word. That way, alongside the predictions,
QuLog automatically give suggestions for improving quality on a word level. The output
of the explanation module is an ordered list of tokens, ordered by their intensity (from
highest to lowest).

5.3 Evaluation

We start the description of the evaluation by first explaining the data collection proce-
dure. Afterwards, we give the evaluation of the three parts of QuLog. First, we evaluate
the log level assessment. Second, we evaluate the sufficient linguistic quality assessment
part. Finally, we give the evaluation of the prediction explainer.

Code Repositories Collection ; Alongside the studied software systems (that form the
initial quality knowledge base), we collected log instructions from other systems from
GitHub to construct a diverse system-agnostic log instruction dataset. To collect this
data, we crawled GitHub and searched for systems from the following topics: Java,
Python, Angular, Ruby, and PHP, selecting 7039 source code repositories. Additionally,
we collected the number of GitHub stars for each system. Similar to previous works [68],

80 Chapter 5. Automatic Logging Code Composition Quality Assessment

we consider the number of stars as an indicator of the quality of logging and include
code repositories with more than 100 stars to build the extended quality knowledge base.
Notably, as this data covers different programming languages and different systems we
can apply QuLog in a system-agnostic manner.

5.3.1 Log Level Assessment

We first evaluate the performance of QuLog on the log level quality assessment. We split
this evaluation into two parts. First, we compare QuLog against competing methods.
Second, we evaluate QuLog’s performance on a few instances of the problem of log
level assignment. The details of the second experiment are given in Appendix B. The
motivation for this evaluation type on one side is to examine the performance of QuLog
against competing methods, and on the other side, to identify problem instances where
the lower performance of data-driven approaches will not overwhelm developers with
many incorrect predictions. The latter is relevant for QuLog’s practical usability.

Comparison Against Competing Methods

Experiment Design ; In the evaluation of QuLog against competing methods, we consid-
ered two QuLog models using the two different quality knowledge bases. The models have
the same architectural design but differ in the input data used to train them. The first
model, we referred to as QuLog-8 6, is trained on data from eight software systems listed
in Table 5.1. The remaining system is used for evaluation. The procedure is repeated
for each system in a leave-one-out system manner. Since these systems are characterized
by good logging practices, we consider that the majority of the log levels are correctly
assigned, similar assumptions are made in previous studies [100]. This accounts for the
quality of the learning data. The second model for log level assignment we call QuLog*
is trained on the collection of GitHub systems from the extended knowledge base. While
QuLog* does not account very rigorously for the instruction quality, it enables testing
for cross-software usefulness of the static text in log level assignment. As such, it aligns
with the system-agnostic nature of QuLog. This is important in scenarios of log quality
assessment where the software system is in the initial development stage, and there are
not many log instructions for training a model. As an evaluation dataset, we consid-
ered the log instructions from one of the nine systems listed in Table 5.1, such that the
instructions from the evaluation dataset are never seen during the training of the model.

We compare QuLog against two competing methods: DeepLV [100] and Support Vector
Machines (SVM) [34]. DeepLV trains bi-LSTM – a deep-learning architecture as ordinal
regression, on the logging code-related data. DeepLV outperforms other log assignment

6The 8th in QuLog-8 refers to the number of systems used to train a model.

5.3. Evaluation 81

methods, therefore we do not evaluate against other works [100]. In addition, we consider
SVM as a popular multi-class classification method trained on the vector representation
of the static text from general-purpose language models [121] previously used for log
level assignment [59]. The hyperparameters of the competing methods are set to the
recommended values by the authors. QuLog-8, DeepLV and SVM were trained in a
leave-one-system-out manner. As evaluation criteria, we used accuracy and auc following
related works [100].

Regarding the considered hyper-parameters for QuLog’s log level method, we considered
the following ranges: model size {16, 32, 64, 128}, layers number {2, 4, 6}, and heads
number {2, 4, 6, 8}. The maximal number of tokens to max_len = 16 as most of the log
instructions have fewer than 16 words. As optimizer we used Adam [87] with learning
rate 10−4 and hyperparameters β1 = 0.8, β2 = 0.95 as frequently used in training encoder
architectures with Transformers [40]. The experiments were conducted on a Linux server
with Intel Xeon(R) 2.40GHz CPU running with Python 3.6 and PyTorch 1.5.0.

Results and discussion ; Table 5.4 gives the results of the evaluation of QuLog against
competing methods. We first compare the QuLog-8 model against the two competing
methods. To evaluate the correctness of the log level assignments, we discussed the results
on accuracy. On average the better-performing method is QuLog-8. It has an average
0.62 accuracy, outperforming DeepLV by 0.03 and SVM by 0.06. Comparing QuLog-8
against DeepLV it is seen that it is outperforming it in 7/9 systems while failing to do so in
1/9 systems (Elasticsearch), and ties in 1/9 (Zookeeper). As QuLog-8 uses the encoder
of a Transformer, it directly learns log-language-specific embeddings in comparison to
DeepLV which adapts to these specific harder, experiencing a drop in performance. This
can be attributed to the greater efficiency of the Transformer to learn the specifics of the
log level language. DeepLV outperforms QuLog-8 just on Elasticsearch. Elasticsearch
has 50% of the logs on level "warning", while for the other datasets, the "info" is
predominantly the most common class. As across the training data, the most common
class is the "info", QuLog-8 learns the properties of this class better, which explains the
better performance over DeepLV for the majority of the datasets. Comparing QuLog-8
against SVM shows that QuLog performs better on all the datasets. QuLog learns the
specific language characteristics of the words used in the logging that appear in different
contexts associated with the relevant level. SVM on the other side uses general language
which is trained on large language corpora from general literature where the different
context of the words appears (e.g., the word bank used in different contexts of memory
and financial banks). As QuLog-8 is a trained log-specific language it can generalise
better in comparison to SVM.

Next, we compare QuLog-8 against QuLog*. The results on accuracy show that QuLog*
outperforms QuLog-8 by 0.04 on average. These results indicate the existence of shared

82 Chapter 5. Automatic Logging Code Composition Quality Assessment

Table 5.4: Log level quality assessment evaluation on accuracy.

Accuracy
Systems QuLog-8 DeepLV SVM QuLog*
Cassandra 0.66 0.63 0.64 0.68
Elasticsearch 0.55 0.60 0.52 0.60
Flink 0.63 0.59 0.58 0.69
HBase 0.65 0.58 0.64 0.67
JMeter 0.61 0.56 0.52 0.61
Kafka 0.60 0.59 0.46 0.68
Karaf 0.63 0.58 0.55 0.60
Wicket 0.67 0.63 0.56 0.62
Zookeeper 0.59 0.59 0.54 0.62
Average 0.62 0.59 0.56 0.64

system-agnostic properties of the static text and the log levels (within the extended
knowledge base), independent of the software systems examined in the empirical study.
The instructions originate from different programming languages and publicly accessible
software systems from public repositories, representing diverse developers writing styles.
Therefore, by their leveraging, QuLog* learns a wide range of characteristics of the static
text concerning the log levels (e.g., large vocabulary used in similar event descriptions).
The outperforming over the related methods shows that this is a useful property of
QuLog. Furthermore, the cross-system training of QuLog* makes it useful as a cross-
system evaluator of log level assignments. The good performance across different systems
and the system-agnostic training of QuLog* suggest that QuLog* is more suitable for an
automatic assessment of the quality of the log instructions, represented by their correct
log level assignment.

In addition, we evaluate the methods on the AUC score, following related works [94].
AUC evaluates the overall goodness of the model in discriminating between the individual
class pairs, e.g., how good is a model when predicting "info" instead of "warning".
Table 5.5 shows the results. We compare QuLog’s log level prediction models against
SVM. Note that we do not compare against DeepLV as we are using the sklearn library (v
0.24.1) implementation of the AUC score, which supports the AUC score for the binary,
multiclass and multi-label settings, but to the best of our knowledge does not support
AUC score calculation for ordinal regression. When comparing the results on QuLog-8
and SVM it can be seen that QuLog-8 outperforms SVM by margins of 0.2 on average.
QuLog-8 learns the specific differences between the static texts in relation to the log
levels, in contrast to SVM which uses static general language embeddings representations.
The learning flexibility of QuLog-8 enables to adjustment of the specifics of the static

https://scikit-learn.org/stable/whats_new/v0.24.html
https://scikit-learn.org/stable/whats_new/v0.24.html

5.3. Evaluation 83

text with the log levels. QuLog* further uses the rich vocabulary from the different
software systems to improve the AUC score by 0.02 in comparison to QuLog-8. The
AUC score is evaluating the overall discriminative power of the model for all possible
decisions, not for a specific one. In practice, the log level model is expected to give a
single prediction, making the AUC not very informative from a practical perspective.
Therefore, for practical usability of the learned models, metrics that evaluate the final
model decision (e.g., accuracy, or F1 score) are preferable.

Table 5.5: Log level quality assessment evaluation on AUC.

AUC
Systems QuLog-8 SVM QuLog*
Cassandra 0.81 0.64 0.84
Elasticsearch 0.71 0.55 0.78
Flink 0.79 0.62 0.82
HBase 0.80 0.64 0.86
JMeter 0.79 0.53 0.82
Kafka 0.76 0.51 0.80
Karaf 0.80 0.58 0.77
Wicket 0.78 0.59 0.76
Zookeeper 0.77 0.57 0.79
Average 0.78 0.58 0.80

The main difference between QuLog’s log level prediction method with the related works
of DeepLV and SVM is that it utilizes log instructions from many systems to learn the
specifics of the static text. To do so, it uses the encoder of Transformer architecture
trained on a large database of log instructions (the extended knowledge base) and learns
log instruction-specific language properties with relation to the expressed logging inten-
tion (given by the log level). This feature is one difference in our work, allowing QuLog
to generalise better on different systems. The leveraging of the learning model itself is
also beneficial, as seen by the improvement of the accuracy over the competing methods.
Another difference is a use case, where although one can consider the prediction of the
log level as a recommendation for the development process, the main intent as considered
here is to evaluate the overall log level correctness of the source code of a given system and
present it to the entity executing the development process. This favours our approach as
it is trained on many projects from the extended knowledge base. Such information can
be beneficial to reduce the chance of propagating errors in the instrumentation process
and improve the trustworthiness of the produced logs.

84 Chapter 5. Automatic Logging Code Composition Quality Assessment

5.3.2 Linguistic Quality Assessment

Experimental Design ; To evaluate the sufficiency of the linguistic structure of the static
text, we used the data from the empirical study as given in Section 5.1.2. We trained
QuLog on the linguistic representations from the eight systems and evaluated the remain-
ing one. Notably, owing to the high quality of the datasets, we found log instructions
with insufficient linguistics in four systems (Cassandra, HBase, Kafka and Zookeeper),
for which we present the evaluation. As baselines, we considered two popular binary
text classification methods, i.e., SVM and Random Forest (RF) [16], trained on the
general-purpose representation of the linguistic categories [40]. We train QuLog’s lin-
guistic quality assessment part with the same values of the hyperparameters as for the
log level quality assessment. As evaluation criteria, we used F1 and specificity. F1 eval-
uates the correctness of the sufficient, while specificity evaluates the correctness of the
insufficient class. In unison, they allow discussing the goodness of the models on predic-
tion of the sufficient and the insufficient class. The scores are reported, similar in the
case of the log level, in a leave-one-out manner.

Results and discussion ; Table 5.6 enlists the evaluation results. It is seen that all the
methods achieve a high average F1 score and the differences are negligible. This is due
to the strong signal in the data that comes from the POS tag representation of the static
text. Therefore, as seen by the results the classifiers that are adjoint to this represen-
tation can all perform well. QuLog’s linguistic part learns separate representations for
different POS tags and their combination. As seen by the results, this degree of flexi-
bility is beneficial for marginal improvement, which may also be attributed to the given
sample of data. The good performance of the three methods is attributed to the dis-
criminative linguistic features between the two classes. For example, the HBase’s log
instruction "failed parse", from the class hadoop.hbase.zookeeper.ZKListener, has a lin-
guistic structure "verb noun". Notably, it does not contain information to which the
parsing failure refers (i.e., lacks sufficient linguistic structure). As a comparison, in an-
other log instruction "failed parse data for znode *" within the same class of HBase, the
linguistic structure "verb noun" has four additional linguistic properties, i.e., it has the
form "verb noun noun apposition noun parameter". This additional linguistic structure
has two advantages. From a learning perspective, the richer linguistic structure is useful
for discriminating between the "sufficient" and "insufficient" classes. From a comprehen-
sion perspective, it encodes verbose information on the type of failed parsing. The richer
linguistic structure is associated with a better-described and more comprehensible event.
By validating the linguistic structure QuLog detects which instructions have insufficient
linguistic structure and will be reported for additional examination.

The results on specificity are high for both QuLog and SVM while being a bit lower for
RF. Since specificity evaluates the methods’ performance in the correct prediction for the

5.3. Evaluation 85

insufficient class (true negative class), the results show that QuLog and the two other
methods can correctly identify the instructions with an insufficient linguistic structure.
Similar observations for specificity on the individual comparisons between the methods
can be made. By combing these results with the high performance on F1 (as a trade-off
between incorrect and correct sufficient predictions), we conclude that the linguistically
insufficient instructions can be detected, without compromising the performance on the
sufficient class for the reasons discussed above. Interestingly, the representation of the
static text we considered, enables more lightweight methods, e.g., Decision Trees or
Logistic Regression to be applied to the task.

Table 5.6: Sufficient linguistic structure quality assessment evaluation
on systems from the initial log quality database.

F1 Specificity
System QuLog SVM RF QuLog SVM RF

Cassandra 1.00 0.99 0.99 1.00 1.00 0.96
HBase 0.96 0.96 0.97 0.97 0.94 0.92
Kafka 0.99 0.98 0.92 1.00 1.00 0.74

Zookeeper 0.99 0.99 0.98 1.00 0.98 0.94
Average 0.98 0.97 0.96 0.99 0.98 0.89

To evaluate the applicability of QuLog’s linguistic quality module on systems other than
the initial quality base, we further show the results of QuLog against SVM on systems
from the extended quality database. We use the same experimental setting as in the
previous case with QuLog being trained on the data from the nine systems. Table 5.7
enlists the results of the three systems. Similarly, as in the previous case, the results for
the three systems are also high, predominantly due to the considered representation of
the data.

Table 5.7: Sufficient linguistic quality additional evaluation on systems
from the extended log quality database.

F1 Specificity
System QuLog SVM QuLog SVM
Openwhisk 0.99 0.98 0.99 0.96
Log4j 0.98 0.99 0.98 0.98
Tomcat 0.99 0.99 0.99 0.96
Average 0.99 0.99 0.99 0.97

86 Chapter 5. Automatic Logging Code Composition Quality Assessment

QuLog’s sufficient linguistic quality part draws closer connections with the literature on
"how-to-log" [23, 65]. Specifically, by examining the different log-related issues (including
Jira issues), we observed that the presence of sufficient linguistic components has a rela-
tion to the comprehensibility of the events. We used the observation to create a dataset
which identifies linguistic structures related to sufficient and insufficient understanding
of an event description. QuLog’s linguistic quality further has a tangential relation to the
works on static text generation [42, 68, 107]. While the related works focus on how to
generate static texts, QuLog focuses on evaluating the sufficient properties of the static
texts of the log instructions. Therefore, a potential use case for this method is to be part
of automatically evaluating the correctness of the static texts (or jointly with the log level
prediction part) that have sufficient linguistic structure (or correct level) as modeled by
the QuLog models. QuLog further shares similarities to the log checker introduced in
Hassani et al. [64] in the part of evaluating log levels. However, QuLog further consid-
ers the linguistic properties, beyond spelling mistakes checking, as well as evaluates the
quality against many systems from different programming languages as opposed to this
related work which studies and evaluates two Java systems.

5.3.3 Prediction Explainer

Experiment design ; To evaluate the prediction explainer, we construct a dataset as in
the following. We start by randomly sampling 100 static texts of the instructions with
a correct log level prediction of an already trained model (i.e., QuLog* for log level
assignment). Each static text is examined and modified by randomly replacing a word
with its antonym. This creates an event with an opposite meaning. For example, we start
with the original static text "Connection established" with an original log level "info".
We change the token "established" into its antonym "refused", creating a modified static
text, i.e., "Connection refused", and modified word "refused". The modified static text
describes an erroneous event, and we set its log level to "error". Therefore, for each
static text we obtain a tuple of five elements – 1) original static text, 2) modified static
text, 3) modified word, 4) original level, and 5) modified level. The original and modified
static texts are given to the prediction explainer that generates the ordered token list of
importance scores. The modified token is used as ground truth. We check how many
tokens should the developer examine before finding the modified token, and we measure
it by the error@k performance score. We considered two log level models, the two-class
IE (QuLog* model trained on the two classes Info-Error, given in Appendix B), due to its
high performance and the three-class log level assignment IWE (QuLog* model trained
on the two classes Info-Warning-Error, given in Appendix B). As a baseline, we consider
suggesting a randomly chosen token as the most relevant.

Results and discussion ; Figure 5.4 depicts the experimental results. It is seen that the

5.3. Evaluation 87

prediction explanation module has a low error on correct word suggestions (the error@1
is 0.25) for the IE model. The prediction explanation model for the IWE model is a bit
higher (the error@1 is 0.52), however, both explainers show better performance than the
considered baseline. This can be attributed to the SHAP explainer accounting for certain
properties of the input data as opposed to the baseline which gives random words. The
observed discrepancy between the prediction explanations of the IE and IWE models is
due to the better performance of the IE model (average F1 score of 0.88) as opposed
to the IWE model (average F1 score of 0.73). It indicates that a better-performing
model learns discriminative features better. By considering k relevant tokens (i.e., a
developer examines the k highest-ranked tokens), the three explanation models have a
lower error, with IW and IWE having sharp decreases, achieving 0.05 and 0.23 on error@2
correspondingly. The low value of the performance criteria shows that QuLog’s log level
prediction explainer explains the predictions in alignment with human intuition on which
word mostly contributes towards the log level class. Therefore, the prediction explainer
gives reasonable suggestions on static text updates to improve either the words in the
static text or the log level and ultimately improve the logging quality.

Alongside the quantitative evaluation, we also show qualitative evaluation, i.e., examples
where the QuLog’s prediction explainer module performs well and poor. When running
QuLog, the developer is shown a similar screen as in Figure 5.5a-5.5c. The considered
static texts are denoting successful and unsuccessful events when a connection is being
established ("info" and "error" levels, correspondingly). It can be seen that QuLog,
recognizes the token "refused" to have a negative contribution for the class "info", com-
pared to the word "established". If the developer has labeled this log instruction as
"info", QuLog can recognize it and directly identify the token that is the most likely sus-
pect. In contrast, Figure 5.5b-5.5d depict one case where the QuLog prediction explainer
fails. While for a human may be intuitive that the static text "Able to determine the

1 2 3 4 5 6 7
Top-k ranks

0.0

0.2

0.4

0.6

0.8

O
n

e
er

ro
r

info error

info warning error

random assignment

median length log messages

Figure 5.4: Quantiative evaluation of the explanation module.

88 Chapter 5. Automatic Logging Code Composition Quality Assessment

connection established

(a) Parsed original "info"

unable determine codesource using default

(b) Parsed original "error"

connection refused

(c) Parsed modified "error"

able determine codesource using default

(d) Parsed modified "info"

Figure 5.5: Qualitative analysis of QuLog’s explanation module.
Blue/Red (positive/negative proclivity for "info").

code source using defaults" refers to info, the large corpora of data confuse the model to
predict "error". Although the token "able" has a significant decrease in the score for the
token in the first position, it does not have a token importance score of sufficient intensity
to change the decision. This behaviour of the prediction explainer can be attributed to
the accumulation of various correlations present in the diverse log instructions data used
to train the model which correlation does not necessarily relate to human intuition or
logging intention.

5.4 Chapter Summary

In this chapter, we addressed the problem of automating log quality assessment. We
first did an empirical study on nine software systems to study the quality properties
of the log instructions. The results of our study identified 1) log level assignment and
2) sufficient linguistic structure assessment as two quality properties identifiable solely
by the static text of the log instructions. Based on our observations, we proposed a
deep learning-based approach for automatic log instruction quality assessment on the
source code from a given target system. Our approach uses static text and its linguistic
structure representation to evaluate the two properties. In addition, we adopted an
approach from explainable AI to explain the model predictions and give suggestions for
potential improvements of the instructions. Our approach shows high performance for
both the log level and the sufficient linguistic qualities. The good performance on the log
level is due to incorporating information from events and the log levels of many systems.
Notably, the data used to train QuLog level prediction includes different programming
languages and different systems enabling QuLog application in a system-agnostic manner.
The good performance on the linguistic quality is predominantly due to the considered
representation of the static text with POS tags. The suggestions from QuLog can be
used by external entities to improve the logging code. Therefore, QuLog aids system
development by evaluating the logging code, giving suggestions for its improvement and
with that aiding the system development process.

5.4. Chapter Summary 89

As QuLog is system-agnostic it addresses shared properties among different systems
and programming languages. As discussed in Section 5.1 the logging quality covers
additional aspects where other quality properties can be analysed. Notably, they involve
the nearby source code features, which may be very different among the systems because
of the different programming language syntax. Due to the system-agnostic nature of the
method, QuLog does not consider the contextual features where the parameters or the
locations for logging (where-to-log) are being analyzed. Therefore, we do not discuss the
differences between QuLog and these methods. Irrespective of this, by accounting for the
quality properties of the log instructions, QuLog aims to reduce the chances that logging
codes of insufficient quality will be released in production.

90 Chapter 5. Automatic Logging Code Composition Quality Assessment

Chapter 6

Single Line Log-based Anomaly
Detection and Classification

Contents
6.1 Semantic Log Analysis . 93

6.1.1 Log Instructions Usage for Anomaly Detection 94

6.1.2 ADLILog: Semantic Anomaly Detection with Log Instructions 97

6.1.3 Semantic Anomaly Classification 102

6.2 Performance Log Analysis . 102

6.2.1 NuLog: Self-Attentive Log Parsing 103

6.2.2 Performance Anomaly Detection 106

6.3 Evaluation . 106

6.3.1 Semantic Log Analysis . 107

6.3.2 Performance Log Analysis . 114

6.4 Chapter Summary . 120

During the operational and development processes it is common to analyze single log
lines to detect and classify anomalies [102]. As a single log line is often composed of two
parts, i.e., static text and parameters, the anomalies can be reflected in both of them,
independently or simultaneously [44]. The static text expresses the logging intent, i.e., the
semantics of the log. The variable parameters show dynamic information for the event.
For example, the log instruction log.info(”VM took %f seconds to spawn.”, createSeconds)
from the static text perspective expresses positive intent. However, if the time for creation
is larger than usual, it can indicate an anomaly. Therefore, achieving greater anomaly
detection coverage is possible by considering the two parts of the log [44].

91

Performance
(Parameter) Log

Anomaly Detection

Semantic Log
Anomaly

Classification

Single Line Anomaly Detection

Logs Input

Single Line Log Analysis

Semantic Log
Anomaly Detection

Knowledge Base of
Single Line Anomaly Classes

Single Log Line
Analysis Results

92 Chapter 6. Single Line Log-based Anomaly Detection and Classification

Figure 6.1: Overview of the single log line analysis.

This chapter focuses on automating anomaly detection and classification from single log
lines. Figure 6.1 illustrates its overview. It is composed of 1) semantic log anomaly detec-
tion and classification and 2) parameter anomaly detection. The semantic log anomaly is
concerned with the effective representation of the sentiment of the log. Log levels can be
particularly useful in this context. For example, the higher log levels such as "error", are
associated with abnormal states or state transitions, e.g., "Machine failure", useful for
anomaly detection [102]. As log levels are part of the source code, we found that there ex-
ists a large set of unlabeled and unstructured anomalous data accessible from the source
code of public code-sharing sites, e.g., Github. which may be useful for improving the
generalization in log-based anomaly detection. In the context of parameter/performance
anomaly detection of vital importance is the correct extraction of the parameters from
the logs [172]. The incorrect template processing can result in missing vital parameters
and potential anomalies reflected within. Therefore, good and robust log parsing is a
precondition for parameter anomaly detection for different systems.

The single log line analysis is challenged by complex data type representation, insufficient
logging failure coverage, software evolution, labeling and low detection performance of
related methods. To train single line anomaly detection models, we refer to the normal-
ity and detectability assumptions. Furthermore, to design our method, we refer to the
availability of the open-source severity level data assumption. Finally, to enable anomaly
classification, we refer to the recurrence assumption.

We present the contribution for single log line analysis in the following 1:

1. We found that the unlabeled public code repositories contain log-anomaly-related
information that can be used as a learning signal for log-based anomaly detection.

2. We propose a novel method, named ADLILog, for semantic log-based anomaly
detection that uses the target system (system subject to analysis) data, alongside
the data from the public code repositories as external auxiliary data related to

1Parts of this chapter are published in [11, 127, 128, 129, 169].

6.1. Semantic Log Analysis 93

anomalies to learn the anomaly detection model.
3. For performance anomaly detection, a prerequisite is to separate the constant and

variable parts such that the parameter data can be correctly extracted. To that end,
we propose a novel method for log parsing, named NuLog, to accurately extract
the parameters on which performance anomaly detection models are learned.

4. The evaluation over several dimensions of the proposed methods demonstrates their
applicability in single log line analysis.

This chapter is further structured as follows. In Section 6.1 we introduce the semantic-
based anomaly detection method ADLILog, which uses the anomaly-related information
from public repositories, alongside the target system data to learn an anomaly detection
model. The single log line anomaly classification method is discussed as well. Sec-
tion 6.2 introduces the performance anomaly detection approach with the novel log pars-
ing method as one of its main components. Section 6.3 presents the experiments where we
evaluate the performance of the proposed methods. Section 6.4 summarizes the chapter.

6.1 Semantic Log Analysis

The general literature on anomaly detection shows that for many different domains
if even a small set of labels denoting related concepts (i.e., auxiliary labels) with the
modeled phenomena exist, the performance of anomaly detection can be improved [146].
The pointed explanations for the observed improvements are that the auxiliary samples
can contrast the modeled phenomena in a manner that is beneficial for learning specific
representations of normal concepts [71]. In the context of log-based anomaly detection,
we observed that such kind of rich auxiliary data may exist within the log instructions
from the source code of public systems. Intuitively, the log levels of the log instructions
show different severity levels of the contained events [102]. For example, the log level
"info" is commonly associated with normal system state or state transitions. In contrast,
the log levels like "error", "fatal", and "critical" are commonly used for events related
to abnormal system execution. If such information indeed can be extracted from the
source code, one can create rich auxiliary data with both "normal" and "abnormal"
events from diverse systems, that can be used for learning an anomaly detection model.
As this data incorporates information from many systems it may further enable better
generalization. Guided by this intuition, we conducted a study to examine the potential
of the log instructions to aid anomaly detection.

In the following, we describe the study for log instruction usage in anomaly detection.
Afterwards, based on the results from the study, we propose a method that uses the log
instructions from the public repositories as auxiliary data to learn an anomaly detection
model in an unsupervised manner.

94 Chapter 6. Single Line Log-based Anomaly Detection and Classification

6.1.1 Log Instructions Usage for Anomaly Detection

We consider that we can group the log instructions, based on their log levels into two
severity groups, i.e., "normal" ("info") and "abnormal" ("fatal", "critical", and "error").
Following the usage of the log levels for anomaly detection, we consider that the static
texts of the instructions have complementary properties concerning the two severity
level groups, i.e., they preserve anomaly-related information. To study the extent of
the differences between the two groups, we analyze two language properties of the word
combinations (n-grams) in the log instructions static texts concerning the two groups.
N-grams are one way how to represent textual data [158]. As they are count based, they
have an intuitive interpretation, which is why we select them for the analysis.

Specifically, we study the n-gram uniqueness and n-gram sentiment across the two groups.
By studying the n-gram uniqueness among the groups, we examine the differences in the
vocabulary used to describe normal/abnormal events. If there are considerable differences
between the used words in the static text with regard to the two groups, it is expected
that the two groups have different properties. By relating the n-grams with the expressed
intent (e.g., positive intent relates to normal system state), we examine the semantic
diversity between the groups, i.e., if the n-grams express positive (normal state transition)
or negative (abnormal state transition) intents. In the following we describe the 1) log
instruction collection procedure and then present the 2) uniqueness and the 3) sentiment
analyses of the log instructions static texts.

Log Instructions Collection and Processing

For the starting point of the analysis, we created a representative log instruction
dataset by collecting log instructions from the source code of many public code projects
from GitHub. We included a wide spectrum of domains and programming languages
(Python, Java, C++), covering different log instruction types. The heterogeneity en-
ables us to examine the vocabulary diversity and semantic properties used in describing
normal and abnormal events across systems. That way, we consider diverse logging styles
and a wide range of events, with complementary severity levels. To account for the reli-
ability of the log level assignment, we selected projects with more than 100 stars. This
quality control criterion is used in other studies that analyse source codes [68]. The
collection procedure resulted in more than 100.000 log instructions.

Afterwards, we process the log instructions by extracting the log levels and the static texts
to represent the event descriptions and their severity levels. The diverse programming
languages use different names for the log levels. Therefore, as a first step, we unify all the
log levels. We preprocess the static texts by applying several preprocessing techniques,
similar to related works [30, 68], including lower-case word transformation, splitting the

http://github.com

6.1. Semantic Log Analysis 95

static texts on whitespace, removing placeholders, removing ASCII special characters
and stopwords from the Spacy English dictionary [75]. We refer to this data as Severity
Level (SL) or auxiliary data. It is a set of tuples from two elements – (1) the static
text of log instruction, and (2) the severity group based on the aforenamed log level to
severity group mapping (e.g., ("machine error", "abnormal")). We used the SL data to
conduct the log instruction examination study. Similar to related log instruction analysis
studies [68], we extracted the n-grams from the static text by varying the value for the
n parameter in the range n = {3, 4, 5}. An n-gram analysis shows that many n-grams
appear once. To eliminate the impact of the rare n-grams on the analysis, we considered
the n-grams that appear more than three times, similar to He et al. [68].

Log Instructions Static Texts Uniqueness Analysis

Intuitively, when describing abnormal events, the static text typically contains n-grams
like "failure" or "error connection", as opposed to normal events, where n-grams like
"successful" and "accepted" are more likely to appear. Therefore, we consider that the
log instructions static texts of the two severity level groups share different, partially
overlapping vocabularies. To verify this, we adopted an approach from information
theory that defines the amount of information uncertainty in a message [37]. In our
case, we analyze the relation of the n-grams with the two severity groups. At first,
given an n-gram (e.g., "machine failure"), there is high uncertainty for the assigned
severity group. As we receive more information about the n-gram (e.g., new logs with
the n-gram "machine failure"), its uncertainty concerning the associated severity group
is reduced. For example, if the n-gram "machine failure" is associated five times with the
"abnormal" and one time with the "normal" severity group, we have low uncertainty. In
contrast, if another n-gram, e.g., "verifying connection" is associated three times with the
"abnormal" and three times with the "normal" group, the n-gram uncertainty is high.
To measure the uncertainty, we use Normalized Shannon entropy [63]. We calculate
the entropy for each n-gram on a random sample of the SL data and reported the key
statistics of the n-grams entropy distribution.

Table 6.1: Log instructions static texts uniqueness analysis results.

Min 1st Qu. Median 3rd Qu. Max
Average Entropy 0.00 0.00 0.00 0.27 0.51

Table 6.1 summarizes the key properties of the n-gram entropy distribution. It is seen
that the median of the distribution is 0. This means that at least half of the n-grams are
associated with only one of the two severity groups. Thereby, the two severity groups are
characterized by a rather unique vocabulary.

96 Chapter 6. Single Line Log-based Anomaly Detection and Classification

While this analysis gives information about the uniqueness of the vocabularies, it does not
account for the type of intent expressed with the n-grams. To investigate the expressed
event intent, we made an n-gram sentiment analysis (where the sentiment is used to
quantify the intent type, i.e., positive or negative), given in the following.

Log Instructions Static Texts Sentiment Analysis

To evaluate the n-gram sentiment concerning the two severity groups, we considered a
pretrained sentiment analysis model from Spacy [75]. We consider the applicability of
the sentiment model as a good design choice by pointing to the observed similarities
between general language and logs [68]. Since the sentiment model is trained on diverse
language texts, it has learned notions of positive, neutral or negative intent. We run the
n-grams through the model to obtain the sentiment score. We used the sentiment score
to categorize the n-grams into three categories, i.e., positive, negative and neutral. We
relate the events from the "normal" severity group with positive intent considering that
they describe successful states or state transitions. Similarly, we relate the "abnormal"
group with a negative intent considering that they describe unsuccessful system states
or state transitions. The third category contains n-grams with neutral intent, i.e., events
without strongly expressed intent.

Table 6.2: Log instructions static texts sentiment analysis results.

Sentiment Positive Negative Neutral
Severity Group Normal Abnormal Shared Normal Abnormal Shared Normal Abnormal Shared

N-gram Coverage [%] 66.94% 28.13% 4.93% 23.13% 69.75% 7.12% 46.98% 43.43% 9.59%

Table 6.2 summarize the results of the n-gram sentiment analysis. For each of the three
sentiment categories, we show the percentages of the n-grams concerning the two sever-
ity groups. In the positive intent category 66.94% of the n-grams are associated with
the normal severity group, and 28.13% are related to the abnormal severity group. In
contrast, from the n-grams associated with negative intent, 69.75% are associated with
the abnormal group, 23.13% are associated with the normal severity group, and 7.12%
are shared between the two. These two observations show that there exists a relation-
ship between the normal group and positive intent, and the abnormal group and the
negative intent. Therefore, the proposed severity log level grouping aligns with human
intuition when expressing positive and negative sentiments. Structuring the static text of
the log instructions by their log levels in a proposed way can extract intuitively relatable
anomalous information.

Combining this observation with the uniqueness in the vocabularies between the two
severity groups demonstrates that SL data has the potential to preserve rich anomaly-

6.1. Semantic Log Analysis 97

related properties. Therefore, it can potentially be used as auxiliary data and serve as a
foundation for anomaly detection.

6.1.2 ADLILog: Semantic Anomaly Detection with Log Instructions

Following the affirmative observations about anomaly-related information encoded in
the SL data as auxiliary data, in this section, we introduce ADLILog as an unsupervised
log-based anomaly detection method. Figure 6.2 illustrates the overview of the approach.
Logically, it is composed of (1) log preprocessing, (2) deep learning framework and (3)
anomaly detector. The role of the log preprocessing is to process the raw logs by care-
fully selecting preprocessing transformations that expose rich information for the deep
learning framework. The deep learning framework ’s goal is to learn and output useful log
representations for the target-system logs. It does so by training a deep neural network
model with a sequential two-phase learning process (pretraining and finetuning), during
which data from the target-system logs and the SL data are used. The anomaly detector
detects if the input target-system logs are normal or anomalous. In the following, we
describe the three components of ADLILog.

Shared Log
Message
Encoder

+

𝑦𝑖 =1

“connection
refused“

𝑙𝑟:

[LME]

connection

established

[PD]

Training Data

Test Data

Embedding
Layer

Deep Learning Framework
ADLILog

[LME]

machine

interrupt

[PD]

Log Preprocessing

{connection:
[0.52, … ,0.22],

established :
[0.12, … ,0.56],

machine :
[0.37, … ,0.11],

interrupted:
[0.89, … ,0.45],

…}

Anomaly Detector

𝑎 Threshold

Normal Log

Anomalous Log

𝑦𝑖 = 0

“connection
established“

𝑙𝑘:

SL Data

෪𝑝+ 𝒙𝒊 < 𝑎

Classification
Layers

𝒙𝒊

Anomaly Normal

Online
Repositories

L55: If connection==True:
L56: log.info(“connection established)
L57: else:
L58: log.error(“connection refused)

Target
System

Log Instructions 1) N-gram uniqueness
Study: 2) N-gram sentiment

Data Collection

SL Data Extraction

1) Pretraining

2) Finetuning

Online phase

Figure 6.2: ADLILog: Detailed design of the single log line anomaly
detection method.

ADLILog has two operational phases: offline and online. During the offline phase, we
use a two-stage training procedure to learn the parameters of the neural network and

98 Chapter 6. Single Line Log-based Anomaly Detection and Classification

the anomaly detector. The two stages of the training procedure are pretraining and fine-
tuning. This training procedure, on the one side, allows learning of general discriminative
features between normal and anomalous events from the SL data (pretraining). On the
other side, it enables the learning of good log representations of the normal target system
data by combining the training with anomalous labels from the SL data used as auxiliary
data (during fine-tuning). The learned models are stored. In the online phase, the test
logs from the target system are given as ADLILog’s input. ADLILog processes the input
logs and proceeds them towards the loaded models to obtain log representations. The
log representations proceed towards the anomaly detector which detects and reports the
anomalous logs. In the following, we delineate ADLILog’s implementation details.

Log Preprocessing

The raw target-system logs are characterized by high noise due to the parameter values
generated during system runtime (e.g., IP address, endpoints, numerical parameters).
The log noise can significantly affect the anomaly detection performance [187]. Therefore,
log preprocessing aims to reduce the noise by applying a set of preprocessing steps. To
that end, we start by removing all path endpoints (e.g., /home/spelce1/HPCCIBM/bin/)
and split the static text using whitespaces into singleton items we call tokens. The
tokens with numeric values most often denote variable parameters that are not relevant
to the semantics of the logs. We consider them as noise and remove them. Similar
to the preprocessing for the SL data, we apply Spacy and remove all ASCII special
characters (e.g., $), the stopwords (e.g., is and the) [75] and transform each character
into lower case, following related work [30]. Notably, as previously described, the SL data
is already preprocessed by a similar set of operations making the preprocessing uniform.
In addition, each log is prepended with a dedicated Log Message Embedding ([LME])
token. The [LME] token is an important design detail because we use it to extract a
numerical representation of the log from the neural network, further given as input to
the anomaly detector. Finally, different logs can have a variable number of tokens while
the neural network requires fixed-size input. Therefore, we specify a hyperparameter
max_len to unify the lengths. The shorter logs are appended with a special pad token
([PD]), while longer ones are truncated.

Deep Learning Framework

The deep learning framework consists of three components: 1) embedding layer, 2) en-
coder network from Transformer architecture and 3) classification layers. Given the
preprocessed and tokenized logs at the input, the embedding layer transforms the input
tokens into numerical vector representations, which we refer to as token embeddings.
The token embeddings are numerical features represented in a suitable format for the

6.1. Semantic Log Analysis 99

neural network. We then use the encoder network to learn relationships between the vec-
tor embeddings from the embedding layer and the appropriate target. The output from
the encoder layer is the vector embedding of the input log/(static text), i.e., the [LME]
vector. Depending on the training phase (pretraining or finetuning), the [LME] vector
proceeds towards one of the two classification layers. The output from the classification
layers is used as input in the appropriate loss function. After finetuning, the output from
the second set of classification layers is the final vector embedding of the input log, which
proceeds towards the anomaly detector.

Embedding Layer ; The embedding layer receives the preprocessed logs as input. It serves
as an interface between the textual and numerical token representation format. Specifi-
cally, each token is assigned a single index corresponding to a token embedding vector.
The embeddings are learned during pretraining and are adjusted to learn the properties
of the normal and abnormal events. The embeddings are learned jointly with the param-
eters of the neural network. There are other possible ways how to extract embeddings
(e.g., pretrained language models [17], word2vec [121]). However, as they are pretrained
on general language data, their values are influenced by modeling different contexts (e.g.,
the embeddings of the word "bank" is influenced by the financial and memory as part of
the training data). In contrast, the logs are shorter texts with specific words appearing
in them [68]. As we further have access to rich data, we proceeded to directly learn the
embeddings on the log-specific data.

Log Message Encoder ; As a suitable architecture for the log message encoder, we identi-
fied the encoder of the Transformer architecture. The encoder implements a multi-head
self-attention mechanism that exploits the relations between tokens within the log in-
structions’ static texts. This property enables learning discriminative features between
the words and the different contexts they appear in (e.g., diverse vocabularies, intent).
The embedding vectors and the encoder parameters are updated via the backpropaga-
tion algorithm during pretraining [103]. At the output of the encoder, we provide the
vector embedding of the [LME] token. Due to the architectural design, the vector of the
[LME] token attends over all the other token vectors during training. We considered this
implementation architectural design detail because it allows learning the most relevant
information from the input concerning normal and abnormal events. The model size,
number of heads in the encoder, and the number of encoder layers are three hyperpa-
rameters of the log message encoder.

Classification Layers ; The classification layers as input accept [LME] tokens from the
encoder. It is composed of two sets of linear neural layers. As depicted in Figure 6.2,
the first layer set (Set 1) has two linear layers, with parameters θ′ . It is trained jointly
with the log message encoder during the pretraining procedure. The size of the first
linear layer (from the first set of linear layers) is equal to the model size of the encoder

100 Chapter 6. Single Line Log-based Anomaly Detection and Classification

layer, while the second layer (from the first set of linear layers) has two neurons that
correspond to the "normal" and "abnormal" severity groups from the SL data. The
output of the first set of classification layers proceeds to the binary cross-entropy loss
used as a pretraining loss function.

The second set of classification layers, with parameters θ”, has two linear layers (Set 2
in Figure 6.2). The two layers have the same number of neurons equal to the model size.
The output of the second set of linear layers is given as input for the loss function during
finetuning. Additionally, the output of this layer is used as the final log representation
and is proceeded as input to the anomaly detector.

Learning Process. The learning process is split into two sequential phases: pretraining
and finetuning. During the pretraining phase, we update the parameters of the embed-
ding layer, the log message encoder and the first set of classification layers. We perform
the pretraining with the SL data, using the binary cross-entropy as a commonly used
loss for binary classification [56]. After pretraining, the parameters of the encoder are
learned and they preserve anomaly-related information.

For the finetuning phase, we pair the pretrained model with the second set of linear
layers. Notably, the training data in this phase consists of the target-system data and
the "abnormal" severity group from the SL data as auxiliary data. Since by definition
of the anomaly detection task, the majority of the target-system data is assumed to
describe normal system behaviour (i.e., class 0), considering the "abnormal" class of
the SL data as anomalous (i.e., class 1), the finetuning can be addressed as a binary
classification problem. As our study shows, the "abnormal" class of the SL data is
available, thereby, ADLILog does not need manually labeled target-system data, i.e., its
unsupervised method. In the fine-tuning phase, we learn the parameters of the second set
of linear layers (θ”). The finetuning enables learning the specifics of the target-system
data while relying on the anomaly-related information from the SL data as auxiliary
data. In addition, since the normal target-system data and the normal events from the
SL data can differ, the finetuning adjusts the log representation embeddings to these
differences.

Another important aspect of the finetuning phase is the choice of the finetuning loss. It
determines the shape of the final learned log vector embeddings. Since the finetuning is
defined as a binary classification problem multiple loss choices are possible (e.g., binary
cross-entropy [56], or hyperspherical loss [106]). The binary-cross entropy is a formidable
choice if the anomalous labels originate from target-system data because it allows learn-
ing of the exact discriminative properties between the classes [56]. However, in the case
of logs, the expensive labeling process makes this assumption hard. In contrast, hyper-
spherical loss concentrates the normal class around a single point, e.g., the centre of the

6.1. Semantic Log Analysis 101

hypersphere. At the same time, it is scattering the anomalous logs further apart. This
is known as the concentration property [147]. The general literature on anomaly detec-
tion [146] suggests that preserving this property frequently results in improved anomaly
detection performance. Consequently, the hyperspherical loss has more desirable prop-
erties for anomaly detection, and we use it as finetuning loss. Eq. 6.1 gives its definition
for a single log li:

Li
ad = (1− yi)||g(xi; θ, θ

”)||2 − yilog(1− exp(−||g(xi; θ, θ
”)||2)) (6.1)

where xi is the log representation as output from the second classification layers set,
yi ∈ {0, 1} is a label for the normal target-system data and the "abnormal" SL severity
class, θ and θ” are parameters of the encoder and the second set of linear layers, and
g(xi; θ, θ

”) is the function learned by the network.

Anomaly Detector

The goal of the anomaly detector is to highlight the anomalous target-system logs
represented as log vector embeddings (xi). It has two components, i.e., 1) an assumed
target-system normality function p̃+sin, and 2) an anomaly decision rule. The normality
function is an assumed model of the normal target-system logs. It is a positive function,
having small values for the anomalous and large values for the normal target-system
logs. The form of the function depends on the type of finetuning loss. Since the chosen
hyperspherical loss learns a model that places the normal logs (class 0) close to the
centre of the hypersphere, the smaller distances correspond to normal system behaviour.
Following the definition of the normality function, we use the reciprocal value of the
Euclidean distance between the learned log representation xi and the hypersphere centre
(set to the origin), given by Eq. 6.2. The large distances of the vector representation from
the centre of the hypersphere will result in small values for the normality score (denoting
anomalies) and vice versa (as seen in Figure 6.2).

p̃+sin(xi) =
1

||xi − c||2
, c = 0 (6.2)

Finally, to detect anomalies, we apply a decision rule on top of the normality function
score values of the input logs. The decision rule involves setting a decision threshold ã over
the scores, such that the logs with lower normality scores are reported as anomalous. This
concludes the discussion of the semantic anomaly detection method. In the following, we
describe the semantic anomaly classification.

102 Chapter 6. Single Line Log-based Anomaly Detection and Classification

6.1.3 Semantic Anomaly Classification

Once the anomaly is detected, we use the event template (extracted with log parsing)
and compare it against the known set of templates using string matching. Under the
recurrence assumption, it is assumed that the templates are occasionally examined by an
operator that assigns a label for the unknown template, enriching the knowledge base of
templates. As soon as a full template match is found the detected anomaly inherits the
class of the matched template. Otherwise, the class ⟨UNK⟩ is assigned. To enable the
detection of anomalies without a known class, we further consider training a multi-class
classification model. To train a model we considered natural text representation of the
logs obtained from pretrained language models [75]. The log representation is given as
input to Random Forest as a good method for multi-class problems [165]. This model
suggests a class when the matched template is unknown. As the prediction between
the template matching and the model can differ, whenever the prediction between the
matching and the model is different the prediction obtained by the matching is considered
as correct.

6.2 Performance Log Analysis

The anomalies in the single log lines can further be reflected in the parameters. To
achieve greater anomaly coverage, alongside the semantic anomaly, performance anomaly
detection is important. In the following, we describe a method for performance analysis.
As the parameters are intertwined with the static text, the performance analysis method
highly depends on the accuracy of the correct parameter extraction, i.e., on the log
parsing procedure. Therefore, the performance log-based anomaly detection method is
composed of two parts, i.e., 1) log parser and 2) performance anomaly detector. Note
that, as the parser extracts events from a single log line at a time, it is part of a single log
analysis module. Figure 6.3 depicts the architecture of the performance anomaly detector.
The extracted events can be used from other analysis components needing information on
the event level. Once the logs are parsed, they proceed toward the performance anomaly
detector. The performance anomaly detector detects abnormal values for the parameters
and reports log messages with anomalous parameter values.

The performance anomaly detection model has two operation modes - offline and online.
During the offline phase, log messages are used to tune all model parameters of the
log parser and the parameters of the anomaly detector. During the online phase, every
log message is passed forward through the model. This enables the log detection of
parametric anomalies. In the following, we describe the two parts.

Type equation here.

Type equation here.𝐸𝑁

Type equation here.

…

Performance Anomaly Detection

Log Parsing

𝐸𝑖:

𝐸1: (Took <*> seconds to create VM, 8)

෧𝑎111,෧𝑎112

෧𝑎111 ෧𝑎112μ σ
Took 8 seconds
to create VM

Template E1: Took <*> seconds to create VM
Used for other
log-related tasks

…

…

෪𝑝11
+

[෫𝑝𝑖1
+ , ෪𝑝𝑖2

+ , … ෪𝑝𝑖𝑣
+]

[෫𝑝𝑁1
+ , ෪𝑝𝑁2

+ , … ෪𝑝𝑁𝑣
+]

[{
Event: E1,
Param1: 8,
Param1_anomaly: 0

}
…
]

6.2. Performance Log Analysis 103

Figure 6.3: Performance anomaly detection architecture details.

6.2.1 NuLog: Self-Attentive Log Parsing

The proposed log parsing method attempts to mimic an operator’s comprehension of
the differences between the events and parameters from logs. Specifically, we observe
that given the task of identifying all event templates in the logs, a possible approach
to extract a template is to focus on constantly reappearing parts, while ignoring parts
that change frequently within a certain context (e.g., per log message). The constantly
repeating/changing parts are determined from nearby words/tokens that form the con-
text. From a modeling perspective determining the variability degree of certain parts can
be seen as calculating the conditional probability of a particular token on a given posi-
tion, where the conditioning is on its context. The tokens with high probability values
will constitute the static text, while the tokens with low probability are the parameters.
Based on this observation we propose a parsing method, which we named NuLog.

Figure 6.4 depicts the overall architecture of NuLog. It is composed of three parts, i.e., 1)
preprocessing, 2) neural network model, and 3) template extraction. The log preprocess-
ing part prepares the generated logs for model training. The model implements a neural
network architecture to learn the conditional dependencies for a given token. Once the
neural network is trained, the template extraction thresholds the output probabilities to
extract the event templates. In the following, we discuss the three parts in more detail.

Log Preprocessing

The log preprocessing transforms the log messages into a suitable format for the learning
model. It is composed of two main parts: tokenization and masking.

104 Chapter 6. Single Line Log-based Anomaly Detection and Classification

Tokenization

Deleting instance /var/lib/nova/instance/abec-aeef

P
re

p
ro

ce
ss

in
g

Masking

[MASK] instance /var/lib/nova/instance/abec-aeef[CLS] [PD]

Deleting [MASK] /var/lib/nova/instance/abec-aeef[CLS] [PD]

Deleting instance [MASK][CLS] [PD]

N
eu

ra
l

N
et

w
o

rk

M
o

d
el

Embedding Layer

Encoder Network

Multi-class Classification Layer

Lo
g

Te
m

p
la

te
Ex

tr
ac

ti
o

n

Deleting instance <*>

Figure 6.4: An instance of parsing a single log message.

Tokenization; The tokenization part transforms each log message into a sequence of
tokens. For NuLog, we utilize a simple filter-based splitting criterion to perform a
string split operation. We keep these filters short and simple to reduce the effort for
log parsing utilization. Figure 6.4 illustrates the tokenization of the log message "Delet-
ing instance /var/lib/nova/instances/abec-aeef ". If a splitting criterion matches white
spaces, then the log message is tokenized as a list of three tokens ["Deleting", "instance",
"/var/lib/nova/instances/abec-aeef "]. In contrast to several related approaches that use
additional hand-crafted regular expressions (regex) to parse parameters like IP addresses,
numbers, and URLs, we do not parse any parameters with a regex expression[187]. Such
approaches require manual adjustments in different systems and updates within the same
system. In contrast, NuLog utilizes the fact that these are parameters that given a con-
text should change.

Masking ; The intuition behind the proposed parsing method is to learn a general repre-
sentation of the logs by analyzing occurrences of tokens within their context. To achieve
this, we apply a general task from NLP research called Masked Language Modeling
(MLM). It is originally introduced in Taylor et al. [161] and successfully applied in other
NLP tasks [17]. The masking module takes the output of the tokenization step as input,
which is a token sequence of a log message. A percentage of tokens from the sequence
is randomly chosen and replaced with the special [MASK] token. If the percentage

6.2. Performance Log Analysis 105

suggests replacing two tokens with masks, the masking module will create two samples
where each of the words will be masked once. The masked token sequence (the context)
is used as input for the model, while the masked token acts as the prediction target.
To denote the start and end of a log message, we prepend a special [CLS] and apply
padding with ⟨PD⟩ tokens. The padding ensures the training of the model as all inputs
are of a unified max_len size. This is a hyperparameter of the parser.

Neural Network Model

The neural network is composed of three parts, i.e., the embedding layer, encoder network
and linear output layer. The embedding and encoder layers are similar as in the case of
the semantic log anomaly detection, and we do not describe them in detail. However,
the output layer is different. Specifically, the output layer addresses a multi-class clas-
sification problem and predicts the most relevant token from the set of possible tokens,
addressing the MLM task. The output from the encoder proceeds towards a linear layer
with a softmax activation function [56]. The activation function scales the values of the
output between 0 and 1, generating an ordered list for the most relevant masked token
target. For a single log with a single masked token, there is an ordered token class-score
list for the masked position. These scores are used by the template extraction part to
decide if the masked token is a parameter or a constant part.

Log Template Extraction

The extraction of all log templates within a log dataset is executed after the model
training. Therefore, we pass each log message as input and configure the masking module
in a way that every token is masked consecutively, one at a time. We measure the model’s
ability to predict each token, and thus, decide whether the token is a constant part of the
template or a variable. High confidence scores in the prediction of a specific token indicate
a constant part of the template, while small confidence is interpreted as a variable. To
decide if the token is a parameter or a constant part, we employ the following procedure.
If the prediction of a particular token is in the top ϵ predictions and doesn’t contain
numbers, we consider it as a constant part of the template, otherwise, it is considered
to be a variable/parameter. If the model can correctly learn the constant parts, the
relevant positions are expected to always be ranked high, in the top ϵ predictions. For
all variables, an indicator ⟨∗⟩ is placed on its position within the log, forming a tuple of
the log template and its parameters. ϵ is a hyperparameter of the method. The output
of the log parser is the parsed log templates with a parameter list. These two proceeded
towards the performance anomaly detector. In the following, we discuss the performance
anomaly detector.

106 Chapter 6. Single Line Log-based Anomaly Detection and Classification

6.2.2 Performance Anomaly Detection

A single log may have one, several or no parameters. As a log denotes the execution of
an instruction at one and only one point in time, we consider that the logs generated at
different time intervals from that instruction are independent. Thereby, we consider the
problem of performance anomaly detection as contextual point anomaly detection. The
contextual part originates from the template of the log, while the template further gives
the meaning of the parameters. Therefore, intermixing the parameters between different
log instructions is discouraged. There are two important aspects of performance to
consider, i.e., 1) parameter data type, and 2) a large number of events.

Regarding the parameter’s data types, they can be numeric or categorical. The numeric
data types are typically describing some important runtime information measuring the
performance (e.g., the time needed to create a virtual machine). They come as a single
predictor encouraging the adaptation of models with greater parsimony. Notably, the
numeric values are directly interpretable as they are associated with dynamic variables,
which further can be considered as their class. Similarly, the categorical parameters share
the interpretability property. They are usually associated with indicating relationships
between logs in form of IP addresses, endpoints, component names and similar. The
categorical parameters are further associated with exact value meaning (e.g., HTPP
error code 400), requiring expert knowledge. Thereby, we do not consider them.

An IT system can have many logs with parameters. The univariate nature of the param-
eters is particularly useful in this context as it enables the usage of parsimonious anomaly
detection models, e.g., the σ rule [140]. In the case of numerical parameters as normality
function p̃+ik we use the Euclidean distance of the observed parameter value and the aver-
age value of the parameter in normal system state p̃+ik(xi) = (1

|Nval|
∑|Nval|

xj
t(xj)− t(xi))

2,
where t is the identity function, while xi is the value of the parameter k of the log in-
struction i. The thresholds ãik1/2 = 1

|Nval|
∑|Nval|

xj
t(xj)± rσ2 are calculated on a separate

validation set for each parameter, where r denotes a confidence factor, σ2 denotes the
standard deviation of the parameter values of the normal validation set. Note that this
predictor is simple to update (it involves just summation and additions of single vari-
ables) and efficient for calculation, fulfilling the requirement for an efficient model that
is easy to scale to a large number of events.

6.3 Evaluation

We perform several experiments to evaluate the single log line analysis module. We
split the evaluation into two parts. First, we discuss the evaluation of semantic log
analysis. We compare ADLILog against two unsupervised and four supervised methods
with publicly available implementation, on two real-world HPC systems. Afterwards, we

6.3. Evaluation 107

discuss the performance log analysis results with a particular focus on the log parsing
evaluation.

6.3.1 Semantic Log Analysis

In this part, we present the experimental evaluation of ADLILog. The performance
evaluation is performed on two public real-world data from HPC systems: BGL and
SPIRIT [132]. An important characteristic they share is that the methods have novel
log messages appearing through time, i.e., they evolve. This enables the evaluation
of the methods with appearing novel logs – methods generalization. We set the focus
on evaluating the detection performance, as the precise detection of anomalies is an
important quality indicator of the method. To estimate the ADLILog’s deployment
complexity, we further analyze two hyperparameters of the method and the learning
procedure. These experiments evaluate the practical properties of ADLILog.

Table 6.3: Datasets properties.

System Vendor #Processors Days #Messages # Anomalies # Anomalies (5m)
Blue Gene/L IBM 131072 215 4713493 348460 348460

SPIRIT DELL 1028 558 272298969 172816564 3403341

Datasets ; We select BGL and SPIRIT as two real-world log data from HPC systems.
They have been used for log-based anomaly detection by the research community [91,
127]. Table 6.3 shows the key properties of the datasets. As SPIRIT is a large dataset,
similar to related works [91], we consider five million chronologically ordered logs. The
BGL dataset is utilized fully, as it has less than five million logs. It is important to note
that the two datasets are labeled on a single log message enabling the evaluation on a
single log line anomaly detection. The column #Anomalies shows the number of labeled
anomalies within the data.

To evaluate the methods’ robustness, we perform the experiments on different train-
test splits, similar to Nedelkoski et al. [127]. To ensure that the test data always have
novel logs, we split the data chronologically on train-test splits. The train-test splits we
considered are: 5%-95%, 80%-20%. These splits allow the evaluation of the performance
of the method with fewer training instances and novel test logs, and vice-versa. We
further show relevant statistics on the input data. Table 6.4 gives the logs distributions
among the two splits. It can be seen that in each split there are many new logs in the
test, that do not appear in the training dataset. This enables testing the generalization
performance of the methods, i.e., the performance on unseen logs.

ADLILog Experimental Setup Implementation ; We perform the experiments using three

108 Chapter 6. Single Line Log-based Anomaly Detection and Classification

Table 6.4: Difference between the train-test splits for the two datasets.

System

Unique log messages
in train that are not part

of the test
Total

Template
Number5% 80%

Blue Gene/L 251 97 360
SPIRIT 463 51 1088

different values for the model size {16, 64, 256}. The max_len parameter is set to 32
because this length covers the majority of the log lengths. To prevent overfitting, we use
the dropout regularization technique with a probability rate of 0.05. In the pretraining
phase, we use Adam [87] optimizer with a learning rate 10−4 and values for β1 and β2 set
to 0.9 and 0.99, as commonly used optimizer for training encoder [40]. The finetuning is
performed for a maximum of 20 epochs with the same values for the parameters of the
optimizer. The experiments are conducted on a machine using Ubuntu 18.04, with CPU
Intel(R) i5-9600K, RAM 128 GB, and GPU RTX 2080.

Experimental Results and Discussion

Comparison against unsupervised methods; We evaluate the anomaly detection
performance in two separate experiments, against (1) unsupervised and (2) supervised
methods, to examine the potential strengths and shortcomings of our method with respect
to the two method groups. As evaluation criteria, we considered F1, precision and recall
as commonly used to access the performance of the anomaly detectors [91].

Experimental Setup; From the unsupervised methods, we considered DeepLog [44], and
PCA [172]. We found these methods to be competitors of ADLILog as our method is
unsupervised from the perspective of the target system. We set the hyperparameters of
the methods using their defaults from their respective implementations, enabling equal
methods comparisons. Recent study by Van-Hoang et al. [91] identifies LogAnomaly [117]
to outperform DeepLog by margins of 0.03-0.05 on the F1 score. As we are not aware
of any public implementation of it, and we do not consider it in our evaluation. We
considered the publicly available implementation of the two methods from the deep-
logalizer2 and logalizer3 libraries.

Results and Discussions ; Figure 6.5 shows the results of ADLILog compared against the
unsupervised baselines. Overall, ADLILog achieves the best-performing results in three
out of the four tested cases. Specifically, it outperforms the methods on F1 score for

2https://github.com/logpai/deep-loglizer
3https://github.com/logpai/loglizer

https://github.com/logpai/deep-loglizer
https://github.com/logpai/loglizer

6.3. Evaluation 109

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

BG
L

0.39

0.16
0.25

0.61

0.08

0.21

F1 Score

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.26

0.14 0.16

0.55

0.98

0.12

Precision Score
ADLILog PCA DeepLog

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.82

0.18

0.54

0.7

0.04

0.82

Recall Score

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

SP
IR

IT

0.89

0.67

0.93 0.96

0.31

0.95

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.8

0.96
0.9 0.92

0.97 0.99

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0 0.98

0.51

0.92
1.0

0.18

0.92

Figure 6.5: Comparison of ADLILog against unsupervised methods.

the two splits in BGL, and by a slight margin of 0.01 on the 80% split for SPIRIT.
ADLILog has a strong performance on recall, for both of the datasets. This means that
the method can correctly detect the true anomalies. This is attributed to the shared
properties of the "abnormal" class of the SL data as auxiliary data and the anomalous
target system class. As the SL data contain rich semantics of anomalous events, it
helps ADLILog to make more correct predictions on the novel logs. This is particularly
emphasised for the two splits of BGL. As can be seen from Table 6.4, this dataset has
a significant number of novel events in the test set, dozens of which have words like
"failed", "interrupted", "error" and similar. By leveraging the "abnormal" class of the
SL data (which shares similar vocabulary), ADLILog can exploit the shared properties
between the target system anomalies and the "abnormal" class. Therefore, the SL is
useful as auxiliary data in improving anomaly detection performance. It enables learning
of representations of the target-system logs by emphasising the differences between the
normal and anomalous logs, which ultimately helps anomaly detection.

DeepLog, in most cases, has a stronger performance on recall, as it learns the normal
state well. In some cases, as for BGL, leveraging just the template indices may not be

110 Chapter 6. Single Line Log-based Anomaly Detection and Classification

sufficient, as the precision drops. In the cases where novel normal log events are asked
to be predicted, the model confuses them with an anomalous input, which increases the
false positive rate affecting the precision. As ADLILog solely utilizes individual logs,
it aims to learn the distinctive features of what constitutes a normal sample from the
target system, by relying on the SL data as auxiliary data. The PCA method tends to
have a better performance on precision, as opposed to recall. Notably, PCA has a drop
in performance for both of the datasets on the 80% split (when more training data is
available). As PCA aims to represent the normal state by relying on the template count,
when many normal samples are available (increase variance in the data), the produced
representation space will have an increased number of components. In this case, PCA
faces the problem of the sparsity of the high dimensional spaces where the normal and
anomalous points are both further apart. This results in many anomalous points being
detected as normal (dropping the recall). As ADLILog and DeepLog learn the data
characteristics, they better exploit the availability of the input data, and in general, do
not have reduced performance when more data is available.

Comparison against supervised methods; As observed from the statistics of the
data, there exist many labeled logs. As supervised methods are commonly shown to be

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

BG
L

0.39
0.45

0.3 0.3
0.34

0.61
0.65

0.050.06

0.54

F1 Score

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.26
0.34

0.250.250.26

0.55

0.46

0.1
0.03

0.8

Precision Score

ADLILog LogRobust LR DT CNN

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.82

0.68

0.390.37

0.49

0.7

0.8

0.04

0.21

0.41

Recall Score

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

SP
IR

IT

0.89

0.990.970.960.98 0.96
1.0 0.991.0 1.0

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0

0.8

0.990.980.971.0
0.92

1.0 0.990.991.0

5% 80%
0.0

0.2

0.4

0.6

0.8

1.0 0.980.990.960.960.99 1.0 1.0 1.0 1.0 1.0

Figure 6.6: Comparison of ADLILog against supervised methods.

6.3. Evaluation 111

best performing for log-based anomaly detection, we evaluate ADLILog against them [91].
As the SL data used by ADLILog shares similar, but not the same properties with the
ground truth labels, this comparison further enables us to glean more insights into the
strengths and limitations of using the SL data as auxiliary data.

Experimental Setup; We compare ADLILog with four supervised methods. We considered
two deep learning-based methods (LogRobust [180], and CNN [112]), and two traditional
based approaches Decision Tree (DT) [28] and Logistic Regression (LR) [6]. LogRobust
is currently regarded as a state-of-the-art method, according to a recent survey [91].
Therefore, we do not compare ADLILog against any further methods from the literature.
We consider a similar evaluation scenario as in the unsupervised case.

Results and Discussions ; Figure 6.6 shows the results from the comparison. On average
the best performing method is LogRobust with an average F1 score of 0.55 on BGL,
as compared to 0.5 as obtained by ADLILog. On SPIRIT, ADLILog is outperformed
by both CNN and LogRobust on the F1 score. They both use the correct labels from
the target system. The existence of discrepancy can be attributed to the SL data that
does not model the exact vocabulary of the target system, i.e., the SL data as auxiliary
data does not preserve the correct target distribution, but similar related properties
instead. A further implication of this can be seen in the lack of the best-performing
scores on the SPIRIT dataset on the 80% split. While all the methods achieve the best
score, ADLILog suffers a drop by 0.04 on the F1 score. Nevertheless, it is important
to note that ADLILog in the case of BGL can use a small number of samples and can
provide slightly better scores than CNN. In comparison to the supervised methods, the
strongest aspect of ADLILog is the good performance on recall, where it outperforms
all the methods on the 5% BGL split, compares second on the 80% BGL split, and
is comparable for the two splits on SPIRIT. In addition, when considering the BGL
dataset, ADLILog outperforms the traditional supervised methods. As these methods
use fixed vectors as representation, ADLILog benefits from the finetuning process to
adjust its rich vocabulary to the vocabulary of the logs in the target system. Therefore,
it can perform better than the traditional methods. The deep learning-based anomaly
detection methods outperform the traditional ones due to learning the feature vectors
on the data. In general, as more samples for training become available, the performance
of the methods on F1 and precision improves. As the traditional supervised methods on
the 80% BGL split are trained on many data, they overfit and do not generalize well, as
seen by the drop in precision and recall. The good performance of the 80% SPIRIT split
for all the methods can be attributed to the low number of novel classes in the test split.

While in general ADLILog is outperformed by the deep learning-based supervised meth-
ods, it still performs comparably to them. This is particularly important as ADLILog
does not need labeled data, as opposed to supervised methods. Due to the fast rate of

112 Chapter 6. Single Line Log-based Anomaly Detection and Classification

system evolution and the depreciation of labels for logs, which come in large volumes,
the availability of the SL data as auxiliary data is important as it allows an unsupervised
method training with lower, but comparable performance to the supervised methods.
Therefore, ADLILog has a competing edge over the supervised methods from this per-
spective. Furthermore, ADLILog is out-competing the unsupervised methods, address-
ing the challenge of the low detection performance of the competing methods. Therefore
ADLILog generalizes better. The utilization of the SL data obtained from public code
repositories is one unique property of the proposed approach in comparison to other ex-
isting methods. In contrast to the related deep-learning methods that adopt word vector
representations for the input (e.g., LogRobust), ADLILog leverages publicly accessible
data from public repositories to learn log-specific properties of normal and abnormal
events among the different computer systems. The SL data utilization as auxiliary data
is specific for two aspects, 1) it enables learning of log-specific model to discern normal
and abnormal system events (after pretraining) and 2) enables the discrimination of the
anomalous data from the target system enabling anomaly detection (after fine-tuning).
Notably, the SL data is easily and publicly available, making its utilization practically
possible. Similar to other domains, as discussed in Ruff et al. [146], the results show that
the auxiliary data is beneficial for log-based anomaly detection.

1.0 1.5 2.0 2.5
log10 training time

0.1

0.2

0.3

0.4

0.5

0.6

F1
 s

co
re

Model size: 16

1.0 1.5 2.0 2.5
log10 training time

0.1

0.2

0.3

0.4

0.5

0.6

Model size: 64

batch size
32
64
256
512

1.0 1.5 2.0 2.5
log10 training time

0.1

0.2

0.3

0.4

0.5

0.6

Model size: 256

Figure 6.7: Sensitivity analysis of the influence of batch and model size
over the predictive and runtime performances.

ADLILog Hyper-parameter setting evaluation; The correct hyper-parameter set-
ting influences the needed effort for the method training, and the quality of the detection.
To evaluate the impact of the hyperparameters on the detection performance and effi-
ciency, we examined two hyperparameters, model and batch sizes. The model size is

6.3. Evaluation 113

related to memory utilization while the batch size is related to the time needed to up-
date the model.

Experimental Setup; We considered the 80% split of the BGL dataset to study the effects
of the hyperparameters. We varied the model size in the range {16, 64, 256} and batch
size in the range {32, 64, 256, 512}, at a fixed number of iterations for the pretraining
phase. The F1 score as a measure of the detection performance is reported.

Results and Discussions ; Figure 6.7 shows the results. It can be seen that the larger batch
size and smaller model size provide better detection performances while being faster for
updating. The smaller model sizes imply smaller memory utilization. The prediction time
per batch size of 512 is 17 ms (∼30000 logs per second) on the aforenamed configuration.
Together with the small model size, these experiments imply that ADLILog can produce
many predictions relatively fast. This is important for modern software systems that
produce many logs (e.g., He et al. [70] report up to 50GB/h). Observing the time it can
be seen that the times for model updates are relatively low. These parameters show that
the method has good practical properties. In the following, we discuss the performance
on the single log line anomaly classification task.

Semantic Anomaly Classification

Experimental Setup; To evaluate the semantic anomaly classification method, we used
the BGL dataset as it has an anomaly class of individual logs. In total there are 41
classes. The top-3 most frequent classes are KERNDTLB which denotes "data TLB
error interrupt" (and it is the most frequent one with (152,734/348,460) log messages),
KERNSTOR which shows "data storage interrupt", and APPSEV which describes "ciod:
Error reading message prefix after LOGIN MESSAGE on CioStream". We compare our
approach with LogClass [119] implemented with TFIDF, which was trained with the
default values for its parameters. We evaluate the methods of several splits from BGL.
The splits are created by incrementally splitting the data into intervals of 10% between
10-90%. We used the last 20% of the split to create the test dataset. For example, if
there are 100 log messages, for the 10% split we will use just the first 10 logs. Out of
them, eight will be used for training the model, and the remaining two for evaluation.
This evaluates the methods progressively through time as more knowledge for anomaly
classes becomes available (e.g., given by an operator).

Results and Discussions ; Table 6.5 shows the results. Note that both methods achieve
comparable and peak performance on the task of semantic log-based anomaly classifica-
tion, under the recurrence assumption. Specifically, as seen by the target class statistics,
whenever there are no new log classes in the test set (the row unique test samples) the
performance of the two methods is optimal. Once there are new log templates (e.g.,

114 Chapter 6. Single Line Log-based Anomaly Detection and Classification

the split 0.5), the performance drops as the models are asked to predict unseen classes.
The drop in performance is the most severe for the split of 0.7, where there are 24 new
classes in the test set. However, by directly matching the templates, one is ensured that
the known anomalies are correctly classified. The unclassified logs are stored and can
be given to operators for labeling. As seen by the next split, i.e., 0.8, all the classes are
correctly detected after labels are obtained. Therefore, the single-log-line anomaly classi-
fication method augments the reported output beyond the detected anomaly if knowledge
of anomalous classes is available.

6.3.2 Performance Log Analysis

We split the evaluation of the performance log analysis into two parts. We begin by
discussing the evaluation setup for log parsing. Next, we present the evaluation results
against twelve related log parsing methods. Finally, we describe the experimental sce-
nario we developed alongside the experimental results for performance anomaly detection
evaluation.

Log Parsing Evaluation

Experimental Setup; To quantify the performance of the proposed method, we perform
an exhaustive evaluation of the log parsing task on a set of 10 benchmark datasets and
compare the results with 12 other log template parsing methods. The comparison with
other systems allows us to examine the robustness of the parser across logs generated
from different systems. This is of particular importance for the performance anomaly
detector which requires that the log parser can work well for many different systems.
The datasets with the implementation of the other parsers were obtained from the log

Table 6.5: Semantic anomaly classification results on BGL.

Split 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Target
Class

Statistic

Train
Classes

4.0 4.0 4.0 4.0 4.0 4.0 5.0 29.0 30.0

Test
Classes

1.0 1.0 1.0 1.0 5.0 5.0 28.0 6.0 26.0

Unique Test
Classes

0.0 0.0 0.0 0.0 1.0 1.0 24.0 0.0 6.0

Ours
F1 1.0 1.0 1.0 1.0 0.6 0.6 0.06 1.0 0.69
Precision 1.0 1.0 1.0 1.0 0.8 0.8 0.14 1.0 0.7
Recall 1.0 1.0 1.0 1.0 0.6 0.6 0.05 1.0 0.7

LogClass
F1 1.0 1.0 1.0 1.0 0.6 0.76 0.06 1.0 0.7
Precision 1.0 1.0 1.0 1.0 0.8 0.8 0.14 1.0 0.74
Recall 1.0 1.0 1.0 1.0 0.6 0.73 0.05 1.0 0.71

6.3. Evaluation 115

benchmark introduced in Zhu et al. [187]. As evaluation criteria, we used parsing accuracy
and edit distance.

Table 6.6: Datasets and NuLog hyperparameter settings.

System #T Tokenization filter #epochs ϵ

BGL 120 ([|:|\(|\)|=|,])|(core.)|(\.2,) 3 50
Android 166 ([|:|\(|\)|=|,|"|\|\|@|$|\[|\]|\||;]) 5 25
OpenStack 43 ([|:|\(|\)|"|\|\|@|$|\[|\]|\||;]) 6 5
HDFS 14 (\s+blk\–)|(:)|(\s) 5 15
Apache 6 ([]) 5 12
HPC 46 ([|=]) 3 10
Windows 50 ([]) 5 95
HealthApp 75 ([]) 5 100
Mac 341 ([])|([\w-]+\.)2,[\w-]+ 10 300
Spark 36 ([])|(\d+\sB)|(\d+\sKB)|(\d+\.)3\d+ 3 50

Datasets ; The log datasets employed in our experiments are summarized in Table 6.6.
These real-world log data range from supercomputer logs (BGL and HPC), and dis-
tributed system logs (HDFS, OpenStack, Spark), to standalone software logs (Apache,
Windows, Mac, Android). To perform the experiments, we follow the guidelines from
Zhu et al. [187] and utilize a random sample of 2000 log messages from each dataset,
where the ground truth templates are available.

The BGL dataset is collected by Lawrence Livermore National Labs (LLNL) from the
BlueGene/L supercomputer system. HPC logs are collected from a high-performance
cluster, consisting of 49 nodes with 6,152 cores. HDFS is a log data set collected from
the Hadoop distributed file system deployed on a cluster of 203 nodes within the Ama-
zon EC2 platform. OpenStack is a result of a conducted anomaly experiment within
CloudLab with one control node, one network node and eight compute nodes. Spark is
an aggregation of logs from the Spark system deployed within the Chinese University of
Hongkong, which comprises 32 machines. The Apache HTTP server dataset consists of
access and error logs from the apache web server. Windows, Mac, and Android datasets
consist of logs generated from single machines using the respectively named operating
system. HealthApp contains logs from an Android health application.

Results and Discussions ; In the following we discuss the log parsing PA results of NuLog
on the benchmark datasets, and compare them against twelve other methods. Table 6.7
presents the results. Specifically, each row contains the datasets, while the compared
methods are given the columns. Additionally, the penultimate column contains the high-

116 Chapter 6. Single Line Log-based Anomaly Detection and Classification

est value of the first twelve columns - referred to as the best of all - and the last column
contains the results for NuLog. In the bold text, we highlight the best of the methods
per dataset. HDFS and Apache datasets are most frequently parsed with maximal (i.e.,
100% PA). This is because HDFS and Apache error logs have relatively unambiguous
event templates that are easy to identify. For them, NuLog is also able to achieve compa-
rable results. For the Spark, BGL and Windows datasets, the existing methods already
achieve high PA values above 96% (BGL) or above 99% (Spark and Windows). Our
proposed method can slightly outperform those. For the rather complex log data from
OpenStack, HPC and HealthApp the baseline methods achieve a PA between 78% and
90%, which NuLog outperforms by 4-13%.

Having a good parsing model is vital for the performance anomaly as it enables the
correct disentanglement of the static text and the variable parameters. This enables
performance anomaly detection. Therefore, the robustness of NuLog is analyzed and
compared to the related methods. Figure 6.8 shows the accuracy distribution of each
log parser across the log datasets within a boxplot. From left to right in the figure, the
log parsers are arranged in ascending order of the median PA. That is, LogSig has the
lowest, and NuLog obtains the highest parsing accuracy on the median. Although most
log parsing methods achieve high PA values of 90% for specific log datasets, they have
a large variance when applied across all given log types. NuLog outperforms the other
baseline methods in terms of PA robustness with a median of 0.99. This makes NuLog
particularly suitable for extracting the parameters from the log messages across different
systems. This is important for the performance anomaly detector whose performance is
directly related to the correctly extracted parameters. Notably, the extracted events can
be further used by other log analysis tasks.

Figure 6.8 gives the edit distance scores. The table structure follows one of the PA

results. In bold, we highlight the best edit distance value across all tested methods
per dataset. It can be seen that in terms of edit distance, NuLog outperforms existing
methods on the HDFS, Windows, Android, HealthApp and Mac datasets. It performs

Table 6.7: Comparisons of log parsers on parsing accuracy.

Dataset SLCT AEL LKE LFA LogSig SHISHO LogCluster LenMa LogMine Spell Drain MoLFI BoA NuLog

HDFS 0.545 0.998 1.000 0.885 0.850 0.998 0.546 0.998 0.851 1.000 0.998 0.998 1.000 0.998
Spark 0.685 0.905 0.634 0.994 0.544 0.906 0.799 0.884 0.576 0.905 0.920 0.418 0.994 1.000
OpenStack 0.867 0.758 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.867 0.990
BGL 0.573 0.758 0.128 0.854 0.227 0.711 0.835 0.690 0.723 0.787 0.963 0.960 0.963 0.980
HPC 0.839 0.903 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.903 0.945
Windows 0.697 0.690 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406 0.997 0.998
Mac 0.558 0.764 0.369 0.599 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636 0.872 0.821
Android 0.882 0.682 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919 0.911 0.788 0.919 0.827
HealthApp 0.331 0.568 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.780 0.875
Apache 0.731 1.000 1.000 1.000 1.000 1.000 0.709 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6.3. Evaluation 117

logsig SLCT SHISHO LKE LogCluster MoLFI LFA AEL LogMine LenMa Spell Drain BoA NuLog

0.2

0.4

0.6

0.8

1.0

Pa
rs

in
g

Ac
cu

ra
cy

 (P
A)

Figure 6.8: Robustness evaluation on the parsing accuracy.

comparably on the BGL, HPC, Apache and OpenStack datasets and achieves a higher
edit distance on the Spark log data.

We further want to verify how consistent NuLog is performing in terms of edit distance
across the different log datasets. Figure 6.9 shows a box plot that indicates the edit
distance distribution of each log parser for all log datasets. From left to right in the
figure, the log parsing methods are arranged in descending order of the median edit
distance. Although most log parsing methods achieve minimal edit distance scores under
10, most of them have a large variance over different datasets and are therefore not
generally applicable for diverse log data types. MoLFI has the highest median edit
distance, while Spell and Drain perform constantly well - i.e. small median edit distance
values - for multiple datasets.

Table 6.8: Comparisons of log parsers on edit distance.

Dataset LogSig LKE MoLFI SLCT LFA LogCluster SHISHO LogMine LenMa Spell AEL Drain BoA NuLog

HDFS 19.1595 17.9405 19.8430 13.6410 30.8190 28.3405 10.1145 16.2495 10.7620 9.2740 8.8200 8.8195 8.8195 3.2040
Spark 13.0615 41.9175 14.1880 6.0275 9.1785 17.0820 7.9100 16.0040 10.9450 6.1290 3.8610 3.5325 3.5325 12.0800
BGL 11.5420 12.5820 10.9250 9.8410 12.5240 12.9550 8.6305 19.2710 8.3730 7.9005 5.0140 4.9295 4.9295 5.5230
HPC 4.4475 7.6490 3.8710 2.6250 3.1825 3.5795 7.8535 3.2185 2.9055 5.1290 1.4050 2.0155 1.4050 2.9595
Windows 7.6645 11.8335 14.1630 7.0065 10.2385 6.9670 5.6245 6.9190 20.6615 4.4055 11.9750 6.1720 5.6245 4.4860
Android 16.9295 12.3505 39.2700 3.7580 9.9980 16.4175 10.1505 22.5325 3.2555 8.6680 6.6550 3.2210 3.2210 1.1905
HealthApp 17.1120 14.6675 21.6485 16.2365 20.2740 16.8455 24.4310 19.5045 16.5390 8.5345 19.0870 18.4965 14.6675 6.2075
Apache 14.4420 14.7115 18.4410 11.0260 10.3675 16.2765 12.4405 10.2655 13.5520 10.2335 10.2175 10.2175 10.2175 11.6915
OpenStack 21.8810 29.1730 67.8850 20.9855 28.1385 31.4860 18.5820 23.9795 18.5350 27.9840 17.1425 28.3855 17.1425 21.2605
Mac 27.9230 79.6790 28.7160 34.5600 41.8040 21.3275 19.8105 17.0620 19.9835 22.5930 19.5340 19.8815 17.062 2.8920

Performance Anomaly Detection Evaluation

Experimental Design ; In the following, we present the experimental design for perfor-
mance anomaly detection. The detection of performance anomalies requires knowledge
about the system itself, e.g., the meaning of the parameters and the context anomalies

118 Chapter 6. Single Line Log-based Anomaly Detection and Classification

MoLFI LogMine LogCluster LogSig LKE LenMa LFA SLCT SHISHO AEL Spell Drain Best NuLog
0

10

20

30

40

50

60

70

80
Ed

it
di

st
an

ce

Figure 6.9: Robustness evaluation on the edit distance.

appear in. This does not limit the general applicability of the approach but enables the
evaluation. Du et al. [44] propose a dataset and a procedure for generating performance
anomalies we adopt. Specifically, the introduced dataset simulates how multiple users
constantly request the creation and deletion of VMs. To generate performance anoma-
lies, the authors propose throttling the network between the control and compute nodes.
As copying the image from the control node to the compute node is an important op-
eration during VM creation, the network throttling increases the time for executing the
operation but does not report sequential or single log line anomalies. The events related
to this parameter can be used for performance anomaly detection. We restrict to a sin-
gle use case for the evaluation as we are not aware of other public resources describing
the generation procedure for performance anomalies without introducing anomalies with
additional properties, e.g., semantic or sequential.

To build models we considered the procedure described in Section 6.2.2. We applied first
the log parser to extract the log templates. The procedure resulted in a total of 54 events.
A total of 42 templates have categorical information in the name of the VM the event
is associated with. The remaining templates are characterized by both categorical and
numeric data types. As the network throttling slows down the internet connection, the
time needed to copy the image is increased. Therefore, from the numerical data types,
the parameters related to the word "seconds" are considered the most relevant and we
analyze them.

Results and Discussions ; Figure 6.10 summarizes the results from three different events.
It can be seen that the majority of the normal data fall within the 95% and 99% confidence
intervals obtained for r = {1.96, 3} correspondingly given by the blue dots. Figure 6.10a
depicts the distribution of the normal validation and test, and anomalous test times for
the parameters "seconds" of the event "Took <*> seconds to build instance". The red
dots denote the VMs with a creation time larger than 30 seconds when the anomaly
was injected. From the semantic perspective, the event denotes a normal system state.

6.3. Evaluation 119

20 25 30 35 40 45 50
SECONDS

0.000

0.002

0.004

0.006

0.008

0.010

0.012

p(
x)

; p
ro

ba
bi

lit
y

un
de

r f
itt

ed
 G

au
ss

ia
n

di
st

rib
ut

io
n Took <*> seconds to build instance

normal validation
normal test
anomalous test
threshold 95%
threshold 99%

(a) Event 1

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
SECONDS

0.00

0.05

0.10

0.15

0.20

p(
x)

; p
ro

ba
bi

lit
y

un
de

r f
itt

ed
 G

au
ss

ia
n

di
st

rib
ut

io
n Took <*> seconds to deallocate network for instance

normal validation
normal test
anomalous test
threshold 95%
threshold 99%

(b) Event 2

20 25 30 35 40 45 50
SECONDS

0.000

0.002

0.004

0.006

0.008

0.010

p(
x)

; p
ro

ba
bi

lit
y

un
de

r f
itt

ed
 G

au
ss

ia
n

di
st

rib
ut

io
n Took <*> seconds to spawn the instance on the hypervisor

normal validation
normal test
anomalous test
threshold 95%
threshold 99%

(c) Event 3

Figure 6.10: Performance anomaly detection results.

However, the large time to build the instance suggests the existence of some problem.
The exploitation of the parameter enables the detection of the anomaly. If just semantics
would have been used, this anomaly would have been probably missed as denotes a normal
system event. Figure 6.10c gives the event "Took <*> seconds to spawn the instance on
the hypervisor." where a similar observation can be made. However, in the case of the
second event "Took <*> seconds to deallocate network for instance." (Figure 6.10b) the
time is not affected as it does not require the involvement of the communication between
the control and compute node. While all three events denote a normal state from a
semantic perspective, utilizing the parameters of the log events enables richer visibility
into system behaviour and detects anomalies that would have been otherwise missed.
Therefore, the successful detection of anomalies in single log lines should encompass
both, the parameters and the semantics of the logs.

120 Chapter 6. Single Line Log-based Anomaly Detection and Classification

6.4 Chapter Summary

This chapter addresses the task of automating single log analysis. As the anomalies
affect the single log lines differently, we split the analysis into 1) semantic log-based
anomaly detection and classification and 2) performance anomaly detection. To de-
tect semantic anomalies, we introduced a novel unsupervised method for log anomaly
detection, named ADLILog. The key idea of ADLILog is to use large unstructured in-
formation from the logging instructions of public code repositories. ADLILog uses this
information as auxiliary data to improve the target-system log representations, which di-
rectly improves anomaly detection. We first conducted a study to examine the language
properties of the log instructions, and we showed that they encode rich anomaly-related
information. ADLILog combines the anomaly-related information as auxiliary data and
the target-system data to learn a deep neural network model by a sequential two-phase
learning procedure. The extensive experimental results on two real-world datasets from
HPC systems showed that ADLILog outperforms the unsupervised, and has a compet-
itive detection performance with the supervised methods. Furthermore, ADLILog has
better generalization performance. By leveraging the recurrence assumption we further
considered the classification of single log line anomalies.

For a complete single log line analysis we further detect the anomalies within log message
variables. One challenge with respect to this is to correctly disentangle the static text
from the variable parameters, and extract data for performance anomaly detection. To
that end, we proposed a novel log parsing method. We observed that having words ap-
pearing at a constant position of a log record implies that their correct prediction can be
directly used to produce a log message template. An incorrect prediction indicates that
a token is a parameter. Based on this observation, we proposed NuLog as a log pars-
ing method that uses deep learning to learn the constant and variable parts of the log
instructions. The evaluation results on ten public benchmark datasets from diverse sys-
tems showed that NuLog achieves high robustness. This is important because it enables
the usage of NuLog as a log parsing method across many different systems, and correctly
extracts the parameters important for performance anomaly detection. Furthermore,
by adopting a parsimonious model for anomaly detection on the parameters extracted
with the log parsing procedure, we showed that we can also detect performance anoma-
lies. Through a use case, we showed that the analysis of the two categories (semantic
and performance) in unison enables greater anomaly detection coverage. Ultimately, the
proposed methods contribute to the improvement of the operational and development
processes.

The single log analysis is particularly useful in cases where the semantics and variables
are of primary concern. As long as the anomaly is expressed within a single log, these

6.4. Chapter Summary 121

methods can give a hint and narrow down the potentially relevant set of logs. That
way the method is complementary to the existing log levels within the source code, as
it put the accent on the semantics of the logs. Due to the possibility of misjudging the
log level of the events [100], the semantic anomaly detector as it is trained on many
diverse normal and anomalous system events can be particularly useful when large log
volumes need to be analyzed. A key feature of the presented semantic anomaly detection
approach is the existence of publicly available data to extract the log instructions to
learn general features of anomalous and normal events among different systems. The
presented achievements indicate that reusing publicly available data can be effective in
the automation of IT operation tasks such as log-based anomaly detection.

122 Chapter 6. Single Line Log-based Anomaly Detection and Classification

Chapter 7

Sequential Log-Based Anomaly
Detection and Classification

Contents
7.1 Log Sequence Representation with Event Groups 125

7.2 CLog: Method for Sequential Log-based Anomaly Detection
and Classification . 127

7.2.1 PLog: Context-aware Event Group Extraction 128

7.2.2 Sequential Anomaly Detection 133

7.2.3 Sequential Anomaly Classification 135

7.3 Evaluation . 136

7.3.1 Sequential Anomaly Detection 138

7.3.2 Sequential Anomaly Classification 142

7.4 Chapter Summary . 143

Although the single log line anomaly detection and classification methods can achieve
high performance, due to the insufficient anomaly coverage in the source code some
anomalies may not be explicitly logged [102]. As a consequence, the single log analysis
cannot deal with those cases. Nevertheless, anomalies can manifest in logs as changes in
the log sequences, prompting the need for sequential analysis [44].

The focus of this chapter is the problem of sequential log-based analysis. When consid-
ering log sequences, the challenge of how to efficiently represent log sequences as complex
data emerges. The log sequence representations should consider different dependencies
within the overall sequence. One type of dependence originates from the non-conditioned
sequential calls between the different functions within the source code. However, as the

123

124 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

program flow of the modern system involves the conditional invocation of multiple sys-
tem components (e.g., caused by branching conditions), there exist many conditional
changes within the log sequences, i.e., diverse log sequences. The conditional changes
cause different log events to be part of different contexts (i.e., a set of events frequently
co-occurring together). As the scale of the modern systems increase, the event contexts
are becoming more diverse. Furthermore, due to the challenge of software evolution,
log sequences frequently change, further enriching the reasons for novel log sequence de-
pendencies. Another consideration with respect to the complexity of the data resides
in the limited usability of the labels (i.e., the labeling challenge) which is a commonly
referenced reason for the inability to achieve good practical properties of the log-based
anomaly detection methods (i.e., the challenge of low performance of related methods)
or it is limiting the scope of their validity [91]. Another aspect adding to the complexity
of the log sequential analysis is the existence of unstable log sequences [180]. The un-
stable log sequences are log sequences that describe normal system behaviour. However,
network errors, limited throughput, or storage issues can cause some events to repeat
or be dropped which slightly changes the normal sequence. Therefore, the resulting log
sequences are normal, but there are certain events that are missing or duplicated. No-
tably, the instability makes the log sequences similar to the anomalous sequences (e.g.,
shortened lengths or contexts differ in a single event), making it harder to distinguish
them from one another.

To address the challenges for sequential log anomaly detection we adhere to the nor-
mality and anomaly detectability assumptions. These assumptions enable us to model
the normal system state and adopt models with higher modeling capacity, like deep
learning-based methods. The anomaly detectability enables the detection of the anoma-
lies reflected within the log sequences. To enable anomaly classification, we further refer
to the recurrence assumption.

The contributions presented within this chapter aid the system operation and develop-
ment in detecting and classifying sequential anomalies and they are presented as follows 1:

1. We find that by representing the log sequences as sequences of contextually similar
event groups (e.g., groups of neighbouring events), the impurity in the input log
sequences is reduced.

2. We propose a novel method, named PLog, that uses deep learning and clustering
techniques to extract context-aware event groups.

3. We show that by representing the log sequences as sequences of event groups by
PLog, properties of the sequential anomaly detection and classification methods
can be improved.

1Parts of this chapter are published in [10, 12, 135] and patented in [20].

7.1. Log Sequence Representation with Event Groups 125

The remainder of this chapter describes our approach to sequential log analysis. Sec-
tion 7.1 analyzes the benefits of representing the log sequences as sequences of event
groups instead of sequences of log events. Section 7.2 introduces our method, PLog, for
extracting event groups. It further shows its application in the overall method named
CLog for unsupervised anomaly detection and classification. Section 5.3 presents and
discusses the evaluation results. Section 5.4 summarizes the chapter.

7.1 Log Sequence Representation with Event Groups

The log generation within the log file is conditioned on the control flow and the different
internal and external inputs and conditions that cause certain behaviours. Intuitively,
during normal system operation, the logs that are serving and referring to the execution
of a certain function should appear consecutively. Additional logs that are not referring
to the function can potentially be intertwined in between. Considering this, if there
is a successful normal realization of the function, the same logs are expected to co-
occur together within a certain time interval irrespective of their ordering within the
interval (i.e., they form an event context). For example, Table 7.1 shows a context of
events associated with creating a VM in OpenStack (an open-source cloud computing
infrastructure software project) obtained from log dataset introduced in Cotroneo et
al. [36]. The VM is successfully created, and the log messages on lines 200, 224, 225,
226, and 240 all refer to the initial and later phases of the successful creation of a VM.
The events are appearing within short time intervals, potentially separated by other logs.
Note that, the additional logs are also part of the context (line 210 in the example) of a
given time window irrespective that they are not referring to a specific function.

Considering this, one can observe a whole log file as composed of different time windows,
where each time window refers to a set of different contexts composed of co-occurring
logs and additional logs intertwined in between. As a single system is expected to execute
similar tasks, some event groups share the same events and experience similar properties,
but occur in different time windows. We refer to these groups as event groups (clusters)
identified by a single identifier. Note that the identifier does not necessarily have an
explicit meaning in terms of executing certain subprocesses. The event groups are nat-
urally appearing one after the other forming the sequence of event groups. By learning
the normal similar sequence of event groups one expects that whenever anomalous logs
appear within given event groups, the sequence of event groups is disturbed, showing
useful information for operation tasks (e.g., detection of anomalies).

Motivated by this intuition, we analysed a log file with logs from OpenStack, introduced
by Cotroneo et al. [36] to find if there are benefits of this view on the log sequences. The
data is generated by repeating a single workload (common operations associated with

126 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

VM, e.g., creating, deleting) many times. For this analysis, we consider just the normal
event sequences. We represent the log sequence as a string of characters where each
character is a single event. We found 518 events that describe the different runs of the
workload. Following our discussion above, we first split the event sequences into event
groups on different window sizes (60s, 120s, 180s, 240s and 300s). Therefore, we obtain
two representations of a log sequence with a certain task ID: 1) time window event split
of a log sequence, alongside its 2) original sequence representation.

Table 7.1: Example of event groups forming the context of VM creation
event in OpenStack.

Log Line Timestamp Log Message
200 00:49:18.456 Claim successful on node localhost.localdomain
210 00:49:26.362 GET 10.0.20.46:35357
224 00:49:33.667 Took 12.51 seconds to spawn the instance on the hypervisor
225 00:49:33.896 During sync_power_state the instance has a pending task (spawning). Skip.
226 00:49:33.900 VM Created (Lifecycle Event).
240 00:49:34.041 Took 15.67 seconds to build instance.

To compare the impact on the event sequence representation over the log sequences, we
used entropy [63]. Entropy enables quantifying the differences in the uncertainty of the
different representations as it measures the impurity of the input sequences. From a mod-
eling perspective, higher entropy relates to more challenging input data as the relevant
information important for the operational task is closely intertwined with additional less
relevant data. The entropy on the time window event split representation for a single
task ID is calculated by first calculating the entropy on the individual event windows,
and afterwards averaging the entropies over all the windows of the log sequence with the
same task ID. The entropy for the original sequence representation is calculated directly
over the original log sequence. For both representations, the entropy is averaged over all
the log sequences with a task ID in the data. That way, we can evaluate the differences
in the impurity in different representations. Figure 7.1 illustrate the entropies with the
two types of representations (black rectangles denote the input represented by the time
window event split, while the diamond is the entropy over the individual sequences rep-
resented by their original length). It can be seen that as the time window increases so
does the entropy. The entropy peaks when the sequences are represented by the overall
event sequence associated with a task ID. Notably, for smaller time windows the entropy
also decreases. Therefore, by aggregating the windows, we expect that the impurity of
the modeling sequences will decrease. As this reduces the impurity of the modeling input
data, the latter representation may expose richer information for modeling, potentially
suitable for sequential log analysis.

7.2. CLog: Method for Sequential Log-based Anomaly Detection and Classification 127

In addition, as we expect that similar log sequences exist among the different time win-
dows, we identify similar event groups and assigned an individual identifier for each of
them. 2 Therefore, the log sequences are represented as sequences of group identifiers. By
calculating the average entropy of the log sequences associated with a single task ID on
this representation, it can be seen that the entropy is further reduced. The representation
with event group identifiers further reduces the impurity in the log sequence. Inspired
by this observation, we consider that it is beneficial to learn these context-aware groups,
to reduce the uncertainty within the overall log sequences. Therefore, an important goal
of the proposed method is to learn these event sequence groups while preserving their
characteristics (e.g., preserving contextual event information).

60s 120s 180s 240s 300s orgi.seq.len.
window size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

av
er

ag
e

en
tr

op
y

event groups/symbols
10
50
518 raw events
518 raw event orig.seq.

Figure 7.1: Impact of the log sequence representations on entropy.

7.2 CLog: Method for Sequential Log-based Anomaly De-
tection and Classification with Event Groups

To address the problems of sequential log-based anomaly detection and classification, we
propose CLog. Figure 7.2 gives an overview of the method. It has three parts 1) log
parsing, 2) context-aware event group extraction, and 3) anomaly identification 3. Log
parsing, as a general preprocessing procedure in log analysis [187], extracts the event
templates from the incoming raw log events, transforming the raw log message sequences
into sequences of log event templates. The event template sequences are processed by
the context-aware event group extraction part, converting them into sequences of event

2We explain the process of similar event group extraction in the following parts of the chapter.
3We use the term anomaly identification to refer to the two problems of anomaly detection and

classification jointly.

128 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

groups. This part leverages the observation that by representing the log sequences on a
level of event groups, the entropy of the representation sequence is smaller. Finally, the
processed log sequences are given as input into the anomaly identification part. The latter
is composed of two modules (a) anomaly detector and (b) anomaly classification. The
goal of the anomaly detector is to detect the anomalous sequences of event groups. The
anomaly classification module leverages the recurrence assumption to further identify
the anomaly class. The anomaly classes are stored in a knowledge base of instances
with sequential anomalous classes. In case when this knowledge base is not available,
the classification part is not used. CLog has two modes of operation: offline and online.
During the offline phase, the parameters of the context-aware event group extraction part,
and the anomaly identification parts are learned, and the learned models are stored. In
the online phase, the stored models are loaded and used to identify anomalies. Note, that
the method expects parsed log events as input, therefore, we keep the log parsing part
in the figure to emphasise this need. As we discussed the log parsing part in Chapter 6
we do not discuss it here. In the following, we describe the internal mechanisms of the
second and third parts of CLog in detail.

Context-aware Event Group
Extraction (PLog)

Anomaly Detection
and Classification

E2 E5 E3 E2 E6 E1 E1 E9 E5

window size (e.g., 60s)
(parameter)

Time axis

t1 t2 t3

Task ID 1:

S1 S2 S4

Sequence of
Event Groups

Output:
Task ID 1 is anomalous.
The type of anomaly is,
Failure Instance.

Input:

t1,2,3… time intervals

Raw System
Log Messages

Sequence
of Events

Log Parsing

Figure 7.2: CLog architecture overview.

7.2.1 PLog: Context-aware Event Group Extraction

The context-aware event group extraction is the central part of the method. Its goal
is the extraction of event groups from the parsed log event sequences. By representing
an execution workload on a higher-level granularity, i.e., by event groups, we reduce the
entropy in the input learning samples. The context-aware event group extraction com-
bines context-aware neural network and clustering methods to learn explicit relation-
ships between the events within the event sequences preserving their local properties.
For example, in the Table 7.1, the log message "Took 15.67 seconds to build instance.",
although, appears after the log message "Took 12.51 seconds to spawn the instance on
the hypervisor", it still refers to the successful event of VM creation. Considering this
information from the context is beneficial for the learning of the representation model

7.2. CLog: Method for Sequential Log-based Anomaly Detection and Classification 129

as it is additional information the model can learn from. We choose a neural network-
based approach to learn the sequential embeddings due to the neural network’s ability
to extract complex dependencies from the input event sequences. The availability of
many instances to learn from, and the sequential nature of the data are generally con-
sidered domains where neural networks can use their high modeling capacities and are
preferred method choices [56]. We choose a clustering approach towards extracting the
event groups on a given dataset, as it is unknown which event sequences are similar.
As the clustering process groups the similar event sequences based on how similar the
learned representations from the neural network are, it allows considering the cluster
prototype as an event group identifier.

Figure 7.3 depicts the overall design of the context-aware event group extraction part with
a running example. Conceptually, it is composed of three submodules – (1) preprocessing
submodule that transforms the input sequences into a format suitable for learning, (2) a
neural network learning module which is combined with a batched k-means method to
learn event groups in an unsupervised manner, (3) event group extraction module that
assigns a unique event group identifier to the input event sequence. In the following, we
describe the submodules.

Padding

…

Input:

Neural
Network

Submodule:

𝑠𝑖:

Masking

𝑠𝑖1
𝑚:

𝑠𝑖2
𝑚:

𝑠𝑖3
𝑚:

Sequence of events

Masked Event Group
ID assignment

Output Layer 𝜽′

Vectorizer

Encoder Block 𝜽

𝑠𝑖1
𝑚: 𝑠𝑖2

𝑚: 𝑠𝑖3
𝑚:

Preprocessing:

S1: S2: Event Group
Extraction

Sk:

[LSE] vector

E2 E5 E3

[M] E5 E3

E2 [M] E3

E2 E5 [M]

[PD]

[PD]

[PD]

[PD]

[PD]

[PD]

[LSE]

[LSE]

[LSE]

…

…

…E2 E5 E3 [PD] [PD][LSE]

E2 E5 E3
𝑠𝑖1
𝑚, 𝑠𝑖2

𝑚 𝑠𝑖3
𝑚 ∅

Output: The event sequence: is assigned with event group ID S1.

Explanation: 2/3 masked event group sequences have an ID S1.
E2 E5 E3

𝑠𝑖1
𝑚,𝑠𝑖2

𝑚

Masked target:

𝐽 = 𝐽𝑚 +λ 𝐽𝑘
𝐽𝑚 masked loss
𝐽𝑘 k-means loss

Figure 7.3: Internal design of the context-aware event group extraction
part (with a detailed explanation of a running example).

130 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

Preprocessing Submodule

The goal of the preprocessing submodule is to preprocess the input log sequences in a
unified format for the neural network. It has two components: padding and masking.
Padding ; The padding component receives the sequences of log events as input, with
each event represented by a unique symbol (e.g., integer). We refer to it as a token.
The sequences of events in a given time interval are different in length. However, the
neural network requires a fixed-size representation of the input. The padding component
specifies a hyperparameter max_length and appends each of the shorter log sequences
with a dedicated token [PD] up to max_length to enforce fixed-size representation.
The longer sequences are truncated. Notably, we add a dedicated token [LSE] (Log
Sequence Embedding) at the beginning of each sequence. During learning, we enforce
the sequence token representations to propagate through the upper layers in the network
via the [LSE] token. Thereby, [LSE] attends over all the tokens from the sequence and
summarizes the relevant context during learning. The [LSE] token serves as a sequence
vector representation used to group contexts and identify event groups. The output of
this module is the prepended and padded event sequence.

Masking. To learn context-aware groups, we consider a general self-supervised learning
task from NLP research called Masked Language Modeling (MLM) [40]. To apply the
MLM task, the masking component is processing the prepended and padded log event
sequences in a suitable format. More specifically, as input, it receives the prepended and
padded log event sequences and outputs a set of pairs of masked log event sequences
and original masked events. Masked log event sequences are sequences of log events
created by replacing all of the events from an original log sequence with a special [M]

(masked) token. For example, for the input sequence (E2, E5, E3), one masked sequence
is (E2, [M], E3), with E5 being the original masked event. There are three masked event
sequences for this example. [LSE] and [PD] tokens are not affected by the masking
procedure. During training, a masked sequence is given as input to the neural network,
while the original masked token is used as the prediction target. By predicting the mask
from the co-occurring tokens, the method learns the most important events from the
surrounding context, extracting context-aware representations. The capability of the
MLM task to consider the learning of local contexts is the main reason for its selection.
Note that by this procedure single input sequence is multiplied several times. We keep
track of the origin (the input event sequence) of each masked sequence and use it to
extract its corresponding event group identifier.

Neural Network Submodule

The neural network submodule learns context-aware groups of masked log sequences. To
do so it implements a neural network following the design of a self-attention encoder of the

7.2. CLog: Method for Sequential Log-based Anomaly Detection and Classification 131

Transformer [40] architecture. The advantage given by this architectural choice resides
in its capability to learn the contextual information between the input events. When
learning the parameters of the network, guided by a carefully designed cost function,
the model learns local relationships between the events based on their co-occurrence ex-
tracting useful contextual features. The neural network submodule has four components:
vectorizer, encoder block, output layers and masked event group id assignment.

The vectorizer transforms the masked input event sequences of tokens into numerical
vector sequences. These vectors are called event embeddings and are part of the training
procedure. At the beginning of the training procedure, the event vectors are randomly
initialized and updated during training. This way, they learn contextual information
about the events.

The encoder block is composed of a self-attention encoder layer. The self-attention
extracts co-occurring information by weighting the input vector embeddings by their
similarity to all the other embeddings in the given context. Combining the self-attention
with the MLM learning task modifies the parameters of the network to learn the context
of the original masked event and extract sequential properties. The hyperparameters of
the encoder are the model size (denoted by d), the number of encoder layers, and the
number of heads. Particularly interesting is the embedding of the [LSE] token. Since
[LSE] serves as an embedding of the input event sequence group, it learns the contextual
properties of the masked input sequences. The output from the encoder is the vector
embedding of the [LSE] token for each of the masked sequences, proceeding towards the
output layer.

The output layer is composed of two layers with nonlinear activation (RELU is used).
The purpose of it is to map the masked sequence embedding vector [LSE] of size d, to
a vector with a size corresponding to the total number of events/tokens C. The RELU
activation function is a common activation function used to introduce nonlinearities and
improve the learning process [56]. The output of this layer is used to calculate the loss.
As an optimization loss function, we use categorical cross-entropy. This loss is a common
choice for multi-class classification problems as addressed by MLM task [56]. Notably,
during the execution of a workload, some events occur only once (e.g., "notification of
successful creation of a VM") while others occur with greater frequency (e.g., HTTP or
RPC calls). When using the original loss formulation on the MLM task, the less frequent
events can be averaged out, resulting in missing important information. To account for
the imbalances of the distribution of the events, we use weighted categorical cross-entropy
given in Eq. 7.1 as follows:

132 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

Jm(ψ(smn,c; θ, θ
′
), ymn,c;w) =

1

|C|

C∑
c=1

−wcy
m
n,clog

exp(ψ(smn,c; θ, θ
′
))∑C

i=1 exp(ψ(s
m
n,i; θ, θ

′))
(7.1)

where ψ denotes the function modeled by the neural network, θ and θ′ are the parameters
of the encoder, and the output layer accordingly, smn,c is a masked sequence obtained from
the n-th input sequence sn, ymn,c is the original masked event/token, C denotes the total
token numbers and wc represents the weight of an individual token. The weights (w – a
weights vector) are assigned such that the less frequent events have weight values closer
to 1, as opposed to the frequent ones that have values closer to 0. Therefore, we optimize
for preserving the correct predictions on the infrequent events.

Masked Event Group ID assignment. The masked event group ID assignment re-
ceives the vector embedding of the [LSE] token as input. Its goal is to identify similar
context-aware masked sequences and group them. It applies the mini batched k-means
algorithm [174] to group the embeddings of the masked event sequences into a prede-
termined number of k event groups/centroids identifiers. While the goal of the encoder
block is to learn context-aware representations, the mini-batched k-means complements
it by extracting similar context groups, enabling the extraction of event groups. The
k-means algorithm is a commonly used method for identifying similar instance groups in
an unsupervised way [66]. We used its k-means mini-batch version because it allows per
batch update of both the network (θ and θ′) and clustering parameters (M) as opposed
to the classical k-means method. To group the contexts, k-means optimizes the loss given
in Eq. 7.2 by altering between two steps: 1) updating a centroid mk as the average of
the embeddings currently assigned to it, and 2) reassignment of the embeddings to the
nearest newly calculated centroid.

Jk(ϕ(s
m
n , rn; θ),M) = ||ϕ(smn ; θ)− rnM||2 (7.2)

where M ∈ Rkxd represent the matrix of event groups (interchangeably referred to as
centroids), while rn is an indicator vector of discrete values (0’s and 1’s) with just one
element set to one, corresponding to the membership of the masked sequence smn to a
certain centroid mk. The number of event group identifiers k is a hyperparameter.

Finally, we add the two optimization losses as J = Jm + λJk to obtain the final loss
subject to optimization. By combined optimization of the two losses, the parameters of
the context-aware event group extraction learn local contexts and local-context groups
based on their similarity. The role of the hyperparameter λ is to ensure the learning of
correct contexts and correct context-embedding groups by trading off the impact of the
two losses. We further discuss the optimization procedure.

7.2. CLog: Method for Sequential Log-based Anomaly Detection and Classification 133

Optimization. The optimization is done in two phases: 1) pretraining and 2) joint
training. The reason for this is explained in the following. We first describe the pretrain-
ing phase. Since at the beginning everything is initialized at random, we pre-train the
neural network parameters (θ and θ′) by the weighted cross-entropy loss (Eq. 7.1). That
way, the model learns good initial parameters for the encoder while extracting context-
aware features for the masked sequences. The pretraining is terminated after observing
a lack of improvement in the loss on several epochs [55]. At the end of the pretraining,
the [LSE] vectors are valid representations of the masked input sequences. Afterwards,
the event group prototypes (M) are initialized by k-means using [LSE] masked sequence
embeddings of the training data.

mk ← mk −
1

ck
(ϕ(smn ; θ)−mk)rn (7.3)

Joint training (phase 2). The joint optimization function has a discrete variable
(rn), making the parameter updates non-trivial. To address this issue, we adopt the
Alternating Stochastic Gradient Descent (ASGD) [174] algorithm. ASGD alters the up-
dates of the network parameters and centroids such that, when the network parameters
are updated, the centroids are fixed and vice versa. Therefore, the optimization problem
does not depend on the discrete variable, enabling the parameter updates. The training
of the network parameters and the centroids is done in batches. Eq. 7.3 is used for cen-
troids update. At each batch, the centroids with newly assigned embeddings are slightly
updated based on their distance from the newly calculated centroids.

Event Group Extraction

Once the masked event groups are clustered, the event group identifier (ID) is executed.
The procedure we consider is presented in the following. Given an original input event
sequence and the event group ID assignments of its masked subsequences, we count the
number of occurrences of the event group IDs and divide the counts by the length of
the original input event sequence. The event group ID with the highest score value is
assigned as an event group ID for the input event sequence. Intuitively, if the majority of
the masked subsequences are assigned with a single event group ID, the event group ID
with the maximal score value is the most relevant for the input event sequence. Figure 7.3
depicts an example of extracting the event group S1 for the sequence (E2, E5, E3).

7.2.2 Sequential Anomaly Detection

The anomaly identification part is given sequences of event groups with the same task
ID as input. Figure 7.4 depicts the internal design. It is composed of two subparts 1)
anomaly detector and 2) anomaly classification. The anomaly detector detects if the

134 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

input event group sequence is anomalous. When an anomaly is detected, the sequence
proceeds towards the anomaly classification part. This part identifies the class of the
anomaly conditioned if the knowledge base of sequential anomaly classes exists. We
describe the details in the following.

As a modeling choice for the anomaly detector, we consider Hidden Markov Model
(HMM) [173]. HMM models the sequences of event groups by assuming that the ap-
pearance of the next event groups within the sequence depends only on the currently
observed event group (the Markov property). The main advantages of HMM are that it
directly handles sequential data, does not require further preprocessing of the input, and
is fast for both learning and inference (with a reasonably high number of hidden states).
As the produced sequences are expected to be with lower entropy and lower element
count, we prefer HMM over LSTM or other models. The reason behind this is the need
to employ additional design choices on how to train and evaluate the anomaly detector
in that case.

To produce normality score estimates for a sequence p̃+seq(si), we used HMM probability
scores (t(s)), calculated by marginalizing the probabilities over all the event groups of the
sequence and the hidden states of the fitted HMM t(s) = − log

∑
h q(h)q(s|h), where h

denotes the hidden states, and q(s|h) denotes the likelihood of the event groups given the
hidden state. The normality score estimates for a single sequence si is given in Eq. 7.4,
as follows:

p̃+seq(si) = (
1

|V|

|V|∑
sj

t(sj)− t(si))2 (7.4)

Feature Extraction

1. Count Vector of Event Groups (CV)
2. Probability under HMM (pHMM)
3. Combination (CV+pHMM)

Anomaly Detection
෪𝑝+(𝑠𝑖) thresholds෦𝑎1, ෦𝑎2

Anomaly Sequences
෦𝑎1 ෦𝑎2

Anomaly Classification (RF,
DT, LR, AdaBoost)

Fitted AC Model ሚ𝑓 𝑠𝑖Offline Phase
Online Phase

Input:
Sequences of
Event Groups
t1: (S1, S2, S1, S4)
t2: (S3, S1, S1, S2)
t3: (S1, S3, S4, S4)
…

Anomalous
Sequence
Labels
(training)

hs1

hs2

hs3

HMM

μ σ

Threshold EstimationAnomaly Detector

Output
Anomaly Classification

Figure 7.4: Internal architectural design of the anomaly detection and
classification subcomponent.

7.2. CLog: Method for Sequential Log-based Anomaly Detection and Classification 135

where V is the set of normal sequences of event groups. The normality score estimate
p̃+seq(si) is a symmetric positive function, given as the spread of the probability of the
sequence si under the HMM (t(si)) from the mean score estimates of the normal data.
The parameters of the HMM are learned on the normal training data, thereby, the
anomaly detector models the normal system state. We refer to the normality assumption
and assume that the normal data is always obtainable. Considering the existence of
normal data addresses the labeling challenge. Any sequence with significantly different
values for the normality score estimate is detected as an anomaly. Using the symmetrical
property of the normality function, we estimate the thresholds as ã1/2 = µ± rσ, where µ
and σ are the mean value and standard deviation of the normal score estimates calculated
by standard formulas, and r is a parameter denoting what is considered a significant
deviation from the normal state. Thereby, the anomaly detector is fully unsupervised.
The hidden state number is a hyperparameter of HMM.

7.2.3 Sequential Anomaly Classification

Once the anomaly is detected, the anomalous sequence proceeds towards the anomaly
classification module. It has two components (1) feature extraction and (2) anomaly
classification method.

The feature extraction processes the sequences of event groups in a format suitable for
the anomaly classification learning method. Each sequence is represented by a count vec-
tor that counts the number of occurrences of the event groups within the sequence. For
example, for the sequence of event groups s = (S1, S3, S1) and total of four event groups
(S1, S2, S3, S4), the count vector is given as CV (s) = (2, 0, 1, 0). The absence/presence of
certain event groups from the sequence is a distinctive feature that discriminates among
anomaly types. Therefore, the count vector is a suitable sequence representation. We
also considered the normality score estimates from the anomaly detector as an addi-
tional feature (pHMM). This feature summarizes in a single number the overall sequence
information. As similar anomalies may be reflected in a similar manner in the data,
the summarization of the overall sequence information has certain modeling capabilities.
When class labels are not available, the classification module is not active.

The extracted features are used to fit anomaly classification model. The anomaly clas-
sification part learns a multiclass classification model to classify the input sequences
into several predefined types of anomalies. As adequate methods we considered several
popular multiclass classification methods, i.e., Random Forest (RF) [16], Decision Tree
(DT) [142], Logistic Regression (LR) [67] and AdaBoost [50]. They show good perfor-
mance and are simple to tune [165].

136 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

Table 7.2: Datasets statistics.

Dataset Name Tasks Anomalous Sequences Count Logs Unique Events Average number of events in a task
OpenStack 876 257 217534 518 248
Unstable Sequence Data 876 + b% 257 217534 518 248

7.3 Evaluation

In this section, we describe the experimental evaluation. We give details about the exper-
imental design and discuss the results of four experiments analyzing different aspects of
the method. Specifically, we first compare CLog against related unsupervised methods.
Second, we study the impact of the different window sizes on the method performance.
Third, we discuss the impact of sequence instability on the anomaly detection perfor-
mance of CLog. Finally, we show the evaluation of the anomaly classification task.

Experimental Design

Datasets ; To evaluate CLog, we considered a large-scale study of failures in OpenStack,
introduced in Cotroneo et al. [36]. To the best of our knowledge, it is the most com-
prehensive publicly available dataset of anomalous log data. Its strength is the wide
range of covered anomalies following the most common problem reports in the Open-
Stack bug repository4. The faults are generated by software fault-injection procedure,
i.e., modifying the source code of OpenStack and running a predefined workload under
fault-injected and fault-free (normal) conditions. Each workload has a rich description
of the anomaly class type and its fault. Therefore, it is suitable for tackling the tasks of
sequential log-based anomaly detection and classification.

The considered fault types are grouped into four groups as of following: 1) throw ex-
ception (method raises an exception in accordance to a predefined API list), 2) wrong
return value (method returns an incorrect value, e.g., return null reference), 3) wrong
parameter value (calling a method with an incorrect value for a parameter), and 4) delay
(method returns the result after a long delay, e.g., caused by hardware failure – leading
to triggering timeout mechanisms or stall). As a running workload with a unique task
ID, the authors considered the creation of a new instance deployment. This workload
configures a new virtual infrastructure from scratch – it creates VM instances, volumes,
key pairs, and security groups, a virtual network, assigns instance floating IPs, reboots
the instances, attaches the instances to volumes and deletes all resources. Importantly,
this comprehensive workload invokes the three key services of OpenStack Nova, Cinder,
and Neutron, causing diverse manifestations of the faults as anomalies. Due to the nature
of the data generation process, and access to the source code of OpenStack, there exists

4https://launchpad.net/openstack

https://launchpad.net/openstack

7.3. Evaluation 137

a sequential relationship between the generated log sequences for the individual subparts
of the overall workload (e.g., the repetitiveness of co-occurring events). Therefore, this
dataset has emphasised sequential dependencies between the logs making it suitable for
sequential log analysis.

To generate ground truth labels for the anomalous state, assertion and API checks are
performed at the end of the workload runs. There are three failure types: 1) failure
instance, 2) failure SSH and 3) failure attaching volume. While the authors provide
information on a granularity of a workload with a task ID, we further examine the
individual logs. More specifically, two human annotators analysed the logs and annotated
individual templates to obtain a better understanding of the types of anomalies that are
reflected in the data. Table 7.2 gives detailed statistics of the used data.

Unstable Sequence Data ; To evaluate the robustness of our method in dealing with unsta-
ble log data, we create an additional dataset. Zhang et al. [180] describe a data generation
process on how to create unstable sequences from a given dataset which we adopt. We
apply the following two operations on the data to extract anomalous sequences (from the
normal sequences from OpenStack), i.e., 1) random removal of log events, and 2) repeti-
tion of a randomly selected log event in the sampled log sequence. To inject unstable log
event sequences, we randomly sample b-percentage of the normal training data, and we
inject the aforenamed operations in random order. The generated data is joined to the
normal data and later used to build a model that is evaluated on the remaining data.

In general, the access to labeled log data with good quality suitable for sequential log
anomaly detection is limited [70, 88]. As discussed in the previous chapter, there exist
several labeled log datasets. One dataset with emphasised sequential characteristics is
HDFS [172]. Landauer et al. [88] manually analysed the log sequences from HDFS and
reported that by relying on two heuristics: 1) looking for new events in the sequences
and 2) shorter sequences than the normal, they can achieve more than 0.9 on F1, and
up to 0.98 on precision. Therefore, following their recommendation, we do not consider
this data in the evaluation. BGL and SPIRIT [132] are two other available labeled
datasets. However, those systems are from supercomputers where the different cores are
constantly dumping log messages that are weakly coupled. As we lack domain expertise
on the relationships between the logs (which are the underlying subprocesses), we do not
know if the data generation processes produce log sequences with stronger dependencies,
important for the evaluation of the sequential log analysis. Furthermore, the available
labels do not specify sequential anomaly classes. Therefore, we do not use these datasets
in the evaluation. To mitigate the issue of availability of quality labeled data on a
sequential level, we further adhered to literature practices [180] and generated additional
data for evaluation.

138 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

7.3.1 Sequential Anomaly Detection

Competing methods ; We compare the anomaly detection method against two unsuper-
vised competing methods: DeepLog [44], and Hidden Markov Model (HMM) previously
used in log anomaly detection in Yamanishi et al. [173]). Notably, as shown in Cotroneo
et al. [36], around 20% of the anomalies in the dataset are not explicitly logged in the
logs. Therefore, the semantic-based methods, due to the challenge of insufficient fail-
ure logging coverage are not used in the comparison as their optimal performance is not
expected to exceed more than 0.8 on anomaly detection.

Experimental Design ; We conduct the experiments as follows. The optimized hyper-
parameters of CLog are the number of extracted event groups, the window size, and
the number of hidden states of the HMM. They were selected from the range values of
the sets {10, 20, 30, 40, 50, 100, 200}, {60s, 120s, 180s, 240s, 300s} and {2, 4, 8, 16} accord-
ingly. Experimentally we find the following values for the learning process to be robust
across the different experimentation settings: for phase 1 the training was performed for
a maximal of 200 epochs, and phase 2 training for a maximum of 20 epochs. As an opti-
mizer, we use SGD with a learning rate set to 0.0001. For the encoder, the model size d
was set to 128, with two encoder layers and four heads. To prevent overfitting, we set the
dropout rate to 0.01. Experimentally, we find that λ with a value of 0.1 leads to robust
results. The hyperparameters of the competing methods for anomaly detection are tuned
to produce their best F1 scores. The anomaly detection performance was evaluated on
F1, precision and recall as common evaluation metrics, with the anomalies being labeled
with a positive label. The training is done on 60% randomly sampled normal sequences.
The rest of the sequences are used to report the performance scores. The experiments are
repeated up to five times to reduce the influence of the samples included for learning. We
report the mean and standard deviation of the results. The experiments were conducted
on a Linux server with Intel Xeon(R) 2.40GHz CPU and RTX 2080 GPU running with
Python 3.6 and PyTorch 1.5.0.

Table 7.3: Comparison of CLog against competing methods on sequential
anomaly detection.

F1 Precision Recall
CLog 0.93±0.01 0.91±0.03 0.95±0.02
HMM 0.93±0.02 0.87±0.03 0.99±0.01

DeepLog 0.91±0.01 0.84±0.02 0.99±0.01

Results and Discussion ; Table 7.3 shows the results of the unsupervised method compar-
ison. The results show that all the methods perform well, with similar F1 scores. CLog

7.3. Evaluation 139

and HMM both use HMM to model the sequences, but they differ in the granularity
of the input representation. CLog uses a sequence of event groups, while HMM uses a
sequence of events. The results show that changing the input representation of the log
event sequences with sequences of event groups does not impair the anomaly detection
performance. Combining the results with the observation depicted in Figure 7.1) points
that changing the input representation as CLog does is non-detrimental for the detection
performance. Predominantly, the improvement in performance originates from precision
(it is higher for 0.04 for CLog compared to the related methods). As CLog includes a
broader context of related events (instead of just autoregressive information) it can reuse
the information of a latter event occurrence that shares some relation with a current event
(recall the example in Figure 7.1), which leads to better discrimination of the anoma-
lous inputs. CLog makes use of all the information within the time window, as opposed
to DeepLog and HMM which consider just information prior to a given event. Specif-
ically, the learning sample construction process enables CLog through the Transformer
architecture to relate the contextual properties between distant events within the time
interval. Although CLog uses HMM on the learned representations, the final sequence
is created by considering the learned contextual dependencies, where the context may
span over many events. This additional information can help CLog learn more informa-
tive representations of the normal input. In contrast, the input of competing methods
has larger entropy, which challenges the learning of the normal sequences. This leads
to more of them being detected as anomalies, which further explains the improvement
CLog achieves in precision over DeepLog and HMM.

While a direct comparison between CLog and HMM on anomaly detection performance
shows differences within the standard deviations, CLog has an advantage with respect
to learning the HMM model of normal system behaviour. As CLog uses the event group
identifiers it describes the overall sequences with fewer symbols, enabling faster training
of the anomaly detector. To observe this practical advantage, we further plot the learning
times of the anomaly detector for the two methods, CLog and HMM. We run the anomaly
detector with the two different representations as used by CLog (sequence of event groups)
and HMM (sequence of events) five times for each of them. Figure 7.5 plots the average
times from the runs. As the number of states in the HMM increases, so does the training
time for both representations. However, this increase is more emphasised for the sequence
of events, instead of the sequence of the event groups. As the latter uses all the event
templates (approximately 500), CLog uses just a fraction of it, making the training of
the anomaly detector faster. Note that CLog does not experience an anomaly detection
drop in performance, but improves the input representation, such that another property,
i.e., the training time of the anomaly detector is improved.

When comparing CLog against the related works, one property it distinguishes itself

140 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

2 4 8 16
HMM number of states

0

250

500

750

1000

1250

1500

1750

H
M

M
 tr

ai
ni

ng
 ti

m
e

[s
]

Figure 7.5: Comparison of the different representations on the training
time of HMM as anomaly detector.

from the other unsupervised methods is the utilization of the full contextual information
within the input time window sequence compared to DeepLog or HMM. Similar oper-
ations (e.g., creation of a VM) are expected to have a similar invocation chain of logs
that co-occur within relatively shorter time intervals. As CLog considers the broader
context, instead of just the previous information, it exposes richer information to the
learning method. The representation of the sequences with event groups also reduces
the entropy of the final event sequence. This design idea is a distinctive feature of the
proposed method. Another log-based anomaly detection method that uses clustering is
LogCluster. However, this method clusters the sequences and later uses heuristics of
what is considered an anomalous class to label the clusters as anomalous. In contrast,
we use the event group identifiers to construct a sequence on top of which we learn a
sequential model for anomaly detection. As seen from the results this is beneficial as
it does not reduce the performance while it improves other practical properties, for the
tested dataset.

Time Window Impact over Detection Performance ; The time window hyper-parameter
determines the granularity level of event group extraction. Therefore, it is an important
hyperparameter of the method. Following the discussion on the entropy reduction by
different window sizes given in Section 7.1, we grouped the input events into time intervals
of increasing window size and evaluated several models of CLog.

Results and Discussion ; Figure 7.6 shows the results. It can be observed that as the win-
dow size increases, the detection performance decreases. Paring the average entropy over
the sequences for different window sizes (as depicted in Figure 7.1) with the detection re-
sults reveals a negative correlation between the increased entropy and anomaly detection

7.3. Evaluation 141

60s 120s 180s 240s 300s
window size

0.2

0.4

0.6

0.8

1.0
F1

 s
co

re

CLog

60s 120s 180s 240s 300s
window size

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
sc

or
e

60s 120s 180s 240s 300s
window size

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
sc

or
e

Figure 7.6: Window size impact on the anomaly detection performance.

performance. As the window size increases, CLog has a drop in performance on the F1

score. While CLog preserves good performance on precision, the recall drops. Therefore
CLog has a harder time distinguishing the correct anomalies due to the diversity in the
different contexts coming with the larger window sizes.

Evaluating CLog on Unstable Log Sequences

Experimental Design ; One challenge in dealing with log sequences is dealing with unstable
log sequences. Therefore, we evaluate CLog on a dataset derived from the OpenStack
data following literature recommendations on generating unstable sequences [180]. We
created the unstable datasets by randomly injecting b−percentages unstable sequences
using the dataset generation procedure previously described. We varied b in the ranges
b = {5%, 10%, 15%, 20%}, similar to related works [180]. We used the sampled and
modified normal log sequences to learn a model and use the remaining ones to evaluate
the method. The anomaly detector was trained on the original data as in the case when
we compared CLog against the competing methods.

Results and Discussion ; Table 7.4 shows the results. It can be seen that CLog preserves
a high detection performance on F1 in the case of a small percentage of unstable log
sequences. This can be attributed to the fact that their lower count in comparison to the
normal data is not accounted for by the model. Importantly, as the ratio increases, CLog
experiences decreased performance. Notably, the performance under a larger fraction of
unstable sequences (i.e., 20%) drops by 0.06 on the F1 score. As more unstable sequences
are present in the data, the model has a harder challenge detecting the anomalies due to
the similarities between the anomalous and unstable data. This is seen by the drop in
the recall. It is worth mentioning that although the method drops in performance, the
drop is not significant. The extracted event groups still preserve discriminative properties
enabling anomaly detection.

142 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

Table 7.4: CLog anomaly detection evaluation on unstable log sequences.

injection ratio F1 Precision Recall
0.05 0.86±0.001 0.97±0.001 0.78±0.001
0.1 0.84±0.002 0.97±0.001 0.74±0.002
0.15 0.81±0.001 0.96±0.001 0.69±0.001
0.2 0.80±0.030 0.97±0.001 0.68±0.030

7.3.2 Sequential Anomaly Classification

Experimental Design ; We evaluate the capability of the anomaly classification module
of CLog to reuse the historical information from the operator in anomaly classification
by leveraging the recurrence assumption. Specifically, we evaluate three representations
of the event group sequences for CLog (1. probability score from the HMM (pHMM),
2. count vectors (CV), and 3. combination of both). As a competing method, we
considered LogClass implemented with TFIDF representation of the logs [119]. We used
the anomaly class of the task ID as a target label and apply the two methods. As multi-
class classification methods, we considered several popular classifiers: Random Forest
(RF) [16], Decision Trees (DT) [16], Logistic Regression (LR) [67] and AdaBoosting [50]
for both of the approaches. The hyperparameters of the anomaly classification methods
are set on their implementation defaults from the sckit-learn library. F1, precision and
recall are used as performance scores for the anomaly classification. As the classification
problem is multiclass, we consider the macro averaging over the three anomaly classes.
We train the models on 60% of the data and evaluate the remaining 40%. To decrease
the effect of the randomness in the training data, we repeat the experiments multiple
times and report the mean and standard deviation.

Table 7.5 enlists the results of the three different representations of CLog and the baseline
on the sequential anomaly classification subproblem. The analysis of the three represen-
tations by CLog suggests that the combination (CV+pHMM) achieves the best F1 score.
Predominantly, the improvement originates from the count vectors, seen by the better
individual results in comparison with pHMM. The major advantage of the count vectors
is that they have greater granularity on the representation, while pHMM summarizes
the sequences of event groups on a coarse level. The comparison across the two methods
suggests that the improvements in the F1 score are within the range of 0.03. The com-
bination (CV+pHMM) of CLog outperforms the competing method LogClass. LogClass
uses single logs to identify the type of failures. Therefore, if the failure is not explicitly
logged, LogClass cannot identify its type. On the contrary, CLog considers the occur-
rence of the individual event groups and can represent discriminative patterns among the
types of anomalies improving the performance.

https://scikit-learn.org/stable/whats_new/v0.23.html

7.4. Chapter Summary 143

Table 7.5: Comparison of CLog against baselines on sequential anomaly
classification.

Scores
Multiclass
method

CLog
(pHMM rep.)

CLog
(CV rep.)

CLog
(CV+pHMM
combined)

LogClass
(TFIDF)

F1

RF 0.74±0.0 0.86±0.01 0.86±0.01 0.84±0.08
DT 0.74±0.0 0.78±0.04 0.78±0.03 0.84±0.05
LR 0.72±0.0 0.86±0.0 0.87±0.0 0.8±0.1

AdaBoost 0.69±0.0 0.86±0.02 0.87±0.02 0.62±0.12

Precision

RF 0.74±0.0 0.86±0.01 0.86±0.01 0.83±0.07
DT 0.74±0.0 0.78±0.04 0.78±0.03 0.82±0.05
LR 0.71±0.0 0.85±0.0 0.87±0.0 0.77±0.08

AdaBoost 0.71±0.0 0.86±0.02 0.86±0.02 0.59±0.13

Recall

RF 0.75±0.0 0.87±0.01 0.87±0.01 0.86±0.06
DT 0.75±0.0 0.81±0.04 0.81±0.03 0.85±0.07
LR 0.73±0.0 0.88±0.0 0.89±0.0 0.88±0.11

AdaBoost 0.73±0.0 0.87±0.02 0.88±0.02 0.74±0.14

7.4 Chapter Summary

This chapter addressed the problem of the automation of sequential log-based anomaly
detection and classification. It introduced a novel method CLog, which addresses the
subproblems of sequential 1) anomaly detection and 2) anomaly classification. We noted
that by representing the input log data as sequences of event groups instead of sequences
of individual events, the entropy in the input is reduced. CLog uses this observation and
introduces an event group extraction method, which jointly trains context-aware deep
learning and clustering methods to extract event groups. Our experiments demonstrated
that the extracted sequences of event groups can be beneficial for not-deteriorating the
performance on the two subproblems, and can potentially improve other properties, as
was the case with the learning time on the anomaly detector. The unsupervised design
of CLog and the modeling of sequences helps to address the challenges of insuficient
anomaly coverage, complex data representation, labeling and lower detection performance
of competing methods. At the same time, CLog is orthogonal to the single log line anal-
ysis module as increases the set of detectable anomalies that are reflected within the
sequences, addressing the challenge of insufficient failure coverage in the source code.
Therefore, it further contributes towards our goal of improving the operational and de-
velopment activities for supporting system dependability through automation.

As CLog groups the events within a fixed time interval before detecting an anomaly, it
needs to aggregate all the windows within a certain time interval before their detection.
This may delay the reporting of an anomaly. Thereby, in a practical application where
fast anomaly detection is important, smaller window times are preferable. In addition,
CLog relies on the existence of similar groups within the log data. As modern systems

144 Chapter 7. Sequential Log-Based Anomaly Detection and Classification

are composed of multiple services, the log patterns within the data may be more het-
erogeneous increasing the number of event groups, while reducing their similarity. In
the marginal case, this results in representing each event with a single cluster where the
CLog behaves as an HMM trained on individual events. Therefore, to benefit from the
improvement of the log representations CLog is expected to perform well when applied to
individual service components. Potential improvements in this regard may be achieved
when reconstructing log dependencies (e.g., in OpenStack this can be achieved to a cer-
tain extent by tracking events that originate from the same request when analyzing the
parameters of the logs). This can filter out certain logs, improving the homogeneity of
the event groups. Notwithstanding, the ideas presented herein open new possibilities for
how to most efficiently extract meaningful event groups with minimal information about
the sequences.

Chapter 8

Conclusions

Modern IT systems play a major role in industrial infrastructure and human society.
Their characteristics such as large complexity, fast evolution, geo-distributed develop-
ment, and different working frequencies, among others, challenge the correctness and
availability of service offerings because they increase failure proneness. To support the
development and operation as a way to support the provisioning of correct service that
can justifiably be trusted (system dependability), in this thesis, the automation of dif-
ferent tasks during development and operation was explored. An important enabler
of automation is the possibility to externalise the IT system state via monitoring data
such as system logs. The goal of this thesis is, therefore, to improve the automation of
log-related development and operation activities by introducing intelligent methods and
ideas that utilize system logs and other log-related data to support system dependability.

To directly support software development we proposed to automatically assess the qual-
ity of the logging code composition, as the quality of the log instructions determines the
quality of the subsequent log analysis tasks. To that end, we developed an approach
to automatically assess the quality of log instructions from an arbitrary software sys-
tem with software logs written in natural language. We argued that the development of
such an approach is challenged by the heterogeneity of the software systems, the unique
writing styles of developers, and different programming languages. Based on the as-
sumption of existing open-source systems with good logging quality, we identified a set
of two automatically empirically testable quality properties independent of the program-
ming language and the software system. Building on this observation, we introduced and
formalized the problem of quantification of log instruction quality assessment. By lever-
aging our observations and the textual nature of the logs, we proposed a deep learning
method for automatic model-driven log quality assessment as an intelligent tool to aid

145

146 Chapter 8. Conclusions

the writing of log instructions. Next, we adapted an approach from explainable machine
learning and used it to give augmented feedback for possible quality improvement. We
performed an extensive evaluation to show the benefit of our approach. Notably, this
method indirectly supports system operation.

To directly support system operation, in this thesis, we proposed novel methods for
anomaly detection and classification using log data. By observing that the anomalies are
reflected in different properties of the log data, i.e., single log lines or log sequences, we
proposed two groups of methods accordingly. When analyzing single log lines the anoma-
lies can be reflected either in the semantics of the static text or as abnormal parameter
values. We contributed novel methods for the two. First, we proposed a novel method
for semantic log anomaly detection. By analyzing log instructions from public software
systems we showed that the log instructions contain rich anomaly-related information.
The proposed method utilizes the data from the system of interest (target system data)
alongside the extracted anomaly-related information as auxiliary data to learn anomaly-
discriminative log representations. The evaluations showed that the auxiliary data helps
to learn discriminative log properties and improve the semantic anomaly detection per-
formance. By leveraging the recurrence assumption of anomalies, we further related
the events with the associated log classes to support single line anomaly classification.
Through extensive evaluation, we demonstrated the benefit of using external data in im-
proving the generalization of log-based anomaly detection. Regarding the single line log
analysis, we further contributed with a novel log parsing method that accurately disen-
tangles the variable parameters from the static text. The parser is learned as a neural
network model with the learning task formulated such that the presence of a word on a
particular position in the generated log is conditioned on its context. We showed that the
parser achieves high parsing accuracy while at the same time having robust performance
across many datasets. The robustness is particularly important for parametric anomaly
detection which relies on the correct extraction of the parameters. The extracted events
and parameters are used to create a time series of numerical parameter values. Finally,
by applying a parsimonious model on the univariate parameter values we showed how
performance anomalies can be detected. Notably, the proposed parsing method can be
used as a preprocessing step by other methods that require log parsing.

To address the sequential properties of the logs, we introduced a novel method for im-
proving the sequential representation. We showed that by representing the log sequences
as sequences of event groups the uncertainty in the overall log event sequence is reduced.
We proposed a novel method that extracts event groups from a given event sequence.
The method combines joint training of a neural network and a clustering method to learn
the event groups. We used the learned representation of the log sequences in anomaly
detection and classification. The evaluation results demonstrated that the modified input

147

representation does not degrade the performance for anomaly detection and classifica-
tion, but can potentially improve other properties. Similarly, as in the case of single log
analysis, we leveraged the recurrence assumption to enable anomaly classification.

One important aspect of some of the proposed methods is their data-centric nature.
While the focus on the sequential log analysis is improving the learning method (i.e.,
it is model-centric), the log instruction quality assessment and the single line anomaly
detection leverage publicly available data to build a model (i.e, they are data-centric).
The encouraging results with a data-centric approach demonstrate that using publicly
available data for log-specific tasks can be useful for addressing diverse development and
operational activities. Therefore, introducing the data-centric view to other dependabil-
ity tasks can be an important direction for further research. Logs are particularly useful
in this regard, as they can be used to query public issue repositories (e.g., Jira).

While the thesis addresses the challenges of modern systems extensively, there is still
room for further improvement. In the case of log quality evaluation, an extension of the
set of quality properties is possible. For example, an important quality indicator for the
logging code composition is the correct log instruction placement. It means that the log-
ging instructions should not miss important events. At the same time, the logging should
not be excessive as it increases overhead. As different programming languages have their
specifics, a general automatic approach to assessing the log instruction placement requires
accounting for the different complexities. Further improvement of the automatic qual-
ity assessment may require focusing on a specific programming language or system type
instead of broadly targeting the problem in a programming language-agnostic manner.
Similarly, when detecting and classifying anomalies using log data there is an existing
performance gap between the proposed methods and the optimal performance value. Ad-
mittedly, striving for optimal performance may be a "fool’s errand" because of the large
set of internal and external events that cause failures. Nevertheless, potential improve-
ment may arise when combining different data sources [8] or different log properties. In
cases when the source code is available during operational activities, the method invoca-
tion chain can be used to filter out the irrelevant logs concerning the analyzed context.
This can significantly reduce the uncertainty in the logs and potentially improve the
detection performance.

Irrespective of the possible improvements that exist, the proposed methods address the
characteristics of modern IT systems. As demonstrated through the experiments, the
methods can aid the automation of system development and operation, and ultimately
improve system dependability.

https://www.tutorialspoint.com/jira/jira_issues.htm

148 Chapter 8. Conclusions

Appendix A

Online Services Failure Study

To study the impact of failures on real-world online services we conducted an empirical
study on online service dependability. Specifically, we collected and analyzed data from
publicly available online issue repositories. We examined one property of system depend-
ability, i.e., availability. The availability is quantified as the mean time to failure (MTF)
over a fixed time interval. In addition, we report the median time to failure (MeTF).

Experiment Design ; To conduct our study we first collected data from online incidents.
Here, we used the willingness of service providers for transparent reporting on the ob-
served failures. For example, https://status.customerio.com provides information for the
service customerio that is a service for an automatic messaging platform for marketers. It
provides detailed descriptions of the failures (e.g., failure description, start time of failure,
its end time etc.). We use the start and end times to calculate the failure duration. Many
services offering this online failure reporting exist, e.g., statuspage.io, status.io, cachet.io,
and statuscast.com [163]. Tola et al. [163] introduce a large set of publicly available links
to such services. We used these links to collect all the failure events from January 2018
until January 2022, as the remaining time intervals were analyzed in the previous work.
From the initial 96, we were able to retrieve data for a total of 70 services. The reason is
that some of the services are deprecated. Note that our goal is not to replicate the study,
but to obtain empirical evidence of the availability of services. One important notice is
that failure reports can refer to the failure of a single component of the service, not the
whole system itself. We do not distinguish between the severity of the failures.

Results and Discussions ; We first analyze the service availability. Figure A.1 shows the
available time of the services in the four years. We set five different availability ratios, i.e.,
97%, 98%, 99%, 99.99% and 99.9999%. For example, the availability of 99.99% means
that the services were not available for less than 3.5 hours in the 4 years. The results show
that few (eight) services experience very high availability, while 13 experience availability

149

https://status.customerio.com

150 Appendix A. Online Services Failure Study

0 10 20 30 40 50 60 70
Service ID

94

95

96

97

98

99

100

Av
ai

la
bi

lit
y

[%
]

99.9999
99.99
99.
98
97

Figure A.1: Availability of the services in a period of four years.

greater than 99.99%. The majority of the services experience availability greater than
99% (in a total of 56). However, there are also services with lower availability, smaller
than 98% and 97% (3 for each of the two). Figure A.2 characterizes the failure duration.
Specifically, it shows the mean and median times of the failures. By the median failure
time, it can be seen that the majority of the failures need a short time for resolution
(around an hour). However, the discrepancy between the mean and the median time (2
hours on average) suggests that there exist failures that have a much longer duration

0 10 20 30 40 50 60 70

0

20

40

60

80

Ti
m

e
[H

]

MEAN FAILURE TIME
MEDIAN FAILURE TIME

Figure A.2: Mean and median time to failure of the 70 services.

151

time to be resolved. The two sets of results demonstrate that failures can affect the
availability of the systems to a large extent. Moreover, the failures can have non-trivial
durations. These two observations motivate the need for developing tools for timely and
potentially automatic failure detection and resolution.

152 Appendix A. Online Services Failure Study

Appendix B

Log Level Quality Assessment:
Additional Evaluation

Log Level Problem Instances

The experiment on log level assessment presented in Chapter 5 shows that QuLog*
performs better than the baselines on log level assignments. However, the results on
accuracy across different systems, although good, indicate that there are incorrect as-
signments. The misclassifications can impair the practical usability of QuLog as if given
at a large rate can overwhelm the system development process. To find a way to improve
QuLog, we further study QuLog’s misclassification types. To that end, we calculated
the misclassification contingency table for the nine studied systems. Table B.1 gives the
contingency table. Each cell shows the percentage of misclassification prediction rates for
the three classes. It is seen that some class pairs have a low misclassification rate (e.g.,
true "error" predicted as "info" is 4.3%), however, for others, it is significantly high (e.g.,
true "warning" predicted as "error" is 40.3%). We use this to construct three simplified
instances of the log level quality assignment. Instead of predicting the three classes, we
considered the prediction of two classes, namely "info-warning" (IW), "info-error" (IE)

Table B.1: Log level misclassification contingency table (the averaging
is done over nine software systems given in Table 5.1).

True/Predicted Info Warning Error
Info - 21.1% 16.1%

Warning 10.7% - 40.3%
Error 4.3% 19.3% -

153

154 Appendix B. Log Level Quality Assessment: Additional Evaluation

Table B.2: Performance scores on the task of log level assignment.

Scenario IE IWE IW WE
F1 0.88±0.03 0.73±0.03 0.68±0.06 0.61±0.04

Precision 0.88±0.02 0.72±0.03 0.75±0.04 0.69±0.09
Recall 0.89±0.05 0.73±0.03 0.62±0.08 0.56±0.07

and "error-warning" (EW). The goal with this is to find easily learnable scenarios, where
the performance score can be increased, making the learned model more reliable. The
examination of individual class pairs is practically relevant because different stakeholders
have different expectations from logs [100]. For example, the operators usually examine
the log levels "error" and "warning". Therefore, misclassifying an error event as "info"
can hide important events from operators.

Experiment design ; We considered QuLog* log level assignment approach because it is
trained on many software projects and has more desirable system-agnostic properties.
To train QuLog* on the three two-class problems, we modified the output layer to have
two classes instead of three. The experiment is designed as follows. We use the extended
knowledge base to randomly sample 60% of the repositories for training, 20% for valida-
tion and 20% of the projects for evaluation. To reduce the variance of the results due to
the random repository selection, we repeated the sampling procedure several times and
reported the average results alongside the standard deviations. To assess the correctness
of the decisions, we used F1, precision and recall, instead of accuracy because they are
exposing the imbalances of the class distributions better than accuracy [54].

Results and discussion ; Table B.2 enlists the performance scores for the four problem
instances of log level quality assessment. Comparing the absolute values for the scores
across the four scenarios reveals that in the IE scenario, QuLog achieves the highest val-
ues on the F1 score (average of 0.88), i.e., trades off the precision (0.88) and recall (0.89)
quite well. Therefore, this model is more reliable for correctly assessing the "info" and
"error" log instructions. The good performance is attributed to the larger differences in
the vocabulary between the "error" and "info" log instructions. Therefore, this model is
expected not to overwhelm developers with as many incorrect predictions as the remain-
ing models. The scenarios of IWE and IW are harder to learn due to the overlapping
vocabularies. Finally, the results on WE show that it is the hardest problem instance,
as seen by the biggest performance drop in comparison to the IE scenario. The drop in
performance can be attributed to the similarity in the usages of the two levels, i.e., both
are used to describe potentially erroneous system states that have not yet resulted in
failure which results in sharing similar vocabularies [100].

Bibliography

[1] van der Aalst and et al et. “Process Mining Manifesto”. In: Business Process
Management Workshops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 169–194.

[2] Alexander Acker. “Anomaly symptom recognition in distributed IT systems”. PhD
thesis. Berlin, Germany: Technical University Berlin, 2021.

[3] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md. Rafiqul Islam. “A Survey of
Anomaly Detection Techniques in Financial Domain”. In: Future Gener. Comput.
Syst. 55 (2016), pp. 278–288. doi: 10.1016/j.future.2015.01.001.

[4] Algirdas Avizienis and Jean-Claude Laprie. “Dependable computing: From con-
cepts to design diversity”. In: Proceedings of the IEEE 74 (1986), pp. 629–638.
doi: 10.1109/PROC.1986.13527.

[5] Algirdas Avižienis, Jean-Claude. Laprie, Brian Randell, and Carl Landwehr. “Ba-
sic concepts and taxonomy of dependable and secure computing”. In: IEEE Trans-
actions on Dependable and Secure Computing 1.1 (2004), pp. 11–33. doi: 10.
1109/TDSC.2004.2.

[6] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans An-
dersen. “Fingerprinting the Datacenter: Automated Classification of Performance
Crises”. In: Proceedings of the 5th European Conference on Computer Systems.
New York, NY, USA: ACM, 2010, pp. 111–124.

[7] Barry Boehm, Chris Abts, and Sunita Chulani. “Software development cost esti-
mation approaches — A survey”. In: Annals of Software Engineering 10.1 (2000),
pp. 177–205. doi: 10.1023/A:1018991717352.

[8] Jasmin Bogatinovski and Sasho Nedelkoski. “Multi-source Anomaly Detection
in Distributed IT Systems”. In: Service-Oriented Computing – ICSOC 2020 Work-
shops. Cham: Springer International Publishing, 2021, pp. 201–213. doi: https:
//doi.org/10.1007/978-3-030-76352-7_22.

155

https://doi.org/10.1016/j.future.2015.01.001
https://doi.org/10.1109/PROC.1986.13527
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1023/A:1018991717352
https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_22
https://doi.org/https://doi.org/10.1007/978-3-030-76352-7_22

156 BIBLIOGRAPHY

[9] Jasmin Bogatinovski, Sasho Nedelkoski, Alexander Acker, Jorge Cardoso, and
Odej Kao. “QuLog: Data-Driven Approach for Log Instruction Quality Assess-
ment”. In: 30th International Conference on Program Comprehension (ICPC ’22).
USA: ACM, 2022. doi: https://doi.org/10.1145/3524610.3527906.

[10] Jasmin Bogatinovski, Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. “Self-
Supervised Anomaly Detection from Distributed Traces”. In: 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). 2020,
pp. 342–347. doi: 10.1109/UCC48980.2020.00054.

[11] Jasmin Bogatinovski, Sasho Nedelkoski, Gjorgji Madjarov, Jorge Cardoso, and
Odej Kao. “Leveraging Log instructions for Log-based Anomaly Detection”.
In: 2022 IEEE International Conference on Services Computing (SCC). 2022,
pp. 321–326. doi: 10.1109/SCC55611.2022.00053.

[12] Jasmin Bogatinovski, Sasho Nedelkoski, Li Wu, Jorge Cardoso, and Odej Kao.
“Failure Identification from Unstable Log Data using Deep Learning”. In: 22nd
International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
NY: IEEE Press, 2022. doi: 10.1109/CCGrid54584.2022.00044. eprint:
1646836319158.

[13] Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, Klaus-Robert Müller,
and Kieron Burke. “Quantum chemical accuracy from density functional approx-
imations via machine learning”. In: Nature Communications 11 (2020). doi: 10.
1038/s41467-020-19093-1.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enrich-
ing Word Vectors with Subword Information”. In: Transactions of the Association
for Computational Linguistics 5 (2017), pp. 135–146. doi: 10.1162/tacl_a_
00051.

[15] Richard J. Bolton and David J. Hand. “Statistical Fraud Detection: A Review”.
In: Statistical Science 17 (2002), pp. 235–255. doi: 10.1214/ss/1042727940.

[16] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–
1901.

https://doi.org/https://doi.org/10.1145/3524610.3527906
https://doi.org/10.1109/UCC48980.2020.00054
https://doi.org/10.1109/SCC55611.2022.00053
https://doi.org/10.1109/CCGrid54584.2022.00044
1646836319158
https://doi.org/10.1038/s41467-020-19093-1
https://doi.org/10.1038/s41467-020-19093-1
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1214/ss/1042727940

BIBLIOGRAPHY 157

[18] Nadia Burkart and Marco F. Huber. “A Survey on the Explainability of Supervised
Machine Learning”. In: J. Artif. Int. Res. 70 (2021), pp. 245–317. doi: 10.1613/
jair.1.12228. url: https://doi.org/10.1613/jair.1.12228.

[19] Jeanderson Cândido, Haesen Jan, Maurício Aniche, and Arie van Deursen. “An
Exploratory Study of Log Placement Recommendation in an Enterprise System”.
In: 2021 IEEE/ACM 18th International Conference on Mining Software Reposito-
ries (MSR). Los Alamitos, CA, USA: IEEE Computer Society, 2021, pp. 143–154.
doi: 10.1109/MSR52588.2021.00027.

[20] Jorge Cardoso, Jasmin Bogatinovski, and Sasho Nedelkoski. Distributed Trace
Anomaly Detection with Self-Attention based Deep Learning. Approved by the
European Patent Office, WO2022053163A1. 2022.

[21] Olmo Cerri, Thong Q. Nguyen, Maurizio Pierini, Maria Spiropulu, and Jean-
Roch Vlimant. “Variational autoencoders for new physics mining at the Large
Hadron Collider”. In: Journal of High Energy Physics 2019 (2019), p. 36. doi:
10.1007/JHEP05(2019)036.

[22] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A
Survey”. In: ACM Comput. Surv. 41 (2009). doi: 10.1145/1541880.1541882.

[23] Boyuan Chen and Zhen Ming (Jack) Jiang. “Characterizing logging practices in
Java-based open source software projects – a replication study in Apache Software
Foundation”. In: Empirical Software Engineering 22 (2017), pp. 330–374.

[24] Boyuan Chen and Zhen Ming Jiang. “Characterizing and Detecting Anti-Patterns
in the Logging Code”. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). 2017, pp. 71–81. doi: 10.1109/ICSE.2017.15.

[25] Boyuan Chen and Zhen Ming (Jack) Jiang. “A Survey of Software Log Instru-
mentation”. In: ACM Comput. Surv. 54 (2021). doi: 10.1145/3448976.

[26] Boyuan Chen and Zhen Ming (Jack) Jiang. “Extracting and studying the Logging-
Code-Issue-Introducing changes in Java-based large-scale open source software
systems”. In: Empirical Software Engineering 24 (2019), pp. 2285–2322. doi: 10.
1007/s10664-019-09690-0.

[27] Boyuan Chen and Zhen Ming (Jack) Jiang. “Studying the Use of Java Logging
Utilities in the Wild”. In: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 397–408. doi: 10.1145/3377811.3380408.

[28] M. Chen, A.X. Zheng, J. Lloyd, M.I. Jordan, and E. Brewer. “Failure diagnosis us-
ing decision trees”. In: International Conference on Autonomic Computing, 2004.
Proceedings. 2004, pp. 36–43. doi: 10.1109/ICAC.2004.1301345.

https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1109/MSR52588.2021.00027
https://worldwide.espacenet.com/patent/search/family/072474335/publication/WO2022053163A1?q=WO2022053163A1
https://doi.org/10.1007/JHEP05(2019)036
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1145/3448976
https://doi.org/10.1007/s10664-019-09690-0
https://doi.org/10.1007/s10664-019-09690-0
https://doi.org/10.1145/3377811.3380408
https://doi.org/10.1109/ICAC.2004.1301345

158 BIBLIOGRAPHY

[29] Rui Chen, Shenglin Zhang, Dongwen Li, Yuzhe Zhang, Fangrui Guo, Weibin
Meng, Dan Pei, Yuzhi Zhang, Xu Chen, and Yuqing Liu. “LogTransfer: Cross-
System Log Anomaly Detection for Software Systems with Transfer Learning”.
In: 2020 IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). 2020, pp. 37–47. doi: 10.1109/ISSRE5003.2020.00013.

[30] Tse-Hsun Chen, Stephen W. Thomas, and Ahmed E. Hassan. “A Survey on the
Use of Topic Models When Mining Software Repositories”. In: Empirical Software
Engineering 21 (2016), pp. 1843–1919.

[31] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R. Lyu. “Expe-
rience Report: Deep Learning-based System Log Analysis for Anomaly Detection”.
In: CoRR 2107.05908 (2021). url: https://arxiv.org/abs/2107.05908.

[32] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray,
and M.-Y. Wong. “Orthogonal defect classification-a concept for in-process mea-
surements”. In: IEEE Transactions on Software Engineering 18 (1992), pp. 943–
956. doi: 10.1109/32.177364.

[33] Sunita Chulani and Barry Boehm. Modeling Software Defect Introduction and
Removal. Tech. rep. 1999.

[34] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
Learning 20 (1995), pp. 273–297.

[35] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella. “En-
hancing the analysis of software failures in cloud computing systems with deep
learning”. In: Journal of Systems and Software 181 (2021), p. 111043. doi: https:
//doi.org/10.1016/j.jss.2021.111043. url: https://www.
sciencedirect.com/science/article/pii/S0164121221001400.

[36] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Ne-
matollah Bidokhti. “How bad can a bug get? an empirical analysis of software
failures in the OpenStack cloud computing platform”. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. New York, NY, USA: Asso-
ciation for Computing Machinery, 2019, pp. 200–211.

[37] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). USA: Wiley-Interscience,
2006. isbn: 0471241954.

[38] Yingnong Dang, Qingwei Lin, and Peng Huang. “AIOps: Real-World Challenges
and Research Innovations”. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). 2019, pp. 4–5.
doi: 10.1109/ICSE-Companion.2019.00023.

https://doi.org/10.1109/ISSRE5003.2020.00013
https://arxiv.org/abs/2107.05908
https://doi.org/10.1109/32.177364
https://doi.org/https://doi.org/10.1016/j.jss.2021.111043
https://doi.org/https://doi.org/10.1016/j.jss.2021.111043
https://www.sciencedirect.com/science/article/pii/S0164121221001400
https://www.sciencedirect.com/science/article/pii/S0164121221001400
https://doi.org/10.1109/ICSE-Companion.2019.00023

BIBLIOGRAPHY 159

[39] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász,
Marc Lackenby, Geordie Williamson, Demis Hassabis, and Pushmeet Kohli. “Ad-
vancing mathematics by guiding human intuition with AI”. In: Nature 600.7887
(2021), pp. 70–74. doi: 10.1038/s41586-021-04086-x.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-
training of deep bidirectional transformers for language understanding”. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies. Minneapolis,
Minnesota: Association for Computational Linguistics, 2019, pp. 4171–4186. doi:
10.18653/v1/N19-1423.

[41] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang
Fu, Dongmei Zhang, and Tao Xie. “Log2: A Cost-Aware Logging Mechanism
for Performance Diagnosis”. In: Proceedings of the 2015 USENIX Conference on
Usenix Annual Technical Conference. USA: USENIX Association, 2015, pp. 139–
150.

[42] Zishuo Ding, Heng Li, and Weiyi Shang. “LoGenText: Automatically Generat-
ing Logging Texts Using Neural Machine Translation”. In: Proceedings of the 9th
IEEE International Conference on Software Analysis, Evolution and Reengineer-
ing. SANER ’22. IEEE. 2022.

[43] Min Du and Feifei Li. “Spell: Streaming Parsing of System Event Logs”. In: 2016
IEEE 16th International Conference on Data Mining (ICDM). 2016, pp. 859–864.
doi: 10.1109/ICDM.2016.0103.

[44] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. “DeepLog: Anomaly De-
tection and Diagnosis from System Logs through Deep Learning”. In: Proceedings
of the 2017 ACM SIGSAC. New York, NY, USA: Association for Computing Ma-
chinery, 2017, pp. 1285–1298.

[45] F.Y. Edgeworth. “XLI. On discordant observations”. In: The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 23 (1887), pp. 364–
375. doi: 10.1080/14786448708628471.

[46] Edward Finegan. Language: Its structure and use. 7th ed. Florence, AL: Cengage
Learning, 2014, p. 289.

[47] Wendy D. Fisher, Tracy K. Camp, and Valeria V. Krzhizhanovskaya. “Anomaly
detection in earth dam and levee passive seismic data using support vector ma-
chines and automatic feature selection”. In: Journal of Computational Science 20
(2017), pp. 143–153. doi: https://doi.org/10.1016/j.jocs.2016.11.
016.

https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1080/14786448708628471
https://doi.org/https://doi.org/10.1016/j.jocs.2016.11.016
https://doi.org/https://doi.org/10.1016/j.jocs.2016.11.016

160 BIBLIOGRAPHY

[48] Forecast. Cisco visual networking index: global mobile data traffic forecast update.
2017. url: https://branden.biz/wp-content/uploads/2019/05/
white-paper-c11-738429.pdf.

[49] The Apache Software Foundation. Logging Service Project. Appache. 2022. url:
https://logging.apache.org/.

[50] Yoav Freund and Robert E. Schapire. “A Short Introduction to Boosting”. In:
Proc. of the 16 International Joint Conference on Artificial Intelligence. 1999,
pp. 1401–1406.

[51] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. “Execution Anomaly De-
tection in Distributed Systems through Unstructured Log Analysis”. In: 2009
Ninth IEEE International Conference on Data Mining. 2009, pp. 149–158. doi:
10.1109/ICDM.2009.60.

[52] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. “Where Do Developers Log? An Empirical Study
on Logging Practices in Industry”. In: Companion Proceedings of the 36th Inter-
national Conference on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2014, pp. 24–33. doi: 10.1145/2591062.2591175.

[53] Peter Garraghan, Paul Townend, and Jie Xu. “An Empirical Failure-Analysis of
a Large-Scale Cloud Computing Environment”. In: 2014 IEEE 15th International
Symposium on High-Assurance Systems Engineering. IEEE Press, 2014, pp. 113–
120. doi: 10.1109/HASE.2014.24.

[54] Eva Gibaja and Sebastián Ventura. “A Tutorial on Multilabel Learning”. In: ACM
Computing Surveys 47.3 (2015), 52:1–52:38.

[55] Federico Girosi, Michael Jones, and Tomaso Poggio. “Regularization Theory and
Neural Networks Architectures”. In: Neural Computation (1995), pp. 219–269.
doi: 10.1162/neco.1995.7.2.219.

[56] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. url: http://www.deeplearningbook.org.

[57] Piotr S. Gromski, Alon B. Henson, Jarosław M. Granda, and Leroy Cronin. “How
to explore chemical space using algorithms and automation”. In: Nature Reviews
Chemistry 3 (2019), pp. 119–128. doi: 10.1038/s41570-018-0066-y.

[58] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. “LogMine: Fast Pattern Recognition for Log Analytics”. In:
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 2016, pp. 1573–1582.

https://branden.biz/wp-content/uploads/2019/05/white-paper-c11-738429.pdf
https://branden.biz/wp-content/uploads/2019/05/white-paper-c11-738429.pdf
https://logging.apache.org/
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1145/2591062.2591175
https://doi.org/10.1109/HASE.2014.24
https://doi.org/10.1162/neco.1995.7.2.219
http://www.deeplearningbook.org
https://doi.org/10.1038/s41570-018-0066-y

BIBLIOGRAPHY 161

[59] Anu Han, Chen Jie, Shi Wenchang, Hou Jianwei, Liang Bin, and Qin Bo. “An Ap-
proach to Recommendation of Verbosity Log Levels Based on Logging Intention”.
In: 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME). New York, USA: IEEE, 2019, pp. 125–134.

[60] Xiao Han and Shuhan Yuan. “Unsupervised Cross-System Log Anomaly Detec-
tion via Domain Adaptation”. In: Proceedings of the 30th ACM International Con-
ference on Information and Knowledge Management. 2021, pp. 3068–3072. doi:
10.1145/3459637.3482209.

[61] Robert J. Hand David J.and Till. “A Simple Generalisation of the Area Under the
ROC Curve for Multiple Class Classification Problems”. In: Machine Learning 45
(2001), pp. 171–186.

[62] Shayan Hashemi and Mika Mäntylä. OneLog: Towards End-to-End Training in
Software Log Anomaly Detection. Last Access 20 Jan 2022. 2021. url: https:
//arxiv.org/abs/2104.07324.

[63] Ahmed E. Hassan. “Predicting faults using the complexity of code changes”. In:
2009 IEEE 31st International Conference on Software Engineering. USA: IEEE
Computer Society, 2009, pp. 78–88. doi: 10.1109/ICSE.2009.5070510.

[64] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. “Studying
and Detecting Log-Related Issues”. In: Empirical Software Engineering 23 (2018),
pp. 3248–3280. doi: 10.1007/s10664-018-9603-z.

[65] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. “Studying
and detecting log-related issues”. In: Empirical Software Engineering 23 (2018),
pp. 3248–3280. doi: 10.1007/s10664-018-9603-z.

[66] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. New York, NY, USA: Springer New York Inc., 2001.

[67] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. New York, NY, USA: Springer New York Inc., 2001.

[68] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R. Lyu. “Characterizing the
Natural Language Descriptions in Software Logging Statements”. In: Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 178–189.

[69] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. “Drain: An Online Log
Parsing Approach with Fixed Depth Tree”. In: 2017 IEEE International Confer-
ence on Web Services. NY, USA: Curran Associates, 2017, pp. 33–40.

https://doi.org/10.1145/3459637.3482209
https://arxiv.org/abs/2104.07324
https://arxiv.org/abs/2104.07324
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1007/s10664-018-9603-z
https://doi.org/10.1007/s10664-018-9603-z

162 BIBLIOGRAPHY

[70] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R.
Lyu. “A Survey on Automated Log Analysis for Reliability Engineering”. In: ACM
Comput. Surv. 54 (2021).

[71] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. “Deep Anomaly
Detection with Outlier Exposure”. In: (2018). eprint: 1812.04606.

[72] Marc Henrion, Daniel J. Mortlock, David J. Hand, and Axel Gandy. “Classifica-
tion and Anomaly Detection for Astronomical Survey Data”. In: Astrostatistical
Challenges for the New Astronomy. New York, NY: Springer New York, 2013,
pp. 149–184. doi: 10.1007/978-1-4614-3508-2_8.

[73] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network. 2015. doi: 10.48550/ARXIV.1503.02531. url: https:
//arxiv.org/abs/1503.02531.

[74] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

[75] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
spaCy: Industrial-strength Natural Language Processing in Python. Explosion.ai.
2020. doi: 10.5281/zenodo.1212303. url: https://doi.org/10.5281/
zenodo.1212303.

[76] Shaohan Huang, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong Yang, and
Zhongzhi Luan. “HitAnomaly: Hierarchical Transformers for Anomaly Detection
in System Log”. In: IEEE Transactions on Network and Service Management 17
(2020), pp. 2064–2076. doi: 10.1109/TNSM.2020.3034647.

[77] Mark Hung. Leading the iot, gartner insights on how to lead in a connected
world. 2017. url: https://www.gartner.com/imagesrv/books/iot/
iotEbook_digital.pdf.

[78] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu.
“SMARTLOG: Place error log statement by deep understanding of log intention”.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 2018, pp. 61–71. doi: 10.1109/SANER.2018.
8330197.

[79] Zhen Ming Jiang, Ahmed E. Hassan, Parminder Flora, and Gilbert Hamann. “Ab-
stracting Execution Logs to Execution Events for Enterprise Applications (Short
Paper)”. In: 2008 The Eighth International Conference on Quality Software. 2008,
pp. 181–186. doi: 10.1109/QSIC.2008.50.

1812.04606
https://doi.org/10.1007/978-1-4614-3508-2_8
https://doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1109/TNSM.2020.3034647
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://doi.org/10.1109/SANER.2018.8330197
https://doi.org/10.1109/SANER.2018.8330197
https://doi.org/10.1109/QSIC.2008.50

BIBLIOGRAPHY 163

[80] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.
“Automatic identification of load testing problems”. In: 2008 IEEE International
Conference on Software Maintenance. 2008, pp. 307–316. doi: 10.1109/ICSM.
2008.4658079.

[81] Thorsten Joachims. “A Support Vector Method for Multivariate Performance
Measures”. In: Proceedings of the 22nd International Conference on Machine
Learning. New York, NY, USA: Association for Computing Machinery, 2005,
pp. 377–384.

[82] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Bal-
lard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. “Highly accurate protein structure pre-
diction with AlphaFold”. In: Nature 596 (2021), pp. 583–589. doi: 10.1038/
s41586-021-03819-2.

[83] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, Mark D. Syer, and Ahmed E.
Hassan. “Examining the Stability of Logging Statements”. In: Empirical Software
Engineering 23 (2018), pp. 290–333.

[84] Shima Keiichi. Length matters: Clustering system log messages using length of
words. 2016. url: https://arxiv.org/pdf/1611.03213.pdf.

[85] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-oriented programming”. In:
ECOOP’97 — Object-Oriented Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 220–242.

[86] Taeyoung Kim, Suntae Kim, Cheol-Jung Yoo, Soohwan Cho, and Sooyong Park.
“An Automatic Approach to Validating Log Levels in Java”. In: 25th Asia-Pacific
Software Engineering Conference (APSEC). 2018, pp. 623–627. doi: 10.1109/
APSEC.2018.00078.

[87] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2015.

[88] Max Landauer, Sebastian Onder, Florian Skopik, and Markus Wurzenberger. Deep
Learning for Anomaly Detection in Log Data: A Survey. 2022. doi: 10.48550/
ARXIV.2207.03820.

https://doi.org/10.1109/ICSM.2008.4658079
https://doi.org/10.1109/ICSM.2008.4658079
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://arxiv.org/pdf/1611.03213.pdf
https://doi.org/10.1109/APSEC.2018.00078
https://doi.org/10.1109/APSEC.2018.00078
https://doi.org/10.48550/ARXIV.2207.03820
https://doi.org/10.48550/ARXIV.2207.03820

164 BIBLIOGRAPHY

[89] J. C. Laprie. Dependability: Basic Concepts and Terminology. Ed. by J. C. Laprie.
Vienna: Springer Vienna, 1992, pp. 3–245. isbn: 978-3-7091-9170-5. doi: 10.
1007/978-3-7091-9170-5_1. url: https://doi.org/10.1007/978-
3-7091-9170-5_1.

[90] Jean-Claude Laprie. “DEPENDABLE COMPUTING AND FAULT TOLER-
ANCE : CONCEPTS AND TERMINOLOGY”. In: Twenty-Fifth International
Symposium on Fault-Tolerant Computing, 1995. 1995, pp. 2–12. doi: 10.1109/
FTCSH.1995.532603.

[91] Van-Hoang Le and Hongyu Zhang. “Log-based Anomaly Detection with Deep
Learning: How Far Are We?” In: 2022 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 2022, pp. 1356–1367. doi: 10.1145/3510003.
3510155.

[92] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan. “A Qualitative Study
of the Benefits and Costs of Logging from Developers’ Perspectives”. In: IEEE
Transactions on Software Engineering (2020), pp. 1–17. doi: 10.1109/TSE.
2020.2970422.

[93] Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. “Studying
software logging using topic models”. In: Empirical Software Engineering 23.5
(2018), pp. 2655–2694. doi: 10.1007/s10664-018-9595-8.

[94] Heng Li, Weiyi Shang, and Ahmed E. Hassan. “Which Log Level Should Devel-
opers Choose for a New Logging Statement?” In: Empirical Software Engineering
22.4 (2017), pp. 1684–1716.

[95] Heng Li, Weiyi Shang, and Ahmed E. Hassan. “Which Log Level Should Devel-
opers Choose for a New Logging Statement?” In: Empir. Softw. Eng. 22 (2017),
pp. 1684–1716.

[96] Shanshan Li, Xu Niu, Zhouyang Jia, Xiangke Liao, Ji Wang, and Tao Li. “Guiding
log revisions by learning from software evolution history”. In: Empirical Software
Engineering 25 (2020), pp. 2302–2340. doi: 10.1007/s10664-019-09757-y.

[97] Tao Li, Yexi Jiang, Chunqiu Zeng, Bin Xia, Zheng Liu, Wubai Zhou, Xiaolong Zhu,
Wentao Wang, Liang Zhang, Jun Wu, Li Xue, and Dewei Bao. “FLAP: An End-
to-End Event Log Analysis Platform for System Management”. In: Proceedings of
the 23rd ACM SIGKDD International Conference on KDD. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 1547–1556. doi: 10.1145/
3097983.3098022.

https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1109/FTCSH.1995.532603
https://doi.org/10.1109/FTCSH.1995.532603
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1109/TSE.2020.2970422
https://doi.org/10.1109/TSE.2020.2970422
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-019-09757-y
https://doi.org/10.1145/3097983.3098022
https://doi.org/10.1145/3097983.3098022

BIBLIOGRAPHY 165

[98] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. “Swiss-
Log: Robust and Unified Deep Learning Based Log Anomaly Detection for Di-
verse Faults”. In: 2020 IEEE 31st ISSRE. 2020, pp. 92–103. doi: 10.1109/
ISSRE5003.2020.00018.

[99] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. “Where Shall We Log? Studying
and Suggesting Logging Locations in Code Blocks”. In: 2020 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 2020, pp. 361–
372.

[100] Zhenhao Li, Heng Li, Tse-Hsun Chen, and Weiyi Shang. “DeepLV: Suggesting
Log Levels Using Ordinal Based Neural Networks”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). NJ, USA: IEEE Press,
2021, pp. 1461–1472. doi: 10.1109/ICSE43902.2021.00131.

[101] Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan
Cukic, and Samira Shaikh. “Can we generate shellcodes via natural language? An
empirical study”. In: Automated Software Engineering 29 (2022). doi: 10.1007/
s10515-022-00331-3.

[102] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. “Log
Clustering Based Problem Identification for Online Service Systems”. In: Proceed-
ings of the 38th ICSE. New York, NY, USA: Association for Computing Machin-
ery, 2016, pp. 102–111. doi: 10.1145/2889160.2889232.

[103] Seppo Linnainmaa. “Taylor expansion of the accumulated rounding error”. In: BIT
Numerical Mathematics 16 (1976), pp. 146–160.

[104] B. Liu, Y. Dai, X. Li, W.S. Lee, and P.S. Yu. “Building text classifiers using
positive and unlabeled examples”. In: Third IEEE International Conference on
Data Mining. 2003, pp. 179–186. doi: 10.1109/ICDM.2003.1250918.

[105] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. “Code
Churn: A Neglected Metric in Effort-Aware Just-in-Time Defect Prediction”. In:
2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 2017, pp. 11–19. doi: 10.1109/ESEM.2017.8.

[106] Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and
Le Song. “Deep Hyperspherical Learning”. In: Proceedings of the 31st Interna-
tional Conference on NeurIPS. Red Hook, NY, USA: Curran Associates Inc.,
2017, pp. 3953–3963.

[107] Xiaotong Liu, Tong Jia, Ying Li, Hao Yu, Yang Yue, and Chuanjia Hou. “Auto-
matically Generating Descriptive Texts in Logging Statements: How Far Are We?”
In: Programming Languages and Systems. Cham: Springer International Publish-
ing, 2020, pp. 251–269.

https://doi.org/10.1109/ISSRE5003.2020.00018
https://doi.org/10.1109/ISSRE5003.2020.00018
https://doi.org/10.1109/ICSE43902.2021.00131
https://doi.org/10.1007/s10515-022-00331-3
https://doi.org/10.1007/s10515-022-00331-3
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1109/ICDM.2003.1250918
https://doi.org/10.1109/ESEM.2017.8

166 BIBLIOGRAPHY

[108] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. “Which Variables Should I Log?” In: IEEE Transactions on Software
Engineering 47.9 (2021), pp. 2012–2031. doi: 10.1109/TSE.2019.2941943.

[109] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. “Which Variables Should I Log?” In: IEEE Transactions on Software
Engineering 47 (2021), pp. 2012–2031. doi: 10.1109/TSE.2019.2941943.

[110] Felipe Lopez, Miguel Saez, Yuru Shao, Efe C. Balta, James Moyne, Z. Morley
Mao, Kira Barton, and Dawn Tilbury. “Categorization of Anomalies in Smart
Manufacturing Systems to Support the Selection of Detection Mechanisms”. In:
IEEE Robotics and Automation Letters 2 (2017), pp. 1885–1892. doi: 10.1109/
LRA.2017.2714135.

[111] Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and Liqiang
Wang. “Log-based Abnormal Task Detection and Root Cause Analysis for Spark”.
In: 2017 IEEE International Conference on Web Services (ICWS). 2017, pp. 389–
396. doi: 10.1109/ICWS.2017.135.

[112] Siyang Lu, Xiang Wei, Yandong Li, and Liqiang Wang. “Detecting Anomaly in
Big Data System Logs Using Convolutional Neural Network”. In: IEEE 16th Conf
on Dependable, Autonomic and Secure Computing. 2018, pp. 151–158. doi: 10.
1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037.

[113] Scott Lundberg. SHAP Github Implementation. GitHub. 2019. url: https://
github.com/slundberg/shap.

[114] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. “From
local explanations to global understanding with explainable AI for trees”. In: Na-
ture Machine Intelligence 2.1 (2020), pp. 56–67.

[115] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios.
“Clustering Event Logs Using Iterative Partitioning”. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. New York, NY, USA: Association for Computing Machinery, 2009, pp. 1255–
1264. doi: 10.1145/1557019.1557154.

[116] Sole Marc, Muntes-Mulero Victor, Ibrahim Rana Annie, and Estrada Giovani.
Survey on Models and Techniques for Root-Cause Analysis. 2017. url: http:
//arxiv.org/abs/1701.08546.

[117] Weibin Meng and et al. “LogAnomaly: Unsupervised Detection of Sequential and
Quantitative Anomalies in Unstructured Logs”. In: Proceedings of the 28, IJCAI-
19. IJCAI, 2019, pp. 4739–4745.

https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/LRA.2017.2714135
https://doi.org/10.1109/LRA.2017.2714135
https://doi.org/10.1109/ICWS.2017.135
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://doi.org/10.1145/1557019.1557154
http://arxiv.org/abs/1701.08546
http://arxiv.org/abs/1701.08546

BIBLIOGRAPHY 167

[118] Weibin Meng, Ying Liu, Shenglin Zhang, Dan Pei, Hui Dong, Lei Song, and Xulong
Luo. “Device-Agnostic Log Anomaly Classification with Partial Labels”. In: Proc
of 26th International Symposium on Quality of Service. 2018, pp. 1–6.

[119] Weibin Meng, Ying Liu, Shenglin Zhang, Federico Zaiter, Yuzhe Zhang, Yuheng
Huang, Zhaoyang Yu, Yuzhi Zhang, Lei Song, Ming Zhang, and Dan Pei. “Log-
Class: Anomalous Log Identification and Classification With Partial Labels”. In:
IEEE Trans. Netw. 18 (2021), pp. 1870–1884.

[120] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. “A Search-Based Approach for Accurate Identification of
Log Message Formats”. In: Proceedings of the 26th Conference on Program Com-
prehension. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 167–177. doi: 10.1145/3196321.3196340.

[121] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed Representations of Words and Phrases and their Compositionality”. In:
Advances in Neural Information Processing Systems. Vol. 26. Curran Associates,
Inc., 2013. url: https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[122] Thomas M. Mitchell. Machine Learning. New York, USA: McGraw-Hill, 1997.

[123] Masayoshi Mizutani. “Incremental Mining of System Log Format”. In: 2013 IEEE
International Conference on Services Computing. 2013, pp. 595–602. doi: 10.
1109/SCC.2013.73.

[124] N.R. Murphy, B. Beyer, C. Jones, and J. Petoff. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media, 2016. Chap. Chapter
6. isbn: 9781491951170. url: https://books.google.de/books?id=
tYrPCwAAQBAJ.

[125] Meiyappan Nagappan and Mladen A Vouk. “Abstracting log lines to log event
types for mining software system logs”. In: Proceedings of the 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010). 2010, pp. 114–
117.

[126] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhra-
jit Bhattacharya. “Anomaly detection using program control flow graph mining
from execution logs”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016, pp. 215–224.

[127] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. “Self-Attentive Classification-Based Anomaly Detection in Unstruc-
tured Logs”. In: 2020 IEEE International Conference on Data Mining (ICDM).
2020, pp. 1196–1201. doi: 10.1109/ICDM50108.2020.00148.

https://doi.org/10.1145/3196321.3196340
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1109/SCC.2013.73
https://books.google.de/books?id=tYrPCwAAQBAJ
https://books.google.de/books?id=tYrPCwAAQBAJ
https://doi.org/10.1109/ICDM50108.2020.00148

168 BIBLIOGRAPHY

[128] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. “Self-supervised Log Parsing”. In: Machine Learning and Knowledge
Discovery in Databases: Applied Data Science Track. Cham: Springer Interna-
tional Publishing, 2021, pp. 122–138. doi: https://doi.org/10.1007/978-
3-030-67667-4_8.

[129] Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker,
Jorge Cardoso, and Odej Kao. “Multi-source Distributed System Data for AI-
Powered Analytics”. In: Service-Oriented and Cloud Computing. Cham: Springer
International Publishing, 2020, pp. 161–176. doi: https://doi.org/10.
1007/978-3-030-44769-4_13.

[130] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. “A Survey of AIOps Methods
for Failure Management”. In: ACM Trans. Intell. Syst. Technol. 12 (2021). doi:
10.1145/3483424.

[131] Adam Oliner, Archana Ganapathi, and Wei Xu. “Advances and Challenges in Log
Analysis: Logs Contain a Wealth of Information for Help in Managing Systems.”
In: Queue 9 (2011), pp. 30–40. doi: 10.1145/2076796.2082137.

[132] Adam Oliner and Jon Stearley. “What Supercomputers Say: A Study of Five Sys-
tem Logs”. In: 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. Los Alamitos, CA, USA: IEEE Computer Society, 2007,
pp. 575–584.

[133] OpenSource. logging module Python. 2022. url: https://docs.python.org/
3/library/logging.html.

[134] OpenSource. spdlog C++ Library. 2022. url: https://github.com/gabime/
spdlog.

[135] Harold Ott, Jasmin Bogatinovski, Alexander Acker, Sasho Nedelkoski, and
Odej Kao. “Robust and Transferable Anomaly Detection in Log Data using
Pre-Trained Language Models”. In: 2021 IEEE/ACM International Workshop
on Cloud Intelligence (CloudIntelligence). 2021, pp. 19–24. doi: 10 . 1109 /
CloudIntelligence52565.2021.00013.

[136] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel.
“Deep Learning for Anomaly Detection: A Review”. In: ACM Comput. Surv. 54
(2021). doi: 10.1145/3439950.

[137] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
“Industry Practices and Event Logging: Assessment of a Critical Software Devel-
opment Process”. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. Vol. 2. New York, USA: IEEE Press, 2015, pp. 169–178.

https://doi.org/https://doi.org/10.1007/978-3-030-67667-4_8
https://doi.org/https://doi.org/10.1007/978-3-030-67667-4_8
https://doi.org/https://doi.org/10.1007/978-3-030-44769-4_13
https://doi.org/https://doi.org/10.1007/978-3-030-44769-4_13
https://doi.org/10.1145/3483424
https://doi.org/10.1145/2076796.2082137
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.1145/3439950

BIBLIOGRAPHY 169

[138] McGuthrie Peter. Tesla Sued in California, Lawsuit Alleges Autopilot Responsible
for Fatality. 2021. url: https://teslanorth.com/2021/07/07/tesla-
sued-in-california-lawsuit-alleges-autopilot-responsible-

for-fatality/.

[139] Cuong Pham, Long Wang, Byung Chul Tak, Salman Baset, Chunqiang Tang,
Zbigniew Kalbarczyk, and Ravishankar K. Iyer. “Failure Diagnosis for Distributed
Systems Using Targeted Fault Injection”. In: IEEE Trans. Parallel Distrib. Syst.
28 (2017), pp. 503–516. doi: 10.1109/TPDS.2016.2575829.

[140] Friedrich Pukelsheim. “The Three Sigma Rule”. In: The American Statistician
(1994), pp. 88–91. doi: 10.1080/00031305.1994.10476030.

[141] QOS. Simple Logging Faced for Java. QOS. 2022. url: https://www.slf4j.
org/.

[142] J. R. Quinlan. “Induction of decision trees”. In: Mach. Learn. 1 (1986), pp. 81–106.

[143] Julien Rabatel, Sandra Bringay, and Pascal Poncelet. “Anomaly detection in mon-
itoring sensor data for preventive maintenance”. In: Expert Systems with Applica-
tions 38 (2011), pp. 7003–7015. doi: https://doi.org/10.1016/j.eswa.
2010.12.014.

[144] Ariel Rabkin, Wei Xu, Avani Wildani, Armando Fox, David Patterson, and Randy
Katz. “A Graphical Representation for Identifier Structure in Logs”. In: Proceed-
ings of the 2010 Workshop on Managing Systems via Log Analysis and Machine
Learning Techniques. USA: USENIX Association, 2010.

[145] Weischedel Ralph, Palmer Martha, Marcus Mitchell, Hovy Eduard, Pradhan
Sameer, Ramshaw Lance, Xue Nianwen, Taylor Ann, Kaufman Jeff, Franchini
Michelle, El-Bachouti Mohammed, Belvin Robert, and Houston Ann. OntoNotes
Release 5.0. doi: https://doi.org/10.35111/xmhb-2b84. url: https:
//catalog.ldc.upenn.edu/LDC2013T19.

[146] Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon,
Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Müller.
“A Unifying Review of Deep and Shallow Anomaly Detection”. In: Proceedings of
the IEEE 109.5 (2021), pp. 756–795.

[147] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. “Deep One-
Class Classification”. In: Proceedings of the 35th International Conference on Ma-
chine Learning. PMLR, 2018, pp. 4393–4402.

https://teslanorth.com/2021/07/07/tesla-sued-in-california-lawsuit-alleges-autopilot-responsible-for-fatality/
https://teslanorth.com/2021/07/07/tesla-sued-in-california-lawsuit-alleges-autopilot-responsible-for-fatality/
https://teslanorth.com/2021/07/07/tesla-sued-in-california-lawsuit-alleges-autopilot-responsible-for-fatality/
https://doi.org/10.1109/TPDS.2016.2575829
https://doi.org/10.1080/00031305.1994.10476030
https://www.slf4j.org/
https://www.slf4j.org/
https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.014
https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.014
https://doi.org/https://doi.org/10.35111/xmhb-2b84
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19

170 BIBLIOGRAPHY

[148] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel
Müller, Klaus-Robert Müller, and Marius Kloft. “Deep Semi-Supervised Anomaly
Detection”. In: International Conference on Learning Representations. 2020. url:
https://openreview.net/forum?id=HkgH0TEYwH.

[149] Felix Salfner, Maren Lenk, and Miroslaw Malek. “A Survey of Online Failure Pre-
diction Methods”. In: ACM Comput. Surv. 42.3 (2010). doi: 10.1145/1670679.
1670680. url: https://doi.org/10.1145/1670679.1670680.

[150] Felix Salfner, Steffen Tschirpke, and Miroslaw Malek. “Comprehensive logfiles for
autonomic systems”. In: 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings. 2004. doi: 10.1109/IPDPS.2004.1303243.

[151] Oxley Michael. "Sarbanes-Oxley Act of 2002". USA Senat. 2002. url: https:
//www.govtrack.us/congress/bills/107/hr3763.

[152] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W. God-
frey, Mohamed Nasser, and Parminder Flora. “An exploratory study of the evolu-
tion of communicated information about the execution of large software systems”.
In: Journal of Software: Evolution and Process 26 (2014), pp. 3–26. doi: https:
//doi.org/10.1002/smr.1579. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/smr.1579.

[153] Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. “Studying the rela-
tionship between logging characteristics and the code quality of platform software”.
In: Empirical Software Engineering 20 (2015), pp. 1–27. doi: 10.1007/s10664-
013-9274-8.

[154] He Shilin, Zhu Jieming, He Pinjia, and Lyu Michael R. “Experience Report:
System Log Analysis for Anomaly Detection”. In: 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). River Side, USA: IEEE
Press, 2016, pp. 207–218.

[155] R. Short and K. Fukunaga. “The optimal distance measure for nearest neighbor
classification”. In: IEEE Transactions on Information Theory 27 (1981), pp. 622–
627. doi: 10.1109/TIT.1981.1056403.

[156] Julius Sim and Chris C Wright. “The Kappa Statistic in Reliability Studies: Use,
Interpretation, and Sample Size Requirements”. In: Physical Therapy 85 (2005),
pp. 257–268.

[157] Cindy Sridharan. Distributed Systems Observability. O’Reilly Media, Inc., 2018.
Chap. 4. isbn: 9781492033424.

[158] Ching Y. Suen. “n-Gram Statistics for Natural Language Understanding and Text
Processing”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(1979), pp. 164–172. doi: 10.1109/TPAMI.1979.4766902.

https://openreview.net/forum?id=HkgH0TEYwH
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1109/IPDPS.2004.1303243
https://www.govtrack.us/congress/bills/107/hr3763
https://www.govtrack.us/congress/bills/107/hr3763
https://doi.org/https://doi.org/10.1002/smr.1579
https://doi.org/https://doi.org/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1579
https://doi.org/10.1007/s10664-013-9274-8
https://doi.org/10.1007/s10664-013-9274-8
https://doi.org/10.1109/TIT.1981.1056403
https://doi.org/10.1109/TPAMI.1979.4766902

BIBLIOGRAPHY 171

[159] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). USA: Prentice-Hall, Inc., 2006. isbn: 0132392275.

[160] Liang Tang, Tao Li, and Chang-Shing Perng. “LogSig: Generating System Events
from Raw Textual Logs”. In: Proceedings of the 20th ACM International Confer-
ence on Information and Knowledge Management. New York, NY, USA: Associ-
ation for Computing Machinery, 2011, pp. 785–794. doi: 10.1145/2063576.
2063690.

[161] Wilson L Taylor. “Cloze procedure: A new tool for measuring readability”. In:
Journalism quarterly 30 (1953), pp. 415–433.

[162] Robert Tibshirani and Trevor Hastie. “Outlier sums for differential gene expression
analysis.” In: Biostatistics (Oxford, England) 8 (2007), pp. 2–8. doi: https:
//doi.org/10.1093/biostatistics/kxl005.

[163] Besmir Tola, Yuming Jiang, and Bjarne E. Helvik. “Failure process characteris-
tics of cloud-enabled services”. In: 2017 9th International Workshop on Resilient
Networks Design and Modeling (RNDM). 2017, pp. 1–7. doi: 10.1109/RNDM.
2017.8093033.

[164] Risto Vaarandi. “A data clustering algorithm for mining patterns from event logs”.
In: Proceedings of the 3rd IEEE Workshop on IP Operations Management (IPOM
2003) (IEEE Cat. No.03EX764). 2003, pp. 119–126. doi: 10.1109/IPOM.
2003.1251233.

[165] Joaquin Vanschoren. “Meta-Learning: A Survey”. In: (2018). eprint: 1810.03548.
url: http://arxiv.org/abs/1810.03548.

[166] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. “Attention is All You
Need”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 6000–
6010.

[167] Yi Wan, Yilin Liu, Dong Wang, and Yujin Wen. “GLAD-PAW: Graph-Based
Log Anomaly Detection by Position Aware Weighted Graph Attention Network”.
In: Advances in Knowledge Discovery and Data Mining. 2021, pp. 66–77. doi:
10.1007/978-3-030-75762-5_6.

[168] Andrew Watters and Sarah Boslaugh. Statistics in a Nutshell: A Desktop Quick
Reference. In a Nutshell (O’Reilly). USA: O’Reilly Media, 2008.

https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1145/2063576.2063690
https://doi.org/https://doi.org/10.1093/biostatistics/kxl005
https://doi.org/https://doi.org/10.1093/biostatistics/kxl005
https://doi.org/10.1109/RNDM.2017.8093033
https://doi.org/10.1109/RNDM.2017.8093033
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1109/IPOM.2003.1251233
1810.03548
http://arxiv.org/abs/1810.03548
https://doi.org/10.1007/978-3-030-75762-5_6

172 BIBLIOGRAPHY

[169] Thorsten Wittkopp, Alexander Acker, Sasho Nedelkoski, Jasmin Bogatinovski,
Dominik Scheinert, Wu Fan, and Odej Kao. “A2Log: Attentive Augmented Log
Anomaly Detection”. In: Proceedings of the 55th Annual Hawaii International
Conference on System Sciences. Honolulu, HI: ScholarSpace, University of Hawaii
at Mano, Hamilton Library, 2022. doi: 10.24251/HICSS.2022.234.

[170] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. “A Survey
on Software Fault Localization”. In: IEEE Transactions on Software Engineering
42 (2016), pp. 707–740. doi: 10.1109/TSE.2016.2521368.

[171] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. “Lessons and Ac-
tions: What We Learned from 10K SSD-Related Storage System Failures”. In: 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
2019, pp. 961–976.

[172] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan.
“Detecting Large-Scale System Problems by Mining Console Logs”. In: Proceed-
ings of the ACM 22nd SOSP. New York, NY, USA: Association for Computing
Machinery, 2009, pp. 117–132.

[173] Kenji Yamanishi and Yuko Maruyama. “Dynamic Syslog Mining for Network
Failure Monitoring”. In: Proc. of the 11nd SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2005, pp. 499–508.

[174] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. “Towards K-
Means-Friendly Spaces: Simultaneous Deep Learning and Clustering”. In: Proc. of
the 34th International Conference on Machine Learning. 2017.

[175] Kundi Yao, Guilherme B. de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma, and
Sarah Sajedi. “Log4Perf: Suggesting Logging Locations for Web-Based Systems’
Performance Monitoring”. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 127–138. doi: 10.1145/3184407.3184416.

[176] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang,
Yuanyuan Zhou, and Stefan Savage. “Be Conservative: Enhancing Failure Diagno-
sis with Proactive Logging”. In: 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). Hollywood, CA: USENIX Association,
2012, pp. 293–306.

[177] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. “Characterizing logging practices in
open-source software”. In: 34th International Conference on Software Engineering
(ICSE). 2012, pp. 102–112. doi: 10.1109/ICSE.2012.6227202.

https://doi.org/10.24251/HICSS.2022.234
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/3184407.3184416
https://doi.org/10.1109/ICSE.2012.6227202

BIBLIOGRAPHY 173

[178] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. “Im-
proving Software Diagnosability via Log Enhancement”. In: ACM Trans. Comput.
Syst. 30 (2012). doi: 10.1145/2110356.2110360.

[179] Zebrium. Zebrium. Last Access 20 Jan 2022. 2021. url: https : / / www .

zebrium.com/.

[180] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,
Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dong-
mei Zhang. “Robust Log-Based Anomaly Detection on Unstable Log Data”. In:
Proceedings of the 2019 27th ACM Joint Meeting on ESEC/FSE. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 807–817.

[181] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. “The Game of Twenty Questions: Do You Know Where to Log?” In: Pro-
ceedings of the 16th Workshop on Hot Topics in Operating Systems. New York,
NY, USA: Association for Computing Machinery, 2017, pp. 125–131. doi: 10.
1145/3102980.3103001.

[182] Zhenfei Zhao, Weina Niu, Xiaosong Zhang, Runzi Zhang, Zhenqi Yu, and Cheng
Huang. “Trine: Syslog anomaly detection with three transformer encoders in one
generative adversarial network”. In: Applied Intelligence 52 (2022), pp. 8810–8819.
doi: 10.1007/s10489-021-02863-9.

[183] Jiang Zhaoxue, Li Tong, Zhang Zhenguo, Ge Jingguo, You Junling, and Li Liangx-
iong. “A Survey On Log Research Of AIOps: Methods and Trends”. In: Mobile
Networks and Applications 26 (2021), pp. 2353–2364. doi: 10.1007/s11036-
021-01832-3.

[184] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. “An
Exploratory Study of Logging Configuration Practice in Java”. In: 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). New
York, USA: IEEE Press, 2019, pp. 459–469. doi: 10.1109/ICSME.2019.
00079.

[185] Wubai Zhou, Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady
Ya. Grabarnik. “Resolution Recommendation for Event Tickets in Service Man-
agement”. In: IEEE Transactions on Network and Service Management 13.4
(2016), pp. 954–967. doi: 10.1109/TNSM.2016.2587807.

[186] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei
Zhang. “Learning to Log: Helping Developers Make Informed Logging Decisions”.
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1. IEEE Press, 2015, pp. 415–425.

https://doi.org/10.1145/2110356.2110360
https://www.zebrium.com/
https://www.zebrium.com/
https://doi.org/10.1145/3102980.3103001
https://doi.org/10.1145/3102980.3103001
https://doi.org/10.1007/s10489-021-02863-9
https://doi.org/10.1007/s11036-021-01832-3
https://doi.org/10.1007/s11036-021-01832-3
https://doi.org/10.1109/ICSME.2019.00079
https://doi.org/10.1109/ICSME.2019.00079
https://doi.org/10.1109/TNSM.2016.2587807

174 BIBLIOGRAPHY

[187] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael
R. Lyu. “Tools and Benchmarks for Automated Log Parsing”. In: Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 121–130.

[188] Yichen Zhu, Weibin Meng, Ying Liu, Shenglin Zhang, Tao Han, Shimin Tao, and
Dan Pei. UniLog: Deploy One Model and Specialize it for All Log Analysis Tasks.
2021.

[189] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. “Modeling polypharmacy
side effects with graph convolutional networks”. In: Bioinformatics 34.13 (2018),
pp. 457–466. doi: 10.1093/bioinformatics/bty294.

https://doi.org/10.1093/bioinformatics/bty294

	Title Page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Tables
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Main Contributions
	1.3 Thesis Outline

	2 Background
	2.1 System Dependability
	2.2 System Observability
	2.2.1 Software Logging
	2.2.2 Software Log Instrumentation

	2.3 Artificial Intelligence for IT Operations
	2.3.1 Intelligent Methods
	2.3.2 Anomaly Detection

	3 Related Work
	3.1 Logging Code Composition Quality
	3.1.1 What-to-Log
	3.1.2 Where-to-Log
	3.1.3 How-to-Log

	3.2 Log Analysis
	3.2.1 Log Parsing
	3.2.2 Log-based Anomaly Detection
	3.2.3 Log-based Anomaly Classification

	4 AI-enabled Dependability Framework with Log Data
	4.1 Challenges and Assumptions
	4.1.1 Challenges
	4.1.2 Assumptions

	4.2 Conceptual Overview
	4.2.1 Automatic Log Instruction Code Improvement
	4.2.2 Log Analysis: Log-based Anomaly Detection and Classification

	5 Automatic Logging Code Composition Quality Assessment
	5.1 Logging Code Composition Quality Properties
	5.1.1 Log Level Assessment
	5.1.2 Linguistic Quality Assessment

	5.2 QuLog: Automatic Method for Logging Code Composition Quality Assessment
	5.2.1 Log Instruction Preprocessing
	5.2.2 Deep Learning Framework
	5.2.3 Prediction Explainer

	5.3 Evaluation
	5.3.1 Log Level Assessment
	5.3.2 Linguistic Quality Assessment
	5.3.3 Prediction Explainer

	5.4 Chapter Summary

	6 Single Line Log-based Anomaly Detection and Classification
	6.1 Semantic Log Analysis
	6.1.1 Log Instructions Usage for Anomaly Detection
	6.1.2 ADLILog: Semantic Anomaly Detection with Log Instructions
	6.1.3 Semantic Anomaly Classification

	6.2 Performance Log Analysis
	6.2.1 NuLog: Self-Attentive Log Parsing
	6.2.2 Performance Anomaly Detection

	6.3 Evaluation
	6.3.1 Semantic Log Analysis
	6.3.2 Performance Log Analysis

	6.4 Chapter Summary

	7 Sequential Log-Based Anomaly Detection and Classification
	7.1 Log Sequence Representation with Event Groups
	7.2 CLog: Method for Sequential Log-based Anomaly Detection and Classification
	7.2.1 PLog: Context-aware Event Group Extraction
	7.2.2 Sequential Anomaly Detection
	7.2.3 Sequential Anomaly Classification

	7.3 Evaluation
	7.3.1 Sequential Anomaly Detection
	7.3.2 Sequential Anomaly Classification

	7.4 Chapter Summary

	8 Conclusions
	A Online Services Failure Study
	B Log Level Quality Assessment: Additional Evaluation
	Bibliography

