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Abstract

Nowadays, cyber-physical systems find application in many areas. These systems
consist of multiple control components that interact with each other and with the
physical environment. Model-driven development methods are used to handle their
complexity and to ease their development. Furthermore, variability in the model
design enables to customize a system for different environments. In safety-critical
areas, where faulty behavior can injure or even kill people, it is desirable that the
development and quality assurance of these systems is performed rigorously.

Cyber-physical systems have properties that make their development and qual-
ity assurance challenging. They contain hybrid behavior, which is the interac-
tion of discrete changes and continuous behavior that is described by differential
equations. Data flow-oriented modeling languages that are used in industry aim
at enabling the comprehensible and fast development of hybrid control systems.
However, they lack formal semantics, which precludes the application of rigorous
verification methods and thus makes it impossible to provide guarantees about the
behavior of the modeled systems. Formal modeling languages enable us to precisely
model the mathematical processes and to formally verify that the system fulfills its
requirements. However, correct behavior for each system variant must be ensured,
which requires high effort, and formal approach often have scalability issues when
handling industrially used models. Two major barriers prevent formal methods
from being applied in practice: The lack of formal semantics of industrially used
modeling languages, but also the high cost of rigorous formal verification.

In this thesis, we present an approach for the service-oriented design and verifi-
cation of hybrid control systems. We define the concept of a Service for hybrid
systems, with which we can formally define the functionality of the system and
customize it for different contexts. As representative for data flow-oriented mod-
eling languages, we present a formalization for Simulink into differential dynamic
logic (dL), which is a formal language to design and verify hybrid systems. Our for-
malization enables the formal verification of hybrid Simulink models. With the ver-
ification results, we create hybrid contracts that describe the interface behavior of
these services containing hybrid behavior. Additionally, we present an abstraction
mechanism for services with hybrid contracts that enables the scalable verification
of systems consisting of interacting services. With the addition of a feature model,
we enable the customization for services for the reuse in different contexts. We
have created a framework that implements our service-oriented design in Simulink
and provides an automatic transformation of Simulink models into dL to enable
the service-oriented design and verification of Simulink models. The hierarchical
nature of services enables the development of larger models that are verifiable.

Our approach combines the strengths of model-driven development of hybrid sys-
tems with the power of formally ensuring the correct behavior of modeled systems
under all circumstances. We provide a formal foundation for hybrid Simulink mod-
els, for which we have developed an automatic transformation of Simulink models
into dL. With our abstraction with hybrid contracts, we can provide safety guaran-
tees for larger systems that consist of multiple interacting services. With a feature
model and automatic service generation, we enable easy customization of services
and their reuse. We demonstrate the applicability of our approach with different
experimental results.





Zusammenfassung

In der heutigen Zeit finden cyber-physische Systeme in vielen Bereichen Anwen-
dung. Diese bestehen aus Steuerelementen, die miteinander und mit der Umgebung
interagieren. In der Praxis werden modellgetriebene Entwicklungsmethoden ver-
wendet, um die Entwicklung zu vereinfachen. Durch das Bereitstellen von Varia-
bilität im Design des Modells kann das System zur Verwendung in verschiedenen
Umgebungen vorbereitet werden. In sicherheitskritischen Bereichen, bei welchen
fehlerhaftes Verhalten zu Verletzungen oder Tod führen kann, ist ausgiebige Qua-
litätssicherung während der Entwicklung wichtig.

Die Eigenschaften von cyber-physischen Systemen erschweren deren Entwicklung
und Qualitätssicherung. Sie weisen hybrides Verhalten auf, welches diskretes und
kontinuierliches Verhalten kombiniert. Datenfluss-orientierte Sprachen, welche in
der Industrie verwendet werden, ermöglichen das schnelle Erstellen von hybriden
Steuersystemen mithilfe von nachvollziehbaren Modellen. Jedoch haben diese Spra-
chen keine formale Semantik und ermöglichen es nicht Garantien über das korrekte
Systemverhalten zu liefern. Formale Modellierungssprachen ermöglichen es präzise
die mathematischen Prozesse im Modell dazustellen und ermöglichen es formal zu
prüfen, ob das modellierte System die Anforderungen erfüllt. Beim Bereitstellen
von Variabilität muss zusätzlich für jede Variante korrektes Verhalten sichergestellt
werden. Zusätzlich skalieren formale Ansätze schwer für Modellgrößen, die in der
Praxis relevant sind. Die folgenden Barrieren behindern die Anwendung von For-
malen Methoden in der Praxis: Die fehlende formale Semantik für in der Industrie
verwendete Modellierungssprachen und hohe Kosten der formalen Verifikation.

In dieser Dissertation stellen wir einen Ansatz zur Service-Orientierten Entwick-
lung und Verifikation für hybride Steuerungssystem vor. Wir definieren den Begriff
eines Service für Hybride Systeme, der es ermöglicht formal die Funktionalität von
Komponenten zu erfassen und an verschiedene Kontexte anzupassen. Wir nehmen
beispielhaft die datenflussorientierte Modellierungssprache Simulink und präsen-
tieren eine Formalisierung in der formalen Semantik von Differential Dynamic Lo-
gic (dL). Wir erstellen hybrid contracts, welche formal das Interfaceverhalten der
Services erfassen. Zudem präsentieren wir einen Service-Abstraktionsmechanismus,
der es ermöglicht Eigenschaften von größeren Systemen mit integrierten Services
zu verifizieren. Außerdem beinhaltet unsere Definition von Services ein Feature
Modell, das es ermöglicht Teile des Services zu modifizieren, um diesen für ande-
re Anwendungsfälle anzupassen. Wir haben unsere Konzepte in einem Ansatz für
Simulink implementiert und ermöglichen damit die Service-Orientierte Entwick-
lung und Verifikation für Simulink. Die hierarchische Natur von unseren Services
ermöglicht die Entwicklung und Verifikation von größeren Systemen, die aus inter-
agierenden Services bestehen und die wiederum formal verifiziert werden können.

Unser Ansatz kombiniert Stärken modellgetriebener Entwicklung von hybriden
Systemen mit den formalen Garantien, die korrektes Systemverhalten unter al-
len Umständen sicherstellen. Wir stellen eine formale Basis für hybride Simulink
Modelle bereit, für welche wir eine automatische Transformation von Simulink
nach dL entwickelt haben. Wir ermöglichen Sicherheitsgarantien mithilfe unserer
Abstraktion über hybrid contracts für größere Systeme, die aus interagierenden
Services bestehen. Über ein Feature Modell und einer automatischen Erstellung
von Services, ermöglichen wir die Anpassung von Services für andere Umgebungen
und erhöhen ihre Wiederverwendbarkeit. Wir demonstrieren die Anwendbarkeit
unseres Ansatzes mithilfe von verschiedenen experimentellen Ergebnissen.
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1 Introduction

In current times, the prevalence of cyber-physical systems (CPS) [BG11] is ever
increasing. One important property of these systems is the strong interconnections
between the digital components and the physical environment. Such systems find
application in many areas, like the automotive industry or the medical context,
and they fulfill a wide range of tasks. In safety critical applications, faulty behavior
can cause injury and threaten human lives. Therefore, their correct behavior under
all circumstances has to be ensured. However, the special properties of CPS make
it difficult to ensure a smooth development process and still ensure their correct
behavior.

First, CPS have a strong connection to the physical environment. Therefore, dur-
ing the development it is desirable to consider the interplay of the digital compo-
nents and the physical environment. As a result, cyber-physical systems contain
hybrid behavior, i.e., they comprise continuous behavior, which is described by
differential equations, additionally to traditional discrete behavior, like the change
between control states. Second, hybrid control systems often consist of interacting
components that work together and are executed in parallel. These properties im-
pede the development of CPS with a traditional implementation in a sequential
programming language. Model-driven development enables us to model a system
on a higher abstraction level and provide better comprehensibility than written
code. Furthermore, the executable code is often created by automatic code gener-
ation. To reduce the development costs and shorten the development time, parts
of existing models or even whole models can be reused in the development of
new systems. At the same time, model-driven development languages enable early
system validation by simulation in early development steps. While this allows for
testing a design for given input scenarios, the results are only applicable for a
limited number of input scenarios. The continuous evolving values in the behav-
ior of the modeled hybrid systems produce continuous trajectories and an infinite
state space. While systems modeled in industrial used languages, like MATLAB
Simulink [Matb], allow for fast development and reuse of developed parts, they
are limited in their capabilities to provide guarantees about the system behavior.
Formal verification can provide guarantees for all possible inputs. However, formal
verification of hybrid control systems is impeded by the problem that many in-
dustrially used languages do not come with formal semantics. The languages that
are typically used in model-driven development do not provide formal models and
the creation of formal models requires high expertise. To ensure correct behavior
of a CPS, the interaction between components and the environment must be con-
sidered. Changes in a part of the system often require performing the verification
process again and a manual system-wide verification is a time intensive task.

This thesis addresses the problem that there is a gap between the commonly used
modeling tools and the verification techniques used in hybrid system design. This
problem consists of four major parts. First, the modeling tools do not provide
formal models for systems with hybrid behavior. Second, the correct behavior of
the system is often determined by the behavior of multiple interacting compo-
nents and the behavior of the environment. This also means, components that are
present multiple times in one system are considered multiple times in the verifica-
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tion. Third, changes in one part of the system require a new verification for the
whole system. Fourth, knowledge about verification results could help in the design
and verification of new systems. In the context of hybrid control systems, these
problems concern components that are executed in parallel and contain hybrid
behavior, which consists of discrete changes and continuous evolutions.

To address these problems in this thesis, we aim at developing an approach that
integrates formal verification in model-driven development and enables systematic
reuse for hybrid systems. We require our approach to fulfill the following criteria:

1. Hybrid behavior
In the design of hybrid control systems, the resulting system has elements
that contain discrete behavior as well as continuous behavior. Therefore, we
require our approach to support system models that contain hybrid behavior.

2. Reuse capabilities and variability
We aim at providing components that can be reused in system design. These
components should not only consist of exact copies but contain variability by
providing means to change them in a structured manner. This enables more
possibilities to reuse given components.

3. Formal foundation
Many industrially used system design languages are only informally defined.
This impedes formal verification. We require our approach to provide a for-
mal foundation that enables us to integrate formal verification into existing
industrial design processes.

4. Compositionality
CPS can consist of multiple interacting components, which also can consist
of other components. We aim at exploiting this compositional and hierarchi-
cal character of systems and providing means for compositional design and
verification.

5. Automation
Formal verification is a time-consuming task. This starts with the creation
of formal models. Domain experts in the modeling area of hybrid systems
are often not simultaneously experts in formal modeling, which creates a gap
between system model and formal model. To increase the applicability of our
approach, we intend to provide an automatic transformation of an informal
model into a formal representation. Furthermore, the verification should be
as automated as possible.

6. Practical Applicability
Hybrid control systems are utilized in many different domains. We aim at
supporting models that can be used in different application domains. To show
the practical usability of our approach, we apply our approach to case studies
from different domains. Namely, we use our approach with a temperature
control system, a generic infusion pump, a distance warner that is provided
by an automotive partner, and a robot in a factory.
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We propose a service-oriented design and verification approach for the industrially
widely used and powerful modeling language Simulink to solve the aforementioned
problems. One of the main ideas of our approach is to define reusable services
that fulfill contracts and incorporate it into model-driven development to tackle
the problem of reusability of components and system verification. At its core, we
define a service notation for Simulink that encapsulates customizable functionality,
interface behavior, and verification results. We develop our own service represen-
tation in model-driven development that conforms with the ideas of services. This
enables us to bridge the gap between design and verification by providing reusable
components, which contain contracts that enable the reuse of verification results.
Our approach is based on three key ideas.

First, we present an automatic transformation from Simulink models into the for-
mal semantics of differential dynamic logic (dL). Our transformation is not limited
to Simulink blocks that have discrete behavior, but it is also able to transform
blocks that describe continuous behavior. Our transformation creates a dL model
that precisely captures the hybrid behavior of the given Simulink model includ-
ing continuous trajectories and discrete changes. This provides us with a formal
foundation for models of hybrid control systems. Furthermore, the use of dL as for-
mal representation enables us to use the interactive theorem prover KeYmaera X
[Ful+15] to verify system properties semi-automatically.

Second, we define Simulink services, which provide means to reuse and customize
components in system design. A service may comprise discrete as well as contin-
uous behavior, extends a component by structural variability and by a defined
interface. We enhance services with a feature model to enable systematic structur-
ing of variants. A feature model is a tree structure that we use to model possible
changes in the internal service structure and their dependencies. With adaption of
feature modeling to services, we provide means to adjust the behavior of a service
in a well-structured and well-defined way. In particular, feature modeling enables
the addition and deletion of functionality. Users can access a service via a defined
interface to obtain results for their own uses. A large number of different services
can be provided in service-libraries. The main benefit of our services is that they
are reusable in different areas.

Third, we provide the concept of hybrid contracts that capture the dynamic inter-
face behavior of services. They consider discrete changes of values as well as contin-
uous evolutions to capture the hybrid nature of the underlying service. With that,
they are not limited to static properties, but also describe the dynamic changes and
the evolution of values. A hybrid contract abstracts the inner structure of a service
by capturing its hybrid behavior of its interface and can be used in compositional
system verification.

In summary, we present an approach to integrate verification and reuse in the
design of hybrid control systems modeled in Simulink. Our main contributions are
as follows:

1. With our automatic transformation from Simulink models into dL, we provide
a formal foundation for hybrid Simulink models and enable their verification
with the interactive theorem prover KeYmaera X. This enables the design
of hybrid systems in the commonly used modeling language Simulink and
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still enables formal verification without the need for the designer to provide
a formal model.

2. We introduce hybrid contracts that capture the dynamic behavior of the
interface of a service. This enables us to describe the hybrid behavior of a
service in a formal way and can be used for compositional verification by
abstracting from the inner block structure of a service. This verification is
more scalable than a monolithic verification. Our compositional approach is
able to reduce the verification effort significantly and enables the verification
of more complex hybrid systems that contain interacting services.

3. Our services for Simulink encapsulate defined functionality, interface behav-
ior and customization capabilities. By integrating a feature model into the
service design, we provide a systematic way to customize a service and still
enable the reuse of interface and verification information. We show that the
use of our service-oriented design reduces the development effort of systems
that contain variable components.

4. We demonstrate the applicability of our approach with four case studies.
Namely, a temperature control system, a general infusion pump, a distance
warner model provided by an industrial partner, and an autonomous robot in
a factory setting. The interactive verification for our case studies is performed
with a reasonable amount of human effort and calculation time.

We have published our work as follows: An overview of our approach is presented
in [Lie18], where we motivate the use of services to enable reuse in Simulink and
sketch our idea of a formal foundation for compositional verification. In [Lie+17],
we introduce our service-oriented design in Simulink by presenting a methodology
to reuse component information and encapsulate variability into the service model.
In [LHG18], we present our automatic transformation of Simulink models into dL.
We introduce transformation rules that capture the behavior of Simulink blocks in
dL. We demonstrate the use of the interactive theorem prover KeYmaera X. This
transformation is the foundation of our formalization of Simulink models in dL and
enables us to formally define properties that hold for Simulink models. In [LHG19],
we present our hybrid contracts for compositional verification. We use our hybrid
contracts and abstraction technique to prove properties of systems that consist
of multiple interacting services. We have discussed what we have learned about
the formalization of informally defined languages with automated transformations
in [HLA21]. In [LHG21], we present our feature modeling to generate customizable
Simulink services. In [LHG20], we evaluate the manual verification effort during
the verification of services with the case study of a generic infusion pump. Fur-
thermore, we present techniques to reduce the manual input during verification by
providing means for automatic invariant generation and automatic creation of as-
sumption and guarantees for hybrid contracts. In [ALH21, HAL21], we present the
application of our approach for a case study of an autonomous factory robot. We
use our hybrid contracts to prove that no collisions occur, despite that the system
contains a black-box component for which we do not know the inner structure.
With a global system guarantee, we infer hybrid contracts that need to hold for
the black box component.
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The rest of this thesis is structured as follows: In Chapter 2, we introduce necessary
background of this thesis. We discuss related work in Chapter 3. Chapter 4 provides
an overview of our approach. In Chapter 5, we introduce our transformation of
Simulink models into dL and perform the verification of system properties for a
temperature control service. To enable the verification of interacting systems, we
extend our transformation by hybrid contracts that are introduced in Chapter 6.
In Chapter 7, we present our services that encapsulate the obtained verification
results and enable their reuse in system development by providing variability with
feature modeling. In Chapter 8, we evaluate our approach with four different case
studies. Chapter 9 concludes our work.
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2 Background

In this chapter, we introduce the preliminaries of this thesis. First, we introduce
the principles of model-driven development (MDD). Furthermore, as part of MDD,
we introduce the concepts of feature modeling. Second, we introduce hybrid sys-
tems and the challenges that occur due to their behavior. To do this, we briefly
introduce representations that capture the behavior of hybrid systems in a formal
way and the basic ideas of existing analysis techniques for hybrid systems. Third,
we briefly introduce general verification approaches. Afterwards, we present the
modeling languages that are used in the remainder of this thesis. We introduce
MATLAB/Simulink [Matb] as a development language for hybrid systems. Fur-
thermore, we present a Simulink model of a temperature control system that we
use as a running example in the remainder of this thesis. As a formal language
for the representation of hybrid systems, we introduce differential dynamic logic
(dL) [Pla08] in detail. Lastly, we briefly discuss the concepts of Service-Oriented-
Architectures as design paradigm.

2.1 Model-Driven Development

The development of cyber-physical systems requires to consider interacting com-
ponents and their interactions to the continuous environment. This is difficult to
implement in traditional sequential code. To cope with the complexity of these
systems, model-driven development (MDD) [Sel03] is used.

In MDD, models are used as central artifacts in the development process. In this
development technique, a model is created instead of directly developing the exe-
cutable code of these systems out of their specifications. MDD increases the com-
prehensibility of the developed system and reduces the development effort. Fur-
thermore, a system designer can analyze and often even simulate the intended
behavior of the system and check its behavior and the interplay between the sys-
tem behavior and its environment. In the following, we give a brief introduction of
the concept of models, MDD and feature modeling.

Models

A model in general is a depiction with basic components of a real world object,
system or process. Since a model is only an abstraction of the real world and in
general cannot contain all details of the real world, the accuracy of models is also
limited. There are different kinds of models that can be used: static models and
dynamic models. Static models depict the components of a system and their pos-
sible interactions and interfaces. These models are independent of time. Dynamic
models represent the evolution of the system over time. It captures the changes
that occur in the system states during the execution of the system. Some models
only require a predecessor-successor relation of system events. Other systems re-
quire a distinct representation of time. These models often allow for the simulation
of the system behavior by calculating the system behavior at specific times.

In [Sel03], five characteristics to measure the quality of a model are suggested:
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1. Abstraction. A model is an abstraction of real world behavior. Therefore,
a model does not represent the real world in every detail but captures the
behavior that is important for the system.

2. Understandability. The model should convey the underlying behavior in an
intuitive way.

3. Accuracy. A good model represents the behavior that is observed in real life.
Often, the accuracy is limited since the real world is too complex or there
can occur unknown events.

4. Predictiveness. Models should allow to calculate the behavior of the system,
which can be used to generate relevant data. This can be either through
experiments and simulation, or with formal analysis of the model.

5. Inexpensiveness. The more real world details are added to the model the
higher is the quality of the results that can be obtained by the analysis of
the model. At the same time, the construction and analysis of the model
gets more complicated with higher quality of the included real world de-
tails. The construction and analysis of a model should be cheaper than the
implementation and testing of the system.

The basic components to model systems are adapted to the domain that should be
modeled. By including more real world behavior in a model, it is more accurate, but
at the same time more components and bigger models are less comprehensible and
impede an analysis of their behavior. Therefore, for the creation of models there is
a trade-off of comprehensibility and accuracy. In general, models can be created in
many different ways. Mathematical equations can be used to accurately describe
the underlying physical processes. In computer science and MDD in general, models
are often created with visual elements.

Model-driven development

Figure 2.1 shows a possible workflow of system development with MDD. The basic
idea of MDD is that the developer first creates a model that captures the behavior
of the system instead of directly writing executable code. Furthermore, a model
of the environment, which interacts with the system, is included in the system
model. Therefore, MDD introduces an intermediate step between the specification
of a system and its implementation in the real world. The model can be used to
analyze the interactions between the environment and the system or even between
different components of the system. This also enables the design of components in
different levels of abstraction. Some MDD approaches can differ from this approach,
e.g., the step of code generation or hardware synthesis can be omitted.

The use of MDD has benefits over the direct development of code.

• Comprehensibility. By providing basic components to model behavior and
using design patterns, the comprehensibility of the model is increased and
the design is simplified. Models and their building blocks are adapted for the
domain that should be modeled. Therefore, the resulting models illustrate
the domain and can be read by domain-experts.
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Figure 2.1: Model-Driven Development Flow

• Reuse. Standardized models allow for reuse of model parts in new systems
and provide compatibility to other models.

• Simple representation of complex tasks. The models often represent parallel
tasks, which can be designed via visual representations instead of sequential
code. Furthermore, models can abstract from the target architecture (e.g.,
memory) and allow a designer to only include relevant behavior of the devel-
oped system.

• System analysis or simulation. Means to simulate or even formally analyze a
system allow to check whether the designed system fulfills its specification.
Finding possible faults before the system is implemented reduces the costs
for error correction dramatically.

• Code generation and hardware synthesis. By providing means for automatic
code generation and the synthesis of hardware components, no manual effort
in the creation of executable code or hardware development is necessary.

For all its benefits, it should be noted that MDD also comes with some challenges.

• Adequate abstraction. The model can only capture a chosen part of the real
world behavior. If the abstraction is too coarse, the accuracy of the model
is limited and it can exhibit behavior that does not occur in the real world.
On the other hand, a detailed model is difficult to create and can impede the
analysis of the system behavior.

• Tool support. To enable efficient analysis capabilities, tools are required that
explore the behavior of the modeled systems. This is challenging, especially
in the context of hybrid systems, where the interactions between discrete and
continuous behavior must be considered.
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Figure 2.2: Example Feature Model for a Website

Feature Modeling

In MDD, often a large number of models is created. Some of them are variants
of other existing models. To ease the development of new variants and enable a
designer to choose between existing models, feature modeling [Kan+90] can be
used to capture the relations between different model variants.

Feature modeling [Kan+90] is a concept to illustrate different variants of one sys-
tem in a hierarchical model. It is a medium between a user and a product provider.
In Software Product Lines (SPL) a feature model allows an end-user to choose be-
tween given properties that a product should fulfill.

Definition 2.1 (Feature model). A feature model is a tree structure

FM = (F,D)

where F is a set of features that depict design alternatives and D is a set of edges
that determine the dependencies between features. A feature is an end-user visible
characteristic of a system. By choosing a set of features, a configuration for the
final product can be determined.

The combinations and dependencies of features can be used to create different
variants of a design. A variant is an instance of a design where different features
are activated or deactivated according to the edge dependencies. In general, a
child feature can only be chosen if its parent feature is also active. The relations
determine further conditions when child features must be active. We consider the
following four dependency types:mandatory, optional, alternative, and or relations.
A mandatory dependency means that the child feature must be present in a variant
if the parent feature is active. In an optional dependency, the child feature can
be active or not. An alternative dependency is between one parent and multiple
child features. It states that exactly one child is active and all the others must be
deactivated. An or dependency also considers multiple child nodes and states that
at least one of the child nodes must be active but is not restricted to only one.

Figure 2.2 illustrates a feature model for the design of a website. In this example
the root feature website describes the product that is designed in this model. In this
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example, the website must contain text content. This text content can be present
in different languages that are present as its child features. The two languages
English and German are in an or relation, which means that the text content
must be present in at least one of these two languages or in both. The website in
figure 2.2 can have optional Multimedia content. In this example, the multimedia
content is defined more precise in its child features. These are in an alternative
relationship. In this case, the website can have either video or audio content, or
neither since the multimedia content is optional.

2.2 Hybrid Systems

In this thesis, we consider systems that combine discrete and continuous behavior.
Only if we include the continuous behavior of physical processes in the system
behavior, we can obtain a refined model of the overall system behavior. By intro-
ducing continuous behavior into the discrete behavior of digital systems, we obtain
hybrid systems [Gro+93], which combine both behavior types in one system. The
discrete behavior of these systems is described by jumps in the system behavior.
These jumps can be caused for example, by the change between different operat-
ing modes of a controller, or operations that are executed at specified time steps.
They can be represented by sudden changes in the values of system variables.
Continuous behavior is described by the flow of the system. The flow contains all
changes of the system that evolve over time. Typically, differential equations are
used to model the flows in a hybrid system. The resulting flows create continuous
trajectories.

There are different methodologies to model hybrid systems. To give an intuitive
understanding of hybrid systems, we first introduce hybrid automata [Hen00] in
this section as general introduction to hybrid systems and use them to create a
simple model of a bouncing ball. Afterwards, we introduce differential dynamic
logic (Section 2.5) as a more advanced formal representation for hybrid systems.

Hybrid automata are finite state machines that describe the evolutions of continu-
ous variables and discrete state changes. We use the following definition of a hybrid
automaton, which is a slight variation of the definition given in [Hen00].

Definition 2.2 (Hybrid Automaton). A hybrid automaton H is defined as tuple:

H = {X, V,E, init, inv, flow, jump}

X is a set of real-valued variables. Additionally, we define two sets of variables
Ẋ,X ′. These contain variable symbols that represent discrete and continuous
changes. The set Ẋ = {ẋ1, ..., ẋn} with {x1, ..., xn} ⊆ X denotes values after
occurrences of discrete changes. X ′ = {x′1, ..., x′m} with {x1, ..., xm} ⊆ X denotes
continuous changes of values, i.e., the symbols define the derivatives of the vari-
ables. V are control modes and E are control switches. Together they form a finite
directed multigraph (V,E). The control modes are labeled with three vertex la-
beling functions init, inv, flow, which assign to each control mode v ∈ V three
predicates. Each initial condition init(v) assigns values to variables in X. Each in-
variant condition inv(v) is a predicate over variables in X. It holds as long as the
automaton remains in the given control mode. Each flow condition flow(v) over
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Figure 2.3: Bouncing Ball

variable symbols in X ′ describes the continuous change of the according variables
in X. The edges between vertices are labeled with an edge labeling function. Each
jump condition jump(e) provides jump conditions on variables in X that must be
fulfilled in order that the respective jump can be taken and defines the resulting
values of variables after the jump is taken by assigning values to variable symbols
in Ẋ.

The key idea of hybrid automata to model hybrid behavior is to link each discrete
system state to differential equations that describe how the continuous variables
of the system evolve in this state. The system can be in one of its states, during
which all differential equations are executed in parallel.

Bouncing ball

In the following, we model a bouncing ball as hybrid system. The ball starts at
a height p0 and falls down. Whenever it hits the floor, it jumps back up with a
dampening factor of f . The change of the position and speed of the ball are values
that are determined by the physical behavior of the ball and its environment.
Additionally, the system contains sudden changes during each bounce when the
ball changes its direction. In the following, we present a one-dimensional model of
a bouncing ball, where p is its position above the ground, v is its velocity, and a
is a constant acceleration, which is equal to the negative gravitation constant g.

Figure 2.3 represents the evolution of the position p of the ball and its velocity
v over time t. In this example, we only consider the height above the ground to
describe its position, i.e., its movement is one-dimensional. Initially, the position
of the ball is at p0 and its velocity is 0. The position and velocity change over time
and can be described with differential equations:

p′(t) = v(t)

v′(t) = a(t)
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p′ = v
v′ = a

p = 0 ∧ v < 0 →
ሶv ≔ −f ∙ v

p ≥ 0

p = p0 ∧ v = 0 ∧ a = − g

Figure 2.4: Hybrid Automaton of a Bouncing Ball

The acceleration is a constant that is given by the gravitational acceleration g.
Whenever the ball hits the ground at p = 0, it bounces and inverts its velocity.
At each bounce, the ball loses some of its speed. The loss is given by a dampening
factor f .

Figure 2.4 shows a bouncing ball that is modeled as a hybrid automaton. The
automaton consists of one state and one transition. During the evolution of the
state, the position and velocity change according to the given differential equations.

In the case that the value of p falls below 0, the system changes in the state of the
increasing p value.

2.3 Verification

In safety-critical systems, a failure can cause high financial damage and even harm
human lives. It is crucial to ensure that such systems behave according to defined
specifications under all circumstances. In the context of MDD, formal analysis
techniques can be used to ensure the correctness of the system model. In this
section, we give a brief introduction to the formal verification of safety-critical
systems.

First, we briefly introduce the general idea of Model-Checking and the extensions
to hybrid automata and the resulting challenges. These approaches suffer from a
so-called state-space explosion problem. Therefore, we look at methods that aim
at coping with this problem. Namely, the relevant methods are deductive verifi-
cation where system properties are inferred from the system specifications and
contract-based verification where the interactions between system components are
abstracted to reduce the possible state-space.

Model checking

One of the most famous approaches for formal verification is model checking
[Cla+99]. The key idea of model checking is to check whether a model of a fi-
nite state system fulfills a given requirement specification that is given as logical
formula. The exploration of the state-space is done fully-automatically by a model
checker, however the state-space explosion is a major problem for interacting con-
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current systems.

A model, which is used in model checking, can be represented by a Kripke Struc-
ture:

Definition 2.3 (Kripke Structure). A Kripke structure over a set of atomic propo-
sitions AP is a tuple

M = {S, s0, R, L}

where S is a set of states, with s0 ∈ S as initial state. R : S × S is a transition
relation. L : S → 2AP is a labeling function.

The idea of model checking is to check whether a model fulfills a given requirement
specification:

M |= Φ

The model M is a Kripke structure and Φ is the requirement specification, which
is given as temporal logic formula. The general approach is not directly applicable
for the verification of hybrid systems since no continuous time and no continuous
changes of values are considered.

In the verification of hybrid systems, the possible state-space does not only consist
of discrete state changes but also consists of continuous evolutions. The continuous
evolutions define the change of real numbers where there are infinite values between
two different numbers. The verification is further impeded since the verification of
general hybrid automata, i.e., systems that incorporate continuous evolutions, is
an undecidable problem [Hen+98].

Deductive Verification

Instead of constructing the whole state-space to check whether a system property
is fulfilled, deductive verification is based on axioms and proof rules that define
how each step changes system wide properties [Hoa69]. Axioms are the foundation
of deductive reasoning and are chosen according to the underlying behavior of the
variables in the system. In the following, we use illustrating examples to introduce
the basics of deductive verification. First, we showcase a simple calculus for non-
negative integers. Second, we have a brief look at the Hoare calculus.

Table 2.1 shows an illustrating example for a simple calculus with a small set of
axioms relevant to non-negative integers with addition and multiplication. Axioms
are used to construct logical proofs to show that a given theorem holds.

For programs, the rules of logical deduction are extended to executable code. In
the following, we look at the Hoare calculus as an example for logical deduction.
We introduce an excerpt of the functionality to give a brief understanding for the
use of logical deduction. The intended function of a program or part of it can be
specified by making assertions of the values of relevant variables after the execution
of the program. These assertions are often general properties or relations between
variables and not concrete values. The proof for program behavior begins with a
set of assumptions that define the initial behavior of the variables. The connection
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Table 2.1: Showcase Axioms [Hoa69]

A1 x+ y = y + x addition is commutative
A2 x · y = y · x multiplication is commutative
A3 (x+ y) + z = x+ (y + z) addition is associative
A4 (x · y) · z = x · (y · z) multiplication is associative
A5 x · (y + z) = x · y + x · z multiplication distributes through addition
A6 (x− y) + y = x addition cancels substraction

for y ≤ x
A7 x+ 0 = x neutral element of addition
A8 x · 0 = 0 multiplication with zero
A9 x · 1 = x neutral element of multiplication

between preconditions P , a program Q and a description of its result R is written
as a Hoare triple:

{P}Q{R}

The Hoare triple describes that any execution of program Q that starts in a state
where P holds, terminates in a state where R will hold. The axioms describe how
the execution of line of code changes the program state that consists of the values
of all variables.

Rules of consequence. Deductive verification applies inference rules to axioms
and existing theorems to enable the deduction of new theorems. Inference rules
describe that if assertions of the form X and Y have already been proven as
theorems, then Z is thereby proven as a theorem. A simple example of an inference
rule states that if the execution of a program Q ensures the truth of the assertion R,
then it also ensures the truth of every assertion which logically implies P . Formally
we write the rules of consequence as:

If ⊢ {P}Q{R} and ⊢ R =⇒ S then ⊢ {P}Q{S}
If ⊢ {P}Q{R} and ⊢ S =⇒ P then ⊢ {S}Q{R}

Rule of composition. Programs consist of program lines that are executed one
after the other, which can be written as Q1;Q2; ...;Qn. The rule of composition is
formally defined as:

if ⊢ {P}Q1{R1} and ⊢ {R1}Q2{R} then ⊢ {P}(Q1;Q2){R}

The inference rule for composition states that if the proven result of the first
part of a program is identical with the preconditions under which the second part
produces its intended results, then the whole program will produce the intended
result, provided that the precondition of the first part is satisfied. These rules allow
us to infer new properties for a system.
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Rule of iteration. A program can repeat a portion of a program S multiple times
as long as a condition B holds. This can be written with the while notation as
while B do S. If the condition B is true the program S is executed. Afterwards the
condition B is checked again. This repeats as long as B holds. If one check returns
that B is false, the program terminates. The rule of iteration can be formally
written as:

if ⊢ {P ∧B}S{P} then ⊢ {P}(while B do S){¬B ∧ P}

Note that this rule assumes that the program terminates eventually.

These rules of logical deduction can be used to create formal proofs for executable
codes.

Contract-based Verification

Systems can consist of multiple components that interact with each other. This vi-
olates a core assumption of the previously introduced program verification, namely
that no side effects occur and the program lines are executed sequentially. Inter-
acting components are executed in parallel and can interact by different means,
like shared variables. This requires other methods to verify properties for such sys-
tems. One way to analyze the system behavior is to consider all possible sequential
interleavings of the interacting components. During the verification, all possible
system states are checked and the interactions between the components cause the
state-space to grow exponentially.

Contract-based verification [Mey92] aims at abstracting the interactions between
components by introducing an assume-guarantee paradigm. Instead of considering
all components in one overall system description that models all concrete compo-
nent behaviors, contracts are used that define the interface behavior of the com-
ponents. For a component that contains inputs Σin and outputs Σout, a contract c
is a tuple

c = {Φin,Φout}

where Φin are assumptions, which are properties on the elements of Σin, and Φout

are guarantees on the elements of Σout.

The verification of a system via contract-based verification consists of multiple
steps. Each component is verified individually. The assumptions Φin are added as
prerequisites to the verification and the guarantees Φout are the safety properties
that need to be shown. In the system verification, the interactions between all
components are checked via the contracts, i.e., it is checked whether the guarantees
of the components fulfill the corresponding assumption of interacting components.

Figure 2.5 shows an example system consisting of three components. This system
has one input and one output signal. All signals in the system are of the type
integer. As overall system contract, the following should hold: If the input signal
is less than 10, then the output signal is less than 60. Each component of the
system has its own contract that it fulfills. To ensure the overall system contract,
it is necessary to consider the interplay of the components. First, we consider the
output of component A. Its contract states that the output is less than two times
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Figure 2.5: Components with Contracts, adapted from [Mur+13]

its input if the input is less than twenty. With the overall system assumption that
the system input is less than 10 this is ensured. Furthermore, we can use the
value 10 for the output guarantee of component A and obtain OutA < 2 · 10. This
fulfills the input assumption of component B and therefore its output guarantee
can be ensured. We insert the upper bound in the guarantee and obtain for its
output value OutB < 20 + 15. The last component has no assumptions, therefore,
its guarantee always holds. To obtain an upper bound for its output signal, we
consider the guarantees of the other two components, since OutC < OutA+OutB.
After inserting the upper bounds, we obtain OutC < 2 · 10 + 20 + 15 = 55. Lastly,
we check whether the output of component C fulfills the overall system guarantee.
The system guarantee Output < 60 can be ensured with OutC < 55. Therefore,
the overall system contract holds.

2.4 MATLAB/Simulink

MATLAB/Simulink [Matb] is a modeling language and integrated modeling tool.
MATLAB is a numerical computing environment and Simulink is a MATLAB
extension. Simulink provides a system description language and a graphical devel-
opment environment that allows for the design and simulation of hybrid systems.
Furthermore, Simulink allows for the automatic generation of executable code from
modeled systems.

In Simulink, systems are modeled in a data-flow oriented system description lan-
guage. Simulink models are directed graphs, where the nodes are blocks and edges
are signal lines. Blocks are the basic building elements. They have input and out-
put ports, and perform calculations on the data that is provided at their input
ports and write the resulting data to their output ports. Signal lines define how
the blocks are connected and transfer data that is written to the output ports of
blocks to the input ports of following blocks. There are different kinds of blocks,
e.g., direct feed-through, time-discrete, time-continuous, and control flow blocks.
Each block defines the calculation that it performs. The timing behavior and cal-
culation step times are defined by a solver.
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Table 2.2: First Part of Showcase Simulink Blocks
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The Simulink block library provides a large set of predefined blocks with simple or
complex functionality, ranging from simple arithmetic and logic blocks over control
flow blocks to integrators or derivatives and complex transformations. Signals can
carry discrete or continuous values. Special S-function blocks enable the definition
of arbitrary functions. Blocks are categorized in libraries and external libraries can
be included to extend the scope of usable blocks. Together with the Matlab library,
linear and non-linear differential equations and complex mathematical functions
can be modeled and simulated.

Blocks

The main building elements in Simulink are the blocks that define the calculations
that are performed on the data in the system. Blocks can be assigned to one or
more of several classes that enable modeling of different behaviors. In general, the
behavior of blocks can be further defined by block parameters, e.g., initial values
and default outputs.

Table 2.2 and Table 2.3 showcase basic Simulink blocks that represent important
block classes. Feed-through blocks take the incoming signals to perform calcula-
tions and directly write the results to their output ports. They do not contain an
inner state. Some example blocks for this class are arithmetic formulas like a Sum
block, or logical gates. Time-discrete blocks are evaluated at discrete time steps.
The step size is defined by the Simulink solver or can be defined for each block
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Table 2.3: Second Part of Showcase Simulink Blocks
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Encapsulates other Simulink blocks. In-
coming signals at input ports are passed
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Outports are provided at output ports.

individually. The output of these blocks is constant between these steps. Unit delay
and Discrete Integrator are blocks that are part of this category. Time-continuous
blocks change their output signal continuously over time. For example, an Inte-
grator integrates the incoming signal and provides the current state at its output,
or the Sine Wave provides a continuous sine signal. Source blocks generate signal
forms, while sink blocks take incoming signals for evaluation, e.g., a Scope plots
incoming signals. Control flow blocks pass one of multiple inputs to its output
without changing the value. Depending on the value of a special control input port
the input signal to pass through is chosen. The Switch and Multiport Switch are
examples of blocks in this class. Discontinuities can change between different out-
put trajectories depending on the incoming signal. Their exact behavior is given by
their internal parameters. The Relay block is part of this category. A special kind
of block is the Subsystem block. Its behavior is modeled by an embedded Simulink
model. Each subsystem contains other Simulink blocks. Such subsystems are used
to encapsulate behavior of a model into subcomponents.
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Signal Routing

Signals are used to connect output ports of blocks and input ports of blocks to each
other. The restriction on the signal connections is that each input port can only
have one incoming signal. To choose between various incoming signals and change
the control flow, blocks like a Switch are used. There is no restriction how many
ports an output port can be connected to. An output port can also be connected
to the input ports of the same block. We write

BlockName1 .OutputPortNumber → BlockName2 .InputPortNumber

to explicitly denote signal connections. Note that signals in Simulink are always
directional, therefore, the left-hand side always denotes an output port and the
right-hand side always denotes an input port. Note that an Inport block consists
of one output port. Therefore, signals that represent the resulting input signal have
the output port of this Inport block as their left-hand side.

It is possible to create loops that can contain one or more blocks. If the loop
contains at least one block that stores an inner state, the resulting loop is called a
feedback loop. If the loop only contains blocks that do not store an inner state, i.e.,
only consists of feed-through blocks, an algebraic loop is produced. An algebraic
loop does not contain an inner variable. For some algebraic loops, it is possible
to provide a value for outgoing signals. This can be achieved by constructing the
underling equation system and solving it to obtain the output variables. However,
this is not always possible and the use of algebraic loops is discouraged in the
development of Simulink models.

Simulink allows the use of vector signals. A vector signal consists of multiple scalar
signals, where each individual signal has its own trajectory. There are two possibil-
ities to create vector signals. The Mux block takes n input signals and provides one
output signal that is a vector with n elements. With a Demux block, an incoming
vector signal can be split into single signals. A Bus block takes a number of named
signals and provides a single output vector. A BusSelector block can access signals
of this vector by their names. A Simulink model that contains vector signals can
be represented by an equivalent model without vector signals. Each vector signal
of the size n is replaced by n individual signal lines.

Solver

The solver in Simulink determines how the blocks in a model are evaluated during
simulation. In general, all calculations are numerical solutions. To model continu-
ous evolutions in Simulink, the solver performs approximations. The chosen solver
determines the accuracy of the solution. The main categories of solvers are discrete
step size solvers and variable step size solvers.

Discrete step size solvers perform discrete-time steps between the evaluation of
blocks. Therefore, the time that elapsed between two consecutive evaluations is the
same. This behavior simplifies the calculations. However, this behavior is imprecise.
Events, like the change of a switch block, can occur between time steps. These
events are not evaluated until the next time step or they can be missed entirely.

A variable step size solver adapts the time step size to achieve more accurate
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Figure 2.6: Simulink Model of a Temperature Control System

results. While the results are more accurate, the analysis of models that use variable
step size solvers is more complex. During simulation, the solver changes the step
size depending on the current dynamics of the model. If only small changes in the
values are present, the solver executes larger time steps. If the signals in the system
change quickly, smaller time steps are executed. Furthermore, the solver executes
smaller time steps if control flow blocks or discontinuities are near the values that
cause a change at their outputs. This change is called zero-crossing. Depending on
the step size, the system behavior can change and the higher the delay before a
zero-crossing is detected the less precise is the resulting behavior.

Temperature Control System modeled in Simulink

In this section, we present a temperature control system that is modeled in Simulink.
We use this model as a running example in the remainder of this thesis. The pur-
pose of this system is to keep a temperature value in defined bounds. To achieve
this, heating or cooling can be activated. The level of heating or cooling are given
as inputs and the current temperature is provided at an output port.

Figure 2.6 shows our temperature control system modeled in Simulink. It takes a
heating value (Heating) and a cooling value (Cooling) as input, which are real val-
ues that represent the temperature gradient, and adjusts the current temperature
accordingly. The desired temperature is defined as a constant block Tdes, which
we have set to 19 in this model. In a feedback loop, the following decision is made
at the Switch block: If the current temperature is lower than desired, Heating is
forwarded, otherwise the switch passes Cooling through. The output temperature
(Tout) is calculated by integrating the input values over (continuous) time with
the Integrator block, and the result is used to control the Switch. We use a Relay
block to prevent rapid switching, i.e., a fast change between heating and cooling.
We have set the parameter for the Relay block as follows: If the current tempera-
ture is more than one degree smaller than desired, it yields true, if the temperature
is more than one degree greater than desired, it yields false and otherwise, it keeps
the last value. Note that this is a simple example of a hybrid system, as it contains
the temperature as a value that evolves continuously over time and also discrete
state changes that are given by switching between the heating and cooling.
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2.5 Differential Dynamic Logic and KeYmaera X

Differential dynamic logic (dL) [Pla08] provides a formal foundation to model hy-
brid systems. It can be used to capture the discrete and continuous system behavior
of hybrid systems in one representation and enables formal analysis of the modeled
systems. In dL, hybrid systems are modeled via hybrid programs and modal opera-
tors allow the designer to formulate system properties. To facilitate the analysis of
systems that are modeled in dL, the models can be used as input for the theorem
prover KeYmaera X [Ful+15]. KeYmaera X is an interactive theorem prover for
deductive verification of hybrid systems that are modeled in differential dynamic
logic (dL).

Syntax of dL

In the following, we introduce the syntax of dL based on [Pla17].

Variables. In dL, the set of all variables is V . For some variables x ∈ V , there
exist variables of the form x′ ∈ V ′. These are called differential symbols. It is
assumed that the set of all variables contains all of its differential symbols V ′ ⊆ V .
Therefore, it is also possible to have differential symbols in the form of x′′.

Function symbols. Functions are represented by function symbols. In the follow-
ing, we use f, g, h as function symbols. Furthermore, number literals, like 0 or 1,
are used to represent function symbols without arguments. In these cases they are
interpreted as the number that they denote.

Predicate symbols. Predicate symbols can evaluate to true or false. We use p, q, r
as predicate symbols in the following examples.

Variable symbols. Variables in the program are denoted by variable symbols.
Variables can change their value according to the program. In the following, we
use x, y, z to represent variables.

Program constants. The values of program constants are fixed. In the following,
we use a, b, c to represent program constants.

Definition 2.4 (Terms). Terms are defined by the following grammar (where θ, η,
θ1, ...θk are terms, x ∈ V is a variable, and f is a function symbol)

θ ::= x | f(θ1, ...θk) | θ + η | θ · η | (θ)′

The differential (θ)′ describes the local change of the term θ, which is determined
by the change of its inner variables x.

Definition 2.5 (Hybrid Programs). Hybrid programs are defined by the following
grammar (where α, β are hybrid programs, x ∈ V is a variable, θ is a term (possibly
containing x), and ψ is a dL formula that can evaluate to true or false)

α, β ::= x := θ | x := ∗ | ?ψ | (x′1 = θ1, ...x
′
n = θn&ψ) | α ∪ β | α; β | α∗
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An evaluation of a hybrid program is called a run. With a discrete assignment
x := θ, a value given by θ is assigned to variable x. A nondeterministic assignment
x := ∗ assigns an arbitrary value to the variable x. A test formula ?ψ takes a
condition ψ and behaves as follows: If ψ evaluates to true, the test formula is
handled like a skip and the run continuous without further changes. If ψ does
not hold, the run is aborted. In a continuous evolution (x′1 = θ1, ...x

′
n = θn&ψ),

the variables xi evolve according to the given gradients θi as long as the invariant
ψ holds, which is also called the evolution domain. Note that the evolution may
stop at any time. The nondeterministic choice1 α ∪ β allows for a branch in the
execution, where either α or β can be executed. The sequential composition α; β
connects two hybrid programs so that α is executed before β. A nondeterministic
repetition α∗ repeats an inner program α an arbitrary number of times.

To give a better understanding for nondeterministic repetitions and test formulas,
we present a while loop that is written as hybrid program.

{?(ψ);α}∗; ?(¬ψ)

In this hybrid program the formula ψ represents the loop condition and the hy-
brid program α represents the loop body. The nondeterministic repetition can be
repeated an arbitrary number of times but only runs where the loop condition ψ
evaluates to true are evaluated further. After the nondeterministic repetition is
executed an arbitrary number of times, only runs are evaluated where ψ does not
hold anymore. Together, only runs are evaluated where α is repeated as long as ψ
holds and the loop is exited if ψ does not hold anymore.

With these hybrid programs, shorthand notations for the following control flow
statements can be given.

if (ϕ) α else β ≡ ?ϕ;α ∪ ?(¬ϕ); β
if (ϕ) α ≡ ?ϕ;α ∪ ?(¬ϕ)

skip ≡ ?true

An if (ϕ) α else β can be represented as a nondeterministic choice and test formulas
that ensure the conditions on the if branch and the else branch. Without an else
branch, an empty else branch is added in dL to model the behavior for the cases
where the condition is not fulfilled. Furthermore, a skip statement can be written
as ?true.

Definition 2.6 (dL Formulas). Formulas are defined by the following grammar
(where ϕ, ψ are dL formulas, θ, η, θ1, ...θk are terms, p is a predicate symbol, x ∈ V
is a variable, and α is a hybrid program)

ϕ, ψ ::= θ ≥ η | p(θ1, ...θk) | ¬ϕ | ϕ ∧ ψ | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ

The box modality [α]ϕ expresses that the formula ϕ holds after all possible runs
of α, and the diamond modality ⟨α⟩ϕ expresses that ϕ holds after some runs of α.
Note that [α]ϕ is equivalent to ¬⟨α⟩¬ϕ and ∀xϕ is equivalent to ¬∃x¬ϕ.

1In written dL code, a nondeterministic choice is represented as α ++ β.
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Example hybrid program. Listing 2.1 shows a hybrid program that models a
person on an escalator [MP17]. In ProgramVariables, we define the variables that
are used in the model. The R indicates that the variables are real numbers. The
variable x denotes the position of the person and v the speed of the escalator.
The model of the system is given in Problem. Initially the person starts at the
second or a higher step and the escalator goes up. The person can take one step
down (x := x − 1) if they are not already at the bottom (x ≥ 1), or move up
with speed v for an arbitrary time (x′ = v). The choice between the step down
or the movement up can be repeated an arbitrary number of times ({·}∗). The
specification [·] requires that under the precondition x ≥ 2 ∧ v > 0, after all
possible executions, x ≥ 0, i.e., the person does not step lower than the step at
position 0.

ProgramVariables.

R x.

R v.

End.

Problem.

x >= 2 & v > 0

-> {

[

{

?(x >= 1);

x := x - 1;

++

{x’ = v}

}∗

] x >= 0}

End.

Listing 2.1: A Hybrid Program of an Escalator

Dynamic Semantics

The dynamic semantics defines the evaluation of the language constructs in dL
according to [Pla17]. The basic idea of the dynamic semantics of dL is to define
how a given state ν is changed by the execution of a hybrid program to a new
state ω. It is possible to obtain more than one resulting state and the execution
can start from a set of states. Each execution of hybrid programs from a set of
starting states to a set of resulting states is called a run. To define these transition
semantics, we first present how the interpretation of basic dL constructs is defined.
Afterwards, we present the interpretation of hybrid programs.

Terms evaluate to real values, formulas evaluate to truth-values and hybrid pro-
grams evaluate to reachable states. The values of variables and differential symbols
can change over time, therefore their values are given by the state.

A state maps variables to real values:

ν : V → R
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A state includes the mappings of differential symbols V ′ ⊆ V to R. The set of states
is denoted by S. For a set X ⊆ S, the complement set is given by XC = S\X.
νrx denotes the state that matches with state ν except for the value of variable x,
which is changed to r ∈ R.
The interpretation of a function symbol f with n arguments in interpretation I is
a function I(f) : Rn → R with n arguments. The set of interpretations is given by
I. The semantics of a term θ is a mapping JθK : I → (S → R), i.e. interpretations
are mapped to a real number.

Definition 2.7 (Semantics of terms). The semantics of a term θ in interpretation
I and state ν ∈ S is its value IνJθK ∈ R. That means, for a given state ν of the
model, we map all variables and symbols to real numbers. The semantics of terms
is defined as follows:

IνJxK = ν(x) for variable x ∈ V
IνJf(θ1, ..., θk)K = I(f)(IνJθ1K, ..., IνJθkK)

IνJθ + ηK = IνJθK + IνJηK
IνJθ · ηK = IνJθK · IνJηK

IνJ(θ)′K =
∑︂
x∈V

ν(x′)
δIJθK
δx

(ν) =
∑︂
x∈V

ν(x′)
δIνJθK
δx

IνJxK describes that the interpretation of a variable x is its value ν(x). The in-
terpretation of a function of terms IνJf(θ1, ..., θk)K is the interpretation of the
function where each parameter θ1, ..., θk is interpreted accordingly. A sum of two
terms IνJθ + ηK is interpreted by adding the interpretations of the two individual
terms. Analogous, the product of two terms IνJθ · ηK is the product of the inter-
pretations of the terms. The interpretation of a derivative IνJ(θ)′K is the sum of
its partial derivatives.

Definition 2.8 (Semantics of formulas). Semantics of a dL formula ϕ, for each
interpretation I with a corresponding set of states S, is the subset IJϕK ⊆ S of
states in which ϕ is true. It is defined inductively as follows:

IJθ ≥ ηK = {ν ∈ S : IνJθK ≥ IνJηK}
IJp(θ1, ..., θk)K = {ν ∈ S : (IνJθ1K, ..., IνJθkK) ∈ I(p)}

IJ¬ϕK = (IJϕK)C

IJϕ ∧ ψK = IJϕK ∩ IJψK
IJ∃xϕK = {ν ∈ S : νrx ∈ IJϕK for some r ∈ R}
IJ∀xϕK = {ν ∈ S : νrx ∈ IJϕK for all r ∈ R}
IJ⟨α⟩ϕK = IJαK ◦ IJϕK = {ν ∈ S : ω ∈ IJϕK

for some ω such that (ν, ω) ∈ IJαK}
IJ[α]ϕK = IJ¬⟨α⟩¬ϕK = {ν ∈ S : ω ∈ IJϕK

for all ω such that (ν, ω) ∈ IJαK}
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The interpretation IJθ ≥ ηK of a relation symbol is the set of states, where the
interpretations of the terms θ and η fulfill the relations. The interpretation of a
predicate symbol IJp(θ1, ..., θk)K is the set of states where the interpretations of
its parameter terms fulfill the predicate symbol. The interpretation of a negation
of a formula IJ¬ϕK is the complement of the interpretation of the formula ϕ. A
conjunction of two formulas IJϕ ∧ ψK is interpreted by creating the intersection
of the interpretations of the individual formulas. The interpretation of the exist
quantifier IJ∃xϕK evaluates to true if there exists an assignment of the variable x
where the formula ϕ is interpreted as true. The interpretation of the all quantifier
IJ∀xϕK evaluates to true if all assignments of the variable x evaluate the formula
ϕ to true. The diamond operator IJ⟨α⟩ϕK is interpreted as follows: The evaluation
of the hybrid program α creates a set of states (variable assignments). If there
exists at least one state where the interpretation of the formula ϕ is true, then the
diamond operator is interpreted as true. The interpretation of the box operator
IJ[α]ϕK is reduced to an interpretation of the diamond operator. It means, that
the box operator evaluates to true if all states produced by α fulfill the formula ϕ.

A formula in dL evaluates to true at state ν in I (I, ν |= ϕ) iff ν ∈ IJϕK. A formula
in dL is valid in I (I |= ϕ) iff IJϕK = S, i.e. ν ∈ IJϕK for all states ν. A formula in
dL is valid (|= ϕ), iff I |= ϕ for all interpretations I.

Definition 2.9 (Transition semantics of Hybrid Programs). For each interpretation
I, each hybrid program α is interpreted semantically as a binary transition relation
IJαK ⊆ S × S on states. They are defined inductively as follows:

IJx := θK = {(ν, νrx) : r = IνJθK} = {(ν, ω) : ω = ν except ω(x) = IνJθK}
IJ?ψK = {(ν, ν) : ν ∈ IJψK}

IJx′ = θ & ψK = {(ν, ω) : ν = ϕ(0) on {x′}C for some function ϕ : [0, r]→ S
of some duration r satisfying I, ϕ |= x′ = θ ∧ ψ}
where I, ϕ |= x′ = θ ∧ ψ iff ϕ(ξ) ∈ IJx′ = θ ∧ ψK and ϕ(0) = ϕ(ξ)

on {x, x′}C for all 0 ≤ ξ ≤ r and if
dϕ(t)(x)

dt
(ξ) exists and is equal

to ϕ(ξ)(x′) for all 0 ≤ ξ ≤ r.

IJα ∪ βK = IJαK ∪ IJβK
IJα; βK = IJαK ◦ IJβK = {(ν, ω) : (ν, µ) ∈ IJαK, (µ, ω) ∈ IJβK for some µ}

IJα∗K = (IJαK)∗ =
⋃︂
n∈N

IJαnK with αn+1 ≡ αn;α and α0 ≡?true

A discrete assignment IJx := θK creates a new state that is equal to the initial
state except for the value of the variable x that is assigned to the evaluation of the
term θ. A test formula IJ?ψK can only be evaluated if the initial state fulfills the
formula ψ. In this case, the new state is identical to the initial state. Therefore, the
test formula removes all initial states from the evaluation that violate the formula
ψ. A continuous evolution IJx′ = θ & ψK creates a new state, where the value of
the evolving variable x is changed and all other variables keep their values. For all
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new states, the possible values for x are on the trajectory that is given by θ. The
trajectory can only evolve as long as it fulfills the evolution domain ψ. That means
that we do not only reach a state in which ψ holds but along the whole trajectory
of x the formula ψ does also hold. All possible values on the trajectory from the
initial value to the violation of ψ are in the set of new states. A nondeterministic
choice IJα ∪ βK creates the union of the individual interpretations of α and β.
The sequential operator IJα; βK creates a set of final states where an intermediate
state exists that is created by the interpretation of α and is the initial state for the
interpretation of β. The final states of the sequential operator are the final states
of β. A nondeterministic repetition IJα∗K is interpreted as sequential repetition of
α where it can be executed any number of times.

Static Semantics

The static semantics of dL defines aspects concerning the usage of variables. We
use the static semantics later on, to find all variables in a hybrid program that
are written to, i.e., all variables that change their value in the execution of a given
hybrid program. The aspects of the static semantics follow from the syntactic
structure without running the programs or evaluating their dynamical effects. The
static semantics identifies free variables and bound variables.

Free variables are all variables that the value of an expression depends on. Bound
variables can change their value during the evaluation of an expression.

Variables of dL formula ϕ, whether free or bound, are VF (ϕ) = FVF (ϕ)∪BVF (ϕ).
The variables of hybrid program α, whether free or bound, are given by VHP(α) =
FVHP(α) ∪BVHP(α).

Bound variables. Bound variables are variables that change their value in the
execution of hybrid programs. The set BVHP(α) is the smallest set for which the
following bound effect property holds: If (ν, ω) ∈ IJαK, then ν = ω on BVHP(α)

C .
That means that all variables that are not in the set BVHP(α) have the same value
after the execution of α that they had at the beginning.

Definition 2.10 (Bound variables of dL formulas). The set BVF (ϕ) ⊆ V of (syn-
tactically) bound variables of dL formula ϕ is defined inductively as:

BVF (p(θ1, ..., θk)) = ∅
BVF (¬ϕ) = BVF (ϕ)

BVF (ϕ ∧ ψ) = BVF (ϕ) ∪BVF (ψ)
BVF (∀xϕ) = BVF (∃xϕ) = {x} ∪BVF (ϕ)
BVF ([α]ϕ) = BVF (⟨α⟩ϕ) = BVHP(α) ∪BVF (ϕ)

A formula θ that only consists of simple predicates has no bound variables, since
the evaluation of such a formula only reads variables and does not change them.
Quantifier symbols create a set of bound variables that consists of the referenced
variable x and the bound variables of the bound variables of the term ϕ. The set
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of bound variables for box or diamond modality consists of all bound variables of
the internal hybrid program α and the bound variables of the formula ϕ.

Definition 2.11 (Bound variables of dL hybrid programs). The set BVHP(α) ⊆ V
of (syntactically) bound variables of hybrid program α, i.e. all variables that may
potentially be written to, is defined inductively as:

BVHP(x := θ) = {x}
BVHP(x := ∗) = {x}

BVHP(?ψ) = ∅
BVHP(x

′ = θ&ψ) = {x, x′}
BVHP(α ∪ β) = BVHP(α; β) = BVHP(α) ∪BVHP(β)

BVHP(α
∗) = BVHP(α)

For discrete assignments and nondeterministic assignments, the set of bound vari-
ables contains the variables of the assignment. A test formula only reads values and
has an empty set of bound variables. Note that x and x′ are bound by a differential
equation x′ = θ, since both may change their value.

Definition 2.12 (Must-bound variables of dL hybrid programs). The set of (syn-
tactically) must-bound variables MBVHP(α) ⊆ BVHP(α) ⊆ V of hybrid program
α, i.e. all those that must be written to on all paths of α, is defined inductively as:

MBVHP(α) = BVHP(α) for atomic hybrid programs α

MBVHP(α ∪ β) = MBVHP(α) ∩MBVHP(β)

MBVHP(α; β) = MBVHP(α) ∪MBVHP(β)

MBVHP(α
∗) = ∅

An atomic hybrid program only consists of one path and therefore the set of must-
bound variables is equal to the set of bound variables. Since a nondeterministic
choice consists of two paths, the execution of α or the execution of β, the set of
must-bound variables for a nondeterministic choice is the set of variables that are
must-bound in both α and β. A sequential operator connects all possible paths of
α to all possible paths of β and the set of must-bound variables of a sequential
operator is the set of variables that are either written to in all paths of α or in
all paths of β. Since one path of a nondeterministic repetition is the case that
α is repeated zero times and this path does not change any variable, the set of
must-bound variables for a nondeterministic repetition is empty.

Free variables. In the following, we first present a general intuition for free vari-
ables for dL terms, dL formulas and hybrid programs and afterwards present their
definitions.

Free variables are variables that are read in a term, formula or hybrid program
and influence the outcome of its evaluation. A variable x ∈ V is a free variable of
a term, formula or hybrid program, if the interpretation of the term, formula or
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hybrid program does change if the value of x changes and all other variables of
the system stay the same. The complement set {x}C contains all system variables
except x.

FVT (θ) =
⋃︂
{x ∈ V : there are I and ν = ν̃ on {x}C such that IνJθK ̸= Iν̃JθK}

FVF (ϕ) =
⋃︂
{x ∈ V : there are I and ν = ν̃ on {x}C such that ν ∈ IJθK ̸∋ ν̃}

FVHP(α) =
⋃︂
{x ∈ V : there are I, ν, ν̃, ω such that ν = ν̃ on {x}C and

(ν, ω) ∈ IJαK but there is no ω̃ with ω = ω̃ on {x}C

such that (ν̃, ω̃) ∈ IJαK}

Definition 2.13 (Free variables of dL terms). The set FVT (θ) ⊆ V of (syntactically)
free variables of term θ, i.e. those that occur in θ directly or indirectly, is defined
inductively as:

FVT (x) = {x} hence FVT (x
′) = {x′}

FVT (f(θ1, ..., θk)) = FVT (θ1) ∪ ... ∪ FVT (θk) where f can also be + or ·
FVT ((θ)

′) = FVT (θ) ∪ FVT (θ)′

The set of free variables for a term that just reads a variable x consists of just
this variable. A function symbol can combine multiple terms θ1, ..., θk. The free
variables of this function symbol are all free variables of all these terms. The set
of free variables for the derivative of a term θ consists of the free variables of the
term and the derivatives of these variables.

Definition 2.14 (Free variables of dL formulas). The set FVF (ϕ) of (syntactically)
free variables of dL formula ϕ, i.e. all that occur in ϕ outside the scope of quantifiers
or modalities binding it, is defined inductively as:

FVF (p(θ1, ..., θk)) = FVT (θ1) ∪ ... ∪ FVT (θk)
FVF (¬ϕ) = FVF (ϕ)

FVF (ϕ ∧ ψ) = FVF (ϕ) ∪ FVF (ψ)
FVF (∀xϕ) = FVF (∃xϕ) = FVF (ϕ) \ {x}
FVF ([α]ϕ) = FVF (⟨α⟩) = FVHP(α) ∪ (FVF (ϕ) \MBVHP(α))

The set of free variables for a predicate symbol that combines the terms θ1, ..., θk
consists of all free variables that occur in the terms. The free variables of a
quantified formula are defined by removing its bound variables as FVF (∀xϕ) =
FVF (ϕ) \ {x}, since all occurrences of x in ϕ are bound by ∀x. The bound vari-
ables of a program in a modality act in a similar way, except that the program
itself may read variables during the computation, so its free variables need to be
taken into account.

Definition 2.15 (Free variables of hybrid programs). The set FVHP(α) ⊂ V of
(syntactically) free variables of hybrid program α, i.e. all those that may potentially
be read, is defined inductively as:
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FVHP(x := θ) = FVT (θ)

FVHP(x := ∗) = ∅
FVHP(?ψ) = FVF (ψ)

FVHP(x
′ = θ&ψ) = {x} ∪ FVT (θ) ∪ FVF (ψ)

FVHP(α ∪ β) = FVHP(α) ∪ FVHP(β)

FVHP(α; β) = FVHP(α) ∪ (FVHP(β) \MBVHP(α))

FVHP(α
∗) = FVHP(α)

The set of free variables for a discrete assignment consists of all variables that
are read in the term for the assignment θ. A nondeterministic assignment reads
no variables and the set of free variables is empty. The set of free variables for
a continuous evolution consists of the evolving variable x, the variables that are
read in the evolution term θ and the variables that are read in the evolution
domain ψ. A sequential operator first executes a hybrid program α and afterwards
a hybrid program β. All free variables of α are also in the set of free variables of the
sequential operator. Free variables of β that are also must-bound in α, i.e., they
are written to in all paths of α, are not in the set of free variables of the sequential
operator. A variable is a free variable, if a change of its initial value changes the
interpretation of the overall hybrid program. Since α overwrites this initial value
for must-bound variables, this initial value has no influence of the interpretation
of β in the sequential operator. Only free variables of β that are not in the set of
must-bound variables of α are in the set of free variables of the sequential operator.

Coincidence for terms. The value of a term only depends on the values of its
free variables. Therefore, a term θ that is evaluated in two different states ν, ν̃ that
agree on its free variables FVT (θ) provides the same values of θ in both states.
Accordingly, the value of a term will agree for different interpretations I, J that
agree on the symbols Σ(θ) that occur in θ.

The set FVT (θ) is the smallest set with the coincidence property for θ: If ν = ν̃ on
FVT (θ) and I = J on Σ(θ), then IνJθK = Jν̃JθK.
In particular, the semantics of differentials is a sum over just the free variables:

IνJ(θ)′K =
∑︂

x∈FVT (θ)

ν(x′)
δIJθK
δx

(ν) =
∑︂

x∈FVT (θ)

ν(x′)
δIνJθK
δx

Coincidence for formulas. The evaluation of a dL formula ϕ in two different states
ν, ν̃ that agree on its free variables FVF (ϕ) in I = J on Σ(ϕ) provides the same
truth-values of ϕ in both states.

The set FVF (ϕ) is the smallest set with the coincidence property for ϕ: If ν = ν̃
on FVF (ϕ) and I = J on Σ(ϕ), then ν ∈ IJϕK iff ν̃ ∈ JJϕK.
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Coincidence for programs. The runs of a hybrid program α only depend on the
values of its free variables, because its behavior cannot depend on the values of
variables that it never reads. If ν = ν̃ on FVHP(α) and I = J on Σ(ϕ) and
(ν, ω) ∈ IJαK, then there is an ω̃ such that (ν̃, ω̃) ∈ JJαK and ω and ω̃ agree on
FVHP(α). In fact, the final states ω, ω̃ continue to agree on any set V ⊇ FVHP(α)
that the initial states ν, ν̃ agreed on. The corresponding pairs of initial and final
states of a run of hybrid program α already agree on the complement BVHP(α)

C .

The set FVHP(α) is the smallest set with the coincidence property for α: If ν = ν̃
on V ⊇ FVF (ϕ), I = J on Σ(ϕ) and (ν, ω) ∈ IJαK, then there is an ω̃ such that
(ν̃, ω̃) ∈ JJαK and ω = ω̃ on V .

In this section, we have first introduced dL and its hybrid programs. Hybrid pro-
grams enable us to create formal models of systems that combine discrete and
continuous behavior. These formal dL models can be used as input for the inter-
active theorem prover KeYmaera X.

Furthermore, we have presented the dynamic and static semantics of dL. The
dynamic semantics define the interpretations of hybrid programs, which can be
seen as runs. The state of the system defined by the values of all variables at a
time and the run of a hybrid program changes these values. The static semantics
define the variables that influence the result of the execution of a hybrid program.
Overall, this enables us to compare the runs of different hybrid programs and
compare their behavior.

2.6 Service-Oriented Design

Existing implementations can be reused to reduce the development effort of new
systems. However, there are challenges in the reuse of existing solutions. First, the
development of solutions to subproblems does cost effort and money, so the results
are often not simply put to public use. Second, many developers and businesses
use their own interface standards and data types. Therefore, solutions that were
developed in a different context cannot simply be inserted into another project.

Service-Oriented-Architectures (SOA) aim at providing reusable solutions for dif-
ferent users. The following ideas of SOA are taken from the OASIS Reference
Model for SOA [OAS]. There are different definitions for SOA, which can differ
in context, abstraction and concrete wordings. It should be noted that SOA does
not describe one concrete architecture, but a paradigm to create concrete architec-
tures. By providing rules how different participants interact when using a system,
it helps to determine how to create a concrete software architecture. SOA enables
access and usage of distributed competences. Services are reusable building blocks,
which can be evaluated independently of the application and computing platform
that is used to execute the implementation [PV06].

Figure 2.7 depicts a general workflow of a service-oriented architecture. The main
common principle is that a Service User can access Services of a Service Provider
that can be integrated into the User Application. The Services are provided via
a Service Library that enables a user to choose the appropriate service for their
application.

The three key principles are:
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Figure 2.7: Service-Oriented Architecture

• a SOA is a paradigm for exchange of value between independently acting
participants

• participants (and stakeholders in general) have legitimate claims of ownership
of resources that are made available within the SOA ecosystem

• the behavior and performance of the participants are subject to rules of
engagement which are captured in a series of policies and contracts

In the following, we explain basic SOA related terms, which are presented in [OAS].

SOA Ecosystem. To understand the interactions between participants it is not
sufficient to look at a decomposition of the system. It is important to understand
the context of the system functions and the contributions of the participants to the
overall system. These interactions are considered in the SOA ecosystem. According
to the OASIS reference model for SOA [OAS], SOA based systems assume the
following interactions:

• use of resources that are distributed across ownership boundaries

• people and systems interacting with each other, also across ownership bound-
aries

• security, management and governance that are similarly distributed across
ownership boundaries

• interaction between people and systems that is primarily through the ex-
change of messages with reliability that is appropriate for the intended uses
and purposes
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There are different participants that interact with each other and the system in a
SOA ecosystem [OAS]. A provider offers a service that can be used by others. The
consumer has a need and interacts with a service to fulfill this need. To facilitate the
interaction and connectivity between participants and services, a mediator helps to
offer services for use. Lastly, the owner claims the ownership over a service. To own
a resource implies taking responsibility for creating, maintaining and provisioning
the resource.

The participants in a SOA ecosystem interact with each other to achieve their own
goals. The interactions are determined by the individual goals and the provided
functionality. The following terms are used to define the interactions between par-
ticipants. A need is a general statement that expresses something that is deemed
necessary. A requirement is a formal statement of a desired result as real world
effect. When a requirement is fulfilled, it satisfies a need. A capability is the ability
to deliver a real world effect. Lastly, a real world effect is a measurable change
to the shared state of pertinent entities that are relevant to and experienced by
participants.

The typical approach to develop a new service can be described as follows:

1. A participant expresses a need. This can be a user that requires a specified
real world effect or even a provider that intends to extend the amount of
accessible functionality.

2. Designers and developers formalize the need as requirement.

3. A service with the capability to achieve the requirement is created.

4. The service can be accessed to deliver a real world effect. Mediators create
service registries to facilitate the access of services and enable easy access by
users.

The idea of a service in a SOA ecosystem combines business functionality with im-
plementation, including the artifacts needed and made available as IT resources.
By defining design rules that consider the use of Services in larger business tasks,
the reuse of solutions can be facilitated. A system consists of different individ-
uals, which intend to fulfill individual goals. These individuals act in the same
environment, interact with each other and share resources to obtain their goals.

Services are provided in a Service Library, where a user can choose a service that
fulfills the desired task. The interface of the service is given to the user. A user
needs to adapt an application to access the interface of the service that is given
by input parameters.

Service Quality Measures. In the following, we present means that measure ser-
vice design quality, which are taken from [PV06]. These measures are coupling,
cohesion and granularity.

Coupling. The coupling of systems determines the independence between their
processes. By minimizing the coupling, the systems can be analyzed independent
from each other. Furthermore, self-contained services contain high independence of
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other system parts and, therefore, provide low coupling. A benefit of low coupling
is that the amount of service redundancy and duplication in the system can be
reduced. This aims to develop self-contained services that do not rely on knowledge
of other services that are used by the system.

Cohesion. The degree of functional relatedness of operations within a service is
measured as cohesion. High cohesion means that a system or service itself uses
services that are highly related and have related responsibilities.

Granularity. The scope of functionality that is exposed by a system is described
by its granularity. A fine-grained service provides a small amount of usefulness for
the overall system. Whereas larger granularities provide compositions of smaller
grained components.

2.7 Summary

In this chapter, we have presented background information to the topics that are
used in the remainder of this thesis. We introduced model-driven development
and its application to hybrid systems. Furthermore, we have introduced hybrid
systems and ways to model their behavior. Afterwards, we gave an excerpt of
verification techniques. We presented Simulink as a modeling language and design-
tool that enables MDD for hybrid systems. Furthermore, we presented Differential
Dynamic Logic (dL) as a formal representation of hybrid systems. Thereafter, we
presented the paradigm of service-oriented design, which we adapt to our design
and verification approach.
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3 Related Work

In this chapter, we discuss related work of this thesis. In our approach, we con-
sider the verification and design of hybrid systems. This chapter contains the topics
that are relevant for this thesis and is structured as follows: First, we discuss work
on verification of hybrid systems. Therefore, we take a look at different represen-
tations of hybrid systems like timed automata, hybrid automata and logic-based
approaches. Second, we summarize approaches that formalize Simulink models. We
present other work in the area of the verification of Simulink models. We discuss
approaches that consider a limited subset of the Simulink block library, approaches
that consider hybrid system models and approaches that enable compositional ver-
ification. Third, we discuss approaches that introduce wider means to introduce
reuse and variability in Simulink. Therefore, we summarize approaches that per-
form clone detection for Simulink models and other approaches that introduce
variability capabilities.

3.1 Verification of Hybrid Systems

The models of hybrid systems capture the discrete state changes of the system
as well as its continuous state evolutions. These two behavior types and their
interactions need to be considered in the verification of these systems. Hybrid au-
tomata are a commonly used representation of these systems and there are many
approaches that perform verification on them [Alu+93, CK99, Hen00, FHK04,
Roe+16, RPV17] and it is still an ongoing research topic. Hybrid automata have
gained wide attention in the hybrid systems community, and many verification
approaches for hybrid systems have been based upon this formalism. It is known
that the general reachability problem of hybrid automata is undecidable [Hen+98].
However, since their application in safety-critical areas require guarantees about
their behavior, different approaches are developed to verify parts or approximations
of their behavior. Therefore, verification approaches consider only a decidable sub-
set of the hybrid behavior [HPR94, HHW95, Fre05] or perform over-approximations
of the system behavior to determine the reachable states [CK99, RPV16].

A widely researched topic of hybrid automata are systems that only contain linear
dynamics [HPR94, Fre05]. For systems that contain more complex behavior, ap-
proaches that over-approximate the continuous dynamics were developed [Roe+16,
RPV17]. Besides hybrid automata, there are other representations of hybrid sys-
tems [Pla08]. Some of these introduce other methods in the verification of hybrid
systems than reachability analysis. In [Pla08], the authors use deductive verifica-
tion to prove that a system with hybrid behavior fulfills safety properties.

In the following, we discuss a special decidable subclass of hybrid automata, namely
timed automata. Thereafter, we summarize approaches that perform reachability
analysis on a wider application of hybrid automata. Lastly, we discuss logic-based
approaches that perform deductive verification to prove the system behavior.

Timed Automata. As special case of hybrid systems, Timed Automata [AD94,
BCM16, And19] are used to model continuous time and discrete state changes.
They extend finite automata by clocks that evolve continuously and can be reset.
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In contrast to general hybrid systems, they only model time as continuous value
and not data. Due to this restriction, the reachability problem of timed automata
becomes decidable [AD94]. The verification of timed automata is still present in
current research [BCM16, And19].

UPPAAL [Ben+95, Dav+15, Eri+17] is a tool suite for the design and verification
of real-time systems. The systems are modeled as networks of interacting timed
automata. An integrated model checker is used to verify system properties. The
properties are written in CTL-like expressions. The UPPAAL model checker is
still being improved and allows for the modeling and verification of, e.g., stochas-
tic timed automata [Dav+15]. However, the limiting factor in the use of timed
automata is that they are restricted in the type of continuous variables that they
use. Only clock variables can evolve continuously and only with a gain of 1. It is
not possible to introduce continuous data variables.

Priced Timed Automata, an extension of UPPAAL, allows for using other rates
for clock variables [Bul+12]. However, the resulting models represent linear hybrid
automata, which are not decidable [Hen+98]. The resulting verification is done
via stochastic model checking, which provides probabilities on safe behavior but
cannot ensure that the system always behaves in such a way.

Hybrid Automata. A widely used formalism for the description and verification
of hybrid systems are hybrid automata [Alu+93, CK99, Hen00, FHK04, Roe+16,
RPV17]. Hybrid automata consider more continuous values than just time. The
general idea in the verification of hybrid automata is to determine the reachable set
of states. The continuous dynamics make this a challenging task since real valued
variables possibly produce infinite reachable states. To determine the reachable
continuous states, the continuous dynamics need to be used in their calculation.
Since this is a challenging task, most approaches over-approximate the continuous
evolutions.

In [FHK04] the tool PHAVer is presented, which enables an assume-guarantee rea-
soning based on simulation relations for hybrid systems. The systems are modeled
as variation of hybrid input/output automata [Lyn+95], which extend hybrid au-
tomata by variables that represent inputs and outputs. The assume-guarantee rea-
soning enables compositional reasoning for these systems. The simulation relations
are over-approximations of the underlying hybrid behavior and do not consider the
interacting continuous dynamics. This can restrict the applicability, where the dy-
namics of the inputs are necessary to determine the behavior of the outputs.

In [Fre+11], the tool SpaceEx is presented. It contains a reachability algorithm
for hybrid systems with piecewise affine, non-deterministic dynamics. An over-
approximation of reachable states is computed with polyhedra and support func-
tions. To achieve a good accuracy, variable step sizes for time between calculations
are used in the computation. In [Bog+14], this approach is extended by an ab-
straction via location merging. Locations in the hybrid system representation are
merged and replaced by an abstract location that represents the convex hull of the
behavior of the original locations.

The authors of [Ben+14] present the tool Ariadne, which uses assume-guarantee
reasoning for the verification of hybrid systems with nonlinear dynamics. The sys-
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tem is composed into components and if these components fulfill given contracts,
properties of the system can be proven. The reachability analysis of the contracts
is done via an over-approximation and discretization of the reachable state space.
The numerical approximation of the state space affects the performance and limits
the number of continuous variables.

Logic-based approaches. Differential Dynamic Logic dL [Pla08, Mül+16, Mül+17,
Mül17] is a formal representation to model hybrid systems and enables their ver-
ification. The foundations of dL are discussed in Section 2.5. In the following, we
introduce research work about the verification of dL models.

In [Mül+16, Mül+17, Mül17], the authors present a contract-based approach for
the verification of hybrid systems. System components together with their con-
tracts are specified in dL and are then semi-automatically verified using the in-
teractive theorem prover KeYmaera X. By providing deductive verification tech-
niques, KeYmaera X provides a promising approach that scales better than model
checking based approaches for many systems. In particular, by arguing with in-
variants as an abstraction of the complete system behavior, KeYmaera X has the
potential to avoid an exhaustive exploration of the state space.

A system is modeled as a component with an interface and a contract. The authors
split a component into a control part, a plant part and assignments that connect
the ports of inner sub-components. The control part contains all possible operation
modes of the system and the selection of one mode and the plant part contains all
continuous evolutions according to the current operation mode.

However, the system design and the contracts must be provided as a formal model
in dL, which typically requires a high expertise as well as a high manual effort. In
practice, complex systems are often developed in languages like Simulink, where the
semantics is informally defined. This impedes the verification process and requires
either a manual development of a formal model or a transformation into a formally
well-defined language.

3.2 Analysis and Verification of Simulink Models

Simulink [Matb] enables the modeling of hybrid control systems. The modeling lan-
guage of Simulink does not provide formal semantics as is. Despite that shortcom-
ing, the widespread use of Simulink makes its verification an interesting research
topic [RS11, FP13, HRB13, AER14, RG14, MF16].

The MathWorks, Inc. provides the Simulink Design Verifier [Mat08], which pro-
vides model checking as well as abstract interpretation techniques. To enable verifi-
cation with the Design Verifier, the specification has to be expressed as part of the
model. However, the Design Verifier is only applicable for time-discrete Simulink
models, and its scalability is limited [HRB13], as it is based on an exploration of
exponential state spaces.

In the following, we discuss approaches for the analysis of the behavior of Simulink
models. Each approach is tailored to capture specific behavior in the formal repre-
sentation. First, we take a look at approaches that verify properties for Simulink
models that only consider discrete behavior. Second, we introduce approaches for
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the verification of Simulink models with hybrid behavior. Lastly, we look at ap-
proaches that provide contracts for Simulink components to enable compositional
verification.

Formal Semantics. In [BC12], the authors define a formal Simulink semantics.
However, their formalization does not provide an automated formalization of given
models but formalizes the execution semantics of Simulink. Furthermore, it is not
connected to any existing formal verification tool.

Simulation extensions. In [SCN13], a toolbox for hybrid equations in Simulink is
presented. However, it only extends the simulation capabilities and does not enable
comprehensive verification.

Verification of discrete behavior. The basic blocks of Simulink enable to model
complex systems. The interaction between different blocks can be used to model
different kinds of behavior, like hybrid behavior by using continuous blocks that
interact with discrete blocks. Limiting the possible blocks during system design
can simplify the analysis of the system behavior. A widely researched domain is
the formalization and verification of the subset of Simulink blocks that contain
discrete behavior.

In [AER14], the authors present a transformation of Simulink models into Why3
[FP13] to enable deductive verification. In [HRB13], Simulink models are trans-
formed into the UCLID verification system [LS04], and thus the approach enables
Satisfiability Modulo Theory (SMT) solving for the verification of safety proper-
ties. In [RG14], Boogie [Bar+05] is used as formal representation, and the SMT
solver Z3 [DB08] for formal verification. However, all of these approaches only
consider a discrete subset of Simulink and are not applicable for hybrid systems.

Verification of hybrid behavior. In [CK03], the tool CheckMate for modeling
and verification of hybrid automata in Simulink is presented. The authors provide
special blocks to model and verify polyhedral invariant hybrid automata (PIHA).
However, this approach can only be applied for a special class of hybrid systems
and requires the use of specialized blocks. All other blocks that model continuous
behavior, like the Integrator block, are not considered in the verification. Thus, it
is not applicable for most industrial Simulink models.

Related to our approach is the approach presented in [MF16], where a transforma-
tion from Simulink into a specific hybrid automata dialect (SpaceEx) is proposed.
This enables the use of reachability algorithms for hybrid automata. However, con-
currency is modeled using parallel composition of hybrid automata, so the state
space is exponential in the number of concurrent blocks.

In [Zou+15, Che+17], the authors present the tool MARS for the verification of
Simulink/Stateflow models. The tool transforms Simulink models with Stateflow
parts into Hybrid CSP and enables the verification in the Hybrid Hoare Logic
Prover. The use of Hybrid CSP enables high expressiveness and compositionality.
However, the property specification and the verification in Hybrid CSP requires a
very high level of expertise.
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In the work of [Bou+17], a synchronous language that incorporates the use of ordi-
nary differential equations is presented. The authors present how different Simulink
blocks can be expressed in the Zelus language. However, the authors do not provide
means to verify the modeled systems.

Statistical model checking. There exist approaches that use statistical model
checking to analyze the behavior of stochastic Simulink models. These models
contain transitions that contain probability distributions that determine whether
the transition is taken. The approaches provide probabilities how likely the system
fulfills a given property. In [Bar+18], the authors combine their formalization of
Simulink models with Petri nets to use them as input for the statistical model
checker Cosmos [Bal+15]. The authors of [Fil+16] propose a transformation of
Simulink blocks into a network of stochastic timed automata. These are used as
input for statistical model checking with UPPAAL SMC [Dav+15]. However, sta-
tistical model checking only provides probabilities that the system behaves correct
and is not able to guarantee correct behavior.

Generated code. The tool CLawZ [OHa13] enables to automatically prove code
that is provided by code generation of a Simulink model. The tool produces a
formal model of a discrete Simulink model in Z notation and checks whether the
code that is generated from the Simulink model is a refinement of the formal
representation. However, this approach does not check the behavior of the initial
Simulink model and only considers discrete system behavior.

In [Ber+18], the BTC EmbeddedValidator is used to perform bounded model
checking on C-code that is generated from Simulink models. It can be used to
find program errors that violate requirements and these errors are traced back to
the original Simulink model. However, due to the nature of bounded model check-
ing it is difficult to ensure correct behavior of the system outside of the chosen
bounds.

Contract-based verification. The authors of [RS11] present a contract system
for signal types in Simulink. By inferring the types of signal lines by its source
ports, formulas are created that apply types to each signal line and input port.
This approach is only able to check that the type of block outputs matches the
connected blocks and no other checks are performed. In [Bos11], an approach for
contracts for Simulink is presented. The authors transform Simulink models into
Synchronous Data Flow graphs that are mapped to sequential program statements.
This representation is then used to verify that a Simulink model fulfills a given
contract. The use of contracts increases the scalability of the verification. However,
only the discrete subset of Simulink blocks can be used in this approach.



48 3 RELATED WORK

3.3 Reuse and Variability in Simulink

In industrial applications, Simulink models can get large and can contain multi-
ple interacting components. To increase the maintainability and reduce the de-
velopment effort, approaches for clone detection and reuse have been developed
[Pha+09, Dei+10, ASH11, Ala+12, Hab+13, Ala+14].

In the following, we introduce research work that introduces reuse and variability
in data flow oriented models, namely models in Simulink. First, we introduce clone
detection approaches. Second, we discuss approaches that introduce variability into
the design of Simulink models.

Clone Detection in Simulink. The presence of clones in models or code increases
the model and program size and reduces the maintainability. Clones are identical
or similar sub-graphs in the same model. Clone detection aims at finding these
duplicated sections in code or models to prevent inconsistent changes in the system
and to increase the maintainability. In the following, we discuss clone detection in
more detail for graph-based models in Simulink.

In graph-based modeling languages, the general idea of clone detection [Pha+09,
Dei+10] is to find isomorphic parts in one graph or check whether two different
graphs are isomorphic. To extend the applicability of clone detection, the authors in
[Ala+12] extend the clone detection to not only find exact clones but also renamed
and near-miss clones. Renamed clones are graphs that contain the same structure
to each other but with nodes are named differently. Near-miss clones extend this
by considering graphs that have a similar structure to one another, but some nodes
and edges are removed or additional ones are added. These approaches all consider
the syntax level of the model. The approach in [ASH11] considers semantic clones
in Simulink. After a normalization of block structures in the system, parts that
provide the same semantic behavior can be identified.

Clone detection approaches find clones in existing models and can provide a basic
understanding, which model parts should be encapsulated into reusable compo-
nents. However, they do not provide much information about the behavior that is
given by the clones and how they can be reused in other systems.

Variability in Simulink. To facilitate the reuse of a model, variability can be
used to allow for the customization of the model for a specific application context.
Variability means that a given model can be changed according to defined rules to
adapt it to a new context. The approach of software variability management for
Simulink models [Ala+14] introduces variability operators for Simulink. With a
combination of clone detection and these operators, an identification of variations
in subsystems is provided. Different clones are represented as Simulink Variant
Subsystems that contain the application of variability operators. The operators
define the possible changes to a model and consider the following aspects of a
model: the insertion or removal of blocks, the change of block inputs and outputs,
block type changes, layout changes and renaming. While clones can be created
automatically, the structural changes provided by Variant Subsystems is limited.
All instances of a Variant Subsystem must have the same number inputs and
outputs. That means, no changes on the interface of the component are possible.
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Another variability approach [Hab+13] uses deltas to model variability. It provides
general core systems and variability is provided by the application of delta oper-
ators. The possible deltas are the addition and removal of blocks, ports or signal
lines, the modification of blocks, and the replacement of blocks.

While these approaches provide variability in Simulink, they are limited by the
provided variability operators. Furthermore, they provide no means to describe
how the changes influence the behavior of input and output signals.

3.4 Summary

The design and verification of hybrid systems have seen much research work. How-
ever, each approach comes with its own limitations. The verification of hybrid
automata is mostly limited by its scalability. Hybrid automata are verified via
model checking and over-approximations to determine the reachable state space.
Furthermore, the verification is often closely connected to the system representa-
tion. Approaches for the formal verification of Simulink models are often restricted
to the discrete block set and are not able to handle models with hybrid behavior.
There are some approaches that support the verification of Simulink models that
contain hybrid behavior. However, approaches that transform Simulink models
into hybrid automata suffer from scalability issues and approaches that use spe-
cialized blocks to model hybrid behavior are limited in expressiveness compared to
Simulink models used in industry. The approaches for integrating variability into
Simulink do not consider the verification of the resulting components.

In this thesis we aim to provide a design and verification methodology for hybrid
systems. With our approach, we enable deductive and thus potentially scalable
verification of hybrid control systems modeled in Simulink with the hybrid theorem
prover KeYmaera X.
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4 Service-Oriented Design and Verification Approach

Cyber physical control systems are often employed in safety-critical areas and fulfill
a wide range of tasks. They find application, for example, in the automotive and
avionics industry and in the medical context. With better and faster processing,
the desired functionality gets extended. To handle the increasing complexity of
these systems, model-driven design processes are utilized. A major challenge in
the design of these systems is to ensure their correct behavior, especially when
they exhibit hybrid behavior.

To enable the formal verification of hybrid systems that combine continuous and
discrete behavior and to facilitate their design, we propose a service-oriented design
methodology. Our approach enables to model hybrid systems in a commonly used
modeling language, enables the verification of these models and facilitates the
modeling of further systems by reusing previous results in the design process of
new models. We target the industrially widely used modeling language Simulink.
Simulink is a data flow oriented language that supports modeling and simulation
of hybrid systems.

In this thesis, we present an approach for the service-oriented design and verifica-
tion of hybrid control systems. The key ideas of our approach are threefold: First,
we provide a formalization of Simulink models into dL. This includes the automatic
transformation of Simulink models into a formal representation and allows for the
use of the interactive theorem prover for hybrid systems KeYmaera X. Second, we
provide a formal description of the input-output relation of Simulink models in
the form of hybrid contracts. Hybrid contracts provide a formal description of the
interface behavior of a Simulink model. With our Simulink to dL transformation
and KeYmaera X, we can semi-automatically verify that a model fulfills its hybrid
contract for all possible input scenarios that fulfill the assumptions of the contract.
Furthermore, we propose a compositional verification approach for systems that
contain components with hybrid contracts. Third, we provide services in Simulink
to facilitate the reuse of verified components in further models. Services encapsu-
late a Simulink model, hybrid contracts and a feature model to adapt the behavior
of the service. This increases the flexibility of our approach by enabling the cus-
tomization of services for different environments and still enabling the reuse of the
provided hybrid contracts. An implementation of major parts of our approach is
available as open source project2.

In this chapter, we firstly discuss the limitations and assumptions of our approach.
Thereafter, we give an overview of our service-oriented design and verification
approach.

4.1 Assumptions and Limitations

Our approach requires that the models under verification satisfy some assump-
tions. In the following, we first discuss assumptions that are due to our method-
ology. Thereafter, we discuss limitations that arise due to the current state of our
automatic transformation.

2Project available at https://github.com/EmbSys-WWU/Simulink2dL
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Conceptual Limitations. We require that a given Simulink model fulfills the fol-
lowing assumptions for our design and verification approach. Since we aim to pro-
vide a system designer with an approach to create verifiable services, these as-
sumptions limit the Simulink block set that a designer can use during the creation
of a Simulink service.

1. Limited use of algebraic loops.

2. No usage of S-Function blocks.

3. No usage of external scripts or libraries.

The first point considers loops in the design that only consist of feed-through blocks,
which do not have an internal state. Note that feedback loops are generally allowed
in the system design if they contain at least one stateful block. In Simulink, the
use of algebraic loops is generally discouraged. Furthermore, they can only be
simulated if the Simulink solver can find the solution of the underlying equations,
therefore this is not a strong limitation. In our approach, we use a tool to solve
the equations that are created by the algebraic loop. Therefore, we also require
that the underlying equations of algebraic loops have a solution. This restriction
is not severe, since only algebraic loops that have a solution can be simulated in
Simulink. The second and third point consider Simulink blocks that can exhibit a
very broad spectrum of behavior. S-Functions enable the use of system functions,
which can be written in various programming languages. To include S-Functions
and external scripts in our formalization of Simulink models, a transformation of
every usable programming language for these blocks would be required. If they are
used in a system, S-Functions can only be over-approximated in our transformation
by assuming that the output could be every possible value at every time. This
reduces the accuracy of the transformed system. The same considerations hold for
external scripts and libraries. External libraries provide new blocks with custom
behavior. It would be possible to define new individual transformation rules for
each block of an external library.

Currently supported block set. Our transformation provides transformation rules
for each block type individually. A major benefit of this approach is that the
transformation can be extended for new block types without changing the rules
for existing block types. The implementation supports representatives of the most
relevant block classes, namely arithmetic, logic, discrete, continuous, and control
flow blocks.

4.2 Formalization and Verification Framework

The design of hybrid systems is often a challenging and time-intensive task. This
is especially the case if the system model must fulfill given specifications under all
circumstances. The usual design process starts with the selection of a modeling
language. On the one hand, there are languages that are designed to enable an
easy creation of system models and provide a wide range of features that indus-
trial designers typically use. On the other hand, there are languages that aim at
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providing a formal foundation to easily verify system properties. The acceptance
of formal languages in industrial design processes is often limited, mainly because
the designers perceive them as unintuitive or hard to comprehend and the tool
support for formal languages is often limited.

In our approach, a design can be created using the industrially widely used model-
ing language Simulink and then can be verified by using the formally well-founded
interactive theorem prover for hybrid systems KeYmaera X. To enable this, we
provide a transformation of informally defined Simulink systems into a behavioral
equivalent representation in the formal language dL. The Simulink design may
contain input ports and output ports that represent its connection points to its
environment. During the verification, the inputs are assumed to be arbitrary, this
means that they could change at any time to any value. To facilitate the verification
and to define the system behavior more precisely, the designer can enrich the model
by specifying assumptions for the input signals in dL. These assumptions represent
known behavior of the incoming signals, e.g., bounds for their values or changes of
their values, or that their trajectory is a continuous function. The resulting proof
provides guarantees for the internal behavior of the model and its outgoing signals.
With the given assumptions for the input signals and the guarantees, we create
contracts that capture the externally visible behavior of the model. To enable reuse
and compositional verification, we encapsulate the verified contracts and Simulink
model in a Simulink service. A service can contain multiple hybrid contracts that
formally capture its behavior depending on its input signals. The service can be
used as a reusable component in larger system designs. This enables compositional
verification by replacing the inner block structure by its contracts in the verifi-
cation of the whole system. To increase the flexibility and modularization of our
approach, we extend the services by variability. A designer can create variations
in the inner structure of the service and capture the different variants in a feature
model. The behavior of variants is captured in hybrid contracts that represent the
special behavior of the individual internal customizations. During the later reuse of
the service, a designer can choose an appropriate variant of the service to include
in his design and still use the provided contracts for the overall system verification.

Transformation. Our verification process starts with a Simulink design that is
provided by the designer. Figure 4.1 shows our transformation approach. The
transformation provides rules for each block in Simulink. A transformation rule
consists of behavior that is included in the target dL representation and a replace-
ment macro. The added behavior can include variable declarations, continuous
evolutions or discrete assignments. For some blocks, the behavior is empty. The
replacement macro allows us to consider each block individually. A macro defines
which terms in the target dL should be replaced by a given hybrid program. Addi-
tional to the individual block rules, we provide transformation rules that capture
the overall behavior of the Simulink solver. With these rules, we are able to model
the simulation loop, variable step behavior and zero crossing behavior in the target
representation. Our transformation of Simulink to dL is published in [LHG18].

Hybrid Contracts. The resulting dL representation can be extended by assump-
tions for the input signals and the system properties that should be shown. Fur-
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Figure 4.1: Transformation of a Simulink model
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thermore, we provide extension functions for the resulting dL model that allow to
insert observer variables and clocks in the system that can be used to model more
complex system properties. We use the interactive theorem prover KeYmaera X
to verify that the resulting dL model satisfies the contract. The verified proper-
ties are guaranteed under the condition that the assumptions for the inputs hold.
We capture this assume-guarantee behavior in our hybrid contracts. The Simulink
model and the hybrid contracts are encapsulated as Simulink services.

Compositional verification. The use of services in a larger system design allows
us to abstract from its inner structure in the verification of the overall system.
Figure 4.2 shows our compositional verification approach. First, a designer can
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create a new Simulink design or apply our approach to an existing model. Second,
the services are transformed individually into dL. Third, we can verify for each
service that it fulfills its hybrid contracts. The second and third steps can be
omitted if there are already verified contracts given for a service. Fourth, we replace
the inner block structure of each service by its hybrid contracts in an abstract
system transformation. The resulting system is an abstract dL version of the initial
Simulink model. Fifth, we use the resulting dL model to prove system properties in
the same way we have proven properties for individual services. We have published
our compositional verification and hybrid contracts in [LHG19].

Variability. To increase the flexibility of our Simulink services, we extend our
service representation by a feature model. The feature model captures different
variants of the system and their dependencies. We adapt our hybrid contracts to
consider the chosen features of a feature model. This enables us to create contracts
that are specified more precisely by the features that are chosen. Our variability
for Simulink services is published in [Lie+17] and [LHG21].

4.3 Summary

Overall, our framework facilitates the design process and enables the verification of
hybrid control systems that are modeled in Simulink. We use hybrid programs in dL
as formal representation and provide an automatic transformation from Simulink
into dL. The interactive theorem prover KeYmaera X enables us to verify contracts
for our systems, which we use in a compositional way to verify properties of larger
systems. To increase the reuse of the verification results, we allow for variability
of the underlying Simulink models. The different variants are also captured in
the contracts. In the following, we introduce the different parts of our proposed
approach in more detail. In Chapter 5, we introduce our transformation of Simulink
models into dL. Chapter 6 presents our verification of transformed models and
our hybrid contracts. In Chapter 7, we introduce our Simulink feature modeling.
We evaluate our approach with four different case studies in Chapter 8, namely a
temperature control system, a generic infusion pump, a model of a distance warner
and a model of an autonomous robot in a factory.
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5 Formalization of Simulink with dL

In this chapter, we present our formalization of Simulink. It is based on a transfor-
mation of informally defined Simulink models into a formally well-defined dL rep-
resentation. Our transformation enables the formal verification of Simulink models
with hybrid behavior and creates the foundation for our service-oriented design and
verification approach. The semantics of Simulink is only informally defined. To en-
able the verification of Simulink models, we present a formalization by defining
transformation rules that capture the behavior of Simulink models in the formal
semantics of dL. This formalization considers the hybrid behavior of models.

The overall formalization approach is depicted in Figure 5.1. Our transformation
automatically generates a dL model from a given Simulink model. The resulting
dL model can be verified semi-automatically using the interactive theorem prover
KeYmaera X. This spares the designer the tedious task of manually defining a
formal model that captures the behavior described by the Simulink model and
gives access to the powerful verification techniques that KeYmaera X provides.

 

Simulink 
Model 

  

Requirement Spec 

 
Transformation 

Engine 
 

dL Model KeYmaera X 
 

Interactive 
Verification 
 

Figure 5.1: Simulink to dL approach

The key idea of our formalization of Simulink models is to model the behavior
of a Simulink simulation loop step inside of a dL nondeterministic repetition. We
define dL expressions that precisely capture the semantics of all Simulink blocks in a
given model. We connect these expressions according to the signal lines and expand
control conditions such that assignments and evaluations are only performed if the
control conditions are satisfied. To achieve this, we define transformation rules that
map the semantics of individual Simulink blocks to dL.
This chapter is based on [LHG18] where we have presented our formalization of
Simulink models in dL. In Section 5.1, we introduce our simulation loop in dL and
general transformation rules that consider the Simulink solver behavior. These
rules are independent of the blocks in the system and are the same in the transfor-
mation of different systems. In Section 5.2, we provide individual transformation
rules for different Simulink block types. In Section 5.3, we present rules to combine
the transformation results of individual blocks to create the dL representation that
contains the behavior of the interplay between all blocks in the system. Lastly in
Section 5.4, we present optimizations that reduce the number of individual trans-
formation rules in the system and that remove parts of the target dL representation
that contain unreachable behavior.

5.1 Simulink Solver Behavior

In Simulink, blocks are executed in time steps and the signals are calculated for
each step. The Simulink solver determines how the simulation is executed. It en-
ables to choose between fixed step execution, where all time steps have the same
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size, or variable time steps, where the size of time steps can change to obtain more
precise calculations. In our approach, we aim at representing the variable time step
behavior of Simulink into the dL model. This enables us to verify correct behavior
for all possible step sizes that a variable time step solver can choose. To achieve
this, we consider two parts. First, we capture the Simulink simulation loop behav-
ior in our dL representation. Second, we model the Simulink zero-crossing behavior
of continuous evolutions in our target representation.

General Simulation Loop

1 V ariableDeclarations
2 Preconditions & Initializations ->

3 [ { ... }∗ ] Postcondition

Listing 5.1: Structure of a transformed model

To capture the combined behavior of a given hybrid control system modeled in
Simulink, we introduce one global simulation loop, which is modeled as a nonde-
terministic repetition in dL, and contains both discrete assignments and continuous
evolutions. An overview of the representation of the transformed system is given
in Listing 5.1. The Variable Declarations contain all variables and constants that
are used in the system. Preconditions are derived from the system requirements.
In the Initializations section, initial values are assigned to variables and constants.
The global simulation loop comprises the transformed system behavior, namely
time-discrete behavior, additional assignments, e.g., assignments to variables that
are used to influence the control flow and the time-continuous behavior, and con-
tinuous evolutions. Lastly, the Postcondition captures the properties that should
be met according to the requirements specification. Note that in dL, whenever a
loop is left, it may or may not be executed again. Whenever the loop may termi-
nate, all verification goals must hold to ensure correct system behavior. Thus, we
verify that the postconditions hold for all possible system runs.

Variable Step Size Simulation Loop

In our approach, we consider variable time step behavior. This behavior also in-
cludes the behavior of fixed time steps. We represent the Simulink solver behav-
ior in a simulation loop that contains the calculations that are performed in one
Simulink solver step. Our resulting dL model has the following form:

ϕ1 → [(α)∗](ϕ2)

Where ϕ1 are initial conditions, ϕ2 are the safety guarantees and α is a hybrid
program that captures the behavior of all Simulink blocks during one simulation
step. Simulink blocks are executed concurrently. To capture this behavior, we use
the continuous evolution of dL to model the progress of time. We add all evolu-
tions of continuous blocks to the continuous evolutions in dL to execute them in
parallel. In each simulation loop step in our dL model, we execute exactly one
continuous evolution. To capture the variable step behavior, we do not restrict the
continuous evolutions by fixed time bounds. This enables us to employ the exit
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behavior of continuous evolutions in dL to capture the behavior of variable time.
Additionally, if a model contains discrete blocks, we add the constant STEPSIZE
and the variable stepTime to the system. STEPSIZE contains the value for the
discrete time step. The variable stepTime evolves with a constant derivative of 1
and is reset to zero after a time amount of STEPSIZE .

ProgramVariables.

R simulationTime.

...

End.

Problem.

% Initializations

simulationTime = 0 &

...

-> {[

% Simulation Loop

{

% Discrete Assignments

...

% Discrete Step Behavior

{ ?(steptime >= STEPSIZE);

steptime := 0;

...

++

?(steptime < STEPSIZE);

}

% Continuous Behavior

(simulationTime’ = 1, steptime’ = 1, ...

& ( % Domain Restriction

...

& steptime <= STEPSIZE));

}∗

% End of Simulation Loop

]

% Safety Properties

(...)

}

End.

Listing 5.2: Transformed Simulation Loop

Listing 5.2 shows the structure of our into dL transformed Simulink model. We in-
troduce a variable simulationTime that represents the simulation time. Note that
time only elapses during the continuous evolutions that are executed at the end of
the simulation loop. In the first part of the simulation loop, discrete assignments are
performed. Afterwards, the continuous evolutions are performed. During the con-
tinuous evolution, the variable that represents the simulation time evolves with a
constant derivative of 1. Note that we also add the condition steptime ≤ STEPSIZE
to the evolution domain of all continuous evolutions to ensure that discrete assign-
ments take place each time the steptime elapses. Also note that the verification
considers all possible behaviors that are produced by the system in dL. Therefore,
this variable time step also includes the behavior of fixed time steps. We can split
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the behavior of the simulation loop into two parts:

ϕ1 → [(β; γ)∗](ϕ2)

In the first part β, only discrete assignments are performed. In the second part
γ, continuous evolutions are performed. Note that in general γ is not one contin-
uous evolution but a nondeterministic choice with test formulas that selects the
evolutions according to the control flow of the model.

Discrete Jumps and Zero-Crossing Semantics

During the simulation in Simulink with a variable step time solver, if the result
of a calculation indicates a zero-crossing that causes a change in the system be-
havior, e.g. the condition at a Switch changes, smaller time steps are used to find
the best approximation of the time where the Switch block switches. In dL, the
default continuous evolutions can evolve an arbitrary amount of time. To enable
the detection of switch points in continuous evolutions, we provide two additional
rules for conditional macros: First, we create a new nondeterministic choice for
each continuous evolution. Second, we add the corresponding conditions to the
evolution domain. Together, this ensures that the continuous evolutions can only
evolve as long as this control flow does not change. We extend the continuous evo-
lutions in our transformation with smallStep ≤ EPS to ensure that control flow
changes are evaluated with a delay of at most a given ϵ (EPS ).

...

-> [{

...

% Discrete Assignments

smallStep := 0;

...

% Continuous Behavior

{ % Control Flow Selection A

?(...);

(simulationTime’ = 1, steptime’ = 1, smallStep’ = 1, ...

& (( % Domain Restriction A

...

& steptime <= STEPSIZE)

| smallStep <= EPS));

++

% Additional Control Flow Selections

...

}

}∗

% End of Simulation Loop

]

% Safety Properties

(...)

End.

Listing 5.3: Zero-Crossing Evolution

Listing 5.3 shows the extensions to the dL model. The variable smallStep is reset at
the start of every Simulation loop. During continuous evolutions, it evolves with a
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constant factor of 1. All evolutions can either evolve according to the given domain
restriction or for a time that is restricted by EPS. With this extensions to the
continuous evolutions, we are able to capture the Simulink zero-crossing behavior
in dL. The constant EPS represents a small delay between the change of a value of
a switch condition and the evaluation of the condition. The value of EPS can be set
by the designer and should be the same as the precision parameter for the variable
step size solver in Simulink. This represents the behavior in Simulink, where the
times of changes in the control flow block, i.e., zero-crossing, are approximated and
a small delay can occur due to the numerical nature of the Simulink solvers. In
our representation, EPS is an upper bound for the delay. A continuous evolution
in dL models all possible durations and therefore captures all possible small delays
up to EPS in our target model. This enables us to verify correct behavior for all
possible delays in control flow changes up to a time amount of EPS.

5.2 Transformation Rules

We introduce individual transformation rules for different block types in Simulink.
Our approach for the transformation from Simulink to dL is twofold: First, we
define transformation rules that map the semantics of individual Simulink blocks
to dL. By defining transformation rules for each block separately, we can consider
blocks and their calculations individually. This enables us to extend the transfor-
mation by new block types without the need to change existing transformation
rules. Second, we compose the individual blocks into a dL representation that
precisely captures the semantics of the original model.

In the following, we introduce the transformation of individual blocks into dL. The
resulting dL programs are used to represent the model behavior in the simulation
loop, which is described in Section 5.1. The blocks in Simulink are processed con-
currently and they use the values that are provided at their input ports to update
their output ports. The evaluation of blocks in Simulink is executed according to a
given block order. Our macros respect this block order such that the evaluation of
feed-through blocks is grouped together. This enables us to omit the introduction
of individual variables for the results of these blocks. Our key idea to faithfully
model the exact data, control and timing dependencies of the original model is to
introduce discrete state variables for time-discrete blocks that keep an inner state,
continuous evolutions to model time-continuous blocks, and to use a sophisticated
macro mechanism to represent stateless behavior, e.g., port connections, arithmetic
calculations, and, in particular, control flow.

Definition 5.1 (Transformation rule). A transformation rule is a tuple (V,M, δ, E),
where V is a set of variables, M is a set of replacement macros, δ is a hybrid
program that describes the behavior of the block, which also can be skip, and E
is a set of continuous evolutions e ∈ E A single continuous evolutions e = (v, θ)
consists of a variable v and terms θ that describe the continuous evolution of the
variable. The set of continuous evolutions E can also be empty.

When a transformation rule is applied to our target hybrid program, all variables in
V are added to the variable definitions in the dL model. To obtain unique names
for these variables, we use the name of the Simulink block as variable name or
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as prefix for the variable names, if the rule produces multiple variables. For the
general structure of the hybrid program in the dL model, we use the previously
defined form of our simulation loop (α)∗ = (β; γ)∗. The hybrid program δ is added
to the discrete part of the simulation loop and we obtain:

(αnew)
∗ = (βnew; γnew)

∗ = (β; δ; γnew)
∗

We obtain γnew by extending all continuous evolutions that are present in γ by the
evolutions that are given in E.

γ = {x′1 = η1, . . . , x
′
n = ηn & ψ}

γnew = {x′1 = η1, . . . , x
′
n = ηn, v

′
1 = θ1, . . . , v

′
m = θm & ψ}

Definition 5.2 (Replacement identifier). A replacement identifier term id is a term
that extends the term definition of dL. A replacement term id has no interpretation
in dL and is only used as placeholder. To obtain a valid dL model, all replacement
identifiers id are replaced by other dL terms. The identifiers for id are provided
by the outputs of blocks in Simulink, i.e., each Simulink individual output of each
block produces a unique identifier id.

Definition 5.3 (Macro). A macro m ∈ M consists of a replacement identifier id
that is replaced by an expression e during the transformation process. For each
output of each block, we provide a separate transformation rule. To denote that
such a macro is applied to a hybrid program α, we write α[id← e]. The application
of macros to hybrid programs is defined as follows:

(α; β)[id← e]
def
=α[id← e]; β[id← e]

(α ∪ β)[id← e]
def
=α[id← e] ∪ β[id← e]

α∗[id← e]
def
=α[id← e]∗

(x := θ)[id← e]
def
=x := (θ[id← e])

(x := ∗)[id← e]
def
=x := ∗

{x′1 = θ1, ..., x
′
n = θn&ϕ}[id← e]

def
={x′1 = (θ1[id← e]), ..., x′n = (θn[id← e])

&(ϕ[id← e])}

(?ϕ)[id← e]
def
=(?ϕ[id← e])

A macro is applied to a term θ or a formula ϕ by replacing the occurrences of the
identifier id with the given expression e. The replacement for terms is defined as
follows:

(x)[id← e]
def
=x

(f(θ1, ...θk))[id← e]
def
= f((θ1)[id← e], ...(θk)[id← e])

(θ + η)[id← e]
def
=(θ)[id← e] + (η)[id← e]

(θ · η)[id← e]
def
=(θ)[id← e] · (η)[id← e]

((θ)′)[id← e]
def
=(θ)′

(id)[id← e]
def
= e
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Table 5.1: Transformation Rules for Sources and Feed-Through Blocks

Simulink block Macros and dL representation
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t  

 

 
 1 𝑜𝑢𝑡 

V : {input, IN _MAX , IN _MIN }
M : {α[out← input]}
δ : { input := *;

?(input <= IN_MAX & input >= IN_MIN);

}
E : {}

C
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t  
 

 

𝑜𝑢𝑡 value 

V : {}
M : {α[out← value]}
δ : {}
E : {}
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𝑜𝑝1 𝑖𝑛1 

𝑜𝑢𝑡 

𝑜𝑝𝑛 𝑖𝑛𝑛 

⋮ 

V : {}
M : {α[out← 0 op1(in1)op2(in2)...opn(inn)]}
δ : {}
E : {}

P
ro
d
u
ct

 
 

 

 

 

𝑜𝑝1 𝑖𝑛1 

𝑜𝑢𝑡 

𝑜𝑝𝑛 𝑖𝑛𝑛 

⋮ 

V : {}
M : {α[out← 1 op1(in1)op2(in2)...opn(inn)]}
δ : {}
E : {}

The replacement for formulas is defined as follows:

(θ ≥ η)[id← e]
def
=(θ)[id← e] ≥ (η)[id← e]

(p(θ1, ...θk))[id← e]
def
= p((θ1)[id← e], ...(θk)[id← e])

(¬ϕ)[id← e]
def
=¬(ϕ)[id← e]

(ϕ ∧ ψ)[id← e]
def
=(ϕ)[id← e] ∧ (ψ)[id← e]

(∀xϕ)[id← e]
def
=∀x(ϕ)[id← e]

(∃xϕ)[id← e]
def
=∃x(ϕ)[id← e]

([α]ϕ)[id← e]
def
=[(α)[id← e]](ϕ)[id← e]

(⟨α⟩ϕ)[id← e]
def
= ⟨(α)[id← e]⟩(ϕ)[id← e]

With replacement macros M , a hybrid program δ and continuous evolutions E,
we define transformation rules to capture the behavior of Simulink blocks in dL.
In the following, we define transformation rules for different block types. Note that
in and out are identifier that are used in our macro replacement. The identifier out
is unique for each block and in i is the identifier of the output port of the block that
is connected to the i-th input port. Furthermore, we use prefixing to obtain unique
names for internal variables of the blocks, e.g., the state variables of time-discrete
blocks. Each of these variables is also added to the dL model.
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Sources

Sources provide values that can be used as inputs for other blocks. The transfor-
mation of a source assigns the provided value or variable to connected blocks.

Inports connect a system to an environment and provide incoming signals. Our
transformation rule for Inports is shown in the first row of Table 5.1. There, we
introduce a dL variable input for the provided signal, and define a macro that re-
places all occurrences of the unique identifier assigned to the output port of a given
Inport block (out) with input. The hybrid program δ that models an Inport block
consists of two parts: First, to model arbitrary inputs, we use a nondeterministic
assignment. Second, a test formula is added to the hybrid program, which defines
the range of possible values. Initially, there are no values given for the upper and
lower bound and they are set to the maximal and minimal value respectively. For
the verification, these bounds can be used to define assumptions for the input
values.

Constant blocks provide an assigned value to all connected blocks. This value does
not change during the execution of the system. The transformation rule for this
block generates a macro that replaces all occurrences of the connected port with
the given constant value. The hybrid program of this block is empty.

Direct Feed-through Blocks

Direct feed-through blocks, e.g., arithmetic or logic blocks, do not have an inner
state and write their results directly to their output ports. To model this, we
create a macro that performs the operation defined by the semantics of a given
block. As an example, the transformation rule of the Sum block is shown in the
third row of Table 5.1. Note that all macros are fully expanded in the final dL
model, that is, for the Sum block rule shown in the third row of Table 5.1, all
occurrences of out will be replaced by the combination of all inputs ini with the
operators opi defined by the parameters of the block (which might be ’+’ or ’-’ for
a Sum block). The leading 0 is the neutral element of the addition and ensures
that the replacement produces valid terms. The transformation of a product block
is similar, but we use the neutral element of the multiplication (1) as first element
in the resulting formula. Note that the input variables ini are replaced by other
expressions resulting from the transformation rules of the preceding blocks during
the transformation process.

Time-Discrete Blocks

Blocks with time-discrete behavior, e.g. Discrete Integrator and Unit Delay, are
blocks with an inner state that changes only at given time steps that are given
by their sample time. The transformation rule for the Discrete Integrator block is
shown in the first row of Table 5.2 and the transformation rule for the Unit Delay
block is shown in the second row. Both blocks use an inner state to keep their
values during the time step. At the start of a new time step, the Unit Delay takes
the current input and stores it into its internal state and updates its output to
the stored value of the previous time step. A Discrete Integrator takes the value
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Table 5.2: Transformation Rules for Time-Discrete Blocks

Simulink block Macros and dL representation
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𝑜𝑢𝑡 𝑖𝑛 
𝐾 𝑇𝑠

𝑧 − 1
 

V : {state}
M : {α[out← state]}
δ : { ?(steptime >= STEPSIZE);

state := state + in;

++

?(steptime < STEPSIZE);

}
E : {}

U
n
it
D
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ay

 

1

𝑧
 𝑜𝑢𝑡 𝑖𝑛 

V : {output, state0}
M : {α[out← output]}
δ : { ?(steptime >= STEPSIZE);

output := state;

state := in;

++

?(steptime < STEPSIZE);

}
E : {}

of the input signal at each new time step and adds it to its stored internal state.
To capture this behavior, we introduce a variable state that represents the inner
states of these blocks. Additionally, the Unit Delay block has an output variable
that represents its output, while the Discrete Integrator directly outputs its inner
state. To model discrete steps, we introduce a constant STEPSIZE that represents
a given sample time and a continuous variable steptime. Discrete state variables
are only updated if steptime is equal to STEPSIZE, otherwise no changes occur.
To model time, we add steptime to the continuous evolution of the system with
a derivative of 1. To consider each discrete step, we add steptime <= STEPSIZE

to the evolution domain. We update all outputs of time-discrete blocks at the
beginning of the evaluation of discrete steps. After all discrete assignments, we
reset steptime to zero if steptime >= STEPSIZE.

Control Flow Blocks

Control flow blocks, e.g. the Switch block and Multiport Switch, change the control
flow of the system. This may create a discrete jump in time-continuous behavior.
To transform control flow blocks, we introduce a new kind of macro, namely condi-
tional macros. The idea of a conditional macro is that we make the macro mecha-
nism dependent on control flow conditions. To this end, we first define an extended
replacement function α[id ← e, c], which replaces id with e in a hybrid program
α as above and additionally adds the condition c to all evolution domains in α. A
conditional macro is given by α[id ⇐ CM ], where id is the identifier that should
be replaced and CM is a set of conditional replacements (ei, ci). The expansion of
a conditional macro is defined as follows:

α[id⇐ CM ] = α[id⇐ {(e1, c1), ..., (en, cn)}]
= { ?(c1); α[id← e1, c1]; ++ ... ++ ?(cn); α[id← en, cn]; }
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Table 5.3: Transformation Rules for Control Flow and Discontinuities

Simulink block Macros and dL representation
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V : {}
M : {α[out⇐ {(in1, cswitch), (in2,¬cswitch)}]}
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δ : {}
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V : {state}
M : {α[out⇐ {(state, in <= low),

(state, in >= high),
(state, in > low & in < high)}]}

δ : { ?(in <= low);

state := off_output;

++

?(in >= high);

state := on_output;

++

?(in > low & in < high);

}
E : {}

A conditional macro creates a nondeterministic choice where a hybrid program α
that contains id is split into multiple cases (one case for each condition ci). In each
case with condition ci, id is replaced by the corresponding ei. We illustrate the use
of conditional macros with the transformation rule for a Switch block in the first
row of Table 5.3. The Switch has three input signals, namely a control input cin
and two data inputs in1 and in2, one output signal out, and an internal condition
cswitch. If the control input cin fulfills the condition cswitch the first data input in1

is written to out, otherwise the second data input in2 is written to out. Note that
a Simulink Switch condition cswitch is of the form cin ∼ C with ∼ ∈ {>,≥, ̸=}
and C a constant Simulink expression. This concept to handle control flow can



5.2 Transformation Rules 67

Table 5.4: Transformation Rules for Time-Continuous Blocks

Simulink block Macros and dL representation
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𝑠
 𝑜𝑢𝑡 𝑖𝑛 

V : {s}
M : {α[out← s]}
δ : {}
E : { s’ = in }

S
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e
W
av
e

 

𝑜𝑢𝑡 

V : {x, y}
M : {α[out← x]}
δ : {}
E : { x’ = y, y’ = -x }

be easily adapted for other control flow blocks. Note that our conditional macro
mechanism may introduce more cases than necessary. To increase the readability of
the transformed program, our implementation of conditional macros only creates
nondeterministic choices for assignments and evolutions where id actually occurs.

Discontinuities Blocks

Discontinuities blocks, e.g. the Relay block, can have sudden jumps in their output
signals. To transform this behavior, we consider the special properties of these
jumps. They are discrete changes of values and they occur whenever an input signal
reaches a defined value. As an example, the Relay block has different parameters
that define its behavior. When the input signal rises above a high value then the
output value jumps to a specified on output value. When the input signal falls
below a low value then the output value jumps to a specified off output value.
Otherwise, the signal stays the same. Note that these values are real numbers and
not variables. Therefore, only the state of the Relay is added as variable to the
dL model. We use a nondeterministic choice with test formulas to model these
discrete changes. The test formulas chose the value that is assigned to the internal
state variable depending on the value of the input signal. The second part of
the transformation of the Relay block behavior is the detection of changes of the
behavior whenever the input signal reaches its bounds. To model the changes in
the transformed dL, we use conditional macros. Note that all three cases use the
internal state as replacement for the out identifier. The conditions cover the three
states of the Relay block: First, the input is below the low value. Second, the input
is above the high value. Third, the input is between the two values. Due to the
conditional macro, the continuous evolutions of the dL model are split into these
three areas depending on the value of the input signal. Since these areas are also
part of the evolution domain of the dLmodel, we can detect when the signal crosses
a border and a new simulation can be started to evaluate the discrete assignments.

Time-Continuous Blocks

To capture the concurrent execution of continuous Simulink blocks in our trans-
formation, we combine the evolution of all state variables of all time-continuous
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blocks into one continuous evolution. Note that this continuous evolution also con-
tains a variable for the simulation time. Also note that the continuous evolutions
may be split by conditional macros and each choice contains all continuous state
variables. We illustrate our transformation rule for time-continuous blocks with
the Integrator block and the Sine Wave block in Table 5.4 . The Integrator block
takes the input signal in and integrates it over time. This means that it models the
differential equation s(t) =

∫︁ t

0
in(τ) dτ , which is equivalent to ds(t)

dt
= in(t), where s

is the inner state of the integrator. The Sine Wave is a source block that produces
a signal that changes continuously over time. To model a sine wave signal, we use
the representation of a sine wave as differential equations, whereas:

x′ = y, y′ = −x

The sine signal is given by x.

5.3 Model Transformation

In the previous section, we have defined transformation rules for individual Simulink
blocks, including blocks with time-discrete and time-continuous behavior. In this
section, we present our approach for the transformation of hybrid control systems
that may consist of an arbitrary number of direct feed-through, time-discrete, con-
trol flow and time-continuous blocks into dL. The main challenge in combining
the individual block transformation rules defined above is to precisely capture the
interactions between blocks.

Transformation Algorithm

Our transformation algorithm analyzes a given Simulink model, applies the trans-
formation rules defined above, and incrementally builds a hybrid program. During
the transformation process, each block is translated into a set of macros, hybrid
programs and continuous evolutions. Each transformation rule can add macros to
the set of all macros used for the transformation, it can append its hybrid pro-
grams to the program β in the simulation loop and it can add evolutions to the
continuous evolutions in γ. To ensure that all dependencies are correctly consid-
ered, we handle all time-discrete blocks in the correct order, i.e., we start with
blocks that have no inputs and then successively handle all blocks where all input
blocks have already been translated. Since direct feed-through and stateless blocks
are transformed using our macro mechanism, the transformation is not dependent
on the order of these blocks. When all blocks are translated, the macros are ex-
panded, i.e., they are applied to the dL model according to the previously defined
macro replacement rules. With our assumption that the system does not contain
algebraic loops, each feedback loop in the original Simulink model contains at least
one stateful block and this algorithm always terminates. Note that we flatten all
subsystems at the beginning of the transformation and use prefixing to keep the
structure of the original Simulink model transparent to the developer.
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Transformation of a Temperature Control Model

The transformation of our example system (Figure 2.6) yields three simple macros
and two conditional macros:

Integrator out←Integrator state
Sum out←Tdes out− Integrator out
Tdes out←Tdes

Switch out⇐{(Heating out, Relay out > 0), (Cooling out, Relay out ≤ 0)}
Relay out⇐{(Relay state, Sum out ≥ Relay max),

(Relay state, Sum out ≤ Relay min),

(Relay state, Sum out > Relay min ∧ Sum out < Relay max)}

In this model, we have set the parameters for the Relay block as follows: The
assignments for the output of the Relay block are 0 for the off state or 1 for the
on state, depending on the input value. The jump to the on state occurs whenever
the input value is larger than or equal to 0, 5 and the jump to the off state occurs
whenever the input value is less than or equal to −0, 5.

1 {smallStep:=0.0; OutPort1:=Integrator; Heating:=*; Cooling:=*;

2 {?(Tdes-Integrator>=0.5); Relay:=1.0;

3 ++

4 ?(Tdes-Integrator<=-0.5); Relay:=0.0;

5 ++

6 ?((Tdes-Integrator<0.5) & (Tdes-Integrator>-0.5));

7 }{?((Tdes-Integrator>=0.5) & (Relay>0.0));

8 {simTime’ = 1.0, Integrator’ = Heating, smallStep’ = 1.0

9 & ((Tdes-Integrator>=0.5) & (Relay>0.0)) | (smallStep<=EPS)}

10 ++

11 ?((Tdes-Integrator>=0.5) & (Relay<=0.0));

12 {..., Integrator’ = Cooling, ...

13 & ((Tdes-Integrator>=0.5) & (Relay<=0.0))|...}

14 ++

15 ?((Tdes-Integrator<=-0.5) & (Relay>0.0));

16 {..., Integrator’ = Heating, ...

17 & ((Tdes-Integrator<=-0.5) & (Relay>0.0))|...}

18 ++

19 ?((Tdes-Integrator<=-0.5) & (Relay<=0.0));

20 {..., Integrator’ = Cooling, ...

21 & ((Tdes-Integrator<=-0.5) & (Relay<=0.0))|...}

22 ++

23 ?((Tdes-Integrator<0.5) & (Tdes-Integrator>-0.5) & (Relay>0.0));

24 {..., Integrator’ = Heating, ...

25 & ((Tdes-Integrator<0.5) & (Tdes-Integrator>-0.5) & (Relay>0.0))|...}

26 ++

27 ?((Tdes-Integrator<0.5) & (Tdes-Integrator>-0.5) & (Relay<=0.0));

28 {.., Integrator’ = Cooling, ...

29 & ((Tdes-Integrator<0.5) & (Tdes-Integrator>-0.5) & (Relay<=0.0))|...}

30 }}∗

Listing 5.4: Temperature Control System in dL
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The hybrid program in dL (without initial conditions, variable declarations and
safety guarantees) is shown in Listing 5.4. For brevity and simplicity of presen-
tation, we omit prefixing and refer to the internal state of stateful blocks and
to the output of stateless blocks with the block name (i.e., we use Integrator for
Integrator s and Heating for Heating out).

The only discrete assignments (Lines 2 - 6) are generated for the Relay block,
whose internal state is set to 1.0 or 0.0 depending on the deviation of the cur-
rent temperature from the desired value of 19.0 degree celsius. For the continuous
evolutions (Lines 7 - 29), we distinguish all cases where the switching behavior or
relay behavior of the system changes. We use the corresponding conditions both as
conditions in the evolution and as evolution domain. This ensures that whenever
a switching condition or relay condition changes, the simulation loop is restarted
and all conditions are newly evaluated. In each case, we have three continuous evo-
lutions (e.g. Line 8): the simulation time simTime and the smallStep time evolve
with a gradient of 1, and the Integrator evolves with Heating or Cooling, depending
on the current control flow conditions.

5.4 Optimizations

To reduce the size of the resulting dL representation and to reduce the amount
of macros that are necessary during the transformation, we have developed opti-
mizations for the transformation. We have developed these optimizations for the
transformation of groups of blocks with similar functionality and algebraic loops
as part of a Bachelor’s thesis [Won18].

Deletion of Unreachable Branches

The conditional macros can produce branches that are unreachable. During the
evaluation of conditional macros, we check the resulting conditions. A conditional
macro creates a branch in the dL behavior that contains a set of test formulas that
define the prerequisites to execute this branch. We create a conjunction of all test
formulas that guard a branch and also add the condition of the conditional macro.
Note that this condition will be added as new test formula when the conditional
macro is applied to the hybrid program. Whenever the resulting conjunction can-
not be fulfilled, we omit the branch from the resulting dL model. The check for
satisfiability can be automatically performed by an SMT solver, e.g., Z3 [DB08].
Note that we only omit the branch if its unsatisfiability is proven. If the result is
not decidable, we add the branch to the dL model.

Furthermore, some conditional branches are directly connected with the assign-
ment of specific values to variables. E.g., the Relay block has two cases, in which
an assignment to its output takes place. For these conditional branches with assign-
ments, we add the assignments as additional invisible conditions to the conditional
macros. These invisible conditions are not added to the model, but used during
the checks for valid branches.

Running example. In our transformed temperature control system in Listing 5.4,
we have six different branches that are obtained by one Switch and one Relay. In
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the cases that the Relay is turned on (Tdes-Integrator >= 0.5) and that it is
turned off (Tdes-Integrator <= -0.5), its output is set to 1 or 0 respectively. We
add these assignments to the Relay output as invisible conditions in its conditional
macro. This enables us to remove two branches of the resulting system. It is not
possible that the Relay is turned on (RelayOutput = 1) and the Switch is set to off
(RelayOutput<=0). Analogous, when the Relay is turned off (RelayOutput = 0),
the Switch cannot be set to on (RelayOutput>0).

Reduction of Algebraic Blocks

The individual transformation of blocks has some drawbacks. First, the trans-
formation rules and the resulting macros do not contain information about the
connected blocks and the connected macros. During the evaluation of the macros
and the generation of the resulting dL model, each macro needs to be applied to all
other macros and the resulting model. This could be reduced, since most macros
only need to be applied to macros that are generated by neighboring blocks. Sec-
ond, the macro replacement mechanism is not able to handle algebraic loops. An
algebraic loop is a group of Simulink blocks that construct a data dependency
loop, where no block contains an inner state. That means that the output value
of each block in the loop at each time is directly dependent on its current value.
Algebraic loops can only be solved, if there is a stable assignment to the block out-
puts where they do not change. Our macro replacement mechanism for the model
transformation, see Section 5.3, cannot handle algebraic loops, since these produce
macros where the id that should be replaced is also part of the replacement term.

In the following, we introduce an extension of our block transformation to group
the transformation of blocks. The aim is to reduce the macros that are produced
during the transformation and to handle algebraic loops.

The key idea is to group blocks of similar type (e.g., arithmetic, logic) with a
direct signal line connection into a block group. Then we can transform these
groups independently from the rest of the system. The transformation of a block
group generates macros similar to the transformation of individual blocks. For the
transformation of a block group, we consider the blocks independent of the rest of
the model. We determine macros that represent the behavior of the block group
and that are used during the transformation of the whole model.

Transformation of Block Groups. In the following, we consider Simulink blocks
that are connected and have the same functionality, e.g., arithmetic calculation
or logic formula, as block group B. We define open inputs as all input ports of
the blocks in B that are not connected to an output port of a block in B. Open
outputs are all output ports that are connected to at least one block that is not in
B. Note that it is possible that an open output is connected to an input port of a
block in B.

Block groups can be transformed similar to Simulink models. We create macros
for each block in B and get a resulting set of macros. We perform the macro
replacement in the group until the resulting macros only contain identifiers that
are produced by the open inputs. Note that this replacement terminates only if
there is no algebraic loop present. The resulting macros represent the behavior of
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the block in block in B. For the system transformation, we only need to consider
macros that represent replacements for open outputs. During the transformation
of the system, we do not consider the individual blocks in the group but use the
resulting macros for the open outputs as transformation rule for the block group. A
block group is interpreted as a single block during the system transformation. The
rule by which this block is transformed is given by the macros that are generated
by the evaluation of the block group. Furthermore, only the macros for the open
outputs are relevant for the rest of the system.

Figure 5.2: Block group in Temperature Control

Figure 5.2 shows the temperature control system with an arithmetic block group.
This group consists of a Constant block and a Sum block. During the transforma-
tion as a first step, we only consider these two blocks. This group has one open
input outIntegrator and one open output outSum. We can apply the two macros of
the two blocks within this group to obtain:

M : α[outSum ← 19− outIntegrator]

Only ports that are not part of the block group remain (i.e., outIntegrator). We can
take the macro that describes the open output (outSum) as macro for this group.
Therefore, the macro for the output port of the Constant block is not necessary
during the transformation of the remaining system.

Transformation of Algebraic Loops. An algebraic loop is a loop that only consists
of arithmetic blocks. Algebraic loops can be present in a block group. Note that we
have defined a block group as connected blocks that have the same functionality.
This means that there can be block groups that consist of blocks that perform an
algebraic calculation. Furthermore, only feed-through blocks and source blocks can
belong to this group, since blocks with internal states have a different functionality.
To determine whether the system model contains an algebraic loop, we check
whether there exists a block group of algebraic blocks that contains a loop. Since
these blocks have no inner state, all loops in these groups are algebraic loops. To
be able to create a transformation rule for an algebraic loop, we first encapsulate
all blocks that are inside of an algebraic loop in its own block group. This results
in a block group that contains another block group.

An algebraic loop can only be handled by the Simulink solver, if it has a solution.
Therefore, we also only transform algebraic loops with a solution. To be able to
solve the equation system that is represented by the Simulink blocks, we create the
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equation system that is represented by the loop. Each block can represent one vari-
able. To obtain the solutions that are relevant for the system, we use the blocks with
open outputs as variables for the equation system. We use our macro replacement
mechanism until the equation system only contains open outputs and open inputs
as variables. With a computational algebra system, e.g., Wolfram|Alpha [Wol], we
can automatically solve these equations. We obtain formulas that represent the
values for open outputs. A formula for an open output only contains variables that
refer to open inputs of the block group. We transform all formulas for open out-
puts into macros, where each variable in the equation system is either an id that
is replaced by a macro that is generated by the block group or that describes the
identifier of an open input. If the equation system does not have a solution, we do
not obtain a formula and we cannot transform the system that contains this loop.

The resulting macros can be used in the system transformation similar to the
macros of block groups.

5.5 Summary

In this chapter, we have introduced our transformation of Simulink models that
capture the informal Simulink semantics into a formal dL representation. We trans-
form blocks with individual transformation rules. The overall dL model is formed
by hybrid programs that are provided by our transformation rules, evolutions of
continuous variables and a sophisticated macro mechanism. The resulting dLmodel
represents a nondeterministic repetition of a Simulink solver step, where each step
consists of the evaluation of discrete changes and the progress of time in one of
different continuous evolutions. We presented optimizations to reduce the size of
the resulting model and the macros that are used during the transformation. We
transform blocks of the same type as groups, which encapsulate the behavior of
similar blocks and can contain algebraic loops. We presented rules to connect the
individual transformation rules and obtain a dL model that we can use for the
verification with the interactive theorem prover KeYmaera X.
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6 Compositional Verification with Hybrid Contracts

With the formalization of Simulink models in dL, which we have introduced in the
previous chapter, we enable the deductive verification of properties for Simulink
models with the interactive theorem prover KeYmaera X, which we introduce in
this chapter. We aim at integrating the verification results into the design process
of hybrid control systems and reusing verification results for further formal proofs.
We introduce a service concept for Simulink models that encapsulates a model and
its formal interface description. Note that we use a simplified service definition in
this chapter and extend our service concept by feature modeling in Chapter 7.
First, we introduce our notion of hybrid contracts that provide guarantees for the
behavior of a service. Second, we present extension functions that ease the creation
of hybrid contracts. These functions insert observer variables in a dL representa-
tion of a Simulink model to enable the creation of more complex system properties.
Furthermore, we present property templates that capture different important prop-
erties for Simulink models as hybrid contracts. Third, we introduce the verification
of transformed models with the interactive theorem prover KeYmaera X. Fourth,
we present our compositional verification to enable the verification of Simulink
models that consist of interacting services. Lastly, we present a proof to show that
properties that we verify for our abstracted compositional system also hold for the
concrete system.

6.1 Hybrid Contracts

Complex models in Simulink are characterized by interacting components.

We introduce services in Simulink and hybrid contracts to capture the behavior
of a Simulink component as hybrid program and to provide an abstract verifiable
interface definition for services. Hybrid contracts formally describe the dynamic in-
terface of a Simulink service and the interactions between different Services, which
enables reasoning about the overall system. The dynamic interface captures the
input and output behavior of a Simulink model, including time-discrete and time-
continuous behavior. This section is based on [LHG19] where we have published
our compositional verification of Simulink models.

Service-Oriented Design and Decomposition

In the following, we introduce a simplified definition of services in Simulink. We
further extend this notion of a Simulink service in Chapter 7 by the addition
of a feature model. The inclusion of the feature model is not necessary for the
introduction of hybrid contracts and will be omitted in the following discussion.
We define a service in Simulink as

s = {sm, Pi, Po, C}

It consists of a Simulink model sm, a set of input Ports Pi, a set of output Ports Po

and a set of hybrid contracts C. The Simulink model defines the inner structure of
a service, the input and output ports define its interface and the hybrid contracts
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define its interface behavior. Whenever the Simulink model of a service is used in
another Simulink model, we denote it as Instance of the service.

Hybrid Contracts

Hybrid contracts capture the hybrid behavior of a service, which means that they
are restricted neither to purely discrete nor to purely continuous system behavior.
To enable the integration of contracts in the system verification, we represent
hybrid contracts in dL. A hybrid contract is a tuple c = (Φin,Φout), where Φin is a
set of assumptions, and Φout is a set of guarantees. To verify that a service fulfills a
hybrid contract, we verify that Φout holds after the behavior of the service, which
is described in α, is executed an arbitrary number of times under the assumption
that Φin holds:

Φin → [{α}∗](Φout)

We show that the guarantees provided by Φout hold in all runs of the nondeter-
ministic repetition of α, which represents the execution of the simulation loop.
Therefore, our contracts are not restricted to the execution of one simulation loop
and we can define hybrid contracts that contain information for multiple execu-
tions of the simulation loop. The assumptions describe behavior of input variables
of a service. The guarantees provide information about the trajectories and values
of output variables. Note that continuous evolutions run for a non-deterministic
amount of time as long as their evolution domain holds. Our generated models are
structured such that exactly one evolution is executed in each loop iteration. Each
evolution can run an arbitrary amount of time as long as its evolution domain
holds. Due to the [ ] operator in our proof of the system, each iteration of the
simulation loop considers all possible runs for which the evolution domain holds.
Therefore, all end states that are reachable by each evaluation of the simulation
loop together provide the set of possible trajectories.

Assumptions and guarantees are modeled in dL. The use of dL to define contracts
enables us to describe a variety of possible behavior and we are not limited to
classical discrete system properties, for example, range and timing properties. In-
heriting the full expressiveness of dL enables us to also express dynamic properties,
i.e., differential equations together with discrete control signals, as well as contin-
uous evolutions and assignments. However, to systematically make use of the high
expressiveness of dL requires a high expertise by the designer. To ease the contract
definition process, we provide 1) extension functions, which enable the designer to
systematically introduce observer variables into the design under verification and
2) property templates, i.e. templates for range properties, timing properties, and
dynamic properties, which can be used as design patterns for typical requirements
or contract definitions.

Contract for Running Example. In the following, we discuss how to create a
simple contract for our temperature control service. The Simulink model of the
service is shown in Figure 2.6. The following hybrid contracts serves as brief intro-
duction to the creation of hybrid contracts. In the following sections, we extend the
creation of hybrid contracts in more detail. A contract is created by the designer
to formally describe the dynamic interface of a Simulink system.
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Table 6.1: Example Contract for temperature bounds

ϕin

δ > 0 ∧
Heating > 0 ∧
Cooling < 0

ϕout Tdes − δ < Tout < Tdes + δ

The output temperature Tout is a crucial signal in this system. As example con-
tract, which is depicted in Table 6.1, we provide the guarantee that the result-
ing temperature Tout is always close to the desired value Tdes. It can deviate
from Tdes by a tolerance value of δ. The resulting guarantee ϕout is described as
Tdes− δ < Tout < Tdes + δ. The temperature is time-continuous and this guarantee
captures time-continuous behavior. To create the necessary assumptions, we con-
sider the temperature control service presented in Figure 2.6. Note that the exact
value of the tolerance δ is influenced by the Relay block, which can be determined
during the interactive verification. As first assumption ϕin1, we assume that the
tolerance δ is greater than zero. Furthermore, note that the temperature change is
directly dependent on Heating and Cooling. A temperature increase is necessary
when the temperature falls below Tdes and a decrease is necessary when it rises
above Tdes. Since the switch ensures that Heating is used when the temperature
is lower than Tdes − δ and Cooling is used when it is higher than Tdes + δ, we can
create two separate assumptions ϕin2 and ϕin3 for these two input signals to ensure
this behavior. Additionally, for all contracts it is necessary that the guarantee is
initially fulfilled.

6.2 Requirement Definitions

Our formal interface description of Simulink models consists of formal behavior de-
scriptions for the input signals and output signals. To provide a formal foundation
for the verification of input and output properties, we present formal definitions
for the creation of properties for Simulink systems. First, we introduce extension
functions for generated dL models that enable the inclusion of observer variables.
These observer variables are used in the creation of properties for input and output
signals to describe more sophisticated behavior. Afterwards, we introduce property
templates that facilitate the creation of hybrid contracts by defining basic prop-
erties for Simulink models. These properties can be used in the verification of the
behavior of a Simulink service.

Extension Functions and Observer Variables

To enable designers to systematically define requirements and contracts, we intro-
duce functions that extend hybrid programs by observer variables. The introduced
variables must not change the behavior of the underlying program. Note that it is
possible that our extension functions change the values of newly added observer
variables, only variables that are present in the original model must not be changed.
Observer variables can be used to store the values of signals for use in contracts,
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e.g., to compare the value of a signal at the start of a run of the simulation loop
with its value at the end of each cycle.

Discrete observer variables. We introduce a function uD(α, v := θ, F ) that
prepends a conditional discrete assignment to a hybrid program. Under the condi-
tion F , the term θ is assigned to variable v. It is required that v is not bound in
α. The expression θ may read variables from α.

uD(α, v := θ, F ) ≡ {if (F )v := θ;∪?(¬F ); }α

Example. In our temperature control system, we use uD to keep track of how a
variable changes during the execution of a simulation loop. To enable statements
about the change of the temperature in our temperature control service, we intro-
duce a variable Integratorlast that stores the output value of the Integrator block
(which represents the temperature) at the beginning of the simulation loop.

αnew = uD(α, Integratorlast := Integrator, true)

= {if (true)Integratorlast := Integrator; }α
= {?(true); Integratorlast := Integrator;∪?(¬true); }α

We set the condition to true to perform this assignment at every execution of the
simulation loop.

Continuous observer variables. We introduce a function uC(α, v
′ = θ) that adds

a continuously evolving variable v′ = θ to the continuous evolutions of a given
hybrid program. Note that this variable may not restrict the underlying differential
equations. We define uC for hybrid programs as follows:

uC(α; β, v
′ = θ) ≡ uC(α, v

′ = θ);uC(β, v
′ = θ)

uC(α ∪ β, v′ = θ) ≡ uC(α, v
′ = θ) ∪ uC(β, v′ = θ)

uC(α
∗, v′ = θ) ≡ uC(α, v

′ = θ)∗

uC(x := µ, v′ = θ) ≡ x := µ

uC(x := ∗, v′ = θ) ≡ x := ∗
uC(?(F ), v

′ = θ) ≡?(F )
uC((x

′
1 = µ1, ..., x

′
n = µn&F ), v

′ = θ) ≡ (x′1 = µ1, ..., x
′
n = µn, v

′ = θ&F )

Other parts of a hybrid program are not changed by uC . To ensure that uC does
not change the behavior of the underlying system α, we require that v is a fresh
variable, i.e., it is not used anywhere in α. Note that the construction of our trans-
formed model ensures that in each run of the simulation loop exactly one continu-
ous evolution is executed. Therefore, each variable v only evolves once during the
execution of the dL model of the system.

Example. We use a continuous extension function in combination with a discrete
extension function to add a timer that resets under the condition flag. The use of
both extension functions is as follows:

αnew = uD(uC(α, timer
′ = 1), timer := 0, f lag)
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Property Templates

To ease the contract definition process, we provide three property templates,
namely range properties, timing properties, and dynamic properties, which can
be used as design patterns for the contract definition. Note that we leverage the
basic structure of the simulation loop in our transformed system. The behavior of
the transformed system is split in two parts, see Section 5.1. There are no contin-
uous evolutions in β. The hybrid program γ contains the continuous parts of the
system in a nondeterministic choice.

Range properties. Range properties define bounds on the values of given signals.

[{β; γ}∗] (x ∼ r1 ∧ y ∼ r2 ∧ ...)

where x, y are signals, ∼ ∈ {=, ̸=, <,>,≥,≤}, and r1, r2 are terms that evaluate
to real numbers. It is possible to define more than one relation ∼ for one variable.
Note that we typically assume that range properties should always hold for all
possible runs of a given hybrid program, i.e., we use the [ ] operator.

Example. In the temperature control system, we can describe the requirement to
keep the output temperature Tout in desired bounds as a range property:

[{β; γ}∗](Tout ≤ Tdes+ δ ∧ Tout ≥ Tdes− δ)

where Tdes represents the desired temperature, δ > 0 denotes the allowed devia-
tion, Tout is the controlled temperature.

Timing properties. To ensure that the system reacts to a special system state
or signal before or after a given time, a timing property can be used. To refer to
arbitrary starting points of the simulation time, we propose to use clock variables.
A clock variable has a derivative of 1 and can be reset in the dL representation
of the system, for example, if a special system state is reached or if a given signal
exceeds a given value. The general form of a timing property is:

[{uD(β, clock := 0, true);uC(γ, clock
′ = 1)}∗](stateCondition→ clock ∼ r)

where clock is a clock variable, and stateCondition describes a special system state
that triggers a timing condition clock ∼ r. In the relation, r is a real number and
∼ is a relation with ∼ ∈ {<,≤,=,≥, >, ̸=}.

Example. In the temperature control system, we use a timing property to ensure
that no rapid switching occurs. With additional clock variables relayOnTime and
relayOffTime that keep track of the time elapsed between switching, we can for-
mulate a property that states that no rapid switching occurs, i.e. at least a time



80 6 COMPOSITIONAL VERIFICATION WITH HYBRID CONTRACTS

MIN elapses before the state of the switch changes.

[ {uD(uD(β, relayOnTime := 0, 19.0− Integrator ≥ 0.5),

relayOffTime := 0, Tdes− Integrator ≤ −0.5);
uC(uC(γ, relayOnTime

′ = 1), relayOffTime′ = 1)

}∗

]((Relay = 0.0→ relayOnTime ≥ MIN)

∧ (Relay = 1.0→ relayOffTime ≥ MIN))

≡ [ {{if (Tdes− Integrator ≤ −0.5) relayOffTime := 0};
{if (19.0− Integrator ≥ 0.5) relayOnTime := 0};
β;

uC(uC(γ, relayOnTime
′ = 1), relayOffTime′ = 1)

}∗

]((Relay = 0.0→ relayOnTime ≥ MIN)

∧ (Relay = 1.0→ relayOffTime ≥ MIN))

This property describes that depending on the state of variable Relay the values
of the clocks relayOnTime and relayOffTime have reached a value of at least MIN.

Dynamic properties. Dynamic properties define arbitrary relations of values be-
fore and after a run of the simulation loop. We use observer variables to keep track
of the change of values and the elapsed time.

Example. To ensure that a dynamic change of the temperature is always kept in
bounds that are given by δ, we define the following dynamic property:

[{uD(uD(β, clock := 0, true), Integratorlast := Integrator, true);

uC(γ, clock
′ = 1)

}∗]
(Integratorlast − Integrator ≤ δ · clock &

Integratorlast − Integrator ≥ −δ · clock)

where clock is a clock variable and Integratorlast an observer variable, which stores
the last value of the temperature (Integrator) at the start of each simulation loop.
The property ensures that Integratorlast can not deviate from Integrator by more
than δ · clock in all runs of the hybrid program, for δ > 0.

6.3 Service-Oriented Verification

To ensure that a given contract holds for a service, we transform the service into
dL. If the service only contains atomic Simulink blocks, we can use our Simulink
to dL transformation (Chapter 5). If a service contains other subsystems, we can
either flatten the system by replacing all subsystems by their inner blocks or, if
an inner subsystem is a service with already verified contracts, we can use our
abstracted transformation for this inner service.
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The transformation provides us with a hybrid program α. To ensure that a contract
(Φin,Φout) holds for this system, we create the following dL formula.

(Φin)→ [α](Φout)

where Φin contains the preconditions, α is the transformed system as hybrid pro-
gram and Φout contains the postconditions. We need to ensure that under the
assumption that Φin holds, all possible runs of the hybrid program α fulfill the
guarantee Φout. We can verify such contracts using KeYmaera X.

Compositional Verification of Hybrid Simulink Models

To increase the scalability, we present a service-oriented verification approach that
uses hybrid contracts to abstract the behavior of services in system verification. The
key idea is to decompose the system into services, define a hybrid contract for each
service, and separately verify that 1) each service adheres to its hybrid contract,
and that 2) the overall system with services replaced by their hybrid contracts
satisfies the requirements. The results of the service verification are reusable in the
system verification and the service proofs scale better than monolithic proofs for
large systems. We use the following rules to transform a service by its contract
instead of its inner structure:

1. We introduce fresh variables for all incoming and outgoing ports.

2. We connect its input ports, i.e., we assign the input variables of the service
with the respective expressions from the surrounding Simulink model.

3. We nondeterministically choose the output signals of the service such that it
satisfies the contracts, i.e., we use a nondeterministic assignment and restrict
the resulting value with Φout,n whenever Φin,n holds for all hybrid contracts
of the service.

4. If a contract refers to inner variables, these are added to the dL model.

Note that it is not trivial to show that a given system provides the same guarantees
as all of its internal services. The services can only provide their guarantees under
the given assumptions for their input signals. In the system, these input signals
are provided by the outputs of other services or blocks of the system. Therefore,
to use the guarantees of a service in the compositional verification, we show that
the assumptions are provided by the system or other services.

In the system verification, we obtain guarantees Φout for the output signals and
inner signal of the system. We can also add assumptions Φin for the incoming
signals. Therefore, a proof for a system provides a hybrid contract about this
system. Note that it is also possible that safety properties of a system should
always hold. In this case, the assumptions are set to true.

Example Contracts for the Temperature Control Service

We have verified that our temperature control system keeps the temperature, which
is given by the output value of Integrator, in a certain range around the desired
temperature, and that we avoid rapid switching.
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Correct Temperature Range. To show that the temperature control system keeps
the temperature in a certain range of δ ∈ R around the desired value Tdes ∈ R,
we have defined the following property:

Φin → [{α}∗]Tdes− δ ≤ Integrator ≤ Tdes+ δ

We use the modal box operator [ ] to prove that this property holds after each
simulation step. In the following, we set Tdes = 19 and δ = 1. To verify that our
desired property holds as a loop invariant, we use loop induction. This yields the
following proof goals:

Heating · t+ Integrator ≥ 18 ∧Heating · t+ Integrator ≤ 20

∧Cooling · t+ Integrator ≥ 18 ∧ Cooling · t+ Integrator ≤ 20

where t ∈ R is a small step. With the interactive proof in KeYmaera X, we obtain
the following open subgoals:

t ≥ 0 ∧ ∀τ(0 ≤ τ ≤ t→(19.0− (Heating · τ + Integrator) >= 0.5

∨ τ + smallStep <= EPS))

t ≥ 0 ∧ ∀τ(0 ≤ τ ≤ t→(19.0− (Cooling · τ + Integrator) <= −0.5
∨ τ + smallStep <= EPS))

These proof goals show us that the input values Heating and Cooling need to
provide a non-negative heating value and a negative cooling value, respectively.
To resolve these goals and finally, to prove the desired property, we have manually
added the following preconditions, which we use as assumption for the hybrid
contract:

0 ≤ Heating ≤ 20 ∧ −20 ≤ Cooling ≤ 0

This means that we can verify that the system keeps the temperature in the desired
range for all possible input scenarios where the values of Heating and Cooling
are restricted by 20 and −20, respectively. The desired property can be shown
automatically using the Auto tactic in KeYmaera X. Overall, the only manual
interactions necessary are the introduction of the desired property as loop invariant
and two additional preconditions.

Absence of Rapid Switching

To show that our temperature control system avoids rapid switching we have de-
fined a constant MIN, which defines the required minimal time interval between
two switching actions. For this example, we set MIN to 0.01. In addition, we have
introduced two additional time variables relayOnTime and relayOffTime, which
are reset whenever the Relay is set to 1.0 or 0.0, respectively. Then, we have defined
the absence of rapid switching with the following property:

Relay = 0.0→ relayOnTime ≥ MIN ∧ Relay = 1.0→ relayOffTime ≥ MIN

Again, the modal box operator defines that the property should be true after all
runs of a given hybrid program. We have again introduced the property as a loop
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Figure 6.1: Temperature Control Service in Environment

invariant to ensure that it holds before and after each simulation step. In addition,
we have manually inserted the following loop invariants:

Tdes− Integrator + Cooling · relayOffTime ≤ −0.5
Tdes− Integrator +Heating · relayOnTime ≥ 0.5

Relay = 1.0→ Tdes− Integrator > −0.5
Relay = 0.0→ Tdes− Integrator < 0.5

During the proof in KeYmaera X, we show that these invariants hold for the
system and use them to prove the desired property. We have also included all
loop invariants as preconditions, which also provide the guarantees of the hybrid
contract. In addition, we have manually added the following preconditions:

MIN = 0.01

relayOnTime ≥ MIN ∧ relayOffTime ≤ MIN

(−1/MIN) ≤ Cooling < 0.0 ∧ 0.0 < Heating ≤ (1/MIN)

This means that we can verify the absence of rapid switching for all possible
input scenarios where the values of Heating and Cooling are restricted to a certain
range. For example, if the minimal distance between two switching actions is 0.01,
Heating should be lower than 100 and Cooling greater than −100. Again, the
desired property can be shown in KeYmaera X using the Auto tactic. Overall, the
only manual interactions necessary are the introduction of the postcondition as
loop invariant, four additional loop invariants, and four additional preconditions,
which are the assumptions for the hybrid contract.
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1 {

2 ...

3 S_Heating := 29 - S_Tout + 15 - S_Tout;

4 S_Cooling := 15 - S_Tout;

5 S_Tout := *;

6 relayOffTime := *;

7 relayOnTime := *;

8 Relay := *;

9 % Hybrid contract for correct temperature range

10 ?(((S_Heating ≥ 0) & (S_Heating ≤ 20) & (S_Cooling ≤ 0) & (S_Cooling ≥ -20))

11 ->

12 ((19.0 - 1.0 ≤ S_Tout) & (S_Tout ≤ 19.0 + 1.0)));

13 % Hybrid contract for absence of rapid switching

14 ?(((S_Heating ≥ 0) & (S_Heating ≤ 10) & (S_Cooling ≤ 0) & (S_Cooling ≥ -10))

15 ->

16 (((Relay=0)->(relayOnTime ≥ MIN)) & ((Relay=1)->(relayOffTime ≥ MIN))));

17 ...

18 }∗

Listing 6.1: Compositional Verification Example: Abstract System

An illustrative embedding of our temperature control service into a simple en-
vironment is shown in Figure 6.1 and the transformed model in dL is shown in
Listing 6.1. Lines 3 – 4 show assignments to the input ports of the service given
by the environment. They depend on the service output as it is embedded into
a feedback loop in the overall system. Lines 5 – 8 show the nondeterministic as-
signments to the service output signal and its internal signals. In Lines 9 – 12,
the output signal is assigned according to the first contract. In Lines 13 – 16, the
internal signals are assigned according to the second contract. Note that in this
example no assertions about the values of the internal Relay signal are present.
We can simply add a third hybrid contract to the temperature control service that
guarantees that the Relay output signal is always either 0 or 1. This can be always
ensured and the assumption can be set to true.

6.4 Automated Invariant Generation

The formal verification of hybrid control systems is a time intensive task. The
interaction between discrete and continuous components introduces an enormous
complexity. With our transformation of systems into dL, we gain access to the
powerful, interactive theorem prover for hybrid systems KeYmaera X [Ful+15].
KeYmaera X, however, does not provide these proofs fully automatically, but re-
quires manual interactions from the user to provide proof ideas, invariants, and to
guide the verification process.

The overall system behavior of transformed Simulink models arises from the com-
position of the inner services. A major challenge in the interactive verification
process is to specify contracts such that all behaviors are captured that are nec-
essary to prove the system requirements and at the same time to make sure that
the provided abstractions are strong enough such that the verification can be com-
pleted in acceptable time. The verification of the system consists of two parts.
First, the verification of the individual services, where we show that each service
adheres to its contract. Second, the verification of the overall system, where we use
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the service contracts to prove system properties. At first, this sounds straightfor-
ward. However, both parts of the verification process are intertwined. The service
contracts are needed for the system verification, but at the same time only during
the overall system verification, we notice whether the chosen service contracts are
expressive enough to prove the system properties. If it is not possible to find a
proof for a system property, this can have different causes. For example, if the
model does not fulfill the system property, this means that either the model con-
tains an error or the system property needs to be changed. If the contracts of the
services are not expressive enough to infer the system property, more details need
to be added. If a contract refers to values that are not considered by other services,
additional contracts are needed.

Interactive verification. The overall structure of dL models that result from an
automatic transformation of a Simulink model with our approach is a nondeter-
ministic repetition as shown in Listing 5.2. This makes KeYmaera’s loop induction
proof rule the most important proof rule for transformed systems. The definition
of loop invariants is generally the verification step where human insight is most
needed [MP17]. The loop induction proof rule specifies that a nondeterministic
repetition fulfills its guarantees if three conditions are fulfilled: First, the loop in-
variant must be fulfilled before the simulation loop is executed. Second, if the
loop invariant holds before one execution of the loop, it must hold after one ex-
ecution of the loop. Third, the guarantees can be provided if we can show that
the loop invariant implies the desired guarantees. As dL models that result from
our Simulink to dL transformation always have a nondeterministic repetition rep-
resenting the global simulation loop as outermost statement, the guarantees that
can be proven directly correspond to the invariants of this loop and vice versa.
Overall, the interactive verification process has the following structure:

1. Define guarantees for any individual service. At first the assumptions can be
set to true.

2. Perform the proof in KeYmaera X.

3. If the proof cannot be completed, use the open proof goals to infer necessary
restrictions on the input signals. Add these as assumptions and go to 2.

4. Redo steps 1 to 3 for all services. It often makes sense to propagate assump-
tions of some services as guarantees for other services or vice versa.

5. Perform the compositional system verification.

6. If the proof cannot be completed, infer additional guarantees from the open
proof goals that need to be provided by the service contracts and go to step
2 for all relevant services.

In our experiences, we found that it is often helpful to start with signal bounds
on input or output signals: a signal is zero, a signal is not equal to zero, a signal
has negative values, a signal has positive values, the value of a signal increases
over time, the value of a signal decreases over time. Signal bounds can be used
both as assumptions on input values and as guarantees on output values. Further
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Table 6.2: Example Signal Bound Invariants

Block Parameter Signal bound
 
 

 

𝑜𝑢𝑡 value value out ≤ value∧ out ≥ value 

1

𝑠
 𝑜𝑢𝑡 𝑖𝑛 

upperBound(optional),
lowerBound(optional)

out ≤ upperBound
∧out ≥ lowerBound 

 

 
 1 𝑜𝑢𝑡 User defined out ≥ low1 ∧ out ≤ up1

assumptions and guarantees can often be inferred from the system requirements.
This requires some domain expertise since the effect of a service on the system
behavior is often non-trivial. To ease the manual definition of hybrid contracts,
we have presented property templates for range properties, timing properties, and
dynamic properties in Section 6.2.

This section is based on [LHG20] where we have evaluated the manual effort during
verification of services and have presented techniques to reduce the manual input
during verification. In the following, we discuss the manual effort that is necessary
to verify hybrid control systems that are modeled in Simulink with our transfor-
mation from Simulink to dL and the interactive theorem prover KeYmaera X.
We present techniques to increase the automation in the creation of invariants for
the verification. The key idea is to extract implicitly available information of the
Simulink model, for example, data types and the semantics of blocks, to automati-
cally generate invariants for the automatically generated dL model. The additional
invariants simplify the interactive proof process and significantly reduce the nec-
essary user interactions. Note that the automatically extracted information can,
in some cases, also provide formal interface conditions that can be used as hybrid
contracts and thus reduce the manual effort to define formal properties of a system
or service. This further reduces the manual effort of compositional, service-oriented
verification. We have developed the concepts of the automated invariant generation
as part of a Bachelor’s thesis [Sch19].

Invariant Types

In our dL models, invariants capture relations between state variables that hold
before and after each execution of the global simulation loop. Such relations are
generally hard to find. However, some invariants can directly be derived from data
or signal types, or from the block semantics in a given Simulink model. For example,
many blocks restrict the range of their output signals. Furthermore, the evolution
of an Integrator block depends on its input value. If we assume that the input
signal is in a given range then we can infer properties of the output of Integrator
blocks, e.g., if the input signal is greater than zero then the value of the Integrator
will increase. Such invariants can be viewed as contracts on a very fine granular
level of individual Simulink blocks, and they are implicitly introduced into the
model whenever the corresponding block type is used. In this section, we propose
to exploit this implicitly available information and enrich it with knowledge about
the block semantics that needs to be defined by the designer only once and then
can be reused for every model that uses these blocks.
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Table 6.3: Example Block Invariants

Block Parameter Invariant
 

1

𝑠
 𝑜𝑢𝑡 𝑖𝑛 

𝑠𝑡𝑎𝑡𝑒 

n/a
(in > 0 → statestart ≤ state) ∧
(in < 0 → statestart ≥ state) ∧
(in = 0 → statestart = state)

 

𝑖𝑛1 

𝑜𝑢𝑡 𝑐𝑠𝑤𝑖𝑡𝑐ℎ 𝑐𝑖𝑛 

𝑖𝑛2 

cswitch
(cin > cswitch → out = in1) ∧
(¬ (cin > cswitch) → out = in2)

 
 

 

𝑜𝑢𝑡 AND 

𝑖𝑛1 
𝑖𝑛2 

𝑖𝑛𝑛 
⋮ clogic

(clogic(in1, in2, ...inn) → out = 1) ∧
(¬clogic(in1, in2, ...inn)→ out = 0)

 
 

 

𝑜𝑢𝑡 𝑖𝑛 
up, low,
outup, outlow

(in1 > up → out = outup) ∧
(in1 < low → out = outlow)

 
 

 

𝑜𝑢𝑡 
𝑖𝑛1 

≥ 
𝑖𝑛2 crelation

crelation(in1, in2) → out = 1 ∧
¬crelation(in1, in2)→ out = 0

Signal bounds. Many blocks in Simulink restrict the range of their output signals.
For example, for a unit delay block, optional block parameters upperBound and
lowerBound may be defined by the designer. If they are set, the output signal is
always kept in the given range. To automatically generate invariants that exploit
and capture this information, we perform an analysis where we collect the range
of each signal at each block input or output. An example for the invariants that
we automatically generate as a result is shown in Table 6.2. Note that the bounds
for the Inport block are not part of the Simulink model but the user can define
bounds for these signals that are used in the following invariant generations.

Block semantics. In some cases, the behavior of a block can be described as a fine
granular contract individually. For example, an integrator block will never decrease
its value if the input is positive (and vice versa), or a switch block will always
put one of its inputs through to the output, depending on the control condition.
Although this information is already (implicitly) encoded into the dL model that
is automatically generated from a given Simulink model with our transformation
from Simulink to dL, it significantly eases the verification process if the underlying
relation between state variables is explicitly captured as an invariant. Examples for
such invariants, which can directly be derived from the block semantics, are shown
in Table 6.3. Note that the derivation of such invariants is not trivial and depends
on the specific semantics of the block. However, once such fine granular contracts
of individual blocks are defined, they can be reused whenever the corresponding
block type is used.

Delay propagation. Many discrete-time blocks in Simulink delay a given input
signal according to their sample time. If the same input signal is fed into multiple
discrete blocks that also have the same sample time, the internal state of these
blocks will change to the same value exactly at the same simulation steps. To
capture this, we perform an analysis where we track the number of delay samples
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Figure 6.2: Example Delay Propagation

for each signal, and automatically generate invariants whenever state variables
hold the same signals that are delayed for the same number of simulation steps.
Figure 6.2 shows different variations of discrete delays in Simulink. The block
delay1 state takes its input value at the start of a time-step and sets its output
to this values at the start of the following time-step. The block z order1 sets its
output value to the value that it has received at the start of the current time-step.
The block delay2 state takes its input value at the start of a time-step and sets
its output to this values with a delay of four time-steps. For this given model,
we automatically infer the invariant delay1 state = z order1 out = delay2 state0.
In other words, the input signal delayed by one simulation step is exactly the
same if it is propagated to the internal state variable of a unit block on one path
(delay1 state), delayed by a zero order hold and written to its output on a second
path (z order1 out), or propagated to the first internal state variable in a delay
block with four delay slots on a third path (delay2 state0 ). Note that delay2 state
delays the incoming signal by four time steps before it is written to its output.
Therefore, it produces the state variables delay2 state0 to delay2 state3. For each
block that introduces delays into the system, we can automatically generate the
corresponding invariants to ease the verification process.

Error checking. There exist some general conditions that are often desirable to
guarantee fault-free behavior, for example the absence of errors from well-known
error-classes like overflows and division-by-zero. An overflow can be produced by
arithmetic operations if the result does not fit into the underlying hardware data
type. To account for this, we provide user-defined constants that may define lower
and upper bounds on all signals. We automatically generate invariants that check
for overflows whenever arithmetic operations are performed, e.g., at sum, product,
and integrator blocks. Similarly, we automatically generate invariants that prohibit
a division by zero for all blocks that perform a division.

6.5 Soundness of Compositional Verification

In this section, we discuss the soundness of our abstraction, which replaces services
by their contracts to abstract from their inner block structure. Note that contracts
provide an over-approximation of the service behavior, which is guaranteed by the
verification of the services in KeYmaera X. Our approach is sound in the sense that
properties that hold for the abstract system are guaranteed to be preserved in the
concrete system. Our key idea to ensure soundness is twofold: First, we assume that
variables written by a service are not written somewhere else in the system. This
is ensured by the syntactical structure of a Simulink model, as all inner blocks of a
service can only be accessed through input signals. Second, we have to ensure that
our proposed abstraction of a service by its contract during system transformation
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does not restrict the behavior that would be created by the system transformation
when using the inner block structure of the service. To ensure this, we support
only the modal operator [ ], i.e. we support only safety properties and no liveness
properties. This enables us to use the contract as replacement for the service and
still be sure that properties of the abstracted model also hold in the original model.

The basic idea of our soundness proof is that we show that the abstract dL system
model that contains the abstracted service is an over-approximation of the dL
system model that is obtained when the concrete inner block structure of the
service is used in the transformation of the system. Since we obtain both models
via our transformation (Section 5.1), the system model and the service model have
the following layout:

α = {β; γ}∗

where β contains the discrete behavior and γ contains the continuous behavior
of the transformed model. Therefore, for the soundness proof, we first show that
the discrete behavior of a service is always included in the abstraction provided
by the hybrid contract. That is, when starting at the same states, all runs of the
concrete hybrid program produce a set of states that is a subset of the states that
are reached by the runs of the abstract hybrid program. Second, we show that the
continuous behavior of the abstract system is not restricted by the abstraction.

To show soundness of our contract-based verification approach, we use the dynamic
semantics of dL as summarized in Section 2.5, namely the semantic interpretations
of a hybrid program that defines transitions to reachable states. In addition, we
use the bound variables of a hybrid program

BVHP(α) =
⋃︂
{x ∈ V : there are I and (ν, ω) ∈ IJαK such that ν(x) ̸= ω(x)}

that contain all variables that are changed by the hybrid program α.

We introduce two extension functions for hybrid programs: store(BVHP(α)) repre-
sents a sequential execution of all discrete assignments, where the current values of
the bound variables of α are assigned to observer variables. Note that all observer
variables are fresh variables and store(BVHP(α)) does not change variables that
are in the original α:

BVHP(store(BVHP(α))) ∩ V (α) = ∅

The second extension function BVHP(α) := ∗ assigns arbitrary values to all bound
variables of α.

Let sys be a system that contains a service ser. Furthermore, the service ser fulfills
the contract (Φin,Φout). The behavior of sys is given by the hybrid program αsys

∗,
where αsys represents the behavior of sys for one execution of the simulation loop.
Note that the hybrid program is created via the transformation of a Simulink
model, i.e. the original Simulink model of sys contains a service ser. Therefore,
the behavior that is represented in αsys contains the behavior of the service ser.
The behavior of the service ser is represented by the hybrid program αser

∗, where
αser represents the transformed behavior of the Simulink service ser. Note that
αser only contains the behavior of ser. To verify that the system sys fulfills the
property Q under the assumptions P , we show the following:

⊢ P → [(αsys)
∗]Q
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The assumptions P are properties that hold for the whole system, like initial values
and properties of the environment.

In the following, we consider hybrid programs that are created by our transforma-
tion, see Section 5.1. These programs have the form α = β; γ, where β contains the
discrete behavior and γ contains the continuous evolutions. We can split the con-
crete system behavior αsys to obtain β0; βser; β1; γsys, where β0 and β1 are discrete
parts that do not contain functionality of the service, βser denotes the discrete
part of the service, and γsys represents the continuous part of the system. This
separation is possible due to the construction of the dL model according to the
block transformation rules. For the abstracted system, we write:

αsys/abstract =β0; store(BVHP(βser));BVHP(βser) := ∗; ?(Φ′
in → Φout); β1;

store(BVHP(γser));BVHP(γser) := ∗; γ′sys; ?(Φ′
in → Φout)

Where γ′sys denotes the continuous evolutions of the system, that are not present
in γser. Φ

′
in denotes the contract assumptions where all occurrences of bound vari-

ables of αser are replaced with their respective observer variables. We use this to
show that the runs of the concrete model are a subset of the abstracted model.
Since the system parts β0 and β1 provide identical transitions in the concrete and
abstracted model, we only need to show that the two abstracted parts for the
discrete and continuous parts provide at least the runs of their concrete repre-
sentation. That is, all states that are reachable by βser are also reachable by the
abstracted representation:

(1) IJβserK ⊆ IJstore(BVHP(βser));BVHP(βser) := ∗; ?(Φ′
in → Φout)K

(2) IJγsysK ⊆ IJstore(BVHP(γser));BVHP(γser) := ∗; γ′sys; ?(Φ′
in → Φout)K

The first statement describes that all runs of the discrete part of the service βser are
contained in the runs of an abstracted execution. Note that βser is executed as part
of the concrete system. In the abstracted execution, we first store the initial values
of the bound variables of the service and assign arbitrary values to these variables.
Afterwards, the abstracted execution only considers runs that do fulfill the hybrid
contracts via a test formula. The second statement describes that the runs of the
concrete continuous evolutions γsys are contained in the runs of an abstracted
continuous evolution. In the abstracted continuous evolution, we store the initial
values of the variables that are changed by the evolution of the service and assign
arbitrary values to them. Then we evolve the remaining variables according to
their evolutions γ′sys. Afterwards, the abstracted version only considers runs that
do fulfill the hybrid contracts.

Furthermore, we require that the variables in the continuous evolutions of γser
do not influence the evolutions of γ′sys: BVHP(γser) ∩ FVHP(γ

′
sys) = ∅. FVHP(γ

′
sys)

denotes the variables that are read by the hybrid program γ′sys and for which the
evaluation depends on their initial value.

For (1), it suffices syntactically to consider βser because we have introduced fresh
variables for all input and output ports. For (2), we need to consider γsys, since all
continuous evolutions evolve concurrently.

After obtaining (2), (1) can be shown analogously, without continuous evolutions.
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For the abstracted system, we obtain the following runs:

IJstore(BVHP(γser));BVHP(γser) := ∗; γ′sys; ?(Φ′
in → Φout); K

= IJstore(BVHP(γser))K ◦ IJBVHP(γser) := ∗K ◦ IJγ′sysK ◦ IJ?(Φ′
in → Φout)K

= {(ν, ω) : ω =exp ν, where =exp describes that the states are equal in all

variables execept:

i) all observer variables are set to the observed values

ii) all variables v ∈ BVHP(γser) have an arbitrary value that fulfills (Φ′
in → Φout)

iii) all variables in γ′sys evolve according to their evolution domains

independent of the values of v ∈ BVHP(γser)}

For the concrete system the following states are reachable:

IJγsysK ={(ν, ω) : ω =exp2 ν, where =exp2 describes that the states are equal

in all variables except for all bound variables in γsys,

which evolve according to their evolution domains}

As i) observer variables are guaranteed by definition to only read variables from
the original system, and ii) our service verification has shown that the contract
(X ′

A → Φout) provides an over-approximation of the possible service behavior, i.e.
allows more values for v ∈ BVHP(γser) than the concrete service, we can conclude
that (2) is satisfied, and thus our embedding of contracts to abstract from services
is sound.

6.6 Summary

In this chapter, we have presented our approach for the verification of Simulink
models with the interactive theorem prover KeYmaera X. We used our formal-
ization of Simulink models in dL to obtain a formal representation and we have
introduced hybrid contracts to provide a formal interface description of the behav-
ior of Simulink systems. Furthermore, we have introduced extension functions for
the dL model and property templates for the hybrid contracts to facilitate the ver-
ification. Lastly, we have presented our compositional verification approach. This
enables us to verify properties of systems that consist of interacting components.
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7 Variability by Service-Oriented Design

In this chapter, we extend our service notion, to enable a wider reuse of services in
Simulink models. In the previous chapter, we have introduced services in Simulink
that consist of one Simulink model that defines their inner structure and a set
of ports for their input and output interface. To facilitate the reuse of services,
we present variability for our Simulink services. We create individual hybrid con-
tracts that describe the behavior of different variants and also use extended hybrid
contracts that can be applied to multiple variants of the same system.

To this end, we introduce a feature model that contains a core model (or root
feature), which consists of Simulink blocks and signals. The core model, which is
defined by the root feature, contains the Simulink blocks and signals that define the
basic functionality of a modeled system. This core model can be adapted by further
blocks and signals by its child features. It is also possible to change existing blocks
and signals in the child features. We use feature dependencies to group different
features together, which provide similar extensions to the core model.

With an adaption of feature modeling, we provide means to adjust the behavior of a
service to adapt it to a required context of a system design in a well-structured and
predefined way. In particular, feature modeling enables the addition and deletion of
functionality and thus also structural changes. By defining the possible variations of
a given component in a feature model, changes are applied such that no unexpected
behavior may arise. This chapter is based on the concepts of [Lie+17], in which we
introduced the idea of combining feature modeling with Simulink, and the concepts
of [LHG21], where we presented the integration of feature modeling into Simulink.

In the following, we introduce a representation for our customizable services. Then,
we explain our adaption of feature modeling in more detail.

7.1 Customizable Services in Simulink

In hybrid system design, functionalities often reappear in many practical applica-
tions, e.g. filters or control systems like the temperature control system as shown
in Figure 2.6. Ideally, such components could be encapsulated in Simulink sub-
systems to enable their reuse in other designs. However, the simple structure of
Simulink subsystems, which does not allow for structured internal changes, makes
it difficult to insert them into different contexts. Furthermore, to make statements
about the behavior of such subsystems, it is necessary to look at their concrete
internal structure. This contradicts interoperability and impedes reuse.

To solve these problems and facilitate systematic reuse, we introduce services that
represent customizable components with defined interfaces. In comparison with
traditional subsystems, our services are extended with a feature model to describe
possible variations, and with hybrid contracts that precisely and formally describe
their dynamic interface. We extend our previously introduced service concept by
variability concepts.

Definition 7.1 (Customizable Service). A customizable service scust is a tuple

scust = (sm, Pi, Po, F, C)
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where sm denotes a Simulink model that consists of blocks and signal lines. Pi

contains incoming signals and changeable parameters of the service. Service pa-
rameters are constant after a designer has chosen a value for them, and input
signals can change over time. Po represents the set of output variables. The key
elements of a customizable service are given by F that denotes the feature model
describing its possible variations, and by C that contains its hybrid contracts.

7.2 Feature Modeling for Simulink Services

In this section, we present our extension of services by feature modeling. Fea-
ture models in general capture the dependencies of variants. The key idea is to
model the changes between service variants and their dependencies. Our feature
model of a customizable service provides us with a core model that can be ex-
tended or changed by features that can be enabled or disabled. The root feature
of the feature model contains the core model. This allows us to capture different
variants of the same core service systematically in the same model. Note that we
also support the semi-automated generation of feature models by automatically
computing model differences from a given set of variants. A designer can manually
adapt a given Simulink model and these changes are used to automatically create a
new feature in a feature model for this customizable service. The resulting feature
model can be used to select which features should be activated and deactivated to
automatically create a Simulink model that represents the corresponding service
variant. This facilitates the reuse of our services since they can easily be adapted
for different environments or requirements. We have developed the concepts for
the feature modeling and automatic service instantiation as part of a Bachelor’s
thesis [Umo20].

In the following, we first introduce feature modeling in general and our feature
model representation for Simulink services. Afterwards, we present how we inte-
grate feature modeling into the design process. Lastly, we present how the feature
models are supported in our verification process.

Feature Modeling

A feature model [Kan+90] is a tree structure fm = (F,D) that represents the
dependencies between different design variants.

Figure 7.1 illustrates a feature model for the design of a temperature control sys-
tem. The root feature Temperature Control describes the system that is designed
in this model. The child features enable changes to the control system when creat-
ing a variant of the system. To create a variant, it is mandatory to choose a type
of Cooling for this system. In this case the cooling can be either Active, e.g. the
system can control an air conditioner unit, or Passive, e.g. cooling means that the
heating is turned off and the environment cools the temperature. One of these two
must be chosen, but it is not possible to choose both at the same time. Further-
more, it is possible to consider a Disturbance when creating a variant. This feature
is optional and can be a disturbance at the Gain, e.g. variations in the tempera-
ture of the environment influence the current temperature, or a disturbance at the
sensor, e.g. the measured temperature can deviate from the actual temperature. If
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Figure 7.1: Example Feature Model for Temperature Control Variants

the Disturbance feature is active, at least one of these disturbances is present in
the system.

Feature modeling in Simulink

To integrate feature modeling into Simulink, we introduce a feature model that
contains variations of blocks in a Simulink system. The main idea of our feature
model is that we define a core model (or root feature), which consists of Simulink
blocks and signals. The core model, which is defined by the root feature, contains
the Simulink blocks and signals that define the basic functionality of the system.
This core model can be adapted by further blocks and signals by its child features.
It is also possible to change existing blocks and signals in the child features. We
use feature dependencies to group different features together, which provide similar
extensions to the core model. To ensure that the executability requirements are
met, we introduce the concept of a consistent Simulink model.

Definition 7.2 (Consistent Simulink model). A Simulink model S = (B, S) with
blocks B and Signals S is consistent if the following holds:

∀b1, b2 ∈ B, (b1.id = b2.id→ b1 = b2) ∧
∀b ∈ B, (∀pin ∈ b.in, (∃s ∈ S, (s.dst = pin))) ∧
∀s1, s2 ∈ S, (s1.dst = s2.dst→ s1 = s2) ∧
∀b ∈ B, (∀pout ∈ b.out, (∃s ∈ S, (s.src = pout)))

Whereas b.id describes the unique name of a block, b.in describes the set of input
ports of a block, b.out describes the set of output ports of a block, s.src describes
the source port of signal s and s.dst describes the destination port of signal s. The
first rule describes that each block name is unique. As second rule, we define that
each input port of every block is the destination of at least one signal line. This is
extended by the third rule, which states that each input port has exactly one signal
as input. The fourth rule states that each output port is the source of a signal line.
Note that it is possible that an output port is the source of multiple signals. This
represents branching signal lines in Simulink. We only allow for signals to have one
destination. To represent branching signals, we use multiple signals with the same
source port.
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Definition 7.3 (Simulink Feature Model). Our feature model in Simulink consists
of:

fm = (F,D)

Where F is a set of features and D is the set of dependencies between features. A
feature f ∈ F consists of the following

f = (Ba, Br, Bc, Sa, Sr)

Where Ba are Simulink blocks that are added to the system, Br are Simulink blocks
that are removed from the system, Bc is a set of blocks that are changed with the
respective changes. Sa are Simulink signals that are added and Sr are signals that
are removed. When a block is added it is identified by a unique name, its type and
additional parameters depending on the block type. To increase the readability, we
omit the additional parameters in the following examples and depict new blocks
as BlockName [BlockType]. The blocks to be removed can be identified by only
the block names. Note that Simulink only allows unique block names. Changes in
a block are given by the block name and a parameter list that contains the new
block parameters. Note that we do not allow for changing the type of a block in Bc.
However, changing the block type can be achieved by removing the existing block
and adding a new one that is of the desired type. Signals model the connections
between a source block and a destination block. Since blocks can contain multiple
input and output ports, we also consider the port number the signal is connected to.
The numbering of ports in a block starts at 1. In the following, we depict signals in
the form SourceBlockName.PortNumber → DestinationBlockName.PortNumber .
Note that the left-hand side always denotes block outputs and the right-hand side
always denotes block inputs, see also signal routing in Section 2.4.

The root feature of a feature model can only add blocks. Therefore, the sets of
removed blocks and signals and the set of changed blocks are empty. A child feature
can remove or change blocks that are part of the added blocks of its ancestor
features.

Instantiation of a variant. To obtain a Simulink model of a customizable service
that we can insert into other systems, we introduce the concept of instantiating
variants of services.

Definition 7.4 (Variant of a Simulink Service). A variant of a Simulink service
i = (B, S) for a given set of active features Fa for a feature model fm is a set B of
Simulink blocks and signals S that are part of the features in the feature model.
All activated features provide the blocks and signal lines of the service variant and
the following holds:

∀b ∈ B, ∃f ∈ fm.F, ((f ∈ Fa) ∧ (b ∈ f.Ba ∨ b ∈ f.Bc))

∀s ∈ S,∃f ∈ fm.F, ((f ∈ Fa) ∧ (s ∈ f.Sa))

The first line describes that all blocks in the variant are either added to the
Simulink model by an active feature or are created by the change of a block.
The second line describes that all signal lines in the variant are added by an active
feature.
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Figure 7.2: Root Feature for Temperature Control System

We define a variant construction algorithm, which is shown in Listing 7.1, to au-
tomatically generate variants from a given feature model. The input is a feature
model fm. As intermediates, we have a list of features F and the resulting Simulink
variant i. The function fm.getRoot() returns the single root feature of the feature
model fm.

1 F ← fm.getRoot();

2 i.B = {};

3 i.S = {};

4 while (¬F.empty()) {

5 f = F.pop();

6 i.B = i.B \ f.Br;

7 i.S = i.S \ f.Sr;

8 adaptBlocks(i.B, f.Bc);

9 i.B ← f.Ba;

10 i.S ← f.Sa;

11 F = F ∪ getActivatedChildren(f);

12 }

Listing 7.1: Variant Construction Algorithm

First, we add the root feature to the set of features F to visit (Line 1). At the
start, the sets of blocks and signals of the variant are empty (Lines 2 and 3).
While there are still unvisited features in F , we perform the following: We take
the next feature (Line 5) and remove all blocks and signals from the variant that
are removed by this feature (Line 6 and 7). Afterwards, we change the blocks of
the variant according to the block changes of the current feature (Line 8). Then,
all blocks and signals are added to the instance according to the feature (Lines 9
and 10). Lastly, we add all activated child features to the set of current features
F . When the set of features F is empty, we have visited all enabled features and
the variant i contains all blocks and signals.

Temperature Control. In Figure 7.2, we depict the temperature control system
as root feature in a feature model. The root node (which initializes the feature
model with the root feature Temperature Control) is depicted as a box on the left,
the underlying Simulink model is depicted on the right. So far, the feature model
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contains only the root node and only one variant that can be instantiated. The
added blocks consist of all depicted blocks:

Ba = {Heating[Inport],Cooling[Inport],Tdes[Constant], Sum[Sum],Relay[Relay],

Switch[Switch], Integrator[Integrator],Tout[Outport]}

The added signals are:

Sa = {Heating.1→ Switch.1,Cooling.1→ Switch.3,Tdes.1→ Sum.1,

Sum.1→ Relay.1,Relay.1→ Switch.2, Switch.1→ Integrator.1,

Integrator.1→ Tout.1, Integrator.1→ Sum.2}

7.3 Variant Design in Simulink

In general, feature modeling allows for capturing the dependencies between vari-
ants of the same system. To integrate the idea of modeling of variants into Simulink
designs, we enable the creation of Simulink models from a feature model. To en-
sure that the resulting models can be executed by the Simulink simulator, some
properties are required by the Simulink model, for example, that identifiers are
only used once.

During the design process of a customizable service, we aim at enabling the designer
to create multiple variants of a service that can be encapsulated into the same
Simulink service. This allows a designer to adapt a service for multiple execution
contexts. If a set of active features in a feature model is valid according to its
dependencies, it should always create a consistent Simulink model.

Definition 7.5 (Consistent Feature Model). A feature model fm = (F,D), where
F is a set of features and D is a set of dependencies between features (optional,
mandatory, alternative, or), is consistent if the following holds:

1. it contains at least one valid selection of active features

2. Simulink variants that are valid selections of active features are consistent

Note that inconsistent Simulink models can (syntactically) be defined but are
rejected by our framework. To obtain consistent feature models, the designer should
create a fresh feature model that only consists of a root feature and then add
features step by step such that consistency is always ensured.

In the following, we illustrate this by extending the Simulink model of Figure 7.2
with the features that are depicted in Figure 7.1.

Optional Relation

An optional relation does not have to be activated if the parent feature is active.
That means, if the feature is deactivated, the parent must create a consistent
Simulink model. To add a new valid optional relation to an existing feature model,
we consider the following: New blocks can be freely added, as long as they are
connected via new signal lines. A new signal line can only have an existing block
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Figure 7.3: Optional Disturbance Feature

as destination if the existing line that has the block as target is removed by this
feature. If the number of ports of a block is increased, the new ports are connected
by new signal lines. If a block is removed or its number of ports is decreased, the
connected signal lines are removed. Resulting open ports are connected by new
signal lines.

Temperature Control. For the temperature example, we introduce the optional
feature of an external Disturbance. As concrete disturbance, we model a distur-
bance at the Gain of the integrator. That represents influences of the environment
to the current temperature. To achieve this, we first remove the signal that con-
nects the switch to the integrator to free the input port of the integrator. Then we
add a new input that represents the influence of the environment and a sum block
to add this new input to the heating or cooling value at the output of the switch
block. Lastly, we connect all blocks with signals and obtain:

Ba ={GainDisturbance[Inport], AddGain[Sum]}
Br ={}
Bc ={}
Sa ={GainDisturbance.1→ AddGain.1, Switch.1→ AddGain.2,

AddGain.1→ Integrator.1}
Sr ={Switch.1→ Integrator.1}

The resulting feature model is depicted in Figure 7.3. Dashed arrows represent
removed signal lines.

Mandatory Relation

A mandatory relation must be activated whenever the parent feature is active. It
can be used to encapsulate blocks or signals of its parent features to achieve better
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Figure 7.4: Mandatory Cooling Feature

comprehensibility. The following use of a mandatory feature is possible: During
creation of the feature, we can transfer blocks and signals that are added by its
ancestor features to the added blocks of this mandatory feature. That means that
these blocks and signals are removed from the set of added blocks or signals of
the ancestor feature. Note that this does not mean that the blocks and signals are
added to the removed blocks or signals of the new feature, instead they are not
present anymore in the added blocks and signals of the ancestor feature.

Temperature Control. For the temperature example, we encapsulate Cooling in
its own mandatory feature. Note that this does not introduce new functionality
into the model and only moves blocks and signals from the root feature into a new
feature. We use the mandatory feature to encapsulate the blocks that influence the
cooling in a new feature. This improves the comprehensibility of the feature model
and simplifies changes to the cooling for other variants. The resulting feature is
the following:

Ba ={Cooling[Inport}
Br ={}
Bc ={}
Sa ={Cooling.1→ Switch.3}
Sr ={}

Figure 7.4 shows the resulting model.

Alternative Relation

An alternative relation consists of multiple child features. If the parent feature
is active, exactly one of the child features is activated. Therefore, it is possible
to model different conflicting features with an alternative, e.g., the child features
add signals that have the same destination port. The discussion of the mandatory
feature can be applied in the following way: Blocks and signals that are added by
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Figure 7.5: Alternative Cooling Feature

the parent features can be transferred into at least one of the child features in the
alternative. The siblings in the alternative relation can also add the same blocks
and signals or add new ones. It is required that the siblings add connections to all
remaining ports for which the connected signals where transferred.

Temperature Control. In the temperature control system, the current cooling
represents Active cooling. We add an alternative cooling that represents Passive
cooling. To do so, we transfer the blocks of the previously added cooling feature
into a new Active feature. This results in the Cooling feature to be empty and the
Active feature to contain all previous contents of the Cooling feature. In the new
Passive feature in the alternative, we are required to connect a signal to the empty
input port of the switch. For the passive cooling, we use a constant block that we
connect to the open switch port. The resulting Passive cooling feature is defined
as follows:

Ba ={PassiveTemp[Constant]}
Br ={}
Bm ={}
Sa ={PassiveTemp.1→ Switch.3}
Sr ={}

Figure 7.5 shows the resulting feature model and the content of the cooling features.

Or Relation

Or relations are similar to alternative relations with the difference that multiple
children in the relation can be activated if the parent is active. This means that
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Figure 7.6: Or Disturbance Feature

it is not possible that the features in an or relation model conflicting features.
Therefore, for each child of the or relation, the same rules as for the optional feature
are required. Additionally, we can only transfer blocks of the parent features into
one child of the or relation if the parent feature still creates a consistent Simulink
model after the transfer.

Temperature Control. In the Temperature Control system, we add an or relation
to the Disturbance feature. As first child, we transfer all content of the Disturbance
feature into a new feature Gain to represent a possible disturbance of the change of
the temperature. As second child, we introduce a disturbance at the Sensor that is
represented by the feedback loop that compares the current temperature with the
desired temperature. To achieve this, we add a new input for the disturbance at
the measured temperature and add it to the Sum block that calculates the input
of the Relay. Therefore, we alter the sum block to contain one additional input.
Lastly, we connect the new input with the adapted sum block. The resulting sensor
disturbance feature is described as follows:

Ba ={SensorDisturbance[Inport]}
Br ={}
Bc ={Sum[Inputs = 3]}
Sa ={SensorDisturbance.1→ Sum.3}
Sr ={}

The final feature model with the disturbance branch is depicted in Figure 7.6.
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7.4 Hybrid Contracts with Features

The different feature variants described above refer to different behaviors. This
also alters their interface behavior. For verification, the hybrid contracts need to
reflect these different behaviors. One possible solution is to create new hybrid
contracts for each possible variant of a given customizable service. However, this
can significantly increase the verification effort for services with many variants.
To reduce the verification effort, we (manually) extend our hybrid contracts by
feature variables. Feature variables are boolean values that indicate whether a
given feature is activated or deactivated in the resulting variant. This means that
we can add a dedicated feature variable for each feature in the model. Note that
we omit the feature variable of the root feature, since this feature must always be
active and therefore the variable is always set to true.

The feature variables enable us to group our hybrid contracts. First, we have
hybrid contracts that are independent of any feature variables. These hold for all
variants of the customizable service. Second, we have feature-dependent contracts,
which contain feature variables that influence parts of the hybrid contracts. These
contracts also hold for all variants and contain variables that change according to
the enabled features. Lastly, we have variant-dependent contracts, which only hold
for variants that are created by choosing a defined set of features. These contracts
only hold for single variants.

We extend our contracts by parameters that can be changed by features. These
parameters are represented as variables in the contracts. During the instantiation
of a variant, we choose a set of activated features. We extend our features by a set
of contract parameter assignments that are performed if a feature is activated.

Only one assignment can be performed per parameter. This ensures that we do not
obtain ambiguous contracts if more than one activated feature provides a value for
the same contract parameter. Therefore, only features that are part of the same
alternative can assign different values to the same parameter. If no value is assigned
to a parameter, we define default assignments as part of the feature model that are
assigned to all parameters that are left in the hybrid contract of a service variant.
In general, we use this to define neutral values for the parameters that do not
influence the behavior of the hybrid contract, e.g., the disturbance is set to zero if
no disturbance is activated.

Temperature Control. For the temperature control system (Figure 2.6), we con-
sider the previously introduced variants and the hybrid contract that ensures
bounds for the temperature. In the feature model, we can choose whether we
use active or passive cooling. Additionally, we can add disturbances to the gain or
the sensor. In its basic variant with active cooling and no disturbances, the hybrid
contract of the service is as follows (note that the exact values for the upper and
lower bounds depend on the largest allowed stepsize):

Φin = HeatOn ≥ 0 ∧HeatOn ≤ 100 ∧HeatOff ≥ −100 ∧HeatOff ≤ 0

Φout = Tout ≤ Tdes+ δ ∧ Tout ≥ Tdes− δ

In the following, we change the contract to enable the use of one hybrid contract
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for different variants. For the service with passive cooling, the input for HeatOff is
replaced by a constant. Therefore, we replace HeatOff with a contract parameter
Cooling. That means if the active cooling feature is selected, this variable is replaced
by the input signal HeatOff. If the passive cooling feature is selected, this variable
is replaced by a constant cooling value that is determined by the cooling feature.

Φin = HeatOn ≥ 0 ∧HeatOn ≤ 100 ∧ Cooling ≥ −100 ∧ Cooling ≤ 0

Φout = Tout ≤ Tdes+ δ ∧ Tout ≥ Tdes− δ

For the basic variant, no disturbances are present. Disturbances can change the
input gain at the Integrator or the control input of the switch. For the disturbance
at the Integrator, we introduce a new contract parameter DisturbGain. Since it
directly influences the gain, which is already part of the assumptions Φin, we add
this variable to the assumptions. If the GainDisturbance feature is disabled, this
variable is set to 0. For the disturbance at the sensor, we need to extend the
assumptions. The proof does not succeed with a disturbed sensor, since the sensor
could measure a high temperature due to a large disturbance and would switch to
Cooling, while the actual temperature is already at the lower bound. During the
proof, we found that restricting the sensor disturbances enables a successful proof.
The resulting contract encapsulates all possible behaviors of the variants and is
modified according to the selected features:

Φin =(HeatOn +DisturbGain ≥ 0 ∧HeatOn +DisturbGain ≤ 100∧
Cooling +DisturbGain ≤ 0 ∧ Cooling +DisturbGain ≥ −100∧
DisturbSensor ≤MAXD ∧DisturbSensor ≥MIND)

Φout =(Integrator ≤ Tdes+ δ ∧ Integrator ≥ Tdes− δ)

The aim of our customizable service approach is to ease the reuse of services in new
systems and to facilitate compositional verification by providing hybrid contracts.
The effort to (manually) create and verify hybrid contracts for all variants of a given
system or service is only necessary once during the development of the customizable
service and its variants. The hybrid contracts provide a precise reusable description
for compositional verification without any additional effort.

7.5 Summary

In this chapter, we have presented our extension of services by feature modeling to
enable variability for Simulink services. We encapsulate a Simulink model, a feature
model and hybrid contracts into a customizable service. The feature model enables
the customization of services and facilitates the reuse of services in other Simulink
systems. The use of hybrid contracts in Simulink services enables us to provide
a formal foundation for the use of services in larger systems. The feature model
defines how the hybrid contracts of a customizable service are modified for each
instance to enable the compositional verification of a larger system. Therefore,
we combine the flexibility of customizable services with the verifiability that is
provided by hybrid contracts.
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8 Evaluation

In this chapter, we evaluate the performance of different aspects of our approach by
using four different case studies. To enable the application of our service-oriented
design and verification, we have implemented our approach and briefly present
our implementation in Section 8.1. We evaluate the core concepts of our Simulink
formalization with an extended temperature control system (Section 8.2). Note
that this system consists of two interacting instances of the temperature control
service that we use as running example. With this case study, we evaluate the ap-
plication of our Simulink block transformation for Simulink models, consider the
creation of hybrid contracts with the property templates and how the necessary
variables can be added in the dL model with our extension functions. Further-
more, we evaluate the benefits of the use of hybrid contracts when considering
multiple interacting services in a larger system. Additionally, we present how the
use of services influences the feature model design of a system. We use a model
of a Generic Infusion Pump (GIP) to evaluate our automatic generation of model
invariants (Section 8.3). First, we manually define system properties and hybrid
contracts for the components that are modeled as services of the GIP. Afterwards,
we use our automatic invariant generation to evaluate how much manual effort can
be saved for the verification of this case study. To demonstrate the applicability
of our approach for larger case studies, we evaluate our approach with a distance
warner provided by an industrial partner (Section 8.4). In recent work, we have
extended our approach for intelligent components, which are components that use
reinforcement learning to choose their behavior. One of the main strengths of our
approach is that it provides the designer with systematic means for abstraction
and thus has the potential to be applied to large and complex applications. We
demonstrate this with a case study of an intelligent autonomous robot in a factory
setting (Section 8.5). In Section 8.6, we summarize the results of our approach.

8.1 Simulink to dL Design and Verification Framework

We have fully implemented our framework in Java. An overview of our framework
is given in Figure 8.1. To create a Simulink system model, a designer can either
create a new model in Simulink that consists of the supported block set or use
services from a Service Library and combine them with other Simulink blocks. We
implemented a Service Instantiator that enables a user to automatically generate
service instances. Service instances are added to a Simulink system as subsystems
with a prefix in their name that marks them as services and defines the specific
kind of service instance that they represent. The transformation tool Simulink2dL
takes a Simulink model as input, uses the service library to find the contracts of
used services, and automatically creates a dL model as file that can be loaded
into the interactive theorem prover KeYmaera X. The dL model can be manually
extended by properties of the system specifications. A valid proof in KeYmaera X
for a system means that the proven property can be added as new contract for
the given Simulink service instance in the Service Library. A large part of the
implementation is online available as open source project3.

3Project available at https://github.com/EmbSys-WWU/Simulink2dL
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Figure 8.1: Workflow

Feature Models and Service Instantiator

To create a feature model, a designer manually creates a basis Simulink model.
Thereafter, changes can be performed to the model to create a new variant, e.g.,
a disturbance is added. We can determine the changes automatically and generate
a feature that represents these changes. The designer can then use either variant
to integrate additional changes. These changes can also be independent of the
previous changes and create new branches in the feature model. Therefore, it is
not necessary to model all different variants and combinations of features explicitly.
The resulting feature model can be added to our Service Library as new service.

To instantiate an instance of a customizable service, a user can chose a service
from the service library. With the feature model of the chosen service, the user can
enable or disable features for the desired context in the Service Instantiator. For
a valid selection of features, the Service Instantiator can automatically generate
a Simulink file that contains an instance of the service with the selected features,
which can be used in the design of other systems.

Simulink2dL

The architecture of our Simulink2dL transformation tool is depicted in Figure 8.2.
The implementation consists of 183 java classes and approximately 23k lines of
code. We use an adapted version of the Simulink Parser ConQAT [CQS] to create
an intermediate java representation of a given Simulink model. We first preprocess
the model to find all service instances that are used in the model according to the
prefixes in their names. If the user specifies that services should be replaced by their
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Figure 8.2: Simulink2dL

contracts, the services will be considered during the transformation. Otherwise,
all subsystems are flattened to only consider atomic Simulink blocks. A Block
Transformation creates a Base dL Model and Replacement Macros according to
our transformation rules. For the transformation of Simulink blocks, we use the
Factory Design Pattern to define the supported Simulink block set. All supported
block types can be defined in a BlockSet Config file. A Service Transformation
creates replacement macros that specify the Contract Information of the used
services. The base model and all macros are used by our Macro Replacement to
create the dL Model that represents the behavior of the given Simulink model.

8.2 Service-Oriented Design and Verification:
Temperature Control System

In the following, we illustrate our transformation from Simulink to dL using a
larger temperature control system that consists of two instances of the tempera-
ture control service that we have previously introduced (Figure 2.6). We discuss
the transformation results of the individual temperature control service. We ver-
ify properties for the larger system by using our compositional verification (Sec-
tion 6.3) and compare it to a monolithic verification of the integrated system to
show that the reuse of already obtained verification results decreases the verifica-
tion effort. Lastly, we discuss present a feature model of the larger system that
uses services.
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8.2.1 Temperature Control Service

With our tool, we have fully automatically transformed the temperature control
service (Figure 2.6) and have successfully verified that the temperature can be hold
in a given range and that no rapid switching occurs. The transformation of the
Simulink model into an equivalent dL representation took only a few seconds. The
interactive verification within KeYmaera X took approximately five minutes for the
correct temperature range and approximately one minute for the absence of rapid
switching. The necessary manual interactions include the addition of preconditions,
which restrict the possible values of the heating and cooling values, as well as the
definition of loop invariants.

8.2.2 An integrated Environment-System Model

Cyber-physical systems consist of loosely coupled components that interact with
each other and the physical environment. Our service-oriented approach allows
us to model these components and the environment as individual instances of
a customizable service. In the following, we use our service-oriented approach to
model an integrated temperature control system where a heater with an individual
temperature can be placed in a room to increase the temperature of the room. The
model is depicted in Figure 8.3. The system contains 28 blocks and 34 signal lines.
The temperature of the room can be changed by the ambient temperature or the
current temperature of the heater. The temperature of the heater can rise by a
given heating value of 37 or it can be cooled by the current room temperature.

Figure 8.3: An integrated Environment-System Model

Feature Model

The individual temperature control services use the feature model that we have
presented in Section 7.2. A feature model of the temperature control system does
not consist of the feature models of the services, but it uses instances of these
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Figure 8.4: Optional Disturbance Feature

services as blocks. In the following, we create a feature model of the temperature
control system that enables us to create two variants. The first variant consists of
two services that do not contain any disturbances. The second variant takes two
inputs that provide disturbances at the sensor of each service.

Figure 8.4 shows the resulting feature model. The root feature consists of all blocks
without the temperature control services. Signals require a source and a destina-
tion, therefore all signals that are connected to one of the two services are not
present in the root feature. As child features of the root, we create an alternative
that enables us to choose between no disturbance or the aforementioned sensor
disturbances. Both of these features add two instances of the temperature control
service. These instances are created by explicitly choosing active features of in the
feature model of the temperature control service. In the case of no disturbance,
we select the NoDisturbance feature for the creation of the service instances. For
the sensor disturbance, we select the Sensor feature for the disturbance. In both
cases, we select Active as cooling feature. Additionally, we add two Inport blocks
in the SensorDisturbances feature, which provide the values for the disturbance
signals. Lastly, both features add the signals lines that connect the blocks of the
root feature to the temperature control service instances.
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Service-Oriented Design

We have created a library that implements the previously introduced temperature
control service in Simulink. This service contains the presented blocks and is cus-
tomizable via the described features. The hybrid contract of the service precisely
describes its interface. Our customizable service enables us to reuse the same struc-
ture for all three components and customize their behavior and interface for their
individual context. Therefore, we do not need to model the individual components.

Transformed Model

We have automatically transformed this system into dL. An excerpt of the simula-
tion loop of the transformed model without disturbances is depicted in Listings 8.1.

1 {smallStep:=0.0; ScopeInput1:=HeaterTout;ScopeInput2:=RoomTout;

2 RoomHeating:=HeaterTout-RoomTout+15-RoomTout;

3 RoomCooling:=15-RoomTout;

4 HeaterHeating:=37-HeaterTout;

5 HeaterCooling:=RoomTout-HeaterTout;

6 RoomTout:=*;

7 HeaterTout:=*;

8 ?(((RoomHeating >= 0) & (RoomCooling <= 0)

9 & (RoomHeating <= 10) & (RoomCooling >= -10))

10 -> ((19.0 - 2.0 <= RoomTout) & (RoomTout <= 19.0 + 2.0)));

11 ?(((HeaterHeating >= 0) & (HeaterCooling <= 0)

12 & (HeaterHeating <= 10) & (HeaterCooling >= -10))

13 -> ((28.0 - 2.0 <= HeaterTout) & (HeaterTout <= 28.0 + 2.0)));

14 ...

15 }}∗

Listing 8.1: Abstract Integrated Environment-System Model in dL

In Lines 2 to 5, the inputs for the services are assigned. In Lines 6 and 7, the
outputs are set to arbitrary values. The contracts of the two services are in Lines
8 to 10 for the room and Lines 11 to 13 for the heater. Despite consisting of two
instances of the service depicted in Listing 5.4, the abstracted system has far less
lines to describe the behavior in dL.

Compositional Verification

We have verified in KeYmaera X that the temperature is kept in a given range
and that no rapid switching occurs. To verify these properties, we have manually
added two invariants to the simulation loop. For the temperature bounds, we use
range properties as invariants to describe the upper and lower temperature bound.
To show that no rapid switching occurs, the invariant contains two clock variables
that keep track of the time since the relay switched its state. The minimum time
between changes is described by a timing property. Furthermore, we use a second
set of timing properties that capture that the heating or cooling amount since the
last state switch is bounded. The verification times for the interactive verification
in KeYmaera X are shown in Table 8.1. We can see that the verification time for the
system with contracts is significantly reduced compared to the flattened concrete
system. Even the verification time of system and service together is less than the
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Table 8.1: Verification times in hh:mm

Concrete Abstracted Service
System System

Integrated
Environment Model

temperature range 00:55 <0:01 0:05
no rapid switching - 0:06 0:01

time for the flattened system. Since we only need to verify the contract for both
services once, we can reuse the verification result. For the rapid switching property
of the concrete system, we could not even finish a proof, since KeYmaera X aborted
due to an internal error, likely caused by the size of the model. With our service-
oriented verification approach, we were able to verify both properties in less than
half an hour.

8.3 Automated Invariant Generation: Generic Infusion Pump

In the following, we evaluate the verification process and the necessary manual
interactions with a case study from the medical domain, namely a generic infusion
pump (GIP) [GIP]. We present the Simulink model of a generic infusion pump
(GIP), and the most crucial requirements this model has to satisfy. We discuss
the manual interactions that are necessary in our service-oriented compositional
verification process and discuss how the verification is supported by our automated
invariant generation (Section 6.4). By comparing the automatically generated in-
variants with the invariants that we have manually defined during the proof of the
system properties, we show that the automatic invariant generation can reduce the
manual effort for the interactive proofs.

8.3.1 Generic Infusion Pump (GIP)

The generic infusion pump (GIP) project [GIP] is a research project to model and
verify a wide range of infusion pump models. In our work, we use a model of the
GIP that we have developed as part of a Bachelor’s thesis [Che20]. To regulate the
concentration of a drug in the blood of a patient, an infusion pump can perform
different injections. A bolus is an injection of a large amount over a short period
of time. A basal is an injection of low amounts of the drug over al long period of
time.

Typical components of the infusion pump model are the infusion pump controller
and the patient. The pump consists of sensors, input buttons, a tank, and the pump
itself. The patient has a current concentration of the drug in her bloodstream and
can generate input signals for the pump. An infusion pump has at least three
different operation modes. First, the pump is turned off and no drug is injected.
Second, a given basal rate is injected over a long time. Third, for a short time
a high bolus rate is injected. The pump is controlled by the patient and can be
programmed with different inputs. Note that a real pump could also be controlled
by a doctor instead of the patient. The patient can set a basal and bolus rate for
an infusion, change the batteries of the pump, change the tank for a new one or
refill the tank.
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The safe operation of a GIP is important since faulty behavior can harm the health
of a patient. There are typically three major safety requirements: (1) No critical
dosage should be administered. (2) To prevent overdose, if a critical concentration
of the drug in the blood is measured, the administering of the drug should be
stopped. (3) An alarm should be raised and the drug delivery should be stopped
whenever the battery or the tank level is critically low.

GIP Model in Simulink

To develop a Simulink model of the GIP model in Simulink, we have followed
a strictly service-oriented approach. We have decomposed the system into inde-
pendent components that can be independently modeled, and, in particular, also
later be independently verified. A service-oriented modeling approach increases the
reusability of the components, enables distributed and joint development, and gen-
erally makes the structure of the model more transparent and the overall system
easier to comprehend. In total, we have defined nine services:

1. ServiceInputGenerator simulates the input signals for the system.

2. ServicePatientInput prepares the input signal for the use by the controller
by limiting the values to given bounds and ensuring that the signals are of
the correct type.

3. ServiceInputProcessing processes the input signals.

4. ServiceDrugConcentration represents the concentration of the drug in the
blood of the patient and its absorption over time.

5. ServiceController determines the operating mode of the pump.

6. ServiceWarningGenerator generates a warning if battery or tank level are
critically low.

7. ServicePump represents the pump that performs the infusion.

8. ServiceTank models the internal tank of the pump that contains the drug.

9. ServicePowerSource represents the power supply of the pump.

The resulting structure of the overall GIP model in Simulink is shown in Figure 8.5.
The system contains 133 blocks and 137 signal lines. Note that ServiceInputGener-
ator, ServicePatientInput, and ServiceDrugConcentration model the behavior and
dynamics of the patient, while all other services model the infusion pump itself. Fur-
thermore, note that the service structure is hierarchical, i.e., some services contain
inner services, e.g. ServiceController. Overall, the system consists of nine different
service types. The services ServiceInputProcessing and ServiceWarningGenerator
are instantiated multiple times. The continuous dynamics are present by the ser-
vices ServiceDrugConcentration, ServiceTank and ServicePowerSource.
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Figure 8.5: Structure of the GIP model in Simulink

8.3.2 Automatic Generation of Hybrid Contracts

To evaluate the utility of an automatic generation of hybrid contracts, we first
perform a verification of the system, where we manually define all hybrid con-
tracts. Afterwards, we automatically generate hybrid contracts for the services in
the system and compare them to the contracts that we used during the manual ver-
ification. This enables us to detect the guarantees and invariants that are missing
in the automatic generation.

To compositionally verify the crucial safety properties of the Simulink model of
the GIP described above, we have first manually defined hybrid contracts for all
services that are present in the design. The hybrid contracts capture the interface
behavior of each service, but abstract from inner details like internal computa-
tion steps. To illustrate our approach, we discuss the Simulink models and the
corresponding hybrid contracts of three services in more detail, namely Service-
WarningGenerator, ServiceController, and ServiceDrugConcentration.

Warning Generator. The ServiceWarningGenerator is used twice, to give a warn-
ing whenever the energy level is critically low and whenever the drug tank is crit-
ically low. The Simulink model is depicted in Figure 8.6b. The value Capacity
denotes the capacity of the tank or the battery. The value CapacityWarning de-
notes the percentage of the capacity at which the warning should be issued, i.e., at
which the outgoing signal is set to 1. The contracts that describe the desired behav-
ior of the warning generator are shown in the upper part of Table 8.2. NoWarning
ensures that no warning is produced if the current value is above the critical value.
OutputWarning guarantees that the warning output is set to 1 if the input value
drops below the critical value. BinaryOutput guarantees that the output signal is
binary and either has a value of 0 or 1.

Controller. The ServiceController is the main controller of the infusion pump.
Figure 8.6a shows the Simulink model. The controller has eight input signals and
provides four output signals. Basal and Bolus represent the currently set basal
rate and bolus. DrugInBlood represents the current concentration of the drug in
the blood. TankContent represents the amount of drug in the tank, and Battery-
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(a) ServiceController

(b) ServiceWarningGenerator (c) ServiceDrugConcentration

Figure 8.6: Simulink models of Warning Generator, Controller and Drug Concentra-
tion

Voltage the voltage of the power supply. BatteryChangeInput, TankChangeInput,
TankFillInput are user inputs that signal that a battery change, a change of the
drug tank or a refill of the drug tank is requested. PumpAmount determines the
current rate of infusion, BatteryChange, TankChange and TankFill signal that
the battery or tank can be changed or refilled, respectively. The controller deter-
mines the current mode of operation and checks that no critical states are reached,
like a low level of the drug tank. The change of the battery or tank, or refill-
ing, is only possible if there is no ongoing infusion. The contracts that describe
the desired behavior of the controller are shown in the middle part of Table 8.2.
CriticalConcentration ensures that there is no pumping in progress when the drug
concentration in the blood of the patient exceeds a critical value. ValidPumping
states that the pump is only turned on if no critical states are reached, if there is
actually a basal or bolus requested by the user, and if there is currently no battery
change, tank change or tank refill in progress.

Drug Concentration. The ServiceDrugConcentration models the concentration
of the drug in the bloodstream of the patient. Figure 8.6c shows the Simulink
model. The current drug concentration in the blood of the patient is calculated
by integrating the current drug flow rate (DrugConsumption) over time and the
current concentration reduced by the absorption of the drug by body tissue. The
signal DrugInBloodOutput provides the current concentration of the drug in the
blood. Note that we use DrugInBlood Start to denote the drug concentration at the
beginning of each simulation loop, and thus can reason about changes in the drug
concentration during one cycle. The contracts that describe the desired behavior
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Table 8.2: Contracts of Warning Generator, Controller and Drug Concentration

Contract Assumptions Guarantees

Warning Generator
NoWarning WarningInput > Warning = 0

CapacityWarning · Capacity
OutputWarning WarningInput ≤ Warning = 1

CapacityWarning · Capacity
BinaryOutput true Warning = 0 ∨

Warning = 1

Controller
CriticalConcentration DrugInBlood ≥ DrugCritical PumpAmount = 0
ValidPumping Basal > 0 ∧ Bolus ≥ 0 PumpAmount > 0 ∧

DrugInBlood < DrugCritical ∧ BatteryChange = 0 ∧
BatteryVoltage > VoltCritical ∧ TankChange = 0 ∧
TankContent > TankCritical TankFill = 0

Drug Concentration
NoInfusion DrugConsumption = 0 DrugInBlood Start ≥

DrugInBlood
ConcentrationIncrease DrugConsumption > DrugInBlood Start ≤

DrugInBlood * AbsorptionCoeff. DrugInBlood
ConcentrationDecrease DrugConsumption < DrugInBlood Start ≥

DrugInBlood * AbsorptionCoeff. DrugInBlood
ConcentrationPositive DrugConsumption ≥ 0 DrugInBlood ≥ 0

of the drug concentration are shown in the lower part of Table 8.2. NoInfusion
ensures that the concentration of the drug in the blood of the patient decreases
if the pump is inactive. ConcentrationIncrease and ConcentrationDecrease ensure
the concentration of the drug increases if the currently administered drug amount
is larger than the absorption and vice versa. ConcentrationPositive ensures that
the concentration of the drug in the blood is always larger than zero if some drug
is administered.

8.3.3 Compositional Verification

We have successfully verified that the crucial safety requirements defined above
are satisfied under all circumstances by our GIP model using our service-oriented
design and verification. Namely, we have shown that no infusion occurs in the
system if the drug concentration has reached a critical amount. Furthermore, we
have shown that warnings are produced if the battery or the drug tank level fall
below critical capacities. To this end, we have written down contracts for all ser-
vices. Note that for our GIP, the previously defined system requirements directly
correspond to the guarantees of the service contracts defined in Table 8.2. Thus,
the contract of the overall system is a conjunction of these service guarantees. For
compositional verification, we have used our Simulink to dL transformation to-
gether with KeYmaera X to interactively verify that the connected services satisfy
their contracts. Finally, we have built an abstract dL model of the overall system
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Table 8.3: Interactive Verification Results

Service Total Automatically
Invariants Generated Invariants

Warning Generator 3 2
Input Processing 2 2
Controller 14 11
Pump 8 6
Tank 8 4
Power Source 5 2
Input Generator 0 0
Patient Input 10 10
Drug in Blood 9 7
Total 59 44

where all services are replaced by their contract to verify the system requirements.
While the Simulink model uses fixed values for model parameters, e.g., the tank
capacities and the possible pumping range, we have verified that the safety prop-
erties hold for arbitrary values for these parameters. To this end, we have replaced
the corresponding fixed values by variables and added the assumption that de-
scribe these parameters, like that the capacities are greater than zero and that the
pumping values are always in a certain range.

Manual Effort. With the interactive verification in KeYmaera X, we have proven
that our GIP model satisfies its safety requirements. The second column of Ta-
ble 8.3 shows the total amount of invariants that we have defined for the interactive
verification of the GIP. In total, we have defined 59 invariants. The overall inter-
active verification of the GIP model took 25 person hours. Note that some of the
invariants were only needed to generalize the proof for arbitrary parameter values
of the pump. The input generator can produce arbitrary signals that are processed
by the patient input service. Output signals without any guarantees represent ar-
bitrary signals, therefore the input generator service has no invariants.

8.4 Industrial Application: Distance Warner

Our third case study is an industrial example of an automotive hybrid control
system, namely a multi-object distance control system. With this larger case study,
we show the practical applicability of our approach. While we could not perform
a proof in KeYmaera X of the flattened system due to the size of the dL model,
we are able to prove safety properties of this case study with our compositional
verification (Section 6.3).

Multi-object distance warner

The distance warner measures the relative speed of up to two leading vehicles
and computes the relative distances. The distance is calculated in calculation cy-
cles and each calculation cycle is performed over a given amount of time steps.
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Figure 8.7: Architecture of the Distance Warner

The architecture of the model is depicted in Figure 8.7. Furthermore, continuous
integrators are used to compute the relative distance as a dynamic function of
the relative speed. The system contains 263 blocks and 364 signal lines. A time-
discrete variant of this case study was also used in [HRB13], but the authors were
not able to cope with the original hybrid version. In our evaluation, we have used
the original hybrid version, and used our transformation for the core component of
the system, namely a distance calculator, which comprises 18 blocks (including 5
time-discrete, 1 time-continuous, and 3 control flow blocks) and 23 signal lines. To
enable contract-based verification, we have encapsulated a core component of the
distance warner, namely the distance calculator, which is used twice in the overall
system, as a service.

Verification

For the distance calculator, we verified the following safety properties: 1) the dis-
tance calculator does not produce overflows, and 2) the distance calculator per-
forms a correct gain behavior, where the gain of the outgoing discrete signal is
depending on the incoming continuous signal. To show the overflow property, we
have added a range property as invariant. For the property that considers the gain
behavior, we have added observer variables that keep track of the current sign of
the input signal. The main property of the gain behavior is formulated as dynamic
property that compares the last output state to the current one. The verification
times are shown in the two bottom rows of Table 8.4. Note that we first detected
a bug in the original system, where an overflow was possible at an integrator in
the system. We detected this bug within 20 minutes in the interactive verification
in KeYmaera X and subsequently used a patched version of the system where the
integrator is saturated. For the corrected system, we were not able to verify any
properties on the concrete system, since KeYmaera X crashed when starting a new
proof. We assume that this is caused by the size of the model. For the abstracted
system with the distance calculator as a service, we were able to show both de-
sired properties for all possible input scenarios in less than 8 hours of interactive
verification.
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Table 8.4: Verification times in [hh:]mm:ss

Concrete Abstracted Service
System System

Distance Warner
no overflows not loadable 30:00 19:00
correct gain behavior not loadable 24:00 7:00:00

Absence of Overflows

To verify the absence of overflows, we have introduced global constants MINVAL
and MAXVAL. As shown in [HRB13], the original model actually produces an
overflow. To produce a counter-example that demonstrates this faulty behavior,
we have used the following requirements specification

< · > Integrator < MINVAL ∨ Integrator > MAXVAL

For the interactive verification with KeYmaera X, we were able to produce a
counter-example in 20 minutes. To account for the over-approximations during
the transformation, we have checked whether this was a spurious counter exam-
ple, by using the information provided by the counter example as inputs for the
Simulink simulation. To prevent the overflow, we have changed the integrator in
the model to a bounded integrator, which holds its output value if it would rise
above or fall below specified values. With the corrected model, we have then shown
the absence of overflows using the following requirements specification:

[·] Integrator ≥ MINVAL ∧ Integrator ≤ MAXVAL

We have verified this specification interactively in KeYmaera X in 21 minutes.

Increasing and decreasing distance

A major advantage of our approach is that we can not only verify static properties
like the absence of overflows, but also dynamic properties, i.e., dynamic relations
between inputs and outputs. To illustrate this, we have verified that, under the
condition that there is no zero-crossing during the current measurement cycle
time, a positive relative speed measurement causes an increase or no change in the
calculated distance at the output. Since we use a bounded integrator to prevent
overflows, a positive measurement causes no change at the output if the upper
bound of the integrator value is reached.

[·] gainPrevious > 0 ∧ noZeroCrossing =⇒ relativeDistance ≥ 0

We have added the observer variable noZeroCrossing into the dL model. This
variable checks that the input relative speed measurement does not change its sign
during one calculation cycle of the distance calculator. An analogous formula can
be used for a negative relative speed and a decreasing distance. To enable the proof,
we have added state variables, which store the current sign and detect whether a
zero crossing occurred. To not change the system behavior, we only add hybrid
programs that are assignments to these new variables or nondeterministic choices
of the form {?(c);α;∪?(¬c); β; }, where c is a condition, and α and β are hybrid
programs of the just defined form or empty. We were able to prove the desired
properties with KeYmaera X interactively in 7 hours.
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8.5 Formal Verification of Intelligent Hybrid Systems:
Autonomous Robot

The key idea to enable compositional verification within our service-oriented de-
sign and verification approach are hybrid contracts. Hybrid contracts enable us to
abstract from the inner details of (verified) services in system verification, which
significantly reduces the verification effort. In our compositional verification ap-
proach, we formally verify that each service adheres to its hybrid contract and
have formally shown that we can soundly replace services by their hybrid contract
afterwards. The concept of hybrid contracts does, however, open additional oppor-
tunities for complex systems. While we can only guarantee for verified services that
a system satisfies safety properties under all circumstances, safe system behavior
can also be ensured at runtime using unverified services together with runtime
monitoring, as shown in [FP18, ALH21]. The latter approach has the major ad-
vantage that we can ensure safety at runtime even for systems with components,
whose behavior is hard or even impossible to verify. As example in the following, we
use a reinforcement learning (RL) controller in an autonomous robot as a learning
component in a complex control system. We can formally verify the correctness of
such systems under the assumption that the RL component adheres to its contract
and use runtime monitoring to make sure that this assumption holds at runtime.
As our hybrid contracts precisely capture the safe behavior of the unverified com-
ponents, we can also use it to generate runtime monitors automatically.

We have examined in the context of a Master’s thesis [Ade20] and published in
[ALH21, HAL21] how to ensure safe behavior of an autonomous factory robot
that uses reinforcement learning to determine its behavior. In the following, we
present the case study of an autonomous factory robot and define hybrid contracts
that define safe behavior. We use our service-oriented design process to create the
components in the system. For all known components, we verify that they provide
guarantees and fulfill their hybrid contracts. For the overall system, we show that
no collisions occur if all components fulfill their hybrid contracts. Therefore, we can
ensure that no collisions occur if the unknown RL service also fulfills its contract.
To evaluate the applicability of this assumptions, we simulate the whole system in
Simulink and use a runtime monitor to ensure that the learning component always
fulfills its hybrid contracts. We present that this application of our service-oriented
design shows very promising results by simulating the robot in different factory
environments. The basic system with the autonomous robot and two opponents
contains more than 700 blocks and more than 850 signal lines.

8.5.1 Reinforcement Learning

During Reinforcement Learning (RL), an agent learns its behavior trough inter-
action with an environment and rewards that determine how beneficial its action
was. This can be formalized as Markov decision processes (MDP) [SB18]. A basic
visualization is depicted in Figure 8.8. The MDP consists of states S, actions A
and rewards R. At discrete time steps, the agent observes the current state st ∈ S
of the environment and chooses an action at ∈ A. During the next observation step
t + 1, the agent also receives a reward rt+1 ∈ R, which depends on the state and
action that were chosen. According to the reward, the agent updates an internal
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Figure 8.8: RL via MDP. Source: [SB18]

Figure 8.9: Autonomous factory robot

model that determines the actions that will be chosen for future timesteps.

The actions are chosen according to a probability distribution and therefore, it is
difficult to formally predict the behavior of the agent and formalize the probabilistic
system behavior.

8.5.2 Autonomous Robot in a Factory

The general concept of the system is shown in Figure 8.9. The autonomous robot
Rob should move between different Workstations. There are also different oppo-
nents Opp that move inside the factory. The autonomous robot can choose different
directions for its next movements. Its goal is to reach its next workstation while
avoiding collisions with opponents.

The robot is rewarded for approaching its next workstation and penalized for
interfering with opponents. If the robot enters a safety threshold of an opponent,
the opponent will increase the distance between Rob and itself. The robot and its
opponents have different clocks that determine their discrete time steps.

The Simulink model of the factory is depicted in Figure 8.10. The system consists
of the RL robot, opponents, and job schedulers, which determine the next target
workstation for each robot. The inputs of the opponents are their current goal and
the current position of the RL robot. The inputs of the RL robot are its current
goal and all positions of all opponents.

The Simulink model of the autonomous robot is depicted in Figure 8.11. The robot
has sensors that measure the relative position of the other robots, a motor that
determines its velocity from the control actions of the RL agent, integrators that
continuously change its position, an RL Agent block that chooses the actions of the
robot and an info service that determines current workstate and generates rewards
accordingly.
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Figure 8.10: Simulink model of factory

8.5.3 Hybrid Contracts for Runtime-Monitoring

To ensure that the hybrid contracts that are used for runtime-monitoring only
allow safe behavior, we first verify that these hybrid contracts ensure safe behavior.
We verify the model under the assumption that the contract holds for the RL
agent. Note that the Simulink model is parameterized in the sense that workspace
variables are used for the maximum velocity of the opponents, minimal safety
distances and thresholds, as well as sampling times, which can be set individually
for each traffic participant. We can model different variants of these values as
features for an opponent service. This allows us, to instantiate different opponents
without creating entire new models. Furthermore, by updating the transformed
model of the opponent to only use symbolic values for these parameters instead
of concrete values, the resulting proof holds for all possible input scenarios and
parameters.

Contract for the RL Robot. To find contracts for the RL robot that ensure safe
system behavior, we have created a black box service inside the RL robot that
represents its RL component. This component is assumed to always chose safe
actions that are given by a hybrid contract. Later on, this behavior is enforced
by a runtime monitor. Therefore, we can ignore the inner RL behavior of the RL
robot and only consider its hybrid contracts in the system verification. In the
system verification, we first define system properties that define safe behavior of
the overall system. Afterwards, we transform the Simulink model into dL and try
to prove safe system behavior. To achieve this, we need to successively adapt the
hybrid contracts of the RL robot, until they are strong enough to ensure safe
system behavior.

We have created a contract for the RL robot that describes that it stops at a safe
distance before any opponent’s threshold.We have used our extension functions to
create observer variables that store the positions of each traffic participant at the
start of a loop iteration. This allows expressing the change in positions discretely.
To ensure that the RL robot stops in time, the opponent must not exceed its
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Figure 8.11: Simulink model of autonomous robot

Table 8.5: Contracts for the RL Robot and the Opponents

RL
Robot

Assumption d(Posold,Opp, PosOpp) ≤ vmax,Opp · time∆

Guarantee d(Posold,Opp, PosRL) > θOpp ∨ PosRL = Posold,RL

Opponent
Evasion

Assumptions (d(Posold,Opp, PosRL) > θOpp ∨ PosRL = Posold,RL) ∧
θOpp ≥ dmin,Opp + vmax,Opp · tsOpp ∧
d(Posold,Opp, PosRL) > dmin,Opp

Guarantee d(PosOpp, PosRL) > dmin,Opp

Opponent
Velocity

Assumption true

Guarantee d(PosOpp, Posold,Opp) ≤ vmax,Opp · time∆

maximum speed. To capture this, we introduce two additional observer variables:
timeold, which stores the simulation time of the previous loop before the continuous
evolution and time∆, which stores the difference between the current and the old
simulation time (time− timeold). The resulting contract is shown in the first row
of Table 8.5.

Contracts for the Opponent. Similar to the RL robot, the opponent moves con-
tinuously, but takes discrete control decisions. As the opponent evades actively, we
can provide a property that directly captures the collision freedom:

d(Posold,Opp, PosRL) > dmin,Opp → d(PosOpp, PosRL) > dmin,Opp

The formula states that if the RL robot’s new position is safe w.r.t. the opponent’s
old position, the independently chosen new position of the opponent will also be
safe. However, we cannot verify successful evasion of the opponent for arbitrarily
moving RL robots. To ensure that the opponent evades successfully, the RL robot
has to stop before its safety threshold. To capture this, we add the guarantee of
the RL robot contract to the assumptions of the opponent’s contract. Furthermore,
the opponent’s threshold must leave enough room to detect an RL robot in time.
To ensure that if a threshold is violated at least one control decision is made
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Table 8.6: Interactive Verification Effort

Case Study Interactive Verification Effort
Collision Freedom with two Opponents approx. 20 hours
Collision Freedom with six Opponents additional 10 minutes
Collision Freedom with Sensor Disturbances additional 2 hours

by the opponent before it can collide, we add the assumption θOpp ≥ dmin,Opp +
vmax,Opp · tsOpp. The resulting contract that describes successful evasion is shown in
the middle row of Table 8.5. The RL robot contract assumes a maximum velocity
for the opponent. For the RL robots contract to hold, we additionally define and
verify a velocity contract for the opponent, as shown in the lower row of Table 8.5.
Note that the actual contracts contain more assumptions than shown here. For
example, most constants such as sampling times ts and velocities v are assumed
to be non-negative.

Collision Freedom. By replacing the traffic participants with their contracts and
transforming the overall model into dL we were able to successfully verify the
collision freedom property with KeYmaera X.

Modeling and verifying the case study in a service-oriented manner resulted in
compact, abstract dL models. The hybrid program of the RL robot consists of 128,
the HP of the opponents consists of 79 and the top level HP of our case study
consists of 114 lines of dL. As shown in the first row of Table 8.6, the time needed
to verify the overall system was approximately 20 person hours, mainly allocated
to verifying the hybrid contract of the opponent and finding the hybrid contract
for the RL robot.

8.5.4 Collision Freedom with Additional Opponents

The required effort and expertise for interactive verification with KeYmaera X is
considerable. However, one of the major advantages of our approach is that verified
contracts can be reused in larger systems. Together with the deductive verification
capabilities of KeYmaera X, this means that our approach scales well for a larger
number of components.

To demonstrate this, we have extended the feature model of the factory to enable
the selection of different numbers of opponents. Besides the initial number of two
opponents, we enable the selection of six opponents. Each additional opponents
adds an instance of the opponent service and its job scheduler service. Additionally,
the RL robot service requires additional input signals to detect the position of
these new opponents. Therefore, we create a new variant that has more input
signals for positions of opponents. Additionally, the sensor service and RL info
service are extended by similar variants. Figure 8.12 shows the feature model of
the factory. The feature models of the new RL robot, sensor service and RL info
service are analogous to the factory feature model. The motor control service, job
scheduler service and opponent service only have one variant each and their feature
models only consist of the root feature. Depending on the number of opponents,
the according feature uses the appropriate instance of the RL robot, which in turn
uses the appropriate instances of the sensor and RL info services.



124 8 EVALUATION

Factory

2 Opponents

6 Opponents

Job 
Scheduler

+

JobSchedulerRLService

Opponent RL Robot
2 Opponents

Number of
Opponents

Job 
Scheduler

JobSchedulerRLService

Job 
Scheduler

JobSchedulerAService

Job 
Scheduler

JobSchedulerBService

+

+

OpponentAService

+

Opponent

OpponentBService

+

RLRobotService

+

Opponent

RL Robot
6 Opponents

Job 
Scheduler

JobSchedulerRLService

Job 
Scheduler

JobSchedulerAService

Job 
Scheduler

JobSchedulerFService

+

+

OpponentAService

+

Opponent

OpponentFService

+

RLRobotService

+

…
+

Figure 8.12: Feature Model of Factory with Different Number of Opponents

We have verified the collision freedom property for the abstract top level model
with six opponents in several additional minutes, as shown in the second row of
Table 8.6. Due to our service-oriented verification approach, the verified contract
of the opponent can also replace all of its new occurrences, which results in no
additional verification effort regarding the opponent service. Furthermore, we have
verified the RL robot’s contract for each opponent by applying tactical replace-
ments to the proofs of the original case study.

8.5.5 Collision Freedom with Additional Sensor Disturbances

Capturing the safe behavior of an RL agent through a contract enables us to take
changes in a model into account. Also, service-oriented modeling and verification
enables us to make changes and to refine parts of a model with comparably low
additional verification effort. Overall, this results in a flexible approach, which
enables us to reuse contracts and verification results if the model is changed.

To demonstrate this flexibility, we have added another variant to RL robot service.
In this variant, we add noise to the sensor and a maximum measurable distance.
We have derived a new RL agent contract, which takes these changes into account.
The resulting feature model of the factory is shown in Figure 8.13. In this feature
model, the RL robot service can be replaced by one that contains a new sensor ser-
vice variant that implements the noise. The new feature models for the RL robot
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Figure 8.13: Feature Model of Factory with Optional Sensor Disturbance

service and the sensor service have the same structure as the factory feature model.
The RL robots sensor service consists of multiple analogous subservices (Sensor
Subsystem), which calculate the outputs for different opponents. To introduce dis-
turbance, we multiply the relative positions on both axes (DiffX,DiffY) with a
noise factor nOpp, which is generated from a uniform distribution. For non-negative
noise values, this stretches or shrinks the perceived distance to the opponent. We
additionally limit the sensors range. If the disturbed distance exceeds a maximum
distance, dOpp is set to dmax.

We have defined a contract that captures the sensors modified behavior (see upper
row of Table 8.7). However, for nOpp > 1, the perceived distance can exceed the
actual distance. This allows the RL agent to choose unsafe velocities. Given that
the maximum possible noise factor is known, we have defined the modified RL
agent contract shown in the lower row of Table 8.7, which computes the distance
received from the sensors relative to the maximum noise factor nmax. This enables
us to disregard the maximum distance dmax.

8.5.6 Simulation Experiments

Our approach enables us to model and verify safe intelligent hybrid systems. Fur-
thermore, with the controller monitor, we can enforce safe behavior of an RL
agent at simulation time. To illustrate that collisions are effectively prevented by
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Table 8.7: Modified Contracts with Noise

Modified
Sensor

Assumption nmin ≥ 0 ∧ nmax ≥ nmin ∧ dmax ≥ 0
Guarantee nOpp ≥ nmin ∧ nmax ≥ nOpp∧

(d(PosOpp, PosRL) · nOpp ≤ dmax

→ dOpp = d(PosOpp, PosRL) · nOpp)∧
(d(PosOpp, PosRL) · nOpp > dmax → dOpp = dmax)

Modified
RL Agent

Assumption nmin ≥ 0 ∧ nmax ≥ nmin ∧ nmax ≥ 1 ∧ dmax ≥ 0
Guarantee dOpp/nmax − (vRL + vmax,Opp) · tsRL > θOpp

our safety concept, we compare our monitored safe RL agent with a default RL
agent. The default RL agent uses the same learning algorithm but does not imple-
ment a monitor to enforce safe behavior. In a second experiment, we demonstrate
that our safety concept prevents collisions in dangerous scenarios even without a
sophisticated RL algorithm. To this end, we compare a random agent that uses a
safety monitor with a random agent that does not use such precautions in a totally
chaotic environment.

Simulating Learning Agents in the Factory

To demonstrate that our safe RL agent effectively learns how to navigate the
factory environment while acting safely, we have compared it with an unsafe default
RL agent. Both agents use an approximate Q-learning algorithm [WD92] with a
custom approximation function. The function combines manually defined features,
which describe implications of actions in certain states, for example, whether the
application of an action in the current state is likely to decrease the distance to
the goal or whether it will likely decrease or increase the distance to the closest
opponent. Approximate RL approaches generalize from observed behavior, leading
to a faster and more adaptable learning behavior, which is useful for navigation
and evasion.

Our test scenario consists of four workstation and a road leading vertically through
the factory. Two opponents (Opp) move up and down separate lanes of the road.
The RL robot (Rob) is tasked with reaching the different workstations (W ). The
order of the goals is chosen randomly by the RL robots job scheduler. Road lanes
also feature intermediate goals, which can lead to the opponents changing direction
unexpectedly. The RL robot starts at one of the four workstation and may choose
from a range of velocities allowing moving slower and faster than the opponents.
The RL agent receives positive rewards for decreasing the distance to a workstation
and for reaching a workstation. It is punished for colliding with an opponent. To
prevent that the RL robot constantly interferes with the opponents’ paths, it is
also punished for getting into an opponent’s safety threshold, even if no collision
occurs.

We have trained each agent for 250 episodes with a maximum of 120 steps each. A
step represents one sampling time interval of the RL agent. If the RL robot crashes,
the current episode ends early. After training, we have simulated both agents again
for 100000 steps. Table 8.8 shows the results. The default agent crashed during the
final simulation after 49689 of the targeted 100000 time steps. The fact that it
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Table 8.8: Comparison of the Safe RL Agent and the Default RL Agent

Default RL Agent Safe RL Agent
Training Episodes that ended 0/250=0% 0/250=0%

in a crash

Final
Simulation

Crash after 49689 steps no crash
Times below threshold 8 25

Goals reached 2945 4960

did not crash during training can be explained by the fact that it is punished for
getting into an opponent’s threshold. Because of this it learns that maintaining
a certain distance to opponents is desirable, even without being supported by a
monitor. The safe RL agent never crashed neither in training nor in simulation
and thus acted safely. The fact that it reached 4960 goals in 100000 simulation
steps while only getting below an opponent’s threshold 25 times indicates that it
learns to evade the opponents actively and avoids situations where the contract
forces it to stop. We validated this by graphically visualizing the traffic participants
movements. However, although the safe agent was simulated for more than twice as
long, it only reached 68.42% more goals. This indicates that the contract impedes
its performance.

Simulating Random Agents in the Factory

To illustrate that our safety concept prevents collisions in dangerous scenarios even
without a sophisticated RL algorithm, we consider a worst-case scenario in which
an agent acts randomly in a chaotic environment. The default random agent can
choose any action in any state. The safe random agent chooses randomly from the
filtered set of actions allowed by its contract. In this way, agents cannot make use
of obtained knowledge to avoid collisions.

To model a more chaotic environment, each opponent gets a random safe start
position, and two random goals in a square of size 10 × 10 around the safe random
robot’s initial position. These change in each training episode. Other settings are
equal to the previous experiment.

As an additional test, we also simulate the extended model from the scalability
experiment (Subsection 8.5.4) with six opponents.

We have simulated the models for both the default random agent as well as the
safe random agent for 1000 episodes with a maximum of 120 steps taken in each.
The results are shown in Table 8.9. The safe random agent never crashed in any
of the experiments neither with 2 nor 6 opponents. The default random agent
crashed in a majority of episodes (in 96.5% for the upscaled version of the model).
This demonstrates that our safety concept is a decisive factor in ensuring collision
freedom for the overall system.
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Table 8.9: Crashes of a Default and a Safe Random Agent

Default Random Agent Safe Random Agent
2 Opponents 753/1000=75.3% 0/1000=0%
6 Opponents 965/1000=96.5% 0/1000=0%

8.6 Summary

In this chapter, we have demonstrated the practical applicability of our approach
by using four different hybrid system case studies to evaluate different aspects
of our approach. We have shown the benefits of using hybrid contracts to define
and verify crucial properties of services. For the distance warner, we have used our
compositional verification to ensure safety of the system, which was not possible in
a monolithic approach. While for some systems a monolithic verification is possi-
ble, we have reduced the verification time and effort by first creating and verifying
hybrid contracts for the components in the systems that we designed as Simulink
services. The verification times of the service and abstracted system were in gen-
eral shorter than the verification time of the concrete system. A further major
benefit of our approach is the reusability of our verification results. For all future
systems that use services that are already verified, we can reuse the already verified
hybrid contracts in the abstract system verification. Furthermore, we showed that
our transformation and automatic invariant generation has a huge impact on the
verification effort by reducing the manual effort. By defining hybrid contracts for
an autonomous robot and using runtime monitors, we were able to enforce safe
behavior of an intelligent robot that uses reinforcement learning at runtime. This
can be extended to the design process of new systems. If the system verification
requires that a service provides a given hybrid contract, a developer can create
the service in such a manner that it fulfills the required hybrid contract. This still
requires the transformation of the service and the verification that it fulfills the
hybrid contract.
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9 Conclusion

In this thesis, we have presented an approach for the service-oriented design and
deductive formal verification of hybrid control systems modeled in Simulink. Our
approach combines the strengths of Simulink for model-driven development of hy-
brid systems with the power of formally ensuring the correct behavior of modeled
systems under all circumstances. In contrast to most existing work on the formal
verification of Simulink models, we are not restricted to purely discrete models.
Instead, we also support hybrid system models where discrete and continuous be-
havior are combined. This enables us to model and ensure the correct behavior of
cyber-physical systems, which have a strong connection to the physical environ-
ment. Our approach enables the formal verification of hybrid systems modeled in
an industrially widely used informal language. With our service-oriented approach
together with deductive verification, we achieve a comparatively high level of scal-
ability, enable the reusability of verification results, and provide an integration of
our verification process with a model-driven design process.

9.1 Results

Our main contributions are:

1. We have defined an automatic transformation for hybrid control systems
modeled in Simulink into the formal semantics of dL. This formalization is
the foundation for our approach for the formal verification of hybrid Simulink
models. Our automatic transformation enables a designer to use the well-
developed industrial tool suite Simulink to create the model of a hybrid
control system and without additional effort generate a formal model that
can be used for verification. To ease the verification of Simulink models, we
have presented extension functions, which enable the designer to system-
atically insert observer variables into a given hybrid system, and property
templates, which can be used as design patterns to support the designer in
defining properties based on commonly used properties, i.e., range, timing,
and dynamic properties.

2. We have introduced hybrid contracts, which abstractly capture the dynamic
behavior of Simulink subsystems that are encapsulated as services. Verified
properties of Simulink services are described by hybrid contracts. These hy-
brid contracts formally capture the interface behavior of services and enable
to abstract the concrete behavior of services in larger systems. The key idea
of our compositional verification is that we use our hybrid contracts to re-
place services in a given hybrid system by their contracts, and thus enable the
hierarchical abstraction from implementation details of services. To ensure
the correct embedding of services into concrete systems, we have provided a
proof sketch for the soundness of this abstraction technique.

3. We have defined customizable services that can be used in Simulink designs.
Services facilitate the reuse of predefined systems and enable the reuse of
existing verification results for compositional system verification. Our defi-
nition of services in Simulink has two major advantages: First, we provide
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means to verify the correct behavior of the system. Second, we also provide
means to explicitly and precisely capture the dynamic interface of a newly
developed component. A Simulink service fulfills a concrete functionality in
a system. The service comprises a Simulink model, a feature model that en-
ables changes in the system, and hybrid contracts that formally capture its
interface behavior.

The key idea of the transformation is threefold: First, we map the informally
defined Simulink semantics to the formally well-defined semantics of differential
dynamic logic (dL). Second, we use an expressive macro mechanism to efficiently
capture stateless behavior and arithmetic or logic expressions. Third, we precisely
capture discrete as well as continuous behavior in a nondeterministic repetitive
simulation loop that combines discrete assignments and continuous evolutions. Our
transformation approach supports a broad class of hybrid systems, i.e., it supports
time-discrete, time-continuous and control flow blocks and takes their timing and
interactions into account. To cope with discrete jumps in continuous behavior,
we introduce a small time step behavior to model a maximum delay between the
change of a value and the next step in which the control flow is updated. The dL
representation of the model contains a nondeterministic repetition that contains a
precise description of the behavior of the Simulink blocks in each simulation step.
As a result, our dL model captures all possible behavior is captured and not only
a single simulation run.

We have demonstrated the applicability of our approach with experimental results.
We have presented a fully-automatic transformation from Simulink into dL, and we
have shown how the resulting dL models can semi-automatically be verified with
the interactive theorem prover KeYmaera X. With the use of KeYmaera X, we are
able to prove safety and correctness properties of hybrid control systems deduc-
tively for all possible input scenarios. In particular, we have used an automotive
industrial case study of a hybrid distance warner, which could neither be verified
using the Simulink Design Verifier nor KeYmaera X on the concrete system. Our
service-oriented design and compositional verification allows proving safety prop-
erties of systems for which a naive flattening approach does not scale well. We
have also shown the applicability of our approach with an intelligent, autonomous
robot in a factory setting. While the full verification of learning components is not
possible in general, our hybrid contracts provide a suitable abstraction to capture
their behavior formally. We have combined this with runtime monitoring to ensure
the compliance of the learning component to its hybrid contract at runtime.

9.2 Discussion

In the introduction, we have required that our approach to formally verify hybrid
control systems should fulfill the following criteria:

1. consider hybrid behavior

2. provide reuse capabilities

3. provide a formal foundation for hybrid Simulink models
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4. enable compositional verification

5. reduce manual effort by providing automation

6. is evaluated with different case studies

In the following, we review our service-oriented design and verification approach
using these criteria.

Hybrid behavior. Our service-oriented design and verification approach supports
Simulink models that contain discrete as well as continuous blocks. Our approach
currently supports Simulink models that contain a representative set of discrete
and continuous blocks. Furthermore, we can describe the hybrid behavior of ser-
vices with our hybrid contracts. dL is excellently well suited to capture hybrid
system behavior as well as safety properties of dynamic systems. With different
case studies, we have shown that we can verify safety properties for hybrid Simulink
models with acceptable effort.

Reuse capabilities and variability. Our service-oriented design allows reuse of
customizable services and, furthermore, the variability by the feature model enables
a wider application of services. Additionally, our hybrid contracts enable us to reuse
verification results by replacing the inner structure of services by their abstract
behavior defined by hybrid contracts.

The use of services in new systems can require the creation of new hybrid contracts
that are then used in the verification of new system properties. The verification
of new hybrid contracts for existing services can be facilitated by the reuse of
invariants that were used in the creation of existing hybrid contracts.

Formal Foundation. With our transformation from Simulink to dL, we define a
formal semantics for Simulink in differential dynamic logic. Note that there is a
semantic gap between the simulation semantics of Simulink and the semantics of
our dL models. Thus, it is necessary to trust in the correctness of our transforma-
tion. However, as the Simulink semantics is not formally defined in [Mata], this
semantic gap cannot be avoided.

By choosing dL to formalize the Simulink semantics, we gain access to the ma-
ture and powerful verification tool KeYmaera X. At the same time, by precisely
capturing the semantics of each block separately, we stay as close as possible at
the original Simulink semantics, and thus keep the semantic gap small. We take
the liberty to abstract from numerical errors quite roughly by allowing evaluations
with an ϵ-delay, but we are confident that this is a good choice as it preserves the
most important aspect of numerical errors (that a deviation may occur) while keep-
ing the formal model manageable and comprehensible. A hybrid contract should
capture enough behavior of a service to be useful in the verification of systems it is
used in and at the same time should be verifiable in KeYmaera X. By defining more
concrete behavior in a hybrid contract, it can be more useful for the verification
of the overall system, but its own verification often gets more challenging.
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The size of the target model grows linear in the number of data-flow blocks and
exponentially with the amount of interacting control flow blocks. This is the case
since the different control flows cause different behavior for the continuous evolu-
tions in the system. However, we have introduced an optimization that removes
control flow branches from the dL model that cannot be reached by the given
Simulink model.

Compositionality. By using our compositional verification, we are able to verify
safety properties for larger systems that consists of multiple interacting services.
Our transformation can result in model sizes that impede or even prevent the inter-
active verification with KeYmaera X. This can be solved by encapsulating control
flow blocks into different services and therefore enable the full capabilities of our
service-oriented design and the resulting compositional verification. Services can
also be verified compositionally. With our hybrid contracts, we can verify proper-
ties of larger systems by encapsulating system functionalities into services. During
the transformation, each service can be replaced by its hybrid contracts. This en-
ables us to verify systems that could not be verified in a monolithic transformation
approach.

Automation. Our automatic transformation of Simulink into dL enables us to
easily apply our approach to different models and spares the designer the tedious
task of providing a formal model themself. Currently, our transformation frame-
work only supports a representative set of Simulink blocks of different groups. The
creation of hybrid contracts and their verification is done manually. One main
challenge in the verification is to find appropriate invariants. With our automatic
invariant generation, we are able to reduce the manual effort during the verification.
However, the required expertise for contract design and interactive verification is
still considerable. Good knowledge of the domain of the model and the expertise
in the usage of the interactive theorem prover KeYmaera X can reduce the effort
that is necessary to create useful hybrid contracts for services. The aim of our
service-oriented modeling approach is that these verification experts create the hy-
brid contracts and enrich the services in the service library that can be used by
designers in their system creation.

Practical Applicability. We have successfully applied our service-oriented design
and verification approach to multiple case studies. With a temperature control
system and integrated environment model, we have evaluated our transformation
and the compositional verification. We used the model of a generic infusion pump
to evaluate the automatic invariant generation. We also considered larger systems,
with the industrial model of a multi-object distance warner, which was provided
by an industrial partner. This model showed that we are able to efficiently verify
with our compositional approach. Lastly, we used the model of an autonomous
factory robot to show the powerfulness our hybrid contracts. We have verified that
no collisions occur in the whole system and we were able to ensure safe behavior
of a robot that uses reinforcement learning by enforcing its hybrid contracts via
runtime monitoring.
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9.3 Future Work

Our service-oriented design and verification approach enables the verification of
hybrid control systems that are modeled in Simulink and it provides opportunities
for further research.

Extended Formalization

We currently use small time steps to model zero crossing detection and small delays
in the change of control states of a system. Due to the calculations of the Simulink
solver, it is possible that numerical errors change the desired system behavior.
Further research could extend the transformation more precisely capture these
numerical errors. This could be used to perform error estimations during the proof
and determine error margins for which the system is safe.

A rather basic extension is the addition of further blocks in the supported block
set. With our macro replacement mechanism and our Factory Pattern Design, we
provide the foundation for the extension of the block transformations. Furthermore,
blocks with more sophisticated behavior, e.g., S-Function blocks, could also be
considered as services. The complexity of these blocks makes them impractical
for our transformation to dL via transformation rules. However, if we can create
and verify that these blocks fulfill hybrid contracts via other transformation and
verification tools, we can reuse these results in the verification of systems that
contain such blocks. The service library is currently limited to some services. More
services with verified hybrid contracts would increase the overall applicability of
our approach.

In this thesis, we have exemplified the application of service-oriented modeling
with the modeling language Simulink. This enables us to show the applicability
of our approach. However, this is only one modeling language for hybrid systems.
Further research could extend our service-oriented design and verification for other
modeling languages, e.g., SystemC-AMS [Acc]. The main challenge is to provide a
formalization of the chosen modeling language into dL and to provide an abstrac-
tion mechanism for services. This would not only enable service-oriented design in
this new modeling language but also allow to combine models of the new modeling
language and all modeling languages for that our approach is already implemented
(at the moment Simulink). A service could be modeled in one language and a trans-
formation into dL (or even a different verification back end) could be used to proof
that it fulfills some hybrid contracts. Similar to the Reinforcement Agent block in
our factory robot case study, we can insert this service as black box into a new sys-
tem. Their inner structure is unknown for the transformation and they still could
be transformed, since we use their hybrid contracts to describe their behavior.

Increase Automation

Currently, we manually create the hybrid contracts for the variants of a customiz-
able service. This also requires us to perform proofs for all individual services,
whenever we change or add new hybrid contracts. Differential refinement logic
[LP16] could provide a formal foundation to increase the automation of the verifi-
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cation of variants. By defining abstract models for a feature model, we can reduce
the effort that is necessary to perform proofs for variants of a customizable service.

While the Simulink Design Verifier only supports discrete systems, hybrid systems
can contain components that only contain discrete behavior. Our approach could be
extended to use different verification back ends for different components depending
on their behavior. Additionally, our hybrid contracts can also be used to capture
discrete behavior. Therefore, it could be possible to use the Simulink Design Verifier
to ensure that discrete services fulfill their hybrid contracts. These results can still
be used in the verification of the system that contains hybrid behavior. Even other
verification back ends could be considered.

Support for Intelligent Systems

With a case study of an autonomous factory robot, we have presented first results
for safe intelligent systems with hybrid contracts. This is an important current re-
search topic since cyber-physical systems are often used in dynamic environments.
Further investigation how we can use hybrid contracts to ensure that learning
components always chose safe action is an interesting research topic.
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[Bar+18] Benoit Barbot, Béatrice Bérard, Yann Duplouy, and Serge Haddad.
“Integrating Simulink models into the model checker cosmos”. In: In-
ternational Conference on Applications and Theory of Petri Nets and
Concurrency. Springer. 2018, pp. 363–373.

[BC12] Olivier Bouissou and Alexandre Chapoutot.“An operational semantics
for Simulink’s simulation engine”. In: ACM SIGPLAN Notices 47.5
(2012), pp. 129–138.

https://accellera.org/community/systemc/about-systemc-ams


142 BIBLIOGRAPHY

[BCM16] Patricia Bouyer, Maximilien Colange, and Nicolas Markey. “Symbolic
optimal reachability in weighted timed automata”. In: International
Conference on Computer Aided Verification. Springer. 2016, pp. 513–
530.

[Ben+14] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Ferrari, Luca
Geretti, and Tiziano Villa.“Assume–guarantee verification of nonlinear
hybrid systems with Ariadne”. In: Int. Journal of Robust and Nonlinear
Control 24.4 (2014), pp. 699–724.

[Ben+95] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. “UPPAAL—a tool suite for automatic verification of real-
time systems”. In: International hybrid systems workshop. Springer.
1995, pp. 232–243.

[Ber+18] Philipp Berger, Joost-Pieter Katoen, Erika Ábrahám, Md Tawhid Bin
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André Platzer. “KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems”. In: Int. Conference on Automated Deduction.
Springer. 2015, pp. 527–538.

[GIP] GIP. Generic Infusion Pump Research Project. https://rtg.cis.upenn.
edu/gip/. Accessed: 2020-05-18.

[Gro+93] Robert L Grossman, Anil Nerode, Anders P Ravn, and Hans Rischel.
Hybrid systems. Vol. 736. Springer, 1993.

[Hab+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Na-
zari, Bernhard Rumpe, and Ina Schaefer. “First-class variability mod-
eling in Matlab/Simulink”. In: Int. Workshop on Variability Modelling
of Software-intensive Systems. ACM. 2013, p. 4.

[Hen+98] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
“What’s decidable about hybrid automata?” In: Journal of computer
and system sciences 57.1 (1998), pp. 94–124.

[Hen00] Thomas A Henzinger. “The theory of hybrid automata”. In: Verifica-
tion of digital and hybrid systems. Springer, 2000, pp. 265–292.

[HHW95] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. “HyTech:
the next generation”. In: Real-Time Systems Symposium, 1995. Pro-
ceedings., 16th IEEE. IEEE. 1995, pp. 56–65.

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer pro-
gramming”. In: Communications of the ACM 12.10 (1969), pp. 576–
580.

[HPR94] Nicolas Halbwachs, Yann-Eric Proy, and Pascal Raymond. “Verifica-
tion of linear hybrid systems by means of convex approximations”. In:
International Static Analysis Symposium. Springer. 1994, pp. 223–237.

[HRB13] Paula Herber, Robert Reicherdt, and Patrick Bittner. “Bit-precise for-
mal verification of discrete-time MATLAB/Simulink models using SMT
solving”. In: Int. Conference on Embedded Software (EMSOFT). IEEE.
2013, pp. 1–10.

[Kan+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (FODA) feasi-
bility study. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.
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