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Zusammenfassung

Das Ziel dieser Dissertation ist die Entwicklung eines Assistenzsystems, dass ältere
Zufußgehende bei der Straßenquerung unterstützt. Dazu wurde ein Algorithmus
ausgearbeitet, der den Bordstein aus Perspektive der älteren Zufußgehenden erkennt.
Die Borsteinerkennung ist essenziell, um die Straße zu identifizieren und kann darüber
hinaus zur Vermeidung anderer Hindernisse und sicherheitsrelevanter Objekte beitragen.
Die Herausforderung dabei ist die geringe höhe der Bordsteine, deren unterschiedliche
Struktur und andere im Weg befindliche Objekte. Zur Lösung dieser Probleme wurde mit
einer Kamera und einem lichtbasierten Abstandssensor auf zwei Detektionswerkzeuge
zurückgegriffen, die mit Hifle des End-to-End Learnings fusioniert wurden. Das
Convolutional Network wurde entwickelt, um die von der Monokamera beim Filmen des
Bordsteins und seiner Umgebung aufgenommenen Bilder zu verarbeiten. Das künstliche
neuronale Netz wurde ausgewählt, um die Daten des Abstandssensors zu verarbeiten,
die in Form von Arrays aus dessen 16 Kanälen vorliegen. Ein Prototyp wurde für die
Datenerfassung und zu Testzwecken entwickelt. Dieser besteht aus einer Halterung, die
an einem Rollator befestigt wurde und an der die beiden Sensoren angebracht wurden.
Zu Trainingszwecken wurden die Daten beider Sensoren unter Berücksichtigung verschie-
dener Faktoren wie beispielsweise Wetter, Lichtverhältnissen und Annäherungswinkel
an den Bordstein erhoben. Um den Algorithmus zu Trainieren wurde eine End-to-End
Learning entwickelt, bei dem die gesamten Bilder bzw. Arrays und nicht etwa einzelne
Pixel gelabelt wurden. Die Netzwerke des jeweiligen Sensors wurden trainiert und
anschließend miteinander verkettet, um so das gesamte Netzwerk zu trainieren. Die
experimentellen Ergebnisse attestieren dem verwendeten End-to-End Learning eine
Genauigkeit von mehr als 99%. Beide Sensoren sind kostengünstig und können im
Zusammenspiel den Bordstein aus Perspektive der älteren Zufußgehenden erkennen. Um
die Nutzenden vor potenziellen Gefahren zu warnen, wurde eine vibrotaktile Schnittstelle
entwickelt, die drahtlos mit dem Assistenzsystem und der Technik, die die Sensoren
steuert, verbunden ist. Im Rahmen der vorliegenden Dissertation wurde ein Prototyp
entwickelt, der potenzielle Gefahren für ältere Zufußgehende erkennt. Dazu wurde
erfolgreich ein Alogrithmus mit End-to-End learning entwickelt, der zwei heterogenen
Sensoren fusioniert und mit einem Schnittstellenmodul verknüpft, um die Nutzenden zu
warnen.





Abstract

The goal of this dissertation is to develop an assistance system for supporting road
crossing among older pedestrians. In order to accomplish this, a curb detection algorithm
has been proposed from the pedestrians point of view. Curb detection plays a significant
role in road detection and obstacles avoidance among other safety related variables.
However, it also presents significant challenges such as the small size of the detection
target as well as obstacles and different structures of the curb. To tackle these problems,
two sensors were selected, a Camera and a distance sensor; a light based Radar. These
were fused using the end-to-end learning approach. The convolutional neural network
was designed to process the images acquired from the mono camera by filming the
curb and its surroundings. The artificial neural network was selected to process the
data of the distance sensor acquired in the form of arrays from the 16 channels of
the sensor. A prototype was developed for data collection and testing purposes. It
consists of a structure carrying both sensors mounted on a walker. The data from both
sensors were collected with multiple factors taken into consideration, such as, weather,
light conditions and, approaching angles. For the training of algorithms, an end-to-end
learning approach was designed where the complete image or array was labeled as the
hazardous scenario or not rather than labeling the individual pixels or features in the
acquired data. The networks were trained and the features from the parallel networks
were concatenated and given as the input to the fully connected layers to train the
complete network. The experimental results show an accuracy of more than 99% with
the designed end-to-end learning approach. Both sensors are relatively inexpensive and
in fusion together are able to efficiently accomplish the task of detecting the curb stone
from the pedestrian’s point of view. To alarm the user of the potentially hazardous
scenario, a vibro-tactile interface was developed which is connected wirelessly with the
the machine that also control the sensors. In this dissertation, a prototype was developed
to detect the potentially hazardous situations for the older pedestrian’s while walking on
the street. An algorithm with end-to-end learning approach to fuse two heterogeneous
sensor was successfully designed and the alarms generated from the algorithm were
transmitted to an interface module to alert the user.
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1
Introduction

To support the older pedestrians in the street environment and traffic situations, an
assistance system was planned by the research group FANS (Fußgänger Assistenzsystem
für ältere Nutzerinnen und Nutzer im Straßenverkehr - Pedestrian Assistance System
for Older Road Users). The development and evaluation of the planned assistance
system were participative and user-centered. The procedure is characterized by an
iterative character in which analysis, development, and evaluation are alternated. Several
qualitative and quantitative data surveys were conducted in the initial stage with experts
and the target group, i.e., older pedestrians [1]. This dissertation focuses on the sensory
recognition of the traffic and road environment. One of the common reasons for traffic
crashes involving older pedestrians is insufficient attention to road traffic [2]. Therefore,
this assistance system aims to draw their attention to the oncoming traffic to improve
their traffic awareness. When pedestrian approaches a road, an assistance system can
be used to increase the safety of the elderly in traffic. For example, by detecting when a
pedestrian intends to cross a road and reminding him/her to check the road for traffic.
An intelligent feedback system can help achieve this by detecting the pedestrian’s path.
This information or warning will be at a predefined distance from the road. Therefore, it
is necessary to analyse the environment to predict when the user is approaching the road.
It is essential to mention that using an assistance system is only one of the possible
measures to improve the safety of older pedestrians.

One approach to achieve this is to detect the road itself. One of the problems that
arise in detecting the road is that the road is not always in a clear line of sight. The
parked cars, trees, and other passers-by are just a few examples of potential visibility
obstacles. Consequently, the focus was on identifying the curb and its surroundings. It
can be considered a relevant transition between the pavement and the road. Initially, we
analysed the requirements to define the objective function of environmental identification.
It was based on technical and user-oriented requirements.
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1. Introduction

Road environments, which include infrastructure, rules, and regulations, vary for
each country. Even cities within the same country have different regulations on road
design and standards. The developed assistance system is for the streets of Berlin,
where the legal minimum width of the sidewalks is 2.5m [3], and the average speed of
older people ranges from 80-130 steps per minute [4]. Taking these data into account, a
detection window of 2m ± 1 was defined.

Within this distance from the curb, the system must detect the pavement and report
it to the users to ensure an adequate time window for reaction (e.g., approach, stopping,
visual hazard detection). This system also requires that the data processing should be
computationally fast. These parameters were varied in systematic tests to define the
limits of detectability and the functionality and restrictions of the system derived from
these.

Since different sensors measure in different ways, it is important to ensure that their
respective weaknesses compensate for each other, thereby increasing the reliability of
the measurements.

Detecting the curb with only one sensor might not be a reliable approach. Therefore,
we considered using Multi-Sensor Data Fusion (MSDF) for this project. We aimed to
ensure reliable detection of the relevant road features using multiple sensors. The sensors
selected for this project were cost-effective so that the final system becomes valuable
and affordable. After the analysis, we used two sensors, a camera and LEDDAR.

Images had to be analysed accordingly to detect the curb and other road features
with a camera. Different techniques of computer vision were compared for this. The
basic concept is extracting the road features and then classifying them to identify the
risks and accidents. Deep Learning is an ideal technique for this type of analysis. It is a
method of extracting features from the dataset, such as images of the roads and their
features. We considered the Convolutional Neural Network (CNN) technique to process
the images. The end-to-end learning method with binary classification was selected. In
end-to-end learning, CNN goes beyond feature extraction by processing the image. The
goal is to train a CNN for the desired detection task. For this purpose, the dataset
was collected from scratch, representing the problem as optimally as possible. This
dataset must consider various conditions such as weather, traffic, obstacle, parked cars,
pavement structure, pavement condition, and other related attributes. In addition to
a broad new dataset of the curb and road from the pedestrian point of view, a novel
algorithm has been presented that utilizes the CNN with end-to-end learning and can
detect the curb efficiently.

The LEDDAR technology works similarly to a light-based radar. It requires or senses
the time of flight. LEDDAR sensor generates 2D data, and the Artificial Neural Network
(ANN) is explicitly trained with this data to detect the curb. The LEDDAR is used
mainly to detect the difference in height between the curb and the road. The LEDDAR

2



sensor has a total of 16 channels. These channels transmit light pulses that hit the curb
and road at a predefined angle.

For the fusion techniques, instead of using standard filtering techniques like the
Kalman filter [5], a novel algorithm has been presented to fuse the two heterogeneous
input data streams from the Camera and LEDDAR. In this way, the system learns and
defines the rules and features. Human intervention is still required to classify the images
based on the defined scenarios. However, due to end-to-end learning, the human did not
specifically mark the location of the curb in the annotated data. In this way, there is
less human intervention. Hence, there is a lesser chance of human error.

A prototype in the form of a walker was custom designed. The sensors and the
computing devices were mounted on this walker. The reason behind using the walker
lies in the need and requirements of the older pedestrians. Moreover, this prototype was
also used for development and testing purposes in real-time scenarios.

This thesis is structured as follows:
Chapter 2 defines the theoretical framework of this research. This chapter also

covers the related research that has been done previously in this field. The proposed
methodology has also been defined in this chapter.

Chapter 3 lays the theoretical foundation of the concepts and algorithms that have
been used throughout this research. It explains the theoretical knowledge of deep learning
and computer vision, especially Artificial Neural Networks (ANNs), and Convolutional
Neural Networks (CNNs).

Chapter 4 describes the creation of the datasets used to train the algorithm. The
requirements analysis, collection, and preparation of the dataset have been discussed in
detail in this chapter. This chapter also entails the prototype that was developed for
the collection of the dataset and testing in the real-time scenario.

Chapter 5 shows how the curb can be detected using camera images. This chapter
explains how CNNs can be trained using end-to-end learning. Moreover, it also covers
the experimental setup used to weigh the theoretical idea presented in this thesis.

Chapter 6 covers the multi-sensor data fusion technique. It explains how the two
sensors, the camera, and LEDDAR, can be efficiently fused using a deep learning
algorithm with end-to-end learning.

Chapter 7 describes the field test organized to test the developed assistance system
conducted with the target group. This chapter also includes the human machine interface
developed to convey the information generated by the assistance system to the user.

Chapter 8 concludes this thesis and discusses the possible future applications and
contributions.

3





2
Theoretical framework

This chapter discusses the mobility of older pedestrians and the need for an assistance
system for older pedestrians. Afterwards, it summarises the previous research and
literature review. In the end, the methodology to design the assistance system has been
described.

2.1 Mobility of older pedestrians

The definition of older people links closely to the concept of old age. It is difficult to
grasp the idea of old age as it lacks a universally based definition that is based on facts
[6]. Colloquially, it is mostly meant as the calendrical or chronological age, which refers
to the number of years of life spent [7]. It can be said that age is one of the dominant
structural principles of modern societies [8]. In different areas of life, it determines a
person’s options for action, his or her social position, and the expectations placed on
him or her [9]. Therefore, the retirement age of 65, which was set in this context and has
been valid for a long time, generally marks the beginning of the phase of older age [7].

Older people significantly impact society in terms of resilience building, facilitating
independence and healthy ageing. Many elderly people contribute to society by
continuing work and providing family support and care to those in need. They also
share their lifelong experiences with society. This impact is increasing with time. Several
key factors are playing their part in this increasing impact. First, the older people will
outnumber the younger people. The generation of the 1960s is soon reaching retirement
age. Simultaneously, life expectancy has increased thanks to better living conditions
and advances in medical sciences. Nowadays, it stands at 78 years for men and 83
years for women. Germany is one of the nations in the European Union where the most
advancement has been seen in demographic change. More than a quarter of Germany’s
population is aged 60 or more. And this ratio is expected to increase to more than a
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2. Theoretical framework

third by the end of 2050 [10]. This makes a great case for the elderly as they require
special attention to traffic safety and the environment.

For people of all ages, outdoor mobility plays a crucial role in living an independent
and safe life [11]. To live such a life, it is necessary to leave the home to perform daily
tasks such as shopping, engaging in leisure activities, use of medical services[12]. The
need to stay connected with community services and to keep social interactions alive is
considered crucial to the well-being of all ages and is a key factor in successful ageing [13].
Therefore, mobility is an important aspect of the lives of older people. In the context of
mobility, walking is the most common form of physical activity among older people [14],
which also impacts positively on the health, cognition functions, and well-being of older
people [15, 16].

Walking is the form of mobility which lasts longest in the life [17] and with the
advancing age, more and more daily tasks are accomplished on feet. This is particularly
true for cities, therefore, the importance of walking increases [18]. Moreover, mobility in
addition to participation in society is the key factor that makes society functional and
helps in preventing disability [19].

On one side, walking is crucial for older pedestrians, while, on the other hand, it
also presents dangerous situations and exposes older pedestrians to the risks of crashes
and falling. In Germany in 2013, older pedestrians were involved in 20% of road traffic
crashes [20]. Taking the total number of crashes into account, they were not involved in
the crashes more than other age groups. However, concerning the distance walked, older
pedestrians are more prone to crashes as compared to younger pedestrians [2]. The
statistics suggest that the recovery time required by the older person is quite high as
compared to the time required by a young person after being involved in a traffic crash,
moreover, the fatality rate of people aged 65 years or older because of a road related
crash is four times as compared to the younger adults [20]. One of the main reasons
for these crashes is that the older pedestrians lack in paying sufficient attention to the
traffic, which reduces the performance in hazard detection [21, 22].

The statistics emphasize the importance to figure out and understand the underlying
problems the older pedestrians face in traffic situations and developing suitable and
applicable solutions which in turn can help to reduce older pedestrian crashes in
traffic. Thus, to promote safety and help the older pedestrians, a research group FANS
(Fußgänger Assistenzsystem für ältere Nutzerinnen und Nutzer im Straßenverkehr -
Pedestrian Assistance System for Older Road Users) was founded. This research group
aimed to investigate the underlying causes of these crashes and develop an assistance
system that can help older pedestrians cross the roads [23]. Therefore, the work presented
here was conducted within the scope of a funded research project that also involved
other research areas such as Human factors, Psychology and Geography. This work
followed a user-centered approach which involved the target group (older pedestrians)
in all the stages of development, i.e., analysis, development, and evaluation.
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2.1 Mobility of older pedestrians

This research mainly focuses only on the statistics and data that were available for
the city of Berlin. It is Germany’s largest city and has a modest percentage of around
19% of older people aged 65 or above [24]. Therefore, throughout the development and
testing stages, only the data from Berlin has been considered and used.

2.1.1 Investigation of the underlying causes

At the start of this study, it was necessary to investigate the older pedestrians’ behaviour
at road crossings and to analyse the underlying problems. Several studies have suggested
different behavioural deficits of older people in traffic, such as they leave smaller safety
margins and they walk comparatively slower, they focus more on the walking path and
less on the traffic situations, or they don’t consider the speed but only the distance
when accepting gaps in streets [25, 26, 27, 28]. The reasons behind these deficits have
been identified as the decline of motoric and cognitive function in old age.

However, age-related deficits are not the only elemental causes behind older
pedestrians’ shortcomings in traffic scenarios. In addition to these, multitasking also has
an effect in such situations [29]. While walking outside or crossing the street, pedestrians
of every age do multitask by performing several different tasks at a time, e.g., navigating,
looking for the pathway’s apparent condition (e.g., bumps, etc.), and walking itself.
During the road-crossing, the main task is to analyse the surroundings and perform
hazard detection, however, the parallel activities which are performed while walking can
distract the pedestrians from the main task.

Another important aspect that had to be analysed is the gait of the older pedestrians.
It is to ensure that the older pedestrians should be alerted promptly to ensure that
sufficient time is provided to the older pedestrians to take precautionary measures.
Therefore, a detection window had to be defined that also considers the speed of the
older pedestrians. This window ensures that the pedestrian has enough time to stop,
quit all the parallel activities and focus completely on the traffic.

Considering all these scenarios, two main reasons were identified for older persons’
unsafe behaviour in traffic. First, older people tend to scan the ground more often and
carefully as compared to younger pedestrians [28]. This requires the visual attention of
the pedestrians and this additional task, therefore, distributes the attention and reduces
their performance in detecting hazardous situations in the traffic [29]. Second, while
walking when older pedestrians approach the road, most people observe and watch
out for cars. This task can also be catalogued in multitasking behaviour. Walking
demands cognitive resources and therefore concurrently walking while visually observing
the oncoming car can also reduce their performance in hazard detection [30].

Based on these findings and after the basic analysis of the official traffic crash
statistics, the requirements of the assistance system were defined.
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2.1.2 Technical and user-centered requirements for the envi-
ronmental perception

This research aimed to develop an assistance system that can help older pedestrians in
traffic scenarios. An alert can make them stop at the edge of the street. This warning
also helps them to focus their complete attention on the traffic and to minimize road
accidents.

Considering the street environment, there are a handful of features to detect, e.g.,
the cars, the curb, the obstacle (trees, poles, etc.), traffic signals, the road, etc. However,
not all these features are available in every street scenario but the road and the curb.
The problem with detecting the road is that it is rarely in the clear line of sight of the
sensors. Parking cars, trees and other passers-by are just a few examples of potential
visual obstacles.

On the other hand, every street in Berlin is equipped with a curb with the length and
width officially defined in the laws of Berlin [3]. Therefore, it was decided to detect the
curb by analysing the street surroundings. For this system to be effective, the system
should perceive the environment reliably and should convey this information to the user
at a distance that it would allow the user to take the precautionary measures in a timely
manner.

For the system to be effective, it should be as accurate as possible in its detection
in every possible situation. For example, it should perform reliably in various weather
conditions such as snow, leaves, and wet conditions. It should also be able to handle the
situation with different types of existing pavement structures in Berlin, hydrants, trees
and poles, etc. Another important aspect to consider is the approaching angle to the
curb. The pedestrians can approach the curb at any angle, therefore, the system should
be able to handle the angle of approach of the pedestrians.

However, the core functionality of this assistance system can be summarized as:

• Detect the curbstone

As the proposed assistance system is intended for Berlin now and considering the
legal minimum width of the sidewalk in Berlin which is 2.5m [3], the average speed
of older pedestrians ranges from 80 - 130 steps per minute [4], a detection window
of 2m ± 1 was established. In this range, the system should be able to detect the
curb and its surroundings reliably and accurately.

• Communicate with the user

After the detection of the curb, this information must be conveyed to the user of
the system as a feedback modality. It is done to make them alert while crossing
the road. This information should be relayed promptly at a sufficient distance so
that it provides them with enough time to react to this alert.
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The system is aimed to detect the curb and convey this information to the user
promptly. It prevents them from stepping onto the street without checking for the
oncoming traffic. Therefore, there should not be an excessive number of misses. A miss
would be considered if the system was not able to detect the curb while it was available
in the frame. Another important point to consider in this context is that it should also
not generate false alarms abundantly. A false alarm is when the system has detected the
curb while there is none present in the frame. From previous research, it can be safely
assumed that false alarm is as important as misses or more [31]. As with too many false
warnings, the user loses their trust in the system which in turn makes them ignore the
alarms [32]. It can make the user misses important events which could be accidental for
them [33]. Moreover, the system should be robust to work reliably in different weather
and light conditions. Most of the crashes occur in low visibility conditions such as in
the evenings or on rainy days [22].

As the system was developed for older pedestrians so additional aspects had to be
considered regarding the older people. First, it should be designed in a manner that
older people should be able to trust and accept the system, because if the system lacks
their trust, older people will not pay much attention to the oncoming warning and might
ignore it.

The sensors needed to perceive the street environment should be economical. The
reason behind that was, in Germany, the older people (aged 65+) are mostly pensioners,
hence, the overall cost of the system should not be excessive so that they can afford
this assistance system. Another thing to consider is that the whole system should be
lightweight. As older people are sometimes fragile, it should not put too much weight
on them.

2.2 Related work

Curb detection presents an important research challenge in the field of mobile robotics.
It is particularly significant in the domain of Intelligent Transportation Systems (ITS)
essentially in ADAS (Advanced Driver Assistance Systems). ADAS are electronic
systems designed to assist the driver while driving. ADAS systems aim to increase
driver and road safety. Curb detection contributes as a pivotal aspect of the ADAS
research domain [34, 35]. Consequently, most of the research in this domain has been
done in terms of road boundary detection and presents thorough research with sensing
modalities and algorithms.

Curb detection presents a significant research value in the field of mobile robotics or
autonomous service robots. Therefore, the influential contribution in recent research can
be reviewed. Useful information can be extracted from it regarding the sensors and the
methodologies that have been used to solve this problem thus far. The research in curb
detection can be classified based on the variety of sensors used to accomplish this task.
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2.2.0.1 Monocular camera

Methodologies using monocular cameras have been researched thoroughly to detect the
curb because of the accessibility, the excessive amount of information, and in terms of
cost and higher processing efficiency as compared with 3D sensors. These methods utilize
the appearance information based on image processing techniques, for example, Prinet
et al. [36] detect the curb using monocular images acquired by a fish-eye lens. They used
the Support Vector Machines (SVM) classifier with the Histogram of Oriented Gradients
(HOG) to extract the curb points and refine these using the Kalman filter. These
techniques utilize monocular camera information. They rely heavily on the appearance
information itself e.g., in this case, it can only be applied to clear and dominant curb
structures. Image processing methods used for curb detection are vulnerable to the
slightest changes in the intensity of images, for example, various illumination conditions,
shadows, road marking, etc.

2.2.0.2 Stereo vision

Stereo vision can utilize 3D geometry information to detect the curb [37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48]. Stereo vision cameras can produce high-resolution appearance
information which is not available in other 3D sensors like LiDAR or monocular cameras.
However, the accuracy of this 3D information gained by the stereo matching is lower
than that of LiDAR sensors. Nevertheless, these appearance and geometry feature
available from a stereo sensor have been widely researched in curb detection methods.
For example, in [48], a stereo vision camera with the Canny algorithm was used, it was
based on the multi-frame persistence map to detect curbs. Cheng et al. [37] proposed a
16-dimensional descriptor to distinguish curbs from the road and obstacles from a flat
area. They estimated based on disparity and v-disparity maps acquired from stereo
matching. The SVM and Dijkstra Road model was used to distinguish the road and
curb. Siegemund et al. [47] used Conditional Random Fields (CRM) to propagate the
curb detection outcomes. Moreover, stereo vision-based methods also exploit geometrical
phenomena such as height step [38], curvature [39, 40] and heights variation [41, 46, 49].

2.2.0.3 Mapping strategies

Mapping strategies are used in 3D computer graphics to represent a certain terrain
using the elevation data. Therefore, to detect the curb stone, mapping strategies are
also widely used for 3D sensors. In [41, 45], the Digital Elevation Map (DEM) is used
to calculate the Height Gradient Feature for the curb feature extractor. Kellner et al.
[38] constructed the road curb map to acquire the road curb features and updated it
with the detected feature for curb candidates’ extraction. In [44, 47], for curb detection,
the column disparity match is generated. The mapping methods can benefit widely
from the geometric information, but they require a high density of 3D point cloud
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data. Moreover, they tend to benefit from the smaller cell sizes which are sometimes
susceptible to accuracy loss and require higher computational efforts making it hard to
use them in a real-time environment.

2.2.0.4 LiDAR

Light Detection And Ranging (LiDAR) sensors are used to determine the distance
between objects by targeting the object with a Laser and by calculating the time the
reflecting light took to return. LiDAR is also used to create the digital 3D representation
of a surface, i.e., LiDAR can be used to acquire accurate 3D information from the
environment [50, 51, 52, 53, 54, 55, 56, 57]. Zhang et al. [53] extracted the curb position
based on its spatial position using the 3D LiDAR data for Unmanned Ground Vehicles
(UGVs) and fitted them with a parabola model, a Kalman filter was used to predict and
update the curb position in real-time. In [54], the scan line from Velodyne LiDAR was
taken as a processing unit and feature points were extracted from these scan lines. These
feature points were then selected as initial curb points using the distance criterion and
Hough transform. It was then used as a seed point the for iterative Gaussian process
to model the curb. The regression method Least Trimmed Square was used in [56] to
model the road curb, especially the occluded scenes.

2.2.0.5 Mobile laser scanners

Mobile Laser Scanners (MLS) have gained popularity in acquiring high-density 3D
point cloud data. MLS uses Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU) to provide georeferenced 3D point cloud data which has a
higher density than LiDAR data. Xu et al. [57], proposed a method to extract the curb
from a 3D mobile LiDAR point cloud by using an energy function to extract candidate
points of the curb, a least cost path model was used to refine these candidates. In
[58], the 3D point could data is processed with a trimming operation. Afterwards, the
candidate curb points were extracted from the two maps delineating the height and
density of 3D point could data.

2.2.0.6 Fusion of sensors

The researchers investigate the fusion of 3D sensors and cameras for curb detection.
In [59], curbs were extracted using road surface curvature, for curvature estimation,
dense 3D point cloud data was generated with the help of LiDAR and a stereo camera
using the Iterative Closest Point (ICP) algorithm. Tan et al. [60] fused the sparse 3D
LiDAR point cloud data and high-resolution camera images to recover depth images.
Based on the depth images, normal direction within the image was estimated and based
on the curbs’ geometrical properties and curb point features fitting the patterns were
detected. Afterwards, the Markov chain model is utilized to model the consistency of
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curb features and the curb path is estimated using the dynamic programming algorithm.
Finally, outliers were filtered by performing post-processing operations.

2.2.0.7 Line or surface fitting methods

The line or surface fitting approach has also been utilized regardless of the sensor choice
to detect the curb, for example, vertical surface [44], spline [45] or straight line [46]. In
[44], the curb area is considered as a vertical surface which divides the sidewalk and road,
and both are fitted with a horizontal surface. In [45], DEM was used to extract the curb
measurements and a spline model was used to fit the global set of curb measurements.
In [46], weighted Hough Transform was used to estimate the curb lines.

2.2.0.8 Summary

The cameras or distance sensors have mainly been used for curb detection. Assignment
methods, such as the Digital Elevation Model (DEM), were used either alone or in
combination with edge detection techniques. The work based on DEMs is accurate, but
its high computational power does not allow its use in real-time. A more promising
approach, where this problem does not occur, is based on appearance information using
image processing by using a Mono-camera. However, the potential weakness is the loss of
accuracy that can be caused by changes in the intensity of the pixel values of the images.
Further progress was made by combining different sensors, such as 3D distance sensors,
which require an extensive setup and a high computation power and are expensive, with
a mono camera. These approaches are quite accurate but cannot manage this accuracy
in real time because of the requirement of high computational power [49].

Moreover, most of these techniques were not suitable for geometrically complex curbs.
To tackle these challenges, it was decided to advance and exploit this approach, i.e., fuse
the appearance information available from a Mono-camera with a cost-effective distance
sensor, and does not require a bulky setup to implement. It must also have a lower
computational power requirement.

2.3 Proposed Methodology

The research in ADAS targets curbs detection from the driver’s perspective. The
experimental setup assumes that the curb will appear only on the right or left side
of the vehicle. However, the curb detection from the pedestrian’s point of view has
particular relevance, e.g., a pedestrian’s view angle towards the curb can be entirely
different compared to the vehicle’s line of sight. The pedestrians walk on the pathway
specially designed for them. This also raises the point that the curb can be approached
from multiple viewpoints with multiple angles. Moreover, to name a few, curb detection
provides the following challenges [37]:
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• The height of the curb alters broadly in different scenarios, even in the same
detection frame

• The position of the curb in the frame and angle of approach also determines
whether the pedestrian intends to cross the street or not

• The curbs can have different sizes which in turn makes it difficult to extract
information

• Occlusions also play an important role in correctly overlaying the curb
• The shadows impact significantly the visual information

2.3.1 Hardware

Most of the previous research has used a 3D sensor like LiDAR with the Mono-camera.
LiDAR is not a viable option in the context of an assistance system. LiDAR requires a
360° field of view which is not available in our case as the assistance system is being
governed by the user. LiDAR is also comparatively an expensive sensor; thus, it doesn’t
make the solution cost-effective. Cost-effectiveness is an important aspect to consider
when the livelihood of older pedestrians is considered. Moreover, the computation power
of the system also needs consideration. As mentioned before, most of these techniques
have their applications in the automotive industry where the whole system can be placed
in a prototype system, i.e., a car, which has enough space and computational power to
use. In this research, the assistance system is carried and used by the older pedestrians,
hence, we don’t have the luxury to put too much strain on the weak bodies of older
pedestrians.

Therefore, for the hardware, in addition to the monocular camera, we opted to use
the LEDDAR sensor [61]. It is a propriety sensor from Leddartech and works based on
the principles of light-based radar technology. It is small-sized, cost-effective and doesn’t
require a large amount of computational power. As this study involves the pedestrian
moving toward the curb on a horizontal surface, therefore the LEDDAR was used in the
2D plane and the difference in height of the curb about the road was detected using the
channels available from the LEDDAR. For the appearance information, a mono camera
was used to capture the curb and its surroundings in the streets of Berlin. Considering
the requirements of our assistance system, it was decided to fuse these two sensors, i.e.,
a camera and LEDDAR.

The multi-sensor data fusion aims to ensure reliable detection of the relevant feature
by using both sensors. The concepts of redundancy and diversity are combined. Different
sensors measure the same thing in different ways. This is to ensure that they compensate
for each other’s weaknesses and increase the reliability of the measurements. For example,
if the camera is unable to detect the curb in the current frame because of the bad light,
then the LEDDAR sensor can assist and generate the alarm. Similarly, if the curb is too
low and LEDDAR is not able to detect the curb then the camera can help in generating
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the alarm. Hence, the fusion of the sensors can help in achieving the goals of detecting
the curb and its surroundings in the relevant scenarios efficiently.

2.3.2 Software

In the context of fusion techniques, more conventional techniques have been used in
the past. Fusion of the sensors has relied heavily on filtering techniques like Kalman
filters. Where the future states can be predicted using the past knowledge of states and
the input data, however, Kalman filters are not efficient in fusing the sensors with two
different input dimensionalities. Moreover, it relies heavily on human intervention in
decision-making situations which makes it prone to human mistakes.

Therefore, deep learning methods opted for the fusion of appearance information
from the monocular camera and the data available from the LEDDAR [62]. Deep
learning is a subset of machine learning algorithms based on Neural Networks with
representation learning. It uses multiple layers of neurons to extract higher-level features
from the given raw input. This type of learning can be categorized into supervised,
semi-supervised or unsupervised.

In recent times, a lot of Deep learning algorithms have been developed, hence, it
offers various networks to choose from. This selection can vary based on the use case
and its requirements.

In this research, Convolutional Neural Network (CNN) was chosen to train the
network on images taken from a camera. CNN are the best available model to extract
the underlying features of an image [5]. CNN belongs to Deep Learning, and it takes
images as an input, allot learnable weights and biases to various objects or aspects in
the image so that they can be distinguished and differentiated from one another. The
pre-processing of the data required in a CNN is much lower when it is compared with
other classification algorithms. In previous classification methods hand-crafted features
have been used. While in CNN, with enough training, it can identify and learn these
features/characteristics on its own.

For the LEDDAR sensor, as it generates the data in the form of a 2D array, Artificial
Neural Networks (ANN) were chosen. ANNs are the type of algorithms that are modelled
considering the functionality of the human brain. ANN can learn from the provided
data and can provide output in terms of classifications or predictions.

For the training of the networks, it was decided to use deep learning methods with
end-to-end learning. In end-to-end learning, networks learn the features and regulate the
processing pipeline. Tobias Glasmachers shows how end-to-end learning is embedded in
a deep learning context [63]:

"This elegant although straightforward and somewhat brute-force technique [E2E] has
been popularized in the context of deep learning. It is a seemingly natural consequence
of deep neural architectures blurring the classic boundaries between learning machine
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and other processing components by casting a possibly complex processing pipeline into
the coherent and flexible modeling language of neural networks.”

End-to-end learning has been successfully applied in other areas of research such as
Speech Recognition and Autonomous Driving [64, 65]. Moreover, in end-to-end learning,
there is less human interference hence there is less probability of human error. The
fusion of the sensors is also done using end-to-end learning. By doing this, the system
has more freedom to define and learn the rules.

2.3.3 Interface modality

After detecting a hazardous situation, this alert must be conveyed to the older pedestrian.
To find out the most suitable modality, a study was conducted by the Human Factors
experts within the FANS group with older people to test the different modalities and
their effects on the older people. From the study, it was deduced that, while the visual
and auditory channels in road traffic are occupied by a variety of different sensory
impressions, tactile feedback in the form of vibration is an alternative for drawing
the attention of older pedestrians to road traffic. Therefore, it was decided to use
the vibrotactile modality which would be mounted on the upper arms of the older
pedestrians. An alarm system was developed in this regard with the help of embedded
devices and vibration sensors.

Therefore, whenever a hazardous scenario is detected by the algorithm it would
generate an alarm. Consequently, this information was wirelessly given to older
pedestrians in the form of vibrations [66]. This was also found feasible and beneficial in
terms of extensive testing of the assistance system in real-time scenarios, i.e., on the
streets of Berlin.
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3
Theoretical background

This chapter discusses the theoretical background of the methods which have been used
in this thesis. The basic definitions and relevant theoretical details of machine learning,
furthermore, deep learning and its impact on computer vision have been discussed.

3.1 Machine learning

Machine learning is a field of science that comprises of the study of statistical algorithms
and models that a computational machine can use to perform a task without providing
explicit instructions [67]. Usually, the programmer breaks down the big task into small
tasks that a computer can perform in a simple and smooth manner. On the contrary,
a platform based on machine learning techniques tries to learn from the sensory data,
comprehending the problem on its own. It interprets this data in terms of machine
perception, clustering raw input, labelling, etc. to perform the desired tasks.

In recent years, the field of machine learning has advanced immensely. There is
a great pool of new and innovative algorithms available to choose from for a lot of
applications. Here, the algorithms that have been used in this thesis are discussed
briefly.

3.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are one of the prominent tools used in machine
learning nowadays. Neural networks are the assortment of algorithms that are designed
to recognize the underlying patterns or to find knowledge and model from the data. For
example, to recognize a car in an image, it is quite difficult for a human programmer
to extract the features or patterns, which can include but are not limited to the shape,
color and make of the car, manually and then program it to teach an algorithm to
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predict the category car in the given images. Therefore, NNs are excellent in recognizing
patterns or fetching information that is complex for a human programmer to derive and
train the machine.

One of the simplest definitions of a neural network written by Robert Hecht-Nielsen
can be read as:

"...a computing system made up of a number of simple, highly interconnected
processing elements, which process information by their dynamic state response to
external inputs [68]"

The processing element mentioned in this definition is an artificial neuron inspired
by the human brain. One example of a neuron is the perceptron proposed by Warren
McCulloch [69] and the first-ever perceptron model was presented by Frank Rosenblatt
[70]. An artificial neuron receives input from the input sensors or other artificial neurons,
defined by its weights (wn), bias (b) and the activation or transfer function (φ). An
activation function is typically represented by the sign φ, which determines the final
output of the neuron. The function of a perceptron can be seen in equation 3.1.

y = φ

(︄
N∑︂

n=1
wn · xn + b

)︄
(3.1)

Perceptron performs a linear combination of the input (xn), the weights (wn), and
the bias (b) and then applies the activation function (φ) on the result to obtain the
output (y). The most used activation function is a sigmoid function.

A neural network is a parallel network composed of layers of interconnected neurons
with connections in three different types of layers. These are input layer, the output or
visible layer and the hidden layer. Each layer processes the information provided by the
previous layer and once the computation is done the result is then sent to the next layer.

Every ANN consists of one input layer and one output layer. The number of neurons
in the input or output layer depends upon the number of input variables and the number
of output variables respectively. The hidden layers lie between input and output layer .
These are responsible for the processing of the data received from the previous layer
(either input or previous hidden layer).

The configuration of connections among the neurons of an ANN makes it possible to
classify the ANNs into two categories: if the connections are in the direction from input
to output through a hidden layer, then the ANN is called a feed-forward network. On
the other hand, if the neurons are connected to the neurons of the same layer or with
the neurons from the previous layers then the ANN is called a feedback neural network.
Feedback neural networks are considered more powerful because they are stateful. While
feedforward networks are universal function approximators, recurrent networks can
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implement every algorithm and that makes them much harder to train. Therefore,
feed-forward neural networks are used extensively for practical applications. Feed-
forward networks can be further classified into fully connected and partially connected.
It depends upon whether all the neurons from the previous layers are connected to
all the neurons of adjacent layers or if there are neurons missing the connection with
neurons of the adjacent layers. Moreover, all the connections between the neurons are
weighted, whether they are between the input layer and hidden layers or between the
hidden layers and output layer.

The input to the Neural Network is the image pixels which are then flattened into a
single vector. For example, a grayscale image with 28Ö28 dimensions if flattened results
in a single vector of 784 pixels, and therefore, the input layer of this example has 784
neurons, which form the first layer of the Neural Network, as can be seen in Figure 3.1.
Each neuron is fully connected to each neuron in the next layer [71].
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Figure 3.1: Neural Network architecture for an image of 28 x 28 with a single hidden
layer [71]

After the designing of the network, a learning technique must be applied which is
technically called training, to adjust the weights and biases of the network. The initial
step is to assign the random values to the weights, then an iterative training algorithm is
used to adjust the weights to converge them to optimal status. These training algorithms
are usually based on gradient descent optimization techniques. Gradient descent is a
first order iterative optimization technique usually used to find the local minima of a
function.
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The most used training algorithm, employed to train the feed-forward neural networks,
is the backpropogation algorithm which was developed by Werbos [72] and Rumelhart
[73]. This algorithm uses Lvenberg-Marquardt method, which is the combination of the
gradient descent method and Gauss-Newton optimization [74, 75]. The performance
of the algorithm can be evaluated from the quantity and quality of errors. To assign a
cost to rectify these errors, a loss function is then used [76]. The objective is to reduce
this loss in the training phase. The learning process in backpropagation is based on the
minimization of the Mean Squared Error (MSE). It measures the difference between the
output provided by the network y

′ and desired output y for the input x. This error is
denoted in equation 3.2.

Error(x) = 1
2 ·

N∑︂
n=1

(y(x) − y
′(x))2 (3.2)

where the desired output y is given by:

y(x) =

1 if x ∈ class c

0 otherwise

Another important aspect in the ANN is, that due to some random conditions the
adjustments of weights and biases can become a non-deterministic procedure regardless
of the fact that the training algorithms can be deterministic. Therefore, the initialization
of the weights and the selection of an activation function are important factors which
have a significant effect on the output of a network.

3.2.1 Initialization of the weights

The weights initialization is a hyper-parameter which has a significant impact on the
training to reach the local minima. There are several initialization methods available,
such as including Zeros or Ones, RandomUniform, RandomNormal, Kaiming Initializer
[77] and Xavier [78] etc. Out of these mentioned, the first four initializers can lead to a
vanishing gradient when it is too small or exploding gradient when it is too large. The
most popular approach used by the research community is the Xavier initializer. Its
main objective is to keep the variance equal on all layers. It uses Gaussian distribution
to initialize the weights which has zero mean and a variance of 1/NAvg, where NAvg

represents the average number of input neurons as Equations 3.3 and 3.4. ni + ni+1

refers the number of input and output network connections, respectively.

V ar(Wi) = 1
NAvg

(3.3)
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where

NAvg = ni + ni+1

2 (3.4)

Kaiming etal. [77] profess that Xavier initialization uses a deep net with 30 hidden
layers or more, whereby the activation function used in the hidden layers is ReLu which
suffers from the vanishing and exploding gradient. To cater this problem, the authors
propose the Kaiming initializer. The Kaiming initializer uses the standard normal
distribution multiplied by

√
2√
n

and with the bias set to zero. To summarize, the weight
initialization determines the initial point from which the backpropagation algorithm
converges to the minimum. This concludes that the time consumes in the training
depends considerably on the weight initialization method. Choosing the appropriate
initialization methods to have an impact on the speed of the training process.

3.2.2 Activation functions

The activation function in a Neural Network is responsible to calculate the output
’weighted sum’ of each neuron in each layer of the network. It is taken as a hyper-
parameter that can be tuned to improve the modelling accuracy of the whole network.
There are quite a few activation functions available, including Sigmoid, Softmax, Tanh,
ReLU, and Leaky ReLU. A brief description of these is provided in this section. In
Figures 3.2 and 3.3, the curve and scope of each function are shown.

Sigmoid Function is a non-linear activation function whose input is a real value
and output is between 0 and 1, as shown in Equation 3.5.

f(z) = 1
1 + e−z

(3.5)

The z in this equation is a linear function and can be seen in Figure 3.2a. The major
drawback of the Sigmoid function is the gradient vanishing, and the struggle in loss
optimization. This occurs as it is not zero centralized, and while updating the gradients,
it extends in various directions which becomes a hindrance in finding optimal minima.
However, it is still being used with small and medium-sized architectures to produce the
desirable results [71].

Tanh Function takes a real value as an input and maps it between -1 and 1,
Equation 3.6, and therefore, it converges the output to zero. Although the gradient of
the Tanh function is stronger as compared to the Sigmoid function, the vanishing of
the gradient still occurs in very deep networks [79]. The Tanh function can be seen in
Figure 3.2b.

f(z) = (ez − e−z)
(ez + e−z) (3.6)
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Figure 3.2: The scope of activation function used in Neural Network [79]

Rectified Linear Unit (ReLU) gives the maximum of x and zero as the output.
The x is the linear function and can be seen in Figure 3.3a. The ReLU function returns
the identical x for all values which are greater than zero (positive values) and zero for all
negative values, Equation 3.7 [80]. As ReLU is considered the fastest activation function,
it is used in deep networks to minimize computation time and complexity. Therefore,
these days most CNN networks apply ReLU in the hidden layers.

f(x) = max(x, 0) (3.7)

Leaky ReLU is another form of ReLU function which allows a small negative value
to be present which in turns then helps to reduce the number of vanished neurons in
the backpropagation process, also termed as dying ReLU; see Equation 3.8 [77].

f(x) =

0.01x x > 0

x x ≥ 0
(3.8)

The x is the linear function as can be seen in Figure 3.3b.
SoftMax Function is usually applied in the last fully connected layer. It calculates

the probability (between 0 and 1) of the input x among the defined classes. It as can be
seen in Equation 3.9, where the sum of all values is 1.

σ(−→x )i = exi

n∑︂
j=0

exj

(3.9)

The x here refers to the elements of the input vector and n is the total number of
classes. The term used on the bottom in Equation 3.9 is a normalization term which
makes it certain that the output of the function sums to 1 [81]. For example, if the
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Figure 3.3: The scope of activation function used in Neural Network [79]

network is trained with three different classes, then the output of the last layer will be a
vector and it will contain three values with a sum equals to 1.

To summarize, the activation function is used to activate the neurons in the network.
The main difference is the scope of the function which then decides which activation
function should be used in the network. Most modern networks use ReLU and Leaky
ReLU in the hidden layers. And Softmax in the fully connected layer for the classification
task. The effectiveness of an activation function can be determined by applying in the
network. It has been tested as a hyper-parameter that researchers tune to find the best
classification results.

3.3 Deep learning

Modern neural networks are often referred to as deep neural networks. Although
multilayer networks have been around since the 1980s, few reasons restrict the efficient
training in multi-layers neural networks [82].

One of the significant obstacles is the curse of dimensionality [82, p. 152], which
refers to the situation that if the number of variables increases, the number of different
configurations these variables can grow exponentially, which in turn results in forcing
to increase the amount of training data so that the optimal accuracy can be achieved.
Collecting the data for training in sufficient size is time-consuming and costly and, in
some scenarios, could be futile.

However, the real-world data doesn’t often have a structure. It is also not uniformly
distributed where the useful information lies on a low-dimensional manifold. This
manifold hypothesis assumes that most data configurations are invalid or rare [82,
p. 159]. Thus, we can decrease the dimensionality by representing the data using the
coordinates of manifold. The generalization can also be improved by assuming local
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constance [82, p. 154]. It assumes that the activation function the network learns to
approximate should not modify within a small specific region.

Another theoretical breakthrough was the replacing of the mean squared error
function with cross entropy-based functions, i.e., sigmoidal activation functions were
replaced with rectified linear units (ReLU) [82, p. 222].

All these features made the way for deep learning, where there is less need for
hand-tuned features. They were used extensively in machine learning. For example, a
classical pattern detection task includes a hand-tuned feature extraction phase before
feeding them to the machine learning algorithm. On the other hand, in deep learning,
the lower layers of the network are used to extract the basic features, which are then
fed to the advanced layers for entire feature detection.

3.3.1 Computer vision

Computer vision deals with how machines can gain meaningful and high-level
understanding from digital images or videos. Computer vision application includes
visual detection, image classification, augmented reality, 3D scene reconstruction from
2D images, etc. [83].

Computer vision is improved tremendously because of the deep learning. Because
of the availability of large amount of data, nowadays. Deep learning is considered a
vital component of various computer vision algorithms [84], these algorithms combine
image processing with deep learning. To gain the desired outcome, these algorithms can
handle the vast amount of information available in the images, and critically for various
application, are able to carry out the computation in real time.

3.3.2 Convolutional neural network

There are problems when solving computer vision problems using traditional machine
learning techniques. For example, even a small-sized image holds a substantial amount
of information. To envisage this, consider a monochrome image with a size of 620×480.
This image contains 297, 600 pixels. In a fully connected neural network, each neuron
would require 297,600 weights if each pixel is connected to a neuron as an input separately.
Similarly, a 1920×1080 full HD image would require 2,073,600 weights. If the images
used are polychrome then the weights are also multiplied by the number of colour
channels used, usually three for RGB. Thus, as the image size increases, the number of
free parameters in the network becomes immensely large. This can result in overfitting
and slow performance [76, p. 9].

Moreover, various pattern detection tasks require the algorithm to be translation
invariant. In this way, the algorithm recognizes the pattern presented in different sections
of the image irrespective of the position of the pattern in the image. It doesn’t train the
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separate neurons for the same pattern. A fully connected neural network is not able to
handle the translation invariant task.

A special case of deep neural network, which can handle a large amount of information
in the images, is a Convolutional Neural Network (CNN). The neocognitron, inspired
from biology and developed by Fukushima [85] in 1988, presented a neural network
model for translation invariant object detection. This method was combined with the
learning algorithm i.e, backpropagation by Le Cun et al. [86] and its first application
was the recognition of hand-written characters from MNIST-dataset.

3.3.2.1 Basic structure

The basic idea is inspired by a concept taken from biology called the receptive field [85].
The Receptive fields represent a feature of animal visual cortex [87] and act as detectors
for certain types of stimulus e.g. edges.

These biological functions can be hypothesized for machines using the convolution
operation [88]. In computer vision, convolution can be used to filter the images to
generate the visible effects. These filters are also referred as Kernels. The discrete
convolution operation between an image I and a kernel K is defined in equation 3.10:

H[x, y] = I[x, y] ∗ K[x, y] =
∑︂

n

∑︂
m

I[n, m]K[x − n, y − m]. (3.10)

The kernel K and sub-image of I have the same dimensions, and the dot product of
both produces the pixel value H at coordinates x, y. The size of the receptive field is
determined by the size of the filter matrix. Aligning the kernel K with each sub-image
of I generated the output pixel matrix H. This output matrix is also called a feature
map [82, p. 328].

The convolutional kernels can be combined to make a convolutional layer. The
values of the kernels are treated as parameters of the neurons and are trained. The
multiplication operation of the regular neural network is replaced by the convolution
operation. The height and width of the output of this operation depend upon the
dimensions of the activation map and the depth depends upon the number of kernels.

As the same kernels are used to detect patterns from all parts of the image, it reduces
the number of free parameters drastically compared to the fully connected layer [86].
The neurons of the convolutional layers are connected to local regions of the input and
share the same parameters. This parameter sharing ensures the translation invariance
in CNN. In this way, neurons share weights at multiple spatial locations and have zero
weights outside the receptive field.

Ensuing convolutional layers form a convolutional neural network. These layers
are often combined with other types of layers such as pooling layers (described below).
Theoretically, the layers which are closer to the input learn to recognize low-level features
and patterns such as corners, edges, etc. On the other hand, the layers deeper in the
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model learn to incorporate these features to recognize high-order or more abstract
features [85]. If we go into the details of CNNs, there are three features of CNNs which
make them so effective, namely "Local receptive field", "Shared weights" and "Pooling".

3.3.2.2 Local receptive field

If we consider a fully connected network, as shown in Figure 3.1, and an input image
of dimensions 28 × 28, that means our network will have 784 input neurons for a fully-
connected network and these inputs are given as a vertical line of neurons. However,
in a convolutional neural network, instead of a vertical line, 28 × 28 square of neurons
are used as an input, whose values depict the intensities of the pixels. It can be seen in
Figure 3.4

input neurons

Figure 3.4: Input neurons for an image of 28 × 28 as a square [71]

The next step is to connect the input with the hidden layer’ neurons. However,
unlike fully connected network, where every input pixel is connected with every neuron
in the hidden layer, in CNN, connections are made in localized and small regions of an
input image. That means every neuron in the hidden layer will be connected to a small
region or field in the input domain. For example for a 5 × 5 region, which then refers to
the 25 input pixels and for a particular neuron in a hidden layer, the connection with
the input pixel might look as shown in Figure 3.5.

This region is referred as the local receptive field. It is a small window where the
connection between the hidden neuron and input pixel lies. A particular hidden neuron
learns to analyze its receptive field. Therefore, each neuron in the hidden layer learns
an overall weight and bias for its own local receptive field.

To cover the entire input image, this local receptive field is then slid. For every local
receptive field occurring because of the sliding, there is a particular hidden neuron in
the first hidden layer. The sliding concept can be seen in Figure 3.6
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input neurons

hidden neurons

Figure 3.5: A hidden neuron connections with the region of 5 × 5 in the input domain
[71]

input neurons

first hidden layer

Figure 3.6: Sliding of the local receptive field in the input domain [71]

In Figure 3.6, the first neuron in the hidden layer is connected to the first local
receptive field. Then to connect the second hidden neuron, the field is moved by one
neuron (i.e. one pixel), as shown in 3.7

The entire input image is then covered using this strategy which in turn constructs
the hidden layer. It is important to note that for an input image of 28 × 28 and local
receptive field of 5 × 5, hidden layer will have the dimensions of 24 × 24. This is due
to the reason because the local receptive field can be moved across 23 neurons (either
across or down) before it collide with the bottom or right-hand side of the input image.

In Figures 3.6 and 3.7, the stride of one was shown, i.e., region or field moved by
one pixel. However, the stride is a parameter that can be tuned and different lengths
can be chosen depending upon the dataset and problems at hand. Stride controls the
convolution output. It determines whether this output is generated for every pixel of
the input image (stride 1) or for every nth pixel (stride n). Stride regulates how the
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input neurons

first hidden layer

Figure 3.7: Sliding of the local receptive field in the input domain [71]

kernel will convolve around input data. This the output data can be downsampled,
which results in the faster computation of the CNN.

3.3.2.3 Shared weights and biases

In the aforementioned example with an input image of 28 × 28 and local receptive field
of 5 × 5 with a stride length of 1, each neuron in the hidden layer has 5 × 5 weights
and a bias corresponding to its local receptive field. Another important feature of the
CNNs is that the weights and bias are shared among every hidden neuron in a single
hidden layer, i.e. same bias and weights are being trained for every neuron in the 24 × 24
hidden layer. The output of the j, kth hidden neuron can be represented as:

σ

(︄
n∑︂

i=0

n∑︂
i=0

wl,maj+l,k+m

)︄
(3.11)

Where, σ is the activation function which is being used to trigger the neuron, b is
the bias which is being shared, wl,m is the array of shared weights, in this example this
array would be of size 5 × 5 and ax,y is the activation of input at position x, y.

This shows that the entire first hidden layer will detect the same feature. Here the
feature can be defined as a pattern, for example, an edge in an image or a curve, or the
geometry of the detection, which is detected by the hidden neuron that activates the
neuron. The complete first hidden layer will detect the same feature in the entire image
but in different locations in the image. Suppose a hidden neuron learned the weights
and bias to detect a horizontal edge in a particular receptive field in an image. Now
this feature detector can be used anywhere in the image to find the horizontal edge in
the given image. In the abstract terms, CNNs can handle the translation invariance in
an image, for example, if the position of the pedestrian is moved in the image, but the
CNN can still detect it as a pedestrian.
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Because of this single feature detection, sometime the mapping from input layer to
the hidden layer is also called a feature map. The weights and bias which define the
feature map is called shared weights and shared bias. These shared weighs and shared
bias are often termed as a "Kernel" or a "filter".

A single feature detector or a feature map can detect a single localized feature in an
image. To detect a complete object in an image, usually more than one feature maps is
required. Thus, the combination of several feature maps builds one convolutional layer.
This can be illustrated in Figure 3.8.

28 x 28  input neurons first hidden layer:  3 x 24 x 24  neurons

Figure 3.8: Sliding of the local receptive field in the input domain [71]

In Figure 3.8, 3 feature maps are shown. Considering the example, each feature
map is characterized by a set of 5 × 5 shared weights, and a single shared bias. This
results in detecting 3 different types of features by the network, where each feature is
detectable throughout the image. However, as mentioned, in practice CNNs use many
more feature maps to detect the object in an image.

Another advantage of using the shared weights and biases is that it reduced the
number of trainable parameters in a CNN network. In our example, for a 5 × 5 local
receptive field the number of weights needed will be 5 × 5 = 25 and a shared bias. Hence,
each feature map comprises of 26 trainable parameters. If 30 feature maps are needed,
then it will make 30 × 26 = 780 parameters and it will define a convolutional layer.
However, in comparison with a fully connected layer, the input images are presented as
a vertical layer of neurons which will be 28 × 28 = 784, and if a hidden layer has 30
neurons then the total trainable parameters would be 784 × 30 × 30(biases) = 23, 550.
Therefore, a convolutional layer would require 40 times fewer parameters than the fully
connected layer. This results in faster training of the network and helps in building a
deep network of multiple convolutional layers.
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3.3.2.4 Activation function

In CNN, it is typical to add non-linearity to the convolution layer using the non-
linear activation function. They are described as a separate layer coming after each
convolutional layer. An effective way to create a non-linear network is to use Rectified
Linear Units (ReLU). A rectified linear function uses a ramp function to generate the
output:

f(x) = max(x, 0) (3.12)

This function is easily computable and differentiable for back propagation. In
practice, ReLU has replaced sigmoidal functions, which offer smooth derivatives but
suffers from slower computations and gradient saturation problem.

For multi-class classification tasks, the Softmax function is used:

σ(−→x )i = exi

n∑︂
j=0

exj

(3.13)

The Softmax function computes a vector of i arbitrarily large values and generates
the vector of i values ranging from 0...1 and sums up to 1. These output values can
also be utilized as class probabilities. A more detailed analysis of different activation
functions can be found in Section 3.2.2.

3.3.2.5 Pooling

Convolutional layers in a CNN apply kernels to the input images to create the feature
maps that detect the input features. These feature maps are sensitive to the location of
features in the input, whereas, at the deep end of the network, these maps are used to
recognize the multiple high-level patterns rather than the exact spatial location of the
features [82].

A common approach to solve this problem is downsampling where a lower resolution
of the images are used which still hold the information about the large or important
structural elements without the fine details that may not hold much value for the
underlying task. In other words, it simplifies the information in the output from the
convolutional layer. Moreover, it also helps to keep the computational time manageable
in a CNN. The downsampling can be achieved in two ways i.e. by introducing a pooling
layer or stride (as mentioned in the previous section).

In detail, the pooling layer is added after a convolutional layer, specifically when
an activation function (e.g., ReLU) has been applied to the feature maps. It efficiently
reduces the size of activation maps. A CNN model with a convolutional and pooling
layer may look as follow:

1. Input image
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2. Convolutional layer
3. Activation function
4. Pooling layer

The pooling layer operates on each activation map to create a new pooled feature
map of the same number. These pooled feature maps are the summarized version of the
patterns detected in an input image. Pooling also results in making the network more
translation invariant by causing the detectors to be less accurate. However, adding a
pooling layer can also result in neglecting the spatial relationship information between
sub-parts of the patterns. The two commonly used functions for the pooling operations
are:

• Maximum pooling or max pooling outputs the maximum value for each patch of
the activation map

• Average pooling calculates the average value for each patch of the activation map

An example can be seen in Figure 3.9, where the max pooling with the input region
of 2 × 2 was used to output the maximum activation.

hidden neurons (output from feature map)

max-pooling units

Figure 3.9: Max pooling applied on a single hidden layer [71]

In the example we have used so far, we received the hidden layer with 24×24 neurons,
after the pooling layer with the 2 × 2, the output will be 12 × 12 neurons. As mentioned,
more feature maps are needed to detect a particular object in an image. Therefore,
multiple feature maps can form a single convolutional layer. Pooling is applied to each
feature map in the convolutional layer. An example can be seen in Figure 3.9.

3.3.2.6 Fully connected and output layers

The final layer typically used for a CNN is fully connected layer. This is also called the
"decision" or "classification" layer. In the final layer, the feature map matrix is flattened

31



3. Theoretical background

28 x 28 neurons 3 x 24 x 24 neurons

3 x 12 x 12 neurons

Figure 3.10: Max pooling applied on the complete convolutional layer [71]

into a vector and fed to a fully connected layer like a neural network. By the end of
this, the neural network generates its output.

The error in the prediction is calculated in terms of the cost function, commonly
referred to as the loss function in CNN, usually cross-entropy is used to achieve this.
This loss function helps in determining the accuracy of the network. This information is
then used to optimize the network to increase its effectiveness.

In the example we used with 28 × 28 neurons, the final architecture can be seen in
Figure 3.11. Each neuron in the final layer is connected to each neuron from the pooling
layer. The number of neurons in the final fully-connected layers refers to the classes
defined in the training stages.

28 x 28 3 x 24 x 24

3 x 12 x 12

Figure 3.11: The CNN architecture [71]
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3.3.3 Important terminologies

In this section, the important terminologies that are commonly used in neural networks
and convolutional neural networks are defined.

3.3.3.1 Supervised and Unsupervised learning

Machine learning algorithms can be divided into two main categories; supervised and
unsupervised [76, p. 3]. In supervised learning, data with their respective labels are
fed to the model for training. Once the model is trained, another dataset similar to
training data whose labels are kept hidden or unknown can be further fed to the model
for the prediction. On the other hand, in unsupervised learning, prior labels are either
inaccessible or accessible but they don’t hold much importance for the application.
Unsupervised learning, thus, dwells on studying how a model can infer functions to
define hidden patterns or structures from unlabeled data. Semi-supervised learning is
another category of machine learning. It is gaining its root where the aim is that the
algorithm tries to exploit the use of comparatively small-sized data and rather large-sized
unlabeled data. In this thesis, supervised learning is used, where the labels were given
to the network while training and the network were asked to classify the output based
on pre-given labels.

Another notable learning technique is Reinforcement learning. It is based on
rewarding required behaviours and/or oppressing undesirable behaviours. Overall,
in reinforcement learning an agent can perceive and interpret its environment, take
actions, and learn through trial and error. Reinforcement learning is based on scalar
feed which can be termed as weaker than providing labels, however, it depends upon
the application.

3.3.3.2 Parameters and Hyperparameters

The parameters that are tuned or changed before starting the training of the model are
referred to as hyper-parameters. These parameters include the Kernel size, the choice of
activation function, the number of iterations to train the model and the learning rate
of the model mostly termed as α. Tuning the hyper-parameters can have a significant
impact on the outcome of the model.

The parameters of the model refer to the Weights (W ) and Bias (b) of the model.
These are learned by the model through the back-propagation algorithm. Therefore, it
is important to identify and discriminate between the parameter and hyper-parameters.

3.3.3.3 Overfitting and Underfitting

Overfitting refers to a statistical model that captures the underlying patterns and noise
in the training to the extent that it has memorized the training examples. But it is not
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able to generalize the new data. Overfitting occurs if the model shows low bias but high
variance.

Underfitting usually happens when the model has not learned enough from the
dataset. And it is unable to define the correct relationship between the input and output
which in result generate a high error and results in unreliable predictions. Underfitting
occurs when the model shows high bias.

3.3.3.4 Epochs and Iterations

Epoch is the term which is used when the network has seen the complete data available
in a training dataset, in other words when all the data has been passed through the
network. Whereas iteration is used when the network sees one batch of the training
data. If all the data has been passed in one batch, then iteration and epoch will be the
same. Another example would be, if a training dataset consisting of 960 samples and a
batch size of 32 has been used, then while training 30 iterations will make 1 epoch. The
Number of epochs is a hyper-parameter which can be tuned. However, if the value is
too large or too small, the network can tend to overfit or underfit and if the number
of epochs is too small then the network needs more iterations to see all the data and
ultimately converge.

3.3.3.5 Training, Validation and Test dataset

There are three different types of datasets that are being used by the research community.
When a large dataset is available, it is then divided into three categories, training,
validation, and test datasets. Training dataset refers to the data that is used to train the
model. The validation dataset is used to check the performance of the trained algorithm.
The test dataset is used to evaluate the performance of the final model after the training
and fine-tuning of the hyper-parameters. This is done to see if the model is biased or
not towards the unseen data.
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In this chapter, the dataset, to detect the curb from both sensors, i.e., Camera and
LEDDAR, has been discussed in detail. The necessary steps, e.g., the essential analysis
of the streets/pavements structure of Berlin, the statistics involving the older pedestrians,
the prototype developed to collect the data, the software used to refine the dataset, etc.
have been discussed in detail.

Dataset collection is one of the most pivotal tasks in Deep learning. Any supervised
deep learning task requires good, structured and labelled data. This data could contain
the meaning of images, videos, emails, driving patterns, phrases and so on. This dataset
is then fed to a learning model for the desired prediction task. Unfortunately, despite
our world being flooded by data, quintillion bytes a day, a huge amount of it is not
structured or labelled. It means that for most supervised learning techniques, it is
somewhat unusable.

The primary goal of our research is the detection of the curb and its surroundings
accurately. It shows the transition between the sidewalk and the road. To train
the network and detect the curb, appropriate data is required. This data must be
representative of the task at hand, that is, in this case, the representations of the road
junction that the older pedestrians would use. Since there was no existing dataset
available, a new dataset had to be collected and annotated from scratch.

For the detection of the curb, two sensors were used: A camera and LEDDAR as
discussed in Chapter 2, section 2.3. Both the sensors fulfil our requirements. The
camera used in this research was chosen based on its weight and price. Moreover, it
also should be computationally inexpensive. Hence, the camera selected was the USB
Webcam HD C270 from Logitech which has a focal length of 4.0mm with an optical
resolution of 1280 × 960 and a maximum frame rate of 30fps @ 640 × 480 with the 60°
field of view [89].
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Similarly, the LEDDAR which was used in this research is LEDDAR M16, it is an
economical distance sensor which doesn’t weigh too much and like a Camera, it is also
computationally inexpensive. The LEDDAR used in this research is a 16-segment solid-
state LiDAR sensor module. The LEDDAR M16 sensor module uses 16 independent
detection channels to deliver continuous and precise detection combined with exceptional
lateral discrimination. It has a detection range of 146m and a data acquisition rate of
up to 100 Hz [61].

4.1 Pre-analysis as a basis for the data collection

As this prototype was developed specifically for Berlin, before we could start collecting
the dataset for training, it was necessary to analyse the different sidewalks existing on
the streets of Berlin. This analysis was imperative in concluding what the data should
be comprised of concerning the existing pavement structure and its frequencies. The
algorithm should be robust against the different weather conditions, illumination effects
etc. Therefore, the dataset should also take into account important aspects like weather
conditions, crash statistics of Berlin etc.

4.1.1 Analysis of Berlin sidewalks

To gain a better understanding of the different structures and types of sidewalks in
Berlin, the sidewalks in Berlin were thoroughly analysed. According to the Department
of Urban Development in Berlin, the minimum legal width of the sidewalks existing in
Berlin is 2.5m [3]. Officially, the typical existing sidewalk structure is divided into three
main zones and are called "upper stripe, central walkway and lower stripe". If we look
at the sidewalk standing on the street, the first zone after the curbstone is the "lower
stripe" and after it comes to the "central walkway". Once the central walkway ends, the
upper stripe begins. The upper and lower stripes are primarily made of concrete slabs
and cobblestone. The central walkway is mostly made of artificial stone or granite slabs
[3]. For this analysis, the sidewalk was divided into three parts, where zone 1 represents
the transition between curb and road or the lower stripe. Zone 2 represents the central
walkway and zone 3 represents the upper stripe. An example of a sidewalk in Berlin
with zone divisions can be seen in Figure 4.1.

Another important structural aspect to consider is the height of the curb stone. The
height of the curb can vary depending on the location of the curb. If it is situated on
the pedestrian signal, the height sinks significantly, to keep it convenient for pedestrians.
Therefore, we can call it an official crossing. On the other hand, the height of the curb
at the pedestrian crossings, where there is no pedestrian signal present, is elevated
and therefore termed an unofficial crossing. The height of the curb at the unofficial
crossings in Berlin remains constant with little or no variations. Therefore, the official
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and unofficial crossing also plays an important role in the analysis. In official crossings,
there is a traffic signal present to facilitate the pedestrian, hence, the main concern is
the unofficial crossing, where there is no traffic signal present to help the pedestrians,
and this is where the most accidents occur as older pedestrians sometimes are not able
to see the oncoming traffic.

Figure 4.1: Subdivision of the sidewalk in three different zones (taken from [62])

After a basic structure analysis, it was necessary to find out the different types of curbs.
Berlin is divided into 12 districts. To figure out the existing types of sidewalks, each of
these 12 districts were analysed. For this purpose, a total of approx. 1000 random points
were selected from all over Berlin by keeping the share of each district homogeneous.
These data points were categorized using ArcGIS; ArcGIS is the Geographic Information
System Software, which is used for creating maps and analysing geographic data. A
rough sketch of the points distribution can be seen in Figure 4.2.

Figure 4.2: Map of Berlin depicting 1000 randomly selected points
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To visualize these data points Google Earth Pro was used. Google Earth Pro is
a program that is used to render the 3D presentation of the Earth based on satellite
imagery. Each data point was conceived in Google Earth Pro to find out the existing
sidewalk structure. An example of a data point being visualized in the Google Earth
Pro can be seen in Figure 4.3. A few points where there was no street view available
were discarded from the analysis.

Figure 4.3: A street view of Charlotten street in Berlin taken from Google Earth Pro

While analysing each data point, multiple things were inspected:

• Sidewalk structure: The type of sidewalk and number of existing zones

• Curbstone: Characteristics of curbstone were analysed, like type and shape

• Road structure: The material of the road was also analysed to determine whether
it is Asphalt, stones or dirt

• Height of the curb: The height of the curb was also analysed at the official and
unofficial crossings

Our focus lies on determining the types of structure existing in predefined zones,
and a conclusion was drawn from this analysis. The results show that there are eight
different types of sidewalks generally exist in Berlin, namely:

1. Cobblestones
2. Concrete stones
3. Grass shoulder
4. Concrete pavement
5. Asphalt pavement
6. Natural stone
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7. Large stone
8. Concrete slabs

From the analysis, it was also concluded that the most commonly occurring pavements
on the sidewalks in Berlin are cobblestone, concrete stone, and grass shoulders. An
example can be seen in Figure 4.4

(a) Cobblestone (b) Concrete stone (c) Grass shoulder

Figure 4.4: Examples of the three most occurring walkway surfaces in Berlin

The statistics exhibiting the most common sidewalk structures for the three zones
are shown in Figure 4.5.

Figure 4.5: Frequencies of different pavement surfaces in the three zones

The focus for the dataset characterizing a sidewalk lies in Zone 1, which is closest
to the curb and is captured by the camera accordingly. The most used material is
cobblestone (Figure 4.4a). Zone 2, on the other hand, has relevance, especially for
pictures that don’t show the road. This information is captured by the camera when
the users walk along the street with no intentions to cross the street and thus move
parallel to the curb. In Zone 2, the most occurring material is concrete stones (Figure
4.4b). Although the statistics were also created for Zone 3, however, the occurrence of
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Zone 3 in many walkway structures is relatively less. Also, it doesn’t matter much for
the training session because the distance of the road from Zone 3 is more than 2 meters,
hence, exceeds our basic requirement. This is the reason that Zone 3 was not considered
for the creation of the dataset.

From each district analysis, Charlottenburg and Spandau districts were chosen for the
data collection because they have the highest ratios of cobblestone as pavement structures
i.e. 10.28% and 8.06% respectively. Moreover, these districts also provide a good
combination of pavement structures regarding their availability and their combinations
with other pavement structures.

4.1.2 Creation of data matrix

To make the system more robust, the detection algorithm must also work efficiently
in diverse weather and light conditions. The majority of the accidents occur in lower
visibility conditions i.e., in the evening or on rainy days [22]. Therefore, the system
should also consider the time of the day. Moreover, it must be robust against obstacles
such as parked cars which can provide hindrance and bring a new aspect while designing
the detection algorithm. Similarly, leaves on the ground can hide the curbstone partially
or completely and make it difficult for the system to perform efficiently. Another
important point to mention is that pedestrians do not necessarily cross the street at
an angle of 90° to the road, hence different possible angles of crossing the street should
be considered while crafting a design for the assistance system. To systematize this
data collection, a matrix was created, which contains all these aspects and considers
the conclusions drawn from the Berlin sidewalk analysis. This matrix also considers the
number of crashes in each district, weather statistics e.g., the number of sunny/rainy
days in a year etc. Percentages were assigned according to relevance based on the
frequency of roadside accidents involving older pedestrians.

The overall percentage (100%) of the dataset was divided into three main categories,
1) Morning - 30%, 2) Noon - 30%, and 3) Evening - 40%. Afterwards, these three
categories were then further divided into two categories High visibility (HV) and Low
Visibility (LV) because visibility plays an important role in traffic crashes and in training
an algorithm based on camera images. Another important aspect considering the
training of algorithms can be the state of pavement which means either it is wet or
dry because the intensity of pixel values changes comprehensively, therefore after the
visibility category, a new setting was introduced comprising of the wet and dry floor.
And then these two categories (dry and wet floor) were divided into four sections which
are 1) leaves, 2) parked cars, 3) obstacles and 4) free images. Free images represent a
category where a clear pavement structure can be visualized e.g., without parked cars,
obstacles, leaves, etc. Obstacles represent the main holes, poles, trees, bicycles on the
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sidewalk, people, etc. An overview of the categorical division of the dataset can be seen
in Matrix 4.1.

Morning 30%

HV 10% LV 20%
Dry Floor 7% Dry Floor 12%
Leaves P. Cars Obs. Free Img Leaves P. Cars Obs. Free Img
2% 2% 1% 2% 2% 4% 2% 4%

Wet Floor 3% Wet Floor 8%
Leaves P. Cars Obs. Free Img Leaves P. Cars Obs. Free Img
0.5% 1% 0.5% 1% 1% 3% 1% 3%

Noon 30%

HV 20% LV 10%
Dry Floor 15% Dry Floor 7%
Leaves P. Cars Obs. Free Img Leaves P. Cars Obs. Free img
3% 5% 3% 5% 2% 1% 2% 2%

Wet Floor 5% Wet Floor 3%
Leaves P. Cars Obs. Free Img Leaves P. Cars Obs. Free img
0.5% 2% 0.5% 2% 0.5% 1% 0.5% 1%

Evening 40%

HV 20% LV 20%
Dry Floor 10% Dry Floor 10%
Leaves P. Cars Obs. Free img Leaves P. cars Obs. Free Img
2% 3% 2% 3% 2% 3% 2% 3%

Wet Floor 10% Wet Floor 10%
Leaves P. Cars Obs. Free img Leaves P. Cars Obs. Free Img
2% 3% 2% 3% 2% 3% 2% 3%

Table 4.1: The matrix showcasing the categorical division of the dataset

The abbreviations used in the Matrix are:

• HV - High Visibility

• LV - Low Visibility

• P. Cars - Parked Cars

• Obs. - Obstacles

• Free img - Free images
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4.2 Prototype

Considering the requirements of the system and after the detailed analysis of Berlin
sidewalks, a prototype was developed to collect the datasets for the camera and LEDDAR.
While developing this prototype it was also considered that this will also be used to
test the system in a real-time environment with the target group i.e., older pedestrians.
Hence, a walker was used to mount all the sensors and devices so that it doesn’t put
too much strain on the older pedestrians.

The prototype consisted of the following items:

• Walker (Invacare Banjo P452E/3)

• USB Webcam HD C270 from Logitech

• Leddar M16

• Notebook (Lenovo Y720-15IKB)

• Arduino Uno WiFi

Figure 4.6: Prototype with the customized foundation and sensors

Figure 4.6 shows the walker which was used for data collection and later for testing
purposes. A customised structure was made for the walker to mount the sensors safely
and fixedly. A synthetic housing was developed for the camera using a 3D printer. The
notebook is used to connect the camera and the LEDDAR using a USB interface. This
prototype served to record the datasets, from camera and LEDDAR, for the experiments
in the vicinity of the curb and its surrounding in different conditions of light, weather,
and obstacle.
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4.3 Camera dataset

The camera was used to film the curb and was mounted in a way on the walker that it is
looking at the surface with an angle to fulfil the requirement of detecting the curb within
the distance of 2m ± 1. The video was sampled at ten frames per second (FPS) as the
higher sampling rate led to redundancy and thus did not provide additional beneficial
information. The images were collected following the data matrix 4.1, created solely for
data collection.

To collect the data, the multiple streets in chosen districts of Berlin were filmed
in various scenarios mentioned in Table 4.1, and obstacles such as pedestrians, parked
cars, bicycles, trees, poles, sewage holes, fire hydrants, etc. were filmed. The video were
filmed at different times of the year and in every season to capture the essence of each
season and to incorporate all the scenarios. This video was then used to extract the
images which were then used to train the network. Initially, for the detection, around
150,000 images were extracted from the films made of curb stone and the obstacles.

The main goal of our research is to detect the scenarios where the user i.e., the older
pedestrians, faces potentially hazardous situations. Therefore, rather than detecting each
scenario or obstacle as a separate class, it was decided to opt for the binary classification
task. The two classes represent the scenarios: a) where the users should be given an
alarm considering the hazardousness of the situation or, b) where the users should
not be given an alarm when the surroundings don’t represent a situation where the
older pedestrians can be hurt potentially. The classes were initially named positive and
negative classes. Hence, the dataset was collected and divided based on these two classes
categorised as positive labelled images and negative labelled images. In terms of the data
collection, it is important to mention that different recording sessions were conducted to
create the dataset for each class and then the images were extracted respectively.

4.3.1 Positive labelled images

Positive class depicts the scenarios when the pedestrian is going to cross the street either
it could be an official or unofficial crossing. It is important to remember that most
crashes happen at unofficial crossings. Moreover, different approaching angles were used
to cross the street.

The data collection was initialized by collecting the images from the category of free
images. Free images are the images in which the curbstone can be seen clearly without
the cars, obstacles and leaves present. A few examples can be seen in Figure 4.7.

In Figure 4.7, different images in a collage are shown showcasing the curbstone in
different environmental conditions. While collecting the images the visibility conditions,
type of pavement, angle of approach, the height of the curb, dryness/wetness of the
pavement, etc. were taken into account.
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Figure 4.7: A few examples from the category "free images"

After the collection of the free images, the date was expanded by taking the images
from the leaves category, which can be seen in Figure 4.8. All the scenarios were exploited
again while collecting the images from this category. These images had to be categorized
because they hold importance when the pavement is covered in leaves, especially in the
season of Autumn when everything is relatively camouflaged with leaves.

Figure 4.8: A few examples from the category "leaves"

Afterwards, the images were collected with the obstacles in the frames. Here, all the
obstacles lying in the pedestrian’s way were filmed irrespective of their location, i.e.,
closer to the curb or not, because the obstacle provides a hindrance in any case. It can
also create problems for older pedestrians even if they are walking alongside the curb
and have no intentions to cross the street. An obstacle could be a pole, sewage holes,
trees, bicycles, etc. A few examples can be seen in Figure 4.9.
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Figure 4.9: A few examples from the category "obstacles"

Another important aspect that was covered while collecting the dataset was parked
cars. It represents the importance in the case when the pedestrian is going to use the
unofficial crossings where the cars are parked. In Berlin, cars can be parked alongside
the curb stone. Hence, it was vital to consider this information in the dataset. Different
angles of the cars were considered while collecting such images. A few examples can be
seen in Figure 4.10. Moreover, the idea was that system should also be able to detect
the cars if they are parked partially on the curb and partially on the street either in
horizontally or vertically.

Figure 4.10: A few examples from the category "cars"

Another important factor which impacts hugely on the training of the network to
detect the curb is the condition of the pavement, whether it’s dry or wet. Because, in
some cases, e.g., rain, the surface of the pavements changes the colour significantly and
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have a significant impact on the pixel values in the images which in turn hold importance
in the training of the network. To elaborate on this, a few images have been shown in
Figure 4.11 which show the difference in the appearance of different surfaces.

Figure 4.11: A few examples from the category "wet floor"

Till now, all the categories in the positive labelled class have been shown. These
collages also demonstrate various visibility conditions. These categories were important
in terms of training a network to detect the curb stone at a predefined distance in
various scenarios.

4.3.2 Negative labelled images

The negative class represents the case when the pedestrian has no intention to cross
the street. In this case, the pedestrian is walking on the pavement or can also walk
alongside the curb if the pavement is too small.

Hence, for the negative class images, scenarios were considered where the pedestrian
is walking parallel to the curb and isn’t going to cross the street. In addition, while
collecting these images following aspects were also taken into account: the visibility
conditions, surface condition (in terms of pavement structure, dry/wetness of the surface,
etc.), leaves, obstacle, shadows, etc. Some of the samples are shown in Figure 4.12.

4.4 LEDDAR dataset

The LEDDAR has been mounted on a walker so that the channels are facing the curb
stone vertically with an approximate angle of 45° in the predefined distance of 2m ± 1.
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Figure 4.12: A few examples from the negative labelled class

4.4.1 Schematics

The schematics can be seen in Figure 4.13.

Figure 4.13: Schematic diagram of the LEDDAR sensor

In Figure 4.13, "t" represents the channels of the LEDDAR in different time intervals.
When the walker is moved towards the curb stone and approaches the predefined
window, the LEDDAR detects the difference in height between the curb and the road.
In consequence, it indicates a change in value, as the lateral distance between the
LEDDAR receiver and the deflecting surface increases. This means that, for one channel
e.g., channel number 16, at t = 0, the deflecting surface is the pavement and, at t
= 1, the deflecting surface is the road. Therefore, a profile can be made where this
channel indicates this height difference. This provides an array of data in the shape
(16, 1). Similarly, a profile can be made for each channel. The software Lab Streaming
Layer (LSL) was used to collect the data with the relative timestamps. LSL makes it
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Figure 4.14: A 3D model of the LEDDAR sensor to detect the curbstone

possible to provide different data streams with timestamps and refers to the same clock
(of the notebook). Recordings with LSL are implemented in the form of a publisher
receiver design pattern. On a notebook, a receiver, the so-called lab recorder, record
data streams and saves them in a file, including metadata and timestamps.

Similar to the images’ dataset, two classes were defined: positive and negative. A
3D model of the LEDDAR can be seen in Figure 4.14, where it can be seen how the
LEDDAR looks at the curb.

4.4.2 Visualization and collection of LEDDAR data

To visualize the arrays from each channel of LEDDAR, LEDDAR Software Development
Kit (SDK) was used. It can be seen in Figure 4.15.

Figure 4.15: Real-time depiction of the LEDDAR’s 16 channels

The left half of the figure shows the 16 channels of the LEDDAR. The y-axis
represents the number of channels, and the x-axis represents the lateral distance between
the sensor and the rebounding surface. The right-hand side of the figure depicts the
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scene of a curb stone with the parked car at the predefined distance of 2m ± 1 from the
pedestrian. Both

images in the figure are related in a way that both sensors (Camera and LEDDAR)
are capturing the same information. It can be seen in the figure that channel number
16, 15 and 14 are rebounding from the surface of the parked car. Whereas, channel
number 13 and 12 are rebounding from the surface of the road. It is also noticeable as
the difference in distance values between channel number 13 and 12 is comparatively
large. If the LEDDAR is moved towards the curb stone, the lower channel will come into
action and it will detect the lateral difference between the curb and the street. Therefore,
the information can be extracted from the channel values to find out which sensor is
detecting the curb. Similarly, it can also calculate the distance between pedestrians and
curb stones. The dataset for training was collected and the categories from data matrix
4.1 were considered. Moreover, the data was also collected for the negative labelled
class.
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This chapter presents a novel approach for detecting the curb stone and its surroundings
from a pedestrian’s point of view using a mono camera.

To recognize the curb and its surroundings with a camera, the images must be
analysed accordingly. Due to this, different computer vision techniques were compared.
The basic idea was to extract the features from the images and classify them to identify
the potentially hazardous situations for older pedestrians in traffic scenarios. Research
and experiments were done on the more traditional image processing techniques like
edge detection, therefore, different filters e.g., Canny filter [90], Sobel filter [91], and
Prewitt filter [92]. These were tested to extract the features of the curb in real-time
scenarios. These techniques are computationally fast but are not robust enough to tackle
the detection task in different scenarios. For example, when different structures of the
curb and pavement, weather, obstacles, etc. are considered. Therefore, it was decided to
use a convolutional neural network (CNN) using end-to-end learning. It provides more
flexibility in terms of feature learning.

CNNs are the best choice so far for extracting valuable features from image datasets.
CNNs have reformed pattern recognition techniques. Before the extensive acceptance of
CNNs, most of the pattern recognition tasks were achieved using hand-crafted features
followed by a classifier. The leap of the CNNs is that using the CNN features are
extracted from the images automatically using training examples. The CNN techniques
are specifically influential towards image recognition tasks where multiple datasets have
been leveraged using CNN (e.g., MNIST [93], CIFAR-10 [94], ImageNet [95], etc.)

The approach used in this research was inspired by the work of Bojarski et. al.
[96]. They successfully implemented an end-to-end learning algorithm using a CNN
in the context of autonomous driving, where they used a 9-layer network including
normalization and three fully connected layers to develop an end-to-end control system
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for the vehicle’s steering. This work was an extension of the work of Muller et al. [97],
who pitched the idea of end-to-end learning.

End-to-end learning is, if a network is being used in the context of end-to-end
learning, it learns the whole processing pipeline without the need to label explicit parts
of the data. For example, in the case of the image dataset, it is sufficient to label
the whole image rather than label the individual pixels in the image, which saves a
considerable amount of time and effort regarding the annotation of the data.

5.1 Training of algorithm

The major components required to train the CNN network are the data and the
appropriate network architecture. Once the camera dataset was built (see Chapter 4.3)),
the next step was to select the data that represented all the scenarios in the traffic
environment. This also include training the network on the selected dataset to detect
the curb efficiently.

5.1.1 Selection of the data

One of the biggest problems the scientific community faces while training a deep neural
network is the collection and selection of appropriate data in a usable format. This data
should be able to correlate with the problem at hand i.e., the data should portray the
problem. It must contain all the possible scenarios that are part of the defined problem.
The data selection stage is important. The outcomes of a trained network must equate
with the expected predictions, and the efforts to build a trained network must return to
the data collection and selection stage.

Deep learning algorithms generally need a good amount of training data to work
adequately. This data is called a training set which acts as a criterion against which an
algorithm is trained. Selecting the required training dataset requires time and expertise.
It defines that the most important thing for the network is to extract the features.

Deep learning usually works with three main types of datasets: training, validation,
and testing. Feeding the training set to the network results in the training of the model.
Using the training dataset, a network learns to weigh different features. It adjusts
the parameters according to their likelihood to minimize errors. The parameters or
coefficients are accommodated in the forms of tensors and collectively they are called
the model. Because they encapsulate a model of the training set.

The validation dataset is used to validate the accuracy of the trained algorithm.
Once the network has been trained and optimized, validation data is fed to the network.
It is to validate whether it can recognize the images correctly. If the accuracy is less
than the desired percentage then, the training parameters need rechecking. Another
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dataset used in this research is the test dataset. This dataset is used to have an unbiased
estimate of the final model whence it is passed through the model for model evaluation.

The data used for the training, validation and testing purposes should be able to
comprehend the task at hand effectively i.e., detection of the curb. In this research,
the whole dataset was divided into two classes: positive and negative with a ratio of
50 : 50. Which means half of the dataset is comprised of the images that contained
information about the presence of the curb in the data and if the pedestrian is going to
cross the street. While the other half of the dataset contained images which depicted
the scenarios when there is no curb present in the frame or when a pedestrian has no
intention to cross the street and is walking alongside the curb.

5.1.2 Data augmentation

Deep learning generally uses a tensor or a multi-dimensional array as a format. Therefore,
the data pipelines used in deep learning usually convert all data, which could be image,
video, sound, voice, text, or time series, into vectors and tensors on which linear
algebra techniques can easily be implemented. However, this data generally needs to be
standardized, normalized or cleaned for effectiveness.

In other words, deep learning algorithms are statistical algorithms, hence, there is a
possibility that the algorithm doesn’t classify the images with curb in them correctly.
And declares those falsely as the negative labelled scenario which could potentially raise
a hazardous situation for the user. There could be many possible reasons for this, the
most common could be iterated as the ineffectiveness of the data. It was mentioned in
the previous section that the dataset is as important as the network itself.

In the case of curb detection, the reasons could be coined as insufficient illumination,
motion blur, or real-time scenarios which could not be captured while collecting data but
are plausible to be seen by the model. For example, different angles of approach, different
heights, width, and colours of the curb, etc. among many others. Therefore, to tackle
such problems, data augmentation techniques were used. These techniques are also
being widely used to artificially increase the amount of training data. Domain-specific
techniques can be applied to generate a transformed version of the images from the
existing training data sample that belong to the same class as the original sample.

Deep learning models like CNNs can extract features from the images, invariant to
their location in the image. Nevertheless, augmentation techniques can further help to
transform invariant courses into learning. It can also help the model to extract features
that are invariant to transform i.e., illumination level in images, ordering of the images,
etc.

Data augmentation can further aid the model to counter the overfitting problems
(see section 3.3.2) by making the dataset large or diverse. Therefore, after the selection
of the final frames the data was augmented using different techniques.
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The techniques that were used frequently in the training of our model include artificial
rotation, shear effects, artificial shifts, and horizontal flipping.

Artificial rotation is a widely used augmentation technique and it helps the model
to become immune to the orientation of an object in the image. The image can be
rotated between 0° to 360°. Once the image has been rotated, some pixels move out of
the image, and it leaves behind an empty area. There are different techniques available
to fill this empty area. The system was designed in a way that the nearest pixel values
are used to fill this empty area. Moreover, it was designed in a way that it rotates the
images to 40°. An example can be seen in Figure 5.1. The left-hand side of the image
shows the original images and the right hand side shows the augmented images.

Figure 5.1: Images showing the effects of artificial rotation augmentation

Shear effects are used to shear angle in counter clockwise direction in degrees. An
example can be seen in Figure 5.2.

The artificial Shift range controls the amount of horizontal and vertical shift, i.e.,
it moves all the pixels in a predefined direction, either horizontally or vertically. Keeping
the dimensions of the image intact. Figure 5.3 shows the vertical shift augmentation in
an image.

Figure 5.4 shows the horizontal shift augmentation in an image.
An image flipping refers to reversing the rows or columns. In horizontal flips, the

columns are reversed to alter the image appearance. This can be seen in Figure 5.5.
Using the data augmentation techniques, the model was trained on the various

superficial conditions that can differ significantly in appearance in real time. It is
important to mention that the data augmentation techniques are usually applied only to
the training datasets. It is not applied to the test or validation dataset, in this research,
these techniques have only been applied to the training datasets. Moreover, the data
augmentation techniques are different from data preparation techniques such as pixel
scaling or image resizing.
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Figure 5.2: Images showing the effects of shear augmentation

Figure 5.3: Images showing the effects of vertical shift augmentation

5.1.3 Network architecture

Another important stage which has a huge impact on the outcome of a CNN is the
selection of the architecture of CNN. A reliable architecture can be a key factor in
determining the performance and efficiency of the network.

The key elements that are used in the architecture (e.g., convolutional layers, pooling
layers, filters, etc.) are relatively straightforward to comprehend. There are almost
limitless ways to design a deep net to solve a computer vision problem [98]. The
challenging part of using a CNN is to design a model architecture which best exploits
these simple layers. Because how the layers are assembled, or the elements are used often
impacts the accuracy and speed of the network for a prediction problem. In designing
an architecture, the most important steps are:

55



5. Detection with the Camera

Figure 5.4: Images showing the effects of horizontal shift augmentation

Figure 5.5: Images showing the effects of horizontal flip augmentation

1. To arrange convolutional and pooling layers in such a way that the model is well
suited to perform the task at hand efficiently

2. To design the number of filters and filter sizes in the CNN
3. To tune the rest of the hyper-parameters of the network optimally

It is also important to mention here the hyper-parameters related to the training of
a CNN will be discussed in this chapter. The hyper-parameters related to the structure
of a CNN have already been discussed in detail in Chapter 3 and section 3.3.2.

• Learning rate represents how fast a network revises its parameter. A high learning
rate speeds up the learning process but might not be able to converge, conversely,
slow learning slows down learning, but the convergence can be smooth.
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• Number of epochs is a hyper-parameter which is defined before training a model.
When the entire dataset has been passed through the CNN both forward and
backward once then it refers to one epoch.

• Batch size is the number of samples or sub-samples given to the CNN after which
a parameter update occurs.

Fortunately, in the world of computer vision, the appropriate and adequate
information regarding the above-mentioned points can be found in the previous research
in terms of architectural innovations and common patterns to develop an efficient network
[95, 99, 100, 101, 102, 103]. After studying the state-of-the-art research architectural
designs, intuition and a rationale can be developed on how to design a network efficiently
to perform the prediction task.

Subsequently, it was decided to design an innovative end-to-end deep net that can
handle the prediction task of curb detection precisely instead of using the already existing
architecture. To assess the network efficiency and capability for this task, the training
was done in several stages. As already mentioned, the task was approached as a binary
classification task where the classes were defined as, positive and negative classes. The
positive class represents the scenarios when the curb is present in the frame and the
curb lies at an angle in the frame which shows the pedestrians’ intent to cross the street.
The negative class depicts the cases where there is no curb present in the frame. The
negative class also depicts where the pedestrian is walking alongside the curb but has
no intention to cross the street.

To find out the best CNN architecture, the correct type and the amount of data
to predict the curb with the camera, the training of the CNN was done empirically in
several stages. Here, only two cases have been mentioned: the first, where we started
with the camera detection and the final case when the maximum accuracy was achieved.

5.1.3.1 First simulation

Initially, to ascertain the system’s competence, relatively simple images of the curb as
the positive class were used, these images were termed "free images". Free images are
images without obstacles, leaves, parked cars, etc., as shown in Figure 5.6. Contrarily,
the negative class, images were used where no pavements or curbs were visible in the
image. The images used are made available online by the visual geometry group from
the University of Oxford [104] and contain images of 11 different landmarks of Oxford.
A few sample images can be seen in Figure 5.7. The idea behind using the completely
different datasets as positive and negative classes was to ascertain the competence of
the CNN towards the data and to monitor the performance of the CNN. In this way,
CNN will be able to extract the features from both classes. The extracted features are
completely different hence it is easier for the CNN to classify these images.
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Figure 5.6: A few examples from the category "free images"

For the training of the CNN in this case, 7000 images were selected as a training
dataset with each class comprising 3500 images. As a validation dataset, 3100 images
were selected and 1550 images belonged to each class. The ratio between the training
and validation dataset was approximately 2 : 1.

The data augmentation techniques were implemented during the training of the
network to generate batches of tensor image data. The data was looped over in batches
for training purposes. The data augmentation was used only to process images during
the training to expand the scenarios domain while training, not beforehand to expand
the size of the dataset. For the image processing during training, few methods or
arguments were used, e.g., shear effect, shift effects, zooming and horizontal flips.

Our focus was to find and develop the best architecture. Different combinations of
layers were analysed and tested with different dropout parameters and filter sizes to
find out the best architecture. After thorough experimentation, an architecture was
chosen which was able to work best with the available data as shown in Figure 5.8. This
architecture had in total 2, 797, 665 trainable parameters.

The features from the CNN network also helped in determining the type and amount
of data it needed to work efficiently. The data was adjusted accordingly, e.g., to deal
with overfitting, one way to remove overfitting from the network is to feed more and
more diverse data to the network.

For the final architecture, image size (227, 227, 3) was used. It means the input plane
consisted of RGB images. A different number of training epochs were used to find out
the best accuracy matrix where the system doesn’t underfit or overfit. Finally, it was
found out that after training the model for 10 epochs, the model remains stable, i.e., no
overfitting or underfitting occurs. We used the batch size of 64.

Once the parameters have been set and learned after training, the accuracy of the
model can be determined using the validation accuracy and validation loss. It tells how
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5.1 Training of algorithm

Figure 5.7: A few sample images taken from the dataset provided by the University of
Oxford [104]

well the model works after each iteration. In our case, we observed a validation accuracy
of 0.995 and a validation loss of 0.0133. This indicated that the model was able to train
well on the given data. The training and validation results in the simulation can be
seen in Figure 5.9. It can also be seen from the graphs that there is no underfitting or
overfitting in the model.

(a) Accuracy graph (b) Loss graph

Figure 5.9: Accuracy graphs of the first simulation for every epoch

5.1.3.2 Final simulation

After the successful training of the model with the basic image category from the
street environment i.e., free images, further scenarios were introduced step-by-step that
contained more features to capture from the training’s point of view. For example, in
the positive class, categories like leaves, obstacles, illumination effects, multiple angles,
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Figure 5.8: Network architecture of the first simulation

parked cars, etc. were added. Similarly, the negative class was also supplemented with
different types of pavements and their combinations, illumination effects, leaves, wet
pavement etc. With the induction of each new category, the model was trained and then
the optimization of the hyper-parameters was done after observing the model’s behaviour
towards the new features. With the successful integration of each new category, the
dataset was also expanded and as a result, the computation time of the algorithm also
increased.

For the curb detection using the camera, approximately 150, 000 images from all
the categories, following the category matrix mentioned in Chapter 4, Matrix 4.1,
were collected. These images were extracted from the filmed curb and pavements and
represented the task at hand, i.e. helping the older pedestrians in the road crossing
tasks. Out of this sum, 108, 000 images were chosen to train the model. The data
compromised of two classes as defined; positive and negative. Each class had a 50%
share of the dataset i.e., 54, 000 images. This data was then divided into the training
and validation datasets with a ratio of 60 : 40. For the training dataset, 64, 800 images
and for the validation dataset 43, 200 images were used. This dataset contained all the
possible scenarios described in the requirement analysis.

In the end, this data was fed to the model to get trained. The image size of
(227, 227, 3) was used comprising of RGB channels. The data was augmented in real-
time during the training as was done in the first simulation. That means, the batches of
images were processed and given to the model.
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5.1 Training of algorithm

We treated this problem as a binary classification, hence the best available loss
function binary cross-entropy [105] was used. It can be represented as:

Lp(q) = − 1
M

M∑︂
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (5.1)

Here, y is the label (1 in the case of the positive class and 0 in the case of the
negative class) and p(y) is the predicted probability of the image being positive for all
the N images. For each image from positive class (y = 1), it adds log(p(y)) to the loss
function, i.e., the log probability, predicting the road crossing. For every negative class
image (y = 0), it adds log(1 − p(y)), i.e., the log probability of it predicting the no
crossing scenario.

For the optimizer, we used RMSprop [106]. It is a gradient-based optimization
technique which normalizes the gradient by utilizing a moving average of squared
gradients. It results in balancing the step size. It decreases the step size for the large
gradients to prevent exploding and avoids vanishing by increasing the step size for the
small gradients.

Another method that was used in the training of the CNN was early stopping. One
of the major challenges in training a CNN is the choice of the number of epochs. If
a model is less trained, there is a chance that the model will underfit and too many
epochs can result in an overfitted model. Early stopping is a method which allows the
user to assign many arbitrary training epochs. When the training starts and the model’s
performance stop improving on the validation dataset, then the early stopping aborts
the training, no matter how many epochs the model has used for training.

Once the prerequisites and conditions were met, the training was started. The
architecture of CNN was chosen empirically. The number of layers and their configuration,
kernel size, stride, and batch sizes were optimized through a series of experiments. It was
to find out the best possible model and architecture that can yield the highest prediction
accuracy. After each training, the system was tested thoroughly in the simulation
(using the test dataset, a dataset that the model has never seen before). The real-time
environment on the street of Berlin was also tested to find out where the system doesn’t
predict efficiently. The testing in real-time is important because there could have been
quite a few cases in which the model has never learned before. Even a small change
in the illumination could have a significant impact on the training. Therefore, it was
necessary to test the model in real-time scenarios thoroughly.

The final CNN model, which generated the best results, consisted of five CNN layers.
It had a total trainable parameters of 2, 656, 461. The stride of 2 × 2 and kernel size of
3 × 3 was used throughout the model. Two fully connected layers with varied neuron
sizes were added at the end [62]. The complete network architecture can be seen in
Figure 5.10.
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5. Detection with the Camera

Figure 5.10: Network architecture of the final simulation (taken from [62] )

The CNN layers are commonly used to extract features while the fully connected
layers on top of the CNN layers are usually considered as the classifiers performing
classification tasks. However, we used the end-to-end learning methodology, hence it is
hard to differentiate which module acts as the feature extractor and which serves the
role of a classifier.

5.2 Evaluation of the model

The model was trained for 10 epochs after that we achieved a validation accuracy of
97.49% and a validation loss of 0.136. The accuracy of more than 97% shows that the
system has been able to learn the underlying features of the network efficiently. The
training and validation losses of the model for every epoch are shown in Figure 5.11.
The graphs also shows that there is no overfitting or underfitting in the model.

In addition to the usual accuracy and loss evaluation, we tested the model with
techniques available within the deep learning community. One such way to determine
the efficacy of the model is the confusion matrix. The confusion matrix, also known as
the error matrix, is used to visualize the performance of an algorithm. The accuracy
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Figure 5.11: Accuracy graphs of the final simulation for every epoch

is visualized by detecting whether the model can assign the labels to the unseen data
correctly or not. Hence, 2400 test samples (1200 from each class) which haven’t been
used in either training or validation were fed to the model to draw the confusion matrix.
The confusion matrix can be seen in Figure 5.12. From the confusion matrix for the
positive class, the model was able to predict 1144 times correctly out of 1200 and for
the negative class, it was able to predict 1179 correctly out of 1200.
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Figure 5.12: Confusion matrix for 2400 test images

On the same test samples used for Confusion matrix, we also evaluated our model
for Precision, recall and F1 score.
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Precision is the ratio of correctly predicted positive samples to the total predicted
positive samples and is represented as:

Precision = True Positives

True Postives + False Positives

Recall, also known as sensitivity, is the ratio of correctly predicted positive samples
to all samples in a class

Recall = True Positives

True Postives + False Negatives

F1 Score is the weighted average of Precision and Recall.

F1 Score = 2 × Recall × Precision

Recall + Precision

The Precision, Recall and F1 score can be seen in Table 5.1.

Precision Recall F1 score
Positive 0.98 0.96 0.97
Negative 0.96 0.98 0.97
Avg/total 0.97 0.97 0.97

Table 5.1: Precision, Recall and F1 score of the system

This description of the data also makes it possible to analyse the model’s performance
using Signal Detection Theory (SDT) [107] as it is widely used in the field of Psychology.
Using SDT we can distinguish between the detection ability (sensitivity d′) and the
response bias (criterion c). Sensitivity d′ represents the accuracy after taking into
consideration the various types of errors and various types of correct decisions. Criterion
c states that whether the system is biased towards positives or negatives. SDT parameters
can be calculated as follows:

d′ = z[p(Hit)] − z[p(FA)] (5.2)

c = −0.5(z[p(Hit)] + z[p(FA)]) (5.3)

p(Hit) = Hits/(Hits + Misses) (5.4)

p(FA) = FAs/(FAs + CRs) (5.5)

SDT tells us in our case that the model has a very high sensitivity of d′ = 3.81 and
a conservative (high) criterion c = 0.2, which means that model is rather susceptible to
misses. As described in the requirements section (chapter 2 and section 2.1.2), we favour
misses over false alarms. However, a neutral unbiased criterion for the final system is
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our aim. Hence, the response bias can be adjusted either by making the improvements
in algorithm or hardware, if possible, or by using additional information e.g. by inducing
more data.

From the simulation results and the real-time testing of the system, we came to find
out that the novel algorithm developed for the camera using end-to-end learning with
CNN for curb detection performs efficiently. The benefit of end-to-end learning is that
the model provided the data without the hand-crafted rules and it was able to derive
useful information from the data itself. Another benefit that was observed that the
network was trained with a relatively lesser amount of data and yet it proved to be a
reliable solution. The results showed that the system works efficiently with different
types of curbs, pavement structure, condition of pavements etc. and is robust against
obstacles and leaves.

The system with only the camera works reliably with an accuracy of more than
97%. However, there are a few scenarios where the system is prone to misses and a few
cases where the system detects the crossing when there is none in the camera frame,
meaning a false alarm. It was also noticed that the system is more prone to false alarms
in case of the sunny condition, especially when there are shadows in the frame. The
reason can be the change in slight illumination in the camera frame immensely changes
the pixel values of the images which in result creates problems for the algorithm while
classification resulting in a false alarm. Hence, for the development of an assistance
system, to achieve the unbiased criterion, the aim was to reduce all the false alarms as
well as all the misses which means to improve the overall accuracy of the model. To
achieve this criterion, a distance sensor, LEDDAR, was fused with the camera.
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Sensor fusion using end-to-end learning

Using only the camera images, trained with the CNN using end-to-end learning algorithm,
the system was able to achieve the accuracy of more than 97%. However, the results from
the SDT theory and other evaluation techniques used in simulation, it was observed that
there were some misses and false alarms generated by the system also in some dangerous
situations for older pedestrians. To tackle this problem and to further improve the
accuracy of the system, a distance sensor, LEDDAR, was integrated with the camera.
This chapter discuss the details about the fusion technique that has been used to
integrate both sensors and provides the analysis and the results.

6.1 Methodology

The CNN was initially trained for the camera using end-to-end learning with the RGB
images. The image dimensions of (227, 227, 3) were used to train the model. With these
dimensions, model was able to extract the useful features and was able to identify the
road crossing in an optimal manner.

LEDDAR generates the data in the 2D format with 16 points per frame. As explained
in Chapter 4, in LEDDAR section (section 4.4), LEDDAR is being used with the 16
channels, where each channel generates a value in a particular time frame making it
an array of (16, 1) for one single time frame. Therefore, because of the heterogeneous
input planes comprising images and arrays, the use of the same CNN which was trained
for the camera images, is not a viable option. Also, training of a new CNN for the
LEDDAR data is not feasible either, because the CNN tends to reduce the dimensions
of the input data when the input data propagates through its layers which in turn may
results in losing part of the relevant information. This information loss can thus be
critical in performing the classification task. Thus, we decided to employ two different
training algorithms to process the input data from both sensors.
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6. Sensor fusion using end-to-end learning

For the camera images, CNN was chosen again to detect the curb as it gives the
best opportunity to explore, extract and learn the underlying features in the images. To
cater for the illumination effects (as discussed in the last chapter) in the RGB images,
this time it was decided to use the grey-scale values of the pixel. This way the effects
of light are comparatively diminished (e.g. shadows, brightness levels, etc.), especially
in sunny conditions and this resulted in a better prediction model. The image’s input
size was also slightly reduced to cater for the longer training time of the CNN. The new
input size had a resolution of (225, 225).

Multiple algorithms can be considered as a feasible option to train the LEDDAR
data to classify the road crossing scenarios. For example, Random Forests [108], ANNs,
etc. We decided to use ANN for the LEDDAR data as ANNs do not tend to lose the
dimensionality of the data. Moreover, ANNs are easier to fuse with the CNN and they
are also computationally fast. The reason for them being faster in our scenario could
also be that the dimensions of the LEDDAR data are comparatively too small.

For the fusion task, both networks were trained in parallel. Once the networks were
trained, we extracted the features from each network and concatenated them. These
concatenated features were given as input to a fully connected network. Afterwards, the
complete network was trained to optimize the hyper-parameters of the network which
helped in establishing conformity between the two networks. These fully connected
layers also perform the classification and generated output prediction. However, as
mentioned in the Camera detection part, in end-to-end learning it is hard to distinguish
which part work works as a feature extractor and which part performs the classification
[109].

6.2 Training of the algorithm

Once the methodology was defined, the next step was to train the algorithm to find out
whether the proposed model can perform the desired task accurately.

6.2.1 Data selection

Before we could start training the data, it was important to select and prepare the data.
For the CNN, images were chosen from all the categories mentioned in the category
matrix 4.1. When only the CNN was used to perform the classification task with the
camera images, the data augmentation was done in real time during the training of
the algorithm. This time the images were augmented beforehand. These augmented
images were given to the CNN network for training. The data was augmented using
artificial shifts, rotations, sheer and zooming effects, etc. The purpose was to present the
network with the various conditions that may present themselves in real-life situations
e.g. motion blurring, insufficient illumination effects, etc. Moreover, it also helps in
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preventing the overfitting of the network. For the training of the network, 40,000 images
were chosen. It is a binary classification, so the image dataset was divided into two
classes with a 50 : 50 ratio. A few samples from the positive and negative labelled
classes can be seen in Figure 6.1 and Figure 6.2 respectively. The dataset was further
divided with a ratio of 70 : 30 into training and validation datasets.

Figure 6.1: A few samples after augmentation from positive labelled class

Figure 6.2: A few samples after augmentation from negative labelled class

For the LEDDAR, 16 channels of LEDDAR were used to generate the 2D data,
where each channel produce a data point and hence an array of (16, 1) was obtained.
LEDDAR data was collected keeping in mind the two classes which we also used for
the Camera dataset: positive and negative. As the array obtained from the LEDDAR
channel consisted of 16 values, data augmentation techniques were not used because
adding the artificial noise to a single value could have changed the total outlook of
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the data. For the training, 40,000 data points from LEDDAR were used. Similarly,
the LEDDAR dataset was also divided into classes with a ratio of 50 : 50 and for the
training and validation dataset, the dataset was divided with a ratio of 70 : 30.

6.2.2 Network architecture

After the selection and preparation of the data, various experiments were performed
to find the suitable architecture that can perform the desired task accurately. The
training was started with the simplest of cases of the images and LEDDAR dataset, e.g.,
free images and free walkway categories without any obstacles, cars, leaves, etc. The
complex scenarios were given to the network to monitor the performance and to see
how the network adapts to the new data. The complexity in the network was increased
by adding multiple scenarios, such as illumination effects, motion blur effects, leaves,
obstacles, various weather conditions, angle of approach, type of pavements, etc.

After thorough experimentation, to achieve maximum accuracy, the final network
architecture consists of the following attributes:

The final CNN architecture, for the image’s dataset, consisted of 5 layers with a
stride of size 2 × 2. The kernel size of 3 × 3 was used in all the layers. The ANN
architecture, for the LEDDAR data, is comprised of 4 layers. Afterwards, the features
were extracted and fed to the three fully connected layers. The whole network was
then trained on the combined features from CNN and ANN. The complete network
architecture can be seen in Figure 6.3.

6.3 Evaluation of the system

After the training, the efficacy of the network was accessed through the overall accuracy
and loss values. A validation accuracy of 99.04% and a validation loss of 0.043 was
observed. The analysis for each epoch is shown in Figure 6.4.

Similarly, as it was done for the detection with the camera, different evaluation
methods were also used to evaluate the performance of the algorithm in simulation.
The confusion matrix was drawn for 10,000 samples to find out how the model behaves
towards the unseen data samples. The confusion matrix and can be seen in Figure 6.5.

The Precision, Recall, and F1 scores were also evaluated for the fusion algorithm
and can be seen in Table 6.1.

Precision Recall F1 score
Positive 1.00 0.99 0.99
Negative 0.99 1.00 0.99
Avg/total 0.99 0.99 0.99

Table 6.1: Precision, Recall and F1 score of the system
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Figure 6.3: Network architecture for the sensor fusion

For real-time testing, we tested the algorithm on the streets of Berlin. For this
purpose, the prototype, mentioned in Chapter 4.2, was used. The algorithm was running
on the Lenovo Y720-15IK notebook, which has NVIDIA GTX 1050 GPU. The aim
was to test and evaluate the system on the streets of Berlin in real-time. The system
was tested in various conditions. The real-time results show that after the fusion of
both sensors the accuracy has been improved. The system was able to detect the curb
in various scenarios. However, as it is a probabilistic system, there will always be a
probability for the system to miss some events or generate a false alarm.

From the real-time testing, we also found out that the detection speed is impressive.
The detection rate is 22 Frames Per Second (FPS). This means that the algorithm can
process and perform the prediction 22 times per second.
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Figure 6.4: Accuracy and loss graphs of the final simulation
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Figure 6.5: Confusion matrix for the test images (taken from [109])
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7
Actuators and field test

To test the system in a real-time environment with the relevant audience, i.e., older
pedestrians, a field test was performed. However, before we could evaluate the system
in real-time with the elderly, an interface had to be developed between the system and
the user. For this purpose, an alarm system had to be designed for the cases when the
system detects the curb. For example, generating a warning to the user, prompting
them to stop and focus on the oncoming traffic. This chapter focuses on the field test
and the user interface was developed to carry out the field test.

7.1 Selection and evaluation of actuators

To find the best medium to communicate with the older pedestrians, the state of the
art methods and interfaces had to be researched. Moreover, it was also important to
research that how perception works in older people and what kind of interface modalities
are available and applicable in terms of older people.

In humans, the sensory perceptions deteriorate with the age. It also depends strongly
on individual differences and various lifestyles. Furthermore, not all sensory perceptions
show an equally strong decline. While visual and auditory perceptions, for example,
decline sharply, however it is not the case with the sense of smell which declines at
later stages of life. However, when it comes to tactile perception, there have been far
fewer findings so far, since it often plays a rather subordinate role in our everyday life.
However, recent studies suggest that this little-used modality may offer advantages when
used, especially for older people [110]. Moreover, in contrast to visual and acoustic
modalities, it represents an immediate form of communication that users can neither
miss nor overhear and that runs a little risk of being overlaid by other environmental
information of the same type. The intuitive response to tactile stimulation is a turning
of attention. If it is possible to use this attention to unsafe environmental conditions,

73



7. Actuators and field test

an assistance system with a tactile interface represents reliable support with a simple
form of communication at the same time.

To ensure a broad gain of knowledge and a high degree of innovation in the project,
two different tactile interfaces i.e., vibration and temperature stimuli, were empirically
evaluated against each other and an auditory interface by the Human Factor experts
in the group [111]. One interface uses vibration as a communication signal. This is
perceived via vibro-receptors located on the skin. The other interface uses temperature
stimuli, which are perceived by human thermoreceptors. This modality has not yet been
used in practical applications, as there has been quite limited research on it. However,
initial studies demonstrate the potential of this type of information transfer [112].

A few factors had to be taken into account to evaluate the interface modality for the
pedestrian assistance. To evaluate the interface modality for the pedestrian assistance
system regarding the performance in hazard detection, the trust and acceptance of
the users as well as their attention distribution when using the assistance system, a
laboratory study was carried out with the target audience in the research group by the
Human factors experts [23, 29, 30, 66, 113]. For this purpose, 27 elderly test persons,
aged 65+ were examined. In the course of the four-hour survey, they were asked to
complete a hazard detection task, each accompanied by a visual or a cognitive secondary
task. The participants used three assistance systems one after the other in a different
order, each with a different interface modality (vibrotactile, thermo-tactile, acoustic).
In a baseline measurement, they completed the tasks without an assistance system for
comparison. The response times and errors as well as the acceptance of the system
by the users and the proposed workload were collected. Various types of errors in the
assistance system were simulated to investigate misconduct and trustworthiness. After
the evaluation, it was decided to use the vibrotactile sensors as they proved to be the
best medium to convey the information generated by the system to the participants.

7.2 Development of the system and user interface

After the selection of the interface modality, the next step was to develop the modality
and link it with the prediction algorithm. For this purpose, multiple components were
used. To generate the vibrations, flat button vibration motors with a diameter of 12mm

were used. It is an Eccentric Rotating Mass (ERM) motor. Evaluated with 3 VDC, it
offers a solution with low energy consumption and low noise level. The vibration motors
are implemented in two cuffs which were designed for this specific purpose. When
approaching the road, they generated vibrotactile signals that are intended to make the
users stop and focus their attention on the road traffic.

The vibration motor was enclosed in a band made of elastic cloth to avoid direct
contact with the user’s body. The band containing the vibration module was provided
to the user to wear on their biceps. The biceps were chosen, because when the alarm is
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generated and the user feels the vibration on their biceps, they will not focus towards the
source of vibration as the lateral distance between source and eyes are relatively small,
hence it will not create a hindrance in focusing their attention towards the traffic.On
the contrary, if we had asked the user to wear the device on the arms, e.g., wrists, in
such case when they receive the alarm, they tend to look at the wrist rather than the
street traffic as it has some lateral distance from their eyes. Therefore, we chose to put
the vibration motors on the upper arms of the users.

These motors were controlled using the Arduino Uno WiFi. The intensity and
duration of vibration were set beforehand so that it doesn’t irritate the user and they
feel comfortable with the alarm. The Arduino was connected using a wireless interface
with the Notebook and it was controlled within the algorithm. The algorithm detects
the curb stone and generates the alarm signal. The alarm signal is then relayed to the
Arduino which turns the vibration motor on to alarm the users.

Another important aspect that had to be analysed is if the user stops after receiving
the alarm and rotates their head to analyse the oncoming traffic. For this purpose, an
extra sensor Inertial Measurement Unit (IMU) was chosen to record the head movement,
velocity, acceleration, etc. The IMU used for this purpose was from the company
"Adafruit" and the model was "BNO055". The advantage of this model is that it
contains a high-speed ARM Cortex-M0-based processor which takes the values from
the accelerometer, gyroscope and magnetometer and does the sensor fusion to provide
accurate absolute orientation and acceleration among others.

One IMU was installed on the walker itself facing forward. The accelerometer with
the 3-axis was used to determine the direction of the IMU. This IMU, mounted on the
walker, was used as a reference point, as it is always facing forward. Another IMU was
mounted on a helmet which the participants were asked to wear. Hence, if the person
rotated his head, the difference in both IMU orientations will detect the movement of
the head. These IMUs were also controlled by the same Arduino which controlled the
vibration motors. In this way, all the sensors were synchronized with the same time
stamp. Therefore, it can be then determined when the person received the alarm, then
either he or she stopped and moved his head to analyze the oncoming traffic.

Another camera was installed on the helmet to track the motion of the head and to
record the surroundings from the user’s point of view in the form of a video. The camera
used for this purpose was a GoPro 7 black edition. A GoPro is a durable and portable
camera that is used to record the surroundings in the form of a video. It can also be
used to take pictures. GoPro can also record the location data (i.e., GPS data). In
this work, GoPro was only used to record the video and the location of the participant.
Therefore, if a person moves his head the camera will also be moved with the head
rotation, hence it can be analysed if the person stopped at a crossing and analysed
the road traffic. The video recording from GoPro was also used to analyse the users’
frequency and duration of the standing still. As GoPro is a standalone camera with an
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internal clock, therefore the time cannot be synchronized with the time of an Arduino.
A complete setup of the system with the user can be seen in Figure. 7.1.

Figure 7.1: An elderly person with the walker

Multiple simultaneous predictions were used to generate the alarm to increase the
accuracy and certainty of the prediction. 15 frames were used in total to generate the
alarm, i.e., if the system detected the curb in 15 consecutive frames, the alarm will be
generated. As the system’s processing speed lies around 18 fps that means about 1 sec of
predictions were used to generate the alarm. It was also helpful in reducing the number
of alarms generated. Furthermore, to reduce the number of received alarms, an alarm
was generated after every five seconds. It is done because if the user has stopped and
waiting on the road to get cleared, the user must not receive too many alarms while just
standing and waiting at the road crossing. It is done to prevent the user from getting
annoyed by too many alarms. The drawback was that it could be possible that the
system generated a false alarm and soon after there is a crossing in the frame and it
detected this crossing, however it didn’t generate the alarm as 5 seconds waiting window
hasn’t passed. Also, the other way around, after the detection of the curb, it detected
an object which was in the detection window and is relevant for our use case like a car
or a person in front however it didn’t generate the alarm because the system was in the
5 seconds waiting for the window but in this field study our focus was only to detect the
curb and to generate alarm and to observe how older pedestrian reacts to the alarms
hence it doesn’t have too many repercussions.
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7.3 Field test with the target group

After the development of the test setup to test the functionality of the system in real-
time, a field test was organized. The main research questions considering the detection
algorithm were:

• Does the system reliably detect the road crossing?

• Does the system accurately generate the alarms when it detects a crossing?

A few more perspectives were also analysed in the field test to answer the further
questions posed in this study. For example, the attention of the user towards the
road traffic with the assistance system, the data for this was collected using IMUs by
calculating the movement of the head for gaze frequency and its duration. Another
important perspective analysed was to see if the system helps in reducing the multi-
tasking effect of the user so that they can focus on the oncoming traffic. This was
detected using a GoPro camera by measuring the frequency and duration of standing
still. Subjective data such as experience and acceptance of the assistance system were
assessed via the questionnaires specially designed for this study.

This study was approved by the "Ethik-Kommission des Instituts für Psychologie und
Arbeitswissenschaft (IPA) der TU Berlin" under the name "Studie zur Nutzung eines
Fußgängerassistenzsystems im 310 Straßenverkehr" (serial numbers BRE_02_201808803).
The field test was conducted with 26 older people between the age of 65 and 85. The
average age was 73.15 and the standard deviation of the age was 5.38. The participants
were chosen with a gender distribution of 13 males and 12 females and one preferred to
stay anonymous.

The route was chosen in such a way that the systems’ accuracy can be tested variously.
This route is situated in Berlin and consists of multiple streets. It consists of multiple
road crossings. For the field test, 13 road crossings were selected which included both
official and unofficial road crossings. There were 7 official crossings and 6 unofficial
crossings. The complete route with the marked road crossings can be seen in Figures
7.2 and 7.3:

Figures 7.2 and 7.3 also show some of the crossings as sub-images. These images
show that different types of crossings were considered to test the system’s accuracy. This
route contained crossings with sunken curb, which is also considered official crossing,
and elevated curb, which is supposed to be unofficial crossing. The route also contained
different monuments, such as trees, poles (as can be seen in Figure 7.2), parked cars,
main holes, etc.

The field test consisted of one complete round trip of the route. One half of the trip
(either moving towards or coming back) was approximately 500m long. The complete
round trip was approximately 1 km long. Each half of the trip consisted of 13 road
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Figure 7.2: Figure depicting the first half of the route with the official crossings

crossings. On one half of the round trip, the system with the alarm modalities was
turned on i.e., whenever the system detected a curb in the frame, it generated the alarm.
However, on the second leg of the trip, the alarm modality was switched off i.e., the
system didn’t generate the alarm whenever it detected the curb. It was done to observe
how the participants behave in the road crossing scenarios with or without the alarm.

For the data analysation, there are a few important factors are important to discuss.
In the analysis, only the data has been presented which shows that if the system can
detect road crossings or not in real-life situations. The system was able to detect
the objects such as cars, pedestrians, poles, trees, etc. but they are not the scope of
this study. It is because there is no ground-truth data available with which it can be
compared how many of such objects were available to detect and how many of these
available objects the system detected. For example, it can be analysed how many road
crossings the system was able to detect out of the pre-defined crossings, but the rest of
the elements either pedestrians or cars are the variable factors so there is no ground
truth value available, hence the results are not presented here.

Another important aspect is that the detection itself was impacted by a lot of factors,
e.g., weather conditions, and the walking speed of the older people (sometimes they
walked fast, and the system detected the street but couldn’t gather enough positive
samples to generate the alarm). Sometimes at the crossings when there were other
people, the system detected them as an obstacle and generated the alarm. It also then
detected the curb but didn’t generate an alarm as it was designed in a way that it
shouldn’t generate alarms one after another too soon. The detection rate of overall
samples was also different in almost every case, it could be because of the hardware
used in the field study. The detection rate also depends upon the laptop’s condition
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Figure 7.3: Figure depicting the second half of the route with the unofficial crossings

(e.g., hardware, heating, etc.) other than the programming itself. Moreover, as it was a
test of the real system, the algorithm was tweaked during the field test to tackle the
problems which could have only been seen in real-life scenarios but can’t be observed
in the simulations. For example, the amount of the positive number of detections to
generate the alarm, the selection of the waiting window etc., factors also have an impact
on the overall detection.

The field test was conducted in the months of November and December of 2018 and
took almost 35 days to complete. The data was then analysed for the assistance system.
The preliminary results concerning the detection algorithm can be seen in Table 7.1 and
Table 7.2.

The first column in each table represents the Participants. The thirty participants
included the trial participants’ results have also been listed here. The second column
represents the route and it also contains two elements which represent each half of the
trip. One is going towards the endpoint with the assistance system turned on which
means with the support of the assistance system and another one represents the second
half of the trip i.e., coming back to the starting point with the assistance system turned
off. The third column shows the number of total samples the algorithm processed in
each half of the trip. This number also depends upon the speed of the user, if the
person walks slow or takes small steps then this number would be higher and vice versa.
The fourth column shows the number of positives i.e., the number of times the system
detected the curb and generated the alarm. The fifth column shows the False positives,
i.e., the number of times the system detected the curb, but it was not present in the
camera frame. The sixth column depicts the False Negative, i.e., the system was not
able to detect the curb in the images.

The preliminary evaluation shows that, in most cases, the system was able to generate
the alarm whenever it detected the curb stone but there were a few misses in some cases.
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Participant No. Route Total Detections Positives False Positives False Negatives
1 A 18080 10 10 3

B 15286 9 8 4

2 A 18925 12 9 1
B 17328 10 10 3

3 A 17690 12 10 1
B 14879 10 11 3

4 A 21242 13 11 0
B 17606 11 10 2

5 A 19430 11 8 2
B 14891 12 5 1

6 A 16626 10 5 3
B 15371 12 6 1

7 A 15990 12 7 1
B 13139 11 8 2

8 A 18247 9 4 4
B 16649 9 3 4

9 A 17794 12 8 1
B 18693 12 9 1

10 A 17741 13 10 0
B 18150 13 11 0

11 A 20367 13 9 0
B 19409 12 8 1

12 A 16368 13 10 0
B 14823 13 11 0

13 A 22606 13 11 0
B 22594 12 12 1

14 A 22929 13 12 0
B 24715 11 8 2

15 A 19703 12 8 1
B 20068 12 9 1

Table 7.1: First part of the table shows the preliminary results of the field test
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Participant No. Route Total Detections Positives False Positives False Negatives
16 A 18157 12 10 1

B 14243 11 7 2

17 A 18701 13 13 0
B 17264 13 13 0

18 A 23377 13 12 0
B 21002 13 13 0

19 A 15301 12 11 1
B 13975 13 9 0

20 A 19518 11 8 2
B 18042 12 8 1

21 A 15892 11 8 2
B 15764 10 9 3

22 A 18839 13 7 0
B 19003 11 7 2

23 A 14749 10 6 3
B 14487 11 5 2

24 A 24501 12 8 1
B 24796 12 10 1

25 A 21929 13 11 0
B 20375 12 10 1

26 A 14948 11 5 2
B 13097 12 6 1

27 A 16518 12 7 1
B 18482 13 8 0

28 A 18937 11 6 2
B 17102 12 4 1

29 A 28828 12 8 1
B 13406 13 12 0

30 A 18585 12 6 1
B 16308 12 5 1

Table 7.2: Second part of the table shows the preliminary results of the field test
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The results can be evaluated using the Signal Detection Theory [107] which was one of
the criteria that was used to evaluate the results in simulation. SDT tells us the hit
rate of the system which describes how good the system is, in detecting the targets.
The hit rate of the field test ranges from 0.769 to 1 with M = 0.922 and SD = 0.068.
It is comparatively lower than the hit rate achieved in the simulation i.e. 0.988 [109].
There could be a few reasons for this. The fourth column in the tables represents the
value where the system generated the alarm, however from the evaluation of the data
collected from the field it was observed that the system was able to detect every curb
but didn’t generate the alarm each time. For example, the system was designed in such
a way that it should generate an alarm after considering multiple positive detections,
15 to be precise, to increase the accuracy. That means the system considered the 15
positive sequences to generate the alarm. It is possible that not every time system
was able to detect the curb continuously for 15 times, hence it didn’t generate the
alarm. One of the other reasons could be that system was designed in such a way that
it should not generate the alarm again within 5 seconds once it has generated the alarm
to avoid the redundancy of the alarms which could prove to be a nuisance for a user
and then could lose interest in the warnings generated from the system. Therefore, for
example, near the road crossing, the system detected a standing person and generated
an alarm. But soon after it detected the crossing it didn’t generate the alarm as it had
to wait 5 seconds. The algorithm was trained using end-to-end learning therefore it
only detected the hazardous situation. Hence it doesn’t provide us with a way to turn
off the detection of the objects which were not relevant for this study, e.g., persons,
trees, cars etc. However, it can be observed that the parameters like the waiting window
or the number of predictions to generate the alarm can be tuned in such a way that
system reacts better to the situation. Moreover, this study spanned over 35 days, it
also included various weather conditions which also implied different lighting conditions
which has a direct impact on the detection. The fifth column shows the number of False
Positives which are also high in some cases. The same reasoning, discussed above, can
also be applied to the number of False Positives detected from the system. In addition
to that, it is quite possible that in the real-time environment, quite a few objects were
not part of the training algorithm. They have prompted the system to generate an
alarm which leads to more false positive alarms. Since it was not possible to calculate
the false alarm rate as the underlying number of events is not known, true negatives
and false positives could not be thoroughly analysed.

The psychological factors were also analysed by the Human factor specialist of the
FANS group. One of the aims of this field test was to check if the prototype helped
older pedestrians to increase safety in their behaviour. The system was supposed to
increase the head rotation to look for the oncoming traffic and to increase the stopping
frequency to minimize multitasking. In addition to this workload and acceptance of
the system were also analysed. Regarding head rotation, it was observed that the users

82



7.3 Field test with the target group

significantly rotated their heads to observe the environment when the system was turned
on which is a major success. Considering the workload, it was encouraging to observe
that the participants did not feel an extra workload with the assistance system which
could be a problem if it imposed an additional workload which hinders the acceptance
of the system. A more detailed analysis regarding the psychological aspects of the field
test can be found elsewhere [114].
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8
Summary

This chapter concludes with the assistance system that has been presented in this thesis
to support older pedestrians in Berlin. Moreover, it also discusses some future work and
possible applications of the system in the various application fields.

8.1 Conclusion

Outdoor mobility plays an important role in human lives. It also represents a way to
interact with society. With the passing age, mobility as a form of walking is a preferred
way for older people to do their usual daily tasks. The statistics suggest that older
pedestrians are involved in 20% of road crashes. And because of their frail physique,
they suffer the most fatalities. The reason is that they don’t pay the required attention
to the traffic. To help older pedestrians crossing the road, in this thesis, a prototype
has been proposed that can warn pedestrians before they cross the road. The system
aimed to generate an alarm when the user is in the vicinity of the street so that the
user can focus his attention on the traffic. This assistance system fulfils the needs and
requirements of older pedestrians such as low weight, cost-friendly, easily integrable, etc.

Based on the requirement analysis, the sensors used to develop this system should
be inexpensive and lightweight. Accordingly, a novel approach has been introduced to
develop the assistance system. For this purpose, two sensors, LEDDAR and a camera, in
combination with Multi-Sensor Data Fusion (MSDF) techniques are used to detect the
curb in the road environment. This cheaper and more efficient technology is, therefore,
better suited for the target group of older pedestrians as it fulfils the requirements.

This work started with the detection of the curb using the camera only. In the
beginning, the traditional route uses image processing techniques and afterwards, the
more advanced techniques like object recognition were researched. Finally, an advanced
approach of deep learning with end-to-end learning was chosen for its suitability to the
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task at hand. A Convolutional Neural Network was designed empirically to detect the
curb using the camera data.

To train the network on the camera images, a dataset had to be built from the
scratch. For this dataset, an analysis of the streets of Berlin was made to find out the
physical features of the curb and its relevant pavement. Moreover, this dataset covers the
entirety of the street environment and considers the various scenarios such as pavement
structure, types of curbs, weather, obstacles, different pedestrian approaching angles,
etc. This dataset now contains 130,000 images. The dataset itself represents a great
value in the computer vision community and can be used in many other applications,
including autonomous vehicles, pedestrian robots, and the walker industry.

In addition, to the creation of a new dataset, a novel algorithm was designed using
CNN with end-to-end learning to detect the curb in the image frame. CNN was designed
and trained empirically on a binary dataset. CNN trained using end-to-end learning
requires less effort and thus has less human interference. It allows modelling the freedom
to select and choose the features itself. This turned out to be a better solution as the
model required a comparatively less amount of data. The results show that the trained
CNN is very well suited for the task at hand. It was able to detect the curb with an
accuracy of more than 97%. It was shown that the system could process and categorize
new input data very well.

To improve the accuracy and to take into account the few errors of the camera such
as the illumination effects, etc., the LEDDAR sensor was integrated into the camera.
Both sensors, camera and LEDDAR, generate the data in different formats. Therefore,
one of the biggest hurdles was to find an algorithm that processes both data streams
efficiently. Instead of conventional techniques, like Kalman filters, a new approach was
implemented, where end-to-end learning is used with CNN for the camera data and
ANN for the LEDDAR data. With this innovative approach, the system finds and learns
the underlying data representation and fuses the sensors to detect the curb in an efficient
way with minimal user intervention, making the system invulnerable to human design
flaws. Sensor fusion using this method increased the accuracy of curb detection to 99%.
Both sensors were able to support each other. The model was able to detect the curb
robustly and efficiently. This capability was derived from the dataset and algorithms
themselves without the need for specific hand-crafted rules.

From this thesis, it can be concluded that the new approach described, the fusion of
Convolutional Neural Networks and Artificial Neural Networks with end-to-end learning
can be used to merge the two sensors with heterogeneous data streams. Both the created
dataset and the developed algorithm represent novelties in the community. This is not
least due to the use of the end-to-end learning method, which is still at the beginning of
its promising career in environment detection.
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8.2 Future work and application

Future work can focus on expanding the current dataset, mainly the Camera
dataset. Moreover, it includes optimizing the system performance and computational
requirements.

The camera dataset currently consists of 130,000 images and covers a wide range
of scenarios. This dataset represents a considerable amount of value and will be made
available to the computer vision community. This dataset can be expanded to cover
more scenarios, e.g., the shadows created by the sun or the shelters, etc.

The next step includes the enhancement of the proposed CNN architecture by
designing it deeper to achieve even higher accuracy for curb detection in multiple
scenarios. More classes can be added as per requirements to detect the specific object
in the images e.g., other pedestrians, bicycles, trees, cars, etc. to name a few. The
algorithm’s computational performance can be improved using the cascades of GPUs
instead of a notebook with a GPU. This will provide further system resources allowing
for a deeper design and implementation of complex models. This can also benefit in
training higher resolution images which can help to increase the accuracy of the overall
system. Moreover, the proposed algorithm can be compared using the already existing
state-of-the-art algorithms using the same image dataset. A comparison analysis can
be made to compare the efficiency and reliability of the system. The famous available
ConvNets are ZF Net [100], VGG Net [101], GoogLeNet [102], Microsoft ResNets [103]
and so on.

Moreover, object detection techniques can be used to classify the objects in the
images. As such the images need to be labelled to specify the objects or features in
the images and will be outside the domain of end-to-end learning. However, it will
be interesting to compare the results of end-to-end learning with the object detection
techniques. The famous object detection algorithms are Faster R-CNN [115], You Only
Look Once (YOLO) [116], and Single Shot multibox Detector (SSD) [117].

In the context of the application, this assistance holds substantial importance. A
workshop was carried out at the end of this project with the potential market partners
to find out the possible application domain. A huge enthusiasm was shown by the
participants in this workshop. The demonstrations were also given to the companies from
various sectors such as walker companies, automotive companies, software companies
and the health sector. Great interest was shown from the possible industry partners.
The walker companies, already working to support the older pedestrians, are willing to
integrate the system with a few modifications keeping in mind the walker specifications.
The automotive industry showed great interest in the curb detection and fusion algorithm.
The software companies were interested in developing it as a mobile application with
some more features such as heart rate monitor or blood pressure monitor etc. The health
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sector showed interest in the system as it helps their customer, which also includes older
pedestrians, in everyday scenarios.
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