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1. Introduction

Nosocomial bacterial infections (hospital-
acquired infections) that are resistant to 
standard antimicrobial treatments are 
the result of biofilm formation 80% of 
the time, as reported by Davies.[1,2] It is 
the most frequent adverse event in hos-
pital and requires urgent control meas-
ures to be implemented for implanted 
and indwelling medical devices. Most 
strategies for reducing biofilm-associated 
infections focus on the modification of 
existing materials used to manufacture 
indwelling medical devices via introduc-
tion of anti-biofilm compounds such as 
antibiotics.[3] For example, polyurethane 
central-venous catheters impregnated with 
minocycline and rifampicin reduced bac-
teria colonization by 18% and prevented 
bloodstream infections.[4,5] Non-antibiotic 
approaches with various efficacies have 
also been described, including treat-
ments employing silver sulfadiazine, 
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array to improve the understanding of Pseudomonas aeruginosa biofilm 
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time-of-flight secondary ion mass spectrometry (ToF-SIMS) data and biofilm 
formation are analyzed using linear multivariate analysis (partial least squares 
[PLS] regression) and a nonlinear self-organizing map (SOM). The SOM 
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sidered. Inclusion of these terms improved the PLS model performance and 
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materials that support negligible pathogen attachment.
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nitrofurazone, chlorhexidine and polymerized quaternary 
ammonium surfactants,[6–11] whilst a number of strategies 
to disrupt biofilm have also been explored.[12] Sustaining the 
efficacy of loaded devices is challenging and has limited their 
clinical impact.[13–16] Materials that are inherently resistant to 
bacterial attachment and biofilm formation provide an alterna-
tive approach to preventing device-associated infections that 
avoids the development of antimicrobial resistance.[17] However, 
the necessary understanding of biofilm formation on polymeric 
materials is not sufficiently developed to enable ab initio design 
of biofilm-resistant materials.

High-throughput experimental polymer microarray 
screening has enabled the discovery of anti-biofilm materials 
without the requirement of understanding the biological–mate-
rial interaction. Beyond materials discovery, the hundreds of 
experimentally assessed biofilm formation data points acquired 
on these polymeric materials provide an ideal dataset to 
develop the understanding of how polymers influence bacterial 
behavior.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 
provides a comprehensive assessment of the surface chemistry 
of polymers,[18–20] delivering high surface sensitivity and detailed 
molecular insights,[21,22] that can be used for the construction 
of structure–function relationships.[23] Multivariate analysis 
(MVA) techniques, such as partial least squares (PLS) regres-
sion and principal component analysis (PCA) have tradition-
ally been used to interpret large, high dimensional ToF-SIMS 
spectral datasets.[24,25] MVA is useful for datasets containing 
linear correlations;[26] however, many materials’ structure–prop-
erty relationships are nonlinear. The presence of outliers and 
missing data also affect the quality of MVA outcomes.[27]

Hook et al. reported a PLS regression study of the role of 
weak amphiphilic properties on resistance to biofilm forma-
tion.[28] Multiple chemical moieties were implicated in bacterial 
adhesion, specifically, ethylene glycol and hydroxyl side groups 
were found to promote bacterial adhesion whilst the combina-
tion of esters with hydrophobic side groups was shown to resist 
bacterial adhesion.[28,29] The same datasets were also used to 
construct non-linear quantitative structure–property relation-
ship machine learning models using a Bayesian regularized 
artificial neural network (ANN).[30–32] These studies showed 
that nonlinear machine learning models are often more robust 
and predictive than conventional linear regression models. This 
work identified the relationships between specific features asso-
ciated with hydrophobicity or proton transfer, and molecular 
shape and their propensity to prevent bacterial attachment to 
surfaces. The effect of combinations of chemical features, how-
ever, could not be completely resolved, suggesting that further 
study of important and complex features present in the system 
is needed.

McCulloch and Pitts first introduced the concept of threshold 
logic, a computational model created to mimic the biological 
neural system based on mathematics and algorithms, 80 years 
ago.[33–35] This model was the precursor of the widely used 
ANNs algorithms now very much in vogue. Kohonen intro-
duced a non-linear algorithm known as the self-organizing 
map (SOM), or Kohonen network, based on ANNs.[36] Variants 
of the SOM have been developed, such as the counter-propa-
gation artificial neural network (CPN), supervised Kohonen 
network (SKN), and the X-Y-fused Kohonen network (XYF) 
that are capable of predicting characteristics of interest.[27] They 
have found broad application in diverse fields such as engi-
neering,[37] environmental science,[38] hyperspectral imaging,[39] 
and finance.[40] The ability of SOMs to provide a visual inter-
pretation of high dimensional data make them highly valuable 
in many contexts. We have previously studied the application 
of unsupervised SOM to acrylate polymer microarrays.[41] SOMs 
showed exceptional performance in distinguishing chemically 
very similar polymers based on the topological relatedness of 
their surface chemistries.

In this study a polymer microarray has been prepared to 
include material properties and surface chemistries previously 
implicated in preventing bacterial biofilm formation, to enable 
an investigation of bacterial attachment to polymers using ToF-
SIMS to characterize surface chemistry (Figure 1). The study 
has a particular focus on identifying where multiple factors 
play a role in complex, complementary, and competitive ways. 
A PLS regression analysis is first presented to compare the 
conventional analysis approach with SOMs directly. We then 
employ SOMs to identify relationships between polymer sur-
face chemistry, resolved at the level of discrete molecular struc-
tures by ToF-SIMS, and functionality, namely the attachment 
of Pseudomonas aeruginosa, a pathogen frequently implicated in 
hospital-acquired bacterial infections.

2. Principles of the SOM

Figure 2 shows a schematic description of the SOMs employed 
in this study, highlighting the information flow in each type of 
SOM regarding sample class assignment. Using the dataset 
shown in Figure  1 as an example, each weight layer (Wx) rep-
resents each secondary ion fragment selected in the ToF-SIMS 
spectra (Figure 1c), whereas each class layer (CL) represents the 
degree of P. aeruginosa attachment acquired from the bacterial 
attachment assay (Figure 1d).

All SOMs are initialized by assigning a random number to 
the weight of each map layer of all network units, which are 
known as neurons (Nx). In other words, each neuron contains a 
full list secondary ion fragment selected, and a random number 
is assigned to each weight layer of the neuron. The UKN, 
illustrated as the grey block in Figure  2, is an unsupervised 
SOM where the input objects of sample S were presented to 
the entire set of network units. The neuron with weight vec-
tors most like the sample is then labelled the winning neuron. 
The weight vectors of the winning neuron and its nearest 
neighbors are then updated according to the sample assigned 
to the winning neuron. This matching and adjustment process 
would be repeated based on the number of epochs defined by 
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user. Eventually, clusters of neurons with similar weight vec-
tors would form and samples with similar ToF-SIMS inten-
sity would be grouped into their respective clusters, hence the 
name self-organizing map. The term “unsupervised” indicates 
that no classification based on a property of interest (label) was 
incorporated into the UKN and its data array. The principal 
focus of this study was the relationship between input data and 
assigned class. Hence, the UKN model was not used in the cur-
rent work. Its description is provided to introduce the related 
supervised SOMs that have been developed from it.

The CPN, also known as a pseudo-supervised model, is cal-
culated using the same approach as the UKN. The only differ-
ence is that an associated output map is trained simultaneously 
as the output vector is calculated for the input signals. The uni-
directional information flow is indicated by the arrow from the 
Kohonen layer to output layer (Figure 2a). The class membership 
of the neuron is therefore predicted from the class assigned to 
the samples and has no effect on the training of Kohonen layer. 
This property of the CPN makes it powerful in highlighting and 
confirming the indirect relationship between input data and 

Adv. Mater. Interfaces 2023, 2202334

Figure 1.  Schematic diagram of the workflow used to identify the best SOM model for analysis of correlation between surface chemistry and 
bacteria attachment properties. a) The chemical structures of the monomers, where Monomers A–F were selected as standard monomers that 
had previously shown low (B), medium (C,D), and high (A,E,F) bacterial attachment and tested against test Monomers 1–16 (1,2 = fluorocarbons, 
3–6 = hydroxyl groups, 7,8 = comparing acrylate and methacrylate, 9–11 = comparing glycols, 12 = silyl group, 13,14 = branched versus cyclic 
hydrocarbon, 15,16 = comparing two diacrylates). b) Over 400 different combinations of monomers in (a) were printed on a microarray. c) ToF-
SIMS analysis to create positive and negative spectra for each polymer, whereby data was acquired using peak selection. d) Intensity map after 
incubating the microarray with green fluorescent protein (GFP) transformed P. aeruginosa for 72 h. e) SOM training was done by feeding the 
intensities of selected peaks to the Kohonen layer and P. aeruginosa count to the class layer to find the relationship between surface chemistry 
and bacteria attachment properties.



www.advancedsciencenews.com
www.advmatinterfaces.de

2202334  (4 of 14) © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

assigned classes. In the SKN (Figure  2b), the input data and 
the class vector of a sample are merged and served as input for 
the training of the network. After training, the combined input 
and output layers are decoupled and presented as a topograph-
ical map. The training of SKN is affected by the class member-
ships of the samples and is, therefore, a supervised model. For 
the XYF network, the input and output layers are calculated 
independently and updated simultaneously, as indicated by the 
arrows in Figure 2c. The common winning unit is identified by 
the winner shared for both input and output layers. When the 
training is complete, both input objects and predefined class con-
tributed equally to the organization of the XYF map. The math-
ematics and strategy behind each supervised model is detailed in 
Melssen et al.[27]Genetic algorithms (GA) are commonly used to 
identify the optimal settings for supervised SOM calculations,[42] 
based on the model fitness, to avoid overfitting or underfitting. 
The details of the GA strategy used in this study is explained in 
Ballabio et al.[43] Each chromosome consists of two sets of gene, 
one representing different sizes of the network (number of 
neurons) and the other representing numbers of training itera-
tions (number of epochs). A chromosome with a random set of 
genes is used for each evaluation. Ten runs are performed for a 
GA calculation, with 25 evaluations for each run. Ten percent of 
the data is excluded for cross validation in each evaluation. Each 
evaluation is repeated 5 times to obtain a mean non-error rate of 
correctly assigned samples in the internal validation set (NER-
valid) and a non-error rate of correctly assigned calibration sample 
(NERcalib) for the calculation of the fitness function,[43] which is 
the optimization criterion for GA. Ten chromosomes with the 
highest fitness values for each run are filtered out as surviving 
units. The chromosome with the highest rate of survival and the 
highest fitness function is then chosen as the optimal architec-
ture for weight analysis and prediction.

3. Experimental Section

3.1. Bacteria Attachment on a Polymer Microarray Library

Polymer microarrays were prepared using procedures described 
in Anderson et al. (2004);[44] bacterial microarray screening 
and ToF-SIMS analyses were undertaken using the approach 
reported by Hook et al. (2012).[28] In brief, stock solutions were 
prepared at a ratio of v/v 75% monomer, 25% dimethylforma-
mide (DMF) and 1% w/v 2,2-dimethoxy-2-phenyl acetophenone 
(DMPA).[44] Monomers were purchased from Aldrich, Scien-
tific Polymers and Polysciences, and printed onto epoxy-coated 
slides (Xenopore), dip-coated into 4% w/v pHEMA (Aldrich) 
using 946MP6B pins (ArrayIt) and a Pixsys 5500 robot (Carte-
sian) or a XYZ3200 dispensing workstation (Biodot). A UV lamp 
(UVP Blak-Ray) was added to the workstation for polymerization 
by exposing the microarray to long wave UV for ≈10 s  
after each round of printing. The chemical structures of the 
monomers are shown in Figure 1a. Monomers 1–16 were mixed 
with Monomers A–F at molar ratios of 100:0 (homopolymer, 
6 repeats), 90:10, 70:30, 60:40, 50:50, and 0:100 (homopolymer, 
16 repeats) to create 576 solutions. The number in the name 
of the sample represents the molar percentage of Monomer 
A–F. The arrays were dried at a pressure of less than 50 mTorr 
for at least 7 days. Arrays were sterilized by exposure to UV for 
30  min on each side, and then washed twice with phosphate 
buffered saline (PBS) for 30 min and then twice with medium 
for 30 min before use, to remove residual monomer or solvent.

The microarrays were incubated in suspensions of plank-
tonic P. aeruginosa (PAO1, Nottingham strain) transformed 
with the constantly green fluorescent protein (GFP) expressing 
plasmid pME6032-GFP for 72 h.[45] The attachment of bacteria 
was quantified based on the fluorescence signal (F) measured 
by a GenePix Autoloader 4200AL Scanner (Molecular Devices, 
US) with a 488  nm excitation laser and standard blue emis-
sion filter (510–560  nm). The total fluorescent intensity from 
the polymer spots were acquired using GenePix Pro 6 software 
(Molecular Devices, US). The details of bacterial growth con-
ditions and the model for estimating bacterial count from the 
fluorescence signal had been previously presented by Hook 
et al.[28]

3.2. ToF-SIMS Analysis of the Polymer Microarray

ToF-SIMS measurements were conducted on a ToF-SIMS 
IV (IONTOF GmbH, Germany) instrument operated using 
a monoisotopic 25  keV Bi3

+ primary ion source in “bunched 
mode.” A 1 pA primary ion beam was rastered, and both 
positive and negative secondary ions were collected from a 
100 × 100 µm area. The typical mass resolution (at m/z 41) was 
approximately 6000. Charge compensation was achieved by 
the use of a flood gun. Positive spectra were calibrated to ions 
CH3

+, C2H5
+, C3H7

+ and C4H7
+, whilst negative spectra were 

calibrated to CH−, C2H−, C3H− and C4H−. Identical ToF-SIMS 
spectra in the positive polarity were collected for sample 521 to 
576, which was likely to be a sample navigation issue. These 54 
samples were excluded, giving a total of 520 (N) samples for 
analysis.

Adv. Mater. Interfaces 2023, 2202334

Figure 2.  Schematic diagram of a) CPN, b) SKN, and c) XYF. The grey 
blocks represent the classical Kohonen network (UKN) and the blue 
blocks represent the class layers for SOM supervision. The red arrows 
show the direction of information flow. N represents the neuron, which 
is the unit element of the Kohonen map, W represents weighting for each 
map layer, S represent samples, and C represents the assigned class.



www.advancedsciencenews.com
www.advmatinterfaces.de

2202334  (5 of 14) © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

3.3. Data Preprocessing

ToF-SIMS spectra (positive ion and negative ion) were trans-
formed into data arrays for subsequent SOM analyses by 
conventional peak list formation using curated peak selec-
tions. Peaks corresponding to secondary ions that represented 
molecular species and structures of interest were selected for 
both positive and negative ion mass spectra. A total 415 peaks 
were selected and processed for calculation. The intensities 
of the selected molecular ion peaks were extracted and com-
bined as a data array and normalized to total ion count (based 
on the selected peaks) per pixel. Data columns/ion images 
were autoscaled prior to PLS regression and range scaled 
independently between 0 and 1 prior to SOM training. The 
order of the samples was randomized and 10% of randomly 
selected samples were excluded as a test set, for prediction.

Five classes based on the measured bacterial fluorescence 
were defined for the SOM analysis of each of 520 homopoly-
mers and copolymers, with Class 1 representing zero attach-
ment through to Class 5 with the highest measurable attach-
ment, as shown in Table 1.

These five classes were employed in subsequent CPN, 
SKN, and XYF analyses to elucidate and quantify relationships 
between bacterial attachment and molecular surface chemistry.

3.4. PLS Analysis

The quantified P. aeruginosa count was mean centered prior 
to PLS regression analysis, which was performed using PLS_
Toolbox (Version 9.0 Eigenvector Research, Manson, WA) in 
MATLAB R2020a (The MathWorks Inc., USA). Contiguous 
blocks were used for cross validation, with 20 maximum latent 
variables (LVs) and 10 data folds. The number of LVs with the 
lowest root mean square error of cross validation (RMSECV) 
was selected for model calculation.

3.5. SOM Analysis

Bacterial attachment classes were used to supervise the training 
of three types of Kohonen networks—CPN, SKN, and XYF, 
with the unsupervised UKN providing a point of reference. 
SOMs were calculated using the Kohonen and CPANN Toolbox 
(Version 4.1) (Milano Chemometrics and QSAR Research 
Group, University of Milano-Bicocca, Italy)[46,47] in MATLAB 

R2019b. All calculations were performed on a computing 
cluster (CMSS-MATLAB; 16 CPUs) at La Trobe University.

k-fold cross validation was used to optimize the SOM 
models. With this approach, the entire data set was partitioned 
into k distinct groups of samples, called folds. One of the k 
folds was then withheld and the remaining k − 1 folds are used 
the train the model. The performance of the model was then 
measured using the withheld fold. This process was repeated k 
times, such that each of the k folds was only withheld once. The 
final performance of the model was given by the mean perfor-
mance across each of the k folds. 10 folds were used to cross-
validate the models, and the venetian blinds method was used 
to partition the data. For the ith fold, where i ∈ {1,  2,  …,  k}, 
venetian blinds includes every kth sample in the fold, starting 
from sample i.

The number of neurons and epochs ranging from 12–24 and 
100–30 000, respectively, were used for the SOM optimization 
by means of GA. The bubble plots in Figure S9, Supporting 
Information, summarize the relative frequency of occurrence 
and the mean optimization criteria for each model. The optimal 
architecture selected for each model was used for subsequent 
SOMs calculations, 24 × 24 neurons and 10 000 epochs for 
CPN, and 22 × 22 neurons and 2000 epochs for SKN. Although 
the XYF map with 20 × 20 neurons and 30 000 epochs had 
the highest relative frequency, its mean fitness value was 
below average. Therefore, another set of hyperparameters 
(24 × 24 neurons and 5000) with a highest fitness value and 
second highest frequency of selection was used for XYF calcula-
tion for further comparison.

4. Results and Discussion

4.1. High Throughput Bacterial Attachment Assay

A polymer microarray was prepared containing monomers 
with functional groups previously shown to modulate bacte-
rial attachment and biofilm formation.[29,32] Sixteen mono-
mers known to exhibit both high and low attachment were 
selected to ensure the inclusion of a broad range of bacterial 
responses (Figure  1a). These included hydrophobic (fluoro-, 
hydrocarbon-containing), hydrophilic (hydroxyl and ethylene 
glycol-containing), linear, branched, cyclic, short, and long 
side groups. These were mixed with 6 monomer standards 
that had known varied responses to bacteria. The standards 
were chosen from a previous microarray study as having a 
range of chemistries that showed high (A: 3-(dimethylamino)
propyl acrylate, E: 2-hydroxy-3-phenoxypropyl acrylate, and 
F: 2-(acryloyloxy)ethyl 6-hydroxyhexanoate), medium (C: 
tetraethylene glycol diacrylate and D: [2-hydroxy-2-[4-(1-hy-
droxy-2-prop-2-enoyloxyethoxy)pentoxy]ethyl] prop-2-enoate), 
and low (B: trimethylolpropane triacrylate) bacterial attach-
ment.[28] These standards were mixed with each of the 16 
test monomers to form a concentration series composed of 
the mole ratios 1:0, 9:1, 7:3, 3:2, 1:1, and 0:1 (test:standard). 
In total, 406 different materials (replicates of homopoly-
mers excluded) were UV photopolymerized by a free radical 
mechanism to form a combinatorial polymer microarray. 
After incubation with P. aeruginosa for 72 h, the resulting 
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Table 1.  Bacterial attachment classes for P. aeruginosa. Samples with 
zero bacterial attachment were labelled as Class 1, the remaining sam-
ples being equally divided into 4 classes with increasing attachment.

Class P. aeruginosa count

1 0

2 300 000–1 000 000

3 1 000 000–8 000 000

4 8 000 000–33 000 000

5 33 000 000–82 000 000
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fluorescence signals (F) obtained are shown in Figure 3a. 
Homopolymers of the standard Monomers A and B (shown 
in Figure  3a) produced low levels of bacterial attachment  
(Class 1 or 2), whilst for Monomers C–F, medium levels of 
bacterial attachment (Class 3) were observed. Most homopol-
ymers and copolymers formed from Monomers 9–11, which 
contained either ethylene glycol or propylene glycol function 
side groups, produced high levels of bacterial attachment 
(Classes 4 and 5). The lowest bacterial attachment to homopol-
ymers were observed for Monomer 13 (0.5 ± 0.3 × 106),  
whilst Monomer 1 was the most effective at maintaining low 
levels of bacterial attachment (Class 2) when mixed with 
standard Monomers C–F. The lowest overall bacterial attach-
ment (Class 1) was observed for homopolymers of Monomer 
A and copolymers produced using Monomers A or B with 
Monomers 1, 2, or 12.

ToF-SIMS spectra collected for each sample in the micro-
array were coupled with the mean F value of the sample to 
form a new dataset and analyzed with PLS regression, a tech-
nique previously used for correlating surface chemistry and 
cell attachment.[28,48,49] The R2 value for the PLS model shown 
in Figure 3b was 0.70, indicating a linear relationship between 

the predicted and measured bacterial attachment for this new 
set of polymeric microarrays. This linear relationship sug-
gested that the attachment of P. aeruginosa is dependent on 
the surface chemistry of polymers as represented by ToF-SIMS 
data. The regression coefficients (RC) shown in Figure 3c rep-
resent the influence of each secondary ion on bacterial attach-
ment. Ions with high RCs were associated with high bacte-
rial attachment and those with low RCs were associated with 
high resistance to bacterial attachment. These results were 
consistent with those reported in Hook et al. (2012),[28] where 
most oxygen-containing ions from ethylene glycol (C2H2O2

−) 
and hydroxyl groups (C2H6O+, C4H9O+) were correlated with 
high bacterial attachment and hydrocarbon secondary ions 
representing cyclic carbon groups (C4H5

−, C7H3
−, C5H5O−) 

and aliphatic groups (CH3
+) were associated with high bacte-

rial resistance. However, some cyclic carbon groups (C8H8+, 
C10H12+) were also found to be correlated with high bacte-
rial attachment. Moreover, fluorine-containing (positive RC: 
C4H8O6F−, C2F2

−. negative RC: C2H4O3F2
−, C2H2F5

−) and 
nitrogen containing ions (positive RC: C2H8N+, negative RC: 
C3H6NO+) were associated with both low and high bacterial 
attachment. This suggests that the relationships between sur-

Adv. Mater. Interfaces 2023, 2202334

Figure 3.  a) Heat map showing F, the mean fluorescence due to bacterial attachment of P. aeruginosa on the polymer microarray from Hook et al. 
(2012). The color scale is shown to the right (×106). Within each sample the mean (central region) ± one standard deviation unit is shown to the left 
and right, respectively (n = 3, for 0% samples n = 18). b) The measured versus predicted F values of P. aeruginosa determined from the PLS regres-
sion model (R2 = 0.70). The y = x line is drawn as a guide. Polymers are grouped according to the major monomer number given in Figure 3a. c) The 
regression coefficient (RC) of ToF-SIMS secondary ions. Positive RCs (red) represent ions associated with high bacterial attachment and negative RCs 
(blue) represent ions associated with high bacterial resistance. The color scale is shown to the right (×106).
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face chemistry and bacterial attachment are more complicated 
than is indicated by the linear PLS model. Given that the same 
fragment ion can be associated with more than one chemical 
structure, this is not unexpected. As such, complementary 
methods are needed to further explore these relationships.

4.2. Comparison of SOMs Supervised by Bacterial Attachment 
Data

We used SOMs to investigate bacterial–material interactions 
underpinning the observed bacterial attachment and com-
pared the output weight of SOMs with the PLS model. Bacterial 
attachment was modulated via the surface chemistries so sam-
ples clustered by molecular composition in the SOM models 
should be definitively clustered by bacterial class. This approach 
also allowed identification of the molecular functionalities 
associated with low, intermediate, and high attachment. We 
first needed to decide which ML algorithm was best suited to 

our dataset. Figure 4 shows a comparison of supervised CPN, 
SKN, and XYF SOMs trained on the same ToF-SIMS data set. 
Note that the hyperparameters for each model were chosen 
based on a GA, as discussed in the Experimental section. 
Figure 4a–c shows SOMs trained using the five bacterial attach-
ment classes used to supervise SOM training. An additional 
test of SOM supervision performance is shown in Figure 4d–f, 
where the class memberships were assigned randomly. We use 
this class scrambling to study the influence of the class labels 
on the clustering in the SOM.

To quantify this effect, we calculated the Moran’s I value—
a measure of spatial autocorrelation—for the SOM based on 
neuron class assignment. Note that the algorithm was modified 
to suit a toroidal topology to allow even spacing between samples. 
A random arrangement of classes on the SOM would produce a 
Moran’s I value close to 0, while well discriminated clusters would 
produce a value closer to 1. We also calculated the topographical 
error (TE), the fraction of samples whose best and second-best 
winning units are not neighbors on the map, to evaluate the local 
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Figure 4.  Topographic maps of a) CPN, b) SKN, and c) XYF with bacterial attachment as assigned class, and d) CPN, e) SKN, and f) XYF with randomly 
assigned class. The shade of gray represents the bacterial attachment as shown at the bottom, where the lightest shade represents Class 1 and darkest 
represents Class 5, and unassigned neurons are labelled yellow. The number of neurons and epochs were selected based on a genetic algorithm (GA) as 
shown in Figure S2, Supporting Information. The properties of each SOM, including unassigned (UA) neurons, Moran’s I, topographic error (TE), and the 
accuracy and ratio not assigned sample for both training and test sets are summarized. The positions of replicates of homopolymer A are outlined in red.
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map discontinuity.[50,51] This allowed us to determine the influence 
of assigned class during the training of SOMs, that is, a decrease 
in TE associated with class assignment suggests that the class 
labels are decreasing the topological accuracy of the model. Finally, 
all SOMs were also used to predict the class assignment of the test 
set (10% of randomly selected samples excluded from training) to 
study the predictive ability of each model.

Figures  4a and  4d show CPN topographic maps where the 
classes are determined by bacterial attachment and by random 
assignment, respectively. The same TE for both CPN maps was 
expected, given that the class labels do not impact on model 
topology. To further demonstrate this, the location of replicates 
of homopolymer A, outlined in red, are well clustered in each 
case. There were significantly more unassigned neurons when 
a random class assignment was used. These neurons were 
identified as being equally associated with more than one class, 
and their increased abundance was due to the lack of relation-
ship between input ToF-SIMS data and assigned class. The bac-
terial attachment classes (Figure 4a) form domains on the topo-
graphic map, consistent with a structure–property relationship 
between molecular surface composition and bacterial attach-
ment. This resulted in a moderated Moran’s I value of 0.35. 
On the contrary, the randomly assigned classes (Figure 4d) are 
scattered across the topographic map, as indicated by the low 
Moran’s I value.

Figures  4b and  4e show SKN topographic maps with the 
bacterial and random class assignments, respectively. Com-
paring to the CPN model (Figure  4a), bacterial attachment 
classes formed larger, more uniform domains on the SKN map 
(Figure  4b), giving a higher Moran’s I value associated with 
the supervision. The TE, however, was slightly higher for SKN 
compared to CPN, especially when random labels were used. 
This indicates that class assignment influenced the topological 
accuracy of the SOM. Interestingly, the Moran’s I value for the 
SKN with random labels was lower than that of the equivalent 
CPN, although only marginally. Finally, the prediction accuracy 
was slightly higher for the SKN than the CPN, and therefore 
the SKN would be preferable for predictive purposes.

Figures  4c and  4f show XYF topographic maps, again with 
the bacterial and random class assignments, respectively. In this 

case, there was a clear difference in the XYF maps, compared 
to both the CPN and SKN maps. For both the bacterial and 
random labels, very large class domains were formed on the 
SOM, with correspondingly high Moran’s I values. Given that 
randomly assigned classes cannot have any ordered relation-
ship with surface chemistry, this result shows a strong biasing 
of the outcome by the class assignment itself. This is further 
supported by the higher TE compared to CPN and SKN. Addi-
tionally, replicates of homopolymer A (outlined in red) are well 
clustered for the bacterial attachment classes (Figure 4c) but are 
not clustered for the randomly assigned classes (Figure 4f).

Given the Moran’s I values and prediction accuracies for 
each map, particularly for the pseudo-supervised CPN, these 
results provide strong evidence for a relationship between 
surface chemistry and bacterial attachment, consistent with 
previous quantitative reports[28,52] and with the PLS regression 
results. Although the XYF model clustered the classes well, the 
high TEs obtained for the XYF maps indicate that the effect of 
an assigned class was strongly biasing the model, leading to a 
loss of topological information. This is detrimental to our study, 
in which we sought to investigate the relationships between 
data topology and bacterial attachment. While the SKN pro-
vided better clustering quality than the CPN, the TE was the 
slightly lower for CPN, indicating higher topological accuracy. 
Nevertheless, given the similar results obtained with the CPN 
and SKN, the weights of both maps were studied to further 
explore the relationship between surface chemistry and bacte-
rial attachment.

4.3. Analysis of Clusters Correlated with Bacterial Attachment

Weights from Class 1 and Class 5 neurons in the CPN and 
SKN, which represent polymers with lowest and highest bacte-
rial attachment respectively, were selected for further analysis 
to compare the chemical groups associated with high bacte-
rial resistance and attachment directly. Figure 5 shows the 
CPN (Figure 5a) and SKN (Figure 5b) topographic maps, color 
coded by class weighting of Class 1 (green) and Class 5 (red). 
The CPN and SKN maps with complete sample labelling are 

Adv. Mater. Interfaces 2023, 2202334

Figure 5.  Topographic maps of a) CPN and b) SKN, color coded based on Class 1 (Green) and Class 5 (Red) weightings. The shades of the color are 
correlated to the weight of their respective class. Note that the algorithm was modified to suit a toroidal topology, hence neurons on the opposite 
edges are neighbors.
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presented in Figures S1 and S2, Supporting Information. The 
CPN and SKN topographic maps illustrated in Figure  5 color 
coded with class weights provide insight into the clusters of the 
Class 1 and 5 neurons, compared to the class assignment maps 
shown in Figure  4. That is, the class assignment maps only 
show binary assignments for each class, whereas the weights 
show the continuous assignment fraction for each neuron. For 
example, although Cluster C and D in the CPN class assign-
ment map (Figure 4a) seem to be connected, the map for Class 
5 weighting (Figure 5a, red) shows that these Class 5 neurons 
are grouped into two sub-clusters, separated by lower weighted 
neurons. For both models, the smaller Class 1 clusters are 
labelled as A and bigger ones as B, the Class 5 clusters are then 
labelled alphabetically based on their distances from the Class 
1 clusters.

Based on Figure 5, the SKN better separated the Class 1 clus-
ters since Cluster A and Cluster B were separated from each 
other, while CPN appeared to have more clearly identified the 
different Class 5 clusters, as four major chemical groups were 
associated with high bacterial attachment instead of two in the 
SKN map.

The top 17 average calculated weights of the secondary 
ions for each cluster are summarized in Table 2, and may be 
used to further explore the clusters in the CPN and SKN. The 
secondary ions in Table  2 are color coded by their associated 
chemical functional groups. Note that a separate SKN (Figure 
S3, Supporting Information) was calculated using the replicates 
of the homopolymers, and the weightings of each set of repli-
cates were analyzed to assist with assignment of the functional 
group. The top 15 weights for each set of homopolymers are 
summarized in Figure S4, Supporting Information, illustrating 
the chemical group assignment process.

Cluster A and Cluster B in the CPN and SKN have very sim-
ilar weights, which are plotted against each other and shown 
in Figures S5 and S6, Supporting Information, highlighting 
the consistency of the SOM models. While a high weighting of 
nitrogen-containing secondary ions is seen for all Class 1 clus-
ters, Cluster A, the smaller Class 1 cluster has high weighting 
for fluorine-containing secondary ions. This suggests that in 
addition to amine/nitrogen containing groups, surfaces with a 
combination of amine and fluorine functional groups exhibit 
good bacterial resistance. Figure  5 shows that SKN was more 
effective in separating the fluorine-containing samples from 
the other amine-containing materials. A selection of the major 
secondary ions associated with high bacterial attachment and 
resistance are illustrated in Figure 6 for improved visualization. 
Some of the secondary ions such as C2H4O+ and C2H4O2

+ may 
be derived from glycol and hydroxyl groups, which could com-
plicate conventional linear multivariate analysis.

For the CPN Class 5 clusters, Cluster C consisted mostly 
of glycol containing secondary ions, Cluster D mostly phenyl, 
Cluster E mostly hydroxyl, and Cluster F mostly cyclic moieties. 
For SKN, these four chemical groups merged into two major 
clusters, where Cluster C contained a high proportion of glycol 
and hydroxyl groups, and Cluster D contained mostly phenyl 
and other cyclic groups. The ability of SKN to identify a contam-
inated sample is demonstrated by the isolated Class 5 neuron 
containing sample 12F(3). High levels of nitrogen- and phenyl-
containing secondary ions suggest that 12F(3) is contaminated, 

since Monomers 12 and F did not contain amine and phenyl 
groups. The nitrogen and phenyl contamination may have been 
from residual DMF (C3H7NO) and DMPA (C16H16O3), respec-
tively, or inadequate washing of the microarray pins during 
generation of the polymer spots and potentially crosstalk from 
the washing procedures. The sample still identified as Class 5 
although nitrogen-containing secondary ions was previously 
shown to be associated with negligible bacterial attachment.

From Table 2, it appears that the CPN more clearly separated 
different functional groups associated with bacterial attach-
ment, since the phenyl containing samples were separated 
from glycol and hydroxyl moieties. However, among the phenyl 
containing monomers, only Monomer 9 was found in the Class 
5 clusters, whereas Monomers 7 and 8 also contained a phenyl 
group. Most of the samples located in the Class 5 clusters con-
tain Monomers 9, 10 and 11, suggesting that the major chem-
ical group contributing to high bacterial attachment was the 
long glycol chain, not the phenyl group of Monomer 9. Hence, 
the SKN appeared to more clearly identify the main functional 
groups associated with high bacterial attachment ability over 
CPN because of the supervised learning process.

4.4. Using the SOM to Identify Key Interaction Variables

It is valuable to compare the PLS regression and SOM results 
directly, to identify both similar and conflicting outcomes. First, 
we note that both methods identified C2H2O2

− (ethylene glycol), 
C4H9O+ (hydroxyl) and C8H8

+ (cyclic) to be associated with bac-
terial attachment and CH+ (aliphatic), C3H3O2F2

− and C2H2F5
− 

to be associated with high bacterial resistance. However, it is 
interesting that PLS regression did not identify some of the 
fragment ions associated with high or low bacterial attachment, 
such as C5H8O2

+, C4H5O2
+ and ions containing amine groups. 

One possible reason is that any given fragment ion may not 
be unique to a specific polymer, and hence may not correlate 
strongly (positively or negatively) with bacterial attachment. 
This is critical, as it indicates a limitation of the PLS regres-
sion approach, which seeks to identify correlations between 
individual fragment ions and bacterial attachment. The SOM 
methods, on the other hand, were used to explore the relation-
ship between data topology and bacterial attachment, and there-
fore reveal complementary information to PLS. In particular, 
the SOM identified clusters of high or low bacterial attachment 
surface chemistries, from which combinations of fragment ions 
associated with each cluster could be studied and compared.

As an additional validation of the SOM results, and to show 
how PLS regression and the SOM can be used together, we 
calculated a second PLS regression model, this time including 
additional interaction variables. These interaction variables 
were calculated using the 3 top weighted positive and negative 
fragment ions associated with each of the Class 1 and Class 5 
SKN clusters. The intensities for each positive ion were mul-
tiplied with those from each negative ion within the same 
cluster, giving nine additional interaction variables for each 
cluster (totaling 36 interaction variables across the 4 clusters).

We compared the two PLS regression models to investi-
gate whether the additional interaction variables improved 
the model. A slightly higher R2 (Figure S7a, Supporting 

Adv. Mater. Interfaces 2023, 2202334
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Information) value and lower root mean square error of cross 
validation (RMSECV) (Figure S7b, Supporting Information) 
were obtained after adding the interaction variables, indicating 
that the interaction variables slightly improved the prediction 
accuracy of the PLS model. Interaction variables with either 
high or low correlation with bacterial attachment were also 
identified. Table 3 shows the 6 most highly positively and nega-
tively correlating interaction variables (the complete RCs cal-
culated for all 36 interaction variables are shown in Table S8, 
Supporting Information). Also shown are the RCs associated 
with each individual ion from the interaction as a comparison, 
as calculated from the original PLS regression model without 
interaction variables.

There are several important observations relating to Table 3. 
In all cases, the interaction variables exhibited higher RCs than 
their constituent fragment ions alone. Interaction variables con-
taining cyclic hydrocarbon coupled with oxygen-containing ions 
were most positively correlated with bacterial attachment. This 
agrees with the outcome of SKN that indicated that a phenyl 
group attached to a long glycol chain (Monomer 9) had a much 
stronger bacterial attachment ability compared to phenyl group 
alone (Monomers 7 and 8). Importantly, the C4H2O2

−, C2HO− 
and C4HO− ions were not individually strongly positively corre-
lated to attachment, instead exhibiting low positive or even neg-
ative correlation. This suggests that these ions are not generally 
correlated with bacterial attachment, however when present 

with cyclic hydrocarbon ions are strongly correlated. Results 
in Table 3 also help to explain why positive RCs were obtained 
for some cyclic groups in the original PLS model in Figure 3, 
despite the fact that cyclic groups were previously found to be 
associated with high bacterial resistance.[28]

The interaction variables featuring ions containing nitrogen 
and fluorine further emphasize the limitations of the original 
PLS regression model. Individually, both C4H4N+ and F− were 
found to be positively correlated with bacterial attachment. 
However, the interaction of the two ions gave a highly negative 
RC. In fact, all interaction terms for nitrogen- and fluorine-con-
taining ions were found to be correlated with bacterial resist-
ance (Table S9, Supporting Information). This consistent result 
further emphasizes that fluorine groups coupled with amine 
groups (as identified by the SKN) lead to high P. aeruginosa 
resistance. More studies need to be done to fully understand 
why the combination of these two functional groups prevents 
P. aeruginosa attachment. A combination of several factors, 
such as hydrophobicity, chemical reaction between polymer 
and bacterial surfaces, and orientation and arrangement of the 
functional groups, could be contributing to this observation.

Together, these results highlight the importance of com-
plementing standard PLS regression analysis with techniques 
such as the SOM, which can provide further information about 
potential interactions between fragment ions. In this regard, 
understanding data topology is critical to accurately interpret 
and improve upon the information provided by PLS.

5. Conclusion

The relationship between ToF-SIMS spectra and P. aeruginosa 
attachment for a set of polymer combinations previously found 
to be associated with low, moderate, and high resistance to 
bacterial attachment was assessed by PLS and SOM models. 
The observed correlation between surface chemical data and 
bacterial attachment suggests that for the polymeric materials 
studied, the surface chemistry plays a key determining role in 
the bacterial response.

We explored different SOM variants and their ability to 
reveal information about structure–property relationships in a 
polymer microarray. In our case, the use of class labels biased 
the ability of the XYF to learn the data topology, undesirable for 
identifying the relationship between polymer surface chemistry 
and performance. For the SKN, while class membership clearly 
influenced topographic map formation, the modelled topology 
much more closely resembled that of the pseudo-supervised 

Table 3.  Regression coefficients of interaction variables selected from 
the SKN clusters.

Cluster Interaction variable RC Pos ion RC 
(×105)

Neg ion RC 
(×105)

×105

D C8H8
+ × C4H2O2

− 20.1 12.9 1.2 20 20.1

D C8H8
+ × C2HO− 18.6 12.9 4.3 16

D C8H8
+ × C4HO− 10.8 12.9 −3.2 12

D C2H4O2
+ × C2HO− 8.2 5.6 4.3 8

D C7H9
+ × C4H2O2

− 6.8 −1.1 1.2 4

C C2H4O2
+ × CF− 5.9 5.6 5.3 0 0

A C4H4N+ × F− −5.1 1.1 2.4 −2

A C6H8N+ × F− −5.2 −0.5 2.4 −4

A C4H4N+ × C3H3O2F2
− −5.6 1.1 −9.1 −6

A C6H8N2
+ × F− −6.3 −5.3 2.4 −8

A C6H8N+ × C3H3O2F2
− −10.6 −0.5 −9.1 −10

A C6H8N2
+ × C3H3O2F2

− −12.7 −5.3 −9.1 −12 −12.7

Figure 6.  Schematic diagram of the secondary ions associated with high bacterial resistance (left) and high bacterial attachment (right). Secondary 
ions are color coded according to their functional groups.
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CPN, suggesting lower influence of the class labels and there-
fore a higher influence of the ToF-SIMS molecular data.

Comparing the weights of clusters representing the highest 
and lowest bacterial attachment for CPN and SKN suggested 
that SKN had a stronger ability to cluster and identify major 
chemical functional groups associated with bacterial resistance 
and bacterial attachment. The weights of the SKN suggested 
that fluorine- and nitrogen-containing groups hinder bacterial 
attachment while hydroxyl and long glycol groups promote bac-
terial attachment. The weights also showed that the contami-
nated samples or other outliers could be identified in the SKN 
topographic map as isolated neurons. This powerful ability of 
the SKN to identify contaminated samples allows them and 
other outliers, which could complicate conventional regression 
analyses, to be eliminated with justification.

While PLS is a powerful tool to detect the correlation of an 
individual ion, SOMs successfully detected ions associated low 
and high P. aeruginosa resistance that were not easily detected 
by the PLS model. Moreover, SOMs were able to identify dif-
ferent classes of materials with different chemistry that behaved 
similarly in terms of bacteria–surface interactions. Combining a 
SOM with PLS showed that interaction variables are important 
and highlight limitations of the original PLS. Coupling these 
two data analysis models is therefore crucial for a much deeper 
understanding of the complex interactions between surface 
chemistry and bacterial surfaces. By coupling the two models, 
further analysis could be done with different types of bacteria 
to study the universality of the bacterial resistance property of 
the polymer array.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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