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a b s t r a c t 

While many structural and biochemical changes in the brain have previously been associated with older age, find- 
ings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, 
remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors de- 
termining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic 
and non-rhythmic parameters. We used a large dataset ( N = 1703, mean age 70) to comprehensively investigate 
age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and 
their individual contributions to cognitive performance. While we found strong evidence for an individual alpha 
peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and 
age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interfer- 
ence resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional 
role in information sampling. Critically, we did not detect a significant relationship between alpha power and age 
when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings 
thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope 
and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite 
the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the 
right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus 
demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the 
comprehensive assessment of association between age, neuronal activity, and cognitive performance. 
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. Introduction 

Older age is often associated with changes in the neuronal
rain signals and a consecutive cognitive decline ( Gaál et al., 2010 ;
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ctivity in different frequency ranges can be measured with scalp EEG
 Biasiucci et al., 2019 ; Buzsáki and Draguhn, 2004 ; Niedermeyer and
opes da Silva, 2005 ) and is typically defined by power, peak fre-
uency, and phase. While all of these parameters have been previously
inked to various cognitive functions ( Buzsáki, 2006 ; Grandy et al.,
013 ; Klimesch, 2012 , 1999 ), alterations in power and peak frequency
f different oscillatory bands have been also extensively studied in aging
 Ishii et al., 2017 ; Knyazeva et al., 2018 ; Knyazev et al., 2015 ). 

Previous work has shown that theta and alpha oscillations (approx.
 - 7 Hz and 8 - 12 Hz, respectively) play an important role for cog-
itive functions ( Buzsáki and Draguhn, 2004 ; Palva and Palva, 2007 ;
uma et al., 2018 ). Their involvement in higher cognitive processes has
een explained through the top-down control over information process-
ng: An interplay between the oscillatory activity defined by power in
lpha and theta frequency bands enables suppression of task irrelevant
nformation that helps direct attention towards task relevant stimuli
 Jensen et al., 2002 ; Klimesch, 2012 ; Palva and Palva, 2007 ). Power and
eak frequency of alpha oscillations have been linked to structural and
iochemical alterations in the brain, which is most prominent in older
ge ( Babiloni et al., 2006 ; Kumral et al., 2021 ; Stomrud et al., 2010 ).
hile most studies consistently show age-related slowing of individual

lpha peak frequency (IAF; Ishii et al., 2017 ; Knyazeva et al., 2018 ;
izukami and Katada, 2018 ), previous findings are inconsistent regard-

ng changes in oscillatory power of theta and alpha oscillations: While
lpha power has been suggested to either decline with age ( Lodder and
an Putten, 2011 ; Rossini et al., 2007 ) or show no age-related alterations
 Caplan et al., 2015 ; Sahoo et al., 2020 ), theta power has been shown
oth to decline ( Vlahou et al., 2015 ) and increase ( Babiloni et al., 2006 ;
shii et al., 2017 ; Klass and Brenner, 1995 ) with age. 

On the one hand, these inconsistencies might be due to power esti-
ation in canonical, rigidly pre-defined frequency bands: If a possible

enter frequency shift is not accounted for (i.e., in a case of spectral slow-
ng represented by a decrease in IAF), power estimation of two signals
n different but neighboring frequency ranges might be confounded. For
nstance, it has been suggested that slowing of the IAF might interfere
ith the conventional theta frequency range and thus result in a spuri-
us power increase due to the presence of a low-frequency alpha peak
 Finnigan and Robertson, 2011 ). This could potentially explain incon-
istencies in findings associated with theta power changes with age. 

Slow-wave power estimation might be confounded not only by a
enter frequency shift but also due to the amplitude mixing between
he oscillatory (i.e., rhythmic) and non-oscillatory (i.e., non-rhythmic)
ctivities ( Donoghue et al., 2020 ; Voytek et al., 2015 ). Non-rhythmic
ctivity results from asynchronous spiking and postsynaptic potentials
f neural populations ( Donoghue et al., 2020 ; Ouyang et al., 2020 ) and
t can be estimated with the 1/f slope of the power spectral density
PSD). The non-rhythmic component of the PSD reflects the ratio be-
ween excitatory and inhibitory inputs, as determined by glutamater-
ic and GABAergic connections, respectively ( Donoghue et al., 2020 ;
ao et al., 2017 ; Wang, 2020 ). An increase in excitatory connections
as associated with a flatter PSD slope, as compared to an increased
umber of inhibitory connections, which resulted in a steeper PSD slope.
his relationship has been further supported by pharmacological inter-
ention studies of altered states of consciousness ( Colombo et al., 2019 ;
endner et al., 2020 ). Age-related changes in 1/f slope have been ad-
ressed in a few previous studies showing that the slope decreases as we
ge, suggesting an increase in excitability and neural noise ( Dave et al.,
018 ; Voytek et al., 2015 ). However, this relationship has been shown
n a wide age range consisting of groups of individuals often distanced
y 50 years and it has not been consistently investigated in a narrow
ge range of, for example, older individuals. Therefore, age-related al-
erations within a more homogeneous sample of older individuals need
urther investigation. 

Importantly, when controlling for 1/f decay of PSD (decomposing
scillatory and non-oscillatory estimates of PSD), no age-related alter-
tions were shown in slow wave ( < 12 Hz) power ( Caplan et al., 2015 ).
2 
urthermore, only few studies have investigated the association between
on-oscillatory activity estimated with 1/f slope and cognition: It has
een linked to cognitive speed ( Ouyang et al., 2020 ), lexical prediction
 Dave et al., 2018 ), and visual working memory ( Voytek et al., 2015 ). 

Given these findings, in the current study, we aimed to disentan-
le the complex relationship between oscillatory and non-oscillatory
esting-state EEG (rsEEG) parameters, age, and cognition. We had the
nique opportunity to address this question in a big sample consisting
f over 1700 older participants which allowed us to estimate individual
ontributions of all of the aforementioned measures within a single sta-
istical model including a larger number of predictors. We hypothesized
hat no age-related alterations in theta and alpha power would be ob-
erved when carefully adjusting for methodological confounds, such as
pectral slowing and amplitude mixing between the rhythmic and non-
hythmic PSD components. Moreover, based on previous literature, we
ave also hypothesized a decrease of IAF and 1/f slope with increasing
ge and that both of these parameters would positively correlate to cog-
itive performance. We aimed to extend previous work and contribute
y investigating this relationship in a group of older individuals with a
ontinuous age span between 60 and 80 years of age. 

. Materials and methods 

.1. Participants 

The data used in the present study is a part of the population-based
IFE-Adult dataset (Leipzig Research Center for Civilization Diseases,
eipzig University; Loeffler et al., 2015 ). Participants were randomly
elected from the residence registration office and all participants that
greed to take part in the study provided written informed consent, and
eceived monetary compensation. The study was approved by the ethics
oard of the Medical Faculty of the University of Leipzig. 

EEG data was available from 3390 participants. Our inclusion crite-
ia for the study consisted of completion of cognitive tests (described in
ection 2.4.1 .), right-handedness, no history of brain hemorrhage, con-
ussion, skull fracture, brain surgery or brain tumor, and no use of med-
cation with an effect on the central nervous system. We also controlled
or the vigilance of a resting state recording (described in Section 2.2 .)
o assure homogeneous levels of arousal and sleepiness throughout the
hole sample. After administering these criteria, our final sample con-

isted of 1703 subjects’ (M age = 70, SD = 4.7, 880 females) datasets. 

.2. Resting ‐state EEG recordings and pre ‐processing 

A 20 min eyes-closed rsEEG data was recorded from 31-channel
g/AgCl scalp electrodes (Brain Products GmbH, Gilching, Germany)

n an electrically shielded and soundproof EEG booth. The electrodes
ere mounted in an elastic cap (easyCAP, Herrsching, Germany) accord-

ng to the international standard 10–20 extended localization system.
he signal was amplified with a QuickAmp amplifier (Brain Products
mbH, Gilching, Germany). Additionally, two electrodes recorded ver-

ical (vEOG) and horizontal (hEOG) eye movements above and beneath
he right eye. One bipolar electrode attached to the right and left fore-
rm recorded electrocardiogram (ECG). The electrodes were referenced
o the common average reference with AFz being a ground electrode.
he electrodes’ impedances were kept below 10k Ω, the sampling rate
as 1000 Hz, and the data was lowpass filtered at 280 Hz. A more de-

ailed description can be found in a paper by Jawinski and colleagues
 Jawinski et al., 2017 ). 

EEG data was pre-processed using the MATLAB-based (MathWorks,
nc, Natick, Massachusetts, USA) EEGLAB toolbox (version 14.1.1b) and
ustom written scripts. First, the data was band-pass filtered between 1
nd 45 Hz (4th order Butterworth filter applied back and forth) with a
otch filter at 50 Hz to remove any remaining power line artifacts. The
ata was then downsampled to 500 Hz. We excluded vEOG, hEOG, and
CG channels from the dataset and visually inspected the PSDs of the
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ulti-channel data of all subjects to determine whether data was con-
aminated by noise and to identify broken channels. A semiautomatic
ipeline was used to mark and remove the segments contaminated by ar-
ifacts that corresponded to muscle activity or non-biological noise. For
his purpose, we set different amplitude threshold levels for the noise
etection at slow-frequency (1–15 Hz) and high frequency (15–45 Hz)
anges. For the slow-frequency range the individual noise threshold was
efined as three SD above the mean amplitude of the filtered signal. We
et a constant amplitude threshold of 40μV for the high-frequency range.
ecordings for which the total bad segment length exceeded 60 s were

nspected visually to confirm that the marked segments were indeed
ontaminated by noise. Independent component analysis (ICA, Infomax
 Bell and Sejnowski, 1995 )) was applied and artefacts related to eye
links, eye movements, heartbeat, and muscle activity were removed. 

Resting-state EEG recordings are marked by different brain arousal
tages that over time shift from alertness to drowsiness and even sleep.
ue to the heterogeneity in the arousal and vigilance of the participants,
e only used data segments of recordings that had been classified as

wakeful rest’ based on the Vigilance Algorithm Leipzig (VIGALL 2.0,
uang et al., 2015 ; Jawinski et al., 2017 ). VIGALL is an automatic al-
orithm implemented in the Brain Vision Analzyer 2 (Brain Products
mbH, Gilching, Germany), that classifies each one second epoch of

he rsEEG recording into seven categories corresponding to estimated
rain arousal levels ranging from high alertness to sleep onset. The level
f arousal is determined by the combination of power in different fre-
uency bands, the EOG channel activity, and sleep spindles, as well as
opographical distribution of these parameters. Based on VIGALL clas-
ification, stage A defines wakeful rest that is determined based on the
resence of the current density activity distribution in the alpha fre-
uency range (for more detail see the manual at https://research.uni-
eipzig.de/vigall/ ). Stages of VIGALL had been successfully linked to the
elf-rated likelihood of having fallen asleep ( Jawinski et al., 2017 ) and
utonomic nervous system activity ( Huang et al., 2018 ). In the current
tudy we included participants that had at least 5 min of rsEEG data
hat was classified as stage A. Based on this criterion, 967 participants
id not have sufficiently long vigilant rsEEG recordings. For compara-
ility, we controlled the length of the recording across participants and
nalyzed the first 5 min of every recording. 

.3. EEG data analysis 

.3.1. Rhythmic and non ‐rhythmic components of the power spectral 

ensity 

The PSD of each channel’s data was calculated from the cleaned data
sing 4 s Hamming windows overlapping by 50% using Welch’s method.
e used the Python (version 3.6.7) implementation of the FOOOF algo-

ithm ( Donoghue et al., 2020 ) on the PSDs to estimate the slope of the
/f decay for each channel separately: Here, broad-band PSD between 2
nd 40 Hz was modeled as 𝑃 ( 𝑓 ) ∼ 1∕ 𝑓 𝛾 where 𝛾 is the spectral slope (see
ig. 1 ). We did not use the knee parameter. Because the algorithm mod-
ls Gaussian peaks above the 1/f decay of the PSD and fits two Gaussian
eaks in case the peak of the original data is non-Gaussian, we did not
se features of periodic components extracted by the FOOOF algorithm.
fter subtracting the 1/f part of the spectrum from the original PSD,
e performed a peak search between 7 and 13 Hz to localize the alpha
eak in each channel. A peak was localized if the inclination (defined
s a datapoint that is larger than its neighboring data samples) of the
SD in this frequency range exceeded 0.05 μV 

2 /Hz. We always took the
eak with the highest prominence in case several peaks were found in
he frequency range of interest. To define the width of the peak, a hor-
zontal line was extended to the left and right at the point at 10% of
he prominence of the peak. In case the width was higher than 6 Hz,
e set it to 3 Hz anchored around the maxima of the peak. In case the
eak could not be detected, we did not estimate power in that particular
hannel. We then calculated alpha power as the area under the resid-
al PSD within the frequency range between the start and end of the
3 
etected alpha peak. This measure was calculated for each channel of
very participant and was then used for further analyses with cognitive
cores (described in Section 2.4 .). Out of the whole sample included in
he current study ( N = 1703), we could not detect an alpha peak for 1
articipant in any of the channels and 13 participants had no peak in
ore than 15 channels. 

We also performed a peak search between 4 and 7 Hz to estimate
heta peak parameters using the same criteria that were applied for the
lpha peak detection. Only ∼3% of participants had an oscillatory peak
n this range. We compared this result with the results obtained from
he FOOOF algorithm. Based on the FOOOF peak parametrization, out of
703 participants included in our study, 781 had no theta peak detected
n any of the channels, and 1015 participants had no detectable theta
eak in any of the 11 frontal and fronto-central channels. Therefore, we
stimated theta power in a frequency range between the starting point
f the alpha peak and 3 Hz before it. Power in this range was estimated
sing the original PSD (containing the non-rhythmic component) since
he subtraction of 1/f might cause negative values in the residual of the
SD. We inspected data for outliers based on the interquartile range (IQR
49))). We defined an outlier as a data value that exceeded an interval
f 𝑞 3 + 3 ∗ 𝐼𝑄𝑅 , where 𝑞 3 is the third quartile for alpha and theta power
nd we additionally used an interval of 𝑞 1 − 3 ∗ 𝐼𝑄𝑅 for the negatively
kewed values of 1/f slope values, where 𝑞 1 is the first quartile. 

.3.2. EEG source reconstruction 

For every significant relationship at a sensor level, we performed
 source localization. We built individual head models for those
articipants that had an MRI scan (n ∼700) and used a standard head
odel for the rest of the subjects. For the individual head models,
e used the T1-weighted MPRAGE images that were acquired with
 3 Tesla Verio scanner (Siemens, Erlangen, Germany) and were
egmented using the Freesurfer v.5.3.0 software ( Fischl, 2012 ). A
-shell boundary element model was constructed with Brainstorm
 Tadel et al., 2011 ), which was used to compute the leadfield matrix
ith OpenMEEG ( Gramfort et al., 2010 ). The standard head model
as based on the ICBM152 nonlinear average head anatomy (version
009) included within Brainstorm. Electrode positions were registered
o the scalp surface of the standard head according to the 10–20
lectrode placement. For individual head models, electrode positions
ere warped from the standard to the individual anatomy using SPM
 Frackowiak et al., 1997 ). In all cases the source space consisted of
a. 2000 voxels located on the cortical mantle. We constrained the
rientation of the dipolar sources to be perpendicular to the cortical sur-
ace. Source reconstruction was performed using exact low-resolution
rain electromagnetic tomography ( Pascual-Marqui, 2009 ) with a
egularization parameter of 0.05 implemented in the M/EEG Toolbox
f Hamburg (METH, https://www.uke.de/english/departments-
nstitutes/institutes/neurophysiology-and-pathophysiology/research/ 
esearch-groups/index.html ). Due to the small number of EEG channels
 N = 31), we grouped the cortical vertices into 10 major regions (ROIs)
hat were aggregated based on the 68 regions of the Desikan-Killiany
tlas ( Desikan et al., 2006 ): We used a geometric mean for theta and
lpha power, mode for the IAF, and median for the 1/f slope. The rest
f the analysis was done in the same way as described in Section 2.3.1 .

.4. Cognition battery 

.4.1. Description of cognitive tests 

We used data from four cognitive tests: the Trail Making Test (TMT;
 Reitan, 1956 )), Stroop test ( Scarpina and Tagini, 2017 ), Wechsler’s
emory Scale ( Wechsler, 2009 ), and Vocabulary Knowledge Test (org.
ortschatztest, WST; ( Schmidt and Metzler, 1992 )). That were used

s a proxy for processing speed, mental flexibility, interference reso-
ution, memory, and crystalized intelligence. We inverted the reaction
ime scores (1/ s ) for interpretability, where higher scores meant better
erformance. We visually inspected cognitive scores for possible outliers

https://www.research.uni-leipzig.de/vigall/
https://www.uke.de/english/departments-institutes/institutes/neurophysiology-and-pathophysiology/research/research-groups/index.html
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Fig. 1. An exemplary power spectral density of a single EEG channel and grand 
average topographies of resting-state EEG parameters: Theta and alpha power, 
individual alpha peak frequency, and 1/f slope of PSD decay (marked with a 
dashed blue line). 
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nd removed data in case of values associated with a typing error. We
hen z-transformed all scores after outlier removal. 

.4.2. Factor analysis of the cognition battery 

Exploratory factor analysis (EFA) was used to extract latent factors
nderlying cognitive scales ( stats package R (version 3.4.4)). The num-
er of latent factors was determined by the Scree plots as well as the
mpirical Kaiser Criterion (EKC, ( Braeken and van Assen, 2017 )), ac-
ording to which only the components with eigenvalues larger than one
hould be kept. Both, the Scree plots as well as EKC, suggested three la-
ent factors that explained 67% of the variance in the data. These three
actors were used for further statistical analyses. 

.5. Statistical analyses 

.5.1. Relationship between resting ‐state EEG parameters and age 

To test the relationship between the PSD components and their link
o age, we used a mass-bivariate approach and cluster-based statistics
 Maris and Oostenveld, 2007 ) to correct for multiple comparisons across
hannels. For every relationship between the rsEEG parameters and age
n each channel we used Pearson partial correlations. We partialed out
he effects of the three other PSD variables as well as sex (measured as a
ivariate choice between ‘male’ and ‘female’) and education. Then, clus-
ers were formed in sensor space defined as several neighboring chan-
els with the significance threshold of p < 0.05. If a cluster was found,
he cluster t-value, estimated as a sum of t-values over electrodes that
ormed the cluster, was compared to a null distribution of clusters gen-
rated using the Monte Carlo method with 1000 permutations of the
ge values. By comparing the t-value of the original cluster with the ran-
omly generated ones, we determined the corresponding cluster p-value
 p cluster ). A cluster was considered significant if p cluster ≤ 0.0125 (Bonfer-
oni correction). 

While investigating the relationship between alpha power and age
rior to the subtraction of the 1/f decay (i.e., from the original PSD),
e controlled for IAF, sex, and education. However, we did not control

or theta power – due to the absence of an oscillatory peak in theta
requency range, theta power would capture properties of 1/f slope that
e intended to keep. We also assessed the significance of both clusters

hat were formed depicting the relationship between alpha power and
ge, to investigate which regions of the cortex might be most susceptible.

.5.2. Relationship between resting ‐state EEG parameters and cognition 

To test the relation between the rsEEG parameters and the three cog-
itive factors, we used multiple linear regression (MLR) with interaction
erms for age and rsEEG parameters of interest using the lm function im-
lemented in R. We ran separate MLRs for each cognitive factor and 10
OIs due to high collinearity between brain regions. Multicollinearity
ight compromise the model as the effects of independent variables on

he dependent one could not be reliably estimated in isolation. There-
ore, each MLR model consisted of four independent variables of interest
theta power, alpha power, IAF, and 1/f slope), as well as their inter-
ctions with age. Age, sex, and education were added as covariates to
he models. We corrected for multiple comparisons using false discovery
ate at 0.05 (FDR, ( Benjamini and Hochberg, 1995 )). 

. Results 

.1. Descriptive information 

We have analyzed data of 1703 participants (M age = 70, SD = 4.7, 880
emales): Demographic information and sample characteristics can be
ound in Supplementary material, Table 1, separately for men and women.
rand average topographies of resting-state EEG features can be seen in
ig. 1 . 

Measures of theta and alpha power, IAF, and 1/f slope of PSD showed
trong correlations among each other with a widespread effect over the
4 
hole cortex (all p < 0.001, rho values vary between 0.3 and 0.7, p-
alues were based on Pearson correlation, clusters of electrodes were
orrected for multiple comparisons using cluster statistics, Supplemen-

ary material ). 

.2. Resting ‐state EEG spectral changes associated with age 

We used a mass-bivariate approach with cluster-based permuta-
ion tests ( Maris and Oostenveld, 2007 ) to assess whether age-related
hanges occurred in the rsEEG parameters in sensor space. Importantly,
lpha power showed age-related reductions before controlling for 1/f
lope ( Fig. 2 , panel A ) with two clusters at frontal (p cluster = 0.055) and oc-
ipital (p cluster = 0.038) regions. No significant cluster was observed when
stimating alpha power from detrended PSD (i.e., after the subtraction
f 1/f decay), suggesting that the aforementioned results might capture
ge-related alterations in 1/f slope rather than power of alpha oscilla-
ions. 

A widespread negative relationship between IAF and age
p cluster < 0.001, Fig. 3 , panel A ) was present at all electrodes. This
esult was replicated at the source level, where this relationship
as significant in all 10 ROIs with the left temporal lobe showing

he strongest effect ( p < 0.001, r = − 0.22). Another cluster of elec-
rodes showing a negative significant relation between 1/f slope and
ge was detected over the fronto-central electrodes at sensor space
p cluster = 0.012, Fig. 3 , panel B ). Source reconstruction showed that the
ignificant relationship was detected in the right frontal lobe ( p = 0.001,
 = − 0.08). 

Other rsEEG parameters (i.e., theta power, and alpha power (after
ontrolling for 1/f decay), Fig. 2 ) showed no significant age-related al-
erations, either at sensor or at source space. Because sensor space find-
ngs matched findings in the source space, source space data were used
n the following analyses. 
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Fig. 2. Age-related alterations in alpha and 
theta power. Topographies depict correlation 
coefficients and significant sensors are marked 
with black circled dots. (A) Alpha power shows 
a decrease with age primarily in frontal and 
occipital regions, however, this relationship is 
absent when controlling for 1/f spectral decay 
(i.e., measured on detrended PSD). (B) No sig- 
nificant age-related alterations were observed 
in theta power. 

Fig. 3. Age-related alterations in resting-state EEG parameters at sensor and source space. Sensors that formed significant cluster are marked with black circled 
dots. Scatterplots indicate mean values across significant EEG sensors. (A) Individual alpha peak frequency (IAF) showed a significant negative correlations with 
age that was prominent over the whole cortical mantle at sensor and source space. (B) 1/f slope of the power spectral density was negatively associated with age at 
fronto-central channels at sensor space and in the frontal lobe at source space. 
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.3. Cognitive performance 

.3.1. Factor analysis 

Based on the factor loadings ( > 0.4), we interpreted three factors as
epresenting speed of processing, episodic memory , and interference resolu-

ion . The first factor, the speed of processing, positively loaded on the
eaction times from the congruent and incongruent trials of the Stroop
ask. The second factor, associated with episodic memory, positively
oaded on the Wechsler’s Memory Scale, Logical Memory subscales. Fi-
ally, the third factor reflecting interference resolution loaded positively
n the accuracy of incongruent trials of the Stroop task, and negatively
n the inverted reaction times of the same condition. The interpretation
f the third factor as interference resolution was based on the increased
ognitive demands under the effect of Stroop interference that resulted
n slower reaction times but higher accuracy (see Fig. 4 , panel A ). The
hree identified factors correspond to the main cognitive domains of at-
ention, memory, and executive functions, respectively. 
5 
.4. Relationship between age and cognitive performance 

All three factors showed a significant decrease with age (speed
f processing: p < 0.001, rho = − 0.12, episodic memory: p < 0.001,
ho = − 0.1, interference resolution: p < 0.001, rho = − 0.16; Fig. 4 , panel B )
nd were used for the following multiple linear regression (MLR) mod-
ls. 

.5. Relationship between resting ‐state EEG parameters and cognitive 

erformance 

For simplicity, we report here only the results from regions that were
tatistically significant (all outputs from the MLR models can be found
n Supplementary material, Tables 1–10 ). 

Models assessing the relationship between the factor representing
nterference resolution and rsEEG parameters ( model statistics : adj. R 

2 

anged from 0.03 to 0.04; F(1557) ranged from 5.1 to 7.1, p < 0.001;
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Fig. 4. Three latent factors representing episodic memory, processing speed, and interference resolution derived from the cognition battery. (A) The correlation 
matrix shows that most of the subscales from the cognition battery were moderately correlated with each other. The loading strength, to the right, represents the 
contribution of the particular scale to the factor. (B) All of the latent factors showed a decrease with age. 
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ig. 5 panels A-B ) showed a positive association with IAF in six regions:
ight frontal ( p < 0.01, 𝛽= 0.07), right ( p < 0.01, 𝛽= 0.08) and left ( p < 0.01,
= 0.07) parietal, right ( p < 0.001, 𝛽= 0.09) and left ( p < 0.01, 𝛽= 0.08)
emporal, and right cingulate cortex ( p < 0.01, 𝛽= 0.07). Moreover, age
as negatively related ( p < 0.001, 𝛽s ranged from − 0.14 to − 0.15) and

ducation was positively related ( p < 0.01, 𝛽s ranged from 0.07 to 0.08)
o this factor. 

Models for the factor representing the speed of processing revealed
 significant negative relationship with alpha power ( p < 0.01, 𝛽= − 0.08;
ig. 5 panels C-D ) in the right frontal region ( model statistics : adj.
 

2 :0.017; F(1557) = 3.41, p < 0.001). Age was also negatively associated
ith the factor in this model ( p < 0.001, 𝛽= − 0.11). Other independent
ariables as well as interaction terms between rsEEG parameters and
ge were not significant. 

Models for the factor representing episodic memory were significant
 model statistics : adj. R 

2 ranged from 0.061 to 0.068; F(1557) ranged
rom 10.35 to 11.36, p < 0.001), however, they showed no association
ith the rsEEG measures. 

. Discussion 

This study investigated how rhythmic (i.e., theta power, alpha
ower, IAF) and non-rhythmic (i.e., 1/f slope) rsEEG activity relates
o aging and cognition in a large cohort of healthy elderly participants.
here were four main findings after we separated periodic and aperi-
dic components: (i) IAF decreased with age: an effect that was robustly
bserved across the whole cortex but was strongest in the left tempo-
al lobe; (ii) Age-related alterations were observed in 1/f slope of PSD
uggesting flattening of the slope in the right frontal lobe; (iii) No sig-
6 
ificant age-related alterations were seen in slow wave power (alpha
nd theta frequency), which is in contrast to several previous reports;
iv) Relating individual contributions of rsEEG parameters to cognitive
erformance, alpha power in the right frontal lobe was negatively asso-
iated with processing speed while higher IAF in multiple cortical areas
ontributed to better interference resolution. In the current manuscript
e used a variety of methods and carefully controlled for amplitude mix-

ng of aperiodic and periodic components, slowing of the IAF, as well as
igilance of the EEG recording that has not been consistently controlled
or in previous studies. 

.1. Age ‐related alterations of resting ‐state EEG parameters 

In the current study we show a prominent IAF decrease with age
hat is consistent with previous reports on age-related spectral slowing
 Ishii et al., 2017 ; Knyazeva et al., 2018 ; Mizukami and Katada, 2018 ).
eak frequency slowing might reflect changes on the level of neu-
otransmission as well as a decrease in axonal conduction velocity
 Dustman et al., 1993 ; Hong and Rebec, 2012 ). This might, in turn, re-
ult in a prolonged time delay within an intra-cortical circuitry and,
herefore, slower IAF. Although participants of the current study did
ot suffer from any neurological condition, slowing of the alpha peak
ight nevertheless be indicative of neuronal processes that underlie

arly subclinical stages of neurodegenerative conditions whose preva-
ence increase with age. This finding is juxtaposed with the observation
hat higher IAF might contribute to better cognition, and specifically,
nterference resolution (see below). 

Alterations in axonal connections between neurons can affect not
nly IAF, but can also impact compensatory increases of neural firing
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Fig. 5. Relationship between rsEEG parameters and cognition. (A) Based on the linear models, individual alpha peak frequency (IAF) significantly related to the 
factor representing interference resolution. The figure shows estimates of standardized predictors together with a distribution of their confidence intervals in different 
regions indicated by colors. Interaction terms are indicated with a colon and significant effects are marked with an asterisk. (B) A positive association between the IAF 
and interference resolution seen in panel (A) plotted at source space on a cortical mantle. (C) Alpha power was negatively associated with another factor representing 
speed of processing. This effect was significant in the right frontal lobe but not other regions. (D) The significant relationship in panel (C) plotted at the source space. 
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1  
ates in higher frequency ranges ( Hong and Rebec, 2012 ) and, conse-
uently, a flatter 1/f slope. In line with these findings as well as pre-
ious reports of age-related alterations in 1/f slope ( Dave et al., 2018 ;
oytek et al., 2015 ), our results suggest that flattening of the slope might
eflect increased cortical excitability and a possible over-recruitment of
rontal brain regions in older age ( Davis et al., 2008 ; Nyberg et al.,
010 ). Importantly, our findings are consistent with previous reports
espite the differences in analyzed age-ranges. While previous studies
ompared younger (20–30 years old) versus older (60–70 years old) par-
icipants, we have observed the same effect within a narrow age range
etween 60 and 80 years. 

Despite multiple reports of age-related alterations of power in theta
nd alpha frequency ranges across the lifespan ( Rossini et al., 2007 ;
lahou et al., 2015 ), and within an older age range alone ( Lodder and
an Putten, 2011 ), we did not observe significant changes of these pa-
ameters. An absence of changes in theta and alpha power might be
ue to differences in methodology: (i) Individually adjusted frequency
anges of interest based on the center frequency, (ii) the dissociation
etween rhythmic and non-rhythmic components of PSD, and (iii) the
stimation of unique contributions of these parameters. Indeed, we also
howed that when the 1/f decay of the PSD is not controlled for, a re-
uction in alpha power could be observed in frontal and occipital re-
ions with a more liberal significance level. This finding suggests that
revious reports on age-related alterations in alpha power might result
rom the mixing of rhythmic and non-rhythmic components of the PSD.
oreover, the absence of age-related alterations in theta power might

lso suggest that previous reports showing a significant relationship be-
ween the two might have been related to IAF slowing. In line with our
7 
ndings, Caplan and colleagues ( Caplan et al., 2015 ) did not observe
ny age-related alterations in theta and alpha band power. While the
uthors reported a detectable rhythmic activity in the alpha frequency
ange, it did not alter with age when controlling for non-rhythmic ac-
ivity (i.e., 1/f slope). 

.2. The link between resting-state EEG parameters and cognition 

With the second research question, we aimed to explore the link be-
ween rsEEG parameters and cognition in old age. We found that re-
uced alpha power in the right frontal lobe was differentially associated
ith higher processing speed. When measured at rest, alpha power has
een suggested to reflect properties of an attentional filter, which might
elate to the ability to inhibit task-irrelevant information when task de-
ands are met ( Händel et al., 2011 ; MacLean et al., 2012 ). Task-related
ower reduction in the alpha frequency band has been previously linked
o an increase in excitability ( Iemi et al., 2019 ; Klimesch et al., 2007 ). In
ine with these previous studies, we suggest that reduced alpha power
ver the right frontal lobe might represent increased excitability of a net-
ork that enables top-down control. Increased excitability in this region
ight relate to impulsive and fast reactions to stimuli at the expense of

ccuracy (represented by the processing speed) and might serve as yet
nother support for functional ‘over-recruitment’ of frontal brain regions
n older age ( Davis et al., 2008 ; Nyberg et al., 2010 ). Moreover, consis-
ent with our finding, previous reports have also suggested weakened
nhibitory activity in older age ( Borghini et al., 2018 ; Dustman et al.,
993 ). While other parameters used in the current study (e.g. IAF and
/f slope of the PSD) have also been associated with excitability, we
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ave controlled for their possible effects on the respective cognitive
unction. 

It has been shown that not only alpha power but also instantaneous
AF is related to excitation/inhibition balance and information process-
ng, particularly in the visual domain ( Nelli et al., 2017 ; Samaha and
ostle, 2015 ). While we found a prominent IAF decrease with increas-
ng age, we also observed that IAF was related to interference resolution
n a working memory task. Higher IAF over bilateral cingulate cortex,
eft and right parietal- and temporal-lobes, as well as the right frontal
obe was associated with better interference resolution, specifically with
asks relying on Stroop interference effects. It has been previously sug-
ested that higher IAF relates to a finer temporal sampling of visual
nformation ( Samaha and Postle, 2015 ), also shown in a cross-modal
omain ( Cecere et al., 2015 ). The authors have suggested that the num-
er of alpha cycles within which the temporally close stimuli fall fa-
ilitates segregation (in contrast to integration) of discrete perception
 Samaha and Postle, 2015 ). Therefore, our findings indicate that while
igher IAF corresponds to more oscillatory cycles within the given time
indow of stimulus presentation, as compared to slower IAF, it might as
ell facilitate segregation of information resulting from two interfering
omains – the color and semantics of the word in the context of a Stroop
ask. Taking into account a decrease in IAF in older age and its signifi-
ant relationship with interference resolution, our observation is in line
ith studies showing reduced capacity to ignore and inhibit interfering

nformation in older age ( Li et al., 2001 ). 

. Conclusion 

Taken together, our results provide evidence for the need to consider
oth rhythmic and non-rhythmic components of the PSD when estimat-
ng age-related alterations in resting-state EEG. This is particularly im-
ortant for power estimation in different frequency bands: We show that
hen the 1/f spectral decay is not controlled for, alterations in alpha
ower could be observed as a result of the mixing of rhythmic and non-
hythmic components. While we did not observe the previously reported
ower reduction either in theta or alpha frequency ranges (after detrend-
ng the PSD), we confirmed a persistent negative relationship between
AF and age across the entire cortical mantle. Additionally, higher IAF
as also related to better interference resolution: This finding suggests

hat higher IAF may facilitate the segregation of interfering information
n older age. Age-related alterations in 1/f spectral slope as well as the
ink between resting-state alpha power and speed of processing possibly
uggest increased excitability in the right frontal lobe that may lead to
ore impulsive responses to stimuli. On the functional level, our find-

ngs, therefore, support the notion of functional reorganization of the
rain in older age with a possible over-recruitment of frontal brain re-
ions ( Davis et al., 2008 ; Nyberg et al., 2010 ). It is important to note
hat we controlled for vigilance of the resting-state EEG recordings us-
ng the VIGALL algorithm that has been developed and validated on the
ame sample of older participants used in the current study. 

.1. Limitations 

In the current study we investigated the impact of separating peri-
dic and aperiodic components of the PSD of rsEEG data on commonly
eported findings in the aging literature. Extending these findings to
ask EEG data as well as to other frequency bands would be beneficial
o investigate these considerations further. Our dataset included a rela-
ively narrow age range of participants, and further research needs to be
erformed to investigate these findings in other age groups. Moreover,
iven our choice of the neuroimaging method, we could not link our
ndings to other neurobiological changes that are commonly reported

n aging literature that would be beneficial in order to understand the
ull picture of age-related changes in the brain. Finally, we used VI-
ALL algorithm to classify and control for vigilance of the participants,
owever, previous studies did not control for it and, therefore, a direct
8 
omparison is difficult to make as the effect of vigilance in those studies
emains rather unanswered. 
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