Skip to main content
Log in

Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The perception of effort provides information on task difficulty and influences physical exercise regulation and human behavior. This perception differs from other-exercise related perceptions such as pain. There is no consensus on the role of group III/IV muscle afferents as a signal processed by the brain to generate the perception of effort.

Objective

The aim of this meta-analysis was to investigate the effect of pharmacologically blocking muscle afferents on the perception of effort.

Methods

Six databases were searched to identify studies measuring the ratings of perceived effort during physical exercise, with and without pharmacological blockade of muscle afferents. Articles were coded based on the operational measurement used to distinguish studies in which perception of effort was assessed specifically (effort dissociated) or as a composite experience including other exercise-related perceptions (effort not dissociated). Articles that did not provide enough information for coding were assigned to the unclear group.

Results

The effort dissociated group (n = 6) demonstrated a slight increase in ratings of perceived effort with reduced muscle afferent feedback (standard mean change raw, 0.39; 95% confidence interval 0.13–0.64). The group effort not dissociated (n = 2) did not reveal conclusive results (standard mean change raw, − 0.29; 95% confidence interval − 2.39 to 1.8). The group unclear (n = 8) revealed a slight ratings of perceived effort decrease with reduced muscle afferent feedback (standard mean change raw, − 0.27; 95% confidence interval − 0.50 to − 0.04).

Conclusions

The heterogeneity in results between groups reveals that the inclusion of perceptions other than effort in its rating influences the ratings of perceived effort reported by the participants. The absence of decreased ratings of perceived effort in the effort dissociated group suggests that muscle afferent feedback is not a sensory signal for the perception of effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inzlicht M, Shenhav A, Olivola CY. The effort paradox: effort is both costly and valued. Trends Cogn Sci. 2018;22(4):337–49.

    Article  Google Scholar 

  2. Gaveau J, Grospretre S, Berret B, Angelaki DE, Papaxanthis C. A cross-species neural integration of gravity for motor optimization. Sci Adv. 2021;7(15): eabf7800.

    Article  Google Scholar 

  3. Izawa J, Rane T, Donchin O, Shadmehr R. Motor adaptation as a process of reoptimization. J Neurosci. 2008;28(11):2883–91.

    Article  CAS  Google Scholar 

  4. Pageaux B, Lepers R. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol. 2016;2016(7):587.

    Google Scholar 

  5. Cook DB, O’Connor PJ, Lange G, Steffener J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage. 2007;36(1):108–22.

    Article  Google Scholar 

  6. Barhorst EE, Andrae WE, Rayne TJ, Falvo MJ, Cook DB, Lindheimer JB. Elevated perceived exertion in people with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: a meta-analysis. Med Sci Sports Exerc. 2020;52(12):2615–27.

    Article  Google Scholar 

  7. Kuppuswamy A, Clark EV, Turner IF, Rothwell JC, Ward NS. Post-stroke fatigue: a deficit in corticomotor excitability? Brain. 2014;138(1):136–48.

    Article  Google Scholar 

  8. Fernandez C, Firdous S, Jehangir W, Behm B, Mehta Z, Berger A, et al. Cancer-related fatigue: perception of effort or task failure? Am J Hosp Palliat Med. 2020;37(1):34–40.

    Article  Google Scholar 

  9. Piña IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, et al. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107(8):1210–25.

    Article  Google Scholar 

  10. AACVPR. Guidelines for cardiac rehabilitation and secondary prevention programs. Champaign: Human Kinetics; 2013.

    Google Scholar 

  11. Eston R, Parfitt G. Perceived exertion, heart rate and other non-invasive methods for exercise testing and intensity control. Kinanthropometry and exercise physiology. Anthropometry. 2018;2018:464.

    Google Scholar 

  12. Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):1042–7.

    Article  Google Scholar 

  13. ACSM. ACSM’s exercise testing and prescription. Philadelphia: Lippincott, Williams & Wilkins; 2017.

    Google Scholar 

  14. Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885–94.

    Article  Google Scholar 

  15. Smirmaul BDPC. Sense of effort and other unpleasant sensations during exercise: clarifying concepts and mechanisms. Br J Sports Med. 2012;46(5):308–11.

    Article  Google Scholar 

  16. Steele J. What is (perception of) effort? Objective and subjective effort during task performance. PsyArXiv; 2020.

  17. St Gibson AC, Lambert EV, Rauch LHG, Tucker R, Baden DA, Foster C, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–22.

    Article  Google Scholar 

  18. Noble BJ, Robertson RJ. The Borg scale: development, administration and experimental use. Perceived exertion. Champaign: Human Kinetics; 1996. p. 59–89.

    Google Scholar 

  19. Broxterman RM, Layec G, Hureau TJ, Morgan DE, Bledsoe AD, Jessop JE, et al. Bioenergetics and ATP synthesis during exercise: role of group III/IV muscle afferents. Med Sci Sports Exerc. 2017;49(12):2404.

    Article  CAS  Google Scholar 

  20. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol. 2010;109(4):966–76.

    Article  Google Scholar 

  21. Meeusen R. Commentaries on Viewpoint: perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2063–6.

    Article  Google Scholar 

  22. Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, et al. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol. 2013;115(3):355–64.

    Article  Google Scholar 

  23. Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO. Neuromuscular responses of recreationally active women during a sustained, submaximal isometric leg extension muscle action at a constant perception of effort. Eur J Appl Physiol. 2018;118(12):2499–508.

    Article  CAS  Google Scholar 

  24. de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012;49(9):1242–53.

    Article  Google Scholar 

  25. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):1631–48.

    Article  CAS  Google Scholar 

  26. Taylor JL. Kinesthetic inputs. In: Pfaff DW, editor. Neuroscience in the 21st century. New York: Springer Science+Business Media LLC; 2013.

    Google Scholar 

  27. de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 2014;117(12):1514–23.

    Article  Google Scholar 

  28. Pageaux B, Gaveau J. Studies using pharmacological blockade of muscle afferents provide new insights into the neurophysiology of perceived exertion. J Physiol. 2016;594(18):5049.

    Article  CAS  Google Scholar 

  29. Marcora SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2060–2.

    Article  Google Scholar 

  30. Marcora SM, Bosio A, De Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R874–83.

    Article  CAS  Google Scholar 

  31. Weavil JC, Amann M. Corticospinal excitability during fatiguing whole body exercise. Prog Brain Res. 2018;240:219–46.

    Article  Google Scholar 

  32. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–89.

    Article  CAS  Google Scholar 

  33. Bank PJ, Peper CE, Marinus J, Beek PJ, van Hilten JJ. Motor consequences of experimentally induced limb pain: a systematic review. Eur J Pain. 2013;17(2):145–57.

    Article  CAS  Google Scholar 

  34. Rohel A, Bouffard J, Patricio P, Mavromatis N, Billot M, Roy JS, et al. The effect of experimental pain on the excitability of the corticospinal tract in humans: a systematic review and meta-analysis. Eur J Pain. 2021;25(6):1209–26.

    Article  Google Scholar 

  35. Fernandes A, Galbo H, Kjaer M, Mitchell JH, Secher NH, Thomas SN. Cardiovascular and ventilatory responses to dynamic exercise during epidural anaesthesia in man. J Physiol. 1990;420(1):281–93.

    Article  CAS  Google Scholar 

  36. Smith SA, Querry RG, Fadel PJ, Gallagher KM, Strømstad M, Ide K, et al. Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. J Physiol. 2003;551(3):1013–21.

    Article  CAS  Google Scholar 

  37. Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69(2):407–18.

    Article  CAS  Google Scholar 

  38. Amann M, Wan H-Y, Thurston TS, Georgescu VP, Weavil JC. On the influence of group III/IV muscle afferent feedback on endurance exercise performance. Exerc Sport Sci Rev. 2020;48(4):209–16.

    Article  Google Scholar 

  39. O’Connor PJ, Cook DB. Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev. 1999;27(1):119–66.

    CAS  Google Scholar 

  40. Amann M, Venturelli M, Ives SJ, Morgan DE, Gmelch B, Witman MA, et al. Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. Int J Cardiol. 2014;174(2):368–75.

    Article  Google Scholar 

  41. Amann M, Proctor LT, Sebranek JJ, Eldridge MW, Pegelow DF, Dempsey JA. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise. J Appl Physiol. 2008;105(6):1714–24.

    Article  Google Scholar 

  42. Kjær M, Secher NH, Bach FW, Sheikh S, Galbo H. Hormonal and metabolic responses to exercise in humans: effect of sensory nervous blockade. Am J Physiol Endocrinol Metabol. 1989;257(1):E95–101.

    Article  Google Scholar 

  43. Olson TP, Joyner MJ, Eisenach JH, Curry TB, Johnson BD. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure. Exp Physiol. 2014;99(2):414–26.

    Article  Google Scholar 

  44. Borg GAV. Physical performance and perceived exertion (1962).

  45. Borg GAV. Borg’s perceived exertion and pain scales. Champaign: Human Kinetics; 1998.

    Google Scholar 

  46. Gamberale F. Perception of effort in manual materials handling. Scand J Work Environ Health. 1990;16(Suppl. 1):59–66.

    Article  Google Scholar 

  47. Jones LA. The senses of effort and force during fatiguing contractions. New York: Springer; 1995. p. 305–13.

    Google Scholar 

  48. Jones L, Hunter I. Effect of fatigue on force sensation. Exp Neurol. 1983;81(3):640–50.

    Article  CAS  Google Scholar 

  49. Eston R, Coquart J, Lamb K, Parfitt G. Misperception: no evidence to dismiss RPE as regulator of moderate-intensity exercise. Med Sci Sports Exerc. 2015;47(12):2676.

    Article  Google Scholar 

  50. Hamilton AL, Killian KJ, Summers E, Jones NL. Quantification of intensity of sensations during muscular work by normal subjects. J Appl Physiol. 1996;81(3):1156–61.

    Article  CAS  Google Scholar 

  51. O’Connor PJ, Cook DB. Moderate-intensity muscle pain can be produced and sustained during cycle ergometry. Med Sci Sports Exerc. 2001;33(6):1046–51.

    Article  CAS  Google Scholar 

  52. Christian RJ, Bishop D, Girard O, Billaut F. The role of sense of effort on self-selected cycling power output. Front Physiol. 2014;2014(5):115.

    Google Scholar 

  53. Steele J, Fisher J, McKinnon S, McKinnon P. Differentiation between perceived effort and discomfort during resistance training in older adults: reliability of trainee ratings of effort and discomfort, and reliability and validity of trainer ratings of trainee effort. J Trainology. 2016;6(1):1–8.

    Article  Google Scholar 

  54. Stuart C, Steele J, Gentil P, Giessing J, Fisher JP. Fatigue and perceptual responses of heavier-and lighter-load isolated lumbar extension resistance exercise in males and females. PeerJ. 2018;2018(6): e4523.

    Article  Google Scholar 

  55. McCloskey DI, Ebeling P, Goodwin GM. Estimation of weights and tensions and apparent involvement of a “sense of effort.” Exp Neurol. 1974;42(1):220–32.

    Article  CAS  Google Scholar 

  56. Marcora S. Psychobiology of fatigue during endurance exercise. Endurance performance in sport. New York: Routledge; 2019. p. 15–34.

    Google Scholar 

  57. Richter M, Gendolla GH, Wright RA. Three decades of research on motivational intensity theory: what we have learned about effort and what we still don't know. In: Advances in motivation science. Elsevier; 2016. p. 149–86.

  58. Preston J, Wegner DM. Elbow grease: when action feels like work. Social cognition and social neuroscience. In: Oxford handbook of human action; 2009. p. 569–86.

  59. Marcora SM. Perception: effort of. In: Goldstein EB, editor. Encyclopedia of perception. Thousand Oaks: Sage; 2010. p. 380–3.

    Google Scholar 

  60. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    Article  Google Scholar 

  61. McCormick A, Meijen C, Marcora SM. Psychological determinants of whole-body endurance performance. Sports Med. 2015;45(7):997–1015.

    Article  Google Scholar 

  62. Thomas BH, Ciliska D, Dobbins M, Micucci S. A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid Based Nurs. 2004;1(3):176–84.

    Article  CAS  Google Scholar 

  63. Higgins, Green S. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. http://www.cochrane-handbook.org. Accessed 12 Sep 2022.

  64. Kjær M, Hanel B, Worm L, Perko G, Lewis SF, Sahlin K, et al. Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. Am J Physiol. 1999;277(1):R76–85.

    Google Scholar 

  65. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol. 2011;589(21):5299–309.

    Article  CAS  Google Scholar 

  66. Chaney MA. Side effects of intrathecal and epidural opioids. Can J Anaesth. 1995;42(10):891–903.

    Article  CAS  Google Scholar 

  67. Schnoll RA, Epstein L, Audrain J, Niaura R, Hawk L, Shields PG, et al. Can the blind see? Participant guess about treatment arm assignment may influence outcome in a clinical trial of bupropion for smoking cessation. J Subst Abuse Treat. 2008;34(2):234–41.

    Article  Google Scholar 

  68. O’Donnell DE, Milne KM, James MD, de Torres JP, Neder JA. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther. 2020;37(1):41–60.

    Article  Google Scholar 

  69. O’Donnell DE, Ora J, Webb KA, Laveneziana P, Jensen D. Mechanisms of activity-related dyspnea in pulmonary diseases. Respir Physiol Neurobiol. 2009;167(1):116–32.

    Article  CAS  Google Scholar 

  70. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.

    Article  Google Scholar 

  71. Becker BJ. Synthesizing standardized mean-change measures. Br J Math Stat Psychol. 1988;41(2):257–78.

    Article  Google Scholar 

  72. Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods. 2008;11(2):364–86.

    Article  Google Scholar 

  73. Morris SB. Distribution of the standardized mean change effect size for meta-analysis on repeated measures. Br J Math Stat Psychol. 2000;53(1):17–29.

    Article  Google Scholar 

  74. Cohen J. Statistical power analysis for the behavioral sciences. In: Conner BE, editor. The box in the barn. Hillsdale: Erlbaum; 1988.

    Google Scholar 

  75. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–7.

    Article  CAS  Google Scholar 

  76. McShane BB, Gal D, Gelman A, Robert C, Tackett JL. Abandon statistical significance. Am Stat. 2019;73(Suppl. 1):235–45.

    Article  Google Scholar 

  77. Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1–28.

    Article  Google Scholar 

  78. Makowski D, Ben-Shachar MS, Lüdecke D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw. 2019;4(40):1541.

    Article  Google Scholar 

  79. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90(430):773–95.

    Article  Google Scholar 

  80. Higgins, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  Google Scholar 

  81. Gagnon P, Bussières JS, Ribeiro F, Gagnon SL, Saey D, Gagné N, et al. Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(7):606–15.

    Article  CAS  Google Scholar 

  82. Olkin I, Dahabreh IJ, Trikalinos TA. GOSH: a graphical display of study heterogeneity. Res Synth Methods. 2012;3(3):214–23.

    Article  Google Scholar 

  83. Kanai A, Osawa S, Suzuki A, Ozawa A, Okamoto H, Hoka S. Regression of sensory and motor blockade, and analgesia during continuous epidural infusion of ropivacaine and fentanyl in comparison with other local anesthetics. Pain Med. 2007;8(7):546–53.

    Article  Google Scholar 

  84. Olschewski A, Hempelmann G, Vogel W, Safronov BV. Blockade of Na+ and K+ currents by local anesthetics in the dorsal horn neurons of the spinal cord. Anesthesiology. 1998;88(1):172–9.

    Article  CAS  Google Scholar 

  85. Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol. 2009;587(1):271–83.

    Article  CAS  Google Scholar 

  86. Jacquet T, Lepers R, Poulin-Charronnat B, Bard P, Pfister P, Pageaux B. Mental fatigue induced by prolonged motor imagery increases perception of effort and the activity of motor areas. Neuropsychologia. 2021;150: 107701.

    Article  Google Scholar 

  87. Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res. 2000;133(3):303–11.

    Article  CAS  Google Scholar 

  88. Kozlowski B, Pageaux B, Hubbard EF, Peters BS, Millar PJ, Power GA. Perception of effort during an isometric contraction is influenced by prior muscle lengthening or shortening. Eur J Appl Physiol. 2021;121(9):2531–42.

    Article  Google Scholar 

  89. Taylor JL. Proprioception (2009).

  90. Marcora SM. Role of feedback from group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. J Appl Physiol. 2011;110(5):1499.

    Article  Google Scholar 

  91. Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M. Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc. 1997;29(8):999–1012.

    Article  CAS  Google Scholar 

  92. Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, et al. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol. 2018;596(12):2301–14.

    Article  CAS  Google Scholar 

  93. Sidhu SK, Weavil JC, Venturelli M, Garten RS, Rossman MJ, Richardson RS, et al. Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol. 2014;592(22):5011–24.

    Article  CAS  Google Scholar 

  94. Staiano W, Bosio A, de Morree HM, Rampinini E, Marcora S. The cardinal exercise stopper: muscle fatigue, muscle pain or perception of effort? Prog Brain Res. 2018;240:175–200.

    Article  Google Scholar 

  95. Barbosa TC, Vianna LC, Fernandes IA, Prodel E, Rocha HNM, Garcia VP, et al. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men. J Physiol. 2016;594(3):715–25.

    Article  CAS  Google Scholar 

  96. Sidhu SK, Weavil JC, Rossman MJ, Jessop JE, Bledsoe AD, Buys MJ, et al. Exercise pressor reflex contributes to the cardiovascular abnormalities characterizing: hypertensive humans during exercise. Hypertension. 2019;74(6):1468–75.

    Article  CAS  Google Scholar 

  97. Müller J. Elements of physiology. London: Lea and Blanchard; 1842.

    Book  Google Scholar 

  98. Bain A. The senses and the intellect. London: Longman, Green, Longman, Roberts and Green; 1864.

    Google Scholar 

  99. Bastian HC. The brain as an organ of mind. Appleton (1880).

  100. James W. The feeling of effort. Anniversary memoirs of the Boston Society of Natural History. Boston: The Society of Natural History; 1880. p. 3–32.

    Google Scholar 

  101. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.

    Article  CAS  Google Scholar 

  102. Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13(4):500–5.

    Article  CAS  Google Scholar 

  103. Pollak KA, Swenson JD, Vanhaitsma TA, Hughen RW, Jo D, Light KC, et al. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol. 2014;99(2):368–80.

    Article  CAS  Google Scholar 

  104. Smirmaul BP. Feedback from group III/IV muscle afferents is not the sensory signal for perception of effort. Exp Physiol. 2014;99(5):835.

    Article  Google Scholar 

  105. Braith RW, Wood CE, Limacher MC, Pollock ML, Lowenthal DT, Phillips MI, et al. Abnormal neuroendocrine responses during exercise in heart transplant recipients. Circulation. 1992;86(5):1453–63.

    Article  CAS  Google Scholar 

  106. Zhao W, Martin AD, Davenport PW. Magnitude estimation of inspiratory resistive loads by double-lung transplant recipients. J Appl Physiol. 2003;94(2):576–82.

    Article  Google Scholar 

  107. Mitchell BL, Davison K, Parfitt G, Spedding S, Eston RG. Physiological and perceived exertion responses during exercise: effect of β-blockade. Med Sci Sports Exerc. 2019;51(4):782–91.

    Article  CAS  Google Scholar 

  108. Cullen T, Thomas G, Wadley AJ. Sleep deprivation: cytokine and neuroendocrine effects on perception of effort. Med Sci Sports Exerc. 2020;52(4):909–18.

    Article  CAS  Google Scholar 

  109. Utter AC, Kang J, Nieman DC, Williams F, Robertson RJ, Henson DA, et al. Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. Eur J Appl Physiol Occup Physiol. 1999;80(2):92–9.

    Article  CAS  Google Scholar 

  110. Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177–90.

    Article  CAS  Google Scholar 

  111. Tidoni E, Fusco G, Leonardis D, Frisoli A, Bergamasco M, Aglioti SM. Illusory movements induced by tendon vibration in right- and left-handed people. Exp Brain Res. 2015;233(2):375–83.

    Article  Google Scholar 

  112. Berchicci M, Menotti F, Macaluso A, Di Russo F. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci. 2013;2013(7):135.

    Google Scholar 

  113. Guo F, Sun Y-J, Zhang R-H. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: an event-related potential study. NeuroReport. 2017;28(3):115–22.

    Article  Google Scholar 

  114. Cerqueira V, De Mendonça A, Minez A, Dias AR, De Carvalho M. Does caffeine modify corticomotor excitability? Neurophysiol Clin. 2006;36(4):219–26.

    Article  CAS  Google Scholar 

  115. Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):2113–9.

    Article  CAS  Google Scholar 

  116. Tarnopolsky MA. Effect of caffeine on the neuromuscular system: potential as an ergogenic aid. Appl Physiol Nutr Metabol. 2008;33(6):1284–9.

    Article  CAS  Google Scholar 

  117. Martins GL, Guilherme JPLF, Ferreira LHB, de Souza-Junior TP, Lancha AH Jr. Caffeine and exercise performance: possible directions for definitive findings. Front Sports Active Living. 2020;2: 574854.

    Article  Google Scholar 

  118. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metabol. 2018;28(2):104–25.

    Article  CAS  Google Scholar 

  119. Zénon A, Sidibé M, Olivier E. Disrupting the supplementary motor area makes physical effort appear less effortful. J Neurosci. 2015;35(23):8737–44.

    Article  Google Scholar 

  120. Nicolò A, Marcora SM, Sacchetti M. Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J Sports Sci. 2016;34(13):1199–206.

    Article  Google Scholar 

  121. Friedman DB, Brennum J, Sztuk F, Hansen OB, Clifford PS, Bach FW, et al. The effect of epidural anaesthesia with 1% lidocaine on the pressor response to dynamic exercise in man. J Physiol. 1993;470(1):681–91.

    Article  CAS  Google Scholar 

  122. Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH, et al. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. J Physiol. 2020;598(23):5379–90.

    Article  CAS  Google Scholar 

  123. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.

    Article  CAS  Google Scholar 

  124. Bays PM, Wolpert DM. Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol. 2007;578(2):387–96.

    Article  CAS  Google Scholar 

  125. Smith SA, Micklewright D, Winter SL, Mauger AR. Muscle pain from an intramuscular injection of hypertonic saline increases variability in knee extensor torque reproduction. J Appl Physiol. 2021;130(1):57–68.

    Article  CAS  Google Scholar 

  126. Khan SI, McNeil CJ, Gandevia SC, Taylor JL. Effect of experimental muscle pain on maximal voluntary activation of human biceps brachii muscle. J Appl Physiol. 2011;111(3):743–50.

    Article  Google Scholar 

  127. Smith SA, Micklewright D, Winter SL, Mauger AR. Muscle pain induced by hypertonic saline in the knee extensors decreases single-limb isometric time to task failure. Eur J Appl Physiol. 2020;120(9):2047–58.

    Article  CAS  Google Scholar 

  128. Finn HT, Kennedy DS, Green S, Taylor JL. Fatigue-related feedback from calf muscles impairs knee extensor voluntary activation. Med Sci Sports Exerc. 2020;52(10):2136–44.

    Article  CAS  Google Scholar 

  129. Aboodarda SJ, Iannetta D, Emami N, Varesco G, Murias JM, Millet GY. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles. J Physiol. 2020;598(2):285–302.

    Article  CAS  Google Scholar 

  130. de Almeida Azevedo R, Jazayeri D, Yeung ST, Khoshreza R, Millet GY, Murias JM, et al. The effects of pain induced by blood flow occlusion in one leg on exercise tolerance and corticospinal excitability and inhibition of the contralateral leg in males. Appl Physiol Nutr Metab. 2022.

  131. Halperin I, Emanuel A. Rating of perceived effort: methodological concerns and future directions. Sports Med. 2020;50(4):679–87.

    Article  Google Scholar 

  132. Crapse TB, Sommer MA. Corollary discharge across the animal kingdom. Nat Rev Neurosci. 2008;9(8):587–600.

    Article  CAS  Google Scholar 

  133. McCloskey DI. Corollary discharges: motor commands and perception. Compr Physiol., 1415–47.

  134. Angius L, Pageaux B, Crisafulli A, Hopker J, Marcora SM. Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors. Eur J Appl Physiol. 2022;111(1):141–55.

    Article  Google Scholar 

  135. Pageaux B, Angius L, Hopker JG, Lepers R, Marcora SM. Central alterations of neuromuscular function and feedback from group III–IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;308(12):R1008–20.

    Article  CAS  Google Scholar 

  136. Gruet M, Mely L, Vallier JM. Overall and differentiated sensory responses to cardiopulmonary exercise test in patients with cystic fibrosis: kinetics and ability to predict peak oxygen uptake. Eur J Appl Physiol. 2018;118(9):2007–19.

    Article  Google Scholar 

  137. Monjo F, Shemmell J, Forestier N. The sensory origin of the sense of effort is context-dependent. Exp Brain Res. 2018;236(7):1997–2008.

    Article  Google Scholar 

  138. Zadra JR, Clore GL. Emotion and perception: the role of affective information. Wiley Interdiscip Rev Cogn Sci. 2011;2(6):676–85.

    Article  Google Scholar 

  139. Marcora SM. Can doping be a good thing? Using psychoactive drugs to facilitate physical activity behaviour. Sports Med. 2016;46(1):1–5.

    Article  Google Scholar 

  140. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–8.

    CAS  Google Scholar 

  141. Mitchell JH, Reeves DR Jr, Rogers HB, Secher NHJTJP. Epidural anaesthesia and cardiovascular responses to static exercise in man. J Physiol. 1989;417(1):13–24.

    Article  CAS  Google Scholar 

  142. Noble BJ, Borg GA, Jacobs I, Ceci R, Kaiser P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc. 1983;15(6):523–8.

    Article  CAS  Google Scholar 

  143. Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, et al. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol. 2016;594(18):5303–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the librarian Marc-Olivier Croteau for his precious assistance. The authors also thank the reviewers whose suggestions significantly helped improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pageaux.

Ethics declarations

Funding

Maxime Bergevin is supported by the Canadian Institutes of Health Research through the Canada Graduate Scholarships—Master’s Frederick Banting and Charles Best grant, the “Formation de Maîtrise” scholarship from the Fonds de Recherche du Québec—Santé, and an MSc scholarship from the Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal. Research by Benjamin Pageaux is supported by the Natural Sciences and Engineering Research Council of Canada—Discovery Grants Program and the Chercheur Boursier Junior 1 award from the Fonds de Recherche du Québec—Santé.

Conflict of interest

Maxime Bergevin, James Steele, Marie Payen de la Garanderie, Camille Féral-Basin, Samuele Marcora, Pierre Rainville, Jeffrey Caron, and Benjamin Pageaux have no conflicts of interest that are directly relevant to the content of this article.

Data availability

All data and materials are available within the article or supplementary materials.

Code availability

Not applicable.

Author contributions

MB, MPDLG, SM, JC, and BP designed the study. MB and MPDLG performed the literature search. MB, MPDLG, CFB, JC, and BP designed the decision flowchart to code identified articles. MP and MPDLG performed the risks of bias assessment. JS performed the statistical analyses. MB, JS, and BP created the figures and tables. MB and JS wrote the first draft of this manuscript. JS, SM, PR, and BP revised the first draft and final version of this manuscript. All authors approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 64 KB)

Supplementary file2 (XLSX 211 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergevin, M., Steele, J., Payen de la Garanderie, M. et al. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med 53, 415–435 (2023). https://doi.org/10.1007/s40279-022-01762-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01762-4

Navigation