Skip to main content

Advertisement

Log in

Factors predicting disease progression in C9ORF72 ALS patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

To unveil clinical features, comorbidities, disease progression and prognostic factors in a population-based cohort of ALS patients carrying C9ORF72 expansion (C9 + ALS).

Methods

This is a retrospective observational study on ALS patients residing in Emilia Romagna and Piedmont-Valle D’Aosta regions whose data are available through population based registers. We analysed patients who underwent genetic testing, focusing on C9 + ALS subgroup.

Results

Among 2204 genotyped patients of the two registers, 150 were C9 + ALS. In comparison with patients without mutation, a higher proportion of family history (12.85 vs 68%, p < 0.001) and frontotemporal dementia (3.93% vs 10.67%, p < 0.001) was detected in C9 + ALS. C9 + ALS presented a faster disease progression as measured by monthly decline in ALS Functional Rating Scale-Revised (1.86 ± 3.30 vs 1.45 ± 2.35, p < 0.01) and in forced vital capacity (5.90 ± 5.24 vs 2.97 ± 3.47, p < 0.01), a shorter diagnostic delay (8.93 ± 6.74 vs 12.68 ± 12.86 months, p < 0.01) and earlier onset (58.91 ± 9.02 vs 65.04 ± 11.55 years, p < 0.01). Consistently, they reached death or tracheostomy earlier than other patients (31 vs 37 months, HR = 1.52, 95% C.I. 1.27–1.82, p < 0.001). With respect to other genotyped patients, C9 + ALS patients did not present a significantly higher prevalence of concomitant diseases. Independent prognostic factors of survival of C9 + ALS included sex, age, progression rate, presence of frontotemporal dementia and thyroid disorders, with the latter being associated with prolonged ALS survival (43 vs 29 months, HR = 0.42, 95% C.I. 0.24–0.74, p = 0.003).

Conclusion

Even in the context of a more aggressive disease, C9 + ALS had a longer survival in presence of thyroid disorders. This finding may suggest protective pathogenic pathways in C9 + ALS to be explored, looking for therapeutic strategies to slow disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. Trojsi F, D’Alvano G, Bonavita S, Tedeschi G (2020) Genetics and sex in the pathogenesis of amyotrophic lateral sclerosis (ALS): is there a link? Int J Mol Sci 21:3647. https://doi.org/10.3390/ijms21103647

    Article  CAS  Google Scholar 

  2. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338. https://doi.org/10.1126/science.1232927

    Article  CAS  Google Scholar 

  3. Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  Google Scholar 

  4. Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA, Stewart MH, Suzuki-Uematsu S, Ghosh S, Singh A, Merkle FT, Koszka K, Li QZ, Zon L, Rossi DJ, Trowbridge JJ, Notarangelo LD, Eggan K (2016) Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 8:347ra93. https://doi.org/10.1126/scitranslmed.aaf6038

    Article  CAS  Google Scholar 

  5. O’Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AK, Ho R, Carmona S, Vit JP, Zarrow J, Kim KJ, Bell S, Harms MB, Miller TM, Dangler CA, Underhill DM, Goodridge HS, Lutz CM, Baloh RH (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–1329. https://doi.org/10.1126/science.aaf1064

    Article  CAS  Google Scholar 

  6. Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ (2013) Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81:1222–1225. https://doi.org/10.1212/WNL.0b013e3182a6cc13

    Article  CAS  Google Scholar 

  7. Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS, Grinberg LT, Boxer AL, Rosen HJ, Rankin KP, Gorno-Tempini ML, Coppola G, Geschwind DH, Rademakers R, Seeley WW, Graff-Radford NR, Miller BL (2016) Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol Neuroimmunol Neuroinflamm 3:e301. https://doi.org/10.1212/NXI.0000000000000301

    Article  Google Scholar 

  8. Katisko K, Solje E, Koivisto AM, Krüger J, Kinnunen T, Hartikainen P, Helisalmi S, Korhonen V, Herukka SK, Haapasalo A, Remes AM (2018) Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and non-carriers. J Neuroimmunol 321:29–35. https://doi.org/10.1016/j.jneuroim.2018.05.011

    Article  CAS  Google Scholar 

  9. Fredi M, Cavazzana I, Biasiotto G, Filosto M, Padovani A, Monti E, Tincani A, Franceschini F, Zanella I (2019) C9orf72 intermediate alleles in patients with amyotrophic lateral sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. Neuromolecular Med 21:150–159. https://doi.org/10.1007/s12017-019-08528-8

    Article  CAS  Google Scholar 

  10. Cooper-Knock J, Shaw PJ, Kirby J (2014) The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol 127:333–345. https://doi.org/10.1007/s00401-014-1251-9

    Article  CAS  Google Scholar 

  11. Lorefice L, Murru MR, Fenu G, Corongiu D, Frau J, Cuccu S, Coghe GC, Tranquilli S, Cocco E, Marrosu MG (2015) A genetic association study of two genes linked to neurodegeneration in a Sardinian multiple sclerosis population: the TARDBP Ala382Thr mutation and C9orf72 expansion. J Neurol Sci 357:229–34. https://doi.org/10.1016/j.jns.2015.07.036

    Article  CAS  Google Scholar 

  12. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, Gillet G, van Gastel N, Wang JY, Pietilainen O, Qian M, Eggan P, Cantrell C, Mok J, Kadiu I, Scadden DT, Eggan K (2020) C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582:89–94. https://doi.org/10.1038/s41586-020-2288-7

    Article  CAS  Google Scholar 

  13. Mandrioli J, Biguzzi S, Guidi C, Venturini E, Sette E, Terlizzi E, Ravasio A, Casmiro M, Salvi F, Liguori R, Rizzi R, Pietrini V, Chierici E, Santangelo M, Granieri E, Mussuto V, Borghi A, Rinaldi R, Fini N, Georgoulopoulou E, De Pasqua S, Vinceti M, Bonvicini F, Ferro S, D’Alessandro R, Errals Group (2014) Epidemiology of amyotrophic lateral sclerosis in Emilia Romagna Region (Italy): a population based study. Amyotroph Lateral Scler Frontotemporal Degener 15:262–8. https://doi.org/10.1007/s10072-015-2343-6

    Article  Google Scholar 

  14. Grassano M, Calvo A, Moglia C, Brunetti M, Barberis M, Sbaiz L, Canosa A, Manera U, Vasta R, Corrado L, D’Alfonso S, Mazzini L, Scholz SW, Dalgard C, Ding J, Gibbs RJ, Chia R, Traynor BJ, Chiò A, Center AG (2021) Mutational analysis of known ALS genes in an Italian population-based cohort. Neurology 96:e600–e609. https://doi.org/10.1212/WNL.0000000000011209

    Article  CAS  Google Scholar 

  15. Chiò A, Calvo A, Moglia C, Mazzini L, Mora G, PARALS study group (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82:740–746. https://doi.org/10.1136/jnnp.2010.235952

    Article  Google Scholar 

  16. Manera U, Calvo A, Daviddi M, Canosa A, Vasta R, Torrieri MC, Grassano M, Brunetti M, D’Alfonso S, Corrado L, De Marchi F, Moglia C, D’Ovidio F, Mora G, Mazzini L, Chiò A (2020) Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 91:291–297. https://doi.org/10.1136/jnnp-2019-321153

    Article  Google Scholar 

  17. Mandrioli J, Biguzzi S, Guidi C, Sette E, Terlizzi E, Ravasio A, Casmiro M, Salvi F, Liguori R, Rizzi R, Pietrini V, Borghi A, Rinaldi R, Fini N, Chierici E, Santangelo M, Granieri E, Mussuto V, De Pasqua S, Georgoulopoulou E, Fasano A, Ferro S, D’Alessandro R, ERRALS Group (2015) Heterogeneity in ALSFRS-R decline and survival: a population-based study in Italy. Neurol Sci 36:2243–52. https://doi.org/10.1007/s10072-015-2343-6

    Article  Google Scholar 

  18. Chiò A, Calvo A, Mazzini L, Cantello R, Mora G, Moglia C, Corrado L, D’Alfonso S, Majounie E, Renton A, Pisano F, Ossola I, Brunetti M, Traynor BJ, Restagno G, PARALS (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79:1983–1989. https://doi.org/10.1212/WNL.0b013e3182735d36

    Article  Google Scholar 

  19. Gianferrari G, Martinelli I, Zucchi E, Simonini C, Fini N, Vinceti M, Ferro S, Gessani A, Canali E, Valzania F, Sette E, Pugliatti M, Tugnoli V, Zinno L, Stano S, Santangelo M, De Pasqua S, Terlizzi E, Guidetti D, Medici D, Salvi F, Liguori R, Vacchiano V, Casmiro M, Querzani P, Currò Dossi M, Patuelli A, Morresi S, Longoni M, De Massis P, Rinaldi R, Borghi A, Amedei A, Mandrioli J, Errals Group (2022) Epidemiological, clinical and genetic features of ALS in the last decade: a prospective population-based study in the Emilia Romagna region of Italy. Biomedicines 10:819. https://doi.org/10.3390/biomedicines10040819

    Article  Google Scholar 

  20. Mandrioli J, Ferri L, Fasano A, Zucchi E, Fini N, Moglia C, Lunetta C, Marinou K, Ticozzi N, Drago Ferrante G, Scialo C, Sorarù G, Trojsi F, Conte A, Falzone YM, Tortelli R, Russo M, Sansone VA, Mora G, Silani V, Volanti P, Caponnetto C, Querin G, Monsurrò MR, Sabatelli M, Chiò A, Riva N, Logroscino G, Messina S, Calvo A (2018) Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. Eur J Neurol 25:861–868. https://doi.org/10.1111/ene.13620

    Article  CAS  Google Scholar 

  21. Andersen PM, Abrahams S, Borasio GD, de Carvalho M, Chio A, Van Damme P, Hardiman O, Kollewe K, Morrison KE, Petri S, Pradat PF, Silani V, Tomik B, Wasner M, Weber M, EFNS Task Force on Diagnosis and Management of Amyotrophic Lateral Sclerosis (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)–revised report of an EFNS task force. Eur J Neurol 19:360–75. https://doi.org/10.1111/j.1468-1331.2011.03501.x

    Article  Google Scholar 

  22. Fasano A, Fini N, Ferraro D, Ferri L, Vinceti M, Errals MJ (2017) Percutaneous endoscopic gastrostomy, body weight loss and survival in amyotrophic lateral sclerosis: a population-based registry study. Amyotroph Lateral Scler Frontotemporal Degener 18:233–242. https://doi.org/10.1080/21678421.2016.1270325

    Article  Google Scholar 

  23. Chiò A, Calvo A, Ghiglione P, Mazzini L, Mutani R, Mora G, PARALS (2010) Tracheostomy in amyotrophic lateral sclerosis: a 10-year population-based study in Italy. J Neurol Neurosurg Psychiatry 81:1141–1143. https://doi.org/10.1136/jnnp.2009.175984

    Article  Google Scholar 

  24. Balendra R, Al Khleifat A, Fang T, Al-Chalabi A (2019) A standard operating procedure for King’s ALS clinical staging. Amyotroph Lateral Scler Frontotemporal Degener 20(3–4):159–164. https://doi.org/10.1080/21678421.2018

    Article  Google Scholar 

  25. Faghri F, Brunn F, Dadu A, Zucchi E, Martinelli I, Mazzini L, Vasta R, Canosa A, Moglia C, Calvo A, Nalls MA, Campbell RH, Mandrioli J, Traynor BJ, Chiò A, PARALS consortium; ERRALS consortium (2022) Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. Lancet Digit Health 4(5):e359–e369. https://doi.org/10.1016/S2589-7500(21)00274-0

    Article  Google Scholar 

  26. Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino M, Hanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267. https://doi.org/10.1212/01.wnl.0000194316.91908.8a

    Article  CAS  Google Scholar 

  27. Iazzolino B, Peotta L, Zucchetti JP, Canosa A, Manera U, Vasta R, Grassano M, Palumbo F, Brunetti M, Barberis M, Sbaiz L, Moglia C, Calvo A, Chiò A (2021) Differential neuropsychological profile of patients with amyotrophic lateral sclerosis with and without C9orf72 mutation. Neurology 96(1):e141–e152. https://doi.org/10.1212/WNL.0000000000011093

    Article  CAS  Google Scholar 

  28. Trojsi F, Siciliano M, Femiano C, Santangelo G, Lunetta C, Calvo A, Moglia C, Marinou K, Ticozzi N, Drago Ferrante G, Scialò C, Sorarù G, Conte A, Falzone YM, Tortelli R, Russo M, Sansone VA, Chiò A, Mora G, Poletti B, Volanti P, Caponnetto C, Querin G, Sabatelli M, Riva N, Logroscino G, Messina S, Fasano A, Monsurrò MR, Tedeschi G, Mandrioli J (2017) Comorbidity of dementia with amyotrophic lateral sclerosis (ALS): insights from a large multicenter Italian cohort. J Neurol 264(11):2224–2231. https://doi.org/10.1007/s00415-017-8619-4

    Article  Google Scholar 

  29. Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR (2017) Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18:153–174. https://doi.org/10.1080/21678421.2016.1267768

    Article  Google Scholar 

  30. Sinharay S, Stern HS, Russell D (2001) The use of multiple imputation for the analysis of missing data. Psychol Methods 6(4):317–329

    Article  CAS  Google Scholar 

  31. Millecamps S, Boillée S, Le Ber I, Seilhean D, Teyssou E, Giraudeau M, Moigneu C, Vandenberghe N, Danel-Brunaud V, Corcia P, Pradat PF, Le Forestier N, Lacomblez L, Bruneteau G, Camu W, Brice A, Cazeneuve C, Leguern E, Meininger V, Salachas F (2012) Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet 49:258–263. https://doi.org/10.1136/jmedgenet-2011-100699

    Article  CAS  Google Scholar 

  32. Irwin DJ, McMillan CT, Brettschneider J, Libon DJ, Powers J, Rascovsky K, Toledo JB, Boller A, Bekisz J, Chandrasekaran K, Wood EM, Shaw LM, Woo JH, Cook PA, Wolk DA, Arnold SE, Van Deerlin VM, McCluskey LF, Elman L, Lee VM, Trojanowski JQ (2013) Grossman M (2013) Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84:163–169. https://doi.org/10.1136/jnnp-2012-303507

    Article  Google Scholar 

  33. Umoh ME, Fournier C, Li Y, Polak M, Shaw L, Landers JE, Hu W, Gearing M, Glass JD (2016) Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology 87:1024–1030. https://doi.org/10.1212/WNL.0000000000003067

    Article  CAS  Google Scholar 

  34. Westeneng HJ, van Veenhuijzen K, van der Spek RA, Peters S, Visser AE, van Rheenen W, Veldink JH, van den Berg LH (2021) Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurol 20:373–384. https://doi.org/10.1016/S1474-4422(21)00042-9

    Article  CAS  Google Scholar 

  35. Roggenbuck J, Rich KA, Vicini L, Palettas M, Schroeder J, Zaleski C, Lincoln T, Drury L, Glass JD (2021) Amyotrophic lateral sclerosis genetic access program: paving the way for genetic characterization of ALS in the clinic. Neurol Genet 7(5):e615. https://doi.org/10.1212/NXG.0000000000000615

    Article  CAS  Google Scholar 

  36. Trojsi F, Siciliano M, Femiano C, Santangelo G, Lunetta C, Calvo A, Moglia C, Marinou K, Ticozzi N, Ferro C, Scialò C, Sorarù G, Conte A, Falzone YM, Tortelli R, Russo M, Sansone VA, Chiò A, Mora G, Silani V, Volanti P, Caponnetto C, Querin G, Sabatelli M, Riva N, Logroscino G, Messina S, Fasano A, Monsurrò MR, Tedeschi G, Mandrioli J (2019) Comparative analysis of C9orf72 and sporadic disease in a large multicenter ALS population: the effect of male sex on survival of C9orf72 positive patients. Front Neurosci 13:485. https://doi.org/10.3389/fnins.2019.00485

    Article  Google Scholar 

  37. Glasmacher SA, Wong C, Pearson IE, Pal S (2020) Survival and prognostic factors in C9orf72 repeat expansion carriers: a systematic review and meta-analysis. JAMA Neurol 77:367–376. https://doi.org/10.1001/jamaneurol.2019.3924

    Article  Google Scholar 

  38. Rooney J, Fogh I, Westeneng HJ, Vajda A, McLaughlin R, Heverin M, Jones A, van Eijk R, Calvo A, Mazzini L, Shaw C, Morrison K, Shaw PJ, Robberecht W, Van Damme P, Al-Chalabi A, van den Berg L, Chiò A, Veldink J, Hardiman O (2017) C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 88(4):281. https://doi.org/10.1136/jnnp-2016-314093

    Article  Google Scholar 

  39. Chiò A, Moglia C, Canosa A, Manera U, D’Ovidio F, Vasta R, Grassano M, Brunetti M, Barberis M, Corrado L, D’Alfonso S, Iazzolino B, Peotta L, Sarnelli MF, Solara V, Zucchetti JP, De Marchi F, Mazzini L, Mora G, Calvo A (2020) ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurology 94:e802–e810. https://doi.org/10.1212/WNL.0000000000008869

    Article  Google Scholar 

  40. Moglia C, Calvo A, Grassano M, Canosa A, Manera U, D’Ovidio F, Bombaci A, Bersano E, Mazzini L, Mora G, Chiò A, Piemonte and Valle d’Aosta Register for ALS (PARALS), (2019) Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort. J Neurol Neurosurg Psychiatry 90:666–673. https://doi.org/10.1136/jnnp-2018-319611

    Article  Google Scholar 

  41. Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, Heshmat S, Henders AK, Wray NR, van den Berg LH, Henderson RD, McCombe PA, Ngo ST (2018) Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J Neurol Neurosurg Psychiatry 89(10):1016–1023. https://doi.org/10.1136/jnnp-2017-317887

    Article  Google Scholar 

  42. Hollinger SK, Okosun IS, Mitchell CS (2016) Antecedent disease and amyotrophic lateral sclerosis: what is protecting whom? Front Neurol 7:47. https://doi.org/10.3389/fneur.2016.00047

    Article  Google Scholar 

  43. Körner S, Hendricks M, Kollewe K, Zapf A, Dengler R, Silani V, Petri S (2013) Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol 12(13):84. https://doi.org/10.1186/1471-2377-13-84

    Article  Google Scholar 

  44. Matey-Hernandez ML, Williams FMK, Potter T, Valdes AM, Spector TD, Menni C (2018) Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics 50(2):117–126. https://doi.org/10.1152/physiolgenomics.00053.2017

    Article  CAS  Google Scholar 

  45. Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10(2):113–117. https://doi.org/10.1080/17482960802295192

    Article  CAS  Google Scholar 

  46. Kaplan MM, Taft JA, Reichlin S, Munsat TL (1986) Sustained rises in serum thyrotropin, thyroxine, and triiodothyronine during long term, continuous thyrotropin-releasing hormone treatment in patients with amyotrophic lateral sclerosis. J Clin Endocrinol Metab 63:808–814. https://doi.org/10.1210/jcem-63-4-808

    Article  CAS  Google Scholar 

  47. Iłzecka J, Stelmasiak Z (2003) Thyroid function in patients with amyotrophic lateral sclerosis. Ann Univ Mariae Curie Sklodowska Med 58:343–347

    Google Scholar 

  48. Zheng Z, Guo X, Huang R, Chen X, Shang H (2014) An exploratory study of the association between thyroid hormone and survival of amyotrophic lateral sclerosis. Neurol Sci 35(7):1103–1108. https://doi.org/10.1007/s10072-014-1658-z (Epub 2014 Feb 7 PMID: 24504619)

    Article  Google Scholar 

  49. Li J, Paulson JM, Ye FD, Sung M, Hollenberg AN, Rutkove SB (2012) Reducing systemic hypermetabolism by inducing hypothyroidism does not prolong survival in the SOD1-G93A mouse. Amyotroph Lateral Scler 13:372–377. https://doi.org/10.3109/17482968.2012.662988

    Article  CAS  Google Scholar 

  50. Hommyo R, Suzuki SO, Abolhassani N, Hamasaki H, Shijo M, Maeda N, Honda H, Nakabeppu Y, Iwaki T (2018) Expression of CRYM in different rat organs during development and its decreased expression in degenerating pyramidal tracts in amyotrophic lateral sclerosis. Neuropathology 38:247–259. https://doi.org/10.1111/neup.12466

    Article  CAS  Google Scholar 

  51. Nelson PT, Gal Z, Wang WX, Niedowicz DM, Artiushin SC, Wycoff S, Wei A, Jicha GA, Fardo DW (2019) TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis. 125:67–76. https://doi.org/10.1016/j.nbd.2019.01.013 (PMID: 30682540; PMCID: PMC6696921)

    Article  CAS  Google Scholar 

  52. Dedeene L, Van Schoor E, Ospitalieri S, Ronisz A, Weishaupt JH, Otto M, Ludolph AC, Scheuerle A, Vandenberghe R, Van Damme P, Poesen K, Thal DR (2020) Dipeptide repeat protein and TDP-43 pathology along the hypothalamic-pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases. Acta Neuropathol 140:777–781. https://doi.org/10.1007/s00401-020-02216-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the ERRALS and all the PARALS members.

Funding

The Emilia Romagna Registry for ALS (ERRALS) is supported by a Grant from the Emilia Romagna Regional Health Authority. This work was in part supported by the Italian Ministry of Health (Ministero della Salute, Ricerca Sanitaria Finalizzata, grant RF-2016-02,362,405), the European Commission’s Health Seventh Framework Programme (FP7/2007–2013 under grant agreement 259,867), the Italian Ministry of Education, University and Research (Progetti di Ricerca di Rilevante Interesse Nazionale, PRIN, grant 2017SNW5MB), the Joint Programme—Neurodegenerative Disease Research (ALS-Care, Strength and Brain-Mend projects), granted by the Italian Ministry of Education, University and Research, the Horizon 2020 Programme (project Brainteaser under grant agreement 101,017,598). This study was performed under the Department of Excellence grant of the Italian Ministry of Education, University and Research to the ‘Rita Levi Montalcini’ Department of Neuroscience, University of Torino, Italy and to the AGING Project for Department of Excellence at the Department of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara,. Italy.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: JM, EZ, IM, RT, MV, ACh, ACal. Acquisition and analysis of data: JM, EZ, IM, LVDM, GG, CM, UM, LS, RV, ACan, GM, MB, LM, FDM, CS, NF, VM. Drafting a significant portion of the manuscript or figures: JM, EZ, RT, ACh, ACal. Funding: JM, LM, ACh, Aca. All authors had access to all the study data and read, contributed to, reviewed and approved the submission of the manuscript for final publication.

Corresponding author

Correspondence to Jessica Mandrioli.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 206 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandrioli, J., Zucchi, E., Martinelli, I. et al. Factors predicting disease progression in C9ORF72 ALS patients. J Neurol 270, 877–890 (2023). https://doi.org/10.1007/s00415-022-11426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11426-y

Keywords

Navigation