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Abstract

This thesis presents an approach to systematically consider confidentiality

requirements in software architectures by representing and analyzing data

flows.

The strengthening of data protection regulations such as the European Gen-

eral Data Protection Regulation (GDPR) and the reactions of people to data

breaches such as the Cambridge Analytica scandal have shown that ensur-

ing confidentiality in software systems is vital for organizations. To ensure

confidentiality, it is necessary to consider confidentiality during the whole

development process. Especially, early development phases require attention

because a considerable amount of issues traces back to issues introduced in

these early phases. Additionally, the effort for fixing issues originating from

the software architecture increases disproportionately high in later develop-

ment phases. Data-oriented representations of software systems are popular

for detecting violations of confidentiality requirements in early development

phases because investigating a violation often requires following the data

flow.

Data Flow Diagrams (DFDs) are commonly used to reason about security in

general and confidentiality in particular but plain DFDs are not sufficient

to formalize and automate DFD-based analyses. Instead, DFDs and other

Architectural Description Languages (ADLs) need extensions to represent

the information required to reason about confidentiality. These extensions

often only focus on confidentiality requirements given in terms of one partic-

ular confidentiality mechanism such as access control. The resulting single

purpose approaches do not support combined mechanisms, which lowers

their expressiveness. If the software architect changes the confidentiality

mechanism, it is necessary to switch to an ADL supporting that mechanism,

which implies a high effort for describing existing architectures in the new

ADL. In addition, many analysis approaches do not provide an integration

into existing ADLs and development processes, which impedes systematic

application of the approaches.
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Abstract

Existing data-oriented approaches either considerably rely on manual ac-

tivities and high expertise or do not support access control, information

flow control and encryption within the same specification artifact. These

three confidentiality mechanisms are the most commonly used ones, so it

is likely that software architects are interested in using all of them. The

manual activities include the identification of violations by inspections and

the tracing of data through the system. Both require a considerable expertise

in confidentiality.

In this thesis, we address the previously mentioned problems by four contribu-

tions: First, we present an extension of the DFD syntax, which represents the

required information to reason about access control and information flow con-

trol combined with encryption by properties and behaviors within the same

specification artifact. Second, the semantics for the extended DFD syntax

formalize the behavior of DFDs by label propagation, which supports tracing

data automatically. Third, a set of analysis definitions based on the DFD

syntax and semantics identifies violations of confidentiality requirements

given in terms of the most important variants of access control, information

flow control and encryption. Fourth, integration guidelines describe how to

use the data-oriented analysis framework given by the previous three contri-

butions together with existing ADLs and their corresponding development

processes.

We validated the expressiveness, result quality and modeling effort of our

contributions in case studies on seventeen case study systems. The case study

systems mostly stem from related work and cover five types of access control

requirements, four types of information flow control requirements, two types

of encryption and one combination of access control and information flow

control. We validated the expressiveness of the DFD syntax as well as of two

extended ADLs resulting from applying the integration guidelines and could

express all but one case study system. We could also express the confidential-

ity requirements from sixteen case study systems by the provided analysis

definitions. The DFD-based as well as the ADL-based analyses only reported

expected results, so the result quality was high. We validated the modeling

effort in the extended ADLs for adding and switching a confidentiality mech-

anism for an existing software architecture. In both validations, we could

show that the ADL integrations save modeling effort by supporting the reuse

of considerable parts of existing software architectures.
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Abstract

Software architects profit from the increased flexibility in choosing and the

lowered effort in switching confidentialitymechanisms. The early detection of

confidentiality violations reduces the effort of fixing the underlying issues.
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Zusammenfassung

Diese Arbeit präsentiert einen Ansatz zur systematischen Berücksichtigung

von Vertraulichkeitsanforderungen in Softwarearchitekturen mittels Abbil-

dung und Analyse von Datenflüssen.

Die Stärkung von Datenschutzregularien, wie bspw. durch die europäische

Datenschutzgrundverordnung (DSGVO), und die Reaktionen der Bevölkerung

auf Datenskandale, wie bspw. den Skandal um Cambridge Analytica, haben

gezeigt, dass die Wahrung von Vertraulichkeit für Organisationen von es-

sentieller Bedeutung ist. Um Vertraulichkeit zu wahren, muss diese während

des gesamten Softwareentwicklungsprozesses berücksichtigt werden. Frü-

he Entwicklungsphasen benötigen hier insbesondere große Beachtung, weil

ein beträchtlicher Anteil an späteren Problemen auf Fehler in diesen frühen

Entwicklungsphasen zurückzuführen ist. Hinzu kommt, dass der Aufwand

zum Beseitigen von Fehlern aus der Softwarearchitektur in späteren Ent-

wicklungsphasen überproportional steigt. Um Verletzungen von Vertraulich-

keitsanforderungen zu erkennen, werden in früheren Entwicklungsphasen

häufig datenorientierte Dokumentationen der Softwaresysteme verwendet.

Dies kommt daher, dass die Untersuchung einer solchen Verletzung häufig

erfordert, Datenflüssen zu folgen.

Datenflussdiagramme (DFDs) werden gerne genutzt, um Sicherheit im Allge-

meinen und Vertraulichkeit im Speziellen zu untersuchen. Allerdings sind

reine DFDs noch nicht ausreichend, um darauf aufbauende Analysen zu

formalisieren und zu automatisieren. Stattdessen müssen DFDs oder auch

andere Architekturbeschreibungssprachen (ADLs) erweitert werden, um die

zur Untersuchung von Vertraulichkeit notwendigen Informationen repräsen-

tieren zu können. Solche Erweiterungen unterstützen häufig nur Vertrau-

lichkeitsanforderungen für genau einen Vertraulichkeitsmechanismus wie

etwa Zugriffskontrolle. Eine Kombination von Mechanismen unterstützen

solche auf einen einzigen Zweck fokussierten Erweiterungen nicht, was deren

Ausdrucksmächtigkeit einschränkt. Möchte ein Softwarearchitekt oder eine

v
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Softwarearchitektin den eingesetzten Vertraulichkeitsmechanismus wech-

seln, muss er oder sie auch die ADL wechseln, was mit hohem Aufwand

für das erneute Modellieren der Softwarearchitektur einhergeht. Darüber

hinaus bieten viele Analyseansätze keine Integration in bestehende ADLs und

Entwicklungsprozesse. Ein systematischer Einsatz eines solchen Ansatzes

wird dadurch deutlich erschwert.

Existierende, datenorientierte Ansätze bauen entweder stark auf manuel-

le Aktivitäten und hohe Expertise oder unterstützen nicht die gleichzeitige

Repräsentation von Zugriffs- und Informationsflusskontrolle, sowie Verschlüs-

selung im selben Artefakt zur Architekturspezifikation. Weil die genannten

Vertraulichkeitsmechanismen am verbreitetsten sind, ist es wahrscheinlich,

dass Softwarearchitekten und Softwarearchitektinnen an der Nutzung all

dieser Mechanismen interessiert sind. Die erwähnten, manuellen Tätigkeiten

umfassen u.a. die Identifikation von Verletzungen mittels Inspektionen und

das Nachverfolgen von Daten durch das System. Beide Tätigkeiten benötigen

ein beträchtliches Maß an Erfahrung im Bereich Vertraulichkeit.

Wir adressieren in dieser Arbeit die zuvor genannten Probleme mittels vier

Beiträgen: Zuerst präsentieren wir eine Erweiterung der DFD-Syntax, durch

die die zur Untersuchung von Zugriffs- und Informationsflusskontrolle, so-

wie Verschlüsselung notwendigen Informationen mittels Eigenschaften und

Verhaltensbeschreibungen innerhalb des selben Artefakts zur Architekturspe-

zifikation ausgedrückt werden können. Zweitens stellen wir eine Semantik

dieser erweiterten DFD-Syntax vor, die das Verhalten von DFDs über die Aus-

breitung von Attributen (engl.: label propagation) formalisiert und damit eine

automatisierte Rückverfolgung von Daten ermöglicht. Drittens präsentieren

wir Analysedefinitionen, die basierend auf der DFD-Syntax und -Semantik

Verletzungen von Vertraulichkeitsanforderungen identifizieren kann. Die

unterstützten Vertraulichkeitsanforderungen decken die wichtigsten Vari-

anten von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung

ab. Viertens stellen wir einen Leitfaden zur Integration des Rahmenwerks

für datenorientierte Analysen in bestehende ADLs und deren zugehörige

Entwicklungsprozesse vor. Das Rahmenwerk besteht aus den vorherigen drei

Beiträgen.

Die Validierung der Ausdrucksmächtigkeit, der Ergebnisqualität und des

Modellierungsaufwands unserer Beiträge erfolgt fallstudienbasiert auf sieb-

zehn Fallstudiensystemen. Die Fallstudiensysteme stammen größtenteils aus
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verwandten Arbeiten und decken fünf Arten von Zugriffskontrollanforde-

rungen, vier Arten von Informationsflussanforderungen, zwei Arten von

Verschlüsselung und Anforderungen einer Kombination beider Vertraulich-

keitsmechanismen ab. Wir haben die Ausdrucksmächtigkeit der DFD-Syntax,

sowie der mittels des Integrationsleitfadens erstellten ADLs validiert und

konnten alle außer ein Fallstudiensystem repräsentieren. Wir konnten außer-

dem die Vertraulichkeitsanforderungen von sechzehn Fallstudiensystemen

mittels unserer Analysedefinitionen repräsentieren. Die DFD-basierten, sowie

die ADL-basierten Analysen lieferten die erwarteten Ergebnisse, was eine

hohe Ergebnisqualität bedeutet. Den Modellierungsaufwand in den erweiter-

ten ADLs validierten wir sowohl für das Hinzufügen, als auch das Wechseln

eines Vertraulichkeitsmechanismus bei einer bestehenden Softwarearchitek-

tur. In beiden Validierungen konnten wir zeigen, dass die ADL-Integrationen

Modellierungsaufwand einsparen, indem beträchtliche Teile bestehender

Softwarearchitekturen wiederverwendet werden können.

Von unseren Beiträgen profitieren Softwarearchitekten durch gesteigerte

Flexibilität bei der Auswahl von Vertraulichkeitsmechanismen, sowie beim

Wechsel zwischen diesen Mechanismen. Die frühe Identifikation von Vertrau-

lichkeitsverletzungen verringert darüber hinaus den Aufwand zum Beheben

der zugrundeliegenden Probleme.
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1. Introduction

In this thesis, we present an approach for systematically considering confiden-

tiality requirements in the architectural design phase of software development

processes. The approach supports documenting system aspects, which affect

the fulfillment of confidentiality requirements, in an architectural design

model as well as the automated detection of violations of these requirements.

In the following, we motivate why considering confidentiality in the architec-

tural design is crucial in Section 1.1. In Section 1.2, we identify problems in

considering confidentiality in software designs, which have been reported by

practitioners and tool developers. We briefly summarize, why the state of the

art does not sufficiently address these problems in Section 1.3. In Section 1.4,

we derive challenges, as well as research questions from the problems of the

state of the art. The answers to the research questions are given in form of

contributions, which we describe in Section 1.5. The outline of this thesis is

covered in Section 1.6.

1.1. Motivation

The security of software systems is an important factor for organizations

because the costs of a security incident can be high [GCH03]. For instance,

IBM [IBM20] reported that the global average costs of a data breach of more

than 50m records was $392m in 2020. Depending on the particular location

and type of organization, the costs can even be significantly higher. Lost

business, which can be caused by lost user trust, and the effort for attracting

new customers contributes the biggest part of these costs. The Cambridge

Analytica scandal [Wei18; IH18] is a good example for this negative impact

on business. Another considerable factor contributing to the costs of security

incidents are regulatory fines such as the ones implied by the General Data

Protection Regulation (GDPR) [Eur16] of the European Union (EU). Organi-

zations are legally obligated to protect the information about their users. If
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the taken measures are insufficient, which is often shown by a data breach,

high fines apply. For instance, British Airways received a penalty [Den20a] of

£20m and Marriott International received a £18.4m penalty [Den20b] because

of such data breaches. On the other side, sufficiently addressing security is

hard because software systems are highly connected, extensible and complex

[McG06, pp. 26]. There is a trend of an increasing number of discovered

vulnerabilities over the last years [Nat22], which implies that organizations

not only have to spend effort in getting their software systems secure but

also to keep them secure.

Especially, confidentiality is an important so-called security objective. Con-
fidentiality requires that “information is not made available or disclosed to

unauthorized individuals, entities, or processes” [Int18]. Maintaining con-

fidentiality also means prohibiting the previously mentioned, costly data

breaches. Ensuring confidentiality of personal data, which is a core concept

of data protection regulations such as the GDPR [Eur16, Article 32 §1(b)],

avoids many fines of such data protection regulations. Besides avoiding costs,

maintaining confidentiality can also affect the relation to new and existing

customers: A recent survey of Cisco [Cis19] about the importance of privacy

for consumers revealed that there is a significant amount of customers (32 %)

that already switched to another company for better data protection policies.

Therefore, companies cannot only keep customers but can also gain new cus-

tomers by appropriate data protection. Ensuring confidentiality of customer

data is a large step in this direction.

Security mechanisms [Cam13, p. 32] enforce security requirements such as

the confidentiality of data by restricting the access to that data according

to a policy. A policy consists of rules that build the foundation of a deci-

sion on whether to allow or deny access to something [Ris+17, pp. 19]. The

most prominent mechanisms to enforce confidentiality are information flow

control, access control and encryption. Access control limits what users or

processes acting on their behalf can do with data [SS94]. Many systems

already contain access control mechanisms, so it is the de-facto standard for

protecting confidential information [SM03]. However, access control can only

restrict access to data within the system under control. Outside of the system,

encryption of data can limit access [Sho14, pp. 153]. Various approaches

[AT83; HJ03] use such combinations of access control and encryption. In

contrast to access control, information flow control does not only limit the

access to data but also the flow of information [SM03]. Simple forms of infor-

mation flow control such as taint analyses are regularly used in practice but
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more sophisticated forms are not [Sta+19]. None of the mechanisms is clearly

superior compared to the others as long as a trade-off between applicability

in practice and powerful analyses is required. Therefore, all mechanisms

should be taken into account to meet the confidentiality requirements and

the capabilities of the system context.

Considering security already while designing the software system, which

also includes creating an appropriate architecture, is beneficial for multi-

ple reasons: First of all, it is useful to consider early development phases

because historic attempts to only address security by operational means in

late development stages were not sufficient [McG06, chap. 3]. Therefore,

many organizations now consider security in all development phases, which

explicitly includes the design phase. For instance, Microsoft gives explicit

instructions on secure software design as part of their commonly known

Security Development Lifecycle (SDL) [HL06, chap. 7]. The high interest in

software design stems from the experience that many security violations

can be traced back to design issues [KRK17] [McG06, p. 151]. In addition

to that, the effort for fixing design issues affecting security is significantly

lower in the design phase compared to fixing these issues in later phases

[Shu+02] [Gee10]. Consequently, identifying issues already in the software

architecture that preceds the more detailed software design is even more

beneficial. Therefore, organizations should consider spending effort in proper

system architectures and designs as well as in the early detection of issues.

Analyses of data flows are commonly used to reason about the security of

software designs. This is beneficial because security issues “tend to follow the

data flow, not the control flow” [Sho14, p. 44] and requirements regarding con-

fidentiality are often formulated in terms of data and its processing [Gol+19;

Kel+09]. Consequently, data-oriented modeling languages such as Data Flow

Diagrams (DFDs) are commonly suggested to represent relevant aspects of

the software design [Voo20; TSB19]. Therefore, design-time approaches using

data flows have a high chance of being useful for designing secure systems.

The goal of this thesis is to provide an approach for detecting violations of

confidentiality requirements in the early design stage of a software system by

means of data flows. The approach supports describing the data processing in

software architectures, determining the effect of this processing on data and

detecting violations of confidentiality requirements based on exchanged data.

The analyses are not limited to one particular confidentiality mechanisms but

support information flow control and access control as well as encryption.
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1.2. Problem Statement

Considering security in the software architecture and design is beneficial

but a recent survey with practitioners [AC18] revealed that there is still a

lack of considering security in software design. This certainly does not hold

for all software development teams but shows that there are still problems

in integrating security considerations into the software design process. We

identified four major problems (P1-P4), which we will address as part of

this thesis. In particular, the thesis focuses on establishing confidentiality in

software architectures and designs by data-oriented modeling and analysis

methods.

P1 Coupling of modeling languages and confidentiality mechanisms A re-

cent survey on modeling languages for representing security in software

designs [Ber+17] found that the identified languages often only support one

particular security objective and one particular security mechanism. An

example of this problem is one particular language that only supports access

control based on roles but not access control based on attributes. However,

such a strict coupling between security mechanism and modeling language is

not feasible in practice: Security requirements might evolve while designing

the software system. To meet the requirements, a new or different security

mechanisms might be necessary. If a modeling language only supports one

specific confidentiality mechanism, switching the confidentiality mechanism

means switching the modeling language. However, switching modeling lan-

guages requires considerable effort because designers either have to remodel

everything from scratch using the new modeling language, which implies

high manual modeling effort, or software engineers have to define an auto-

mated mapping between the two modeling languages, which is challenging

if the languages have substantial differences [TBS20]. If switching a security

mechanism is not possible without considerable effort, designers most likely

stick to the suboptimal solution or avoid modeling security mechanisms at

all. Thus, designers need an approach that allows switching between security

mechanisms without implying high manual modeling effort. A flexible mod-

eling language that supports representing multiple security mechanisms can

address this problem. With respect to confidentiality, such a flexible modeling

language, which allows combining multiple confidentiality mechanisms, is

necessary to support emerging approaches that combine, for instance, access

control and information flow control [Wan+09; XBS06].
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P2 Missing support for commonly used confidentiality mechanisms in analy-
ses Security analyses use system models as inputs and often apply formal

methods to identify violations of security requirements. Surveys on formal

methods [Dav+13; GBP20] state that approaches are often not widely usable

because they are fragmented, i.e. the approaches are specific for a given pur-

pose but it is unclear how to combine these approaches to support multiple

purposes. This makes analyzing combinations of confidentiality mechanisms,

such as access control and information flow control [Wan+09; XBS06], hard.

Additionally, using multiple formal methods requires knowledge in every

used formal method, which implies high initial effort for adopting formal

methods. Therefore, efficient methods for exchanging information between

such approaches or consolidated approaches are necessary to lower the initial

effort and increase the probability of being used in practice.

P3 Insufficient formalization of data-oriented modeling languages impedes
automated analyses Reasoning about security is barely possible without

explicitly considering data and its processing because security requirements

are often formulated in terms of data. Automated analyses, which detect

violations of security requirements, are a good way to keep the effort for

analysts low in presence of complex systems. Such analyses require data-

oriented models with clear semantics, which are sufficient to reason about

security considerations. However, clear semantics are not naturally available

for every modeling language that architects or designers use: DFDs, which

use one of the simplest and most prominent data-oriented modeling language,

lack clear semantics [JUN11; Sio+20]. This lack of semantics impedes the

creation of analyses that yield precise results. A survey [TCS18] on threat

modeling approaches, which usually use DFDs, gives a good example of

the effect of this impediment: the authors could not identify an approach

yielding precise results that can be used by software engineers. To summarize,

it is not sufficient to provide architects and designers with data-oriented

languages but these languages also have to have clear semantics that serve

as foundation for data-oriented analyses. Attempts to define semantics often

lead to specific semantics that only support specific analyses for specific

quality properties such as performance, reliability or liveliness. However,

to create flexible analyses that support multiple confidentiality mechanisms

(see P2), semantics that cover the important aspects of such confidentiality

mechanisms are required.
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P4 Weak guidelines on consideration of confidentiality in software architec-
ture Software development teams follow development processes to build

software. Such processes provide activities and often suggest tools to use in

order to create artifacts such as software architectures or designs. Thereby,

the processes provide guidelines on how to create an architecture or design.

One major reason for low adoption of formal methods in general and secu-

rity approaches in software design in particular is the missing integration

into existing development processes [Dav+13; AC19; GBP20]. Clear guid-

ance on when and why to use security approaches is necessary to apply

the approach correctly, ensure that the approach is used and that its results

are available when they are required. An integration into tools can provide

such guidelines at least partially, i.e. the security approach shall be used

when the corresponding tool is used. Additionally, tool support eases the

use of security approaches in practice: Surveys on formal methods [Dav+13;

GBP20] stress that tools should be used extensively in education and that

not providing mature tools is a considerable impediment for adopting formal

methods. However, many researchers do not spend enough time in creating

such tools. A survey on modeling languages for security in software designs

[Ber+17] supports this hypothesis by stating that the majority of studied

approaches do not provide tools at all. The integration into existing tools

is not just a matter of pure engineering effort but also requires concepts on

how to bridge potential gaps in abstractions, used description languages or

paradigms. Therefore, research has to provide the concepts for integrating

their approaches into existing development tools. Such an integration would

already be a considerable step in the right direction [Dav+13].

1.3. Overview on State of the Art

There is a wide range of approaches for introducing security in the architec-

ture or design phase of the software development process. In the following,

we enumerate only the most important categories of approaches, give exam-

ples of particular approaches and mention their shortcomings. A detailed

review of the state of the art is available in Chapter 9.

Inspection-based approaches rely on manual screening of descriptions

of the system under design by humans. These approaches are flexible but
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the outcome heavily relies on the expertise of the person conducting the

inspection, which limits its applicability. Originally, threat modeling [Sho14]

relied on this. However, extensions can lift threat modeling into the categories

discussed in the following.

Pattern matching is a commonly used analysis method to identify viola-

tions of security requirements. The general idea is to extend existing design

documentations by security-relevant information and look for patterns that

indicate a violation. Extended threat modeling approaches [Fry+14; Sio+18b;

Sio+18a] have formal models that require appropriate documentation of se-

curity information. However, creating such information can be challenging.

For instance, to decide if exchanged data contains critical information, it

is usually necessary to consider all influencing information including their

origins. In large systems, this is complex.

Propagation analyses simplify documenting security-relevant information

by only requiring an initial set of information and deriving missing infor-

mation. There are approaches operating on control flows [Kat+13; Jür05] as

well as operating on data flows [TSB19; Ber+18]. Approaches using control

flows require mapping data-oriented confidentiality policies to restrictions of

control flows. With respect to approaches operating on data flows, we could

not identify an approach that supports access control as well as information

flow control within the same model.

Formal semantics of the system descriptions and behavior specifications

are the enabler of propagation analyses. However, formal semantics of data-

oriented descriptions and specifications are not always available: The most

prominent notion for data-oriented system descriptions, a DFD, lacks such

formal semantics in its initial definition [DeM79]. Many approaches have been

made to specify such semantics [Jil+08] but there is no standard semantics yet.

Semantics tailored to confidentiality are usually part of analysis approaches

[TSB19; Ber+18], so the semantics share the limitations of the approaches

with respect to expressiveness regarding confidentiality mechanisms. This

means, we could not identify formal semantics capable of describing system

behaviors relevant for access control as well as information flow control.
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1.4. Challenges and Research Questions

To provide an approach for detecting violations of confidentiality require-

ments in software designs and architectures in a data-oriented way, we have

to address three major challenges that we describe in the following. Based

on these challenges, we formulate research questions to be answered in this

thesis.

1.4.1. Ch1: Definition of Unified Modeling Language Supporting
Various Confidentiality Mechanisms

Confidentiality requirements are often formulated in terms of established

confidentiality mechanisms. For instance, the access requirements for infor-

mation can be specified by roles of subjects and access rights to information,

which are associated with the roles of subjects, i.e. Role-based Access Con-

trol (RBAC). However, it can also be reasonable to describe access limitations

in terms of information flow policies specified by labels that classify informa-

tion and that give users clearance for accessing data of a certain classification.

In both scenarios, the system description has to cover all properties and

behaviors that affect the decision about access on information. The properties

and behaviors are usually specific to a particular confidentiality mechanism,

which requires that the system description can represent these individual

properties and behaviors.

The challenge is to find a modeling language supporting multiple confiden-

tiality mechanisms without introducing dedicated model elements for each

confidentiality mechanism. The downside of dedicated model elements per

confidentiality mechanism is that the resulting language only supports the

considered confidentiality mechanisms and consists of many model elements

that are barely used by architects or designers in most cases. Instead, a

condensed set of model elements is easier to use and requires less learning

effort by designers and architects. Paige, Ostroff, and Brooke refer to this

language feature as uniqueness [POB00]. However, the modeling elements

must not become as generic as code to keep the specification and learning

effort within reasonable limits. A unified modeling language with respect

to confidentiality mechanisms means that the language supports multiple

confidentiality mechanisms. In particular, access control and information flow

control are not supported together by any data-oriented modeling language
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as we already stated in Section 1.3. Therefore, supporting both in one unified

modeling language is an open challenge.

To decide about reasonable modeling mechanisms and modeling elements,

we first have to identify the information, which has to be captured in the

software documentation. This is challenging because the information has

to be available during the architectural design phase. For instance, behavior

descriptions given as implementation code are not yet available while creating

a software architecture. Because we especially focus on the confidentiality

mechanisms access control and information flow control, we formulate the

following two research questions:

Research Question 1: What properties and behaviors are required to reason

about access control in software architectures in a data-oriented way?

Research Question 2: What properties and behaviors are required to reason

about information flow control in software architectures in a data-oriented

way?

The modeling language has to represent the required information. We refer

to the condensed set of model elements that can represent the previously

identified information as modeling primitives. We formulate the following

research question:

Research Question 3: What modeling primitives are sufficient to describe

architectural aspects affecting confidentiality in a data-oriented way?

1.4.2. Ch2: Definition of Unified Analysis Semantics Supporting
Various Confidentiality Mechanisms

Automated analyses can detect violations of confidentiality requirements if

the requirements as well as the system under design are specified by languages

with defined semantics. Thismeans that it is not sufficient to create amodeling

language but it is also necessary to define its semantics. The challenge in

defining such semantics is that they have to be capable of supporting different

analyses for violations of different confidentiality mechanisms. Defining

individual semantics that drive individual analyses is possible but makes

understanding model elements harder for designers or architects because

they always have to consider the particular analysis context and have to learn
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different meanings for different contexts. Because we could not identify a data-

oriented approach that supports analyzing access control and information

flow control within the same model using the same semantics, we see the

definition of such semantics as an open challenge. The corresponding research

question is as follows:

Research Question 4: What semantics of the data-oriented modeling primi-

tives allow detecting violations of confidentiality requirements?

Because there will be novel semantics, we have to define the access con-

trol and information flow control analyses in terms of the semantics. The

corresponding research questions are as follows:

Research Question 5: How to formalize common access control analyses

using data-oriented modeling primitives and semantics?

Research Question 6: How to formalize common information flow control

analyses using data-oriented modeling primitives and semantics?

1.4.3. Ch3: Extending Existing Modeling and Analysis
Approaches

The integration of a new modeling and analysis approach into existing tools

and processes is beneficial because it provides good guidance to designers and

architects in how to use the approach and lowers the initial learning effort

for applying the approach. The integration into existing tools is challenging

if they do not provide the required modeling concepts: For instance, a data-

oriented modeling approach usually requires the concept of a data flow.

However, existing tools often focus on control flows instead of data flows

and do not provide the concept of a data flow. Bridging this gap is necessary:

otherwise, architects and designers would have to remodel large parts of the

system under design to incorporate the new communication paradigm. The

challenge here is to require as less modifications of existing tools as possible

to reduce the learning effort for architects and designers. On the other side,

all required modeling concepts have to be available and the analyses have

to work within the extended tooling. To achieve this, an approach to extend

existing models with considerable effort is necessary. We see the following

two research questions:
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ResearchQuestion 7: How can formal data-oriented confidentiality analyses

be integrated into existing modeling and analysis approaches for software

architectures, which focus on control flows?

ResearchQuestion 8: How can formal data-oriented confidentiality analyses

be integrated into existing modeling and analysis approaches for software

architectures, which focus on data flows?

1.5. Contributions

We answer the previously defined research questions by the following scien-

tific contributions:

Contribution 1: Extension of DFDs to cover confidentiality properties
and behavior. The DFD syntax is one of the most prominent data-oriented

modeling language to describe the architecture or design of a system and

it is also widely used to reason about the security of systems. We build

on the initial DFD syntax by DeMarco [DeM79] and extend it to represent

properties by labels and behaviors by reusable label propagation functions.

Particular labels and label propagation functions to be used within particular

system architectures or designs are available via extensible catalogs. Using

labels and label propagation is reasonable because the identified, relevant

properties and behaviors for reasoning about access control and information

flow control within software architectures, which we identified by answering

RQ1 and RQ2, can be represented by discrete values and bymapping functions

from discrete values to discrete values. The extended DFD syntax is capable

of expressing all relevant information for the most commonly used access

control and information flow control mechanisms. Therefore, the syntax

presents the answer to RQ3. We evaluate the expressiveness of the syntax by

a case study, in which we represent realistic systems using various types of

access control and information flow control mechanisms.

Contribution 2: Data propagation semantics forDFDs. We formalize the

semantics of the extended DFD fromC1 by amapping from the DFD to clauses

in a first-order logic program. The resulting clauses allow to derive the labels

of every data item exchanged via data flows based on the behaviors given as

label propagation functions. Formalizing the propagation of data through

the system is essential to derive properties of data and enable confidentiality
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analyses that are more powerful than analyses based on pattern-matching.

The semantics are the answer to RQ4. We address four common shortcomings

of existing DFD semantics such as the systematic consideration of multiple

data flow paths. The evaluation of the semantics shows that analyses using

these semantics can yield precise results with respect to various information

flow control and access control analyses.

Contribution 3: Access control and information flow control analyses
based on data propagation. The definition of particular access control and

information flow control analyses provides relevant properties of data and

nodes, as well as fundamental behaviors relevant for analyzing confidentiality.

Especially, behaviors are often missing from descriptions of the particular

confidentiality mechanism. This is sufficient for analyses based on pattern

matching but not for analyses based on data propagation. We provide four

access control analyses for the most common access control models Discre-

tionary Access Control (DAC), Mandatory Access Control (MAC), RBAC and

Attribute-based Access Control (ABAC), which is also the answer to RQ5. We

provide three information flow analyses for common types of classification

lattices in non-interference analyses. This also answers RQ6. We evaluate

the precision of the analyses in a case study.

Contribution 4: Integration process for DFD-based analyses into exist-
ing ADLs. The integration process defined the required steps to integrate

the previously described contributions C1 and C2 into existing Architectural

Description Languages (ADLs). The process provides guidelines for ADLs

focusing on control flows (RQ7) as well as for ADLs focusing on data flows

(RQ8). The integration considers as much existing modeling elements as

possible before suggesting extensions of the ADLs. A model transformation

to be defined maps the potentially extended ADLs to a DFD, in which the

analysis takes place. Another transformation maps the analysis results back

into the software architecture. We evaluate the integration process by ap-

plying it to the Palladio [Reu+16] approach, which supports control flows as

well as data flows. We ensure high expressiveness with respect to the systems

and analyses that the extended ADL supports as well as high precision with

respect to the analysis results.
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1.6. Outline

The thesis is structured as follows. In Chapter 2, we introduce terminology and

basic concepts, which we use throughout this thesis. Our running example for

exemplifying the contributions is part of Chapter 3. In Chapter 4, we collect

the requirements on a solution for addressing the problems and challenges

mentioned in the introduction. Chapter 5 covers our first two contributions,

which are an extended DFD syntax and corresponding semantics capable of

identifying violations of confidentiality requirements in DFDs. Chapter 6

covers our third contribution, which are analysis definitions for information

flow and access control analyses based on the DFD syntax and semantics. In

addition, we present a Domain-specific Language (DSL) for defining custom

analyses. The integration of the previously mentioned contributions into

existing ADLs is the fourth contribution and subject of Chapter 7. We provide

integration guidelines and describe the application of these guidelines to a

particular ADL. The previously mentioned four contributions are validated

in Chapter 8. We discuss related work in Chapter 9 and conclude the thesis

in Chapter 10.
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In this thesis, we present an approach to systematically consider confiden-

tiality in software architectures. We introduce the terminology regarding

confidentiality and frequently used confidentiality mechanisms in Section 2.1.

A short introduction in software architectures and the two description lan-

guages for software architectures, which we use in this thesis, is given in

Section 2.3. Because the description languages are model-based, we explain

the fundamentals on model-based software development in Section 2.2 before

explaining the description languages. In the course of this thesis, we intro-

duce semantics for a syntax and describe these semantics by predicates given

in first-order logic. We use the notion of a logic programming language to

represent these predicates and use the logic programming environment to

derive and query information. Therefore, we introduce this notion as well as

the method for querying the resulting logic program in Section 2.4.

We focus on short and pragmatic descriptions in this chapter. This means,

we only explain as much as necessary to understand the following chapters.

Giving more detailed explanations is not useful because there are many

textbooks on the topics presented in this chapter that explain the topics much

better than we can within reasonable page limits.

2.1. Confidentiality

This thesis is about supporting software architects in meeting confidentiality

requirements while creating a software architecture. In the following, we

first introduce the terminology related to confidentiality, which we use in

the remainder of this thesis, and then briefly introduce the most popular

mechanisms to support confidentiality. The descriptions of the mechanisms

are not meant to be comprehensive. Instead, we want to introduce the terms

and give an idea of the principles behind the mechanisms.
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Terminology. According to ISO 27000 [Int18], confidentiality means that

“information is not made available or disclosed to unauthorized individuals,

entities, or processes”. Confidentiality is a security objective besides others

such as integrity or availability [Int18]. Security mechanisms [Cam13, p. 32]

support achieving security objectives because they enforce a security policy.

In the context of confidentiality, a policy consists of rules that build the

foundation of a decision on whether to allow or deny access to something

[Ris+17, pp. 19]. We see such a policy as a specification of confidentiality
requirements. Within this thesis, we call the security mechanisms, which

support achieving confidentiality, confidentiality mechanisms.

Access Control limits what users or system parts acting on the behalf of

users can do [SS94]. Access control is the de-facto standard for protecting

confidential information in software systems [SM03]. A policy specifies the

rules for legitimate or illegitimate actions. Commonly used actions in such

policies are reading data or writing data. There are various ways of describing

such policies. However, it is common to describe the person or system that

performs an action like accessing data as the subject and to describe the

accessed data as the object. Sandhu and Samarati [SS94] identified three

commonly used policy types: DAC defines rules based on the identity of a

subject and the identity of the object. RBAC introduces roles to decouple

the rules from identities. Instead, a subject has a role and there are rules

describing the allowed or denied access for a particular role. MAC defines

rules based on classifications, which are assigned to subjects and objects.

The rules limit the exchange of information between the classification levels.

Besides these three policy types, ABAC [Hu+14] also became popular in the

last years because it defines rules based on arbitrary attributes of subjects and

objects. The support for arbitrary attributes increases the flexibility and even

enables representing the other three types of policies within ABAC [JKS12].

Besides the term policy type there is also the term access control model [Fur08,
p. 61], which essentially means the same in the context of this thesis.

Encryption transforms plaintext into ciphertext [Bau05b]. Because the infor-

mation in the plaintext is no longer readable in the ciphertext, the information

cannot be accessed anymore, which protects confidentiality. Cryptosystems

[Bau05a] consist of an algorithm to encrypt plaintext, an algorithm to decrypt

ciphertext and a defined set of inputs, which usually includes a key. Usually,
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cryptosystems are used instead of only the encryption operation because

encrypting information without means to decrypt the ciphertext back to

plaintext would provide no benefit over not sharing information at all. The

most important types of cryptosystems are symmetric and asymmetric cryp-

tosystems. In a symmetric cryptosystem [Kal05b], there is one shared key

that is used for encryption and decryption. In an asymmetric cryptosystem

[Kal05a], there are different keys for encryption and decryption. Usually,

a so-called public key is used for encryption and a so-called private key is

used for decryption. Using encryption is, especially, useful when information

leaves the system under control [Sho14, pp. 153]. Outside of a system, ac-

cess control cannot enforce rules of that system. In contrast, encryption can

enforce rules because subjects outside of the system need the key to access

the information and the system can limit the access to this key. There are

also approaches [AT83; HJ03] that combine access control and encryption to

combine the benefits of both mechanisms.

Information Flow Control limits the propagation of information to protect

its confidentiality [SM03]. Goguen and Meseguer [GM82] define the most

commonly used information flow property non-interference by saying that

a process 𝑃1 does not interfere with process 𝑃2 of the same system if the

input of 𝑃1 does not affect the output of the system received by 𝑃2. To restrict

the information flow between more than two processes, lattices [Den76]

are commonly used. A lattice is a directed graph of labels. An edge from

label 𝑙1 to label 𝑙2 means that information is allowed to flow from 𝑙1 to 𝑙2.

Within software systems, processes have such a label. Between processes

with unconnected labels, non-interference has to hold. As Zdancewic [Zda04]

stresses, non-interference is often not the property, which shall be achieved

in real applications because such applications require information flows not

covered by such strict lattices. Declassifications enable flows conflicting with

such strict lattices under specific conditions. Sabelfeld and Sands describe

these conditions in their work [SS09] on the dimensions of declassification.

2.2. Model-Based Software Development

In model-based software development, software engineers use models to plan

and document design decisions [SV06, Sec. 1.1]. Popular examples of such
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models are class diagrams specified in the Unified Modeling Language (UML)

[Obj17] to document the structure of a software system or UML sequence

diagrams to document the interaction between parts of the software system.

The contributions presented in this thesis also provide model-based means

to plan, document but also analyze design decisions for software architec-

tures. In the following, we introduce the terminology about models, which is

relevant for this thesis.

Model A model is a simplified representation of the reality. Stachowiak

[Sta73, pp. 131] describes a model by three characteristics: The model has

to be a representation of something. For the definition, it does not matter,

what the model actually represents. The model can even represent another

model. However, the model has to be a reduction of the represented thing.

This means, a model cannot simply be identical to the represented thing

but has to omit details. The omitted details are chosen based on the served

pragmatism. A model always has a purpose, which dictates the important

aspects and the irrelevant aspects of the represented thing. Irrelevant aspects

do not become part of the model. In the context of this thesis, we restrict

the definition of a model further to what Stahl and Völter [SV06, Sec. 4.1.1]

call a formal model. A formal model always adheres to a given syntax. The

abstract syntax describes the structure of the formal model and defines criteria

for well-formedness. The abstract syntax is given by a metamodel, which

we describe in the following paragraph. The concrete syntax describes the

representation of the formal model, e.g. by geometric shapes. The means for

describing the concrete syntax differ depending on the particular form of

representation.

Metamodel A metamodel describes the structure and rules for well-formed-

ness of a model in an abstract way [SV06, Sec. 6.1]. The restriction of the

structure and the well-formedness rules enable automated interpretations of

a model because every type of content in a model is known already before a

model has been created. The UML is a popular example of such a metamodel.

A model is said to be an instance of a metamodel. A metamodel is specified

by a meta-metamodel, which specifies the structure and well-formedness

rules of the metamodel. A metamodel is said to be an instance of a meta-

metamodel. In theory, this meta-relation can continue forever. To break

this chain, the Object Management Group (OMG) provides the Meta Object
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M0: Instances

M1: Model

M2: Metamodel

M3: Meta-Metamodel

instanceof

instanceof

instanceofdescribes

describes

describes

instanceofdescribes

Objects during runtime

MOF, EMOF, Ecore, ...

Particular sequence
diagram, particular DFD,

...

UML, DFD, ...
most relevant

terminology for
this thesis

Figure 2.1.: Four metalevels according to Stahl and Völter [SV06, Sec. 6.1] including examples on

the right-hand side.

Facility (MOF) [Obj19], which provides a self-describing meta-metamodel to

specify metamodels. The OMG does not restrict the depth of meta-relations

but four levels are sufficient for many use cases [Obj19, pp. 6]. Stahl and

Völter describe these four levels [SV06, chap. 6.1] as shown in Figure 2.1. The

meta-metamodel is the uppermost level, describes itself and is also an instance

of itself. In the context of this thesis, we use Ecore as a meta-metamodel.

Ecore [Ste09, pp. 103] is an implementation of the essential concepts of

MOF. Simply said, Ecore consists of classes, attributes of these classes, and

references between classes. The metamodel on the second level uses the meta-

metamodel to define a custom structure. Metamodels are usually visualized

as class diagrams because the meta-metamodel uses the concepts known

from class diagrams. Examples of metamodels are the UML metamodel or

a metamodel for describing a DFD. Instances of these metamodels, i.e. the

models, are on the first level. For instance, particular sequence diagrams or

particular DFDs are models. On the lowest level, there are the instances of

elements from the model. The objects used in an application during runtime

can be such instances.

Viewpoints and Viewtypes Models can become complex if they try to capture

too much information at once. This is problematic for software architectures

[RW05, pp. 27] but can also happen in other complex domains. The suggested

solution is to use views to tailor the representation of information to the
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needs of stakeholders. Goldschmidt, Becker, and Burger [GBB12] provide

a taxonomy covering the most important aspects around views. A view

is a selection of particular objects and relations from a model. A viewtype

specifies the instructions on how to create a view. The specification is not tied

to a particular model but to a metamodel. For instance, a viewtype can specify

that only actors of UML use case diagrams shall be considered. The view

is constructed by applying the instructions of the viewtype on a particular

model. The purpose of defining viewtypes is to support stakeholders in

addressing a certain concern. A viewpoint uses viewtypes to address the

concerns of stakeholders. A viewpoint can use multiple view types if this is

necessary.

2.3. Software Architecture Description

According to Rozanski and Woods [RW05, pp. 12], “the architecture of a

software-intensive system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those ele-

ments, and the relationships among them”. They further clarify that the static

part of the structure covers internal design-time elements and the dynamic

structure covers runtime elements and interactions. The externally visible

properties includes the interaction between the system and its environment

as well as quality properties such as performance or security. This means,

an architecture covers considerably more than just the static structure of

the system. The purpose for creating the software architecture defines the

aspects to be covered in the software architecture. To document a software

architecture, ADLs are used. According to ISO 42010 [Int11], an ADL can

have any form as long as it can express architectural descriptions. However,

we always assume an ADL to be specified in a metamodel in the context of

this thesis.

In the following, we give short introductions into DFDs and Palladio. Both

are ADLs, which we heavily use in the context of this thesis. We explain these

ADLs on a high-level to give a basic idea of the purpose and expressiveness of

the ADLs. We explain further details within the sections, in which we need

these details.
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File Systemencrypt fileAlice decrypt file Bobfile encrypted

file

encrypted

file file

Figure 2.2.: Example of graphical representation of DFDs.

Data Flow Diagrams (DFDs) DFDs as introduced by DeMarco are network

representations of a system, in which all elements have a clearly specified

interface [DeM79, p. 47]. The representation focuses on the flow of data rather

than the flow of control because this better supports high-level discussions of

functionality. Consequently, the interfaces specify the exchanged data. DFDs

only consist of three types of nodes and one edge [DeM79, pp. 51]. DeMarco

suggests the graphical notation shown in Figure 2.2 for representing DFDs.

A process receives data, transforms it, and yields data. A process is visualized

as an ellipse. A file is a temporary storage for data. Therefore, we also call a

file a store. A store is visualized by two horizontal lines. The source or sink is

a person or organization that is outside of the system. A source sends data to

the system. A sink receives data from the system. A node can be a source

and a sink at the same time. Because the distinction between these two roles

is not important in this thesis, we refer to a person or organization outside of

the system as actor or external actor. An actor is visualized by a rectangle.

A data flow is the only edge. The edge is directed and connects the nodes

and indicates that data is exchanged. A data flow is visualizes by a line with

an arrow. DeMarco suggests to use a data dictionary [DeM79, pp. 125] to

cover detailed information about data and the nodes. The data dictionary is a

mix of grammar-like specifications of data types and explanations given in

natural language.

Palladio Palladio is a modeling and analysis approach for predicting quality

properties of component-based software architectures [Reu+16, p. 9]. Ac-

cording to Szyperski, a component is a reusable and composable unit of a

software system with specified interfaces and defined context dependencies

[Bro+98]. The idea behind Component-based Software Engineering (CBSE)

[Val+16], which includes creating software architectures, is to build a system

from reusable components in order to get benefits such as lower development

effort or increased efficiency. Palladio supports CBSE by three viewpoints,

which address the concerns of four stakeholders [Reu+16, pp. 44]:
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The structural viewpoint supports the software architect in his/her concern

to define the structure of reusable components in a component repository

and to assemble instances of these components to new components or sys-

tems. The structure of a component is given by its interface, i.e. the provided

services encapsulated in interfaces, as well as by the required services, i.e. the

context dependencies. The behavioral viewpoint supports two stakeholders.

The component developer uses the viewpoint for defining the behavior of

a component in service effect specifications. The domain expert uses the

viewpoint for defining the behavior of users of the software system in usage

scenarios. The most commonly used description of the behaviors is given

by a sequence of actions, which impose an effect on inputs, outputs or re-

sources. The deployment viewpoint supports the concerns of the system

deployer to describe the resource environment and to define the deployment

of component instances to resources.

Palladio supports communication via call-and-return and by events [Reu+16,

p. 102]. The communication is specified by call actions or actions to emit

events. With the Palladio extension Indirections [WSK20], Palladio also sup-

ports communication via data flows. The communication via data flows is

either given by emitting and consuming data via actions within components

or by using data channels. A data channel is a special type of component

that is not callable but is triggered by incoming data and that emits data to

other data channels or actions consuming the data. There are dedicated inter-

faces for every type of communication. Call-and-return requires operational

interfaces that contain callable signatures at components. Event-based com-

munication requires sources and sinks for given event types at components.

Data-oriented communication requires sources and sinks for given data types

at components. Within a single system, the communication types can be

mixed.

2.4. Logic Programming in Prolog

We use logic programming to describe the semantics of a DFD syntax, which

we propose in this thesis. We do not intend to provide a full introduction

into logic programming but only aim for explaining as much as needed to

comprehend the explanations in the following chapters. For a complete
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Listing 2.1: Examples of facts given in Prolog syntax.

1 % facts describing amount of picked apples per employee

2 pickedApples(jane, 22).

3 pickedApples(john, 20).

4

5 % query to find all people X that picked Y apples

6 ?- pickedApples(X,Y).

7 X = john, Y = 20 ;

8 X = jane, Y = 22.

introduction, we refer to comprehensive text books [Bra13; EB11], on which

this section is based.

Kowalski [Kow79] formulates the fundamental idea behind logic program-

ming, which is that an algorithm consists of logic and control and that it is

beneficial to separate these two parts. The logic part contains the problem to

solve and the necessary information to solve it. The control part contains the

problem solving strategies to solve the problem. In logic programming, users

only specify the logic part and the control part is predefined.

The most popular language for logic programming is Prolog [FA03], which

is based on first-order logic. The logic part, which is called the knowledge

base, consists of a sequence of clauses. Clauses can either be facts or rules.

A fact is always true and consists of a name as well as a list of arguments.

Lines 2 to 3 in Listing 2.1 give examples of such facts. The name of the fact is

pickedApples. The arguments of a fact are either numbers, lists or atoms, i.e.

constants. By convention, atoms either start with a lower case letter or are

escaped by quotes. The intended meaning of the facts in the example is that

jane picked 22 apples and john picked 20 apples.

Prolog environments allow to query the knowledge base. A query consists

of a list of goals. A goal consists of so-called compound terms. A compound

term looks like a fact, i.e. it has a name and a list of arguments. In contrast to

facts, the arguments are not restricted to numbers, lists and atoms but can

also be variables or even compound terms. By convention, variable names

start with an upper case letter. Prolog tries to find a solution for every goal

by deriving a variable binding from the knowledge base. If such a variable

binding is found, the goal succeeds. If every goal succeeds, the query succeeds

and a solution for the query has been found. In line 6 of Listing 2.1, the query

asks for a person X, who picked Y apples. Deriving a variable binding in this
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2. Foundations

Listing 2.2: Examples of simple rule given in Prolog syntax.

1 % rule saying that someone is an employee if he/she picked apples

2 employee(X) :-

3 pickedApples(X, _).

4

5 % query for all employees X

6 ?- employee(X).

7 X = john ;

8 X = jane.

example simply means finding values for X and Y so that the term in the query

is equal to one of the facts. The step of replacing the variables by values in

order to make terms equal is called unification. By using backtracking, Prolog

can identify all possible solutions. For the query presented in the example,

Prolog identifies two possible solutions in lines 7 to 8.

Rules consist of a head and a body. The head is a compound term. Line 2

in Listing 2.2 gives an example of the head of a rule with name employee

and the variable X as argument. The keyword :- separates the head and

the body. The body is a conjunction of compound terms. The body in the

example only consists of the compound term in line 3. The compound term

has the name pickedApples and uses the variable X as first argument and

the anonymous variable _ as second argument. By convention, anonymous

variables start with an underscore. The meaning of anonymous variables is

that the particular value is not important for finding a solution. The query in

line 6 asks for all employees. To find variable bindings for variable X in the

query, Prolog uses Selective Linear Definite (SLD) clause resolution. Simply

said, the resolution replaces a term in a query by the terms in the body of a

rule and tries to unify resulting terms with facts. This leads to a recursive

evaluation. In the example, Prolog evaluates the employee rule by finding

a variable binding for variable X such that the pickedApples term succeeds.

Consequently, the query finds the two solutions shown in lines 7 to 8 when

including the facts from Listing 2.1.

Recursive specifications are commonly used in Prolog. Listing 2.3 gives an

example of a recursive definition of the sumOfApples/2 predicate. Predicates

are the signatures of clauses. The signature is given by a name and an arity,

i.e. the number of parameters. In the given example, the fact in line 2 and the

rule in line 3 both have the same signature. The fact has two arguments. The
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2.4. Logic Programming in Prolog

Listing 2.3: Examples of recursive rule given in Prolog syntax.

1 % sumOfApples/2 finds amount of picked apples by employees

2 sumOfApples([], 0). % no employees means no picked apples

3 sumOfApples([H|T], SUM) :- % recursively sum up picked apples by employees

4 pickedApples(H, N),

5 sumOfApples(T, M),

6 SUM is N+M.

7

8 % query for sum SUM of picked apples by jane and john

9 ?- sumOfApples([jane, john], SUM).

10 SUM = 42.

first argument is an empty list. In Prolog, lists are encapsulated by square

brackets. An empty list is represented by a left and a right square bracket.

The second argument is the number 0. The intended meaning of the fact is

that no employees, which is implied by the empty list of employees, picked

zero apples in sum. The rule in line 3 also has two arguments. The first

argument is a list containing the variables H and T. The pipe symbol is a

separator between the head H and the tail T of the list. Simply said, everything

before the pipe symbol is in the beginning of the list and everything after the

pipe symbol is the remainder of the list. The second argument is a variable

SUM. The intended meaning of the rule is that the variable SUM is the sum

of the apples picked by the employees given by the list. The body of the

rule consists of three clauses. The first clause queries the number of picked

apples N for the employee H. The second clause queries the sum of picked

apples M for the remaining employees T of the list. The third clauses sums

up the numbers of picked apples and unifies the result with the variable SUM.

The second clause makes the rule recursive. In every recursion the list of

employees is shortened by one employee. Prolog tries to find a solution for

the clause by either using the fact or the rule of the example. The fact can

only be used if the list of employees is empty. The rule cannot be used with

an empty list of employees because there would be no solution for the first

clause. Therefore, the fact can be seen as terminator of the recursion. The

query in line 9 uses the sumOfApples/2 predicate to find the sum of picked

apples by jane and john. Using the facts from Listing 2.1, the sum is 42.

The body of rules can contain even more complex expressions. Instead of

building the conjunction of clauses by using the , keyword, it is also possible

to build disjunctions of clauses by connecting them with the ; keyword.
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2. Foundations

There is no logical negation. The closest match is the not-provable predicate

\+, which succeeds if the expression following the predicate does not succeed,

i.e. no solution can be found. This behavior is called negation as failure. The
behavior is not the same as logical negation, so it has to be used with caution.

Because this thesis is not about theoretical foundations of Prolog, we refer

to dedicated work on issues arising from this difference [Sub99] [OKe90, p.

199].
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3. Running Example

We use the TravelPlanner system [Kat+13] as a running example in this

thesis. The system has already been used in the validation of the iFlow

approach [Kat+13; Kat17], which aims to create software systems with secure

information flows. In the following, we introduce the example.

The TravelPlanner system is meant to support a user in looking for flights

and booking them. The system covers one actor and four subsystems, which

are illustrated in Figure 3.1. The user uses the subsystem TravelPlanner on
his/her smartphone to look for flights. The user enters criteria for the flight

into the TravelPlanner, which forwards this criteria to a TravelAgency. The
TravelAgency builds a query based on the given criteria and queries theAirline
for flights. The resulting flights are sent back to the user. The user decides for

a flight and loads the credit card details (ccd) from the CreditCardCenter on
his/her smartphone for the payment of the flight. Before sending the payment

information to the Airline, the user releases this payment information. This

is a declassification operation, which is necessary to allow the Airline to
access the payment information. Afterwards, the user sends the payment

information together with the selected flight to the Airline for booking the
flight. The Airline processes the booking and sends a commission to the

TravelAgency for connecting the user and the Airline. Eventually, the user
receives a confirmation.

The confidentiality requirement for the system is that the user and the sub-

systems must only access information, for which they have been cleared. The

user and the subsystems are cleared for information if their clearance level is

greater or equal to the classification level of information. For simplicity, we

just use numbers to represent these levels. The TravelAgency is cleared for

level 1. The information about flights and commissions is classified for level

1. The Airline is cleared for level 2. The confirmation is classified for level

2. The user including his/her apps is cleared for level 3. The payment infor-

mation is classified for level 3. This means that the Airline must not access

29



3. Running Example

payComission(commission)

findFlights(criteria)
flights

findFlights(query)
flights

getCCD()
ccd

releaseCCDForAirline()
ccd

confirmation

bookFlight(flight, ccd)

confirmation
confirmation

:TravelPlanner :CreditCardCenter :TravelAgency :Airline

findFlights(criteria)
flights

bookFlight(flight, ccd)

Figure 3.1.: Interactions between actor and subsystems in the TravelPlanner system given as

UML sequence diagram (visualization based on previous publication [Sei+22]).

the payment information. To avoid violating the confidentiality requirement,

the declassification operation takes the payment information and explicitly

reclassifies it to level 2, which means it is accessible by the Airline.

Amongst others, we use DFDs to represent systems and analyze them for

violated confidentiality requirements. Originally, the TravelPlanner system

has been specified in UML using call-and-return communication. To support

the explanations in this thesis, we also need a version of the TravelPlanner

system using data flows. Therefore, we created a DFD, which represents

the TravelPlanner system. We already presented this version in a previous

publication [Sei+22].

The DFD representing the TravelPlanner system is illustrated in Figure 3.2.

For the sake of better comparison with the original version, we indicate the

subsystems, to which the DFD elements belong, in the top of the diagram

within gray boxes. In the following description, we use temporal relations to

explain the DFD in an intuitive way. However, the DFD does not imply such

a temporal relation but only defines data dependencies.

The user is represented as actor. An outgoing data flow transports the cri-

teria to look for flights to a process of the TravelPlanner. The TravelPlanner
delegates the data to the TravelAgency, which builds a query and sends it to

the Airline. The Airline loads flights from a storage, uses the query to filter

the flights and passes these flights back to the TravelAgency. Eventually, the
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filtered flights are propagated back to the User. Afterwards, the user passes a
consent to the process declassify CCD and receives declassified credit card

details from it. The user is ready to book the flight and sends the selected

flight as well as the declassified credit card data to the process TravelPlanner,
which delegates the data to the Airline. The Airline creates and stores a

booking and sends a commission to the TravelAgency. Afterwards the Airline
sends a confirmation to the user.

The DFD contains some differences compared to the version using calls. First

of all, there are data flows to put data into data stores. The User initially
sends credit card details to the store and a FlightPlanner sends flights into
a flight store. Initializing stores is also necessary in the version using calls

but this step has been omitted for the sake of simplicity. The second notable

change is the addition of a ccd data flow from the CCD Storage to the User.
The data flow is colored in gray. This data flow introduces an issue, which

leads to a violation of the confidentiality requirements, because the User can
use the payment information, which has not been classified, in the booking.

We detail this issue in later descriptions.
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The introduction in Chapter 1 stated the high-level goal of the thesis, which is

providing an approach for detecting violations of confidentiality requirements

in the early design stage of a software system by means of data flows. To

achieve this high-level goal, we have to address the challenges (Ch𝑛) described

in the introduction. We address the challenges by providing the contributions,

which are an extended syntax for DFDs, corresponding semantics, access

control and information flow analyses as well as an integration procedure of

DFD analyses in existing ADLs. To make sure that we address the challenges

appropriately, we formulate requirements regarding the contributions in

Section 4.1. In Section 4.2, we discuss possible approaches to meet these

requirements.

4.1. Requirements

The contributions mentioned in the introduction imply the need for three

artifacts to be developed: 1) a syntax for describing the system including

aspects relevant for confidentiality, 2) semantics for that syntax and 3)

an integration procedure for analyses based on the previous artifacts into

existing ADLs. The particular access control and information flow analyses

make use of these three developed artifacts. Formulating requirements for

particular analyses is not necessary because the only requirement is to detect

violations of confidentiality requirements. The definition of a violation is

already given by literature. The main user of the artifacts is the software

architect. Because we cannot expect that software architects have detailed

security expertise, it is reasonable to also consider a security expert, who can

support the software architect.

In the following, we will collect functional and non-functional requirements

for the previously mentioned artifacts. Throughout this section, we use the
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requirements templates of Pohl and Rupp [PR15, pp. 53] to formulate require-

ments in natural language. We refer to requirements by the identifier R𝑛.𝑚,

where𝑛 is the number of the artifact, to which the requirement belongs to, and

𝑚 is a continuously incremented identifier. By meeting the requirements, the

resulting artifacts will also address the corresponding challenge. We structure

the presentation of the requirements by the corresponding artifacts.

4.1.1. Syntax

The syntax provides means to structure the information about systems and

confidentiality aspects. Stahl and Völter [SV06, sec. 4.1.1] distinguish between

concrete and abstract syntaxes. A concrete syntax specifies the representa-

tion of information, e.g. by a sequence of tokens in a text. In contrast, an

abstract syntax only specifies the structure of the input but not its particular

representation. For instance, an abstract syntax would specify that a named

class exists and a concrete syntax would specify that a class is represented

by a rectangle with the name of the class in it. In this thesis, we only specify

requirements for the abstract syntax to focus on the required concepts. We

also introduce examples of concrete syntaxes for the abstract syntax but we

do not prescribe a particular concrete syntax. We do not restrict the con-

crete syntax except from the concepts to be represented in order to allow

considering the preferences of architects and the organization, in which they

work. Finding an appropriate and usable concrete syntax is a research topic

on its own, which requires different approaches to construct and evaluate the

concrete syntax than the ones we apply in this thesis. Therefore, presented

concrete syntaxes are only examples and no contributions of this thesis. The

following requirements cover the needs of software architects and security

experts in using such a syntax.

First of all, the syntax has to be capable of describing commonly used aspects

of systems. Rozanski and Woods [RW05, p. 36] present six viewpoints to

describe systems by software architectures. The functional viewpoint es-

sentially describes the system structure, i.e. system parts, their interfaces

and their connections. The information viewpoint describes the flow and

manipulation of data. To get a complete view, the description has to cover

data manipulation by the system as well as by the user. For the system, this

means that the view describes its behavior. For users, this means that the

view describes their behavior, which essentially describes their usage of the
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system. The deployment viewpoint describes the hardware as well as the

assignment of system parts to hardware. The remaining three viewpoints

either target different phases, i.e. the development or operation phase, or

focus on concurrency. Because we focus on the system information required

to identify confidentiality violations in the early design phase, the viewpoints

about late phases are out of scope. The concurrency of data-oriented systems

is often derived from data dependencies and the system structure, so we do

not have to explicitly consider this. Eventually, this brings us to the following

requirement:

R1.1) The syntax shall provide the software architect with the ability to

describe the structure, behavior, deployment and usage of the system.

Besides the previously mentioned generic system descriptions, the syntax also

has to cover specific aspects only relevant for confidentiality. In data-oriented

system descriptions, it is necessary to know the properties of data, which are

required to reason about meeting confidentiality requirements. A first step

in this direction is to define the available types of properties. For instance,

it is reasonable to define a property type Role with a value range consisting

of all particular roles in a system. A particular property, i.e. an instance of a

property type, can then hold a subset of the particular roles in a system. The

property types usually depend on the confidentiality mechanism, so security

expertise can be required to identify all relevant property types. Therefore,

the security expert will most likely define the property types. This brings us

to the following requirement:

R1.2) The syntax shall provide the security expert with the ability to describe

property types.

The behavior of the system and the usage of the system can change the

properties of data. If the way of describing behavior or usage is not sufficient

to determine such changes, it is necessary to provide means for making such

changes explicit. Security experts have the expertise to identify types of

behaviors that are relevant for reasoning about confidentiality requirements.

Additionally, they can specify the changes of data properties, which these

behavior types imply. However, security experts cannot decide on where

these behavior types are actually used in the system. In contrast, software

architects have the expertise to decide on which system part behaves in a

way that matches the defined behavior types. This brings us to the following

requirements.
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R1.3) The syntax shall provide the security expert with the ability to specify

types of behaviors, which describe the effect of system behavior or

system usage on data properties.

R1.4) The syntax shall provide the software architect with the ability to

assign behavior types to system parts or usage descriptions.

Besides data, system parts can also have properties that are required to

reason about meeting confidentiality requirements. Again, security expertise

is required to identify required properties of system or usage parts as well

as reasonable combinations of multiple properties. A security expert can

specify these combinations depending on the confidentiality requirements.

Software architects have the expertise to identify system or usage parts that

should have the predefined combinations of properties. This brings us to the

following requirements.

R1.5) The syntax shall provide the security expert with the ability to specify

combinations of properties for system parts or usage descriptions.

R1.6) The syntax shall provide the software architect with the ability to as-

sign combinations of properties to system parts or usage descriptions.

The overall goal is to provide a unified approach, which supports analyzing

multiple confidentiality mechanisms as well as analyzing combinations of

multiple confidentiality mechanisms. Using the same language constructs for

representing various confidentiality mechanisms helps to reduce the learn-

ing effort for software architects as well as security experts. In addition,

such general applicable language constructs have the potential to support

more confidentiality mechanisms than specific language constructs. All lan-

guage constructs necessary for the previously described specification tasks of

software architects and security experts shall be general applicable to avoid

limiting the resulting syntax to a few confidentiality mechanisms. Addition-

ally, mixing behaviors and properties of different confidentiality mechanisms

should be possible to combine the benefits of various mechanisms. This

means that software architects and security experts shall be able to describe

system aspects relevant for multiple confidentiality mechanisms within the

same input artifact. Besides combining confidentiality mechanisms, replac-

ing a confidentiality mechanism with another one can be reasonable. For

instance, a simple mechanism can be feasible for a limited set of requirements

but as soon as more requirements arise, a more powerful mechanism might

be necessary. To increase the probability that a mechanism is replaced if
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necessary, the effort for doing so should be as low as possible. At least, the

effort for switching confidentiality mechanisms should be low compared to

the overall effort for representing the system and another confidentiality

mechanism. This brings us to the following requirements.

R1.7) The syntax shall provide the security expert with the ability to specify

property types, behaviors and properties for various confidentiality

mechanisms by the same language constructs.

R1.8) The syntax shall provide the software architect with the ability to

assign behaviors or properties for various confidentiality mechanisms

by the same language constructs.

R1.9) The syntax shall provide the security expert with the ability to specify

property types, behaviors and properties for various confidentiality

mechanisms within the same input artifact.

R1.10) The syntax shall provide the software architect with the ability to

assign behaviors or properties for various confidentiality mechanisms

within the same input artifact.

R1.11) The syntax shall provide the software architect with the ability to

switch confidentiality mechanisms with low effort.

4.1.2. Semantics of Syntax

The semantics of the syntax assign a meaning to the syntactical elements,

which drives analyses for violations of confidentiality requirements. If an

element is not needed during the analysis, the semantics should clearly state

that the particular element has no meaning to avoid ambiguities. This brings

us to the first requirement for the semantics:

R2.1) The semantics shall specify the meaning of every construct in the

syntax.

As motivated before, analyses have to determine properties of data and system

parts to identify violated confidentiality requirements in data-oriented system

descriptions. Properties can be static but they can also emerge from processing

various data items. To improve the comprehensibility of analysis results, it

is not only necessary to determine properties but the semantics also have

to be capable of explaining the origin of a property. For instance, a data
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property might emerge from data processing, so the origin should contain

the processing steps. This brings us to the following requirements:

R2.2) The semantics shall provide analyses with the ability to determine

properties of data and system parts.

R2.3) The semantics shall provide analyses with the ability to determine

the origin of properties.

Security experts and software architects mainly interact with the analyses

built on the semantics. The software architect uses these automated analy-

ses to identify design decisions in the analyzed architecture, which violate

confidentiality requirements. To keep the definition of an analysis simple, it

should be enough for security experts and software architects to specify an

analysis goal but not the procedure to meet the analysis goal. An analysis

framework, which only requires an analysis goal to define an analysis, is

necessary to achieve such simple analysis definitions. The analysis not only

has to yield an analysis result but also means to identify the faulty design de-

cision, which lead to the confidentiality violation. A software architect needs

information about the origin of the data item, which violates a confidentiality

requirement. It might be necessary to have a look at multiple previous data

processing steps and data items to identify the design decision leading to the

violation. Therefore, a software architect needs a trace, i.e. the processing

steps including the transmitted data. To keep the effort low for conducting an

analysis, e.g. after adjusting the software architecture, the analyses should be

automated. This way, the software architect can run an analysis frequently

and gets fast feedback about design decisions. This brings us to the following

requirements for an analysis framework, which can also affect the semantics

that build the foundation of the analysis framework:

R2.4) The analysis framework shall provide the security expert with the

ability to define an analysis based on an analysis goal.

R2.5) The analysis framework should provide the software architect with

the ability to define an analysis based on an analysis goal.

R2.6) The analysis framework shall provide the software architect with

trace information about properties.

R2.7) The analysis framework shall provide the software architect with

automated analyses for violations of confidentiality requirements.
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The most prominent confidentiality mechanisms are information flow con-

trol and access control. The analysis framework as well as the semantics

have to support analyses of the most common types of confidentiality re-

quirements given in terms of information flow control and access control.

The analyses should not be part of the analysis framework but shall imply

requirements regarding the expressive power. This brings us to the following

requirements:

R2.8) The analysis framework shall provide the security experts with the

ability to define information flow control analyses.

R2.9) The analysis framework shall provide the security experts with the

ability to define access control analyses.

4.1.3. Integration Procedure for ADLs

The integration of the analysis approach into existing ADLs and their tooling

is necessary to simplify adoption of the approach by lowering the initial effort

for grasping the approach and by providing guidance on when to use the

approach.

To make the integration procedure widely applicable, the procedure should

work for existing ADLs that use the control flow paradigm, the data flow

paradigm or both. The resulting extended ADL might not be data-oriented

but the underlying analysis can still operate on data flows that stem from

control flows. Apart from that, the resulting extended ADLs shall meet all

requirements already listed for the syntax. Focusing only on ADLs operating

on data flows is not feasible because manymodeled architectures only provide

control flows and switching the paradigm would require considerable effort.

This brings us to the following requirements:

R3.1) The integration procedure shall cover ADLs using control flows.

R3.2) The integration procedure shall cover ADLs using data flows.

One essential goal of the integration into existing ADLs is to lower the

learning and migration effort for software architects. To achieve that, the

integration procedure has to aim for as less modifications of existing ADLs as

possible. To give a counter example, assume we just merge the syntax with an

existing ADL. Certainly, analyses could be conducted in this extended ADL

but software architects would still have to get to know the new elements and
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would have to remodel existing architectures using the new model elements.

This brings us to the following requirement:

R3.3) If an ADL provides a required concept, the integration procedure shall

reuse the corresponding model elements.

The integration procedure will also have to yield an analysis framework

that security experts and software architects will use. All requirements for

the previously mentioned analysis framework that operates on the data-

oriented input apply to the ADL analysis framework too. The integration

procedure should not yield an integration that requires knowledge about the

syntax, semantics or analysis framework mentioned in the sections before.

For instance, an integration shall not require knowledge about the concept of

a data processing chain if the ADL only uses control flows. However, essential

concepts such as characteristics, which describe properties of architectural

elements or data, or behaviors, which describe how system activities affect the

characteristics mentioned before, have to be available. Therefore, extending

the ADL can be necessary, if there are no counterparts of the new concepts

but the extensions must use the terminology used in the ADL and not the

terminology used in the DFD. This brings us to the following requirements:

R3.4) The integration procedure shall yield an analysis framework that

meets all requirements of the analysis framework for DFDs.

R3.5) The integration procedure shall yield an integration that only uses

concepts from the architectural domain.

4.2. Discussion of Possible Solutions

There are multiple possible approaches to meet the previously described

requirements. In this section, we would like to discuss alternative solutions

on a coarse-grained level and then decide for one solution that we will use to

realize our contributions.

4.2.1. Syntax: Means for Specification

As explained in 4.1.1, we focus on the required concepts, which are repre-

sented in the syntax, rather than the concrete representation of these concepts.
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Therefore, we specify an abstract syntax. This means that typical approaches

to specify concrete syntaxes such as syntactic metalanguages, which includes

Extended Backus–Naur form (EBNF) [Int96], are no appropriate means for

specifying the abstract syntax. Metamodeling is a commonly accepted ap-

proach to specify abstract syntaxes. The MOF [Obj19] provides standardized

means to specify the abstract syntax by a metamodel. To visualize the meta-

model, we will use class and object diagrams of the UML, which is a commonly

accepted way of visualizing metamodels.

4.2.2. Syntax: System Specification

The syntax has to describe the software system as well as its behavior and

usage in a data-oriented way. It is possible to create a syntax from scratch

but this increases the required initial knowledge for grasping the introduced

concepts and makes migrating existing system descriptions into the new

syntax hard. Instead, it is beneficial to reuse existing system descriptions and

extend it by the missing features.

There are many different ways to describe systems in a data-oriented way.

Prominent examples that are often used to reason about security are Petri

nets and DFDs. Activity diagrams given in UML are also popular.

Petri nets [Pet62] use places, transitions and edges to describe distributed

systems. Places hold tokens, which can be transformed in transitions. The

distribution of tokens describes a system state. Petri nets can represent con-

trol flows and data flows [Liu+20]. They often serve as formal foundation

for analyzing information systems and workflows. There are various ex-

tensions [JR91] available that improve the capabilities of Petri nets. Such

extensions enable the detection of access control violations [Kno00] as well

as of information flow violations [AH97].

DFDs [DeM79] focus on data flows and data processing. The diagrams consist

of only few types of model elements and are considered intuitively comprehen-

sible. They are the most used system descriptions as part of threat modeling

[Sho14]. The popular threat modeling tool of Microsoft [Mic21] is also based

on DFDs. Various extensions of DFDs exist to support threat modeling re-

garding various security objectives [TCS18]. The discussion of the state of

the art in Chapter 9 gives more examples on DFD-based analyses.
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UML activity diagrams can represent data flows by so-called object flows. The
UML is commonly used to describe software architectures but many users do

not strictly adhere to the standard according to a survey with 80 architects

[LCM06]. In addition, the UML provides many types of model element but

many of them are rarely used or even unknown according to a literature study

[Reg+15]. This informal use and the amount of model elements to consider

are challenging for automated analyses. As a consequence, we could only

find one approach [HSS14] that consequently uses object flows to identify

violations of confidentiality requirements.

System descriptions based on Petri nets as well as on DFDs are eligible

foundations of the syntax. We decide to use DFDs instead of Petri nets because

DFDs are already used in established approaches to identify violations of

security requirements, i.e. threat modeling, and the provided types of model

elements match domain concepts known by architects better than the types

of model elements of Petri nets.

4.2.3. Syntax and Semantics: Propagation of Properties

To detect violations of confidentiality requirements, it is necessary to know,

which data is available in which part of the system. More precisely, it is

necessary to know the properties of data. It is possible to determine these

properties manually by reasoning about data processing and assigning the

properties directly to data flows. However, this requires high initial effort as

well as high effort if the system changes. Additionally, it is a repetitive and

error-prone activity. Therefore, we aim for an automated propagation of data

properties as part of the semantics.

The syntax as well as the semantics have to cover data processing to determine

their effect on data properties, which is the core of the logic to propagate

data properties. To capture the processing effect, it is either possible to assign

processing effects to elements based on their type or assign processing effects

to individual elements. For instance, Hoisl, Sobernig, and Strembeck [HSS14]

assign a propagation behavior to fork or condition nodes in UML activity

diagrams. The downside of this approach is that either the propagation rules

are limited because of the limited amount of available types of model elements

or dedicated models elements for specific purposes have to be introduced into

the language. This approach lowers the uniqueness [POB00], which aims

for providing a small set of powerful features in contrast to a large set of
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specific features. Additionally, it hinders extensibility. In contrast, separating

the specification of the processing effect and the nodes improves uniqueness

and also enables extensibility to effects not considered while developing the

syntax and the semantics. Therefore, we plan to assign the processing effect

to individual elements.

Especially for the semantics, the types of properties are relevant. The values

of a property can range from a set of discrete values, such as boolean variables

or enumeration literals, to continuous values, such as integer or real numbers.

Continuous values are more expressive but also require more complex data

processing specifications and semantics. Discrete values are simpler to handle

and are also quite common in predicting confidentiality: Information flow

analyses usually use a lattice of security labels [Smi+15]. Access control often

decides about access based on discrete values such as roles, security levels or

individual access rights [Fur08, pp. 61]. Because most established information

flow and access control mechanisms restrict themselves to discrete values,

it is reasonable to adopt this limitations to simplify modeling and analyzing

systems.

The concept to propagate discrete values is already used in machine learning.

Inmachine learning, these discrete values are called labels and the propagation
is called Label propagation. According to Zhu and Ghahramani [ZG02], label

propagation means that a set of unlabeled data is incrementally labeled by

deriving new labels from a small initial set of labeled data. This definition

matches our understanding of label propagation. However, we will not derive

the new labels by similarity, which is the approach initially suggested by Zhu

and Ghahramani [ZG02], but we will derive the labels from the effect of data

processing. We will use the term label propagation in the following to refer

to our propagation algorithm.
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5. Modeling Confidentiality
Characteristics of Systems by
Data Flow Diagrams

DFDs are established models for reasoning about the security of systems.

However, DFDs are often used in an informal way because they lack means for

representing properties and behavior relevant for confidentiality in a precise

way. Consequently, there are no formalized semantics supporting automated

analyses. Nevertheless, DFDs provide a good foundation for developing our

approach as motivated in Section 4.2. This chapter presents solutions on

how to bridge the existing gaps and how to meet the requirements given

in Section 4.1. All explanations in this chapter are based on a previous

publication [Sei+22].

The solution involves defining an extended syntax as described in Section 5.1

as well as corresponding semantics as described in Section 5.2. Together,

syntax and semantics provide means for defining automated confidentiality

analyses. The implemented syntax as well as the mapping for assigning the

semantics to the syntax are available in our data set [Sei22]. The limitations of

the proposed solution as well as assumptions regarding its usage are covered

in Section 5.3. Eventually, Section 5.4 gives a short summary of the whole

chapter.

5.1. Extended Data Flow Diagram Syntax

The simple DFD syntax as introduced by DeMarco [DeM79, pp. 51] is not

sufficient for automated detection of confidentiality violations. An extension

of the DFD syntax is necessary to meet the requirements for the syntax
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Functional : Viewpoint Confidentiality Primitives :
Viewpoint

DFD : ViewType Characteristics : ViewTypeBehaviors : ViewTypeBinding : ViewType

defines definesdefines

Software Architect :
Stakeholder

Security Expert :
Stakeholder

defines defines

Describe Security
Primitives : Concern

Describe System
Structure : Concern

interestedIn interestedIn interestedIn representsrepresents

Confidentiality :
Viewpoint

Meet Confidentiality
Requirements : Concern

interestedIn

represents

defines defines

defines defines

Figure 5.1.:Overview on addressed viewpoints and view types including corresponding concerns

and stakeholders given as UML object diagram.

described in Section 4.1.1. The identified need for an extension is in line with

recent security research using DFDs [TCS18; Sio+20].

To structure the extended syntax and illustrate its usage by stakeholders, we

define architectural viewpoints, which the ISO/IEC 42010 standard [Int11]

suggested to reason about architectural description languages. According to

Goldschmidt, Becker, and Burger [GBB12], a viewpoint addresses exactly one

concern by potentially multiple view types. A view type is an abstract syntax

describing the part of the software architecture that is necessary to address the

concern of the viewpoint. Stakeholders are interested in concerns and define,

i.e. provide the requirements for, a viewpoint. The requirements described in

Section 4.1 address the three major concerns illustrated in Figure 5.1.

The most fundamental concern of a software architect is to describe the

structure of the system. This covers the used components, which can be

system parts or actors, including their interfaces as well as the wiring of

components. DeMarco calls this the Functional viewpoint [DeM79, p. 47]

in the context of DFDs, so we stick to this term. Consequently, the DFD is

the view type used by architects to address the functional view point. The

extensions to this view type that address data processing of system parts

and actors (R1.1) as well as the definition of data interfaces are covered in

Section 5.1.1.
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The security expert is mainly concerned with describing security primitives.

In the context of this thesis, these primitives address confidentiality aspects

only, i.e. confidentiality properties (R1.2, R1.5) and fundamental behaviors af-

fecting these properties (R1.3). In the running example, the classification level

applied to data is such a property and the declassification is a behavior that

changes the particular classification of a data item. Consequently, we call the

corresponding viewpoint Confidentiality Primitives. The Characteristics view
type covers the confidentiality properties and the Behaviors view type covers

the behavior types. We describe both view types and how they address many

of the requirements on modeling confidentiality aspects in Section 5.1.2.

Both, the software architect and security expert, are interested in meeting the

confidentiality requirements in the system under design. The Confidentiality
viewpoint represents this concern by bridging the gap between pure system

structure and pure confidentiality primitives. The software architect can

bridge this gap by binding confidentiality primitives of the security expert

to the system structure in the Binding view type. Additionally, it might be

necessary to define confidentiality properties and behaviors that are specific

for the particular system. In the running example, the particular clearance

and classification levels depend on the system, so they are no generic con-

fidentiality primitives. The software architect and the security expert work

together in defining these system-specific properties and behaviors. Addition-

ally, the security expert might assist in binding the confidentiality primitives

to elements of the software system. Section 5.1.3 focuses on the Binding view

type but also discusses interactions between security experts and software

architects.

A summarizing overview on how the extended syntax presented within the

aforementioned viewpoints meets the requirements presented in Section 4.1

is given in Section 5.1.4.

5.1.1. Functional Viewpoint

The Functional viewpoint represents the concern of the software architect to

describe the system structure. The view type that the architect uses within

the viewpoint is an extended version of the DFD as defined by DeMarco. The

shaded elements in Figure 5.2 represent the elements in the original definition,

which already meet R1.1 to a large scale. In the following, we discuss how the

49



5. Modeling Confidentiality Characteristics of Systems by Data Flow Diagrams

DataFlowDiagram

DataFlow Process

ExternalActor

Store

Nodesrc
dst

**

ActorProcess

actor

srcPin
dstPin Pin

Figure 5.2.: Data Flow Diagram view type for the Functional viewpoint given as UML class

diagram.

extensions illustrated by non-filled elements in Figure 5.2 meet the remaining

aspects of the requirement.

In realistic systems, a system function is often used by various other system

functions. In control flow models, this would mean calls from multiple loca-

tions. In data flow models, the equivalent to calls is sending data to a node.

Therefore, using the very same node means that there are multiple incoming

data flows for the same type of required information, i.e. there are alternative

flows to choose from. However, there are no means for distinguishing such

alternative flows from mandatory flows. A clear interface definition can solve

this by defining types of mandatory incoming data. If more than one data

flow for the same type of data arrives, these are alternative flows. To realize

this, we introduce the concept of a Pin. A Pin describes a required input or

provided output of a Node. All data flows between nodes have to use these

pins to avoid ambiguities. This means that nodes have to send all data through

pins. In Figure 5.3, we visualize these pins by empty squares at the edges of

nodes. Pins, which are the target of a data flow are input pins. Pins, which

are the source of a data flow are output pins. Because incoming or outgoing

data is the only way to communicate between nodes, the set of pins of a node

defines its interface. Multiple data flows arriving at a pin mean alternative

sources of equivalent data. This means that more than one node can pro-

vide equivalent data to another node, which is roughly the same as calling

the same operation from different sources in the control flow terminology.

Pins and the definition of interfaces are a commonly known and established

concept, which is also part of the UML [Obj17, p. 515]. The benefit of using

a pin over other concepts such constraints for selecting flows or defining

sets of valid flows is the low effort for adding a new, mandatory input. To
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User
declassify


CCD

book

flight

CCD Storage

read CCD
ccd

ccd

request

booking

declassifiedCcd

declassifiedCcdflight

flight

Figure 5.3.: Excerpt of running example using the actor processes to describe data processing

steps of actors as well as pins to describe data interface.

do so, it is sufficient to just add a new pin. When using constraints, it would

be necessary to adjust every constraint to include the new mandatory input.

The same holds for set definitions.

Besides the data processing of the system, R1.1 explicitly mentions the data

processing done by actors. To consider their data processing steps, we added

the additional node type ActorProcess. The new node type is essentially a

process just like the ones used to describe the data processing of the system

but holds an additional reference to an actor. The intended meaning of

this reference is that the process belongs to the data processing activities

carried out by the referenced actor. The benefit of this modeling approach

is that software architects can use the already known modeling elements

for describing data processing steps for the system and actors. Nevertheless,

the new ActorProcess maintains a clear distinction between processes of

systems and processes of actors. To give an example, we demonstrate the

usage of the actor processes in an excerpt of the running example shown in

Figure 5.3. The dashed line visualizes the reference of an ActorProcess to the

corresponding actor. The processes read CCD and request booking belong

to the User and describe the corresponding data processing steps: First, the

user reads the credit card data and sends it to the declassification. Next, the

received declassified data is passed to the book flight process together with
the flight to be booked. Without these additional processes, the user would

directly receive and emit credit card data, which requires distinguishing the

declassified and regular credit card data by the name of the data flow. In

contrast, the additional processes allow a clear, structural separation between

regular and declassified credit card data because the data processing done by

the user is clear now.
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The requirement to represent deployment information (R1.1) will be addressed

by the mechanism to express properties of nodes. Deployment information

is not different to other properties relevant for confidentiality as long as

the sole purpose of representing it is considering it in finding violations of

confidentiality requirements.

5.1.2. Confidentiality Primitives Viewpoint

The Confidentiality Primitives viewpoint represents the concern of the secu-

rity expert to describe security primitives. Thereto, the security expert uses

the Characteristics and Behaviors view type. The following paragraphs explain

how these view types support the security expert and how they address many

requirements regarding the definition of confidentiality properties (R1.2 and

R1.5) and behaviors (R1.3). Both view types do not introduce concepts, which

are specific for a particular confidentiality mechanism. Instead, a security

expert uses the generic concepts to introduce specific information (R1.7),

which also means that various confidentiality mechanisms can be mixed

within one model (R1.9).

5.1.2.1. Characteristics View Type

The characteristics view type provides means to describe available property

types (R1.2) and particular properties (R1.5). In the following, we use the term

characteristic to refer to properties of nodes and data to distinguish arbitrary,

untyped properties describing aspects of nodes and data from strongly typed

characteristics that are relevant for confidentiality. Using an unstructured set

of properties would be possible but increases the specification effort when

propagating and comparing properties. The increased effort stems from the

missing ability to refer to groups and thereby treat a set of properties in the

same way. In unstructured properties, there has to be a dedicated rule for

handling every property. In our running example, comparing the classification

and clearance properties would require dedicated logic for every element of

the cross product of these properties. Instead, types and value ranges within

properties can ease such comparisons. In our running example, it would be

sufficient to define the levels as ordered value range and compare the index

of the classification property with the index of the clearance property.
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DataDictionary

Enumeration Literal
{ordered} *

CharacteristicType

valueRange

Characteristictype

*
selectedValues

**

*
0..1

Figure 5.4.: Characteristics view type for the Confidentiality Primitives viewpoint given as UML

class diagram.

As Figure 5.4 illustrates, an Enumeration defines the range of values. The

enumeration holds a set of Literals. In the running example, the enumeration

would be called Levels and the literals would be the particular levels such as

User orUser,Airline. A CharacteristicType is the type of a characteristic (R1.2). It
uses an enumeration to define its range of values. Separating the characteristic

type and its used value range is beneficial because this allows to reuse the

value range in multiple characteristic types. In the running example, there

are two characteristic types: Clearance and Classification. Both characteristic

types share the same range of values, which are the Levels.

A Characteristic defines an instance of a characteristic type (R1.5). It refers to

a particular type and selects a set of applied literals. Selecting a set instead of

a single literal is a convenient way to avoid the need for defining multiple

characteristics for the same type. For instance, the selection of multiple

literals is useful for assigning roles to a node. The actual binding of such

a characteristic to a node is covered by the Confidentiality viewpoint (see

Section 5.1.3).

With respect to the planned label propagation approach mentioned in Sec-

tion 4.2, a label is the tuple of characteristic type and a literal. This is crucial

because the same literal can have different meanings depending on the cor-

responding characteristic type. In the running example, the User label on
data means that the data is classified for users. The User label on a node

means that the node is cleared for data classified by level User at most. A

characteristic referring to multiple literals implies a label for each literal, i.e.

a tuple of characteristic type and selected literal. Making type and value

explicit, makes comparisons type-safe and definitions of label propagation

functions simpler. We will illustrate the latter later by a so-called wildcard
mechanism.
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Labels, i.e. characteristic types and literals, can be specific to a particular

system or generic. The labels in the running example are specific to the

system because the underlying levels are named based on the involved nodes,

which also applies to the labels. Therefore, these labels are not reusable in

other systems. In contrast, generic labels named high, medium or low could

express the confidentiality requirements in the same way but would support

reuse in further systems. The DataDictionary builds a catalog of characteristic

types, enumerations and characteristics. This catalog can contain reusable or

specific elements. This lowers the specification effort because confidentiality

primitives only have to be defined once but can be reused in various systems.

In the running example, there is also a catalog but it will not be used by other

systems because the contained elements are not reusable. However, changing

the literals from system-specific to generic labels would enable reuse.

5.1.2.2. Behaviors View Type

The behaviors view type covers behavior descriptions of nodes by means of

label propagation functions (R1.3). A label propagation function describes

how outgoing labels can be derived from incoming labels.

Before describing the modeling approach for such functions, we describe

the underlying idea in an informal way: The fundamental design decisions

influencing our solutions are that i) a label is a tuple of a particular character-

istic type and particular literal and ii) all data flows have to go through pins.

Consequently, labels leave and enter a node through pins, so it is reasonable

to always refer to pins when defining outgoing labels or using incoming

labels. Because there is a fixed set of available, discrete labels, the availability

of a particular label can be seen as a particular boolean variable with the value

true. If the label is not available, the value would be false. Consequently, the
set of available labels at a particular pin is just a set of boolean variables de-

scribing the availability for this particular pin. A label propagation function is

essentially a sequence of assignments of truth values to the boolean variables

representing labels on output pins. The truth value of the assignment can

depend on boolean variables of incoming pins. The benefit of assignments

and truth values is that even complex logic can be realized by boolean logic

in an intuitive way.

The view type shown in Figure 5.5 realizes the idea of describing the label

propagation by a sequence of assignments and encapsulates it in a reusable
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BehaviorDefinition. This definition consists of the set of input pins and output

pins as well as the assignments. This is reasonable because a label propa-

gation function specifies labels for an output and relies on incoming labels,

so it assumes that a defined set of inputs and a defined set of outputs is

available. Both are essentially sets of pins. The list of assignments is ordered,

which means that an assignment to a variable in position 𝑛 can override

an assignment to the same variable in position𝑚 if 𝑛 > 𝑚. An assignment

always consists of a left-hand side (lhs) and right-hand side (rhs). The left-
hand side is the boolean variable that shall be set. This variable is given by a

DataCharacteristicReference, which is a triple of pin, characteristic type and

literal. On the left-hand side, the pin must be an output pin because a node

can only affect outputs by its data processing. To simplify descriptions, we

use the concrete syntax pin.ct.l to refer to the boolean variable specified

by the pin pin, characteristic type ct and literal l. The right-hand side of the

assignment is a Term. It is reasonable to allow operations and truth values

of boolean algebra to be terms. The supported operations are Not, And and

Or. The supported truth values are True and False. Additionally, referring
to boolean variables, which means labels on input pins, is necessary. Labels

from input pins can be referenced by a DataCharacteristicReference. On the

right-hand side, such a reference must refer to an input pin because labels on

output pins are not available while determining the very same labels on the

output pins. In addition, labels on the node, which is using the BehaviorDefi-
nition, can be referenced by the ContainerCharacteristicReference that requires

a characteristic type and a literal to be given.

In the running example, the nodes filter flights and process booking have a

label propagation function that applies the highest received classification

label to the output. This function breaks down to three assignments for the

three possible classification levels on the output as shown in Listing 5.1. Line 1

means that the highest classification level User can be assigned if one of the

inputs (in1 or in2) has this classification level. Line 8 means that the lowest

classification level UserAirlineTA can be assigned if both inputs have this label.

The remaining lines mean that the medium classification level UserAirline
can be assigned if one input has this medium level and the other input has

the medium or the lower level.

A wildcard mechanism allows omitting characteristic types and literals to safe

specification effort in some cases. If an element is omitted, we write * instead

of the element in the examples. We demonstrate the benefit in a moment

after explaining the general idea. The mechanism requires the characteristic
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{ordered}

*

CharacteristicReference

Figure 5.5.: Behaviors view type for the Confidentiality Primitives viewpoint given as UML class

diagram.

Listing 5.1: Example of assignments describing the behavior for joining two inputs with respect

to data classification.

1 out.class.User := in1.class.User OR in2.class.User

2 out.class.UserAirline :=

3 (in1.class.UserAirline AND

4 (in2.class.UserAirline OR in2.class.UserAirlineTA))

5 OR

6 (in2.class.UserAirline AND

7 (in1.class.UserAirline OR in1.class.UserAirlineTA))

8 out.class.UserAirlineTA := in1.class.UserAirlineTA AND

in2.class.UserAirlineTA

types and literals to be omitted on the left-hand side and the right-hand side.

The meaning of omitted information is as follows: A missing literal means

that there is virtually one assignment for each literal of the corresponding

characteristic type. In each of these assignments, the particular literal is

inserted in all empty literal places. In our running example, a missing literal

in a reference to the classification characteristic would virtually result in

three assignments: one assignment for the User level, one for the UserAirline
level and one for the UserAirlineTA level. The precondition to use literal
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Listing 5.2: Example of assignments illustrating use of wildcards to specify the creation of data.

1 out.class.* := container.clear.*
2 out.class.User := container.clear.User

3 out.class.UserAirline := container.clear.UserAirline

4 out.class.UserAirlineTA := container.clear.UserAirlineTA

Listing 5.3: Example of assignments illustrating use of wildcards to specify forwarding of data.

1 out.*.* := in.*.*
2 out.class.* := in.class.*
3 out.clear.* := out.clear.*

wildcards is that all references omitting the literal reference a characteristic

type with the same enumeration, i.e. the characteristic types have the same

set of available literals. This is a reasonable precondition because otherwise

characteristic references could become invalid, i.e. the literal would not match

the characteristic type. The example shown in Listing 5.2 demonstrates the

use of literal wildcards. The assignment in line 1 specifies that the output

out should have the classification literals enabled that match the enabled

clearance literals of the container. Such an assignment might be useful when

data is created because it is reasonable to assume that the created data has

the same classification level as the clearance of the creating node. Lines 2 to

4 are equivalent to line 1. As this example demonstrates, only one instead of

three assignments have to be specified, which saves effort.

Assignments can also leave out characteristic types together with leaving

out literals. A missing characteristic type means that there is virtually one

assignment for each characteristic type, in which the particular characteristic

type has been inserted. After that, the logic for handling omitted literals

described before applies. The example shown in Listing 5.3 illustrates such

an assignment. The assignment in line 1 specifies that exactly all labels of the

input apply to the output. The lines 2 and 3 are equivalent to line 1, assuming

that there are two characteristic types to describe classifications class and to

describe clearance clear. The amount of saved assignments increases if the

amount of available characteristic types increases.
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Node

Characteristic

*

CharacterizableBehaving

BehaviorDefinition

Figure 5.6.: Binding view type for the Confidentiality viewpoint given as UML class diagram.

5.1.3. Confidentiality Viewpoint

The Confidentiality viewpoint addresses the concern of both, software archi-

tect and security expert, to meet confidentiality requirements in the system

under design. Three view types support the work of both stakeholders: The

Characteristics and Behaviors view types have already been introduced previ-

ously. In the context of the Confidentiality viewpoint, these view types allow

software architects to support security experts in defining system-specific

behaviors and characteristics, which includes deployment information repre-

sented as characteristics on nodes (R1.1). The Binding view type is the third

and new view type in the Confidentiality viewpoint, which we describe in

the following.

The Binding view type shown in Figure 5.6 allows the software architect to

bind behaviors and characteristics to nodes in the architecture. Thereto, all

DFD nodes presented in the Functional viewpoint must reference exactly one

BehaviorDefinition and can reference multiple Characteristics. All involved
elements have already been created in other view types like explained before.

To bind labels, i.e. characteristics, to a node (R1.6), the architect adds the

corresponding characteristic to the list of referenced characteristics. To bind

a label propagation function, i.e. a behavior definition, to a node (R1.4), the ar-

chitect sets the reference to the behavior to the particular behavior definition.

This means that architects use the same means for assigning characteristics

and behaviors to nodes no matter what confidentiality mechanism is used

(R1.8). Mixing confidentiality mechanism within one model is also possible

(R1.10).

There is one constraint for binding a behavior to a node: If the node is an

actor, the behavior must not include assignments that use DataCharacteristi-
cReferences on the right-hand side of an assignment. Doing so would imply

that the labels on output pins depend on labels on input pins. However, this

would mean that an actor is no longer a source or sink of data flows as initially
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defined by DeMarco. In our running example, this situation appears when

the user sends credit card data to the flight booking process. Certainly, the

credit card data sent to the flight booking process is the same as the data

received from the credit card center, so the labels should be the same. In such

cases, ActorProcesses can establish this relation without violating the source

or sink role of an actor.

5.1.4. Requirements Coverage by Viewpoints

The previously described viewpoints and the view types supporting them

address most of the requirements regarding the syntax from Section 4.1.1.

Table 5.1 gives a summarizing overview on how the syntax meets the require-

ments.

The requirements R1.1 to R1.6 demand syntax extensions to represent infor-

mation. As the table illustrates, the extended DFD can represent the requested

information. The requirements R1.7 to R1.11 define how the extended DFD

shall represent the information or how the architect and expert use the ex-

tensions. The DFD meets the requirements about a unique representation of

information (R1.7 and R1.8) and about representing information specific for

particular confidentiality within a single artifact (R1.9 and R1.10) by generic

modeling concepts for representing information specific for particular confi-

dentiality mechanisms. The last requirement about a low effort for switching

confidentiality mechanisms (R1.11) is met by the separation of the system

structure and confidentiality-specific information. It is possible to remove or

replace the confidentiality-specific information without the need for remod-

eling the whole system. This lowers the effort compared to approaches that

only support one particular confidentiality mechanism. However, this aspect

is also part of the validation described later.

5.2. Extended Data Flow Diagram Semantics

Clear semantics enable automated reasoning about properties of a model.

DFDs as defined by DeMarco do not have such clear semantics but an intu-

itive definition. As a consequence, various approaches [Jil+08] to formalize

DFD semantics have been made. None of these semantics provide commonly
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ID Description User Syntax Extension

R1.1 structure, usage, deploy-

ment, behavior

architect actor processes, node charac-

teristics

R1.2 property types expert characteristic types

R1.3 behavior types expert behavior definition

R1.4 bind behavior architect behavior reference for nodes

R1.5 define properties expert characteristics

R1.6 bind properties to nodes architect characteristics reference for

nodes

R1.7 behavior/property types

by same concept

expert characteristic/behavior types

R1.8 bind the behaviors/prop-

erties by same concept

architect references to characteristic/

behavior types

R1.9 multiple confidentiality

mechanisms in same ar-

tifact

expert characteristic/behavior types

R1.10 multiple confidentiality

mechanisms in same ar-

tifact

architect references to characteristic/

behavior types

R1.11 low effort switching con-

fidentiality mechanisms

architect references to characteristic/

behavior types

Table 5.1.: Overview on extended syntax elements and met requirements by DFD syntax.

agreed universal semantics for DFDs but provides semantics tailored to par-

ticular use cases. We also do not attempt to define such universal semantics

because this would not provide any benefit compared to tailored and concise

semantics. The semantics for the extended DFDs provide means for describ-

ing the label propagation mechanism, which we motivated in Section 4.2.3.

Security experts can use the analysis framework built on the semantics to

formulate an analysis goal (R2.4) that reveals violations but we will describe

building analyses as well as particular analyses for information flow (R2.8)

and access control (R2.9) in Chapter 6. The chapter will also describe ways of

how the software architect can formulate an analysis goal (R2.5).

We first explain the semantics in an intuitive way by demonstrating its mean-

ing for the running example in Section 5.2.1. Afterwards, we formalize the

semantics in first-order logic and describe the mapping between the extended
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DFD syntax and the semantics in Section 5.2.2. We explain how the semantics

meet the requirements regarding the semantics in Section 5.2.3.

5.2.1. Intuitive Semantics of Extended Data Flow Diagrams

We already explained the meaning of the language constructs of the extended

DFD syntax as part of the introduction of the syntax in Section 5.1 to fos-

ter comprehensibility. In this subsection, we focus on explaining the label

propagation mechanism and detection goal definition in an intuitive way by

example.

We use the version of the running example shown in Figure 5.7 that adopts

the extended DFD syntax. The difference to the plain DFD is the usage of pins,

actor processes and behaviors. A square at the border of a node represents a

pin. Input pins only have incoming edges and output pins only have outgoing

edges. The actor processes are shown within the corresponding actors. The

behavior is shown by a symbol (↠, ↣, ⇝) within the node. For a sake

of simplicity, the figure does not include node characteristics because the

clearance of a node is the only applied characteristic. The clearance is already

visible by the gray filled headings in the top of the figure: Nodes lying under

the CCC, User or TravelPlanner heading have a clearance for the User level.
Nodes under the TravelAgency heading have clearance for the UserAirlineTA
level. Nodes under the Airline heading have clearance for the UserAirline
level.

The violation to detect in the example is that a node with clearance level 𝑛

accesses data with classification level𝑚, where 𝑛 < 𝑚. The levels are the

already known levels User, UserAirline and UserAirlineTA. The order of these
levels is given by their order of definition in the corresponding enumeration.

Figure 5.8 illustrates this order by an annotated index. To give a concrete

example, a node with clearance for UserAirline (𝑛 = 1) accessing data classified

for User (𝑚 = 2) means a violation (1 < 2).

In order to detect such violations in the DFD, we have to know all labels of all

nodes and all labels of all data. The label propagation mechanism calculates

all of these labels by propagating a set of initial labels through the network

of nodes. We cover the exact procedure by the formalization in Section 5.2.2.

In the following, we only describe the underlying principle by example.
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Levels : Enumeration

User : Literal

UserAirline : Literal

UserAirlineTA : Literal

Clear : CharacteristicType

Class : CharacteristicType

type

Index: 0

Index: 1

Index: 2

Figure 5.8.: Characteristic types used in running example given as UML object diagram.

Listing 5.4: Assignments of credit card data initially created by the user.

1 ccd.class.User := true

Assume, the propagation starts at the pin of the User yielding ccd. Because
the user creates and enters credit card data, there is no other source for

deriving labels. Therefore, the data needs an initial classification label that

is specified by the excerpt of the behavior of the user in Listing 5.4. The

assignment explicitly sets the classification to the User level by applying the

corresponding label to the ccd output. Consequently, the data arriving at the

CCD Storage is classified for the user. The behavior of storages is essentially

a forwarding behavior (↠). As shown in Listing 5.5, this behavior takes the

input labels and applies them to the output. This means that the data yielded

by the CCD Storage is also classified for the User level.

The semantics of multiple data flows starting at an output pin is that the

labels are propagated to all destinations. Consequently, the User label from
the CCD Storage is now propagated to the declassify CCD process as well

as the User. The declassify CCD process has the declassification behavior

(⇝) shown in Listing 5.6. All assignments are applied in the given order

before labels are emitted. First, all labels are copied from the input to the

output. This is essentially the forwarding behavior presented before. Next,

the behavior has to change the classification level. Thereto, it first deletes

all classification labels and applies the UserAirline label. The effect of this

Listing 5.5: Assignments of forwarding and store behavior in running example.

1 out.*.* := in.*.*
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Listing 5.6: Assignments of declassification behavior in running example.

1 out.*.* := in.*.*
2 out.class.* := false

3 out.class.UserAirline := true

behavior is that all labels are copied unchanged but the classification labels

are replaced by a new label. At the declassify CCD process, the incoming

credit card data classified for User will be classified for UserAirline after the
processing. Labels of the incoming consent data are not important for the

resulting labels, so it is not considered in the assignments.

Next, the credit card data arrives at the input pin for credit card data at the

User. Multiple incoming data flows on the same pin mean that these data

flows are alternatives. Because we are interested in all potential violations,

the label propagation mechanism has to consider all possible choices. For

the sake of simplicity, we assume that the mechanism creates 𝑛 DFDs for 𝑛

possible input flows. Actually, the mechanism is more efficient, which the

formalization in the next section will show. In the particular example, the

mechanism creates two DFDs: one DFD selects the credit card data from the

storage and the other one selects the data from the declassification process.

In these two DFDs, there are different labels available at the pin: The DFD

considering the data flow from the storage has the User label available at
the pin. The other DFD has the UserAirline label available at the pin. The
approach of creating a DFD for every alternative yields multiple deterministic

DFDs, i.e. DFDs without alternative data flows. The detection of violations

has to consider all of these DFDs.

For the sake of brevity, we do not discuss all propagations in detail but assume

that all propagations took place. The result are two fully labeled DFDs. In

the first DFD, the credit card data received by the user is classified by the

User label. Consequently, the credit card data arriving at the process booking
process is classified the same. This implies a violation because the process
booking process has only a clearance label for UserAirline but the arriving
data is classified with the higher User label. In addition, a further violation

appears on the create booking process and the Booking Storage because of the
same reason: The create booking process joins (↣) the flight and the credit

card data as specified by the join behavior in Listing 5.1 on page 56, i.e. the

highest incoming classification (User) is applied to the outgoing classification.
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The Booking Storage receives the booking classified by the User label but the
storage only has a clearance label for UserAirline. In the second DFD, there

is no violation because the credit card data has been declassified and the

classification of the credit card data leaving the user is UserAirline. This is
exactly the same level as the clearance of the following nodes.

To summarize, a set of initial labels is given by behaviors assigning these

labels explicitly. The label propagation starts from these initial labels and

sequentially applies the label propagation functions. Whenever there are

multiple incoming data flows for a pin, there will be multiple DFDs, which

only have exactly one incoming data flow for the pin. The detection of

violations takes place on each resulting DFD.

5.2.2. Formalization of Semantics in First-Order Logic

We formalize the previously introduced informal semantics by first-order

logic. To do so, we describe the meaning of every element of the extended

DFD metamodel by a set of clauses (R2.1). This description also serves as

specification of themapping between syntax and semantics. We use the notion

of Prolog as syntax for describing these clauses because it is concise and yields

ready to use logic programs. We use these logic programs to execute the label

propagation and label comparison in order to build automated analyses (R2.7)

as we show in Chapter 6.

In the following, we structure the description of the semantics by the view

types introduced in the syntax description in Section 5.1. This is reasonable

because view types describe subsets of the extended DFD metamodel and

the formalization is about specifying the meaning of metamodel elements.

Section 5.2.2.1 describes theDFD view type, which is about structural elements

of DFDs. The characteristics view type mainly concerned with the definition

of characteristic types and instances of them is covered in Section 5.2.2.2. The

semantics of the behaviors defined in the behaviors view type is covered in

Section 5.2.2.3. The formalization of behaviors is also the formalization of the

label propagation (R2.2). We do not cover the binding view type explicitly

because it is mainly concerned with binding behaviors and characteristics

to structural elements. Instead, we assume that this binding already exists

in the descriptions of the remaining view types. We also do not cover the

goal definition (R2.4 and R2.5) and do not discuss how to build particular

information flow and access control analyses (R2.8 and R2.9) in this chapter
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but discuss all of them as part of the definition of particular analyses in

Chapter 6.

5.2.2.1. Functional View Type

The functional view type covers the structure of the DFD. The only semantic

aspect to cover for the structure is to formalize that a structural DFD element

of a certain type exists. Establishing the existence of structural elements is

beneficial because analysis goals can consider the various types of elements

e.g. by only looking for violations at stores.

We use the facts as shown in Listing 5.7 to do so. The comments after facts

describe the corresponding class of the DFD metamodel. For every instance

of such a class, we create one particular fact that replaces the variables with

particular identifiers. In our running example, we create two facts describing

the actors User and FlightPlanner by replacing N in the fact in line 2 with

a unique identifier for the particular external actor. We do the same for all

elements shown in listing 5.7. N is always replaced with the unique identifier

of the corresponding node. In line 5, we replace A with the identifier for the

actor to which the actor process belongs to.

For input and output pins, we create one fact for every node that uses a

behavior containing the pin. For instance, if𝑛 nodes refer to the same behavior

containing 𝑖 input pins and 𝑜 output pins, we create 𝑛 ∗ 𝑖 facts for input pins
(see line 6) and 𝑛 ∗ 𝑜 facts for output pins (see line 7). The effect of the label

propagation does not depend on whether a behavior is reused or not, so we

do not represent reuse information in the semantics for a sake of simplicity.

For input pins and output pins as shown in lines 6 and 7, we replace N with

the identifier of the node that holds the behavior that contains the pin and

replace PIN with a unique identifier of the pin, i.e. the identifier uniquely

identifies a particular pin at a particular node without the need to know N.

For every data flow, we create a fact as shown in line 8. The fact represents

all information from the metamodel. We replace F with a unique identifier

of the corresponding data flow, NSRC with the identifier of the source node,

PINSRC with the identifier of the source pin, NDST with the identifier of the

destination node and PINDST with the identifier of the destination pin. The

meaning of the data flow fact is that there exists a data flow F from the source

66



5.2. Extended Data Flow Diagram Semantics

Listing 5.7: Prolog facts describing nodes of a data flow diagram.

1 % all variables (sequence of capital letters) become constants

2 actor(N). % ExternalActor

3 store(N). % Store

4 process(N). % Process

5 actorProcess(N, A). % ActorProcess

6 inputPin(N, PIN). % Pin (in input reference)

7 outputPin(N, PIN). % Pin (in output reference)

8 dataflow(F, NSRC, PINSRC, NDST, PINDST). % DataFlow

Listing 5.8: Prolog facts describing characteristic types and characteristics.

1 % all variables (sequence of capital letters) become constants

2 characteristicType(CT). % CharacteristicType

3 characteristicTypeValue(CT, V, I). % Literal (referenced by CT)

4 nodeCharacteristic(N, CT, V). % Characteristic (referenced by Node)

pin PINSRC of node NSRC to the destination pin PINDST of the destination node

NDST.

5.2.2.2. Characteristics View Type

The characteristics view type introduces characteristic types and characteris-

tics. Along the lines of DFD nodes and edges, we have to define the existence

of characteristic types and characteristics existence. We do so by the facts

shown in Listing 5.8. The comment after the fact describes the corresponding

class of the DFD metamodel.

The facts in lines 2 and 3 of Listing 5.8 define the existence of a characteristic

type. For every instance of such a characteristic type, we create one particular

fact that replaces the variable CTwith a particular identifier for that character-

istic type. In our running example, we create two facts defining the existence

of the characteristic types representing the clearance and classification by

replacing CT in line 2 with a unique identifier for the corresponding charac-

teristic type. The meaning of the characteristicType fact is that there exists

a characteristic type with an identifier CT.

The fact in line 3 represents the literals available for a characteristic type. We

do not represent enumerations but directly relate the characteristic type to the
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Listing 5.9: Prolog facts describing the classification characteristic type of the running example.

1 characteristicType(’class’).

2 characteristicTypeValue(’class’, ’UserAirlineTA’, 0).

3 characteristicTypeValue(’class’, ’UserAirline’, 1).

4 characteristicTypeValue(’class’, ’User’, 2).

literals of the enumeration referenced by the characteristic type. Representing

the enumeration is not required for the label propagation, so we omit it to

simplify the label propagation logic. In the fact shown in line 3, we replace CT

by the identifier of the characteristic type, V by the identifier of the literal and

I by the index of the literal in the enumeration referenced by the characteristic

type. This means that there are 𝑛 ∗ 𝑙 facts representing literals if there are 𝑛
characteristic types referring to the same enumeration that holds 𝑙 literals.

For instance, the characteristic type describing the classification of data in

our running example yields the facts shown in Listing 5.9. The meaning

of the characteristicTypeValue fact is that there is a literal V with index I

that belongs to a characteristic type CT. Representing the index is beneficial

because analyses can use the order of literals. In our running example, the

literals are ordered in a way that literals with higher indexes are semantically

bigger than literals with lower indexes. Therefore, an analysis can use this

order to compare literals with each other.

The fact in line 4 represents characteristics bound to nodes (R2.2). We only

represent bound characteristics because unbound characteristics do not im-

pact the label propagation. For every binding of a characteristic to a node,

we create a fact that replaces N with the identifier of the node to which the

characteristic is bound, CT with the identifier of a characteristic type and

V with the identifier of a literal. This means that we create 𝑙 ∗ 𝑛 facts if a

characteristic containing 𝑙 literals of a characteristic type is bound to 𝑛 nodes.

The meaning of nodeCharacteristic is that the literal V of characteristic type

CT is available on node N.

5.2.2.3. Behaviors View Type

The behaviors view type represents the label propagation functions by se-

quences of assignments. Therefore, the semantics described in the following

define the behavior of nodes rather than their pure existence. First, we explain
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Listing 5.10: Prolog clause documenting the type of behavior of a node.

1 % all variables (sequence of capital letters) become constants

2 behavior(N, B).

and formalize the handling of alternative data flow paths. As motivated by

the running example, it is necessary to consider all possible combinations of

alternative data flow paths in order to identify possible violations. We explain

what an alternative flow path is and define the term flow tree as representation
of alternative data flow paths originating from a particular node. The flow
tree provides means to identify the source of data and its properties (R2.3 and

R2.6). Afterwards, we specify how the label propagation works for input pins

and output pins. To increase efficiency in presence of alternative flow paths,

we replace forward label propagation by backward label lookup. As part of
the semantics definition for output pins, we also cover how the assignments

of the behavior definitions map to Prolog clauses. Together, these semantics

provide means to determine the properties of data based on label propagation

(R2.2).

Definition of Behavior The behavior definition covers the pins and the as-

signments. To make the used behavior explicit in the semantics, we introduce

a predicate behavior/2. For every node, we add a fact as shown in Listing 5.10

for every node. The fact uses the identifier of the node as a first argument

and the identifier of the behavior, which the node uses, as second argument.

The main purpose of these facts is to be able to lookup nodes by their used

behavior. The effect of data processing on data and required foundations to

formalize this effect are discussed in the following paragraphs.

Alternative Data Flow Paths A data flow path is a sequence of data flows

that a data item traverses to reach a certain pin of a node. Multiple data

flows targeting the same pin on the same node mean that they all provide

the same required type of data, i.e. they are alternative inputs. Assignments

can refer to data on every input pin, so we require that a node selects at

least one data flow for every input pin to guarantee that the assignments can

be made. In order to detect all possible violations, we have to consider all

possible combinations of alternative input flows for all pins on a node. This

means

∏︁𝑛
𝑖=1

𝑓𝑖 combinations if 𝑛 is the amount of input pins of a node and
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𝑓𝑖 is the amount of alternative flows for pin 𝑖 with 𝑖 ∈ N∗. In the running

example extended by pins in Figure 5.7 on page 62, the pin of the User actor
that receives credit card data has two alternative inputs, so both flows have

to be considered. Because data travels along a path of data flows through the

system, all possible combinations of alternative flows on every node on this

path have to be considered as well.

Alternative Data Flows We formalize the exploration of all possible input

combinations by the clauses shown in Listing 5.11. The goal of the rule in

line 1 is twofold: First, it finds a set of input flows FS that contains exactly

one data flow for every input pin of node N. Second, it finds the input flow

FLOW from this set that targets the given pin PIN. The rule is capable of finding

all possible sets of input flows, which are available when reevaluating the

rule. After evaluating the rule, the variables FS and FLOW are bound to a list

of flows and a flow, respectively. To give an example, this rule can yield two

sets of variable bindings for the actor process book in our running example

shown in Figure 5.7 on page 62: One binding set binds FLOW to the ccd data

flow originating from the CCD Storage and binds FS to the set of this flow

and the data flow coming from the actor process select. The other binding
binds FLOW to the declassifiedCcd data flow originating from the declassify
CCD process and binds FS to the set of this flow and the data flow coming

from the actor process select.

To achieve this, the rule requires a set of clauses to be fulfilled: Line 2 ensures

that the given pin PIN of node N is an input pin. The clause in line 3 binds

the variable FS to one particular set of input flows for node N. This set has

to contain one data flow for every input pin of node N. The clause can find

all possible combinations of input flows for the node, which ensures that all

possible combinations are considered. Line 4 now binds the FLOW variable to

a flow from the flow set FS that is an input flow for pin PIN. Finally, the clause

in line 5 ensures that the selected flow FLOW is not in the set of already visited

flows VISITED by ensuring that the intersection between the visited set and

the set consisting only of the selected flow is empty. This avoids evaluation

cycles in DFDs containing loops. If the flow has already been visited, the flow

and the set of input flows cannot be used anymore, so another set of flows

has to be found. The resolution mechanism of Prolog does this automatically.

In the following, we explain the used clauses.
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Listing 5.11: Prolog clauses describing the exploration of alternative inputs.

1 inputFlow(N, PIN, FS, FLOW, VISITED) :-

2 inputPin(N, PIN), % ensure pin is input pin

3 inputFlowsSelection(N, FS), % find set of input flows

4 inputFlowSelection(PIN, FS, FLOW), % find flow to pin from set

5 intersection(VISITED, [FLOW], []). % avoid data flow cycles

6 inputFlowsSelection(N, FS) :- % find input flows set for node

7 findAllInputPins(N, PINS),

8 inputPinsFlowSelection(PINS, FS).

9 inputPinsFlowSelection([], []). % end recursion (no pin left)

10 inputPinsFlowSelection([PIN|T], [F|FT]) :- % recursive: find flows to pins

11 dataflow(F, _, _, _, PIN),

12 inputPinsFlowSelection(T, FT).

13 inputFlowSelection(PIN, [F|_], F) :- % end recursion (found flow)

14 dataflow(F, _, _, _, PIN).

15 inputFlowSelection(PIN, [H|T], F) :- % recursive: find flow to pin

16 dataflow(H, _, _, _, PIN2),

17 PIN \= PIN2,

18 inputFlowSelection(PIN, T, F).

The inputFlowsSelection rule in line 6 finds a set of input flows FS for a

given node N. This rule finds all possible combination of input flows when

reevaluating it. The rule first identifies the set of input pins PINS for the node

N. The clauses representing the findAllInputPins predicate used in line 7 are

given in Listing 5.12. Essentially, the predicate yields a sorted list of all input

pins of node N, so the predicate always only has one valid variable binding.

The predicate inputPinsFlowSelection finds a flow for every pin in the set

of input pins. The resulting set is bound to FS.

The inputPinsFlowSelection predicate finds a set of data flows for a set of

pins so that the set of data flows contains exactly one data flow to every

pin. The corresponding clauses do this by recursion. In the same way, the

inputFlowSelection rules starting in line 13 find a data flow F for a given pin

PIN by recursively searching the given list of flows for a data flow targeting

the requested pin.

Flow Trees To detect all possible confidentiality violations, it is not suffi-

cient to only consider alternative input flows at one node but also consider

combinations of these alternatives in a sequence of visited nodes. We call

such a combination a flow tree. A flow tree is a tree of reversed data flows.
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Listing 5.12: Prolog clauses finding all input pins for a given node.

1 findAllInputPins(N, PINS) :-

2 findAllInputPins(N, [], PINS),

3 sort(PINS, PINS).

4 findAllInputPins(N, PINS, RESULT) :-

5 inputPin(N, PIN),

6 intersection(PINS, [PIN], []),

7 findAllInputPins(N, [PIN | PINS], RESULT).

8 findAllInputPins(N, PINS, PINS) :-

9 \+ (

10 inputPin(N, PIN),

11 intersection(PINS, [PIN], [])

12 ).

The root of such a tree is a node. In the second level, there are nodes that send

data to the root node. Data flows connect the nodes on the second level to the

root node. The third level is given by applying the previous construction rules

to all nodes on the second level. Because there can be multiple alternative

flows, as we explained in the paragraphs before, there can also be multiple

flow trees for the same root node. Figure 5.9 presents the excerpts of the

two flow trees for the book actor process. In Figure 5.9a, the process uses the

credit card details from the storage. The right branch ends when it reaches

the user. The left branch continues until all branches end with an actor or

a process without inputs. In contrast, Figure 5.9b visualizes the selection of

declassified credit card data from the declassify CCD process. Again, the right

branch ends with the user.

Simply said, the flow tree can be seen as a subgraph of the whole DFD that

eliminates all alternative data flows by selecting exactly one particular data

flow whenever there is a choice. The flow tree enables label propagation

because it removes ambiguities, i.e. which flow to use to collect labels to be

used in the label propagation function. Additionally, the flow tree reduces the

amount of nodes and flows to be considered to the nodes that actually can

have an effect on the label propagation. For instance, nodes after the book
actor process cannot influence the labels available to the book process and

do not have to be considered therefore. To detect all possible violations, it is

necessary to consider all possible flow trees.

A flow tree can be found for every pin of every node by the clauses shown in

Listing 5.13. The predicate flowTree/3 shown in line 1 yields a flow tree S for
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book

select CCD Storage

flight ccd

receive flights

filteredflights

User

ccd

...

filteredFlights

(a) Usage of plain credit card data.

book

select

CCD Storage

flight

ccd

receive flights

filteredflights

User

ccd

...

filteredFlights

declassify CCD

ccd

(b) Usage of declassified credit card data.

Figure 5.9.: Flow tree excerpts for the book actor process of the running example.

the pin PIN of a node N. The flow tree is a nested list of data flow identifiers.

We omit the nodes in this list because they can be easily derived from the data

flows. The clauses for realizing the predicate flowTree/3 have to consider

three types of pins: i) output pins of actors, ii) output pins of (actor) processes

or stores and iii) input pins. This covers all possible pin types at all possible

node types. In the following, we explain the rules supporting these cases.

The flowTree/3 rule evaluates these specific rules with the same parameters

and an additional empty list of already visited flows that is used to break data

flow cycles as already described in the paragraphs before.

Flow trees for output pins of actors (i) are always empty because they are

the start of a data flow and therefore cannot depend on inputs. As the rule

in line 3 shows, the flow tree for an output pin PIN of actor N is always the

empty list []. The already visited flows passed in the fourth argument are

not considered because no flow is to be selected by this rule, so no flow cycle

can be produced.

The flow tree of input pins of nodes (iii) always starts with a flow to this input

pin and continues with the flow tree for the output pin on the other end of

the data flow. Therefore, the rule in line 6 first finds a data flow F arriving at

input pin PIN of node N. The dataflow clause can find all possible data flows
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Listing 5.13: Prolog clauses describing how to build a tree of data flows.

1 flowTree(N, PIN, S) :- % rule to be used by other rules

2 flowTree(N, PIN, S, []).

3 flowTree(N, PIN, [], _) :- % outputs of actors

4 outputPin(N, PIN),

5 actor(N).

6 flowTree(N, PIN, S, VISITED) :- % inputs of nodes

7 inputPin(N, PIN),

8 dataflow(F, NSRC, PINSRC, N, PIN),

9 flowTree(NSRC, PINSRC, TMP, [F|VISITED]),

10 S = [F|TMP].

11 flowTree(N, PIN, S, VISITED) :- % outputs of processes or stores

12 outputPin(N, PIN),

13 (process(N);store(N)),

14 inputFlowsSelection(N, FLOWS),

15 flowTreeForFlows(N, S, FLOWS, VISITED).

16 flowTreeForFlows(_, [], [], _). % end of recursion

17 flowTreeForFlows(N, S, [F|T], VISITED) :- % recursive sub tree derivation

18 intersection([F], VISITED, []),

19 flowTreeForFlows(N, STAIL, T, VISITED),

20 dataflow(F, NSRC, PINSRC, _, _),

21 flowTree(NSRC, PINSRC, TMP, [F|VISITED]),

22 SHEAD = [F|TMP],

23 S = [SHEAD|STAIL].

arriving at the requested pin. The solving algorithm of Prolog automatically

considers such other flows when reevaluating the rule, which means that all

flow trees starting with these flows are considered. Next, the rule finds the

flow tree TMP of the output pin PINSRC of node NSRC, which is the pin on the

other side of the selected data flow F. To avoid data flow cycles, the selected

flow is added to the list of already visited flows VISITED when evaluating the

flowTree rule for the output pin in line 9. The final flow tree S is given by

concatenating the selected flow F with the flow tree TMP of the output pin.

Output pins of processes or stores (ii) are more complicated because a set

of input flows has to be considered for these node types instead of only a

single input flow. The rule in line 11 does so. First, it ensures that the given

node N is a process or store and that the pin PIN is an output pin. After-

wards it finds a valid selection of incoming data flows by evaluating the

clause inputFlowsSelection as described in the paragraphs before. Again,

this clause can yield all possible combinations of input flows for the given

node, so this ensures that all possible flow trees are considered. Finally,
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Listing 5.14: Simplified examples of flow trees of the running example.

1 ?- flowTree(’User’, ’ccd’, S). % flow tree for output pin of actor

2 S = [].

3 ?- flowTree(’book’, ’ccd’, S). % flow trees for input pin of process

4 S = [’ccd’, [’ccd’]] .

5 S = [’declassifiedCCD’, [’ccd’, [’ccd’]]] ;

6 ?- flowTree(’book’, ’output’, S). % flow trees for output pin of process

7 S = [

8 [’flight’, [’filteredFlights’, [’filteredFlights’, [...|...]]]],

9 [’ccd’, [’ccd’]]

10 ] ;

11 S = [

12 [’flight’, [’filteredFlights’, [’filteredFlights’, [...|...]]]],

13 [’declassifiedCCD’, [’ccd’, [’ccd’]]]

14 ] .

the flowTreeForFlows clause finds the flow tree S for the input flow selec-

tion FLOWS while considering the already visited data flows VISITED. The

flowTreeForFlows rule shown in line 17 takes a set of data flows [F|T] and

recursively determines the flow trees for all output pins that the given data

flows use. The full flow tree S is given by concatenating all flow trees for the

output pins. For every flow in the flow set, the rule ensures that the flow has

not already been visited and recursively evaluates itself with the remaining

set of flows T.

The flow trees for the three cases explained before look like shown in List-

ing 5.14. The flow tree for output pins of actors is always empty as shown

in line 1. As shown in line 3, the flow trees for input pins always start with

the flow to this pin. In the example, there are two flow trees for the input pin

receiving credit card information at the book process: one tree uses the credit

card data from the store and the other use uses the declassified credit card

data. Please note that the identifiers of the data flows have been shortened

for a sake of simplicity. In the full logic program, this identifier would be

unique. The flow trees for output pins of processes look basically the same

but contain the flow trees for all input pins of the node. In line 6, there are

two flow trees for the output pin of the book process. The flow tree is a list of

two lists. The first list is the same in both examples because there is only one

data flow path that a flight can take to the book process. The second list is

essentially the flow tree for the input pin that we described before.
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Listing 5.15: Rule to specify the label propagation on input pins.

1 characteristic(N, PIN, CT, V, [F|S], VISITED) :-

2 inputPin(N, PIN),

3 dataflow(F, NSRC, PINSRC, N, PIN),

4 intersection([F], VISITED, []),

5 characteristic(NSRC, PINSRC, CT, V, S, [F|VISITED]).

Label Lookup We formalize the label propagation as backward lookup in-

stead of forward propagation. Label lookup means that a label at a certain

pin can be determined by looking up labels on previous pins on a data flow

path. This means, the lookup starts at the root of the flow tree and traverses

the branches. The benefit of using a backward lookup instead of a forward

propagation is that the lookup can stop if a label is found. For instance,

there is no need to continue looking up a label on previous nodes if a node

explicitly sets a label, which means that the labels of previous nodes are not

necessary anymore to determine whether the label shall be available at the

pin. In contrast, a propagation starts at the leaves of a flow tree and therefore

requires the propagation to walk through the whole tree to reach the root

even if we are only interested in the labels available at the root node. Because

both methods yield the same labels, we choose the potentially more efficient

lookup approach. We introduce the predicate characteristic/6 that evalu-

ates to true if a label (literal of a characteristic type) is available at the pin of

a certain node. In the following, we describe how this predicate is defined for

input and output pins.

Label Lookup on Input Pins The labels available on an input pin solely de-

pend on the labels available at the output pin, from which a data flow is

coming from. Therefore, the characteristic rule as shown in Listing 5.15

only selects a matching incoming data flow, ensures that this flow has not

already been visited and determines if the characteristic value V of charac-

teristic type CT is available at the source of the data flow, i.e. the output pin

of the source node. By reevaluating the rule, all matching data flows are

evaluated. The flow tree for the input pin is given by the concatenation of the

selected data flow F and the flow tree S of the output pin, from which data

flow F originates. Because the label lookup at input pins does not depend on

the assignments of the corresponding node, this rule is sufficient to handle

the lookup at all input pins, i.e. no specific rules are required.
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Label Lookup on Output Pins The labels available on an output pin depend

on the assignments of the corresponding behavior and on the labels on the

input pins. We already formalized the lookup of labels on input pins in the

previous paragraph. Therefore, we focus on the formalization of assignments

in the following. Because assignments are meant to be executed in the given

order, later assignments can override effects of previous assignments. We first

describe how to identify the last and therefore effective assignment for a literal

of a characteristic type at a pin, i.e. the assignment that eventually defines

whether a label is available. It is only necessary to map this assignment

for the triple of pin, characteristic type and literal on the particular node.

Afterwards, we describe how assignments map to a characteristic rule for

output pins, i.e. how the label lookup on output pins is formalized.

Finding the effective assignment of an ordered set of assignments is neces-

sary because formalizing a sequence of assignments that override effects of

previous assignments is hard to do in Prolog, which we use as the underlying

formalism. However, it is not necessary to represent assignments that do not

have an effect on the final labels. We motivate this by the example originally

given in Listing 5.6 on page 64. First of all, assignments can never refer to

the result of a previous assignment within the same behavior because the

left-hand side always has to refer to an output pin and the right-hand side

can only refer to input pins. If we want to know if the UserAirline literal of
the characteristic type class will be available at the output pin, it is sufficient

to only consider the last assignment because it is the last assignment for

this literal. This assignment will always assign a value, so previous assign-

ments for the UserAirline literal of the characteristic type class will always
be overridden. Therefore, it is pointless to consider them for this particular

combination of characteristic type and literal. If we want to know if the

User literal of the same characteristic type will be available, it is sufficient to

only look at the second assignment. Previous assignments will be overridden

anyway and the assignment afterwards does not consider the User literal. To
summarize, it is sufficient to only look at the last assignment that assigns a

truth value to the triple of pin, characteristic type and literal on a particular

node. Consequently, we only have to consider that assignment during the

mapping, which we describe later.

The logic to find the last assignment that has an effect on a particular literal

of a particular characteristic type is given in Algorithm 5.1. The algorithm

yields the effective assignment for a given pin, characteristic type and literal

based on a list of assignments. Essentially, the algorithm traverses the list of
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assignments in reversed order and returns the first assignment that matches,

i.e. assigns a truth value to the triple of pin, characteristic type and literal.

Whether an assignment matches or not depends on the left-hand side and

right-hand side of the assignment. Both sides have to match the requested

triple. The left-hand side matches if it considers the same pin, characteristic

type and literal. The left-hand side also matches if wildcards are used, i.e. the

literal is omitted or the literal and the characteristic type are omitted. The

logic to match the right-hand side of an assignment is given in Algorithm 5.2.

Essentially, the right-hand side is compatible if it is a constant, all terms

contained by a logic term (and/or/not) are compatible and if the characteristic

references to data/pins or nodes are compatible. The references are compatible

if there cannot be an error when instantiating wildcards. This is guaranteed

in three cases: i) If there are no wildcards involved, there cannot be a failure

in binding the wildcards to particular values. ii) If both, characteristic type

and literal are wildcards, binding these wildcards is always possible by using

the characteristic type and the literal from the left-hand side. iii) If there is

only a literal wildcard, the characteristic type of the right-hand side has to

refer the same enumeration as the given characteristic type. Using the same

enum means that the value range of the characteristic type, i.e. the available

literals, are the same, so instantiation is always possible.

During the mapping from the extended DFD syntax to the first-order logic

semantics, the previously described algorithms are used. In general, the

mapping works as follows: There is exactly one characteristic rule for each

item of the cross product of output pins, characteristic types and literals of

that characteristic type at a particular node. This means that there is one

rule to determine if a label, i.e. the tuple of characteristic type and literal, is

available on an output pin. If the rule evaluates to true, the label is available.

The clauses to be fulfilled as part of the rule are given by the last effective

assignment for the triple of pin, characteristic type and literal. We determine

this assignment by the previously described Algorithm 5.1.

To map an assignment, we first instantiate wildcards by inserting the char-

acteristic type and literal of the given triple into all wildcards. We already

described wildcard instantiations in the description of the syntax in Sec-

tion 5.1.2. After that, we map the left-hand side of the assignment to the

head of the characteristic rule and the right-hand side to the clauses in the

rule body. The rule head is shown in line 2 of Listing 5.16. The lower case

arguments n, pin, ct and v become constants based on the node and the given

triple. S is the flow tree for the given pin and VISITED is the set of already
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Algorithm 5.1 Identification of effective assignment for label on given pin.

function lastMatching(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

for all 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∈ reverse(assignments) do
if matches(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ) then

return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

end if
end for

end function
function matches(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , 𝑝𝑖𝑛, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

𝑙ℎ𝑠 ← lhs of 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑟ℎ𝑠 ← rhs of 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑝 ← pin of 𝑙ℎ𝑠

𝑐𝑡 ← characteristic type of 𝑙ℎ𝑠

𝑙 ← literal of 𝑙ℎ𝑠

if 𝑝 ≠ 𝑝𝑖𝑛 then
return false

else if 𝑐𝑡 is defined and 𝑐𝑡 ≠ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 then
return false

else if 𝑙 is defined and 𝑙 ≠ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 then
return false

end if
return isCompatible(𝑟ℎ𝑠 , 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

end function

visited data flows to break data flow cycles. Examples of the mapping of terms

on the right-hand side of an assignment are given in Listing 5.16 starting

with line 3. In general, constants also become constants in the rule body.

Logical terms become their Prolog counterparts. References to characteristics

of nodes become a nodeCharacteristic clause, in which the node n, charac-

teristic type ct2 and literal v2 refer to the elements specified in the reference.

References to characteristics of data become a characteristic clause, in

which the node n, pin pin3, characteristic type ct3 and literal v3 refer to the

elements specified in the reference. All of these references to elements are

given by constants, which are the identifiers of the corresponding elements.

The set of visited flows is passed unchanged to the characteristic clause

referring to the input pin.
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Algorithm 5.2 Compatibility check of right-hand side of assignment for

assignment to given label at pin.

function isCompatible(𝑡𝑒𝑟𝑚, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

𝑒𝑛𝑢𝑚𝑇𝑦𝑝𝑒 ←enum of 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒

switch typeof(𝑡𝑒𝑟𝑚) do
case 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

return true

case 𝐿𝑜𝑔𝑖𝑐𝑇𝑒𝑟𝑚
for all 𝑠𝑢𝑏𝑡𝑒𝑟𝑚 ∈ 𝑡𝑒𝑟𝑚 do

if not isCompatible(𝑠𝑢𝑏𝑡𝑒𝑟𝑚, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑇𝑦𝑝𝑒 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

then
return false

end if
end for
return true

case (𝐸𝑛𝑢𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒)

𝑐𝑡 ←characteristic type of 𝑡𝑒𝑟𝑚

𝑙 ←literal of 𝑡𝑒𝑟𝑚

𝑒 ←enum of 𝑐𝑡

if 𝑐𝑡 and 𝑙 are defined then
return true

else if 𝑐𝑡 is defined and 𝑙 is undefined and 𝑒 = 𝑒𝑛𝑢𝑚𝑇𝑦𝑝𝑒 then
return true

else if 𝑐𝑡 and 𝑙 are undefined then
return true

else
return false

end if
end function

Listing 5.16: Mapping examples of terms in output characteristic rule.

1 % lower case arguments become constants

2 characteristic(n,pin,ct,v,S,VISITED) :-

3 true, % True (Constant)

4 false, % False (Constant)

5 nodeCharacteristic(n,ct2,v2), % ContainerCharacteristicReference

6 characteristic(n,pin3,ct3,v3,S0,VISITED). % DataCharacteristicReference
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Listing 5.17: Example of clauses determining parts of the flow tree needed for label lookup at

output pins of book process of running example.

1 inputFlow(’book’, ’ccd’, FLOWS, F0, VISITED),

2 inputFlow(’book’, ’flight’, FLOWS, F1, VISITED),

3 S0 = [F0|_], % flow tree for ccd input pin

4 S1 = [F1|_], % flow tree for flight input pin

5 S = [S0,S1]. % flow tree for output pin

The flow tree S of the output pin consists of a concatenation of flow trees for

all input pins. The flow trees of the input pins are used in the characteristic

clauses in the body of the characteristic rule of the output pin as can be

seen in line 6 of Listing 5.16. The variable S0 is the flow tree of the input

pin pin3. In order to construct the valid flow tree S, all input flow trees have

to be available. An example of such a specification for the book process is

shown in Listing 5.17. First of all, an incoming flow F0/F1 has to be found

for every input pin. We use the previously described predicate inputFlow/5

to find these flows, which all belong to the same set of input flows FLOWS. A

flow tree for an input pin is then given by using the incoming flow as a head

of a list and leaving the tail unspecified. The benefit of not fully specifying

the flow tree is to increase efficiency. The flow tree has only be resolved up

to the point at which we know that the label will not change anymore. For

instance, assigning a constant is such a point. The full flow tree of the output

pin is given by concatenating the flow trees of the input pins. The given

formalization is necessary to ensure that reported labels are really available

for the given flow tree. Therefore, every characteristic rule of an output

pin contains flow tree construction clauses as illustrated in Listing 5.17. If

there are no input pins on the given node or the node is an actor, the flow

tree S is the empty list.

To give a complete example, we illustrate the resulting rule for the process
booking process of theAirline from the running example given in Figure 5.7 on

page 62. The process uses the join behavior introduced in Listing 5.1 on page

56. Briefly explained, the behavior has two input pins and one output pin. The

classification label on the output pin is the highest classification label received

at any input pin. In Listing 5.18, we illustrate the characteristic rule for

the output pin of the process booking process for the literal UserAirline of the
classification characteristic type. This literal is the medium level because the

User level is higher and the UserArilineTA level is lower. Lines 2 to 6 build the
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Listing 5.18: Characteristic rule for output pin of process booking process.

1 characteristic(’processBooking’,’booking’,’class’,’UserAirline’,S,V) :-

2 inputFlow(’processBooking’,’ccd’,FLOWS,F0,V),

3 inputFlow(’processBooking’,’flight’,FLOWS,F1,V),

4 S0 = [F0|_],

5 S1 = [F1|_],

6 S = [S0,S1],

7 (

8 characteristic(’processBooking’,’ccd’,’class’,’UserAirline’,S0,V),

9 (

10 characteristic(’processBooking’,’flight’,’class’,’UserAirline’,S1,V);

11 characteristic(’processBooking’,’flight’,’class’,’UserAirlineTA’,S1,V)

12 );

13 characteristic(’processBooking’,’flight’,’class’,’UserAirline’,S1,V),

14 (

15 characteristic(’processBooking’,’ccd’,’class’,’UserAirline’,S0,V);

16 characteristic(’processBooking’,’ccd’,’class’,’UserAirlineTA’,S0,V)

17 )

18 ).

flow trees for the input pins by finding an incoming flow for every input pin.

The following clauses are the result of mapping the assignment. There are

two cases that can yield the medium classification level: The clauses in lines 8

to 12 say that the resulting label is UserAirline if the incoming credit card data

has this level and the incoming flight data has the same or the lower level.

The clauses in lines 13 to 17 are the same with the flight and credit card data

swapped. The clauses illustrate the interplay between the flow trees and the

characteristic clauses: The flow tree S0 for the input pin receiving credit

card data is passed to the characteristic clauses that refer to this input pin.

The same holds for the flight data.

To simplify usage of the characteristic/6 predicate, we define an additional

characteristic/5 predicate, which omits the last parameter. The last pa-

rameter contains the already visited data flows, which is always empty in

the beginning. Therefore, the characteristic/5 predicate is realized by a

rule that evaluates to true, if the characteristic/6 predicate with the same

arguments and an empty list of already visited flows evaluates to true. The

new predicate simplifies formulating queries for characteristics.
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ID Description User Semantics Definition

R2.1 every element covered — clauses for viewpoints

R2.2 derivation of properties analysis label lookup

R2.3 origin of properties analysis flow tree

R2.4 analyses based on goals expert —

R2.5 analyses based on goals architect —

R2.6 tracing of properties architect flow tree

R2.7 automated analyses architect —

R2.8 information flow expert —

R2.9 access control expert —

Table 5.2.: Overview on semantics definitions and met requirements by DFD semantics.

5.2.3. Requirements Coverage by Semantics

The semantics described before already cover half of the requirements for

these semantics. Table 5.2 gives an overview on the requirements and how

the semantics meet them.

The semantics assigned a meaning to all metamodel elements (R2.1). The core

of the semantics is the derivation of properties (R2.2), i.e. the labels on data

and nodes. The label assignment to nodes and the label lookup for labels on

data meet this requirement. The flow tree provides the origin of data (R2.3)

as well as trace information about all involved data flows (R2.6).

The remaining requirements state that the semantics shall support various

kinds of analyses. Essentially, the semantics already meet these require-

ments: Security experts can already define analyses based on analysis goals

(R2.4) because the Prolog code that emerges from mapping an extended DFD

as explained in Section 5.2.2 already automatically derives labels and it is

only necessary to formulate a Prolog query to define an analysis. In theory,

software architects can use the same means as the security expert to define

analyses (R2.5) but expecting software architects to have expertise in Prolog

might not be realistic. Therefore, we address this particular requirement later

in Section 6.5. Because the mapping into Prolog code as well as the execution

of the query can be automated, the resulting analyses can also be automated

(R2.7). As motivated in Section 4.2.3, labels can cover many relevant prop-

erties for deciding about violated requirements of information flow (R2.8)
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and access control (R2.9). However, we did not demonstrate meeting these

requirements by the definition of particular analyses based on the semantics

yet. We do this as part of the analysis definition described in Chapter 6.

The description will cover the procedure of defining analyses as well as the

particular analyses.

5.3. Assumptions and Limitations

This section discusses limitations of the extended DFD syntax and the corre-

sponding semantics, as well as assumptions regarding its usage.

Confidentiality properties as discrete value sets. One of the most fundamen-

tal limitation of the extended DFD and its semantics is that confidentiality

properties have to be represented as sets of discrete values. This works well

for confidentiality properties such as classification levels or roles because

the instances of these properties are indeed discrete values. However, this

modeling approach does not work for confidentiality mechanisms that define

policies on arbitrary properties. For instance, the age of data might be a

relevant property in mechanisms such as ABAC. Representing every possible

age as discrete value is possible but certainly not feasible. However, usually

not every single value has a different meaning with respect to confidentiality.

For instance, there might be several ranges of data ages that can be treated in

the same way. Representing these ranges of data ages instead of the individual

ages is feasible and might even improve the comprehensibility of the resulting

model. In addition, it is at least questionable if detailed information about

particular values is even available during the early design time.

Explicit data flows. Analysis or prediction results based on models are

always limited to what can be discovered on the modeled information. There-

fore, the semantics can only reason about data flows that have been modeled

explicitly. With respect to the popular confidentiality mechanism of infor-

mation flow control, this limits detectable violations to explicit flows instead

of implicit flows caused by side-channels. Model-based analyses always sac-

rifice finding the absolute truth in favor of feasibility. A model capable of

covering all types of side-channels would certainly have to be more detailed

and consequently would require more information to be available. However,

84



5.3. Assumptions and Limitations

this information might not be available when creating the model, especially

when talking about the early design time. Therefore, the analyses on the

presented semantics cannot and are not meant to replace analyses on arti-

facts developed in later development phases. Instead, the analyses focus on

detecting violations early that would also occur in follow-up artifacts. The

earlier such violations are detected, the more efficient they can be fixed.

Independent data flow paths. The DFD semantics consider all possible

combinations of alternative data flows, i.e. flow trees. However, this can lead

to false positives because combinations that might never appear in realistic

applications are checked as well. For instance, the decision on where to

send data might depend on the characteristics of data. Consequently, the

propagated labels might be different depending on these characteristics. The

syntax does not provide means for expressing such dependencies for two

reasons: First, we aim for worst-case analyses. Because of implementation

errors or faulty conditions on the characteristics, data might still be sent to

another connected node. The analysis should reveal such potential issues, so

the architect can decide whether the risk of a potential faulty implementation

and the resulting consequence is acceptable or the architecture should be

changed. Second, the specification becomes more complex when introducing

such data routing concepts. As soon as specifications require too much effort

or are hard to create, architects will less likely use the modeling and analysis

approach.

Limited effect of loops. Data flow loops in a DFD potentially lead to endless

recursions in label propagations. The presented semantics break such loops

by stopping the evaluation of a path as soon as a loop is detected. This implies

a limitation but is reasonable: If loops continuously change labels, it is hard

to know when to stop the evaluation because a steady state, i.e. a state in

which no labels change anymore, cannot be reached. The meaning of such

oscillating labels or even when to use them as part of a label comparison is

unclear. Therefore, we do not consider DFDs introducing such oscillating

labels as valid. If the labels produced in a loop do not change anymore after

the first iteration, the semantics consider these labels: Visiting all data flows

in the loop is possible because no flow in the loop has already been visited.

After one iteration of the loop, the semantics will not visit the loop again, i.e.
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will not select the same data flow again, but will choose another data flow to

continue.

Availability of information. An assumption made by all model-based ap-

proaches is that the information required to create the models is available.

The information required for creating an extended DFD are the system struc-

ture, the confidentiality policy as well as relevant properties and behaviors.

The structure of the system is known to the architect in the required level of

detail. The confidentiality policy might not be specified in full detail but at

least an abstraction of the intended security policy will certainly be available.

The more coarse-grained this policy is, the more coarse-grained the results

will be but at least there will be results. An architect might not be capable

of defining the relevant properties and behaviors to represent relevant parts

for establishing confidentiality. However, security experts that understand

the underlying principles of the confidentiality policy and the mechanisms

that realize them can create properties and behaviors. It is also possible to

provide and reuse definitions for common access control and information

flow policies, so even that knowledge does not always have to be available

from a security expert.

5.4. Summary

In this chapter, we presented the syntax and semantics of an DFD extended

by confidentiality concepts. The syntax and semantics meet the requirements

for both, which we identified in Section 4.1. The presented extended DFD is

in line with the suggested solution from Section 4.2.

The extended syntax described in Section 5.1 addresses three viewpoints that

we identified as relevant for the software architect and the security expert. The

first viewpoint addresses the concern of describing the system by introducing

the concepts of pins to enable reuse of nodes as well as the concept of actor

processes to describe user behavior. The second viewpoint addresses the

concern of defining confidentiality primitives by introducing the concepts of

characteristics and behavior definitions. Characteristics represent strongly

typed labels. Behavior definitions represent label propagation functions. The

third viewpoint addresses the concern ofmeeting confidentiality requirements

86



5.4. Summary

by introducing binding concepts of characteristics and behaviors to nodes

and data.

The denotational semantics described in Section 5.2 formalize the semantics

of the extended syntax in first-order logic. The semantics cover the existence

of DFD nodes and edges, as well as their behavior. The behavior is given

by a formalization of the label propagation function. To increase efficiency,

the concept of label lookup is introduced, which is one way to achieve the

same results as by applying label propagation. The lookup is potentially

more efficient in presence of multiple alternative data flow paths through

the system. To yield valuable results, all of these different paths, as well as

combinations, are considered by the semantics. A flow tree describes one
particular combination of paths through the system.

The underlying assumptions as well as assumptions regarding the usage of

the syntax and semantics are discussed in Section 5.3. Limitations exist with

respect to expressible confidentiality properties, which are limited to sets of

discrete values. Regarding the results, there exist limitations implied by the

considered data flows, the data flow paths as well as the data flows that are

part of a loop. A fundamental assumption shared with other model-based

analysis approaches is that the information required for modeling the system

is available.
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6. Confidentiality Analyses based
on Label Propagation

The extended DFD syntax and corresponding semantics covered in Chapter 5

provide the foundation for modeling software architectures and analyzing

them for confidentiality violations. This chapter describes how to define and

conduct analyses of such DFDs.

The analysis procedure described in Section 6.1 specifies the interaction be-

tween security experts, software architects and automated tooling. Section 6.2

covers particular analyses for detecting violations of confidentiality require-

ments regarding established information flow and access control mechanisms.

Besides those two common confidentiality mechanisms, we describe how

to integrate encryption into these analyses in Section 6.3 as an additional

option to protect information. In addition to the integration of encryption, a

combination of multiple confidentiality mechanisms and their corresponding

analyses can be useful to improve the protection of confidential information.

Section 6.4 describes this combination of analyses.

To not only rely on security experts, software architects shall also be capable

of defining analyses. The DSL introduced in Section 6.5 provides the architect

with means to specify analyses without the need for expertise in the formal

DFD semantics.

The analysis procedure, the particular analysis and the DSL address require-

ments for the DFD semantics. Section 6.6 gives an overview on how the

requirements are met. Section 6.7 describes the assumptions and limitations

of the analyses and the DSL. Eventually, Section 6.8 summarizes the chap-

ter.
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Figure 6.1.: Overview on analysis procedure given as BPMN diagram.

6.1. Procedure for Analyses

In order to conduct analyses, the security expert and the software architect

have to collaborate. Figure 6.1 visualizes this collaboration in the Business

Process Modeling Notation (BPMN). Roughly said, the security expert has to

provide confidentiality primitives, i.e. characteristics, behavior types and a

label comparison function. The software architect uses these primitives to

define a system including the aspects, which are relevant for confidentiality.

Automated tooling then analyzes the defined system for violations of confi-

dentiality requirements and reports violations to the software architect. The

software architect uses the reported violations to adjust the system in order

to meet the confidentiality requirements. In the following, we describe these

steps in more detail.
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Analysis Definition The security expert defines the analysis by providing

confidentiality primitives, which are specific to particular confidentiality

mechanisms, to the software architect, who uses these primitives later to

describe confidentiality aspects of the system. More precisely, the security

expert provides the characteristics and the behavior types, which the software

architect uses in the binding view type, as well as a label comparison function,

which detects violations. When talking about an analysis definition, we always
refer to a set of characteristics, characteristic types, behavior types and label

comparison function. The characteristic types have to be part of an analysis

definition because these types are necessary to define characteristics. The

label comparison function includes the confidentiality requirements and a

definition on how to detect a violation of these requirements. Depending on

the particular confidentiality mechanism and the requirements, the analysis

definition can be reused. This means that a security expert only has to be

involved in the analysis of systems if such a reusable analysis definition is

not available yet.

System Definition The software architect defines the system in a DFD and

uses the confidentiality primitives defined by the security expert. The result is

a DFD of the system that describes the structure, usage and deployment aswell

as the behavior in terms of processes, which change data characteristics.

System Mapping The tooling maps the system given as extended DFD to

a logic program by applying the mapping rules for assigning semantics to

syntax elements from Section 5.2.2. The tooling does not require assistance

of the software architect or the security expert to execute the mapping rules

because the mapping and all decisions are given as algorithms, which do

not need human inputs except for the system definition. Consequently, the

mapping can be fully automated. The result of the system mapping is a Prolog

program.

Label Comparison The tooling performs the actual analysis by executing a

label comparisonwithin the logic program. The label comparison is essentially

a query to the logic program that compares the labels of data and nodes with

expected labels. The security expert can provide further clauses to define such

expected labels in a query. The clauses provide additional information about

confidentiality requirements, which would have to be encoded in the query
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otherwise. However, the query still formulates the analysis goal (R2.4). The

logic program already contains all necessary clauses to determine all labels

of all exchanged data via all possible data flow paths. The query triggers

the label lookup and compares the results. All of these steps can be fully

automated by executing the query, i.e. the label comparison, on the logic

program within a Prolog interpreter. The result is a list of detected violations

within the logic program, which represents the system.

System Adjustment The software architects use the reported violations

to adjust the system in order to meet the confidentiality requirements. The

violations contain information about the flow tree, which allows the architects

to trace the origin of labels to locate the underlying design issue.

As mentioned before, the execution of the analysis can be fully automated as

long as the software architect has defined a system and the security expert

has defined the label comparison function. Therefore, the approach meets

the requirement of providing the software architect with automated analyses

(R2.7).

6.2. Label-based Confidentiality Analysis
Definitions

Because there are various ways to protect the confidentiality of information

in software systems, we cannot cover all possible mechanisms but focus on

the most prominent mechanisms. According to Shostack [Sho14, p. 154],

encryption is the predominant way of protecting information outside of a

software system and access control is the predominant way of protecting

information inside a software system. However, Sabelfeld and Myers [SM03]

argue that these mechanisms are limited: Access control often only decides

about access to information in one particular place in the system and does not

protect the information after a user got access to it. Encryption cannot protect

information after it has been decrypted. On the other side, information flow

considers such possible leaks of information.

In the following, we cover the common information flow analysis for non-

interference including declassification in Section 6.2.1. In Section 6.2.2, we

define analyses for the four most common access control models. We see
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encryption as a supporting confidentiality mechanism, which protects data

outside of systems or when transmitting data between systems. Therefore,

we do not consider encryption by a dedicated analysis but in combination

with information flow or access control analyses. We cover the integration

of encryption into these analyses in Section 6.3. Compared to our previous

publication of analysis definitions [Sei+22], we extended the descriptions

of analyses by instructions on how to deal with particular variants of in-

formation flow and access control requirements. Namely, we extend the

descriptions by a discussion of arbitrary lattices in information flow anal-

yses, the delegation of rights in DAC, the Needs-To-Know model in MAC,

Hierarchical and Constraint RBAC as well as hierarchies and constraints in

ABAC.

Information flow and access control usually not only consider confidentiality

but also integrity. We do not cover the integrity aspects of these mechanisms

in the following because the goal of our approach is to detect confidentiality

violations in software systems. Every time we claim support for a certain

mechanism, we mean support for the confidentiality aspect of the mecha-

nism.

6.2.1. Information Flow Analyses

Information flow has been studied for decades, which lead to various notions

of a secure information flow [SM03]. In this section, we focus on the predom-

inant notion noninterference including ways to weaken the implied strong

restrictions by declassification. We recap the important fundamentals of this

notion in the following. Afterwards, we show how to define analyses for

simple and more complex information flow requirements in Section 6.2.1.1

and Section 6.2.1.2, respectively.

Noninterference is the predominant notion of secure information flows accord-

ing to Hedin and Sabelfeld [HS12]. Every piece of information is classified by

a certain label. Simply said, noninterference limits how information classified

by different labels may influence each other. Influencing means that there

is an information flow. An information flow can be explicit or implicit. An

explicit information flow means that classified information directly flows

into other classified information such as by variable assignments. An implicit

information flow appears if classified information affects the control flow and
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thereby implies different observable behavior for different values of classi-

fied information. Allowed information flows are usually specified by lattices

[Den76]. A lattice can be interpreted as a directed, acyclic graph of labels 𝐿.

A label is assigned to every piece of information. The meaning of an edge

𝑎 → 𝑏 with 𝑎, 𝑏 ∈ 𝐿 is that information labeled with 𝑎 is allowed to influence

information labeled with 𝑏. This relation is transitive and reflexive. Often,

label 𝑏 is called higher than label 𝑎 if information labeled with 𝑎 is allowed to

influence information labeled with 𝑏. A declassification allows to reclassify

information to a lower classification to avoid violating the information flow

requirements given by the lattice. A practical example is a user, who allows

sharing medical information with an electronic health record service in order

to use it. Such declassifications are always restricted to who can declassify

information, what can be declassified, where information can be declassified

or when information can be declassified [HS12]. Otherwise, the lattice would

not imply restrictions anymore.

We solely focus on explicit information flows. First of all, implicit information

flows as defined by Hedin and Sabelfeld [HS12] occur when classified informa-

tion affects control flows. DFDs do not provide information about the control

flow apart from a potential execution order implied by data dependencies.

Therefore, these types of system models do not contain the necessary infor-

mation to reason about implicit flows. However, this does not mean that the

decision to use DFDs was wrong: Reasoning about implicit flows is a highly

complex topic because all observable effects on the system behavior caused

by classified information imply an implicit flow. The problem is known since

about a half century [Lam73] but still one of the biggest challenges in infor-

mation flow control up today [SM03]. Reasoning about such implicit flows

is hard even in presence of source code and the real execution environment.

Such detailed information is certainly not available during the early design

phase, so software architects simply cannot specify enough information. We

focus on explicit information flows because this is what software architects

can know and model.

An information flow is relevant for analyses if it might be observable. We

already defined that we can observe effects of explicit information flows, so

this answers what we can observe. However, we also have to define who
can observe an effect. In a DFD, any type of node can observe the effect of

an explicit information flow by inspecting exchanged data. If a node can

observe an effect, this means that there is an information flow from data to

the node. Consequently, not only data but also nodes need a classification.

94



6.2. Label-based Confidentiality Analysis Definitions

Classification

Clearance

User UserAirline UserAirlineTA

User ✓
UserAirline ✓ ✓
UserAirlineTA ✓ ✓ ✓

Table 6.1.: Information flow requirements for the running example given as access control matrix.

To avoid ambiguities, we use the term classification for the classification of

data and use the term clearance for the classification of a node. By evaluating

the relations in the lattice, it is possible to determine if an information flow is

allowed: If data 𝑑 with classification 𝑐𝑑 flows to a node 𝑛 with clearance 𝑐𝑛 ,

the flow is allowed if the lattice contains a (transitive) relation 𝑐𝑑 → 𝑐𝑛 .

6.2.1.1. Linear Ordered Lattice

A linear ordered lattice is a directed, acyclic graph of labels, in which there

is one start label, which has no incoming and exactly one outgoing edge,

a stop label, which has exactly one incoming and no outgoing edge, and

an arbitrary number of labels, which have exactly one incoming and one

outgoing edge. The labels in the running example form such a linear ordered

lattice: UserAirlineTA is the lowest label that has an edge to the UserAirline
label. The User label is the highest label that is the target of an edge from

the UserAirline label. The lattice is UserAirlineTA→ UserAirline→ User. For
instance, this means that a node having clearance for UserAirline is allowed
to observe information with classification UserAirlineTA and also UserAirline.
Table 6.1 visualizes the meaning of the lattice in terms of an access control

matrix: A node with a clearance given by the column may have access to

information with a classification given by the row if the resulting cell contains

a checkmark.

The general idea of a confidentiality analysis looking for violations of such a

linear ordered lattice in DFDs is to 1) assign a clearance label to every node,

2) provide initial classifications for data, 3) describe the propagation of data

classifications within behaviors and 4) compare the clearance of a node with

the classification of incoming data. To identify a violation, the comparison

can simply test if the clearance of a node is less than the classification of
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data. In the following, we introduce the characteristic types, characteristics,

behaviors and the comparison function required to realize the analysis. We

discuss the analysis definition in a generic way but give concrete examples

based on the running example.

Characteristic Types. As motivated before, the required characteristic types

are the clearance and the classification. Both types share the same enumeration

holding the clearance/classification levels in ascending order, i.e. the lowest

level comes first. There have to be at least as much levels as there are clearance

and classification levels. A too high number is not problematic because unused

levels do not affect the analysis. Therefore, it is possible to define a set of

generic levels and use these generic levels in behaviors. However, it is usually

useful to give levels appropriate names to foster comprehensibility. In the

running example, the levels are UserAirlineTA, UserAirline and User given in

that order. If levels have system-specific names, the enumeration of levels is

not reusable but the characteristic types still are.

Characteristics. A node can only have exactly one clearance level at a time.

Data can only have exactly one classification level at a time. Assuming there

are 𝑛 levels, there are exactly 𝑛 characteristics of the clearance characteristic

type and 𝑛 characteristics of the classification characteristic type. In the

running example, there is one clearance characteristic and one classification

characteristic for every level, i.e. User, UserAirline and UserAirlineTA. The
characteristics are reusable in other systems if levels have generic names.

Otherwise, the characteristics are system-specific and therefore only reusable

for systems using similar clearance and classification levels.

Behaviors. There are three fundamental behaviors to cover system behav-

ior with respect to a linear ordered lattice: The Forward behavior simply

propagates an incoming data classification to its output. There is no change

in the classification because there is no additional information and the data

processing does not produce a declassification effect. In the running ex-

ample, most of the processes do not affect the classification and therefore

use a forwarding behavior. The Declassify behavior explicitly sets the data

classification to a predefined classification. This behavior is reasonable for

data processing that is meant to explicitly change the classification such as

approvals by users. In the running example, the declassify CCD process uses
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a declassifying behavior to explicitly reduce the classification of credit card

data based on the consent of the user. The Join behavior applies the highest

of multiple incoming data classifications to its outputs. This means that the

most restrictive classification level is used. This is reasonable when multiple

data inputs are used and the result uses information from multiple inputs.

For instance, the create booking process uses the joining behavior to combine

a flight and credit card data into a booking in the running example. All be-

haviors but the declassifying behavior do not refer to particular classification

levels, which means they are not system-specific and, therefore, reusable for

specifying other systems. The declassifying behavior can only be reused for

systems that use a similar set of classification levels.

Label Comparison. The label comparison function compares the classifica-

tion label of incoming data with the clearance label of the receiving node.

If the classification label is higher than the clearance label, there is a vio-

lation. Listing 6.1 presents this comparison in terms of the semantics for-

malized in Prolog. Consequently, the comparison is given as query to a

logic program. To determine the clearance of a node N, the query uses the

nodeCharacteristic/3 predicate with the characteristic type representing

the clearance in line 1. This line finds the clearance level V_CLEAR of the node.

Line 2 determines the index of the clearance level, which we use to determine

whether a level is higher or lower compared to another level. Because we are

interested in finding violations when receiving data, line 3 identifies an input

pin PIN of node N. For this input pin, line 4 determines the classification level

V_CLASS by using the characteristic/5 predicate. The index N_CLASS of this

classification level is determined in line 5. Eventually, line 6 tests whether

the classification index N_CLASS is bigger than the clearance index N_CLEAR,

which implies that the data classification of received data is higher than the

clearance of the receiving node. An answer to this query implies a violation of

the information flow requirements given by the lattice. Because the order to

classification and clearance levels already defines the lattice, we do not have

to represent it explicitly. The query is capable of identifying all violations

by reevaluating it within a Prolog interpreter because neither the node, the

input pin nor the flow tree is bound to specific values before issuing the query.

Therefore, the solution algorithm of Prolog finds all possible combinations

that lead to a violation. The query does not refer to particular clearance or

classification levels, so it is reusable for analyzing multiple systems using a

linear ordered lattice.

97



6. Confidentiality Analyses based on Label Propagation

Listing 6.1: Query for detecting violations of information flow requirements given by linear

ordered lattice.

1 ?- nodeCharacteristic(N,’clear’,V_CLEAR), % clearance of node

2 characteristicTypeValue(’clear’,V_CLEAR,N_CLEAR), % index of clearance

3 inputPin(N,PIN), % input pin of node

4 characteristic(N,PIN,’class’,V_CLASS,S), % classification of data

5 characteristicTypeValue(’class’,V_CLASS,N_CLASS), % index of classification

6 N_CLASS > N_CLEAR. % check of lattice

6.2.1.2. Arbitrary Lattice

Arbitrary lattices do not adhere to the restrictions given by linear ordered

lattices, which we discussed before. Instead, the lattice can be any directed,

acyclic graph of labels. Compared to the previously discussed linear ordered

lattice, the specification effort increases because the lattice has to be explicitly

represented as part of the label comparison function by additional clauses

and there is no generic Join behavior. We discuss both points as part of the

following analysis definition.

Characteristic Types. The required characteristic types are the same as for

the linear ordered lattice. Namely, a classification and a clearance characteris-

tic type are necessary. An enumeration holds all available levels. In contrast

to the linear ordered lattice, the order of the literals in the enumeration has

no meaning anymore.

Characteristics. Data can only have one classification label and nodes can

only have one clearance label. Therefore, the required characteristics are

the same as for the linear ordered lattice. There is one characteristic of the

classification characteristic type for each level and one characteristic of the

clearance characteristic type for each level.

Behaviors. The Forward and the Declassify behavior are the same as for the

linear ordered lattice. A Join behavior is still necessary but its realization

cannot be as generic as discussed in the linear ordered lattice. It is not possible

to create a generic realization because there is no generally applicable ordering

relation that supports finding the highest of two labels. For instance, the
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Listing 6.2: Clauses defining the arbitrary lattice and the transitive closure.

1 edge(’UserAirlineTA’, ’UserAirline’). % lattice definition

2 edge(’UserAirline’, ’User’). % lattice definition

3 connected(X, X). % relation is reflexive

4 connected(SRC, DST) :- % relation is transitive

5 edge(SRC, X),

6 connected(X, DST).

lattice can be a disconnected graph, in which it is impossible to decide which

of two labels selected from two disconnected parts is semantically higher. As

a consequence, the joining behavior has to specify the processing effect for

each possible tuple of incoming labels in the worst case. However, exploiting

the order of labels is still possible for subsets of the literals, which can reduce

the specification effort. Because the joining behavior is tailored to the set

of levels, it is only reusable for specifying systems that use the same set of

levels.

Label Comparison. The general idea of the label comparison is the same as

for the linear ordered lattice: The query finds the clearance of a node and

the classification of incoming data and reports a violation if an information

flow violates the requirements given by the lattice. To detect such a violation

in an arbitrary lattice, the comparison looks for a missing edge from the

classification label to the clearance label in the transitive closure of the lattice

graph. In order to do so, it is necessary to encode the lattice by additional

clauses. Listing 6.2 exemplifies this by the linear ordered lattice. In lines 1

to 2, the lattice is given by describing the edges of the graph. The rules

in lines 3 to 4 build the transitive closure by introducing the connected/2

predicate. The actual query definition shown in Listing 6.3 uses this predicate.

The query is the same as for the linear ordered lattice but replaces the index

check in line 6 by a check of the transitive closure. A violation occurs if

the classification label is not connected to the clearance label. In the given

excerpt, we used the index values of the literals to query the lattice graph

but using the literals themselves would also be possible. The query itself is

reusable for analyzing other systems but the lattice depends on the particular

levels. Therefore, the lattice can only be reused for system sharing the same

lattice, i.e. the same confidentiality requirements.
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Listing 6.3: Query for detecting violations of information flow requirements given by arbitrary

lattice.

1 ?- nodeCharacteristic(N,CT_CLEAR,V_CLEAR), % clearance of node

2 characteristicTypeValue(CT_CLEAR,V_CLEAR,N_CLEAR), % index of clearance

3 inputPin(N,PIN), % input pin of node

4 characteristic(N,PIN,CT_CLASS,V_CLASS,S), % classification of data

5 characteristicTypeValue(CT_CLASS,V_CLASS,N_CLASS), % index of classification

6 \+ connected(N_CLASS, N_CLEAR). % check of lattice

6.2.2. Access Control Analyses

Access control is a mechanism to restrict access to information within a

software system. The particular restrictions are given by a security model.

To make clear that we talk about security models used in access control, we

simply use the term access control model. Because access control has a long

history, many different access control models have been defined. However,

only three access control models have been successful in practice up to

now according to Jin, Krishnan, and Sandhu [JKS12]: DAC, MAC and RBAC.

Additionally, researchers as well as practitioners have shown high interest in

ABAC because of its increased flexibility compared to previously mentioned

access control models. There has also been work [Fur08, pp. 79] [JKS12]

on how to represent the established access control models in ABAC. In the

following, we briefly recap the essential aspects for these four commonly used

access control models and describe corresponding analysis definitions.

6.2.2.1. Discretionary Access Control (DAC)

DAC [Fur08, pp. 61] explicitly assigns access permissions between dedicated

subjects and dedicated objects. Permissions can be stored with the subjects,

i.e. the subject knows which objects it is allowed to access, or with the objects,

i.e. the object knows which subjects are allowed to access it. Besides the

direct assignment of access rights between subjects and objects, there are

two additional principles: the ownership of information, i.e. the creator of an

object becomes its owner, and the delegation of rights, i.e. subjects holding

certain rights can delegate these rights to other subjects.

The general idea of a confidentiality analysis looking for violations of require-

ments given in DAC without considering owners and delegation of rights is
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to 1) assign an identity label to all actors, 2) assign labels for representing

read and write access to all stores, 3) trace back data from and to stores to

actors and 4) compare the identity of actors with the read and write access

of the store. Identity labels (1) are necessary to clearly identify a subject

because there can be multiple actors, which represent the very same subject.

It is reasonable to represent objects as stores (2) because these DFD elements

represent persisted data, which matches the meaning of an object in a data-

oriented system description. Directly assigning access rights to the objects,

i.e. the stores, is the core concept of DAC. Tracing data (3) allows to find pairs

of actors and stores, which exchange data. If data flows from an actor to a

store, it is reasonable to see this data flow as a data flow writing information

into the store. A data flow in the opposite direction means that the actor

receives data from a store, which certainly requires reading data from the

store. The analysis does not require the propagation of labels on data because

an analysis of the structure is sufficient.

When considering the owner and the delegation of rights, the analysis be-

comes more complex. The general idea described before still applies but in

addition it is necessary to 5) assign an owner label to a store, 6) assign labels

for adding an owner, read rights or access rights to data and 7) compare

the identity of actors accessing a store with the access rights added via data.

The newly introduced labels for data (6) are control messages. If a data item

arrives at a store that has a label to add an owner, read rights or access rights,

the access rights already assigned to a store are extended by the new access

rights. The owner label (5) is necessary to ensure that only owners change

the access rights. The extended analysis (7) now requires the propagation of

labels on data. The previously described idea does not consider the order, in

which owners and permissions are added, or the removal of them because

this would require knowledge about the order of such messages. However,

DFDs do not provide means to describe control flows, so there are also no

means to describe the order of messages. We discuss this point in more detail

in Section 6.7. In the following, we explain the elements of the analysis

definition in more detail.

Characteristic Types. All following characteristic types use an enumeration

of subject identities as range of values. Because the enumeration is tailored to

the particular system, the enumeration itself is not reusable for other systems

except for systems that contain a subset of the identities. The characteristic
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types themselves are, however, reusable in other systems. The Identity char-

acteristic type assigns an identity to an actor. This is useful because software

architects can then represent the same subject by multiple actors, which can

simplify the modeling and can improve the visualization of user behavior.

The ReadAccess and WriteAccess characteristic types add access rights to a

store, which represents an object. DAC demands such a direct assignment of

access rights. The Owner characteristic type assigns owners to a store, which
is necessary to decide if an actor is allowed to change access rights. The

AddOwner, AddReadAccess and AddWriteAccess characteristic types represent
control information in data. This control information is required to adjust

the access rights.

Characteristics. Characteristics for all previously mentioned characteristic

types except for the Identity characteristic type can hold multiple values

but at least one. This is reasonable because it is possible to add multiple

owners and access rights by one message. In contrast, it is not useful to

assign more than one identity to an actor because this would violate the

direct assignment of access rights between subjects and objects, which DAC

demands. All characteristics refer to particular identities, so they are only

reusable in systems that use a subset of these identities.

Behaviors. Data processing does not have an effect on the propagated labels

on data. Therefore, only the Forward behavior, which propagates all received

labels from the input to the output is necessary. Because the behavior does not

depend on a particular characteristic type it can be reused in other systems.

Label Comparison. The label comparison has to test for violations of an

actor by reading data from a store and by writing data into a store. Listing 6.4

presents the query to do so. To improve comprehensibility, we added one rule

to identify a violating read (line 1) and one rule to identify a violating write

(line 9). It is also possible to merge these two rules into the query in lines 17

to 18 that asks for violations of any of these types. The rule for identifying a

read violation checks whether an actor A is allowed to receive data from a

store STORE. An actor receives data from a store if at least one flow tree of one

of his/her input pins (line 5) contains the store (line 6). A violation occurs if

the identity Y of the actor (line 7) does not have read access to the store (line 8).

We explain the readAccess/2 predicate in the next paragraph. The rule for
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Listing 6.4: Query for detecting a violation of access control specified in DAC.

1 readViolation(A, STORE, S) :- % identify illegal read of A at STORE

2 store(STORE), % find store

3 actor(A), % find actor

4 inputPin(A, PIN), % find input on actor

5 flowTree(A, PIN, S), % find flow tree to input

6 traversedNode(S, STORE), % find store in flow tree

7 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

8 \+ readAccess(Y, STORE). % check read permission of actor

9 writeViolation(A, STORE, S) :- % identify illegal write of A at STORE

10 store(STORE), % find store

11 actor(A), % find actor

12 inputPin(STORE, PIN), % find input on store

13 flowTree(STORE, PIN, S), % find flow tree to input

14 traversedNode(S, A), % find actor in flow tree

15 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

16 \+ writeAccess(Y, STORE). % check write permission of actor

17 ?- readViolation(A, STORE, S); % report read violation or

18 writeViolation(A, STORE, S). % report write violation

identifying a write violation checks whether an actor A is allowed to send

data into a store STORE. An actor sends data into a store if at least one flow

tree of one of the input pins of the store (line 13) contains the actor (line 14).

A violation occurs if the identity Y of the actor (line 15) does not have write

access to the store (line 16). We explain the writeAccess/2 predicate in the

next paragraph. The query does not depend on particular identities, so it is

reusable for analyzing other systems.

Determining read or write access for a given identity is possible in two

ways, which are illustrated in Listing 6.5: If owners and the delegation of

rights is not considered, the bodies of the readAccess/2 rule in line 4 and

the writeAccess/2 rule in line 7 would only consist of the first clause, which

queries the access rights directly assigned to the store. The remaining clauses

of Listing 6.5 would not be necessary. If owners and the delegation of rights

are considered, it becomes important to determine whether an actor is an

owner of a store. The rule in line 1 does this. An owner is either statically

assigned to the store via a node characteristic or he/she is dynamically added

via a control message. The dynamic/3 rule in line 11 checks whether a change

of an owner or an access permission took place and whether this change was

allowed. To identify the change, the labels of data arriving at the store STORE

are checked for a literal V of a characteristic type CT in line 13. For instance, to
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Listing 6.5: Rules for determining read and write access in DAC.

1 owner(V, STORE) :- % V is owner of store

2 nodeCharacteristic(STORE, ’owner’, V); % check characteristic on node

3 dynamic(STORE, ’addOwner’, V). % check characteristic via data

4 readAccess(V, STORE) :- % V can read from store

5 nodeCharacteristic(STORE, ’read’, V); % check characteristic on node

6 dynamic(STORE, ’addRead’, V). % check characteristic via data

7 writeAccess(V, STORE) :- % V can write to store

8 nodeCharacteristic(STORE, ’write’, V); % check characteristic on node

9 dynamic(STORE, ’addWrite’, V). % check characteristic via data

10

11 dynamic(STORE, CT, V) :- % permission added via data

12 inputPin(STORE, PIN), % find input pin of store

13 characteristic(STORE, PIN, CT, V, S), % find permission on data

14 actor(A), % find actor

15 flowTree(STORE, PIN, S), % find flow tree to store

16 traversedNode(S, A), % find actor in flow tree

17 nodeCharacteristic(A, ’identity’, Y), % find identity of actor

18 owner(Y, STORE). % check that actor is owner

find a label for adding an owner, the characteristic type would be AddOwner
and the literal would be the identity, which shall be added as owner. To

check whether the actor that initiated the change is an owner, the flow tree

of the received message is found in line 15. If an actor is part of the flow tree

(line 16), the identity Y of that actor is found in line 17. Eventually, line 18

checks whether the found identity is an owner. This lookup is recursive, so

all added owners and the initial owners are considered. The rules that check

the read and write access operate in the same way: before considering the

effect of the permission change, the sending actor is verified as owner. The

presented clauses do not refer to particular identities. This means the clauses

and the query presented in the paragraph before are reusable for analyzing

other systems.

6.2.2.2. Mandatory Access Control (MAC)

MAC [Fur08, pp. 64] defines a set of mandatory rules that aim to not only

control the access to data but also the flow of information. There are two

prominent access control models for MAC: the military security model and

the Need-to-Know model. The military security model is essentially the same

model as the information flow analysis using an ordered lattice. We already
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described the analysis definition in Section 6.2.1.1, which can also be used to

model and analyze the military security model. Therefore, we only focus on

the Need-to-Know model in the following.

The underlying idea of the Need-to-Know model is to only allow subjects to

access objects if the subjects need the objects for their assigned work. A set

of topics, also called compartments, defines the work areas. Subjects as well

as objects have topics assigned. The topics of the subject 𝑠 are the needs to

know 𝑁𝑠 . The topics of the object 𝑜 are its compartments 𝐶𝑜 . A subject 𝑠 is

allowed to read an object 𝑜 if 𝐶𝑜 ⊆ 𝑁𝑠 .

The general idea of a confidentiality analysis looking for violations of require-

ments given in the Need-to-Know model is to 1) assign a set of topics to

actors, 2) provide initial topics for data, 3) describe the propagation of data

topics within behaviors and 4) compare the topics of data with the topics

of actors. The comparison only needs to consider actors and their activities,

i.e. the actor processes, because these represent subjects. Consequently, only

actors and the actor processes (1) require assigned topics, i.e. the needs to

know. Transmitted data is the information, which actors would like to access,

so data requires compartments (2), which can change based on data process-

ing (3). For every actor or actor process, the comparison (4) has to identify

the set of topics on the data and report a violation if this set is not a subset of

the topics on the actor or actor process. In the following, we introduce the

characteristic types, characteristics, behaviors and the comparison function

required to realize the analysis.

Characteristic Types. The required characteristic types are the needs to know
and the compartments. The value range of both types is a set of topics. The

order of the topics has no meaning. The topics are usually specific for the

system under design. Therefore, reusing the enumeration that defines the

value range is only possible if other systems support similar activities and

are in the same application domain. The characteristic types themselves are

generic, so they can be reused for modeling other systems.

Characteristics. The particular characteristics depend on the system under

design because a reasonable combination of topics for actors depends on their

tasks. Any subset of the available topics can build a reasonable characteris-

tic for actors or data. Consequently, the particular characteristics are only
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reusable for systems supporting similar activities and operating in the same

application domain.

Behaviors. Data processing can affect the topics of exchanged data. There

are three relevant behavior types: The Forward behavior does not affect the

topics of data, so it just propagates the same set of topics from its input to

its output. For instance, a validation procedure for data could have such

a behavior. The Join behavior combines incoming data into a new data

item. Because we cannot guarantee that information from an incoming

data item cannot be recovered, the safest assumption is that all incoming

topics still apply to the result of joining data. Consequently, the behavior

applies the union of all incoming topics to the output. A procedure, which

creates a report of sick days for an employee, could be an example of such

a behavior because it combines information from a personal topic, a health

topic and a work planning topic into a report containing all three topics.

The Declassify behavior removes certain topics from an incoming data item

and only propagates the remaining topics. A procedure, which aggregates

individual sick days into a sum of sick days, can be an example of such a

behavior because it removes the work planning topic from the incoming data.

All behaviors except for the declassifying behavior are reusable for defining

other software systems. The declassifying behavior is not reusable because it

refers to particular topics, which vary depending on the particular system.

Label Comparison. The label comparison function has to identify data re-

ceived by actors, which do not need all the topics of the received data to do

their work. Listing 6.6 presents the query to do so. The query considers all

inputs (line 2) of all actors and actor processes (line 1) because only actors and

their activities can violate the need-to-know rule. For all possible flow trees

of the identified inputs (line 3), the compartments L_COMP of the incoming

data, i.e. the data topics, are found (line 4). The topics L_NTK, which the actor

needs to know, are also collected (line 5). To collect L_COMP and L_NTK, the

second-order logic predicate findall/3 is used. The predicate finds all indi-

vidual solutions X (first argument) to a query template (second argument) and

yields the list of all individual solutions (third argument). Because findall/3

yields a list instead of a set of elements, the results have to be transformed to

a set before using set operations. The built-in predicate sort/2 takes a list as

first argument and yields a sorted set as second argument as shown in line 6.
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Listing 6.6: Query for detecting a violation of access control specified in Need-to-Know (MAC).

1 ?- (actor(N);actorProcess(N, _)), % actor (process)

2 inputPin(N, PIN), % actor input

3 flowTree(N, PIN, S), % input flow tree

4 findall(X, characteristic(N,PIN,’compartment’,X,S), L_COMP), % data topics

5 findall(X, nodeCharacteristic(N,’needs to know’,X), L_NTK), % actor topics

6 sort(L_COMP, COMP), sort(L_NTK, NTK), \+ subset(COMP, NTK). % subset test

The query reports a violation if the set of compartments COMP of data are no

subset of the set of needs to know NTK of an actor. The subset/2 predicate

(line 6) is a built-in predicate that evaluates to true if the first argument is a

subset of the second argument. The query does not refer to particular topics

and can be reused for analyzing other systems. The query does not need

additional information about the confidentiality requirements, i.e. additional

clauses, because the Need-to-Know model only demands the subset relation

between the compartments and the needs to know and the query fully covers

this.

6.2.2.3. Role-based Access Control (RBAC)

RBAC [Fur08, pp. 70] is a commonly used access control model in organi-

zations. The main benefit of RBAC compared to DAC is the decoupling of

access rights and users through roles. The introduction of roles simplifies

the administration of access control because the access rights assigned to

roles change less frequently than the assignment of roles to users. The roles

of users often simply stem from the position of a user in the organizational

structure, so assigning roles to users is fairly simple. Compared to DAC, the

management of access rights is centralized, which simplifies keeping track of

assigned permissions as well as revoking permissions.

There are three types of RBAC. Core RBAC describes the introduction of

roles, the assignment of access rights to roles and the assignment of roles to

users. Hierarchical RBAC adds hierarchies for roles. Users, which have been

assigned a senior role, automatically also have the corresponding junior roles

assigned. Consequently, senior roles inherit access permissions from junior

roles. Constraint RBAC introduces static constraints on the assignments of

roles and dynamic constraints on the activation or usage of roles during

runtime.
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The general idea to analyze Core RBAC is to assign roles to nodes and to assign

permitted roles to exchanged data. This closely represents the decoupling of

users and permissions by roles. Data processing can change the permitted

roles, e.g. because a data item derived from two other data items requires

more protection. If the assigned and permitted roles do not share at least

one role, accessing data is forbidden and if a node still accesses the data, a

violation has been identified. The general idea to analyze Hierarchical RBAC

is the same but before every comparison of role sets, the set of assigned roles

is extended by all inherited roles according to the role hierarchy. The effect

of extending the set is that all permissions of junior roles are also considered

during the comparison, which matches the semantics of the role hierarchy.

The general idea to analyze static constraints in RBAC is the same as for

Core RBAC but in addition, the constraints are checked for every node in the

system. To identify violations, the constraints can be negated, which means

that all nodes not adhering to the constraints are reported. For instance, a

constraint saying that an actor must not have two roles at the same timewould

be checked by looking for an actor, which has these two roles at the same

time. Analyzing dynamic constraints requires detailed information about

individual actors as well as dynamic activation and deactivation of roles for

individual users. DFDs and many languages targeting the architectural design

phase do not provide means to specify individual users but only classes of

users. Therefore, there is no concept to analyze dynamic constraints. We will

discuss this limitation and possible alternatives for analyzing individual users

in Section 6.7. In the following, we describe the analysis definition for the

three types of RBAC excluding dynamic constraints.

Characteristic Types. The required characteristic types are the assigned roles
for nodes and the permitted roles for data. Both characteristic types share

the same value range, which is the set of all available roles. The order of the

roles does not imply any meaning. The particular roles are only reusable if

the organization using the system has similar organization structures. The

structure often implies the used roles, so the roles should be similar as well.

The characteristic types using these roles are generic and can be reused for

defining other systems.

Characteristics. The particular characteristics on data and nodes depend on

the useful combinations of assigned roles as well as permitted roles. In theory,
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any subset of the available roles is a valid characteristic. However, only a

small amount of these subsets is reasonable in realistic scenarios. Because

reasonable combinations depend on the particular system and organization

structure, the characteristics can only be reused for similar systems and

organization structures.

Behaviors. Data processing can affect the permitted roles of exchanged data.

There are three relevant behavior types: The Forward behavior does not affect

the permitted roles because it propagates the received permitted roles to the

output. The behavior is necessary because many processing steps of a system

do not affect the permitted roles. For instance, a validation of data does not

affect the permitted roles. The Join behavior combines incoming data into a

new data item. A reasonable assumption for the resulting data item is that

the roles, which have access to all inputs also have access to the combination

of these inputs. Therefore, the behavior builds the intersection of permitted

roles of all incoming data items and applies the resulting permitted roles to the

output. The Declassify behavior explicitly adds roles to or removes roles from

the outgoing data item. This is reasonable if the result of a data processing

step yields a less confidential item, e.g. because data has been aggregated and

individual inputs cannot be reconstructed anymore, or if the processing yields

a more confidential item, e.g. because certain combinations allow drawing

more conclusions than possible by looking at the individual data items. All

behaviors except the declassification do not depend on particular roles, so

they can be reused in describing other systems. The declassification assigns

particular roles to or removes particular roles from data, so the behavior

depends on the particular system. Reusing the declassification is only possible

for systems using a similar set of roles with the same meaning.

Label Comparison (Core RBAC). The label comparison for Core RBAC com-

pares the permitted roles of received data and the assigned roles of a node

to report a violation if both sets of roles do not share at least one role. The

query in Listing 6.7 shows the corresponding query. First, the query looks

for an input pin of a node (line 1) and a possible path, on which data arrives

at the node (line 2). For the arriving data, all permitted roles L_PR are iden-

tified (line 4). We use the findall/3 predicate to collect all solutions L_PR

to the query template given as second argument. The permitted roles are

compared with the assigned roles L_AR of the node (line 3) by looking for the
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Listing 6.7: Query for detecting a violation of access control requirements specified in Core

RBAC.

1 ?- inputPin(N,PIN), % input of any node

2 flowTree(N,PIN,S), % flow tree of input

3 findall(R,nodeCharacteristic(N,’assigned roles’,R),L_AR), % node roles

4 findall(R,characteristic(N,PIN,’permitted roles’,R,S),L_PR), % data roles

5 sort(L_AR,AR),sort(L_PR, PR),intersection(AR,PR,[]). % empty intersection

intersection between the two sets of roles (line 5). Because the set operations

require sets instead of lists of elements, we build the sorted sets AR and PR

by using the built-in sort/2 predicate. The intersection/3 predicate is a

built-in predicate that evaluates to true if the intersection of the sets given

as first and second argument is equal to the set given as third argument. If

the intersection of the two sets is empty, a violation has been found because

this means that the node does not have at least one role that is permitted to

access the data. The query is not tailored to the particular system, so it can be

reused to analyze other systems. No additional clauses are necessary because

comparing the intersection of permitted and assigned roles is sufficient to

identify all violations of the access control requirements, which restrict access

to data based on permitted roles.

Label Comparison (Hierarchical RBAC). The label comparison for Hierarchi-

cal RBAC is based on on the previously described comparison for Core RBAC.

Instead of just comparing the roles assigned to a node with the permitted roles

of data, the set of assigned roles is extended by the inherited roles. Besides

the previously presented query, additional clauses are necessary to represent

the role hierarchies and handle them properly. Listing 6.8 gives an example of

the senior/2 predicate, which we use to define the role hierarchies. The role

given as first argument is a senior role for the role given as second argument.

The meaning of the example is that the project lead role is senior to the

engineering role. This means that a project lead also has the rights of an

engineer. All roles, to which a particular role is transitively senior, have to be

considered when comparing assigned roles with permitted roles. Therefore,

we have to find all transitive junior roles for the roles assigned to a node. We

do this by replacing the variable AR in line 5 of Listing 6.7 by the variable ER,

which is bound by the clause effectiveRoles(AR, ER). In the following, we

explain the definition of the effectiveRoles/2 predicate in Listing 6.9. The
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Listing 6.8: Example of clause defining a role hierarchy in RBAC.

1 senior(’Project Lead’,’Engineer’). % project lead is senior role of engineer

rule in line 2 takes a list of roles as first argument and yields a list of effective

roles. To do so, the transitive closure H_ROLES of junior roles for a role H is

found (line 3) and the remaining roles T are considered in a recursion (line 4).

In the end, the union HT_ROLES of all transitive closures is built (line 5) and

returned as sorted list of roles (line 6). The purpose of the fact in line 1 is

to stop the previously mentioned recursion. To find the transitive closure of

junior roles for a given senior role, the includedRoles/2 predicate in line 8

starts a recursion via the includedRoles/3 predicate. The predicate takes a

senior role as first argument and a list of already considered junior roles as

second argument. The third argument yields the transitive closure of junior

roles. When starting the recursion, the already considered list of junior roles

is empty. Tracking considered roles is important to create a set instead of a list

of roles. The recursively considered rule in line 11 finds a junior role, ensures

that the role has not been considered yet and continues the recursion by

adding the found role to the list of considered roles. The recursion terminates

if there are no more junior rules that have not been considered yet (line 15).

The junior/2 predicate describes a reflexive (line 21) and transitive relation

(line 22) between two roles. If the predicate evaluates to true, the role given

as first argument is a transitive junior role of the second argument. The

clause is similar to the connected/2 relation in Listing 6.2 on page 99. The

only difference is the clause starting in line 25, which ensures that only one

path to prove the relation is considered. The considered path always uses

the smallest intermediate roles according to their natural order (@<). This

avoids reporting duplicate results, which would not be harmful or lead to

wrongly reported violations but would lead to multiply reported violations.

The presented clauses do not depend on particular roles, so they can be used

for analyzing other systems as well. The particular role hierarchies depend

on particular roles and are, therefore, only reusable for systems operating in

similar domains and organization structures.

Label Comparison (Constraint RBAC). Enforcing the static constraints re-

garding role assignments does not interfere with the previously presented

queries to analyze Core RBAC and Hierarchical RBAC. Therefore, the query
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Listing 6.9: Clauses for handling role hierarchies in RBAC.

1 effectiveRoles([], []). % no effective roles for no roles

2 effectiveRoles([H|T], ROLES) :- % effective roles for role list

3 includedRoles(H, H_ROLES), % find for list head

4 effectiveRoles(T, T_ROLES), % recursive solving for list tail

5 union(H_ROLES, T_ROLES, HT_ROLES), % ensure found roles are set

6 sort(HT_ROLES, ROLES). % sort found roles

7

8 includedRoles(R, ROLES) :- % transitive closure for R

9 includedRoles(R, [], ROLES), % start recurse, no visited role

10 sort(ROLES, ROLES). % sort found roles

11 includedRoles(R, ROLES, RESULT) :- % find roles not within ROLES

12 junior(X, R), % junior role X for R found

13 intersection(ROLES, [X], []), % X not part of ROLES

14 includedRoles(R, [X | ROLES], RESULT). % extend ROLES by X and recurse

15 includedRoles(R, ROLES, ROLES) :- % stop recurse

16 \+ ( % no new roles available

17 junior(X, R), % junior role X for R found

18 intersection(ROLES, [X], []) % role X already in ROLES

19 ).

20

21 junior(X, X). % reflexive relation

22 junior(X, Y) :- % transitive relation

23 senior(Y, Z), % Y is senior for intermediate Z

24 junior(X, Z), % X is junior for intermediate Z

25 \+ ( % no other intermediate Z2

26 senior(Y, Z2),

27 junior(X, Z2),

28 Z2 @< Z % intermediate Z2 smaller than Z

29 ).

for detecting violations of the static constraints is a second query to execute

before or after the previously presented queries. Essentially, a definition of

the constraints and a corresponding check is necessary. A simple form of

constraint is a set of roles, which must never be assigned to a node at the

same time. Listing 6.10 defines such an illegal combination of roles by the

illegalCombination/1 predicate. In the example, an actor must never hold a

requestor and an approver role together. The query to detect such a violation

is shown in Listing 6.11. It identifies a node N of any type (line 1), determines

the assigned roles AR (line 2) and identifies the effective roles ER as described

before (line 3). A violation occurs, if any illegal set of roles C (line 4) is a

subset of the effective roles (line 5). The query does not depend on particular

levels, so it is reusable. The particular constraints depend on the particular
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Listing 6.10: Example of static constraint on role assignments in Constraint RBAC.

1 illegalCombination([’requestor’, ’approver’]). % constraint

Listing 6.11: Query for detecting a violation of role assignment constraints in Constraint RBAC.

1 ?- (process(N);actor(N);store(N)), % find any node N

2 findall(R,nodeCharacteristic(N,’assigned roles’,R),AR), % assigned roles

3 effectiveRoles(AR,ER), % consider hierarchy

4 illegalCombination(C), % find constraint C

5 subset(C,ER). % test for violation

system under design, so they are only usable for systems operating in similar

domains and organization structures.

6.2.2.4. Attribute-based Access Control (ABAC)

ABAC [Fur08, pp. 74] decouples access rights from particular subjects or ob-

jects by so-called identifiers. An identifier contains a set of attribute selectors,

which describe criteria for matching subjects or objects. A subject identifier
contains selection criteria based on attributes of a subject. An object identifier
contains selection criteria based on attributes of an object. An identifier can

match multiple subjects or objects. Subjects or objects can have multiple

matching identifiers. Identifiers can be part of a hierarchy, in which specific

identifiers inherit the selection criteria from generic identifiers. An autho-
rization refers to one subject identifier and one object identifier and defines

permissions of the matched subjects to the matched objects. In addition to the

identifiers, an authorization can contain conditions that must hold in order

to use the permissions. Various works [JKS12] [Fur08, pp. 79] see ABAC as a

generalization of the previously described access control models DAC, MAC

and RBAC and provide instructions on how to describe the corresponding

requirements in ABAC.

The general idea to analyze ABAC is to 1) assign attributes to actors, 2)

provide initial attributes for data, 3) describe the propagation of data attributes

within behaviors, 4) define the subject and object identifiers by selection

criteria, 5) define authorizations based on subjects and object identifiers and

6) find an authorization for every input data of an actor. It is reasonable to

only consider actors (1) because subject descriptors often only consider actors.

113



6. Confidentiality Analyses based on Label Propagation

However, it is also possible to consider other nodes as long as these nodes

have attributes assigned. Exchanged data closely matches the definition of

an object, which shall be accessed, so it is reasonable to cover the attributes

of data (2) as well as potential changes by data processing (3) in the system

description. The subject and object identifiers (4) as well as the authorizations

(5) describe the requirements in ABAC, so representing them is necessary to

identify violations. A violation occurs if we cannot find an authorization for

incoming data of an actor (6). In the following, we introduce the characteristic

types, characteristics, behaviors and the comparison function required to

realize the analysis.

Characteristic Types. The characteristic types have to describe the attributes

of subjects and objects. These attributes highly depend on the particular sys-

tem. Because of the flexibility of ABAC regarding the considered attributes, it

is not useful to prescribe any characteristic types. However, the characteristic

types have to distinguish attributes for subjects and objects.

Characteristics. Because there are no prescribed characteristic types, pre-

scribing characteristics is not possible. When defining characteristics, it can

be useful to provide characteristics based on the subject and object identifiers.

There is a high chance that the characteristics representing identifiers are

used multiple times.

Behaviors. The Forward behavior is a reasonable behavior to include. It

propagates the received labels of input data to the same labels of output data.

It is reasonable to include this behavior because many data processing steps

in a system do not affect any labels but just document the data processing to

be implemented in the development phase. Providing more behaviors is not

possible because generic descriptions of the effect of joining or declassifying

data are not available for yet unknown attribute types. Instead, security

experts have to define system-specific behaviors to cover all relevant data

processing.

Label Comparison. The label comparison consists of two parts: First, the

subject identifiers, object identifiers and authorizations describe the ABAC
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requirements. We need additional clauses to represent this information. Sec-

ond, the label comparison looks for missing authorizations. The comparison

is realized as query, which uses the additional clauses.

Listing 6.12 presents examples of the ABAC requirements. Lines 2 to 5 de-

scribe subject identifiers. The matchSubject/2 predicate provides a name

for the subject identifier as first argument and takes a node identifier N as

second argument. A node argument is necessary to test the given subject

identifier for a particular node. The Clerk identifier matches nodes, which

have a Role characteristic with the value Clerk assigned. The Manager identi-
fier matches nodes, which have a Role characteristic with the value Manager
assigned. Lines 8 to 10 describe object identifiers. The matchObject/4 predi-

cate provides an name for the object identifier as first argument and takes

a node identifier N, a pin PIN and a flow tree S as second, third or fourth

argument, respectively. The triple of the node, pin and flow tree arguments

identifies data from or to a particular node via a particular flow tree. Because

data items are the objects, to which we would like to limit access, it is rea-

sonable to consider this identifying information in order to test the object

identifier on particular objects. The Regular identifier matches data, which

only has the Regular value of the Status characteristic type applied. The

used exactCharacteristicValues/5 predicate is a helper clause to collect

all values of a given characteristic type and to compare the values with a

given set of values. The predicate evaluates to true if the set of values of data

and the given set of values are identical. More details on the predicate are

available in Appendix A. The All identifier matches all data. Establishing

an identifier hierarchy is possible by adding the generic identifier, i.e. the

matchSubject/2 or matchObject/4 clauses of the generic identifier, in the

body of the rule, which represents the specific identifier. In the example, we

only consider authorizations to read, so we introduce the read/3 predicate.

The predicate takes all information to identify a node as well as data coming

to or leaving the node as arguments. The predicate evaluates to true if read

access for the data at the node is granted. The authorization in line 13 states

that the subjects identified by the Manager identifier have access to objects

identified by the All identifier. To do so, the rule requires the subject and

the object identifiers to match. The authorization in line 16 refers to the

subject identifier Clerk and the object identifier Regular and establishes a

condition for the authorization. The condition also has to hold, so it is added

in a conjunction to the identifiers of the subject and object. The condition
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Listing 6.12: Examples of subject and object identifiers as well as authorizations for ABAC.

1 % subject identifiers for node N with given name

2 matchSubject(’Clerk’, N) :-

3 nodeCharacteristic(N, ’Role’, ’Clerk’).

4 matchSubject(’Manager’, N) :-

5 nodeCharacteristic(N, ’Role’, ’Manager’).

6

7 % object identifiers for data on pin PIN of node N via flow tree S

8 matchObject(’Regular’, N, PIN, S) :-

9 exactCharacteristicValues(N, PIN, ’Status’, [’Regular’], S).

10 matchObject(’All’, _, _, _).

11

12 % authorizations for reading data on pin PIN of node N via flow tree S

13 read(N, PIN, S) :-

14 matchSubject(’Manager’, N), % subject identifier

15 matchObject(’All’, N, PIN, S). % object identifier

16 read(N, PIN, S) :-

17 matchSubject(’Clerk’, N), % subject identifier

18 matchObject(’Regular’, N, PIN, S), % object identifier

19 nodeCharacteristic(N, ’Location’, L), % start condition

20 exactCharacteristicValues(N, PIN, ’Origin’, [L], S). % end condition

Listing 6.13: Query for detecting a violation of ABAC requirements.

1 ?- actor(A), inputPin(A, PIN), % find input pin PIN for actor A

2 flowTree(A, PIN, S), % find flow tree for input

3 \+ read(A, PIN, S). % test for missing read permission

states that the Location L of the node has to be the same as the Origin of the

data.

The label comparison shown in Listing 6.13 identifies violations caused by

missing authorizations. In line 1, an actor A and one of his/her input pins

PIN is found. A flow tree S describes how data items arrive at the input pin

(line 2). The actor A, pin PIN and flow tree S identify data. A violation occurs

if there is any data that arrives at the actor, for which no authorization can

be found. Line 3 tests this condition by proving that there is no solution for

read/3 with the specified data. Finding no solution means that there is no

authorization.
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6.3. Consideration of Encryption in Confidentiality
Analyses

According to Bauer [Bau05a], encryption converts a plaintext, which ev-

eryone can understand, to a ciphertext, which is incomprehensible without

further processing. Decryption converts the ciphertext back into plaintext.

Usually, a key is another parameter for a cryptosystem, i.e. the encryption and

decryption, to remove the obligation to keep the encryption and decryption

algorithms secret. Instead, only the key has to be kept secret. There are

symmetric and asymmetric cryptosystems. In a symmetric cryptosystem

[Kal05b], the same key is used for encryption and decryption. In an asym-

metric cryptosystem [Kal05a], different keys are used for encryption and

decryption.

According to Shostack [Sho14, p. 154], encryption should be used to protect

information outside of a system because a system cannot protect the informa-

tion out of its scope. Consequently, encryption is also appropriate to protect

information in systems of systems because a single system cannot control

the information in other systems. In DFDs, we would represent systems of

systems by a chain of processes, which belong to different systems. Charac-

teristics can represent the relation of a process to a system, e.g. by annotating

the system as a characteristic to the process.

With respect to the information flow and access control analyses already

presented in Section 6.2, encryption can be seen as declassification because it

makes information inaccessible to unauthorized actors and thereby lowers

the needs to protect that information. We already described the concept of

declassification before but only gave examples of data processing, which

potentially has a declassifying effect on data characteristics. In the follow-

ing, we describe how to integrate encryption into the previously described

information flow and access control analyses. The description focuses on

the required extensions with respect to characteristic types, behaviors and

label comparison functions. In Section 6.3.1, we describe a simple form of

encryption that does not consider the key handling. For instance, this simple

form can represent systems using a symmetric cryptosystem with shared

keys. Section 6.3.2 extends the key-less encryption by key pairs of public and

private keys. This representation of encryption represents an asymmetric

cryptosystem.
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6.3.1. Encryption Without Keys

The core idea of using encryption and decryption is to temporarily hide

information and restore the information later. This helps protecting the infor-

mation from unauthorized access e.g. during a transmission. In the context

of DFDs and label propagation, hiding information means that previously

applied labels do not apply anymore. However, the labels shall be restored

later upon decryption.

During an analysis, we do not really have to hide these labels but have

to make clear that the labels shall be hidden. Therefore, it is sufficient to

introduce new characteristic types, which share the value range with the

affected characteristic types, change the characteristic type of a label to the

newly introduced characteristic type upon encryption and reverse that change

upon decryption. In addition, the encryption might add a label of the old

characteristic type, which expresses that the contained information is not

accessible anymore. For instance, consider a data item with a high label of the

characteristic type classification. Upon encryption, we can add a high label of

a newly introduced characteristic type old classification to the data item and

replace the original classification label with a low label. This means that now

nodes only having clearance for low data are allowed to access the data item

because the information contained in the data item would not be accessible to

the node in a real system. Upon decryption, we revert this effect, i.e. we add

the high label of the characteristic type classification and remove the label of

old classification. This is reasonable because the data item provides access to

the contained information after decryption.

In the following, we describe how to extend an existing analysis definition to

consider encryption in existing information flow and access control analy-

ses.

Characteristic Types. For every characteristic type, which refers to infor-

mation hidden by an encryption, a second characteristic type using the same

value range is necessary. With respect to the previously presented confiden-

tiality analyses, the classification (information flow analyses), the compart-

ments (Needs-to-Know) and the permitted roles (RBAC) are characteristic

types, which require a second characteristic type. All of these characteristic

types describe the information contained in a data item. This information

is not accessible anymore after encryption. The remaining characteristic
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types such as the ones to add additional permissions in DAC do not require a

second characteristic type.

Behaviors. There are two additional behaviors. The Encrypt behavior takes
an input and yields an output. The behavior forwards all labels but replaces

the characteristic type of all labels by the newly created second characteristic

types if one is available. In addition, the behavior adds new labels for the

old characteristic types, which correctly characterize the encrypted content.

With respect to the previously presented confidentiality analyses, there would

be a new label with the lowest classification level (information flow analyses),

an empty compartments label (Needs-to-Know) and a set of all roles for

the permitted roles characteristic type (RBAC). The Decrypt behavior also
takes an input and yields an output. The behavior reverts the effect of the

encrypting behavior. The behavior forwards all labels but removes the new

labels added during the encryption and replaces the characteristic type of

all labels referring to the newly created second characteristic types with the

original ones. The Forward and Declassify behaviors are not changed. The

Join behavior can often not be applied to encrypted data in a reasonable

way. However, in cases where data is just bundled in a tuple, the behavior

should treat the labels for the newly introduced second characteristic types

in the same way as if they were specified for the original characteristic types.

For instance, joining encrypted data items, which had compartments in the

Need-to-Know access control model, should yield encrypted data, in which

the labels describing the original compartments are the union of all original

compartments of incoming data. After the decryption, the joined data item

has the same labels as if the input to the joining behavior was unencrypted

data. Without this extended joining logic, the effect of creating a tuple from

the data would be lost during the decryption.

Label Comparison. The label comparisons introduced in the analysis defini-

tions for information flow and access control remain the same because the

additional labels are only necessary between encryption and decryption and

the effect of encryption and decryption is also visible on the existing labels.

No additional checks regarding encryption are necessary. For instance, if the

travel agency in our running example receives encrypted credit card data,

the existing label comparison function would, correctly, not report a viola-

tion because the travel agency cannot access the contained information and
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the classification of the encrypted data would, consequently, be the lowest

level. The travel agency has a clearance for the lowest level, so access to the

encrypted credit card data is fine.

6.3.2. Encryption With Key Pairs

The encryption using key pairs has the same goals as the previously presented

encryptionwithout keys but now keys aremandatory inputs to the encryption

and decryption processes. The idea to consider keys on top of the keyless

encryption is twofold: First, the encryption and decryption should only have

an effect if the correct keys are given. Second, the label comparison should

detect incorrect key usage to reveal errors in applying the encryption. We

assume an encryption by public keys and a decryption by private keys. Using

a public and private key is a common approach for asymmetric encryption.

The encryption can use any public key to encrypt the content for one or more

people, which the given public key(s) represent. The decryption can only use

any private key that matches a public key, for which the data item has been

encrypted. An additional label comparison detects decryption attempts by

wrong private keys. In the following, we describe the key usage and label

comparison as extension to the encryption without keys.

Characteristic Types. To represent keys, it is necessary to declare its type,

i.e. private or public, and the identity, which the key represents. We introduce

the characteristic types public key of and private key of with a common value

range of identities. The order of the identities has no meaning. A public

key has a public key of label assigned. A private key has a private key of
label assigned. After the encryption, we have to keep record of the public

keys, for which the data item has been encrypted. To do so, a decryptable by
characteristic type, which also uses the identities as values, represents the

identities, which can decrypt the data item using their private key.

Behaviors. All but the following behaviors remain the same. The Encrypt
behavior takes a public key as an additional input. In addition to the previously

described effects, the encrypting behavior creates one decryptable by label for

each public key of label on the received public key data. There can be multiple

labels because the data item can be encrypted for multiple public keys. The
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Listing 6.14: Query for detecting invalid usage of private keys in decryption.

1 ?- behavior(N,’Decrypt’), % decryptor

2 inputPin(N,PIN0),inputPin(N,PIN1),PIN0 \== PIN1, % pins

3 findall(X,characteristic(N,PIN0,’private key of’,X,S0),L_PROV), % prov. keys

4 findall(X,characteristic(N,PIN1,’decryptable by’,X,S1),L_REQ), % req. keys

5 sort(L_PROV,PROV),sort(L_REQ,REQ), % sets

6 intersection(PROV,REQ,[]). % violation

Decrypt behavior takes a private key as an additional input. In addition to the

previously described effects, the decrypting behavior only has an effect if the

private key of label of the private key data has a value, which is also a value

of any decryptable by label on the data to encrypt. Otherwise, the data item

remains encrypted. The Join behavior also has to consider the decryptable by
label. If two data items arrive, the intersection of the decryptable by labels of

both inputs is applied to the output. This is reasonable because only people,

who can decrypt both data items, can decrypt the joined data item.

Label Comparison. The label comparisons of the extended analysis defini-

tions do not have to be adjusted. However, we suggest adding a second query,

which can identify failed decryptions. A decryption fails if there is no private

key of an identity, which is listed as being able to decrypt the data. Listing 6.14

presents this query. First of all, the query is only applicable to nodes, which

have the Decrypt behavior. The clause in line 1 selects nodes, which have

this behavior. In line 2, two different input pins of the same node N are found.

The identities represented by the private keys given as incoming data of PIN0

are found in line 3. We use the findall/3 predicate to find all identities. In

line 4, we find all identities, which are allowed to decrypt the incoming data.

Because the private keys and the data item to be decrypted arrive at a node

via different pins, the flow trees S0 and S1 are different. Because findall/3

yields lists instead of sets, we build the sets PROV and REQ using the built-in

predicate sort/2 in line 5. A violation occurs if the intersection between the

identities of the private keys PROV and the identities allowed to decrypt REQ

is empty. Line 6 tests this by the built-in predicate intersection/3.
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6.4. Mixing Existing Confidentiality Analyses

A mixed confidentiality analysis means that a single analysis considers multi-

ple confidentiality mechanisms. Mixing multiple confidentiality mechanisms

can be useful or even required to cover realistic systems. For instance, a

system of systems does not require all systems using the same confidentiality

mechanism but every system can decide on its own depending on its particu-

lar confidentiality requirements. Systems can also decide to combine multiple

confidentiality mechanisms to achieve certain requirements in an efficient

way by combining the benefits and strengths of individual confidentiality

mechanisms. For instance, there are existing works [XBS06; Wan+09] that

demonstrate the benefits of combining information flow and access control.

In the following, we describe the required steps to combine multiple con-

fidentiality analyses. As a running example, we will use the combination

of RBAC with a taint-analysis. A taint-analysis taints, i.e. marks, data and

taints all data, which gets in touch with tainted data. Tainted data must not

reach critical system parts. The semantics of a taint is often that tainted data

originates from untrusted sources and must, therefore, not be used in critical

system parts without proper validation. A validation removes the taint and

critical system parts can use the resulting data. Essentially, the taint-analysis

is an information flow analysis using a linear ordered lattice: The lattice is

not-tainted → tainted. Critical nodes are cleared for not-tainted data, which

means that tainted data must not flow to such critical nodes. The RBAC

analysis works as already described in Section 6.2.2.3.

To combine two analyses, a security expert has to merge the corresponding

analysis definitions. In the following, we assume that both analyses do not

have side-effects on each other. If analyses have such side-effects, the resulting

mixed analysis is actually a new analysis and security experts should define

it like they define a new analysis. To merge side-effect free analyses, the

security experts have to merge the characteristic types and characteristics

first. Thereto, the security experts build the union of characteristic types or

characteristics respectively. In the example, the characteristic types would

be the permitted roles and assigned roles from RBAC as well as the clearance
and classification from the information flow analysis. Because it is possible to

assign multiple characteristics to nodes as well as data, building the union

of existing characteristics is reasonable. In contrast, nodes can only have

one behavior. Therefore, it is necessary to merge behaviors by merging the
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Listing 6.15: Query for detecting violations of RBAC requirements and requirements regarding

the use of tainted data.

1 % generic selection of input pin and incoming flow tree

2 ?- inputPin(N, PIN), flowTree(N, PIN, S),

3 (

4 ( % RBAC analysis detecting missing assigned roles to access data

5 findall(R, nodeCharacteristic(N, ’assigned roles’, R), AR_L),

6 findall(R, characteristic(N, PIN, ’permitted roles’, R, S), PR_L),

7 sort(AR_L, AR), sort(PR_L, PR), intersection(AR, PR, [])

8 );

9 ( % information flow analysis detecting illegal flow of tainted data

10 nodeCharacteristic(N, ’clear’, V_CLEAR),

11 characteristicTypeValue(’clear’, V_CLEAR, N_CLEAR),

12 characteristic(N, PIN, ’class’, V_CLASS, S),

13 characteristicTypeValue(’class’, V_CLASS, N_CLASS),

14 N_CLASS > N_CLEAR

15 )

16 ).

contained assignments. In the example, there would still be the Forward, Join
and Declassify behaviors. The Forward behavior is identical in both analysis

definitions, so no changes are necessary. The Join behavior has to assign the

intersection of the permitted roles as well as the highest classification to the

output. Because Declassify behaviors are specific to particular systems and

situations, it is reasonable to keep these behaviors separated. Therefore, there

will still be behaviors, which add or remove permitted roles and there will be

a behavior lowering the classification of data. The label comparison is the

disjunction of the clauses of both individual queries. However, duplications

can be removed. A disjunction is necessary because the query shall report a

violation of either the RBAC or the information flow analysis. Listing 6.15

presents the result for the example. First, the common parts of selecting

an input and a corresponding flow tree for a node are extracted from both

individual queries (line 2). Afterwards, the clauses of the RBAC query (lines 4

to 8) and the clauses of the information flow query (lines 9 to 15) are connected

by a disjunction. This means, a violation occurs if any group of the analysis

clauses evaluates to true. An alternative solution would be to execute both

queries of the individual analyses after each other.
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6.5. DSL for Defining Custom Analyses

The main motivation for creating a DSL for specifying label comparisons is to

provide software architects with means to specify analyses (R2.5) without the

need for deep knowledge about the formal semantics and logic programming.

Custom analyses are a benefit compared to the state of the art, which either

focuses on fixed, predefined analyses [TSB19; HSS14] or only supports simple

well-formedness constraints given in query languages such as the Object

Constraint Language (OCL) [AGI13]. In contrast, a label comparison function

triggers the label lookup and is, therefore, more complex than simple well-

formedness constraints. A DSL provides a tailored specification language

focused on the architectural domain, which software architects know well.

Based on the specification given in the DSL, an automated mapping generates

a query for the logic program, which identifies violations.

The adjusted procedure of confidentiality analyses using the DSL is as shown

in Figure 6.2. The security expert still provides the characteristic types and

behaviors but the architect now not only specifies the system but also a

constraint. The constraint is then transformed to a label comparison function,

which identifies violations. To transform the constraint, the trace of the

system mapping, i.e. a record describing which element from the system has

been mapped to which element in the logic program, is necessary. Otherwise,

the constraint could not refer to characteristic types or system elements. The

procedure shows that all aspects related to the logic program are still hidden

from the architect but he/she can now define a constraint, which eventually

defines the label comparison function.

In the following, we define the scope of the DSL in Section 6.5.1. The abstract

syntax and the concrete syntax, which represent the domain concept, are

covered in Section 6.5.2 and Section 6.5.3. We briefly explain the mapping

procedure from a specification given in the DSL to a query in the logic

program in Section 6.5.4. All explanations are based on previously published

work [Hah+21].

6.5.1. Scope

DSLs are languages “of limited expressiveness focused on a particular domain”

[FP11, p. 27]. Without sacrificing expressiveness, a DSLwould only be another
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Figure 6.2.: Overview on analysis procedure when using the DSL given as BPMN diagram.

concrete syntax for the concepts presented by the underlying domain, which

would be Prolog in the context of this thesis. The challenging part is to select

an appropriate subset of domain concepts to cover important use cases in

a concise manner. We justify the selection of domain concepts (D𝑛) by the

following discussion of the scope of the DSL.

Confidentiality is violated as soon as unauthorized subjects access data. The

extended DFD represents information to decide about the authorization by

labels on nodes and data. The previously presented access control and infor-

mation flow queries compare the labels of nodes and the labels of arriving

data in queries. Consequently, the DSL has to provide means to D1) select

a node and D2) select incoming data in order to select the corresponding

labels. In addition, it can be necessary to also consider the origin of arriving
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6. Confidentiality Analyses based on Label Propagation

data. Therefore, the DSL has to provide a way to D3) select the origin of data,

i.e. a node in the flow tree.

In a query, the label comparison describes a pattern based on labels, which

must not appear in the DFD. To correspond to this, the DSL also has to provide

means to D4) specify a pattern, which indicates a violation of confidentiality

requirements in a DFD, i.e. a pattern, which must not appear.

There are different kinds of patterns. A fixed pattern identifies data and nodes

based on fixed labels. For instance, a pattern could look for a node cleared

for low data that receives data classified high. The low label on the node and

the high label on data are fixed. In contrast, a flexible pattern determines the

labels on a node and a data item and compares these labels. For instance, a

pattern could capture the clearance of a node and the classification of data

and test whether the classification label is higher than the clearance label

based on the index in the enumeration, which defines the labels. The pattern

does not use any fixed label. Mixing static and flexible labels is also possible.

The DSL has to support D5) fixed patterns, D6) flexible patterns and D7)

mixed patterns using fixed and flexible parts. Because the DSL refers to labels,

it has to have a mechanism to D8) reference existing characteristic types.

6.5.2. Abstract Syntax

The abstract syntax describes the domain concepts, their relations and proper-

ties. We use a metamodel given as UML class diagram to describe the abstract

syntax like we already did for describing the abstract syntax of extended

DFDs. An overview on the most important parts of the metamodel is given

in Figure 6.3. In the following, we explain the elements of the metamodel,

their intuitive semantics and how the elements map to the domain concepts

(D𝑛) collected in Section 6.5.1.

The software architect specifies one or multiple constraints. A Constraint
describes a situation in the DFD, which shall not appear, i.e. a violation (D4).

This means a constraint represents one particular query for detecting viola-

tions in the logic program. Considering multiple constraints is reasonable

because it can be easier to write multiple specific constraints than writing

a large, combined constraint. We essentially created two queries for repre-

senting DAC in Section 6.2.2.1 (one query for detecting read violations and
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Figure 6.3.: Overview on metamodel of DSL given as UML class diagram.

one query for detecting write violations) because the resulting queries were

easier to understand than a merged query.

The constraint specifies a label pattern that shall never appear in the DFD. A

pattern has to specify a set of labels on data and a set of labels on nodes. To

specify relevant data items (D2), the DSL uses a set of Data Selectors as part
of a Data description. To specify a node, which receives data (D1), the DSL

uses a set of Node Selectors as part of a Destination description. If required,

the DSL can also describe a node, which is (one possible) source (D3) of the

received data item, by a set of Node Selectors as part of a Source description.

In order to select a particular data item or a node, all selectors have to apply,

i.e. have to evaluate to true. Besides logical conjunction, it would also be

possible to provide means to specify logical disjunction between selectors.

In order to reduce the complexity of the DSL, we decided to only support

conjunction. However, extending the DSL by disjunction or negation would

be possible.
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There are various types of selectors to represent commonly used selection

criteria for data and nodes. The only information for selecting a data item

are the labels applied to the data item. Therefore, a selection either has to

consider any data item or provide selection criteria based on labels. The Any
Selector selects all data items without any restriction. The Property Selector
selects a data item based on the applied labels. One or multiple labels, which

must refer to the same characteristic type, can be specified. If labels referring

to different characteristic types shall be available, multiple Property Selector
can be combined. The specified labels describe fixed patterns of labels (D5).

However, it is also possible to only specify the characteristic type in a Property
Selector and capture available labels, which refer to the characteristic type,

in a variable. Later, the DSL allows to specify criteria on such variables.

This provides means to specify flexible patterns of labels (D6). Because fixed

labels and variables can be mixed, mixed patterns of labels (D7) are also

supported. Nodes can also be selected by a Property Selector because they also
have labels applied. In addition to labels, it is also possible to select nodes

based on their type by using a Type Selector. This is reasonable because some

violations can only appear at actors or stores. For instance, the ABAC query

in Section 6.2.2.4 also limited its scope to actors or actor processes. In case

of constraints, which only affect individual nodes, it can be useful to select

nodes based on their identity. An Identity Selector provides this ability.

To formulate flexible and mixed patterns, the DSL has to provide means to

compare the variables of the Property Selectors. The Condition allows to use

a Boolean Function to do so. If the function evaluates to true, the condition

holds, which means that a violation has been identified. A boolean function

is a function, which yields a boolean value. If a function requires a parameter

of a certain type and another function yields this type, the functions can be

nested. The DSL provides the boolean functions shown in Table 6.2. The

first three functions are logical connections, which allow to model conjunc-

tions, disjunctions and negations. This set of boolean functions is functional

complete [End01, p. 49], i.e. all truth tables, which can be constructed based

on the given boolean parameters, can be expressed. This expressiveness is

useful because conditions are often not as simple as performing one single

test on variables. Besides the logical connections, the DSL provides functions

for performing tests on sets of labels, individual labels and on integers.

The functions for performing tests on sets of labels shall also be functional

complete, i.e. all tests covered by the algebra on sets shall be expressible.

The functions set union ∪, set intersection ∩ and set complement 𝑋𝐶
are
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Function First Input Second Input

And Boolean Boolean

Or Boolean Boolean

Negation Boolean Boolean

EmptySet CharacteristicSetReference —

Subset CharacteristicSetReference CharacteristicSetReference

ElementOf CharacteristicReference CharacteristicSetReference

Equality CharacteristicReference CharacteristicReference

Inequality CharacteristicReference CharacteristicReference

GreaterThan Integer Integer

LessThan Integer Integer

Table 6.2.: DSL functions yielding a boolean result.

Function First Input Second Input

Intersection CharacteristicSetReference CharacteristicSetReference

Union CharacteristicSetReference CharacteristicSetReference

Subtract CharacteristicSetReference CharacteristicSetReference

Complement Characteristic Types [1..*] CharacteristicSetReference

CreateSet CharacteristicReference —

Table 6.3.: DSL functions yielding a reference to a characteristic set.

functional complete to construct sets based on existing sets [Sto79, p. 18]. The

DSL covers all of these functions as shown in the list of supported functions

for constructing sets in Table 6.3. The provided complement function provides

a relative complement, i.e. a complement of a given set 𝑋 to another set 𝑈 ,

for which 𝑋 ⊆ 𝑈 holds. The elements in𝑈 depend on the particular context.

Therefore, the function in the DSL takes a set of characteristic types as a first

argument to construct 𝑈 as a union of all literals of the characteristic types.

The second argument is the set 𝑋 of labels, for which a complement shall

be constructed. The subset test ⊆ is feature complete to perform tests on

existing sets [Sto79, p. 20]. The DSL supports the subset test as shown in

Table 6.2.

To initially define sets, either variables or the CreateSet function (see Table 6.3)
can be used. Variables can stem from data and node selectors or from Con-
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Function First Input Second Input

Index CharacteristicReference —

Table 6.4.: DSL functions yielding an integer result.

stants. Considering variables from the selectors is necessary to evaluate the

available labels on nodes and data, which is essential for identifying violations.

Constants provide sets of fixed labels, which can be used to construct new

sets or compare existing sets with. For instance, a constant can provide the

empty set or a set of all labels of a certain characteristic type. Both sets are

valuable in comparisons. The CreateSet function converts a single label to a

set, which is necessary to compare it with sets.

The remaining boolean functions EmptySet, ElementOf, Equality and Inequal-
ity from Table 6.2 are just shorthands for combinations of the previously

described functions. Testing, whether a set 𝑋 is empty, can be expressed

by 𝑋 ⊆ {}, where a constant provides the empty set. Testing whether an

element 𝑥 is part of a set 𝑋 can be expressed by {𝑥} ⊆ 𝑋 , where the CreateSet
function constructs a set from an element 𝑥 . Testing for equality of two

individual elements 𝑥 and 𝑦 can be expressed by {𝑥} ⊆ {𝑦} ∧ {𝑦} ⊆ {𝑥}.
Testing for inequality of two elements is given by negating the equality test.

The remaining characteristic set function Subtract from Table 6.3 also just

provides a shorthand. Constructing a new set by subtracting set 𝐵 from set 𝐴,

i.e. 𝐴/𝐵, can be expressed by 𝐴 ∩ 𝐵𝐶 , where the complement of 𝐵 is defined

with respect to the set of all elements of 𝐴 and 𝐵, i.e. 𝐴 ∪ 𝐵.

Using the index of a single label in a comparison is a useful feature, which

we have used in defining the label comparison for information flow analy-

ses in Section 6.2.1.1. To support this, the DSL provides the Index function
shown in Table 6.4, which yields the index of the label in the corresponding

enumeration as integer. The boolean functions GreaterThan and LessThan test

whether integer 𝑖 is greater than 𝑗 or whether integer 𝑖 is less than integer

𝑗 , respectively. Because the only function providing integers in the DSL is

the Index function, those two boolean functions essentially always compare

indexes of labels.

The only domain concept, which we have not explained so far, is the reuse of

existing characteristic types (D8). Essentially, we already referred to charac-

teristic types in the previous explanations and assumed that they are available.
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To actually make them available, we have to specify the location of the char-

acteristic types as well as which of the characteristic types at the specified

location shall be used. To specify the location, the DSL provides an Import
statement. To specify the characteristic types to be used, the DSL provides a

Type statement. The type statement allows to rename the characteristic type

in the context of the DSL to make specifications more concise.

6.5.3. Concrete Syntax

The concrete syntax assigns one possible representation to the elements of

the abstract syntax. The sole purpose of the concrete syntax in this thesis is

to make examples given in the DSL readable and comprehensible. Therefore,

we do not consider the concrete syntax a contribution. Nevertheless, we

define the concrete syntax according to common best practices [Kar+09].

One of the provided guidelines suggest to use the same style over multiple

languages, which might be used. We use a textual syntax because the style of

writing expressions in textual notations is more common than writing them

in graphical notations. We extensively use expressions in conditions, which

contribute a considerable amount of expressiveness to the DSL. Therefore, it

is reasonable to tailor the language to writing expressions.

In the following, we introduce the concrete syntax using two examples. The

first example is a simple information flow analysis that detects when data,

which has been classified as high, arrives at a node, which has been cleared

for low data. The example demonstrates the usage of fixed label patterns to

formulate constraints. The second example is the information flow analysis

using a linear ordered lattice as demonstrated in Section 6.2.1.1. The example

demonstrates the usage of flexible label patterns to formulate constraints.

We explain the remaining DSL elements not covered by the two examples

afterwards.

The constraint definition for the first example is given in Listing 6.16. The con-

straint refers to particular labels, which are a high data classification and a low

node clearance. Before the architect can use these labels, he/she has to specify

the location of the characteristic types via the import statement followed by

the location (line 1). Afterwards, the architect can specify the characteristic

types he/she wants to use by the type statement. The statement defines the

name, which shall be used to refer to the characteristic type, in constraints.

This is beneficial because the names can be shortened to make the constraint
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Listing 6.16: Constraint requiring data classified high to never flow to nodes cleared for low data.

1 import "characteristicTypes.xmi"

2 type Classification : "Classification"

3 type Clearance : "Clearance"

4

5 constraint NoFlowHighToLow {

6 data.property.Classification.High

7 NEVER FLOWS

8 node.property.Clearance.Low

9 }

definition more concise. In lines 2 to 3, the characteristic types effectively do

not get a new name because the new name written first is the same as the old

name written second. A constraint can now refer to the characteristic type.

To define a constraint, the keyword constraint is used followed by the name

of the constraint. In line 5, the name is NoFlowHighToLow. The definition of

the constraint is placed within a block delimited by curly brackets, which is a

commonly used notation in various programming languages.

The constraint definition for fixed label patterns is usually shorter than for

flexible label patterns because only few specification elements are necessary.

Every constraint definition has to contain at least one data selector to specify

the data to be tested and at least one destination selector to specify the node

to be tested. A data selector always starts with the keyword data as shown

in line 6. A data selector for a label continues with the keyword property

followed by the characteristic type of the label. In our example, we would like

to select data, which is classified high. Therefore, we append the High literal

to the characteristic type. All parts of the data selector are connected by dots,

which is also a commonly used notation for navigating through properties

of elements in programming languages. A node selector always starts with

the keyword node as shown in line 8. A node selector for a label continues

with the keyword property followed by the characteristic type of the label.

In our example, we select the Low literal from the Clearance characteristic

type. The selectors are connected by the NEVER FLOWS keywords (line 7).

The constraint definition for flexible label patterns is based on the previously

described language elements but uses conditions and variables in addition.

The example shown in Listing 6.17 presents the constraint used to detect

violations of information flow requirements given by a linear ordered lattice.

The language constructs up to including line 5 are the same as in the previous
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Listing 6.17: Constraint requiring that data classifications must never be lower than node clear-

ances.

1 import "characteristicTypes.xmi"

2 type Classification : "Classification"

3 type Clearance : "Clearance"

4

5 constraint NoFlowAgainstLattice {

6 data.attribute.Classification.$CLASS

7 NEVER FLOWS

8 node.property.Clearance.$CLEAR

9 WHERE

10 index(CLASS) > index(CLEAR)

11 }

example. The first difference is the data selector in line 6. Instead of a

fixed literal, the selector defines a variable CLASS. To indicate that the name

is not the name of a literal but the name of a variable, a dollar sign $ is

prepended. Various programming languages such as PHP use dollar signs to

mark variables. The node selector in line 8 also introduces a variable instead

of using a fixed literal. As already explained as part of the abstract syntax, the

meaning of a variable is that the particular classification or clearance label

is stored in the variable. To compare the variables, which makes the label

pattern flexible, architects have to formulate a condition on the variables. A

condition always starts with the WHERE keyword (line 9), which is also used

in query languages such as SQL to start conditions. The actual condition is

given by a boolean expression. In our example, the condition is that the index

of the data classification literal is greater than the index of the node clearance

literal. The boolean expression is given by the greater function. The operands

are integers yielded by the index functions. The greater function is an infix

operation taking two arguments, which is the commonly used definition for

this function in many programming languages.

Constants provide the means to define variables holding labels without re-

ferring to particular data or nodes. Constants are useful if predefined sets of

labels shall be used in multiple comparisons. In ABAC, such predefined sets

can represent the subject and object identifiers. Listing 6.18 illustrates various

constant definitions. Constants are defined after types and before constraints.

A constant always starts with the keyword const followed by the identifier

of the constant. If a constant describes a set of labels, the identifier has curly

brackets as a postfix. This is the same notation as for defining set variables
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Listing 6.18: Excerpt of concrete syntax demonstrating the definition of constants.

1 const HIGH = Classification.High

2 const HIGH_AND_LOW{} = Classification.[Low,High]

3 const ALL{} = Classification.*

Listing 6.19: Excerpt of concrete syntax demonstrating the use of selectors.

1 constraint Demonstration {

2 data.any

3 NEVER FLOWS

4 node.type.Actor & node.property.Clearance.LOW

5 FROM

6 node.property.Clearance.HIGH

7 }

in data and node selectors. To define the constant, an equal sign followed by

the characteristic type and a literal selector has to be given. If a constant only

holds one label like shown in line 1, the literal can be directly connected to

the characteristic type via a dot. If multiple labels shall be part of a set like

shown in line 2, the literals are written within square brackets and separated

by commas. If all available literals of a characteristic type shall be selected,

an asterisk can replace the literal selector as shown in line 3. The notation

to select labels is the same as the selection of fixed labels in node and data

selectors.

Within the constraint, a software architect can use more data and node

selectors than shown in the previous two examples. Listing 6.19 shows an

excerpt of a constraint requiring that any type of data must never flow from

a node with high clearance to an actor node, which has low clearance. To not

restrict the considered data, the any selector can be used on data as shown

in line 2. Besides the properties of a node, its type can also be considered

as shown in line 4. Possible choices of node types are Actor, ActorProcess,

Store and Process. To select a node, from which the selected data has been

transitively received, the FROM keyword can be used after the node selectors

of the destination as shown in line 5. After the keyword, all node selectors,

which can also be used to select the destination node, can be used as shown

in line 6.

Besides the already presented functions, all functions introduced in Sec-

tion 6.5.2 have a corresponding concrete syntax and can be used. To solve
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Precedence Associativity Notation Functions

1 left infix Or

2 left infix And

3 right prefix Negation

4 none infix Greater, Less, Equality, Inequality

4 none prefix all remaining functions

Table 6.5.: Function precedence, associativity and notation in DSL.

ambiguities when using multiple functions, we define the function prece-

dence as well as the associativity as shown in Table 6.5. Functions with

precedence 𝑖 are evaluated before functions with precedence 𝑗 if 𝑖 > 𝑗 . We

use the infix notation, i.e. we place the function symbol between the two

operands, if common programming languages also use this notation. For

instance, it is a common approach to place the function symbols for logical

conjunction and disjunction between the two operands. The same holds for

comparisons known from arithmetic such as testing for greater, less, equal

and inequal operands. For all remaining functions, we use the prefix notation.

This is reasonable for set functions because these functions use dedicated

symbols when provided in infix notation. However, using special symbols not

available in the ASCII character set makes using the DSL more complicated.

To meet the standards of common programming languages, we made the

logical conjunction and disjunction left-associative and the logical negation

right-associative. The remaining functions are not associative because there

is no ambiguity to solve: the boolean infix functions and the remaining pre-

fix functions cannot appear directly after each other or clearly mark their

arguments using parentheses.

6.5.4. Mapping to Logic Program

We assign formal semantics to the elements of the DSL by describing how

to map these elements to Prolog clauses. Using a mapping to describe the

formal semantics of elements of an abstract syntax is the same approach as

we have used in assigning formal semantics to the elements of the extended

DFDs. In the following, we describe one fundamental assumption for the

mapping and explain the mapping rules afterwards.
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The following mapping rules assume that the mapping from the DFD, on

which the query shall be executed, to the logic program already has been

executed and that a transformation trace is available. The trace describes

which DFD element has been mapped to which element in the logic program.

This information is necessary to resolve references from the DSL constraint

to elements of the extended DFD. In order to resolve, for instance, a reference

to a characteristic type in a constraint, the mapping has to look up the clause

in the logic program, which represents that particular characteristic type.

The clauses resulting from mapping the constraint to a logic program can

then refer to the correct characteristic type clause.

A constraint describes a pattern for detecting certain data, which arrives

at a certain node. To allow to evaluate that pattern, a rule taking the node,

the input pin and a flow tree is useful. This triple of information uniquely

identifies an arriving data item. Because there can be multiple constraints,

it is necessary to distinguish multiple rules for multiple constraints. An

argument, which contains the name of the constraint, is a good approach

because this preserves the particular constraint name and, therefore, makes

it easy for a software architect to relate a result to a particular constraint

later. Encoding the constraint name in the rule name would also be possible

but provides no benefit compared to the argument containing the constraint

name. The resulting rule looks like illustrated in the first mapping rule shown

in Figure 6.4. The upper part shows an excerpt of a constraint given in the

DSL. The lower part shows an excerpt of the resulting logic program. The

body of the rule binds the variables given in the head of the rule by using

the inputPin/2 and flowTree/3 clauses. The two clauses are necessary for

considering all possible combinations of nodes N, input pins PIN and flow

trees S by reevaluating the rule. The following mapping rules extend the rule

body by the selection criteria. Because the selection criteria have to match

the data and node, the criteria is added to the conjunction of clauses in the

rule body, i.e. the clauses have to be true.

Constants provide variables to be used in comparisons or set functions inside

conditions. A constant contains an arbitrary number of literals. It is reason-

able to consider literals instead of labels, i.e. the tuple of characteristic type

and literal, because this enables flexible comparisons: All analyses described

in Section 6.2 compare literals from different characteristic types, which is

possible because the value range, i.e. the underlying enumeration, is the same.

Therefore, constants can be mapped to literals or sets of literals as shown

in Figure 6.5. A constant, which refers to a literal, is mapped to a variable,
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1 constraint Foo {

2 // content omitted

3 }

⇓
4 constraint(’Foo’, N, PIN, S) :-

5 inputPin(N, PIN),

6 flowTree(N, PIN, S).

Figure 6.4.: Example of mapping from empty DSL constraint to logic program.

1 const HIGH = Classification.High

2 const HIGH_AND_LOW{} = Classification.[Low,High]

3 const ALL{} = Classification.*
4 const EMPTY{} = []

⇓
5 constraint(’Foo’, N, PIN, S) :-

6 % omitted standard clauses

7 Var_HIGH = ’High’,

8 VarSet_HIGH_AND_LOW = [’Low’, ’High’].

9 VarSet_ALL = [’Low’, ’High’],

10 VarSet_EMPTY = [],

Figure 6.5.: Example of mapping constants from DSL to logic program.

which represents exactly this literal. In this and all following examples, the

identifiers of the literals and characteristic types are just their names for the

sake of simplicity. In the actual mapping, the identifiers would be unique and

would have to be looked up in the transformation trace of the DFD. A set

constant is mapped to a variable unified with a list. If particular literals are

given, these literals are added to the list. A wildcard * is mapped to all literals

of that particular characteristic type. Empty set constants are also possible

and mapped to an empty list. All variables resulting from the mapping are

added to the rule body after the standard clauses as presented in Figure 6.4.

This is reasonable because all following clauses can refer to these variables,

which is the expected usage scope of global constants.

Data selectors specify selection criteria on data. There are two types of se-

lectors. The Any Selector selects any data, which means that the constraint
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shall consider all possible incoming data items. Because the standard clauses

already consider all possible incoming data items, no further clauses are nec-

essary. The Foo constraint in Figure 6.6 uses the Any Selector, which does not

lead to any additional clauses in the corresponding Prolog rule. The Property
Selector selects data items based on their assigned labels. A selector referring

to a particular label such as the selector in line 5 of Figure 6.6 requires that a

particular label is available on the data item. The characteristic/5 clause

shown in line 14 has the same meaning: the clause evaluates to true if the

particular label is available for the node, pin and flow tree under considera-

tion. Consequently, the mapping generates such a characteristic/5 clause

for every property selector referring to a particular label. If the property

selector introduces a characteristic set variable, the intended meaning is that

the variable captures all literals for the given characteristic type on the in-

coming data item. It does not influence the selection of data directly because

only conditions evaluating the introduced variable affect the selection. In

line 6 of Figure 6.6, all classification literals shall be captured in the variable

CLASS. In Prolog, the clause in line 15 has the same semantics. The findall/3

clause finds all solutions for the goal template given as second argument.

The variable given as first argument represents a single solution in the goal.

The variable in the third argument is unified with the list of solutions, i.e. all

solutions. The goal template is the same clause as for matching particular

literals but the goal template uses the solution variable in place of the par-

ticular literal. The solutions are available via the third argument, which is

the variable VarSet_CLASS in Figure 6.6. For every variable introduced in the

DSL, an additional argument is added to the head of the constraint/4 clause.

This is necessary to report the contents of the variable back to the software

architect. The meaning of multiple selectors in the DSL is that all individual

selectors have to match. Using a conjunction to connect the individual clauses

resulting from property selectors has the same meaning in Prolog.

Node selectors specify selection criteria for nodes. The selectors can specify

the Destination of data as well as the Source of data. In the following, we

explain the usage of the selectors to specify the Destination and will explain

the usage for specifying the Source in the next paragraph. There are three

types of selectors. The Property Selector selects nodes based on assigned labels.
A fixed label in the property selector as illustrated in line 3 of Figure 6.7 means

that that fixed label has to be assigned to a node. The nodeCharacteristic/3

clause in line 11 with the label, i.e. the characteristic type and the literal as

second and third parameter, tests this criteria on a node N. Besides fixed labels,
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1 constraint Foo {

2 data.any NEVER FLOWS // remainder omitted

3 }

4 constraint Bar {

5 data.property.Classification.High &

6 data.property.Classification.$CLASS{} NEVER FLOWS // remainder omitted

7 }

⇓
8 constraint(’Foo’, N, PIN, S) :-

9 % omitted standard clauses

10 % no added clauses based on any selector

11 constraint(’Bar’, N, PIN, S, VarSet_CLASS) :-

12 % omitted standard clauses

13 (

14 characteristic(N, PIN, ’Classification’, ’High’, S),

15 findall(V, characteristic(N,PIN,’Classification’,V,S), VarSet_CLASS)

16 )

Figure 6.6.: Example of mapping data selectors from DSL constraint to logic program.

variables can capture literals of a certain characteristic type applied to a node.

The second selector in line 7 introduces the CLEAR variable to capture all

applied clearance labels of the node. In Prolog, a findall/3 clause as shown

in line 16 captures the literals in the variable VarSet_CLEAR. Node selectors,

which introduce variables, do not imply restrictions for selecting nodes but

just capture information to be evaluated later. The Type Selector selects nodes
based on their type. The first selector in line 7 selects actor nodes. In Prolog,

the corresponding counterpart is the clause, which introduced the identifier

of a node of a certain type. In the particular example, the actor/1 clause

as shown in line 15 ensures that the node identifier N belongs to an actor.

The mapping rules for other node types are analogous. The Identity Selector
selects nodes based on their identity. To map such a selector to Prolog, the

mapping first looks up the node in the trace to find its identifier in Prolog.

Second, a unification of the node variable N with this identifier is added. The

meaning of multiple selectors in the DSL is that all individual selectors have

to match. Using a conjunction to connect the individual clauses resulting

from the selectors has the same meaning in Prolog.

To specify the Source of data, the same types of node selectors can be used as

for specifying the Destination of data. The major difference in mapping the
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1 constraint Foo {

2 // data selector omitted

3 NEVER FLOWS node.property.Clearance.Low

4 }

5 constraint Bar {

6 // data selector omitted

7 NEVER FLOWS node.type.Actor & node.property.Clearance.$CLEAR{}

8 }

⇓
9 constraint(’Foo’, N, PIN, S) :-

10 % omitted standard and data selector clauses

11 nodeCharacteristic(N, ’Clearance’, ’Low’).

12 constraint(’Bar’, N, PIN, S, VarSet_CLEAR) :-

13 % omitted standard and data selector clauses

14 (

15 actor(N),

16 findall(V, nodeCharacteristic(N, ’Clearance’, V), VarSet_CLEAR)

17 )

Figure 6.7.: Example of mapping node selectors from DSL constraint to logic program.

1 constraint Foo {

2 // data and node selector omitted

3 FROM node.type.Actor

4 }

⇓
5 constraint(’Foo’, N, N_FROM, PIN, S) :-

6 % omitted standard and data selector clauses

7 actor(N_FROM).

Figure 6.8.: Example of mapping origin node selectors from DSL constraint to logic program.

selectors for sources is that an additional argument N_FROM is added to the

head of the constraint as shown in line 5 of Figure 6.8. Adding the argument is

necessary to report the identified source node back to software architects. The

clauses resulting from the mapping of the node selectors are the same but all

usages of the variable N, which represents the destination node, are replaced

by the variable N_FROM, which represents the source node. An example of the

resulting clause for the type selector used in line 3 is given in line 7.
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The condition specifies selection criteria based on the variables used in prop-

erty selectors. The clauses resulting from mapping the condition are added to

the conjunction of previous clauses. The mapping of individual DSL functions

to Prolog clauses is as shown in Table 6.6. Functions representing boolean

logic and boolean functions are directly mapped to their Prolog equivalents.

The functions and Prolog predicates in the same row of the table have the

same meaning. The only difference is the mapping of the EmptySet function.
The function is mapped to the Prolog clause length/2with 0 as a fixed second

argument. Because a length of zero elements is the same as an empty set,

the meaning remains the same. Functions not yielding booleans cannot be

mapped as straight forward as boolean functions because Prolog does not

support nesting functions like the DSL does. Others such as Cabot, Clarisó,

and Riera [CCR14] also recognized this challenge when mapping functional

to logic expressions. Logic clauses store the result of a function not yielding

a boolean value in a dedicated variable. All functions yielding sets as well as

the Index operation yielding an integer have a dedicated argument in their

signature. Therefore, a function 𝑓 having another function 𝑔 as an argument

in the DSL refers to the result variable of 𝑔 in the logic program. In Prolog, it

is not necessary that the result of function 𝑔 is available before evaluating

function 𝑓 because Prolog can determine valid inputs, which make 𝑓 succeed.

If the predicted input is no output of 𝑔, the solving algorithm uses backtrack-

ing to determine other possible input values for 𝑓 . However, evaluating the

functions in applicative order [ASS96, p. 399], i.e. evaluating all arguments

to a function before evaluating the function, can reduce the amount of used

backtracking. In the following, we explain the mapping of nested functions

using the applicative order.

The algorithm for mapping nested functions is essentially a depth-first search

always starting at a boolean function taking at least one non-boolean argu-

ment. Only functions are considered in the algorithm. A function is mapped

to the corresponding clause according to Table 6.6 and a temporary variable

is introduced for representing the result if a result variable is necessary. In

the example given in Figure 6.9, the non-boolean function of type Union is

mapped to the Union clause and an anonymous result variable. The arguments

of the functions are mapped based on the following rules: A characteristic

set reference is mapped to a variable. In the example, the characteristic set

reference A is mapped to a variable A in the logic program. A function (used

as argument in another function) is mapped to the variable representing the

result. In the example, the Member clause refers to the result variable of the
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Function Predicate Result Variable

And ,/2 —

Or ;/2 —

Negation \+/1 —

ElementOf memberchk/2 —

EmptySet length/2 —

Equality =/2 —

GreaterThan >/2 —

Inequality \=/2 —

LessThan </2 —

Subset subset/2 —

Complement complement/3 ✓
CreateSet =/2 and [] ✓
Index characteristicTypeValue/3 ✓
Intersection intersection/3 ✓
Subtract subtract/3 ✓
Union union/3 ✓

Table 6.6.: Mapping between functions in conditions of DSL and clauses in logic program.

Union clause. Because the depth-first search ensures that all arguments are

evaluated before their use, the conjunction of all generated clauses in the

order of their generation ensures an efficient evaluation without the need for

extensive backtracking.

6.6. Requirements Coverage

The analysis procedure, the DSL as well as the particular analyses cover the

requirements regarding the semantics, which have not been covered so far.

Table 5.2 gives an overview on the requirements and how the parts of this

chapter address them. Requirements that are not addressed (indicated by

dash in the last column) are already covered by the semantics as described in

Section 5.2.3.

As part of the analysis procedure, we sketched how security experts can define

analyses based on analysis goals (R2.4). We demonstrated the definition of
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Figure 6.9.: Example of mapping between DSL condition (left) and Prolog (right) given as UML

object diagram.

ID Description User Covering Part

R2.1 every element covered — — (already met before)

R2.2 derivation of properties analysis — (already met before)

R2.3 origin of properties analysis — (already met before)

R2.4 analyses based on goals expert analysis procedure

R2.5 analyses based on goals architect DSL for custom analyses

R2.6 tracing of properties architect — (already met before)

R2.7 automated analyses architect analysis procedure

R2.8 information flow expert information flow analyses

R2.9 access control expert access control analyses

Table 6.7.: Overview on described parts and met requirements by analysis definitions.

analyses by the security expert for particular information flow analyses as well

as access control analyses. Thereby, we showed that the underlying semantics

support information flow analyses (R2.8) as well as access control analyses

(R2.9). Software architects can define analyses (R2.5) based on their analysis

goals using a DSL, which frees the architect from learning logic programming

to formulate analyses. As the procedures for analyses defined by security

experts as well as by software architects show, the defined analyses can be

fully automated after their definition (R2.7). Software architects can execute

the analyses without additional inputs besides the software architecture and

the predefined analysis definition.
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The DFD semantics meet all requirements regarding the semantics, which

we demonstrated jointly in this section and in Section 5.2.3.

6.7. Assumptions and Limitations

This section discusses assumptions and limitations of the particular confiden-

tiality analyses and the DSL for formulating analyses.

Consideration of incoming flows Constraints formulated in the DSL describe

forbidden data flows to nodes. Consequently, the generated label comparison

function tests for illegal incoming data flows, i.e. data flows arriving at an

input pin. We assume that only considering incoming data is sufficient be-

cause all particular analyses presented in this chapter only consider incoming

data flows. Outgoing data flows, i.e. data flows leaving an output pin, are not

considered and software architects cannot write constraints for outgoing data.

Testing outgoing data flows for confidentiality violations is counter-intuitive:

If the node must not access the outgoing data item, it is likely that the node

also was not allowed to access the incoming data items used to create the

outgoing data item in the first place. If the node produces data, which it is

not allowed to access, it is questionable how the node actually produced this

data item. It is more likely that the intention of a constraint on outgoing data

is to limit the data, which a node can inject into the system. However, such a

limitation targets integrity rather than confidentiality.

Focus on confidentiality All presented analyses focus on confidentiality,

which is also the focused security objective of this thesis. However, the

confidentiality mechanisms usually also provide means for enforcing integrity.

We demonstrated how an analysis definition can consider integrity aspects in

the DAC analysis for write violations in Section 6.2.2.1 on page 100. Therefore,

we are positive that the analysis definition can also capture integrity aspects of

the confidentiality mechanisms. However, profound research on considering

other security objectives such as integrity is not in the focus of this thesis

but left to future work.
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Confidentiality requirements in logic program The extended DFDs focus

on representing relevant information about data and nodes via labels. The

confidentiality requirements are encoded in the label comparison function.

If comparing labels is not sufficient to represent the confidentiality require-

ments, security experts can provide additional information. However, security

experts can only provide this information via additional clauses in the logic

program. There are no dedicated, tailored models to represent the require-

ments. We do not see this as a crucial limitation because it is always possible

to create a metamodel for representing the requirements. An automated

mapping can then transform the requirements into the additional clauses in

the logic program.

No state or time in analyses The DFD semantics do not provide a notion of

state or time. Therefore, analyses cannot refer to a certain state and cannot

build temporal relations. However, this would be necessary to represent

specific aspects of confidentiality mechanisms such as the revocation of rights

in DAC or changing assignments within RBAC sessions. Missing state and

time limits the expressiveness of analyses but it favors system models with

low complexity. Considering state or time would require more detailed system

specifications, which are more challenging to create for software architects.

The gaps in expressiveness only affect specific aspects of confidentiality

mechanisms but not the fundamental concepts.

No instance information in analyses The DFDs describe systems, actors and

data on a type level, which means they do not represent individual users or

data. Consequently, analyses cannot refer to individual actors or data, which

would be necessary to consider dynamic constraints in RBAC that affect role

assignments to individual users. This limitation is the result of a trade-off

between expressiveness and the required complexity for creating the DFDs.

It is questionable whether software architects actually have such detailed

information about individual actors and data while creating the software

architecture.
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6.8. Summary

In this chapter, we presented themeans for defining analyses andwe presented

particular analyses. Together, both meet the remaining open requirements

regarding the DFD semantics defined in Section 4.1 or at least demonstrate

that the semantics meet the requirements. We elaborated on the requirements

in Section 6.6.

The analysis procedure covered in Section 6.1 specifies the interaction be-

tween a security expert, a software architect and automated tooling. Security

experts provide reusable characteristics, behaviors and a label comparison

function. Software architects bind these elements to system elements in

the software architecture to enrich the architecture by information relevant

for confidentiality. The automated tooling maps the enriched software ar-

chitecture and the label comparison function to a logic program based on

the mapping described in Section 5.2.2. Executing the query, i.e. the label

comparison function, yields violations.

Representing particular analyses in terms of labels, label propagation and label

comparison functions requires security expertise. We illustrate how to define

analyses for common information flow and access control mechanisms in

Section 6.2. Thesemechanisms can be extended by encryption as an additional

option to protect information, which we describe in Section 6.3. Combining

multiple confidentiality mechanisms, and therefore also the corresponding

analyses, can provide improved protection of confidentiality. We describe

how to integrate multiple analyses as part of Section 6.4.

To support software architects in defining confidentiality analyses, we in-

troduce a DSL, which does not require expertise in logic programming, in

Section 6.5. The DSL sacrifices expressiveness compared to label comparison

functions specified by logic programming in favor of comprehensibility and

low initial learning effort. Constraints specified in the DSL are mapped to a

query to the logic program, which can then be used to identify violations.

The major assumption, which we discuss in Section 6.7, is that only incoming

data flows are relevant for detecting confidentiality violations. We justify

this assumption by the analyses for the most common information flow and

access control mechanisms. Major limitations also discussed in Section 6.7

are that analyses cannot refer to state, time or instance level information.

This limits expressiveness regarding some specific aspects of confidentiality
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mechanisms. We do not consider this limitation crucial because the aspects,

which we cannot express, only represent a small amount of aspects within the

respective confidentiality mechanisms and because information for creating

detailed models containing state, time and instances cannot be expected to

be available while creating the software architecture.
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The DFD syntax and semantics described in Chapter 5 and the DFD analyses

described in Chapter 6 provide powerful means to analyze DFDs for violations

of confidentiality requirements. However, the restriction to DFDs as ADL is

too limiting for software architects because they often use other ADLs as a

survey on the use of ADLs [Ozk18] shows. Therefore, we provide guidelines

on how to integrate the DFD-based analyses into existing ADLs.

The integration guidelines in Section 7.1 introduce the role of a tool engineer

and provide him/her with a process for extending an existing ADL. We refer

to this process as integration procedure. To demonstrate that the procedure

is applicable to ADLs, which use communication based on control flows,

and to ADLs, which use communication based on data flows, we apply the

procedure to the Palladio ADL in Section 7.2. The Palladio ADL [Reu+16]

uses communication based on control flows but can also make use of data

flows with a recent extension [WSK20]. By applying the procedure to a subset

of Palladio, which uses control flows, and to another subset of Palladio, which

uses data flows, we can show the applicability to both types of ADLs. In

addition, we show how to make the DSL for formulating custom analyses

usable with the ADLs. The integration guidelines as well as the applications

to Palladio are based on existing publications [SHR19; Sei+21]. In contrast

to our previous publications, we detail the descriptions and provide more

fine-grained guidelines.

Eventually, we show that the integration guidelines meet the requirements

for these guidelines in Section 7.3. We discuss assumptions and limitations in

Section 7.4 and summarize the chapter in Section 7.5.
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7.1. Integration Guidelines

The fundamental idea to realize the integration of the DFD analyses into ADLs

is to map architectures given in the ADL to a DFD and reuse the analysis

capabilities presented in Chapter 5 to identify confidentiality violations. The

approach is beneficial because the existing analysis framework as well as the

analysis definitions for DFDs can be reused. The prerequisite for defining

the mapping between ADL and DFD is that the ADL provides all domain

concepts, which are necessary to define the DFD. It can be necessary to

extend the existing ADL to bridge potential gaps by adding missing concepts.

The DSL for defining constraints can be reused as well but it has to be adjusted

to comply with the terminology of the ADL. In the following, we explain

these steps of the integration in more detail.

We introduce the tool engineer role, which is responsible for executing the

integration procedure illustrated in Figure 7.1. The first activity is to compare

the domain concepts, which are available in the ADL, with the essential do-

main concepts for conducting DFD-based analyses. For instance, descriptions

of users are one essential domain concept. Next, the tool engineer addresses

the identified missing concepts by an ADL extension. A missing concept is a

concept, which is required for confidentiality analyses but is not available

in the ADL, i.e. the ADL does not provide the required information. The

comparison of existing with required concepts lowers the amount of neces-

sary changes in the ADL and increases reuse (R3.3). The resulting extended

ADL provides concepts to represent all information required for creating a

DFD including confidentiality aspects. Based on the extended ADL, the tool

engineer creates a mapping to a DFD. After this step, software architects can

map architectures given in the ADL to DFDs and can then use the existing

analysis capabilities for DFDs. Reusing the analysis framework for DFDs

supports the tool engineer in creating an analysis framework for the ADL,

which is as powerful as the analysis framework for DFDs (R3.4). This means

software architects can analyze architectures given in the extended ADL for

the same confidentiality violations as they already can for DFDs. To formulate

custom analyses, software architects need an adjusted DSL for formulating

analyses. The tool engineer creates a new so-called constraint DSL, which

only uses concepts from the extended ADL. The DSL for the ADL is based on

the DSL for DFDs. The DSL together with the mapping allows the architect

to model and analyze architectures without knowledge about DFDs and logic

programming (R3.5 and R2.5). In conclusion, the integration procedure yields
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Figure 7.1.: Overview on integration procedure given as BPMN diagram.

an extended ADL, a mapping form the ADL to a DFD and the constraint DSL.

In the following, we give more details on the analysis procedure, the essential

concepts and the steps of the integration procedure.

Software architects can conduct analyses in a similar way as for DFDs after the

tool engineer has applied the integration procedure to an existing ADL. The

analysis procedure shown in Figure 7.2 is an extended version of the analysis

procedure for DFDs, which we presented in Section 6.1. The definition of

analyses is still the task of the security expert and the activities to be done

by the software architect are also the same as for DFDs: he/she has to define

the system, might define a custom constraint and has to adjust the system in

case of identified violations. The only difference in the analysis procedure

is that the tooling has to carry out two mappings: First, the tooling maps

the architecture given in the ADL to a DFD. As a result, the step produces a

DFD as well as a trace, which links elements from the architecture to newly

created elements in the DFD. Second, the tooling maps the DFD to a logic

program. As a result, the step produces a logic program as well as a transitive

trace, which links elements from the architecture to elements in the newly

created logic program. After these two mappings, the remaining analysis

procedure is the same as for DFDs. If the software architect has defined a
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custom constraint, the tooling maps the constraint to a label comparison

function. The mapping now uses the transitive transformation trace because

the architect used elements from the architecture to define the constraint

instead of DFD elements. Afterwards, the tooling runs the label comparison

by propagating labels and comparing the labels using the comparison function.

The software architect uses the detected violations to adjust the system. The

benefit of this procedure is that we can reuse most of the existing tooling as

well as existing analyses. The software architect does not have to be aware

of the DFD or even logic programming because the tooling does all steps

involving DFDs or logic programming automatically without intervention of

the software architect. Consequently, the analysis of a modeled architecture

can be fully automated (R2.7).

Before we give details on the individual activities of the integration procedure,

we collect the essential concepts for deriving a DFD from an architecture given

in anADL. First of all, the ADL has to providemeans for describing processing

steps (I1) and communication between these steps (I2). These concepts are

necessary to derive the system structure consisting of processes and data

flows. The processing steps can be given as coarse-grained components or

fine-grained activities. The communication can be calls, exchanged events

or exchanged data. We do not restrict the communication paradigm here as

requested by the requirements to support ADLs using control flows (R3.1) as

well as ADLs using data flows (R3.2). A notion of stores, e.g. by describing

databases or filesystems, is helpful to recognize stores and recreate them in

the DFD but this is not essential. To derive actors, a notion of a user (I3)

and his/her interaction with the system (I4) is necessary. Users are crucial

because they start and terminate data flows. Covering their interaction

with the system is necessary to determine the data flows from and to the

users. The concepts up to now represent the DFD structure. ADLs usually

already provide these concepts because it is essential to describe the structure

and behavior of the architecture. To summarize, the following concepts are

essential for representing the DFD structure:

I1) processing steps

I2) communication between processing steps

I3) users

I4) user activities
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Figure 7.2.: Overview on analysis procedure for extended ADL given as BPMN diagram (gray

elements are already part of the DFD analysis procedure).

The ADL has to contain concepts to represent information relevant for ex-

pressing and analyzing confidentiality. The properties of nodes (I5), which

are relevant for confidentiality, have to be part of the ADL. It is not important

whether these properties are predefined, given by particular node types or

encoded in textual annotations as long as the used modeling mechanism

allows to represent discrete values. In the analysis definitions presented in

Section 6.2, the properties of nodes were essential to detect violations in the
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label comparison. Besides properties of nodes, properties of data are the other

input to label comparisons. The ADL has to provide concepts for representing

initial properties of data (I6) as well as the effect of data processing on data

properties (I7). Both concepts are essential for executing the label propaga-

tion because the propagation requires initial labels as well as propagation

functions. Again, it does not matter whether the modeling mechanism uses

predefined behaviors or flexible means for representing the behavior as long

as the mechanism can describe the effect on data properties. Together, these

three concepts provide the confidentiality-specific information for the DFD.

To summarize, the following concepts are essential for representing the DFD

structure:

I5) node properties

I6) initial data properties

I7) effect of data processing

In the following, we describe the individual activities of the tool engineer

within the integration procedure inmore detail. While executing the activities,

he/she uses the previously described information about essential concepts to

reason about necessary extensions.

Identify Missing Concepts In order to identify the missing concepts, the tool

engineer looks for the previously mentioned essential concepts I𝑛 but he/she

also captures other concepts, which can represent equivalent information

or at least a part of the required information. In particular, the parts about

communication, users, behavior and annotation mechanisms are of high in-

terest. Often, concepts for representing the structure, behavior and user are

available but the annotation of properties as well as the behavior descrip-

tion regarding such properties is missing. The tool engineer compares the

identified concepts and the essential concepts I𝑛. An ADL concept matches

an essential concept if it provides at least the information required by the

essential concept and the meanings of the concepts are not contradicting. For

instance, if a concept describes a forbidden data flow, it provides information

about data flows but does not have the same meaning as a data flow in a

DFD. The concept can still be useful but further investigations on how to

reuse the concept in an ADL extension are necessary. If an essential concept

is missing, the tool engineer adds it to the list of missing concepts. If there

are concepts in the ADL, which partially represent an essential concept, the
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essential concept is still missing but the identified partial match helps in

building the ADL extension in the next step. The result of the activity is a

list of missing essential concepts in the ADL.

Extend ADL The tool engineer has to extend the modeling language, i.e. the

ADL, but also the corresponding architecture development process. To extend

the modeling language, the tool engineer uses the list of missing concepts

as well as the ADL concepts, which partially represent required information.

The challenge in extending the ADL is to keep the introduced modeling mech-

anisms consistent to existing modeling mechanisms. A modeling mechanism

is a way of representing information in an ADL. For instance, in order to

model properties of nodes, the tool engineer can introduce strongly typed

characteristics as used in the DFD or he/she can also add free text annotations

to the elements. If the ADL already uses free text specifications in several

places, it is reasonable to stick to this modeling mechanism to create a con-

sistent modeling language. If the ADL does not provide means for specifying

additional information at all, it is reasonable to choose the modeling mech-

anism, which matches the mechanisms used in the DFD. The main reason

to reuse DFD mechanisms is to ease the mapping between the ADL and the

DFD. Because the software architect is not aware of a particular mechanism

for representing flexible annotations such as node properties yet, it does not

matter to him/her, which modeling mechanism the tool engineer uses. The

overall goal is to introduce as less new concepts and modeling mechanisms

as possible but as much as necessary. To extend the modeling process, the

tool engineer has to define the responsibilities of roles for creating model

elements that represent the essential concepts and he/she has to specify when

confidentiality analyses shall be conducted. If the modeling process for an

ADL already specifies roles, the tool engineer tries to reuse the existing roles.

Usually, there are roles for specifying the structure, behavior and interaction

of users with the system. Often, it is necessary to introduce a security expert,

who can specify the analysis definition as described in Section 6.1. If the ADL

is already used for quality analyses, it is reasonable to conduct confidentiality

analyses together with other quality analyses. If such an activity is not avail-

able, the tool engineer has to introduce it in the existing modeling process.

The result of the activity is an ADL extension of the modeling language as

well as of the corresponding modeling process.
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Define Mapping to DFD The tool engineer uses the knowledge about the

modeling concepts in the ADL and the DFD to define a mapping from the

ADL to the DFD. The mapping of communication to data flows is not straight

forward because not all ADLs natively support or use data flows. Instead,

the tool engineer has to identify data flows from existing communication

and has to map these implicitly specified data flows to data flows in the DFD.

Because the analyses operate on DFDs, the tool engineer cannot always map

all aspects of all ways of communication. We discuss these limitations in

Section 7.4. The mapping of the remaining concepts is simpler because there

is a high chance that the semantics of the concepts match well after the ADL

has been extended. The result of the activity is a mapping description, which

can be executed in a fully automated way.

Create Constraint DSL The tool engineer can reuse the constraint DSL as

presented in Section 6.5 to a large extent. He/she has to replace the DFD

concepts with ADL concepts. Especially, this affects the concrete syntax

as well as the type and identity selector in the abstract syntax. The type

selector refers to DFD node types but ADLs usually use other types of nodes.

Therefore, the type selector has to refer to the new types. Because the

information, which uniquely identifies nodes, is different for various node

types, the identity selector also has to be changed. The concrete syntax uses

DFD terminology such as the term node. The tool engineer has to replace

these terms. In addition to the syntax, the mapping from the DSL to a logic

program also has to be changed. Instead of resolving references to elements

by looking up the trace from the DFD to the logic program, the mapping

now has to consider the trace from the ADL to the DFD first. Thereto, the

tool engineer creates a transitive trace that supports looking up identifiers

in the logic program based on ADL elements. The result of the activity is an

adjusted constraint DSL including an adjusted mapping procedure to a logic

program.

7.2. Integrating DFD Analyses with Palladio

In this section, we apply the integration procedure resulting from the inte-

gration guidelines to the ADL Palladio [Reu+16]. We apply the integration
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procedure to illustrate the guidelines by an example in order to foster compre-

hensibility and also to demonstrate applicability. In addition, we demonstrate

that the integration guidelines meet the requirements for the integration

guidelines, which we defined in Section 4.1.3. In particular, we show that

the resulting analysis framework for the ADL meets all requirements for the

DFD-based analysis framework (R3.4), which we defined in Section 4.1.2.

We decided to use Palladio because it is an representative example for an

ADL, it has been used before to predict quality properties of software ar-

chitectures and it supports control flows as well as data flows. Palladio is

representative because it shares fundamental concepts with many other ADLs

such as components, defined interfaces and call-and-return communication.

According to Ozkaya [Ozk18], Palladio considers all viewpoints found to

be relevant for describing architectures, which means the ADL has good

expressiveness. In addition, Palladio is used in practice according to an in-

terview of practitioners [Mal+13]. Because Palladio is a representative ADL,

the insights from applying the integration guidelines to it are also valid for

other ADLs. Palladio focuses on essential concepts for predicting quality

properties of software architectures. This is beneficial to reduce the overhead

while applying the integration guidelines. In contrast, UML, which is used

more often in practice, contains many different ways of expressing certain

structures or behaviors. The tool engineer has to consider all different ways

of expressing architectural aspects, which increases the effort for mapping the

architecture to a DFD. From the perspective of a researcher, this additional

effort does not pay off because it does not provide additional insights from

applying the integration guidelines. It is realistic to assume that users of

Palladio are interested in additional quality analyses because it already has

been designed and extended to support various quality properties such as

performance [BKR09], reliability [Bro+12] or maintainability [BSK15] in the

past. Therefore, integrating confidentiality analyses in Palladio is a realistic

application scenario. With the recent Palladio extension called Indirections
[WSK20], Palladio supports communication via data flows in addition to con-

trol flows. An ADL supporting both communication paradigms is beneficial

because this lowers the effort for demonstrating the integration guidelines

for control flows (R3.1) and data flows (R3.2).

In the following, we describe the application of the integration guidelines

to the subset of Palladio, which uses control flows in Section 7.2.1, and to

the subset of Palladio, which uses data flows, in Section 7.2.2. For both

157



7. Integrating DFD Analyses in Architectural Description Languages

applications, we use Palladio 5.1
1
. The last step of adjusting the DSL for

formulating constraints does not depend on the communication paradigm,

so we describe this step together for both previously mentioned integrations

in Section 7.2.3.

7.2.1. Call and Return Communication

We demonstrate application of the integration guidelines for the subset of the

Palladio ADL, which models systems based on control flows. We structure

the description by the steps of the integration guidelines, which we described

in Section 7.1: In Section 7.2.1.1, we identify the concepts, which are missing

in the ADL. We bridge the identified gaps by an ADL extension, which

we describe in Section 7.2.1.2. The mapping of architectures given in the

extended ADL to an architecture given in an extended DFD is covered in

Section 7.2.1.3.

7.2.1.1. Identify Missing Concepts

We identify concepts (I1–I7), which provide required information, based on

publications on Palladio [Reu+11; Reu+16] as well as based on the Palladio

metamodel [Pal21b]. We structure the discussion by the concepts.

Processing Steps (I1) describe the data processing excluding its effect on

data. The effect is another required piece of information to be discussed later.

In Palladio, data is exchanged via parameters in the control flow [Reu+16,

pp. 263]. Parameters are sent when calling a service and received when a

called service returns. Therefore, to identify processing steps, it is necessary

to consider the ADL elements affecting the control flow as well as elements

affecting the parameters. Various elements of the ADL work together to

specify the control flow: Interfaces specify the services, which can be called

[Reu+16, p. 45]. Components can provide interfaces, i.e. offer the services

described in the interfaces, and can require interfaces, i.e. request services

1 https://web.archive.org/web/20220129154253/https://sdqweb.ipd.kit.edu/wiki/PCM_

5.1

158

https://web.archive.org/web/20220129154253/https://sdqweb.ipd.kit.edu/wiki/PCM_5.1
https://web.archive.org/web/20220129154253/https://sdqweb.ipd.kit.edu/wiki/PCM_5.1


7.2. Integrating DFD Analyses with Palladio

described in the interfaces [Reu+16, pp. 47]. Instances of components, so-

called Assembly Contexts or short Assemblies, can be wired based on the

provided and required interfaces [Reu+16, pp. 49]. The resulting network

of assemblies builds the overall system, which provides interfaces in order

to offer services to users [Reu+16, p. 50]. This means that starting from a

user, the wired assemblies together with the parameters and return values

of the called services define the control flow given by the structure of the

software system. In addition, there is an abstract description of the service

behavior for every provided service of a component, which is called Service-
Effect Specification (SEFF) [Reu+16, pp. 53]. Within such a SEFF, a sequence

of actions describes the behavior. The most important action affecting the

control flow is a call action, which calls a service from a required interface

[Reu+16, p. 102]. Apart from that, there are other actions such as branching

actions, which also affect the control flow [Reu+16, p. 100]. This means that

the actions in a SEFF define the control flow within the component as well

as the control flow between the corresponding component and potentially

called components. To summarize, the ADL already provides model elements

to describe data processing activities, which are components, assemblies,

SEFFs and actions within SEFFs. Therefore, the information to represent I1 is

available.

Communication between Processing Steps (I2) describes what data individ-

ual processing steps exchange. As already explained as part of the discussion

of I1, the wiring of assemblies as well as the call actions in the SEFFs define

the paths, over which data is exchanged. Call actions send data to the called

service via parameters and receive data from a called service via the return

value. The data to be exchanged is defined by the parameters as well as

the return values. Because the communication is done via call-and-return,

it is also clear, that all parameters have to be available when starting the

communication, i.e. doing the call, and the return value has to be available

when ending the communication, i.e. the call is returning. This covers all

information required to describe the communication between processing

steps. Therefore, the information to represent I2 is available.

Users (I3) describe the external actors, i.e. actors outside the system. In

Palladio, there are dedicated usagemodels to describe external actors and their

behavior. Within these models, there are usage scenarios, which describe the
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behavior of a group of actors. Because the model does not contain information

about individual actors but only about the group of actors, this description

represents a type of actor [Reu+16, pp. 56]. It is possible that there are multiple

usage scenarios, which actually describe different behaviors of the same type

of actor. However, the usage model does not provide means to group these

usage scenarios. Therefore, every usage scenario can be seen as an individual

type of actor. This covers all information to identify users and external actors.

Therefore, the information to represent I3 is available.

User Activities (I4) describe the data processing done by external actors.

As explained while discussing I3, the usage scenarios in the usage models

describe the behavior of external actors. The usage scenarios consist of a

sequence of actions [Reu+16, p. 56]. There are call actions as well as branch

actions, which affect the control flow [Reu+16, pp. 103]. Call actions can

call services provided by systems and the system delegates the call to the

assembly, which provides the service. External actors use parameters to

pass information to the system and use return values to receive information

from the system. Branch actions introduce conditional executions and can

also affect the control flow. The information provided by the usage scenario

regarding the data processing activities of external actors is equivalent to the

information provided by the SEFFs regarding the data processing activities

of components. Therefore, the provided information is sufficient, i.e. all

information to represent I4 is available.

Node Properties (I5) focus on node properties, which affect confidentiality,

i.e. which are used to derive confidentiality properties of data or to identify

violations of confidentiality requirements. Palladio provides two ways of spec-

ifying properties of system parts: deployment information and component

parameters. Deployment information is specified by allocating an assembly

on a node in the resource environment. Every assembly has to be transitively

deployed on a node [Reu+16, p. 58]. Transitively means that an assembly can

be nested and is, therefore, deployed on the same node as the nesting assembly.

Component parameters introduce variables to components. A variable can

hold multiple variable characterizations, which describes the properties of

the variable and, therefore, also the properties of the component [Reu+16, p.

107]. The characterizations are limited to five types, which describe the value,

byte size, number of elements, structure and type of the variable [Reu+11,
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p. 102]. The variable characterizations cannot represent all node properties,

which affect confidentiality. For instance, describing the clearance of a node

is not possible without changing the semantics of an existing characterization

type, e.g. by encoding the clearance level in the characterization describing

the structure of a variable. Therefore, concepts for describing properties of

nodes, which focus on confidentiality, are still missing to fully represent I5.

Initial Data Properties (I6) define the properties of data when it is created.

Creating data when only considering control flows in Palladio means that

a parameter or return value is defined and it does not refer to other data in

order to derive properties. In Palladio, parameters are created when defining

a call action and return values are created when defining a so-called Set-
VariableAction [Reu+16, pp. 263]. Palladio specifies properties of parameters

and return values in terms of variable characterizations, which we already

discussed for I5. The characterizations are limited to five types of characteris-

tics, which cannot cover all information, which is relevant to reason about

confidentiality. Besides constants and logical connectors, the expressions to

specify the values of the characterizations can also refer to the characteriza-

tions of other variables, i.e. return values of previous calls or parameters of

the call to the provided service. Encoding the initial properties of data into

the five predefined characterization types could be possible but this violates

the intended semantics of the characterization types and does not guaran-

tee type-safety anymore. Therefore, a type-safe way of defining arbitrary

variable characterizations, which are not limited to a predefined set of five

characterization types, is missing to fully represent I6.

Effects of Data Processing (I7) describe how data processing steps affect

the properties of data. In Palladio, data, i.e. parameters and return values,

have variable characterizations, which describe the properties of data. As

already discussed for I6, these characterizations can be defined in call ac-

tions and actions for setting variables. To define the value of one of these

characterizations, so-called stochastic expressions are used [Reu+16, p. 103].

Stochastic expressions define the values of characterizations and can refer

to other characterizations to describe the propagation of data as well as the

effect of data processing on the data properties. However, the restriction to

the five predefined characterization types still applies. Therefore, a type-safe

way of defining arbitrary variable characterizations, which are not limited to a
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predefined set of five characterization types, is still missing to fully represent

I7.

7.2.1.2. Extend ADL

We have to extend the development process for creating and analyzing the

software architecture and we have to extend the ADL to support the missing

concepts.

The extension of the process for modeling and analyzing the software archi-

tecture is rather small: Palladio already defines the role of a quality analyst
[Reu+16, p. 205], who supports the other roles involved in the development of

the architecture, provides quality-specific information and conducts quality

analyses. The responsibilities of the previously defined security expert for
DFDs match this role. In our context, the quality analyst creates the analysis

definitions and runs the analyses. The existing roles defined for Palladio (soft-

ware architect, component developer, system deployer and domain expert)

[Reu+16, pp. 12] bind the confidentiality primitives, i.e. characteristics and be-

haviors, to the Palladio elements. Please note that the existence of a dedicated

quality analyst role does not imply that creating a software architecture and

analyzing the quality properties have to be done by two dedicated persons.

The person having the role of a software architect can also (partially) have

the role of a quality analyst, which explicitly includes running analyses.

We identified three missing concepts, which we have to introduce in the

Palladio ADL. The missing concepts are node properties (I5), initial data

properties (I6) and effects of data processing (I7). In the following, we explain

the extension of the Palladio ADL by these concepts. Because the syntax of

Palladio is specified as a metamodel, we describe the extensions as metamodel

extensions.

In DFDs, we used characteristics to describe properties of nodes (I5). First

of all, it is necessary to define what a node means in the context of the

Palladio ADL. From a structural point of view, the assemblies, i.e. the com-

ponent instances, are the smallest unit of composition in the architecture.

These assemblies are deployed on hardware resources, the so-called Resource-
Containers. The wired network of assemblies builds the system. All of the

mentioned model elements can be seen as nodes, which can have different

properties. However, defining properties of the whole system actually means
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<<Stereotype>>
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Figure 7.3.: Extension of Palladio metamodel to capture properties of nodes given as UML class

diagram. Light gray elements are already part of Palladio, dark gray elements are reused elements

of the DFD syntax and non-filled elements are newly introduced elements.

defining properties, which apply to all parts of the system. Such properties

have the character of global properties, which can also be represented in the

confidentiality requirements. Therefore, only considering assemblies and re-

sources as owners of properties is sufficient to cover all non-global properties

of nodes within the system. The only elements, which can be classified as

nodes outside of the system, are users. Users can also have properties, so it is

reasonable to also consider them in the extension for node properties.

Because Palladio does not provide flexible annotations of node properties or

flexible definitions of properties and property types yet, we have to introduce

a completely new concept. Therefore, we can reuse the DFD parts, which de-

scribe characteristic types and characteristics, without breaking with existing

modeling conventions. To assign these characteristics, we define the stereo-

type as illustrated in Figure 7.3. A stereotype is an extension mechanism

known from UML [Obj20, pp. 252], which allows to extend a UML model

element by additional attributes or references. EMF Profiles [Lan+12] pro-

vide stereotypes for the Eclipse Modeling Framework (EMF) [Ste09], which

Palladio uses as meta-language to define its metamodel. The stereotypes of

EMF Profiles are one of the suggested extension mechanisms for Palladio

[HSR21]. The meaning of the stereotype visualized in Figure 7.3 is as follows:

The stereotype has a reference to multiple characteristics. The stereotype can

be applied to the metamodel elements Usage Scenario, Resource Container and
Assembly Context. When applying the stereotype, the metamodel elements are

virtually extended by an additional reference to the characteristics. Therefore,

instances of the metamodel elements can refer to characteristics, which de-

scribes their properties. The three metamodel elements represent the relevant

nodes as discussed in the paragraph before. Therefore, the extension provides

the missing concept of node properties (I5).
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Palladio already provides means to describe initial data properties (I6) and

effects of data processing (I7) but the types of properties are fixed and can,

therefore, no cover the properties, which are required to express and ana-

lyze confidentiality. Nevertheless, we aim to reuse the modeling concepts

and extend them. The existing modeling concepts are the definition of char-

acteristics of sent parameters and received return values. The available

characteristics in Palladio are not flexible or extensible. In our extension, we

aim to provide modeling concepts to use the characteristic types and char-

acteristics as defined for DFDs. This is reasonable because we already use

these characteristics and characteristic types for describing node properties.

Additionally, there does not exist any flexible way of defining characteristics

in Palladio yet. Therefore, we do not break with existing modeling concepts

for characteristics.

The Palladio extension to cover data properties and the effect of data prop-

erties is illustrated in Figure 7.4. The existing model element to capture

characteristics of parameters and return values is the Variable Usage. It con-
tains an Abstract Named Reference, which represents the name of the parameter

or return value to be characterized. An actual characteristic is specified by a

Variable Characterization, which is contained in the Variable Usage. In order

to extend the usable characteristics, we introduce the new model element

Confidentiality Variable Characterization, which is a subclass of a Variable Charac-
terization. The benefit of this inheritance relation is that the new element can

be used together with the old model elements. Therefore, existing software

architectures do not become incompatible but only have to be extended by

newmodel elements. In contrast to the old characterization, the new Confiden-
tiality Variable Characterization defines characteristics based on characteristic

references and terms as already known from the DFD extension described

in Section 5.1.2. More precisely, such a characterization is equivalent to an

Assignment in a DFD: a term on a right-hand side assigns a boolean value to

a boolean variable represented by a characteristic reference on the left-hand

side. If the boolean value is true, the label, i.e. the tuple of characteristic type

and literal, is available on the variable specified in the corresponding variable

usage. Most of the terms can be reused from the DFD syntax. Only the Dat-
aCharacteristicReference (see Figure 5.5 on page 56) has to be replaced because

there are no pins in Palladio. Instead, we use a Named Enum Characteristic
Reference, which uses a name instead of a pin to refer to characteristics of

other parameters or return values. The Lhs Enum Characteristic Reference does

not require a name because it refers to a characteristic of the variable, i.e.
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Figure 7.4.: Extension of Palladio metamodel to capture stores and properties of data given as

UML class diagram. Light gray elements are already part of Palladio, dark gray elements are

reused elements of the DFD syntax and non-filled elements are newly introduced elements.

parameter or return value, which is specified by the Variable Usage. It must

only be used on the left-hand side of a Confidentiality Variable Characterization.
The extension fully provides the missing concepts for describing initial data

properties (I6) and effects of data processing (I7). By reusing parts of the

DFD syntax (definition of characteristic types, characteristics and terms), the

extension is small and streamlined with the extension for node properties.

All missing essential concepts are covered by the previously described ADL

extensions. However, the integration guidelines in Section 7.1 mention the

non-essential but helpful concept of a data store. The concept is non-essential

because it can be replaced by a node, which uses the behavior of a store.

However, having a dedicated element to represent a store is potentially more

comprehensible than replicating the behavior of a store. Therefore, we add

an Operational Data Store Component, which inherits from Basic Component.
Such a store has limited features compared to a regular component: The

store must only provide one interface and must not require an interface. The

interface must have exactly two operations. One operation takes a parameter

of a certain data type but does not return anything. This operation represents

an operation for adding data to the store. One operation takes no parameters

but returns data of the same data type as used in the other operation. This

operation represents an operation for reading data from the store. There

does not have to be a behavior specification for these operations, i.e. SEFFs,

because the behavior is always the behavior of a store. We elaborate on this

when defining the mapping to a DFD in Section 7.2.1.3.
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7.2.1.3. Define Mapping to DFD

The goal of mapping the architecture given in Palladio to a DFD is to make use

of existing DFD-based analyses. Consequently, the mapping does not have to

represent every aspect of the architecture but only the aspects required for

analyzing confidentiality. The mapping has to yield a DFD, i.e. the structure

given by nodes and data flows, the properties of nodes as well as the behavior

given as label propagation functions. In the following, we structure the

explanation of the mapping by these three parts of the DFD.

Prerequisite: Characteristic Types. In the following mappings, we always

assume that the characteristic types are available. This implies no limita-

tions or excluded manual work because we reuse the metamodel elements

for describing characteristic types and characteristics from the DFD syntax.

Therefore, a mapping of the characteristic types is not necessary.

Prerequisite: Unique Identifiers. In the descriptions of the mappings, we

use intuitive, short identifiers for elements for a sake of comprehensibility.

When realizing the mapping, such identifiers have to be unique to avoid

ambiguities. Because most model elements in a software architecture given

in Palladio already have unique identifiers, constructing unique identifiers to

be used in DFDs is possible. However, we do not describe this aspect because

this is rather a technical than a conceptual issue. Instead, we assume that

identifiers are unique in the following descriptions.

Additional Characteristic Types. Besides the characteristic types specified by

the security expert, we add two additional characteristic types, which we use

to represent information from the software architecture given in Palladio in

the DFD. Such information can be useful for formulating custom analyses that

refer to architectural information modeled in Palladio. The first information

is the containing architectural element. We represent this information in a

characteristic type, which we call Containing. For instance, an action in a SEFF
is contained in a component and an action in a usage model is contained in a

scenario behavior. We distinguish the containing elements Scenario Behavior
and Component. This information is useful for analyses that only look for

violations in the behavior of the user, for instance. Such analyses can select

nodes to consider by an applied label Scenario Behavior of the characteristic
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type Containing. We explain how we assign such labels to nodes when

describing the structural mapping of elements in the following. The second

information to represent by an additional characteristic type is call-related

information. We refer to this characteristic type by the name CallRole. A call

always consists of a sending and a receiving part. The called element receives

the call and returns the call. The corresponding characteristic type provides

means to describe the sending and receiving parts for the caller and the callee.

An analysis, which only detects violations caused by communication between

components, can make use of the resulting labels on nodes. We explain how

we assign such labels to nodes when describing the structural mapping of

elements in the following.

Structure: External Actors. In Palladio, software architects describe external

actors in usage models. Usage models consist of multiple usage scenarios. A

usage scenario describes a group of users, who interact with a system in the

same way. We interpret such a group of users as a type of user. Therefore, we

map each usage scenario to an external actor in the DFD. Figure 7.5 illustrates

this mapping for an excerpt of the user behavior in our running example.

The group of users described by the usage scenario performs all actions

described in the corresponding scenario behavior. Therefore, it is reasonable

to interpret all of these actions as actor processes, i.e. processes done by an

actor. Figure 7.5 illustrates actor processes by a dashed line between the

process and the actor, to whom the process belongs. We will explain the

remainder of the illustration when explaining the mapping of call actions.

Because the actor processes originate from the scenario behavior, we add a

label of the Containing characteristic type with the value Scenario Behavior
to all actor processes.

Behavior: External Actors. The external actors in the DFD do not own a

behavior definition because the mapping only yields external actors without

incoming or outgoing data flows. Instead, the behavior of actors is given by

the actor processes, which we derive from the actions of the actors. This

is not problematic because the actor processes are clearly related to the

corresponding actors and analyses can look for violations on actor processes

to identify violations of actors.
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<<Usage Scenario>>

User

<<ScenarioBehavior>>

<<EntryLevelSystemCall>>

find flights

EntryProcess

User find flights

User

ExitProcess

User find flights

...

...

criteria

flights

Figure 7.5.: Example of mapping usage scenarios and user actions from Palladio (left) to a DFD

(right).

Structure: SEFF A SEFF describes the behavior of a service in a component.

In a system, there can be multiple assemblies, i.e. component instances, which

use the same SEFF. A call always targets a SEFF of an assembly: A call from

an assembly can only target a service of another assembly, i.e. a SEFF of an

assembly. A call from a user targets a system service but the system directly

delegates the call to an assembly, which provides this service. A SEFF consists

of actions. Every action can make use of the parameters received via a call to

the SEFF. After all actions have been executed, the SEFF returns the return

value. It is important to represent this receiving of parameters and returning

of values because these actions can violate confidentiality requirements. To

represent the SEFF in a DFD, we map every SEFF to two processes: One

process receives the parameters and provides the parameters to processes

originating from actions within the SEFF. We refer to the process, which

receives parameters, as entry process. To recognized this process in the DFD,

we add a label of the CallRole characteristic type with the value SEFFEntry
to the process. One process receives the result value and provides the value

to the calling processes. We refer to the process, which provides the return

value to callers, as exit process. To recognized this process in the DFD, we

add a label of the CallRole characteristic type with the value SEFFExit to the

process. Because the SEFF is always part of a component, we add a label of

the Containing characteristic type with value Component to both processes.

If the service described by the SEFF does not receive parameters, we omit

the entry process. If the service described by the SEFF does not return a

value, we omit the exit process. Figure 7.6 illustrates this mapping. The
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<<Assembly>>

Airline

<<SEFF>>

findFlights

EntryProcess

findFlights

ExitProcess

findFlights RETURN

query query

Figure 7.6.: Example of mapping a SEFF from Palladio (left) to entry and exit processes in a DFD

(right).

SEFF findFlights of the airline is mapped to an entry and an exit process.

Because the service described by the SEFF receives a query as parameter, the

entry process receives query data via an input pin. For every received data,

i.e. input pin, there is one output pin, which provides the received data to

other processes, which originate from actions within the SEFF. The service

described by the SEFF of the airline returns a value. Consequently, the exit

process provides result data via an output pin. The mapping rules for deriving

the input pins of the exit process are discussed later. Because there can be

multiple component instances, i.e. assemblies, of the same component, there

can also be multiple instances of the same service. In addition, assemblies

can be nested. The example illustrated in Figure 7.7 demonstrates the nesting

of assemblies for the CreditCardCenter component. The component consists

of an instance of the CreditCardCenterLogic component and an instance of

the CreditCardCenterDB component. When an instance of the CreditCard-
Center component is called, the call is delegated to the CreditCardCenterLogic
assembly. To uniquely identify an instance of a component, a SEFF or any

action within a SEFF, the complete hierarchy of assemblies has to be given.

For instance, to uniquely identify the SEFF of the declassify service, we have

to know the assembly of the CreditCardCenter component as well as the

assembly of the CreditCardCenterLogic component. Therefore, we apply the

mapping rules described above to every tuple of a SEFF and an assembly

hierarchy. We map every tuple of assembly hierarchy and action within a

SEFF according to the descriptions in the following paragraphs.

Behavior: SEFF. The behavior of the entry and exit processes of SEFFs is

the forwarding behavior. An entry process of a SEFF owns one input pin

and one output pin for each parameter of the described service. The labels

169



7. Integrating DFD Analyses in Architectural Description Languages

<<Component>>

CreditCardCenter

<<Assembly>>

CreditCardCenterLogic

<<Assembly>>

CreditCardCenterDB

<<Component>>

CreditCardCenterLogic

<<Component>>

CreditCardCenterDB

<<Interface>>

CCDDB

add(ccd) : void

get() : ccd

<<Interface>>

CCC

declassify(ccd) : ccd

CCDDB

CCC

CCC

CCCCCDDB

CCDDB

Figure 7.7.: Example illustrating nested assemblies in the CreditCardCenter component.

of an input pin are directly copied to the corresponding output pin. The

forwarding behavior is appropriate here because data is not changed by just

sending it from a caller to a callee. An exit process of a SEFF owns one input

pin and one output pin. The labels of the input pin are directly copied to

the corresponding output pin. The forwarding behavior is appropriate here

because data is not changed by just sending it to a caller.

Structure: Data Stores. We introduced OperationalDataStores to the ADL to

mark a component as a data store. The store provides one interface containing

a service for adding data and one service for receiving data. We map the

corresponding SEFFs according to the mapping rules before, which yields

one entry process for the service to add data and one exit process for the

service to get data. The SEFFs of a data store are always empty because stores

have a fixed behavior that must not be changed. Instead of allowing actions

within the SEFFs, we create one Store in the DFD and add one data flow from

the created entry process to the store and one data flow from the store to

the created exit process. Figure 7.8 illustrates the mapping of the FlightDB
data store from the running example according to the mapping rules given

above. Because the data store component can be instantiated and nested

multiple times, we execute the described mapping for every tuple of data

store assembly and assembly hierarchy.

Behavior: Data Stores. The behavior of data stores is already given by the

data store in the DFD. The behavior of the entry and exit processes, which
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<<Assembly>>

FlightDB

<<SEFF>>

add

flight<<SEFF>>

get

FlightDB

EntryProcess

add

ExitProcess

get

flight

Figure 7.8.: Example illustrating the mapping of a data store in Palladio (left) to a store in a DFD

(right).

result from mapping an Operational Data Store to a DFD, is the forwarding

behavior as previously described for SEFFs.

Structure: Set Variable Actions. The SetVariableAction is an action used in a

SEFF to specify the result value. The result is returned when the sequence

of actions in a SEFF ends. Because the action consumes data and yields data

without further communication with other actions in-between, the behavior

of the action closely matches the semantics of a DFD process. Therefore,

we can map the action to a single process. We add a label of the Containing
characteristic type with value Component to indicate that the process is

contained in a component. Because a SetVariableAction can only occur in a

SEFF, we have to consider the nesting of assemblies. Therefore, we create

one process for every tuple of action and assembly hierarchy.

Behavior: Set Variable Actions. The behavior of the process resulting from

mapping the Set Variable Action depends on the Confidentiality Variable Charac-
terizations for the RETURN variable. Such characterizations are the counter-

part of assignments in DFDs and specify the labels of the output based on

labels of the inputs. The behavior of the process derived from the Set Variable
Action has one output pin as well as one input pin for every variable, i.e. data

from parameters or other actions, used within the variable characterizations.

The assignments of the behavior are created based on the Confidentiality Vari-
able Characterizations. Because we use the same terms as for specifying the

behavior in DFDs, the mapping is straight forward: A term of a certain type
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return flights
flights

RETURNquery
Assignments


RETURN.Classification.Low :=
query.Classification.Low & flights.Classification.Low


...


<<SetVariableAction>>

return flights

Output Characterizations

RETURN.Classification.Low := query.Classification.Low & flights.Classification.Low


...

Figure 7.9.: Example of mapping the behavior of a SetVariableAction (top) to the behavior of a

process (bottom).

in Palladio is mapped to a term of the same type in the DFD. The only dif-

ference is the mapping of Named Enum Characteristic References. The Named
Enum Characteristic Reference is mapped to a Characteristic Reference using

the same characteristic type and literals. Instead of the variable name, the

corresponding pin is used. In the example shown in Figure 7.9, the pins have

the same name as the variables in Palladio. Therefore, the concrete syntax

of the variable characterization looks the same as the concrete syntax of the

assignment in the behavior. However, the names in the assignments of the

DFD refer to pins instead of variables. The action in Palladio uses the query
and flights variables. Therefore, the DFD process has two input pins.

Structure: Call Actions. Calls are a concept of the control flow paradigm.

In Palladio, calls can occur in a scenario behavior or in a SEFF. The calls

in the scenario behavior originate from users and target services of the

system, which delegates calls to the responsible assemblies. The calls in SEFFs

originate from assemblies and target services of other assemblies. There is

no counterpart of calls in DFDs. However, parameters and return values

exchanged via calls can be seen as data to be exchanged. Therefore, a call

can be seen as a pair of processes: one process sends data (the parameters)

to another process and one process receives data (the return value) from

another process. Consequently, we map every call action to two processes

as illustrated in Figure 7.5. We refer to the process sending data as entry
process and to the process receiving data as exit process. We add a label of

the CallRole characteristic type with value CallSending to the entry process

172



7.2. Integrating DFD Analyses with Palladio

and label with value CallReceiving to the exit process in order to indicate

the role of the processes within the call-based communication. We add a

label of the Containing characteristic type with value Component to indicate

that the processes are contained in a component. If the call does not send

parameters, we omit the entry process. If the call does not receive a return

value, we omit the exit process. If a call action is placed within a SEFF, we

have to consider the nesting of assemblies, so we have to create the entry and

exit processes for every tuple of action and assembly hierarchy. We discuss

data flows derived from calls later.

Behavior: Call Actions. We define behaviors for the entry as well as the

exit processes. For entry processes, the variable characterizations of input

parameters are important to consider. There is one variable usage for every

input parameter of a call and each of these variable usages can contain

multiple variable characterizations. The entry process has one input pin for

every variable name, which is used in the variable characterizations of the

inputs of the call. There is one output pin for every parameter of the called

service. The assignments of the behavior are created based on the variable

characterizations as described for the SetVariableAction. For exit processes,
the variable characterizations of so-called output variables are important

to consider. A call action can define arbitrary output variables by multiple

variable usages. The variable characterizations within the variable usages

can refer to the return value of the called service but also to other variables or

parameters within the SEFF. The exit process has one input pin for the result

of the called service, potentially multiple input pins for other variables used

within the variable characterizations and one output pin for every defined

variable, i.e. VariableUsage. The assignments of the behavior are created based

on the variable characterizations as described for the SetVariableAction.

Structure: Data Flows between Services. We map calls to data flows if a

parameter or return value is exchanged via a call. When calling a SEFF of

an assembly, there is one data flow from the entry process of the call to the

entry process of the SEFF for every parameter of the service described by

the SEFF. Figure 7.10 illustrates the mapping of calls to data flows for the

declassification of credit card data in our running example. If the service

provides a return value, there is one data flow from the exit process of the

SEFF to the exit process of the call action. To identify the destination of a call,
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<<Usage Scenario>>
User

<<ScenarioBehavior>>

<<Assembly>>

CCC

EntryProcess

User declassify CCD

User

ExitProcess

User declassify CCD

ccd

RETURN

<<SEFF>>

declassifyCCDcall via


system

provided


role

return

EntryProcess

CCC declassifyCCD

ExitProcess

CCC declassifyCCD

...ccd

RETURN

<<EntryLevelSystemCall>>

declassify CCD

...

Figure 7.10.: Example of mapping a call action (top) to DFD processes (bottom).

we can follow the connections between required and provided interfaces of

the assemblies. The destination of a call is uniquely identified by the called

SEFF and the assembly hierarchy.

Structure: Data Flows between Actions. Data flows between actions in

usage scenarios or SEFFs occur by reading parameters, which have been

received via a call to the SEFF, or by reading so-called Variables, which other

actions define in Variable Usages. Therefore, we map every reading of these

variables to data flows between actions. The example shown in Figure 7.11

illustrates the mapping for the service of finding flights at the airline in our

running example. Reading parameters or variables is only possible within a

Variable Characterization, i.e. the Terms, which we introduced as an extension

of Palladio. To identify, which variables a process reads, we look for Named
Enum Characteristic References and extract the variable name. The resulting set

of variable names defines the required data. We add one data flow from the

process, which defines the variable, to the process, which uses the variable

in a characterization. The source of parameters, which have been received

from a call to the SEFF, is the entry process of the SEFF. The source of result
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values of calls is the exit process of a call action. In Figure 7.11, the return
flights action refers to the query parameter as well as the flights variable. The
use of the parameter is mapped to a data flow from the SEFF entry process

to the process representing the return flights action. The use of the variable
is mapped to a data flow from the exit process of the call action. In this and

all following examples, we use the variable name RETURN to refer to the

result of a call. This is also the suggested convention in Palladio
2
. The return

flights action defines the variable RETURN, which represents the result of

the call to the SEFF findFlights. In order to make the result, which the return
flights action defined, available to callers, we add a data flow from the return
flights action to the exit process of the SEFF. The exit process makes the result

available to the calling process. The call action call DB also uses a RETURN
variable but this variable refers to the result of the call to be done by the

action and not to the result of the currently executed SEFF. In consequence,

the exit process of the call action receives a data flow from the exit process of

the called SEFF. When mapping actions in SEFFs, we have to consider nested

assemblies. Therefore, we execute these mappings for all tuples of actions

and assembly hierarchies.

Node Properties. We extended Palladio by means to assign characteristics

to elements in the software architecture. The assigned characteristics rep-

resent the properties of nodes, which result from the structural mapping

explained before. Mapping the characteristics themselves is straight forward

because we use the same metamodel elements as the DFD syntax to represent

them. Therefore, mapping characteristics as well as characteristic types is a

simple one-to-one mapping. However, there are two aspects to be defined:

determining the effective characteristics and determining the covered nodes.

Determining effective characteristics is necessary because we can assign

characteristics to assemblies as well as to resources, which are organized in a

hierarchy. The hierarchy of assemblies is given by their nesting. Resources

are always the outermost elements because assemblies are allocated on re-

sources. If there are multiple characteristics using the same characteristic

type, a precedence rule is necessary to decide for an effective characteristic.

For instance, if a resource is cleared for low data but an assembly, which is

2 https://web.archive.org/web/20220119133503/https://www.palladio-simulator.com/f

ileadmin/user_upload/palladio-simulator/videos-screencasts/pcm_8_returnvalue.m

p4
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<<Assembly>>

Airline

<<SEFF>>

findFlights

EntryProcess

findFlights

ExitProcess

findFlights

return flights

flightsRETURN

<<ExternalCallAction>>

call DB

InputCharacterizations


Output Characterizations

flights.*.* := RETURN.*.*

ExitProcess

call DB

<<SetVariableAction>>

return flights

Output Characterizations

RETURN.Classification.Low :=

query.Classification.Low & flights.Classification.Low

...

query EntryProcess

call DB

Figure 7.11.: Example of mapping actions (top) to data flows (bottom).

allocated on the resource, is cleared for high data, the clearance levels clash.

To solve this conflict, we define the precedence of characteristics for the same

characteristic type in a way that always uses the characteristic of the model

element, which is nested the most. In the given example, the clearance of the

assembly would override the clearance of the resource because the assembly

is more nested than the resource. The precedence rules allow to define general

applicable characteristics but also allow to define exceptions. Determining

the DFD elements, which are covered by a characteristic, is simple: every

DFD element, which has been mapped from a Palladio element, which is

contained in the element having a characteristic, uses the characteristics of

the containing Palladio element. For the scenario behavior, this means that

the actor derived from the scenario behavior as well as all actor processes

derived from the call actions within the scenario behavior use the characteris-

tics of the scenario behavior. For SEFFs and actions within a SEFF, this means

that processes and stores derived from them use the effective characteristics,

which are determined based on the corresponding assembly hierarchy and

the resource container.
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Listing 7.1: Additional Prolog clauses to simplify accessing additional node properties.

1 isACallSending(N) :- nodeCharacteristic(N,’CallRole’,’CallSending’).

2 isACallReceiving(N) :- nodeCharacteristic(N,’CallRole’,’CallReceiving’).

3 isASEFFEntry(N) :- nodeCharacteristic(N,’CallRole’,’SEFFEntry’).

4 isASEFFExit(N) :- nodeCharacteristic(N,’CallRole’,’SEFFExit’).

5 containedInScenarioBehaviour(N) :-

nodeCharacteristic(N,’Containing’,’Scenario Behavior’).

6 containedInComponent(N) :- nodeCharacteristic(N,’Containing’,’Component’).

Additional Prolog Clauses. The previously described mapping rules map a

software architecture given in the Palladio ADL to a DFD. Later, the DFD is

mapped to a logic program. To ease using the node properties of the CallRole
and Containing characteristic types, we add the additional Prolog clauses

shown in Listing 7.1 to the result of the mapping to a logic program. The

clauses are shorthands for writing a nodeCharacteristic/3 clause and not

mandatory for analyses: Omitting these additional clauses would not lower

the expressiveness because it is always possible to replace the additional

clauses by the corresponding nodeCharacteristic/3 clauses.

7.2.2. Data-oriented Communication

We demonstrate the integration procedure for the Palladio ADL, which has

been extended by data flows as part of the Indirections project [WSK20]. We

structure the description by the steps of the integration procedure, which we

described in Section 7.1: In Section 7.2.2.1, we identify the concepts, which

are missing in the ADL. We bridge the identified gaps by an ADL extension,

which we describe in Section 7.2.2.2. The mapping of architectures given in

the extended ADL to an architecture given in an extended DFD is covered in

Section 7.2.2.3.

7.2.2.1. Identify Missing Concepts

We identify concepts (I1–I7), which provide required information, based

on publications on Palladio [Reu+11; Reu+16], a publication on Indirections
[WSK20] as well as based on the Palladio metamodel [Pal21b] and the meta-

model of Indirections [Pal21a]. We structure the discussion by the concepts.
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Users (I3) describe the external actors, i.e. actors outside the system. The

Indirections extension does not extend the usage model, which means it does

not introduce data flows for external users and their behavior. Therefore, the

usage scenarios, which we already discussed in Section 7.2.1.1, are still the

elements, which represent external users of systems in Palladio. Therefore,

the information to represent I3 is available.

User Activities (I4) describe the data processing of external actors. The

Indirections extension does not extend the usage model, which means it does

not introduce data flows for external users and their behavior. Therefore,

the call actions in the scenario behaviors, which we already discussed in

Section 7.2.1.1, are still the elements, which represent the behavior of users,

i.e. their data processing activities. Therefore, the information to represent I4

is available.

Processing Steps (I1) describe the data processing excluding its effect on data.

The effect is another required piece of information to be discussed later. The

Indirections extension introduces data channels to describe data processing

within systems. A data channel consumes data, processes data and yields data.

If a data channel can consume a certain data type, it provides a sink for this

data type. If a data channel can yield a certain data type, it provides a source

for this data type. Data channels are special types of components and have

to be instantiated to be used within the system. An instantiated data channel

is also called assembly. Connectors wire assemblies from sources to sinks.

The resulting network of data channel assemblies describes the structure of

data processing steps, i.e. their existence and their relations. Because the

Indirections extension does not introduce data flows for users, users still use

system services via calls. Therefore, there still have to be components, which

provide services. SEFFs still describe these services but a component can also

communicate with a data channel via sinks and sources for data. Components

can interact with data channels through these sources and sinks after they

have been instantiated and a connector between them has been created.

SEFFs contain additional actions to explicitly create data from parameters or

variables (CreateDateAction), to send data through sources to data channels

(EmitDataAction) and to consume data through sinks from data channels

(ConsumeDataAction). Because these actions are contained in a component

and a component can be instantiated, there are also multiple instances of these

178



7.2. Integrating DFD Analyses with Palladio

actions. Each of these action instances describes a data processing by either

creating or transmitting data. To summarize, the instances of data channels,

SEFFs and actions within SEFFs provide the processing steps. Therefore, the

information to represent (I1) is available.

Communication between Processing Steps (I2) describes what data individ-

ual processing steps exchange. As explained before, the instances of data

channels and components are connected, i.e. sources are connected to sinks

and required services are connected to provided services. These connections

between the assemblies specify the data, which can be exchanged between the

assemblies. For sources and sinks, the exchanged data type is made explicit.

For required and provided services, the exchanged data is given by the sent

parameters as well as by the return value. Within assemblies, i.e. between

actions of a SEFF, the exchanged data is given by the parameters and return

values, which are used to create a data item or which are sent or received.

Because a SEFF still describes a control flow, it is clear that used data has

to be available before executing an action. To summarize, the connections

between assemblies as well as the used data of actions provide all information

to describe the communication between processing steps. Therefore, the

information to represent I2 is available.

Node Properties (I5) focus on node properties, which affect confidentiality,

i.e. which are used to derive confidentiality properties of data or to identify

violations of confidentiality requirements. The Indirections extension does

not extend the annotation mechanisms for components, SEFFs, resources or

usage scenarios. Therefore, the limitations of representing node properties

already discussed in Section 7.2.1.1 still apply. This means that Palladio still

cannot express properties except for deployment information. The newly in-

troduced data channels provide means to add configurations to data channels.

A configuration entry can be any string. However, using these configuration

entries for representing node properties would differ from the intended se-

mantics of the entries, which is passing parameters to the behavior of the

data channel. Therefore, we do not consider the configurations as means to

express node properties. To conclude, Palladio and the Indirections extension
do not provide sufficient means to describe node properties. Therefore, the

information to fully represent I5 is not available yet.
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Initial Data Properties (I6) define the properties of data when it is created.

Data in Palladio are either variables within SEFFs, parameters or return

values. The Indirections extension additionally introduces data, which is

exchanged between sources and sinks. The properties of data in Palladio

are specified using characterizations, which are specified within the action,

which creates or transmits data. Data exchanged via sources and sinks either

originates from an action or from a data channel. The data properties of

data going through actions are specified by the Palladio characterizations.

The data properties of data going through data channels are specified by

the behavior of the data channel but the behavior also uses the Palladio

characterizations. These characterizations are limited to five predefined types

of characterizations. As already discussed in Section 7.2.1.1, this limitation is

too strict and prohibits expressing all data characteristics, which are necessary

to analyze confidentiality. Therefore, the information to fully represent I6 is

not available yet.

Effects of Data Processing (I7) describe how data processing steps affect the

properties of data. The processing effects implied by user behaviors, SEFFs

and actions are already covered in Section 7.2.1.1. The expressible effects

are limited by the five predefined types of characteristics, which are not

sufficient for analyzing confidentiality. The Indirections extension does not

prescribe how the behavior of a data channel is described but provides an

abstract metamodel element, which tool engineers have to implement. The

extension provides one implemented metamodel element for describing the

behavior, which uses Java code as description language. Obviously, Java code

is expressive enough to describe all processing effects on data properties

but the Java API of Indirections is focused on performance simulations and

extending the code would require introducing new concepts. Therefore, a

concept for describing the processing effect of data channels in terms of data

properties is still missing. To summarize, the information to fully represent

I7 is not available yet.

7.2.2.2. Extend ADL

We have to extend the development process for creating and analyzing the

software architecture and we have to extend the ADL to support the miss-

ing concepts. The Indirections extension does not extend the development
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process of Palladio but uses the process as it is. This means that the ex-

tension of the development process for Palladio using control flows, which

we already described in Section 7.2.1.2, is also applicable to Palladio using

Indirections. Therefore, we only describe the required extensions of the ADL

in this section.

We identified three missing concepts, which we have to introduce in the

Palladio ADL including Indirections. The missing concepts are node properties

(I5), initial data properties (I6) and effects of data processing (I7). In the

following, we explain the extension of the Palladio ADL by these concepts.

Because the syntax of Palladio is specified as a metamodel, we describe the

extensions as metamodel extensions.

To describe node properties (I5), we can reuse the extension, which we have

defined for the Palladio subset using control flows. The extension illustrated

in Figure 7.3 on page 163 introduces a stereotype, which is applicable to Usage
Scenarios, Resource Containers and Assembly Contexts. Because instantiated
data channels are also represented by Assembly Contexts, the extension already
considers the newly introduced data channels. Apart from the data channels,

there are no new metamodel elements, which need dedicated assignments

of node properties. Therefore, the already defined extension is sufficient to

represent node properties (I5).

Palladio uses characterizations to describe properties of data (I6). To circum-

vent the limitation to five predefined characterization types, we introduced

Confidentiality Variable Characterizations for the subset of Palladio, which uses

control flows. Figure 7.4 on page 165 illustrates the extension, which allows

to use the characteristic types and the expressions already known from the

DFD syntax. Palladio including Indirections also uses the characterizations

to specify properties of data in the newly introduced actions. Therefore, the

extension is also applicable here. The extension also already covers the effects

of data processing (I7) for all existing Palladio elements as well as all elements

of Indirections except for data channels. We will address data channels in the

next paragraph. The extension is sufficient to represent the properties of data

(I6) and the effects of data processing (I7), for all Palladio elements except for

data channels.

To represent the effects of data processing (I7) as well as data properties

assigned by data channels (I6), we have to specify the behavior of data chan-

nels. As already explained in Section 7.2.2.1, the Indirections only provide

means to specify the effects on performance for data channels by Java code or
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Figure 7.12.: Extension of Palladio metamodel to capture the data processing effect of data chan-

nels given as UML class diagram. Gray elements are already part of Palladio or the Indirections
extension and non-filled elements are newly introduced elements.

require a tool engineer to create alternative means. Because we do not want

to introduce alternative means, which are incompatible to the Java-based

solution, we decided to introduce the stereotype illustrated in Figure 7.12.

The stereotype can be applied to any data channel implementation and is,

therefore, compatible to the Java-based solution as well as to solutions, which

might be introduced in the future. The stereotype Confidentiality Behavior
links a Data Channel Behavior to a Data Channel. The Data Channel already
contains sources and sinks, which have names. The Data Channel Behavior
describes the effect of data processing by defining one Variable Usage for every
data source provided by the data channel. A variable usage refers to the name

of the data source and specifies Confidentiality Variable Characterizations, which
we introduced in a previous extension illustrated in Figure 7.4 on page 165.

These characterizations define the properties of data (I6). The expressions

in the characterizations can refer to the characteristics of incoming data by

the name of the corresponding data sink of the data channel. This provides

the means to specify the propagation of characteristics from the inputs to the

outputs, which is also the effect of data processing (I7). Making use of the

already introduced extension lowers the amount of required changes in the

ADL and provides streamlined modeling of data properties and processing

effects. Streamlined means that the same model elements can be used for the

same purpose, i.e. describing the effect of data processing.

The previously explained subset of the extension shown in Figure 7.12 is

already sufficient to represent all required information. However, modeling

the same processing effects multiple times is cumbersome, prone to errors
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and increases maintenance efforts in case of required changes. A mechanism

to specify types of processing effects (Reusable Behavior) and reusing them

(Behavior Reuse) to describe behaviors of data channels addresses these prob-

lems. A Reusable Behavior specifies the effect of data processing by Variable
Usages just like a Data Channel Behavior does. However, the Reusable Behavior
shall not refer to particular sinks in the expressions of the characterizations of

outputs because it shall be independent of a particular usage context. Instead,

a Reusable Behavior introduces variables for inputs and outputs, which the

expressions can use. A Behavior Reuse defines Variable Bindings, which bind a

value, i.e. a name of a particular sink, to a variable defined in the Reusable
Behavior. By binding the variables with values from the context, the behavior

can be used in a particular context. It is possible to reuse multiple behaviors,

i.e. define multiple Behavior Reuse elements for the same Data Channel Behavior.
In this case, the processing effects are applied in the order of definition of

the reuse elements. Processing effects executed later can override processing

effects executed earlier, which are the same semantics as for assignments in

DFDs or characterizations in Variable Usages. Variable Usages directly assigned
to a Data Channel Behavior are always executed last, i.e. they can override

the effects of all reused behaviors. This follows the commonly used practice

that specific elements, i.e. the particular Data Channel Behavior, can override

properties or definitions of generic elements, i.e. the reused behaviors.

The presented reuse approach for behaviors is more flexible than reusing

whole data channels by instantiating them: The reuse of behaviors supports

defining behaviors on the same level as we did in Section 6.2, e.g. we can

define a forwarding behavior, a joining behavior and so on. The behaviors

are applicable to any data channel, where the number of output variables

matches the data sources and the number of input variables matches the

data sinks. Reusing the whole data channel behavior, i.e. the Data Channel
Behavior instead of Reusable Behavior, is only possible if the names of data

sources and data sinks match the names used in the variable characterizations.

Therefore, such a reuse approach would restrict the naming of data sources

and data sinks, which can impact the comprehensibility negatively. Reusing

a whole data channel is even more inflexible: It is possible to define data

channels, which are essentially forwarding data channels or joining data

channels. By instantiating them multiple times and connecting them to

other data channels, it is possible to reuse the data channels. There are two

problems with this approach: First, the names of data sources and data sinks

will be, most probably, generic, which can affect comprehensibility negatively.
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Second, the data sources and data sinks refer to particular data types, which

restricts the reuse of a data channel to contexts, in which the exact same data

types are received and yielded. To circumvent this problem, either multiple

versions of the same behavior have to be created for multiple combinations

of data types or only generic data types such as Object have to be used. The

first approach requires considerable effort and the second approach reduces

comprehensibility. In contrast, the explicit definition of reusable behaviors

and reusing them with the mechanism illustrated in Figure 7.12 does not

imply such disadvantages.

7.2.2.3. Define Mapping to DFD

The goal of mapping the architecture given in Palladio to a DFD is to make use

of existing DFD-based analyses. Consequently, the mapping does not have to

represent every aspect of the architecture but only the aspects required for

analyzing confidentiality. The mapping has to yield a DFD, i.e. the structure

given by nodes and data flows, the properties of nodes as well as the behavior

given as label propagation functions. Because Palladio using Indirections
still requires control flow aspects such as the usage scenarios or SEFFs, we

build the mapping to the DFD on top of the already described mapping for

control flows in Section 7.2.1.3. This means that all mapping rules described

for control flows also apply for a Palladio architecture using the data channels

of Indirections. In the following, we only describe the additions required for

properly handling data sinks, data sources and data channels.

Additional Characteristic Types. The mapping rules for communication via

control flows introduced additional characteristic types. We can reuse all of

these types but add the value Data Channel to the Containing characteristic

type. This allows to identify process, which represent data channels.

Structure: Data Channels Data channels have dedicated data inputs (data

sinks) and dedicated data outputs (data sources). The data processing within

data channels uses data inputs and yields data outputs. This behavior closely

matches the behavior of processes in DFDs, so we can map data channels to

processes. We apply a label of the Containing characteristic type with value

Data Channel to the processes to indicate that the processes originate from

data channels. In addition, we map every data source of a data channel to
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Figure 7.13.: Example of mapping data flows through sources and sinks (top) to data flows in a

DFD (bottom).

an output pin and every data sink to an input pin. This mapping is useful

because the semantics of a data source or data sink matches the semantics

of a pin: all elements specify that a certain type of data shall be exchanged.

Because data channels can be instantiated multiple times, we map every

assembly of a data channel to a process. In the example shown in Figure 7.13,

we map each data channel assembly (TravelAgencyQueryBuilder and TravelA-
gencyFlightsDelegator) to one dedicated process having the corresponding

names.

Structure: Actions The newly introduced actions CreateDateAction, Emit-
DataAction and ConsumeDataAction consume data and yield data without com-

munication with other actions in-between. Therefore, these actions match

the semantics of DFD processes. We add a label of the characteristic type

185



7. Integrating DFD Analyses in Architectural Description Languages

Containing with the value Component to the processes to indicate that the

processes originate from model elements contained in a component. Because

these actions are part of SEFFs, we have to consider the assembly hierarchy in

the mapping. Therefore, we map each tuple of action and assembly hierarchy

to one process. The mapping of data flows between these and other actions

within a SEFF already described in Section 7.2.1.3 still applies. This means,

we create one input pin for each variable, which the CreateDateAction uses

to specify the characterization of the created date. We create one input pin

for the ConsumeDataAction and EmitDataAction action because both receive

exactly one data item. We create one output pin for the all three actions

because all yield exactly one data item.

Structure: Data Flows between Sources/Sinks of Data Channels Data flows

as defined by Indirections always use data sources and data sinks. A data

source or sink is always defined for a single data type. A connector between

the data source of an assembly and the data sink of another assembly enables

data flows between the assemblies. If both involved assemblies are data

channels, a connector represents one data flow because the data channel

sending data through a data source is the only provider of data for this data

source and the data channel receiving data through a data sink is the only

consumer of data for this data sink. We illustrate this situation in Figure 7.14.

All assemblies in the illustration are data channels. We map each connector,

which is illustrated as dashed edge, to a data flow between the processes of

the two involved data channels. This mapping closely matches the semantics

of such a connector by representing the direct data flow between the data

channels. The Indirections do not define selection semantics for the case that

multiple connectors originate from the same data source. Therefore, we do not

restrict the data flows here but stick to the mapping, which creates one data

flow for each connector. The data flows originating from the FlightProvider
both use the same output pin of the process resulting from mapping the data

channel.

Structure: Data Flows between Sources/Sinks of Components Data flows as

defined by Indirections always use data sources and data sinks. A data source

or sink is always defined for a single data type. A connector between the

data source of an assembly and the data sink of another assembly enables

data flows between the assemblies. If at least one of the involved assemblies
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Figure 7.14.: Example of mapping data flows between assemblies of data channels (left) to data

flows in a DFD (right).

is a component, a connector can represent multiple data flows because there

can be multiple actions using the same data source or data sink. Figure 7.15

gives an example of such a situation. The assembly TravelPlannerFacade
is a component. The remaining assemblies are data channels. In the SEFF

findFlights, the actions send the criteria for flights two times and receive the

list of flights two times. The actions for emitting data use the same data source

and the actions for consuming data use the same data sink. The Indirections
do not define semantics on how to distribute data received on the data sink to

the actions, i.e. it is unclear if the first or second consume action shall receive

data. Therefore, two data flows are possible. This means, we have to map the

connector from the TravelAgencyFlightsDelegator to the TravelPlannerFacade
to two data flows: Both data flows start at the output pin of the process

TravelAgencyFlightsDelegator, which represents the data channel in the DFD.

One of the data flows targets the input pin of the receive flights 1 process,
which represents the first consume action from the SEFF. The other data flow

targets the input pin of the receive flights 2 process. The connector from the

TravelPlannerFacade to the TravelAgencyQueryBuilder also represents two

potential data flows: One data flow originates from the first emit action and

one data flow originates from the second emit action. Both data flows target

the TravelAgencyQueryBuilder. Consequently, we have to map the connector

to two data flows in the DFD. One data flow starts at the output pin of the

process, which represents the first emit action. The other data flow starts at

the output pin of the process, which represents the other emit action. Both

data flows target the input pin of the TravelAgencyQueryBuilder process.

Additional Prolog Clauses. The previously described mapping rules map

a software architecture given in the Palladio ADL to a DFD. Later, the DFD

is mapped to a logic program. To ease using the node properties of the
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Figure 7.15.: Example of mapping between data flows from and to actions (top) to data flows

between processes in a DFD (bottom).

CallRole and Containing characteristic types, we already added additional

Prolog clauses as part of the mapping of control flow communication of

Palladio. We extend these clauses by the clause shown in Listing 7.2 to handle
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Listing 7.2: Additional Prolog clause to simplify accessing additional node properties for data

channels.

1 containedInDataChannel(N) :-

2 nodeCharacteristic(N, ’Containing’, ’Data Channel’).

the value Data Channel, which we added to the Containing characteristic

type.

7.2.3. DSL for Defining Custom Analyses

Software architects cannot directly use the DSL for defining custom analyses

as introduced for DFDs in Section 6.5 to formulate custom analyses for soft-

ware architectures given in another ADL. First of all, the mapping from the

DSL to a query in the logic program has to be changed to use the transitive

transformation trace to resolve referenced elements of the software architec-

ture. For instance, a DSL constraint, which uses the clearance characteristic

type from the running example, could not be mapped to a query in the logic

program because the identifier of the characteristic type in the logic program

would be unknown. Second, the abstract and concrete syntax do not reflect

the types of elements, which are available in the ADL. For instance, the DSL

refers to processes and nodes, which are no domain concepts of the Palladio

ADL. In addition, the DSL does not provide means to refer to actions in usage

models or to particular SEFFs.

The previously mentioned shortcomings render the existing DSL useless

but the tool engineer can define a new DSL, which is tailored to the ADL.

However, the tool engineer does not have to recreate the DSL from scratch.

He/she can reuse most parts of the abstract and concrete syntax as well as of

the mapping and can address the shortcomings by changing the syntax or

mapping.

In the following, we describe the necessary changes in the abstract syntax,

the concrete syntax and the mapping. We do not describe all parts of the

newly created DSL because the descriptions in Section 6.5 already cover most

aspects of the DSL. Instead, we only explain the adjusted parts of the DSL.
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Assembly-based Selector

Usage Scenario Data Channel IdentityAbstractAction

Figure 7.16.: Overview on adjusted elements of metamodel of DSL given as UML class diagram

(light gray elements are part of the original DSL metamodel, dark gray elements are elements of

the Palladio ADL and non-filled elements are newly defined or changed elements).

7.2.3.1. Abstract Syntax

The abstract syntax of the DSL is given as a metamodel. Most information de-

scribed by the original metamodel, which we have introduced in Section 6.5.2,

is still necessary and usable for describing analyses of software architectures

given in an ADL: The selection of data as well as the conditions based on

characteristic variables remain the same. However, the selection of nodes is

different because the model elements, which represent nodes, are different.

In the mappings described in Section 7.2.1.3 and Section 7.2.2.3, we consider

six model elements of the Palladio ADL as nodes. We consider each of these

model elements in the node selectors of types (Type Selector) and node se-

lectors of identities (Identity Selector). Figure 7.16 visualizes an excerpt of

the extended metamodel of the DSL to be used together with Palladio. In the

following, we describe the six considered node types and how the extended

metamodel represents them.

A Usage Scenario is mapped to an external actor. Consequently, the User
Identity selector refers to a Usage Scenario to uniquely identify a user. An

Entry Level System Call is a call action executed by a user. It is the only node

of the user behavior, which is considered in the mapping. Consequently, the

User Action Identity selector refers to an Entry Level System Call to uniquely

identify that action.

190



7.2. Integrating DFD Analyses with Palladio

The remaining nodes are represented by elements within the system. Be-

cause the system consists of assemblies, i.e. instances of components or data

channels, the assembly hierarchy always has to be considered when uniquely

identifying an element. The Assembly-based Selector is a supertype for all
Identity Selectors, which refer to system elements. The selector requires an or-

dered list of Assembly Contexts, which represents the assembly hierarchy. The

first element is the outermost assembly, i.e. the assembly directly contained

in the system. The last element is the most nested assembly.

A store is represented by a special type of component. The assembly hierarchy

of the Assembly-based Selector is already sufficient to uniquely identify a

store. The store is always the last element of the ordered list of Assembly
Contexts. Consequently, the Store Identity selector does not require additional

information except for the assembly hierarchy provided by the Assembly-
based Selector.

A data channel is also a special type of component. Therefore, the same

considerations as for stores apply to data channels as well. Consequently, the

Data Channel Identity selector only uses the assembly hierarchy provided by

the Assembly-based Selector.

A SEFF describes the behavior of a component for a provided service. A

provided service is identified by a Signature, through which a service can be

called. This means that an assembly hierarchy uniquely identifies a compo-

nent instance and a signature uniquely identifies a SEFF at such a component

instance. Consequently, the SEFF Identity selector uses the assembly hierarchy

provided by the Assembly-based Selector and a Signature to uniquely identify

a SEFF.

An action within a SEFF can be identified by the action itself after the SEFF

has been identified. Because the mapping not only considers call actions but

also other types of actions such as actions for emitting data or defining return

values, the Action Identity selector refers to an Abstract Action, which is the

supertype of all actions within a SEFF. In addition, the Action Identity uses

the assembly hierarchy and the Signature to uniquely identify the action.

The Type Selector also considers the six node types. The selector allows to

choose any of the six previously mentioned node types (user, user action,

store, data channel, SEFF and action). The semantics of this selection is that

all nodes of that type are selected.
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7.2.3.2. Concrete Syntax

Most parts of the concrete syntax, which we introduced in Section 6.5.3,

remain the same. The parts of the concrete syntax, which we have to change

or adjust, are the keyword for referring to nodes, the identity selectors and

the type selector. We explain these changes in the following.

The keyword for referring to nodes was node in the original definition of

the concrete syntax of the DSL. Because the term node is not used in the

Palladio ADL, we do not use it anymore to avoid confusion. Instead, we

use the keyword element, which does not use terminology of DFDs and can

represent all six types of nodes, which we introduced in the discussion of the

abstract syntax. In the following descriptions, we will also refer to element
instead of node.

The abstract syntax contains various types of identity selectors for elements.

To make them usable, we define a concrete syntax for all of these selectors.

Examples of the concrete syntax are given in Listing 7.3. The imports in

lines 1 to 3 are necessary because we refer to elements contained within

these imported models. The concrete syntax of all identity selectors starts

with the sequence element.identity. As already motivated for the original

DSL, using dots to connect elements in an expression to navigate to a certain

object or element is common practice, so we also connect the individual

parts of the identity selectors by dots. Afterwards, the type of element has

to be specified. In line 5, a user shall be selected by his/her identifier, so

the keyword SystemUser is used. As can be seen in Listing 7.3, there are

keywords for all six element types. After the keyword, the element has to be

specified. For users (see line 5), the identifier only consists of the name of the

user, i.e. the name of the user represents the reference to the Usage Scenario
from the abstract syntax. For user actions (see line 8), the identifier consists

of the identifier of the user followed by the name of the action of that user,

i.e. the name of the action represents the reference to the Entry Level System
Call from the abstract syntax. For stores (see line 11), the identifier consists

of an ordered list of assembly names connected by dots, i.e. the sequence

of names represents the ordered list of Assembly Contexts from the abstract

syntax. In the given example, FlightDB is the name of the instance of the

store. Airline is the name of the component instance, which contains the

store. For data channels (see line 14), the identifier is essentially the same

as for stores but the last assembly name has to refer to an instance of a data
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Listing 7.3: Examples of identity selectors in constraint DSL.

1 import "travelPlanner.usagemodel"

2 import "travelPlanner.system"

3 import "travelPlanner.repository"

4 constraint NoFlowsToUser {

5 data.any NEVER FLOWS element.identity.SystemUser.User

6 }

7 constraint NoFlowsToUserAction {

8 data.any NEVER FLOWS element.identity.UserAction.User.findFlights

9 }

10 constraint NoFlowsToStore {

11 data.any NEVER FLOWS element.identity.Store.Airline.FlightDB

12 }

13 constraint NoFlowsToDataChannel {

14 data.any NEVER FLOWS element.identity.DataChannel.Airline.FlightSelector

15 }

16 constraint NoFlowsToSEFF {

17 data.any NEVER FLOWS element.identity.SEFF.Airline.AirlineLogic.addFlight

18 }

19 constraint NoFlowsToAction {

20 data.any NEVER FLOWS

element.identity.Action.Airline.AirlineLogic.addFlight.call

21 }

channel instead of a store. For SEFFs (see line 17), the identifier also uses

the sequence of assembly names but adds the name of the signature, which

the SEFF describes, to the end, i.e. the name of the signature represents the

reference to the Signature from the abstract syntax. For actions (see line 20),

the identifier also uses the sequence of assembly names and the name of the

signature but adds name of the action to the end, i.e. the name of the action

represents the reference to the Abstract Action from the abstract syntax.

The concrete syntax of a type selector is as shown in Listing 7.4. The selector

starts with the sequence element.type followed by the selected type con-

nected by a dot. In the example, the elements representing a user are selected

by the keyword SystemUser. The keywords are the same keywords as used

for identity selectors.

193



7. Integrating DFD Analyses in Architectural Description Languages

Listing 7.4: Examples of type selector in constraint DSL.

1 constraint NoFlowsToAnyUser {

2 data.any NEVER FLOWS element.type.SystemUser

3 }

7.2.3.3. Mapping to Logic Program

The description of a mapping from the model elements of the abstract syntax

of the DSL to clauses in the logic program serves two purposes: First, it

assigns a meaning to an element of the abstract syntax. Second, it enables

automated evaluations of the specified analyses within tooling. We already

described the mapping of the DSL without the adjustments for Palladio in

Section 6.5.4. The major part of this description still holds. Especially, the

mapping of data selectors, conditions and node selectors for properties is

still valid. However, we did not define the meaning for and the mapping

of the newly introduced selectors for the identity and type of elements yet.

We describe their meaning and mapping in the following but omit general

explanations of default clauses such as inputPin/2 or flowTree/3 because

we already explained them in depth in the mapping of the DSL without the

adjustments for Palladio.

User Identity Selector. An identity selector selects elements based on their

identifier. In the DSL, the selector always refers to one particular element in

the software architecture given in Palladio. Because we map model elements

of Palladio to one or multiple elements, it is possible that an identity selector

does not only refer to a single element in the DFD and also in the logic

program but to multiple elements. The identity selector in Figure 7.17 selects

the user named User. In our mapping of the extended Palladio ADL to a

DFD, we mapped a usage scenario to an actor in the DFD. The calls of the

user became actor processes in the DFD. The actor itself does not emit or

consume data but uses the actor processes to process data. Consequently,

when referring to a user in an analysis definition, it is reasonable and intuitive

to consider all activities of this user. Figure 7.18 visualizes this for the user

selector. This means, we map the identity selector for a user to all actor

processes, which belong to the selected user. We use the transformation trace

to look up the identifiers of the actor processes in the logic program, which

match the selection. In the example in Figure 7.17, the nodes are the entry
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1 constraint NoFlowsToUser {

2 data.any NEVER FLOWS element.identity.SystemUser.User

3 }

⇓
4 constraint(’NoFlowsToUser’, N, PIN, S) :-

5 inputPin(N, PIN),

6 flowTree(N, PIN, S),

7 (

8 N = ’User.findFlights entry’;

9 N = ’User.findFlights exit’;

10 N = ’User.getCCD entry’;

11 N = ’User.getCCD exit’;

12 N = ’User.bookFlight entry’;

13 N = ’User.bookFlight exit’

14 ).

Figure 7.17.: Example of mapping an identity selector for a user from DSL constraint to logic

program.

EntryProcess

User find flights

User

ExitProcess

User find flights ...

: User Identity

User : Usage Scenario

Figure 7.18.: DFD elements (right) considered by an identity selector for a user (left).

and exit processes of the calls of the user. The individual clauses that unify

the node identifier N in the logic program with the selected identifier, are

collected in a disjunction. This means that any of the selected nodes can be

used to identify a violation.

Remaining Identity Selectors. All identity selectors follow the structure

illustrated in Figure 7.17, i.e. there is a disjunction of identified elements,

which are derived from the selected Palladio element by looking up related

elements in the transformation trace. However, the considered DFD elements

are different for all types of identity selectors. For selectors of user actions,

the entry and exit processes, which correspond to the selected call action of

the user according to the transformation trace, are considered as shown in

195



7. Integrating DFD Analyses in Architectural Description Languages

EntryProcess

User find flights

ExitProcess

User find flights: User Action Identity User : Entry Level

System Call

Figure 7.19.: DFD elements (right) considered by an identity selector for a user action (left).

: Store Identity
Airline : Assembly Context

FlightDB : Assembly Context
FlightDB

Figure 7.20.: DFD elements (right) considered by an identity selector for a store (left).

Figure 7.19. There are no other related elements to be considered. For selectors

of stores, the DFD store mapped from the store in Palladio is considered as

shown in Figure 7.20. It would also be possible to consider the entry and exit

processes of the store but because there is only one data flow from the entry

process and one data flow to the exit process and both data flows are connected

to the store, it is sufficient to only consider the store. For selectors of data

channels, the process mapped from the data channel instance in Palladio is

considered as shown in Figure 7.21. There are no other elements related to

the data channel, which could be considered. For selectors of SEFFs, the entry

as well as the exit process mapped from the selected SEFF are considered as

shown in Figure 7.22. We do not consider the actions within the selected

SEFF because these elements can also be selected by the identity selectors

of the actions and it can be useful to only consider the data exchanged by a

SEFF via a call. The entry and exit processes are appropriate for this purpose.

For selectors of actions within a SEFF, we consider the processes mapped

from the selected action as shown in Figure 7.23. There are no other elements

related to the action, which we could consider.

: Data Channel Identity
Airline : Assembly Context

Flight Selector : Assembly Context
Flight Selector

Figure 7.21.: DFD elements (right) considered by an identity selector for a data channel (left).
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7.2. Integrating DFD Analyses with Palladio

: SEFF Identity Airline : Assembly Context

Airline Logic : Assembly ContextaddFlight : Signature

EntryProcess

addFlight

ExitProcess

addFlight

Figure 7.22.: DFD elements (right) considered by an identity selector for a SEFF (left).

: Action Identity Airline : Assembly Context

Airline Logic : Assembly Context

addFlight : Signature

EntryProcess

call

ExitProcess

callcall : External Call Action

Figure 7.23.:DFD elements (right) considered by an identity selector for an action in a SEFF (left).

Type Selectors for Users/User Actions. The meaning of a type selector is

that all model elements, which are of a certain type, shall be considered

in the analysis. The types are given as types from the Palladio ADL. The

available types of elements are the six types, which we already discussed for

the identity selectors. The type selectors for users and user actions essen-

tially map to the same clauses as shown in Figure 7.24. The mapping uses

the clause containedInScenarioBehaviour/1, which we introduced in the

mapping from the Palladio ADL to a DFD as an additional clause. The clause

matches all identifiers of nodes 𝑁 , which originate from call actions of a user.

It is reasonable to not distinguish between the user and its actions because the

user himself/herself does not have a dedicated behavior but his/her behavior

is defined by the actor processes, which belong to him/her.

Type Selectors for Remaining Types. The mapping of the type selector for

stores shown in Figure 7.25 is rather simple because we can simply test if a

given node 𝑁 is a store in the DFD by using the store/1 clause. This selector

matches all Palladio elements, which are mapped to stores. The mapping

of the type selector for data channels shown in Figure 7.26 shall match all

DFD elements, which have been mapped from a data channel. We use the

containedInDataChannel/1 clause, which we introduced in the mapping

from the Palladio ADL to a DFD as an additional clause. The clause considers

exactly all processes, which have been mapped from a data channel. The

mapping of the type selector for SEFFs shown in Figure 7.27 matches the entry

and exit processes of SEFFs. It is reasonable to only match these two types
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1 constraint NoFlowsToAnyUser {

2 data.any NEVER FLOWS element.type.SystemUser

3 }

4 constraint NoFlowsToAnyUserAction {

5 data.any NEVER FLOWS element.type.UserAction

6 }

⇓
7 constraint(’NoFlowsToAnyUser’, N, PIN, S) :-

8 inputPin(N, PIN), flowTree(N, PIN, S),

9 containedInScenarioBehaviour(N).

10 constraint(’NoFlowsToAnyUserAction’, N, PIN, S) :-

11 inputPin(N, PIN), flowTree(N, PIN, S),

12 containedInScenarioBehaviour(N).

Figure 7.24.: Example of mapping a type selector for users or user actions from DSL constraints

to logic programs.

of processes because they are additional processes only added to represent

the call receiving and returning of a service. By only matching these two

processes, it is possible to ignore the data processing within a SEFF but focus

on the data transmissions when calling a service as well as when returning

from a service. We use the clauses isASEFFEntry/1 and isASEFFExit/1, which

we introduced in themapping from the Palladio ADL to a DFD as an additional

clause, in a disjunction. This means all entry and exit processes are considered.

The mapping of the type selector for actions within SEFFs also shown in

Figure 7.27 matches the remaining processes, which have been mapped from

actions within SEFFs. We use the containedInComponent/1 clause, which we

introduced in the mapping from the Palladio ADL to a DFD as an additional

clause, to identify processes, which have been created by a mapping from an

element within a component, i.e. actions and SEFF entry and exit processes.

Because the SEFF entry and exit processes do not originate from actions, we

exclude them by requesting that a node 𝑁 originated from a component but

is not a SEFF entry or exit process.
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1 constraint NoFlowsToAnyStore {

2 data.any NEVER FLOWS element.type.Store

3 }

⇓
4 constraint(’NoFlowsToAnyStore’, N, PIN, S) :-

5 inputPin(N, PIN), flowTree(N, PIN, S),

6 store(N).

Figure 7.25.: Example of mapping a type selector for stores from DSL constraint to the logic

program.

1 constraint NoFlowsToAnyDataChannel {

2 data.any NEVER FLOWS element.type.DataChannel

3 }

⇓
4 constraint(’NoFlowsToAnyDataChannel’, N, PIN, S) :-

5 inputPin(N, PIN), flowTree(N, PIN, S),

6 containedInDataChannel(N).

Figure 7.26.: Example of mapping a type selector for data channels from DSL constraint to the

logic program.

1 constraint NoFlowsToAnySEFF {

2 data.any NEVER FLOWS element.type.SEFF

3 }

4 constraint NoFlowsToAnyAction {

5 data.any NEVER FLOWS element.type.Action

6 }

⇓
7 constraint(’NoFlowsToAnySEFF’, N, PIN, S) :-

8 inputPin(N, PIN), flowTree(N, PIN, S),

9 (isASEFFEntry(N); isASEFFExit(N)).

10 constraint(’NoFlowsToAnyAction’, N, PIN, S) :-

11 inputPin(N, PIN), flowTree(N, PIN, S),

12 (containedInComponent(N), \+ isASEFFEntry(N), \+ isASEFFExit(N)).

Figure 7.27.: Example of mapping a type selector for SEFFs or actions within SEFFs from DSL

constraints to logic programs.

199



7. Integrating DFD Analyses in Architectural Description Languages

ID Description Covering Part

R3.1 support control flow ADLs guidelines and application to Palladio

R3.2 support data flow ADLs guidelines and application to Palladio

R3.3 high reuse of ADL elements identification/extension steps

R3.4 analysis framework see Table 7.2

R3.5 stay on architecture level mapping and analysis DSL

Table 7.1.: Overview on requirements on the integration guidelines and how they are met.

7.3. Requirements Coverage

The integration guidelines presented in this chapter meet all requirements,

which we defined in Section 4.1.3. Table 7.1 gives an overview on the require-

ments as well as how the integration guidelines meet these requirements.

The requirements to support ADLs using control flows (R3.1) and ADLs using

data flows (R3.2) are met by the integration guidelines, which we introduce

in Section 7.1. We show that the guidelines are applicable to ADLs using

control flows by applying them to the subset of Palladio, which uses control

flows, in Section 7.2.1. We show that the guidelines are applicable to ADLs

using data flows by applying them to the subset of Palladio, which uses data

flows, in Section 7.2.2. To reuse as much ADL elements as possible (R3.3), we

introduced a step to capture missing but mandatory concepts of the existing

ADL in the integration guidelines in Section 7.1. The step to extend the

ADL only introduces new concepts if there is no matching concept available.

Therefore, the tool engineer has to make use of as much existing concepts

as possible, which also implies a high reuse of ADL elements. The architect

does not have to be aware of DFDs and Prolog, i.e. only has to be aware of

domain concepts of the architectural design level (R3.5), because everything,

which uses concepts not present in the ADL, is hidden from the architect: The

guidelines in Section 7.1 yield a mapping for the software architecture given in

an ADL to a DFD as well as a DSL for formulating custom analyses. Because

the mapping can be automated completely and the DSL avoids writing Prolog

code, the architect can model and analyze architectures without the need

to be aware of any underlying concept. The requirement on the analysis

framework (R3.4) is that the analysis framework yielded by the integration

guidelines shall meet all requirements on the analysis framework for DFDs.
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ID Description User Covering Part

R2.1 every element covered — mapping to DFD

R2.2 derivation of properties analysis label lookup in DFDs

R2.3 origin of properties analysis flow tree from DFDs

R2.4 analyses based on goals expert analysis procedure for DFDs

R2.5 analyses based on goals architect DSL for custom analyses

R2.6 tracing of properties architect flow tree from DFDs

R2.7 automated analyses architect analysis procedure

R2.8 information flow expert analysis definitions for DFDs

R2.9 access control expert analysis definitions for DFDs

Table 7.2.:Overview on requirements on the analysis framework and how the analysis framework

of the integration procedure meets them.

Table 7.2 provides an overview on how the analysis framework resulting from

applying the integration guidelines meet these requirements. We discuss the

table in the following.

The analysis framework yielded by the integration guidelines describes the

semantics of the ADL elements by a mapping to a DFD. We demonstrated

this for Palladio in Section 7.2.1.3 and Section 7.2.2.3. The description of

the mapping only covers ADL elements, which actually have an effect on

data flows. However, the mapping still describes the semantics for all ADL

elements (R2.1) because every ADL element, which is not explicitly mentioned

in the mapping, is a neutral element with respect to the data flows. This means

it does neither affect the structure of the resulting DFD nor the behavior of

the label propagation.

The mapping from an architecture given in an ADL to a DFD allows to reuse

the analysis framework for DFDs. Therefore, we automatically meet the

requirements regarding the derivation of properties (R2.2), the tracing of

properties (R2.3 and R2.6), the definition of analyses based on goals by the

security expert (R2.4) as well as the support for information flow analyses

(R2.8) and access control analyses (R2.9).

The DSL for formulating custom analyses meets the requirement regarding

the definition of analyses based on goals by the software architect (R2.5). As

we describe in Section 7.2.3, the DSL does not require knowledge about DFDs

or logic programming but only knowledge about software architectures.

201



7. Integrating DFD Analyses in Architectural Description Languages

The analysis procedure described in Section 7.1 supports automated analyses

(R2.7). This is possible because all mappings as well as the label propagation

and comparison can be fully automated.

7.4. Assumptions and Limitations

This section discusses assumptions and limitations of the integration guide-

lines as well as of the particular integrations into Palladio.

Implications of reuse The integration guidelines aim for reusing as much

as possible of the analysis framework and the analysis definitions for DFDs.

Therefore, the resulting integration shares the assumptions of limitations of

the analysis framework, which we discuss in Section 5.3, as well as of the

analysis definitions, which we discuss in Section 6.7.

No implicit flows In mappings from ADLs, which use control flows, to

DFDs, it is necessary to derive data flows from the existing descriptions. The

approach presented in the previous sections is to treat exchanged parameters

and return values as data and the exchange as a data flow. We make these

data flows explicit by mapping them to data flows in the DFD. However, there

are also implicit information flows such as changed timing-behavior, which

an attacker can observe. As already discussed in Section 6.2.1, we exclude

such implicit flows because software architectures do not provide information

with enough details to reason about implicit flows.

ADL elements without effect In the mappings from architectures given in

an ADL to DFDs, usually not all ADL elements are mapped to a counterpart

in a DFD. This is not surprising because ADLs often not only represent

information to analyze confidentiality properties but also information for

other quality properties. The assumption in the mappings is that the ADL

elements, which are not mapped, do not affect confidentiality. This is not

entirely true in our mappings because we do not represent ADL elements,

which affect control flows, in the DFDs. However, elements such as branches

can imply implicit flows. Instead, we only consider the explicitly exchanged

data between actions within a control flow. However, the assumption that
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these elements do not affect confidentiality is true with respect to the con-

fidentiality analyses, which we want to conduct. As described before, we

exclude implicit flows anyways, so there is no effect on the confidentiality

analyses.

Independent treatment of parameters As part of the integration of con-

fidentiality analyses in Palladio, we map each parameter transmitted via a

calling action to one data flow. If there are multiple calls to the same SEFF,

there will be multiple data flows to the same pin. All of these data flows

are treated independently. This means that the analysis also combines data

flows from two different calls when propagating labels. The reason to do

this is that a DFD process could potentially cache received parameters and

combine cached parameters with newly received parameters. Thereby, the

analysis overestimates potential confidentiality problems. It is possible to

avoid this overestimation by providing special flowTree/3 clauses, which

only yield flow trees that use flows from the same source. However, we did

not implement this option.

Overestimation of data flows via sinks and sources As already discussed in

Section 7.2.2.3, we consider all possible combinations of data flows between

data sources and data sinks if an action in a SEFF is involved. We do this

because the Palladio extension Indirections does not provide semantics for the

case that there are multiple actions using the same data sinks or data sources.

Doing an overestimation is the most conservative handling of this situation.

As soon as there are semantics for this situation, the mapping can consider

them.

7.5. Summary

In this chapter, we presented how to integrate DFD-based confidentiality

analyses into existing ADLs. A set of integration guidelines specifies the

integration procedure and the application of the guidelines to the Palladio

ADL demonstrated their applicability.

The integration guidelines in Section 7.1 provide a process to integrate DFD-

based analyses into existing ADLs. The process consists of four steps: First,
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the tool engineer identifies concepts, which are essential but which are not

represented in the ADL. An extension of the ADL introduces these concepts.

A definition of a mapping from the ADL to a DFD enables reusing the existing

analysis framework for DFD-based analyses. By adjusting the DSL for for-

mulating custom analyses, the tool engineer provides the software architect

with the means to define new analyses.

The application of the integration guidelines to the Palladio ADL demon-

strates the applicability of the guidelines in Section 7.2. Because Palladio

uses call-and-return communication as well as communication based on data

flows, we can demonstrate the integration guidelines for the subset of the

Palladio ADL, which uses control flows, in Section 7.2.1 as well as for the

subset of the Palladio ADL, which uses data flows, in Section 7.2.2. In addition,

we show how a tool engineer can adjust the DSL for formulating custom

analyses in Section 7.2.3.

The integration guidelines meet the corresponding requirements, which we

defined in Section 4.1.3. We explain how the integration guidelines meet the

requirements in Section 7.3.

Because the integration guidelines aim to reuse the analysis framework for

DFDs, they share the same assumptions and limitations but there are also

additional assumptions and limitations, which we discuss in Section 7.4. The

most prominent limitation is the exclusion of implicit information flows. The

most prominent assumptions are that certain ADL elements do not affect

confidentiality and that overestimations of data flows are reasonable.
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8. Validation

The overall goal of the validation is to show that the contributions sufficiently

answer the corresponding research questions. To ensure that the validation

achieves this goal, we refine this high-level goal into further validation goals

and discuss the data, which we have to collect to decide whether a goal is

achieved. We present the validation goals and the necessary data in the

overview on our validation in Section 8.1.

The major part of the validation is based on case studies. A case study always

involves particular systems, to which the contributions are applied. To ensure

that the case study systems support the validation, we derive requirements

on the selection of the systems and the systems themselves. Afterwards we

present the selected systems. We describe the requirements and the selected

systems in Section 8.2.

We structure the presentation of the actual validations by the validation goals,

which also align with the contributions. For every validation goal, we present

the validation design and the results. Afterwards, we discuss these results

as well as threats to validity. The validation of the extended DFD syntax

(C1) is covered in Section 8.3. Section 8.4 describes the validation of the

DFD analyses (C3). The validation of the DFD semantics (C2) is subject to

Section 8.5. Eventually, we describe the validation of the ADL integration

guidelines (C4) in Section 8.6. We summarize the results of the validations

and the implications on the validation goals in Section 8.7.

8.1. Overview

The goal of the validation is to show that we sufficiently answered the research

questions presented in Section 1.4. Therefore, we structure the validation by

the contributions, which represent the answers to the research questions. We

applied the Goal-Question-Metric (GQM) approach [BW84; BCR94], whichwe
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explain in the next paragraph, to break down the high-level validation goals

into validation questions and correspondingmetrics to answer these questions.

These validation questions and metrics support a focused validation design.

In this section, we focus on the resulting so-called GQM plan.

The GQM approach [BW84; BCR94] provides guidelines on how to effectively

achieve a certain goal. In the context of a validation, the goal is usually

to validate that a certain contribution meets certain quality standards or

appropriately answers research questions. Usually, a measurement in an

experiment or case study is not sufficient to completely achieve such a vali-

dation goal. Therefore, the approach suggests to define validation questions.

An answer to such a question gives insights in whether a certain aspect of the

goal has been achieved. By summing up the answers to all questions, we can

decide whether a goal has been achieved. The answers to the questions are

given in terms of metrics and a guideline on how to interpret these metrics.

For instance, a metric collecting the duration of an execution is reasonable

to rate the performance of an approach but it is not sufficient to answer

a question about appropriate performance without a guideline on how to

interpret such a duration. Such a guideline can be a maximum acceptable

duration or a reference duration from another approach. A metric does not

necessarily have to be based on a quantitative measurement but can also be a

qualitative result as long as a clear guideline on how to interpret the results

is available.

The goals in our GQM plan are to validate that the contributions C1–C4

sufficiently address the corresponding research questions RQ1–RQ8. Table 8.1

illustrates the relation between the validation goals (VG), the contributions

and the research questions. We derive the validation questions to achieve the

validation goals from the research questions and corresponding motivations

as well as explanations in Section 1.4. The resulting GQM plan is illustrated

in Figure 8.1 for the contributions C1, C2 and C3 as well as in Figure 8.2 for

contribution C4. In the following paragraphs, we describe all parts of the

plan and show that the questions and metrics are reasonable and sufficient to

achieve the validation goals.

8.1.1. Validation Goal 1: Validate DFD Syntax

The validation goal about the DFD syntax is to show that the syntax suffi-

ciently answers the research questions RQ1, RQ2 and RQ3. RQ1 asks what
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Validation

Goal Contribution Research Question

VG1 C1) DFD Syntax RQ1) modeling access control

RQ2) modeling information flow

RQ3) modeling primitives

VG2 C3) DFD Analyses RQ5) access control analyses

RQ6) information flow analyses

VG3 C2) DFD Semantics RQ4) analysis semantics for DFDs

VG4 C4) ADL Integration RQ7) integration control flow ADLs

RQ8) integration data flow ADLs

Table 8.1.:Relation between validation goals (VG), contributions (C) and research questions (RQ).

information is necessary to reason about access control. RQ2 asks the same

for information flow control. In the DFD syntax, we decided that properties

of nodes and behaviors formulated as label propagation functions are suf-

ficient to reason about access control as well as information flow control.

Therefore, we have to validate that these elements of the modeling language

sufficiently describe systems in a way that reasoning about access control and

information flow control is possible. To validate the capability of describing

systems, we formulate the validation questions VQ1 and VQ2, which we

describe in the next paragraphs. The validation of the analyses and semantics

in VQ6 of VG3 will show that the modeled systems can be used to reason

about access control or information flow control. RQ3 asks what modeling

primitives, i.e. elements of the modeling language, are required. We have to

validate that every element of the modeling language is necessary to model

systems containing access control and information flow control. We formu-

late the validation question VQ3, which we describe in the next paragraphs,

to validate this. Having a set of required elements of a modeling language is

only helpful if an architect or security expert has the required information

to create models by using these elements. Therefore, we have to validate

that the required information to use the model elements is available while

creating a software architecture. To validate this, we formulate VQ4, which

we describe in the next paragraphs.

VQ1) Can the DFD syntax express access control and information flow

control mechanisms within systems?
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The focus on expressing mechanisms in the context of a particular system

is important because architects are usually interested in analyzing a partic-

ular system under design. We already demonstrated in Section 6.2 that the

syntax can express access control and information flow control mechanisms

in general. However, this did not demonstrate that the chosen way of ex-

pressing mechanisms fits the needs of particular systems. Assume we have

a set of systems 𝑆 , where each system 𝑠 ∈ 𝑆 uses a certain mechanism. A

reasonable metric to answer the validation question could be the ratio 𝑟 of

the expressible systems 𝑆𝑒 ⊆ 𝑆 to the total amount of systems 𝑆 , i.e. 𝑟 =
|𝑆𝑒 |
|𝑆 | .

A metric value of 1.0 means that the DFD syntax can express all mechanisms

within systems. However, the metric is problematic if there are multiple

systems using the same mechanisms: Imagine that the DFD syntax can ex-

press DAC very well but certain other mechanisms not. If the set of systems

contains many systems using DAC but only a few systems containing other

mechanisms, the metric value would hide the bad expressiveness regarding

other mechanisms. To avoid this effect of an unbalanced set of systems with

respect to the used mechanism, we use a normalizing metric, i.e. a weighted

ratio metric. First, we define a set of mechanisms 𝑀 and extend the ratio

metric 𝑟 to only consider systems containing a certain mechanism𝑚 ∈ 𝑀 ,

i.e. 𝑟 (𝑚). Based on that, the weighted ratio metric 𝑟 is 𝑟 =
∑︁

𝑚∈𝑀
𝑟 (𝑚)
|𝑀 | . A

metric value of 1.0 means that the DFD syntax can express all mechanisms

within systems. Assuming that all systems stem from the state of the art and

have been published together with a modeling approach, the expected value

of the weighted ratio metric 𝑟 is also 1.0 because all of these systems can be

modeled by state-of-the-art approaches. To decide whether we sufficiently

addressed RQ1 and RQ2 individually, we define the following two dedicated

metrics:

VM1.1) Weighted ratio 𝑟 of expressible systems using access control and

the set of systems using access control.

VM1.2) Weighted ratio 𝑟 of expressible systems using information flow

control and the set of systems using information flow control.

The previous validation question aims at validating that the DFD syntax

can express systems using either access control or information flow control.

However, combining multiple confidentiality mechanisms can be beneficial.

Therefore, the DFD syntax should also support this as we already motivated

while explaining the research questions in Section 1.4.1. Therefore, we for-

mulate the following validation question:
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VQ2) Can the DFD syntax express combinations of access control and in-

formation flow control mechanisms within the same system?

The validation question is about validating that the DFD syntax supports sys-

tems using combinations of mechanisms. In theory, all possible combinations

of mechanisms are possible. The new set 𝑀𝑃 = 𝑃 (𝑀) \ (𝑀 ∪ ∅) with the

power set 𝑃 (𝑀) of the set of mechanisms 𝑀 describes these combinations.

It is unrealistic to assume that there is at least one system for each𝑚 ∈ 𝑀𝑃

because𝑀𝑃 contains too many elements. Therefore, we only expect a subset

𝑀𝑐 ⊆ 𝑀𝑃 to be available. We also cannot assume that there will be the same

number of systems for each𝑚 ∈ 𝑀𝑐 . Therefore, the weighted ratio metric 𝑟 as

already used in VQ1 is appropriate. We redefine the ratio metric 𝑟 (𝑚), which
is used in 𝑟 , to only consider systems using a combination of mechanisms

𝑚 ∈ 𝑀𝑐 . A metric value of 1.0 means that the DFD syntax can represent all

investigated combinations of mechanisms. Because modeling approaches

in the state of the art often do not support combinations of mechanisms, a

metric value above 0.0 can already be considered a good result. This brings

us to the following metric.

VM2.1) Weighted ratio 𝑟 of expressible systems using any combination of

access control and information flow control mechanisms.

RQ3 asks for the necessary model elements in the DFD syntax in order to

express systems using access control and information flow control. The

previous validation questions VQ1 and VQ2 already validate that the model

elements are sufficient to express such systems. However, the questions did

not validate whether all model elements are actually necessary or whether

there are model elements, which are specific for certain confidentiality mech-

anisms. One of the goals on the DFD syntax was to avoid such specific model

elements as explained in Section 1.4.1. Therefore, we formulate the following

validation question:

VQ3) Are all elements of the DFD syntax commonly used when modeling

systems containing access control and information flow control?

A utilization metric for every model element, which can be used, i.e. instan-

tiated, can provide an answer to the validation question. We are, especially

interested identifying model elements, which are only used by one confiden-

tiality mechanism and not necessarily only by one system. It is likely that

such elements are specific to a particular confidentiality mechanism. To repre-

sent our interested in the utilization metric, we define the metric as the usage
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of model elements per confidentiality mechanism. Assume a set 𝐹 of model

elements of the DFD syntax, which can be used, i.e. instantiated, and a set

𝑆 𝑓 ⊆ 𝑆 , which contains all systems that use a particular model element 𝑓 ∈ 𝐹 .
Assume further a set of systems 𝑆𝑚 ⊆ 𝑆 , which use a certain confidentiality

mechanism𝑚 ∈ 𝑀 . The function 𝑢 (𝑓 ,𝑚) returns 1 iff 𝑆 𝑓 ∩ 𝑆𝑚 ≠ ∅ holds, 0

otherwise. This means 𝑢 (𝑓 ,𝑚) returns 1 if there is at least one system, which

uses model element 𝑓 and the confidentiality mechanism𝑚. The utilization

metric 𝑢𝑓 is then defined as 𝑢𝑓 =
∑︁

𝑚∈𝑀 𝑢 (𝑓 ,𝑚). The validation passes if 𝑢𝑓

is never less than 2 for all 𝑓 ∈ 𝐹 . This means, there are at least two systems

using different confidentiality mechanisms but the same model element 𝑓 .

This brings us to the following metric.

VM3.1) Utilization metric 𝑢𝑓 of model element 𝑓 across confidentiality

mechanisms.

The previous validation questions focused on validating that the model el-

ements are sufficient and necessary. Another important aspect to consider

when validating that the provided model elements can express systems is

whether software architects and security experts can instantiate these model

elements while modeling the software architecture of the system. In partic-

ular, the required information to instantiate the model elements has to be

available and accessible to the software architects and security experts. Other-

wise, the DFD syntax fails its pragmatics of describing a software architecture

in order to analyze it while creating the software architecture. Therefore, we

formulate the following validation question:

VQ4) Is the information to be expressed by the DFD syntax available and

accessible to its users?

Assuming we have a set of information 𝐼 , which is necessary to instantiate the

model elements of the DFD syntax, we can define a set 𝐼𝑘 ⊆ 𝐼 of information,

which can be known. A reasonable metric is to sum up all information, which

is not known. The resulting sum 𝑠𝑘¯ = |𝐼 \ 𝐼𝑘 | has to be 0. A value greater 0

means that the DFD syntax requires unavailable information. This would

render the syntax unusable. This brings us to the following metric.

VM4.1) Sum 𝑠𝑘¯ of information, which cannot be known by software archi-

tects and security experts.
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8.1.2. Validation Goal 2: Validate Analysis Definitions

The validation goal about the analysis definitions for access control and

information flow control is to show that the analysis definitions sufficiently

answer the research questions RQ5 and RQ6. The research questions ask

how to define analyses using the DFD syntax and semantics. We presented

analysis definitions for common access control and information flow control

mechanisms in Section 6.2 and also demonstrated how to integrate encryption

in Section 6.3 as well as how to combine analyses in Section 6.4 to make

these analysis definitions more applicable. However, we did not demonstrate

that these analysis definitions are applicable to particular systems including

their confidentiality requirements. Here, applicable means that the analysis

definitions provide the means to express confidentiality requirements and

that the resulting analyses provide correct results. To do this validation, we

formulate the validation question VQ5, which we describe in the following,

and reuse the validation question VQ6, which we will describe as part of

VG3.

VQ5) Do the analysis definitions provide the means to express confiden-

tiality requirements based on access control and information flow

control mechanisms within systems?

The focus on the application within systems is important because software

architects are usually interested in identifying violations in particular systems

under design. We already motivated that the analysis definitions can identify

violations in Section 6.2 in general but we did not show yet that the analysis

definitions fit the needs of particular systems, i.e. that we can express the

confidentiality requirements of the system by using the analysis definitions.

In contrast to VQ1, VQ5 focuses on expressing confidentiality requirements by

analysis definitions and not on expressing confidentiality mechanisms within

systems. Nevertheless, we can reuse the ideas for finding an appropriate

metric from VQ1 to answer VQ5: To answer the validation question, we need

to know how many confidentiality requirements of systems can be expressed

using the analysis definitions. The ratio metric 𝑟 already defined for VQ1

is a good metric to summarize this data in order to answer the validation

question. For calculating the metric, we define a system to be part of the set

of expressible systems 𝑆𝑒 if we could express the confidentiality requirements

of the system. The remainder of the metric definition remains the same. The

metric normalize the effect of a set of systems, which is unbalanced with
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respect to the used confidentiality mechanism. Without this normalization,

a big amount of systems using the same mechanism and therefore similar

confidentiality requirements could make the metric look more positive if

only a single system is using a particular mechanism and therefore specific

confidentiality requirements. To decide whether we sufficiently addressed

RQ5 and RQ6 individually as well as combinations of both mechanisms, we

define the following three dedicated metrics:

VM5.1) Weighted ratio 𝑟 of systems, for which the analysis definitions can

express access control requirements, and the set of systems using

access control.

VM5.2) Weighted ratio 𝑟 of systems, for which the analysis definitions

can express information flow control requirements, and the set of

systems using information flow control.

VM5.3) Weighted ratio 𝑟 of systems, for which the analysis definitions

can express combined access control and information flow control

requirements, and the set of systems using combined mechanisms.

An analysis definition is only useful if it can be used to identify violations.

Therefore, we have to validate that analyses, which are expressed in terms of

the analysis definition, can identify systems, which violate the confidentiality

requirements. VQ6, which we define as part of VG3, essentially validates

this, i.e. that analyses can identify systems containing violations. Therefore,

we use the results of that validation question to decide whether the analysis

definitions can identify violations. With respect to the defined metrics true
positive fraction (VM6.1) and true negative fraction (VM6.2), we aim for a value

of 1.0, which means no false negatives or false positives. This is possible be-

cause the analyses can provide exact results and should do so. An explanation

of why exact results are possible, is part of the description of the validation

question for VG3.

8.1.3. Validation Goal 3: Validate DFD Semantics

The validation goal about the DFD semantics is to show that the semantics

sufficiently answer the research question RQ4. RQ4 asks what DFD semantics

allow detecting violations of confidentiality requirements. In Section 5.2, we

presented our semantics and motivated why they support analyses. How-

ever, we did not show yet that the semantics support automated analyses of
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confidentiality mechanisms used in systems. Therefore, we have to validate

that the semantics support analyses of systems, which yield correct results,

and that the semantics do not limit the automation of analyses. To do this

validation, we formulate the validation questions VQ6 and VQ7, which we

describe in the next paragraphs.

VQ6) Can analyses based on the DFD semantics correctly identify systems

containing violations?

As motivated before, we focus on detecting violations in the context of partic-

ular systems because software architects use the semantics for this purpose.

The only purpose of the DFD semantics is to enable analyses for identifying

such violations. Therefore, it is reasonable to focus on validating the support

for particular analyses. We consider an analysis to be supported if it provides

correct results. A result is correct if it correctly classifies a system as contain-

ing or not containing violations and it classifies it for the right reason. An

analysis classifies a system for the right reason if i) no violations are reported

for a system, which does not contain an issue, and if ii) all violations reported

for a system, which does contain an issue, are caused by the issue and at

least one issue is reported. Metz [Met78] suggests various metrics to rate the

quality of analyses with only two possible outcomes, i.e. binary classifiers.

The suggested metrics can handle unbalanced data sets such as a data set

with many systems without an issue and only few systems with issue. A

metric, which solely focuses on the right output of the analysis, would rate an

analysis, which never reports a violation, good in such a setting. Although,

the analysis is not useful at all. One suggested combination of metrics, which

addresses this issue, is the true positive fraction (also called sensitivity) and

the true negative fraction (also called specificity). We define both metrics

in the following. Assume there exists a set 𝑆𝑖 of systems, which contain

an issue, and a set 𝑆𝑖 of systems, which do not contain an issue. The set

𝑆 ′𝑖 ⊆ 𝑆𝑖 describes the set of systems, which the analysis correctly classified

as containing violations according to the definition given above. The set

𝑆 ′
𝑖
⊆ 𝑆𝑖 describes the set of systems, which the analysis correctly classified as

not containing violations according to the definition given above. The true

positive fraction 𝑇𝑃𝐹 is defined as 𝑇𝑃𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. The true negative fraction
𝑇𝑁𝐹 is defined as 𝑇𝑁𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. The DFD analyses are meant to yield exact

solutions, which is possible because DFDs are simple descriptions of software

systems that reduce the complexity of the analysis by focusing on the most

important aspects. The reduced complexity with respect to implemented

software systems is no disadvantage but it is necessary to keep the complexity
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of modeling and the required information for modeling low enough to be

applicable in the early phases of creating software architectures. Because

of that reduced complexity, it is possible to clearly classify a result, i.e. add

the system either to 𝑆 ′𝑖 or 𝑆
′
𝑖
. As a consequence, we can expect and demand

𝑇𝑃𝐹 = 𝑇𝑁𝐹 = 1.0 because there are no heuristics involved. A single false

positive or false negative is already not acceptable. Both metrics provide the

required insight to answer VQ6, so we use these:

VM6.1) The ratio of systems, which have been correctly classified as violat-

ing confidentiality requirements, compared to the total amount of

systems, which actually violate confidentiality requirements (𝑇𝑃𝐹 ).

VM6.2) The ratio of systems, which have been correctly classified as not vio-

lating confidentiality requirements, compared to the total amount of

systems, which actually do not violate confidentiality requirements

(𝑇𝑁𝐹 ).

One key benefit of specified semantics is giving a precise meaning to model

elements of the DFD syntax. A precise meaning is an enabler for automating

reasoning steps, which would require heuristics or human interpretation

otherwise. The precise meaning has to cover all model elements and has

to be applicable in all reasoning steps in order to create a fully automated

analysis. Therefore, it is important to validate that the semantics do not limit

the automation of analyses by missing semantic specifications, weak typing

of information or by not covering important usage scenarios. We formulate

the following validation question:

VQ7) Do the DFD semantics limit the automation of analyses?

To answer the validation question, we have to identify the steps required

to automate an analysis of a system. Assuming we have a set 𝐴 of required

analysis steps, we can define a set 𝐴𝑎 ⊆ 𝐴 of analysis steps, which can be

automated. The semantics do not limit the automation of analyses if there are

no analysis steps, which are not automated, i.e.𝐴 = 𝐴𝑎 . A metric to represent

this relation is the number of not automated steps 𝑎̄ = |𝐴 \𝐴𝑎 |. If the value is
0, the semantics do not limit the automation of analyses because there are no

steps, which are not automated. Therefore, we answer VQ7 by the following

metric:

VM7.1) The number of analysis steps, which cannot be automated (𝑎̄).
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8.1.4. Validation Goal 4: Validate ADL Integration Guidelines

The validation goal about the integration guidelines of DFD analyses in ex-

isting ADLs is to show that the guidelines sufficiently answer the research

questions RQ7 and RQ8. RQ7 asks how the DFD analyses can be integrated

into existing ADLs using the control flow paradigm. RQ8 asks the same for

ADLs using the data flow paradigm. The integration guidelines described in

Chapter 7 answer these questions and the integration into the Palladio ADL

demonstrated the applicability of the integration guidelines. A dedicated

validation of the integration guidelines is not possible in an objective way

because there are too many human factors involved in executing the integra-

tion procedure resulting from the integration guidelines. Instead, we validate

the result of the integration procedure, i.e. the extended ADLs, because we

can analyze these artifacts in an objective way and can infer whether the

integration guidelines cover all important aspects. We did not show yet

that the resulting extended ADLs meet the functional and non-functional

requirements, which we aim to achieve by executing the integration pro-

cedure as described in Section 1.4.3. The implicit functional requirements,

which are essential to provide a useful ADL, are (FR1) expressiveness with re-

spect to confidentiality mechanisms and confidentiality requirements, (FR2)

correctness of analysis results and (FR3) automation of analyses. The men-

tioned non-functional requirements are (NFR1) reduced effort for integrating

confidentiality mechanisms into existing models, (NFR2) reduced effort for

switching confidentiality mechanisms and (NFR3) usage of architecture level

information only. To achieve the validation goal, we define a validation ques-

tion for every functional or non-functional requirement, which we describe

in the following paragraphs. To decide whether we sufficiently validated

the contributions for RQ7 and RQ8 individually, we always define dedicated

metrics for the ADL integration for ADLs using control flows and ADLs using

data flows.

Validating that the extended ADLs provide good expressiveness with respect

to confidentiality mechanisms and requirements (FR1) is important because

low expressiveness means that architects cannot integrate the confidentiality

mechanism, which fits best the needs of the system, but have to choose the

mechanism, which they can express. Limited expressiveness with respect

to confidentiality requirements implies the same disadvantage. Because the

analyses for violations operate on DFDs, the expressiveness of DFDs implies

an upper bound for the expressiveness of the extended ADLs. Therefore,
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it is reasonable to validate that the expressiveness of the extended ADL is

not worse than the expressiveness of the DFDs. We formulate the following

validation question:

VQ8) Is an extendedADL less expressive than an extendedDFDwith respect

to confidentiality mechanisms and requirements?

To answer VQ8, we have to compare the expressiveness of extended ADLs

with the expressiveness of DFDs. This covers the expressiveness of con-

fidentiality mechanisms within systems and the expressiveness regarding

confidentiality requirements. We can use the weighted ratio metric 𝑟 , which

we already used to answer the related validation questions VQ1 and VQ2

regarding the expressiveness of confidentiality mechanisms within DFDs.

The metrics VM8.1–VM8.6 must have the same values as the corresponding

metrics VM1.1, VM1.2 and VM2.1 because this means that the extended ADLs

imply no limited expressiveness compared to the DFDs. We do not have to

explicitly validate the expressiveness regarding confidentiality requirements

because the requirements are still formulated in terms of the analysis defi-

nitions, which means that the expressiveness does not change compared to

the already validated expressiveness in VQ5. This brings us to the following

metrics:

VM8.1) Weighted ratio 𝑟 of expressible systems using access control and the

set of systems using access control if a control flow ADL is used.

VM8.2) Weighted ratio 𝑟 of expressible systems using information flow

control and the set of systems using information flow control if a

control flow ADL is used.

VM8.3) Weighted ratio 𝑟 of expressible systems using any combination of

access control and information flow control mechanisms and the

set of systems using such a combination if a control flow ADL is

used.

VM8.4) Weighted ratio 𝑟 of expressible systems using access control and

the set of systems using access control if a data flow ADL is used.

VM8.5) Weighted ratio 𝑟 of expressible systems using information flow

control and the set of systems using information flow control if a

data flow ADL is used.
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VM8.6) Weighted ratio 𝑟 of expressible systems using any combination of

access control and information flow control mechanisms and the

set of systems using such a combination if a data flow ADL is used.

The correctness of analysis results in the extended ADLs (FR2) is crucial

because software architects cannot rely on the results, otherwise. Unreli-

able results imply additional effort, which degrades the benefits of using an

automated analysis. Because analyses operate on DFDs, the upper bound

regarding the correctness is the correctness of corresponding analysis results

on a DFD. Therefore, it is reasonable to validate that the correctness of analy-

sis results for the extended ADL is not worse than the correctness of analysis

results for DFDs. We formulate the following validation question:

VQ9) Is the correctness of analysis results for an extended ADL worse than

for DFD-based analyses?

To answer VQ9, we have to compare the correctness of analysis results based

on the extended ADLs with analysis results based on DFDs. To rate the

correctness of DFD-based analysis results, we use the true positive fraction

𝑇𝑃𝐹 and true negative fraction 𝑇𝑁𝐹 as described for the metrics VM6.1 and

VM6.2. We can also use these metrics for rating the correctness of the ADL-

based analysis results, which simplifies comparing the results with the DFD

results. This is reasonable because the DFD-based analyses set the upper

bound for the correctness of analysis results and the goal of VQ9 is to ensure

that the correctness is not worse compared to the DFD-based analyses. This

brings us to the following metrics:

VM9.1) The ratio (𝑇𝑃𝐹 ) of systems, which have been correctly classified

as violating confidentiality requirements, compared to the total

amount of systems, which actually violate confidentiality require-

ments, if a control flow ADL is used.

VM9.2) The ratio (𝑇𝑁𝐹 ) of systems, which have been correctly classified as

not violating confidentiality requirements, compared to the total

amount of systems, which actually do not violate confidentiality

requirements, if a control flow ADL is used.

VM9.3) The ratio (𝑇𝑃𝐹 ) of systems, which have been correctly classified

as violating confidentiality requirements, compared to the total

amount of systems, which actually violate confidentiality require-

ments, if a data flow ADL is used.
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VM9.4) The ratio (𝑇𝑁𝐹 ) of systems, which have been correctly classified as

not violating confidentiality requirements, compared to the total

amount of systems, which actually do not violate confidentiality

requirements, if a data flow ADL is used.

Automating analyses can lead to lower manual effort, less human errors and

reproducible results. Therefore, we aim for supporting automated analyses

in the extended ADLs (FR3). The actual analysis operates on DFDs but the

analysis of a software architecture given in an extended ADL requires addi-

tional steps. Therefore, the degree of automation can be limited compared to

DFDs. We have to validate that the automation is not worse than for DFDs.

We formulate the following validation question:

VQ10) Is the degree of automation for ADL-based analyses lower compared

to DFD-based analyses?

We can answer VQ10 if we know the steps, which are not automated in

analyses of software architectures specified in the extended ADL, and if we

know how these steps relate to the analysis steps of DFD-based analyses.

Assume we have a set 𝐴 of analysis steps required to analyze DFDs and a set

𝐴𝑎 ⊆ 𝐴 of automated analysis steps for DFDs. Analogously, we define a set

𝐴′ of analysis steps required to analyze architectures given in an extended

ADL and a set 𝐴′𝑎 ⊆ 𝐴′ of automated analysis steps for ADLs. Then, we

define a set 𝑃 of purposes, which an analysis step serves. Based on that,

we define a mapping 𝑚 : 𝐴 ∪ 𝐴′ ↦→ 𝑃 , which maps every analysis step

to a purpose. The automation of ADL-based analyses is worse than the

automation of DFD-based analyses if the ADL-based analyses do not automate

a purpose, which the DFD-based analyses automate. Counting automated

steps or automated purposes and comparing the numbers between DFD and

ADL analyses cannot answer VQ10 because this procedure neglects that

new steps or purposes cannot be simply compared. In contrast, identifying

previously automated purposes that are now no longer automated provides a

clear measure for detecting degraded automation. Therefore, the number of

no longer automated purposes 𝑝𝑎̄ with 𝑝𝑎̄ = | ∪𝑎′∈𝐴′\𝐴′𝑎 𝑚(𝑎′) ∩ ∪𝑎∈𝐴𝑎
𝑚(𝑎) |

is a good metric for detecting degraded automation. The value has to be 0 to

show that the extended ADL does not impose limited automation compared

to DFDs. This brings us to the following metrics:

VM10.1) Number of no longer automated purposes 𝑝𝑎̄ in control flow ADLs.

VM10.2) Number of no longer automated purposes 𝑝𝑎̄ in data flow ADLs.
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A non-functional requirement for the extended ADL is that introducing a

confidentiality mechanism requires less effort compared to the state of the

art (NFR1). The scenario to consider is that a software architect created a

software architecture in an ADL. After extending the ADL, an architect can

add a confidentiality mechanism to the already modeled architecture. It is

important to validate this aspect because it provides a major benefit compared

to the situation that an existing ADL, which does not support confidentiality

yet, has been used to model a software architecture and there is no extended

ADL. In such cases, the software architecture has to be modeled from scratch

or a transformation into the analysis model is required. Creating such a

transformation is part of our integration guidelines, so the validation does

not demonstrate a benefit to this approach. Nevertheless, the validation can

show a benefit compared to remodeling a software architecture from scratch,

which can be reasonable if a software architect has not enough expertise to

create such a transformation or a tool developer having these competences is

not available. We formulate the following validation question:

VQ11) Does an extended ADL require reduced modeling effort for adding

confidentiality mechanisms compared to the state of the art?

As described while motivating VQ11, we are interested in comparing the

modeling effort to the situation, in which a model has to be created from

scratch. The experienced effort highly depends on many human factors such

as the amount of expertise. Therefore, measuring effort in an objective way

is hard. However, it is reasonable to assume that the amount of required

changes in a model correlates to the required effort for creating the model.

Heinrich et al. [Hei+18] demonstrate that it is reasonable to estimate effort

by first collecting changes in a model, asking experts to estimate the effort

for so-called atomic change operations in the model and eventually derive

the total effort. It is important to note that the effort implied by two arbitrary

sets of model changes𝑀 and 𝑁 is not comparable without the assignment of

effort to atomic change operations: Even if set 𝑀 only contains one model

change and set 𝑁 several hundred model changes, it is still possible that the

change from𝑀 requires more effort than all other changes from 𝑁 . However,

it is possible to compare the effort of a set of model changes 𝑀 if either

𝑁 = ∅ or 𝑀 ⊆ 𝑁 holds under the assumption that a model change always

requires either no or more than no effort. The baseline from the state of

the art is that the software architect has to recreate the whole model from

scratch. For this baseline, 𝑀 ⊆ 𝑁 holds because creating a model from

scratch implies a set of model changes 𝑁 , which contains all necessary model
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changes. Consequently, applying the model changes𝑀 requires at most as

much effort as applying the model changes 𝑁 but it is more likely that it

requires less effort. We need a metric that detects the similarity of two models

and that can indicate if there are model parts, which have been reused. Reused

parts imply no model changes. Changed parts imply model changes. The

coefficient of Jaccard [LW71] has already been used in other publications

[Hei20; Mon+21] to rate the similarity of models. To calculate the coefficient,

we interpret a model as a set of model elements. We assume that two models

𝑈 and 𝑉 exist and that equal model elements are identical with respect to

set algebra, i.e. 𝑢 ≡ 𝑣 ⇒ 𝑢 = 𝑣 ∀𝑢 ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑉 . In that case, the

coefficient 𝑗 =
|𝑈∩𝑉 |
|𝑈∪𝑉 | calculates the ratio between equal model elements and

the combination of model elements from both models 𝑈 and 𝑉 . A value

greater than 0 means that there are model elements, which are equal. In

our case, this means that there were model elements, which could be reused

while adding confidentiality mechanisms to the software architectures. The

validation successfully showed an improvement with respect to the state of

the art, if all calculated coefficients of Jaccard are greater than 0. This brings

us to the following metrics:

VM11.1) The coefficient of Jaccard 𝑗 for the software architecture without

confidentiality mechanisms and the software architecture with

confidentiality mechanisms, both specified in a control flow ADL.

VM11.2) The coefficient of Jaccard 𝑗 for the software architecture without

confidentiality mechanisms and the software architecture with

confidentiality mechanisms, both specified in a data flow ADL.

Low effort for switching a confidentiality mechanism (NFR2) is important in

case of evolutionary changes of the software architecture. If the requirements

on the confidentiality mechanism change, the software architect should not

hesitate to switch to a new mechanism in order to identify how well the

new mechanism meets the new requirements. If the effort for switching

the confidentiality mechanism is high, an architect might decide to work

around the issue, which might lead to bad design decisions. In the state of

the art, modeling languages often do not support multiple confidentiality

mechanisms, which implies that software architects either have to remodel

the whole software architecture in another modeling language or have to

create mappings between the two modeling languages. In our approach,

creating the mapping is not necessary because an extended ADL already

supports multiple confidentiality mechanisms. Therefore, our integration
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approach implies a benefit compared to the mapping approach by design.

Nevertheless, we have to validate that the extended ADL reduces the effort

compared to recreating a model of a software architecture. Therefore, we

formulate the following validation question:

VQ12) Does an extended ADL require less modeling effort for switching

confidentiality mechanisms compared to the state of the art?

As already discussed for VQ11, measuring effort in an objective way is hard

because of many human factors affecting the experienced effort. Instead, we

measure the amount of reused elements when switching a confidentiality

mechanism in an existing model of a software architecture. If at least one

element is reused, the measurement indicates an improvement compared

to the state of the art, in which models usually have to be recreated from

scratch. We use the coefficient of Jaccard as introduced for VM11.1 and

VM11.2 because we have to measure the same type of information and the

coefficient provides the required insights into the degree of reuse. Again, a

metric value greater than 0 implies a successful validation. This brings us to

the following metrics:

VM12.1) The coefficient of Jaccard 𝑗 for two software architectures repre-

senting the same system but containing different confidentiality

mechanisms, both specified in a control flow ADL.

VM12.2) The coefficient of Jaccard 𝑗 for two software architectures repre-

senting the same system but containing different confidentiality

mechanisms, both specified in a data flow ADL.

As already discussed for VQ4, it is important to ensure that software archi-

tects and security experts have access to the information required to model

the software architecture (NFR3). In case of the extended ADL, this means

that all required information has to be available while creating the software

architecture. Without this information, modeling a software architecture by

using the extended ADL is not possible and the modeling language fails its

pragmatics of describing software architectures. Therefore, we formulate the

following validation question:

VQ13) Is the information to be expressed by an architecture using an ex-

tended ADL available and accessible to its users?

The metrics to answer VQ13 are the same as for answering VQ4 because we

need the same type of information in order to answer the question. We use the
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sum of unknown information 𝑠𝑘¯ as defined for VM4.1. The validation succeeds

if the value is 0, which means that all required information is available to the

users of the extended ADL. This brings us to the following metrics:

VM13.1) Sum 𝑠𝑘¯ of information required to use an extended control flow

ADL, which cannot be known by software architects and security

experts.

VM13.2) Sum 𝑠𝑘¯ of information required to use an extended data flow ADL,

which cannot be known by software architects and security ex-

perts.

8.2. Case Study Systems

Many validation metrics and validation questions presented in Section 8.1

aim for validating contributions in the context of particular systems. Case

studies are an appropriate way of collecting such information because they

aim for getting insights into particular cases, which usually implies particular

systems. According to various surveys [Ngu+15; Ber+17], case studies are

commonly used to validate model-based security approaches, which explicitly

includes approaches for establishing confidentiality. We briefly explain the

rationale of using case studies for answering the validation questions when

describing the validation design within Sections 8.3 to 8.6.

The foundation of case studies are appropriate systems to apply an approach

to. We discuss the requirements, which make a system an appropriate system

for our validation, in Section 8.2.1. Afterwards, we introduce the systems in

Section 8.2.2 and report on how they match the previously defined require-

ments.

8.2.1. Requirements on Case Study Systems

There are three types of requirements regarding the case study systems. The

Overall Requirements (ORs) define requirements on the set of case study

systems such as how many systems of a certain type are required in or-

der to calculate the validation metrics and answer the validation questions,

which we defined in Section 8.1. We describe the Overall Requirements in

Section 8.2.1.1.
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The descriptions of the systems also have to meet Description Requirements

(DRs) such as that a system has to use a confidentiality mechanism. We cannot

use system descriptions, which do not meet these requirements, in a validation

because they do not provide all information to calculate the validation metrics.

We describe the Description Requirements in Section 8.2.1.2.

The last group are Source Requirements (SRs) and focus on the source of

the system and the system description. These are no must-requirements

but meeting them reduces the threats to validity. We describe the Source

Requirements in Section 8.2.1.3.

8.2.1.1. Overall Requirements (ORs)

The overall requirements are requirements on the set of systems and not on

the systems themselves. We derive these requirements from the validation

metrics.

The set of systems has to contain systems using different, commonly used

confidentiality mechanisms. This is important to rate the expressiveness

regarding different access control mechanisms (VM1.1) and information flow

control mechanisms (VM1.2) within systems as well as for rating the expres-

siveness regarding confidentiality requirements in the context of different

access control mechanisms (VM5.1) and information flow control mechanisms

(VM5.2). The corresponding requirement is as follows:

OR1) The set of case study systems shall contain at least one system for each

commonly used confidentiality mechanism.

Besides having systems for every commonly used confidentiality mechanism,

the set of systems also has to contain at least one system, which uses a mix of

at least one access control and one information flow control mechanism. This

is necessary to validate the expressiveness of the syntax (VM2.1) and analyses

(VM5.3) regarding such combinations. The corresponding requirement is as

follows:

OR2) The set of case study systems shall contain at least one system using

a combination of an access control and an information flow control

mechanism.
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To validate the correctness of analysis results, we have to be able to classify

a system as having or not having an issue, which leads to a violation of

confidentiality requirements. The metrics for capturing the true positive

fraction (VM6.1) and true negative fraction (VM6.2) need this classification

as a foundation to classify the analysis results. To ensure that the analyses

do not yield correct results by accident, e.g. because there are only systems

without issues and the analysis always reports no violation without even

analyzing a system, it is reasonable to require a variant with issue and a

variant without issue for every system. The corresponding requirement is as

follows:

OR3) The set of case study systems shall contain a variant with an issue and

a variant without an issue for every system.

To validate the modeling effort for switching the confidentiality mechanism

(VM12.1 and VM12.2), it is necessary to have at least two variants of the same

system, where the variants use different confidentiality mechanisms. Only

variants of the same system allow to calculate the amount of required changes

that a software architect would have to do. The corresponding requirement

is as follows:

OR4) The set of case study systems shall contain two variants of the same

system, which use different confidentiality mechanisms.

8.2.1.2. Description Requirements (DRs)

The description requirements define requirements for the description of

systems. The descriptions exceed the pure description of usual architectural

information about systems but includes requirements on the type of system

or includes information to build variants of systems.

First of all, we aim for systems, which describe a solution to a problem in a

certain application domain. This explicitly excludes unit test models or toy

examples. Without a certain degree of complexity, the validations regarding

expressiveness (VQ1, VQ2, VQ5 and VQ8) is unlikely to reveal an issue. If

the system describes a potentially working system in an application domain,

the complexity is at least as high as required in that domain. Therefore, such

systems are more representative than small, tailored systems. This brings us

to the first requirement:
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DR1) The system description shall describe a solution for a problem in a

certain problem domain.

The system description itself has to cover various aspects. First of all, the

commonly used architectural information including the structure, behavior,

deployment and usage of the system has to be given. Otherwise, modeling

the system is not possible with our approach or with any other modeling

approach for software architectures. In addition to the software architecture,

information about confidentiality is necessary. Especially, the usage of the

included confidentiality mechanism has to be available. Otherwise, we cannot

integrate the confidentiality mechanism, which is necessary to validate the

expressiveness (VQ1, VQ2, VQ5 and VQ8). The confidentiality requirements

also have to be given in terms of the used confidentiality mechanism. Oth-

erwise, it is not possible to decide if the system violates any confidentiality

requirements, which makes validations using the analysis results (VQ6 and

VQ9) impossible. This brings us to the following requirements:

DR2) The system description shall describe the common architectural infor-

mation including structure, behavior, deployment and usage.

DR3) The system description shall describe how the system integrates the

confidentiality mechanism.

DR4) The system description shall describe the confidentiality requirements

in terms of the confidentiality mechanism.

The more features of a confidentiality mechanism a system uses in its confi-

dentiality requirements, the more likely it is to identify limitations regarding

the expressiveness of these requirements (VQ5). Therefore, the requirements

should use as many features as possible. This brings us to the following

requirement:

DR5) The system description should use as much features of the confiden-

tiality mechanism as possible to formulate the confidentiality require-

ments.

In order to build the variants of the systems with and without an issue, the

system description has to include information about a potential issue and

the resulting violations. If this information is missing, only one variant of

the system is available. The variant either contains an issue or does not

contain an issue. Without both variants, we cannot eliminate the chance

that the correctness of the analysis results is rated to positively: The results
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of an analysis that never finds a violation, e.g. because it reports this result

independently of the system to be analyzed, would be classified correct if

the analysis is only validated with systems without issues. This would be a

threat to the validity, especially for the validations regarding the correctness of

analysis results (VQ6 and VQ9). This brings us to the following requirement:

DR6) The system description shall describe an issue, which can be added to

the system, as well as resulting violations.

8.2.1.3. Source Requirements (SRs)

The source requirements specify quality criteria for the origin of a case study

system. These requirements are not mandatory but meeting them increases

the validity of the results.

A system, which originates from a third party, is less likely to be tailored to the

approach, which shall be validated, because the system has not been designed

with the limitations or capabilities of the approach in mind. Therefore, it is

beneficial to use systems published by other authors. The requirement is not

mandatory because it is always possible to create a system by ourselves. In

that case, we have to discuss potential threats to validity arising from creating

the system by ourselves. If possible, it is beneficial to use systems, which also

have been implemented, because the corresponding software architectures

and confidentiality requirements are realistic. This means that such systems

represent systems, which software architects actually create. This brings us

to the following requirements:

SR1) The system should have been defined by a third party, i.e. another

author.

SR2) The system should also have been implemented.

Because system descriptions, which include confidentiality requirements, are

often discussed in publications about security research, it is likely that these

descriptions also include a discussion of an existing or potential issue. This

is beneficial because creating a variant with and without an issue is much

simpler if a realistic issue is already part of the description. This requirement

is not mandatory because it is usually possible to invent and introduce an

issue based on the confidentiality requirements. To decide if violations,

which our analysis reports, are correct, it is beneficial to have information
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about the violations, which the issue implies. Obviously, this information is

only available if the issue is also already available. This requirement is not

mandatory because the effect of an introduced issue can usually be estimated.

This brings us to the following requirements:

SR3) The system description should contain an issue, which leads to viola-

tions of confidentiality requirements.

SR4) The system description should contain violations of confidentiality

requirements, which an issue in the system implies.

8.2.2. Selected Case Study Systems

The previously introduced requirements on the case study systems and the

requirements on the set of selected systems provide guidelines on how to se-

lect case study systems that support our validations. Source requirements are

the most challenging to meet because they solely depend on the availability

of information from other publications. Therefore, we define the selection

procedure around the source requirements: First, we identify closely related

approaches and extract used case study systems from corresponding publica-

tions. Focusing on closely related approaches is beneficial because there is a

high chance that the resulting systems are given as software architectures or

high-level software designs. We can use such systems without changing the

level of abstraction, which has the potential of introducing errors or simpli-

fying the system too much. After we included all systems of closely related

approaches, we look for missed overall requirements on the set of selected

systems. For all missed requirements, we define case study systems on our

own and add them to the selected case study systems. Defining systems

on our own is reasonable because it is more important to meet the overall

requirements than the source requirements. Missed overall requirements

mean that we cannot do a part of our validation. Missed source requirements

only introduce potential threats to validity, which we have to consider.

The result of the selection procedure is a set of seventeen case study systems

as illustrated in Table 8.2. The approaches iFlow [Kat17] and SecDFD [TSB19]

provide case study systems (CS1–CS9), which use information flow control

to protect the confidentiality of data. The formulated confidentiality require-

ments are given in terms of non-interference with and without encryption.

Most of the corresponding lattices are linear but there is also one case study
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system with an arbitrary lattice and encryption with key pairs as well as one,

which defines non-interference between tenants of a system. Because this set

of case study systems does not meet OR1, which requires at least one system

per commonly used confidentiality mechanism, we have to create and add at

least five systems for the commonly used access control mechanisms DAC,

MAC (military and need-to-know model), ABAC and RBAC. The systems

CS10–CS16 fill this gap. We defined multiple systems using RBAC (CS10–

CS12) to meet OR4, which requires at least two variants of the same system

using different confidentiality mechanisms. The resulting case study systems

use the same system as the case study systems CS1–CS3. This means, we got

three pairs of case study systems, which use the same system. To meet the last

requirement about a case study system using a combination of at least two

confidentiality mechanisms (OR2), we added CS17, which combines RBAC

and a taint analysis, which is a simple form of non-interference. We meet the

last remaining requirement about having a variant with and a variant without

an issue for every case study system (OR3) either i) by using the variant

containing an issue from the original description if the source meets SR3,

ii) by defining a variant based on information from the original description if

the source only partially meets SR3 or iii) by defining such a variant on our

own if the case study system does not originate from a third party, i.e. if it

does not meet SR1.

The descriptions of the case study systems meet all Description Require-

ments (DRs), which we explain in this paragraph as well as in the detailed

descriptions of the case study systems, which follow this paragraph. The

systems are no toy examples (DR1) and provide all required information to

describe their software architecture (DR2). The systems stemming at least

partially from third parties (SR1) meet these requirements because they al-

ready have been used to validate closely related approaches and have been

implemented often (SR2). For the remaining systems CS13–CS16, we demon-

strate that these requirements are met by the following descriptions of the

systems. The requirements about describing the integration of the confiden-

tiality mechanism (DR3) and the description of confidentiality requirements

(DR4) are also met for case study systems originating from third parties

because these publications motivate the systems based on interesting con-

fidentiality requirements and the detection of circumvented confidentiality

mechanisms. For the systems created by ourselves (CS13–CS16) as well as for

the system using combined confidentiality mechanisms (CS17), we discuss

the usage of confidentiality mechanisms and the particular confidentiality
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ID System Conf. Mech./Req. SR1 SR2 SR3 SR4

CS1 TravelPlanner Non-Int. Linear

CS2 DistanceTracker Non-Int. Linear

CS3 ContactSMS Non-Int. Linear

CS4 PrivateTaxi Non-Int. Arb. Enc.

CS5 BankingApp Non-Int. Tenant

CS6 FriendMap Non-Int. Linear Enc.

CS7 Hospital Non-Int. Linear Enc.

CS8 JPMail Non-Int. Linear Enc.

CS9 WebRTC Non-Int. Linear Enc.

CS10 TravelPlanner RBAC

CS11 DistanceTracker RBAC

CS12 ContactSMS RBAC

CS13 ImageSharing DAC

CS14 FlightControl MAC Military Model

CS15 HealthRecord MAC Need-to-Know

CS16 BankBranches ABAC

CS17 TravelPlanner RBAC + Tainting

Table 8.2.: Overview on selected case study systems including the confidentiality mechanism

used to formulate requirements as well as report on not meeting ( ), partially meeting ( )

and fully meeting ( ) the Source Requirements (SRs).

requirements in the created descriptions. The requirement about describing

a potential issue and the corresponding violations (DR6) is often not trivially

met by the third party systems, as the considerable amount of only partially

met source requirements SR3 and SR4 shows. Nevertheless, we can derive

potential issues and violations from the existing descriptions of the third

party systems because all descriptions cover how they protect confidential

information. Consequently, a potential issue is circumventing or disabling

these protections. For the systems defined by ourselves, we clearly describe

issues and potential violations later. We discuss the usage of features of the

confidentiality mechanisms within the confidentiality requirements (DR5) in

the following descriptions.
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8.2.2.1. CS1 TravelPlanner (Non-Interference Linear)

System Source. The system has been published as part of the iFlow project

[Kat+13] and a PhD thesis [Kat17]. According to the PhD thesis, the system

has been implemented
1
.

System Description. The travel planner is a system consisting of three

actors: A user wants to book a flight using his/her travel planner app as well

as the credit card center app. A travel agency receives queries for flights

from the travel planner app and returns matching flights. An airline provides

information about flights to the travel agency and processes bookings for a

given flight and credit card data.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference. Transmitted information has a classification level.

Processing actors have a clearance level. The levels are UserAirlineTravelA-
gency, UserAirline and User.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirements: The credit card data is classified by the User level but has to
be transmitted to the Airline, which is only cleared for UserAirline. To allow

transmission, a declassification operation asks the user for permission and

reclassifies the credit card data. A potential issue is that this declassification

1 https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/T

ravelPlannerSite/travelplanner.zip

234

https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/TravelPlannerSite/travelplanner.zip
https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/TravelPlannerSite/travelplanner.zip


8.2. Case Study Systems

is not done, e.g. because a software architect forgot that this is necessary.

The expected violation is that the airline accesses credit card data, to which

it should not have access to.

8.2.2.2. CS2 DistanceTracker (Non-Interference Linear)

System Source. The system has been published as part of the iFlow project

[Ste+16] and a PhD thesis [Kat17]. According to the PhD thesis, the system

has not been implemented.

System Description. The distance tracker is a system consisting of three

actors: A user wants to track the distance, which he/she has run, and shares

his/her location to enable the calculation of the distance. A distance tracker

records these periodically transmitted locations and calculates a run distance

based on these records. A tracking service records the run distance.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference. Transmitted information has a classification level.

Processing actors have a clearance level. The levels areOnlyDistance, User,Dis-
tanceTracker and User.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The original description of the system does not describe an

issue but describes the critical part for not violating the confidentiality require-

ments: The location data is classified by theUser level but has to be transmitted

to the distance tracker, which is only cleared for User,DistanceTracker. To
allow transmission, a declassification operation asks the user for permission

235



8. Validation

and reclassifies the location data. The resulting location data is classified by

User,DistanceTracker. The tracking service, which shall record the run dis-

tance, is cleared for OnlyDistance. To avoid a violation of the non-interference

requirements, the distance tracker declassifies the locations by calculating

the distance and reclassifying it by OnlyDistance. A potential issue is that

one of these declassifications is not done, e.g. because a software architect

forgot that this is necessary. The expected violation is either that the distance

tracker accesses the location data, to which it should not have access to in

case of circumventing the first declassification, or that the tracking service

accesses the distance data, to which it should not have access to in case of

circumventing the second declassification.

8.2.2.3. CS3 ContactSMS (Non-Interference Linear)

System Source. The system has been published as part of a PhD thesis

[Kat17]. The PhD thesis indicates that the system has at least partially been

implemented.

System Description. The contact SMS system consists of two actors: A user

wants to manage contacts and send a SMS to the contacts. A SMS manager

receives the number of a contact as well as the message and sends the SMS

to the receiver.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference. Transmitted information has a classification level.

Processing actors have a clearance level. The levels are User,Receiver and
User.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.
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Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirements: The contact data is classified by the User level but the SMS

manager needs the phone number from the contact data, which is only

cleared for User,Receiver. To allow transmission, a declassification operation

extracts the number from the contact data and reclassifies the number by the

User,Receiver level. A potential issue is that this declassification is not done,

e.g. because a software architect forgot that this is necessary. The expected

violation is that the SMS manager accesses contact data, to which it should

not have access to.

8.2.2.4. CS4 PrivateTaxi (Non-Interference Arbitrary with Encryption)

System Source. The system has been published as part of a PhD thesis

[Kat17]. The PhD thesis indicates that the system has at least partially been

implemented.

System Description. The purpose of the private taxi system is to provide

ride sharing. The private taxi system consists of four actors: Drivers publish

their route and accept riders for ride sharing. Riders publish their route and

select a driver for ride sharing. The private taxi system receives the routes,

receives the distance between two routes from the distance calculation service,

matches riders to drivers and mediates the communication between drivers

and riders. The distance calculation service receives two routes and calculates

the distance between them.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference as well as encryption with key pairs. Transmitted

information has a classification level. The classification levels areAny, Contact
and Route. Processing actors have a clearance level. The clearance levels

are Driver, Rider, PrivateTaxi and CalcDistance. Data might be encrypted for

a set of public keys, which reduces the classification of data to Any. After
decryption, the classification of data is the same as the classification level

before the encryption.
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Contact

Driver Rider

Route

CalcDistancePrivateTaxi

Data Classification

Node Clearance

Any

Figure 8.3.: Lattice used in the PrivateTaxi case study system.

Confidentiality Requirements. The confidentiality requirement is that a

node with a clearance level 𝑎 must only receive data with a classification level

𝑏 if 𝑎 ≥ 𝑏. A level 𝑎 is greater or equal to a level 𝑏 if 𝑏 is transitively connected

to 𝑎 in the lattice shown in Figure 8.3. Informally speaking, the lattice does

not allow the distance calculation service to access contact data and does

not allow the private taxi service to access routes. The requirement uses

an arbitrary lattice and all features that information flow control enforcing

non-interference with an arbitrary lattice provides.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirements: The route data is classified by the Route level and the private

taxi service receives routes for forwarding it to the distance calculation service.

However, the private taxi service is not cleared for data classified by the Route
level. To allow transmission, drivers and riders encrypt their routes with the

public key of the distance calculation service, which reduces the classification

of the route data to Any. This is essentially a declassification operation. A

potential issue is that this declassification is not done, e.g. because a software

architect forgot that this is necessary. The expected violation is that the

private taxi service accesses route data, to which it should not have access

to.

8.2.2.5. CS5 BankingApp (Non-Interference Tenant)

System Source. The system has been published as part of a PhD thesis

[Kat17]. The PhD thesis indicates that the system has at least partially been

implemented.

System Description. The system consists of two actors: A user wants to

interaction with his/her bank account, i.e. depositing and withdrawing money
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as well as querying the account balance, by using a banking app. A bank

provides the services to interact with the bank account.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference. Transmitted information is always associated with

a certain user. If data of groups of users shall be isolated, these groups

are often called tenants [Fac+13]. The confidentiality mechanism ensures

non-interference between these tenants.

Confidentiality Requirements. The confidentiality requirement is that ten-

ants must not access data of other tenants. Essentially, the system shall behave

as if there was only one tenant using the system. This is a common formula-

tion of non-interference requirements between tenants, so we consider the

requirement to use the relevant features of such types of requirements.

Potential Issue. The original description of the system describes an issue:

Because of a wrong software design, the authenticity of the transmitted

user identifier is not validated when accessing the account balance, which

allows all users to access the balance of other users by sending different user

identifiers. This violates the confidentiality requirement that only tenants

are allowed to access their data. The violation is that other users, who are

not the owner of the data, access the balance.

8.2.2.6. CS6 FriendMap (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach

[TSB19]. There is an implementation [Fab17] of the system.

System Description. The friend map system provides users of social net-

works with a map of the geographical locations of their friends. The social

network, the friend map and the map provider work together to generate

and visualize the map: The social network provides the locations of friends

and displays the generated map of friends. The map provider takes the lo-

cations and renders the map. The friend map orchestrates and mediates the

previously described two systems.
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Confidentiality Mechanism. The system uses information flow control to

enforce non-interference as well as encryption without considering keys.

Transmitted information has a classification level. The levels are Low and

High. Processing actors have a clearance level. In the original publication,

the clearance levels are AttackZone and TrustZone but to improve compre-

hensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or

mechanism. Data might be encrypted, which reduces the classification of

data to Low. After decryption, the classification of data is the same as the

classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The map provider is considered to be in the attack zone, i.e.

is cleared for Low. The location of friends is considered confidential, i.e. is

classified by High. To allow passing the locations to the map provider, the

locations are encrypted, which classifies them by Low. In consequence, the

locations can be transmitted to the map provider. The original description of

the system describes an issue: Because of a wrong software design, the loca-

tions of the friends are no longer encrypted, which means that a node cleared

for Low receives data classified by High, which violates the confidentiality

requirement. The violation is that the map provider accesses location data.

8.2.2.7. CS7 Hospital (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach

[TSB19]. There is an implementation [Fab16] of the system.
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System Description. The hospital system provides employees with patient

lists, which are stored in a database. An employee can read and modify the

patient list using his/her hospital app. The changes a stored in a database.

The system assumes that an attacker has access to a system part, which reads

the patient list from the database and passes the list back to the hospital

app.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference as well as encryption without considering keys.

Transmitted information has a classification level. The levels are Low and

High. Processing actors have a clearance level. In the original publication,

the clearance levels are AttackZone and TrustZone but to improve compre-

hensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or

mechanism. Data might be encrypted, which reduces the classification of

data to Low. After decryption, the classification of data is the same as the

classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The attacker is considered to be in the attack zone, i.e. is

cleared for Low. The patient list is considered confidential, i.e. is classified by

High. To protect patient data, the database encrypts the patient list before

sending it to the reading part of the system, to which an attacker has access.

This reduces the classification level of the patient list to Low. Therefore,

the attacker only has access to data, which is classified Low. The original
description of the system describes an issue: Because of a wrong software

design, the patient list is no longer encrypted, whichmeans that a node cleared

for Low receives data classified by High, which violates the confidentiality

requirement. The violation is that the attacker accesses the patient list.
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8.2.2.8. CS8 JPMail (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach

[TSB19]. There exists an implementation
2
[HAM06] of the system.

System Description. JPMail is a mail system consisting of mail clients, a

SMTP server and a POP3 servers. The user Alice encrypts her mail and passes

it to the SMTP server. The SMTP server sends the mail to the POP3 server.

The POP3 server delivers the mail to Bob, who decrypts the mail.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference as well as encryption without considering keys.

Transmitted information has a classification level. The levels are Low and

High. Processing actors have a clearance level. In the original publication,

the clearance levels are AttackZone and TrustZone but to improve compre-

hensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or

mechanism. Data might be encrypted, which reduces the classification of

data to Low. After decryption, the classification of data is the same as the

classification level before the encryption.

Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirement: The SMTP server and the POP3 server are cleared for Low.

2 https://web.archive.org/web/20130731052551/http://siis.cse.psu.edu/jpmail/down

loads/jpmail-full-latest.tgz
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The content of the mail is classified High. Because the content of the mail

is encrypted before sending the mail to the servers, the confidentiality re-

quirement is not violated. This is essentially a declassification operation. A

potential issue is that this declassification is not done, e.g. because a software

architect forgot that this is necessary. The expected violation is that the SMTP

server and the POP3 server access the mail content, to which they should not

have access to.

8.2.2.9. CS9 WebRTC (Non-Interference Linear with Encryption)

System Source. The system has been used to validate the SecDFD approach

[TSB19]. There exists an implementation [Moz20] of the system.

System Description. WebRTC is a protocol for real-time communication

including media exchange between browsers. The WebRTC system described

in the following is a simplified version. The system consists of the users Alice

and Bob, their browsers, their identity providers, STUN/TURN servers and

a signaling server. Alice initiates a session through three components (her

browser, the signaling server and the browser of Bob) by sending identity

information from the identity provider. The ports to communicate are nego-

tiated via the STUN/TURN servers. The actual communication takes place

via direct connections between the browsers.

Confidentiality Mechanism. The system uses information flow control to

enforce non-interference as well as encryption without considering keys.

Transmitted information has a classification level. The levels are Low and

High. Processing actors have a clearance level. In the original publication,

the clearance levels are AttackZone and TrustZone but to improve compre-

hensibility, we use the clearance level Low instead of AttackZone and High
instead of TrustZone . This does not reduce the complexity of the system or

mechanism. Data might be encrypted, which reduces the classification of

data to Low. After decryption, the classification of data is the same as the

classification level before the encryption.
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Confidentiality Requirements. The confidentiality requirement is that no

node with a clearance level 𝑎 receives data with a classification level 𝑏 such

that 𝑎 < 𝑏. The order relation < is given by the linear ordered lattice, where

a level with a lower index is considered lower than a level with a higher

index. The order of the lattice is the same as the order of the levels mentioned

in the description of the confidentiality mechanism. The requirement uses

all features that information flow control enforcing non-interference with a

linear lattice provides.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirement: The STUN/TURN servers and the signaling servers are external,

potentially public systems. Therefore, these systems are cleared for Low.
The identities, session data and communication information is classified

High. Because the session data is encrypted before sending it to the signaling

server, the confidentiality requirement is not violated. This is essentially a

declassification operation. A potential issue is that this declassification is

not done, e.g. because a software architect forgot that this is necessary. The

expected violation is that the signaling server accesses the session data, to

which it should not have access to.

8.2.2.10. CS10 TravelPlanner (RBAC)

System Source. The system has been published as part of the iFlow project

[Kat+13] and a PhD thesis [Kat17]. According to the PhD thesis, the system

has been implemented
3
. We adjusted the system to use RBAC instead of

information flow control to ensure confidentiality and published this ad-

justed system [SHR19]. We explain the adjustments when describing the

confidentiality mechanism and requirements.

System Description. The travel planner is a system consisting of three

actors: A user wants to book a flight using his/her travel planner app as well

as the credit card center app. A travel agency receives queries for flights

3 https://web.archive.org/web/20220103091007/https://kiv.isse.de/projects/iflow/T

ravelPlannerSite/travelplanner.zip
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from the travel planner app and returns matching flights. An airline provides

information about flights to the travel agency and processes bookings for a

given flight and credit card data.

Confidentiality Mechanism. The system uses RBAC. We introduce one role

for each actor in the system, which yields the roles TravelAgency, Airline and
User. The actors get assigned their corresponding roles. The exchanged data

has a set of roles attached, which describes the roles allowed to access the

data. We map the classification levels to sets of roles: The User classification
becomes the set consisting of the User role. The UserAirline classification
becomes the set consisting of the User and Airline role. The UserAirlineTrav-
elAgency classification becomes the set of all roles. The mapping closely

matches the intention of the classification levels with respect to the actors

that can access the information.

Confidentiality Requirements. The confidentiality requirement is that the

role of the actor has to be in the set of roles, which have access to data,

when the actor accesses data. This requirement only covers RBAC Core but

not Hierarchical RBAC or Constraint RBAC. It would have been possible to

introduce role hierarchies or constraints in an artificial way but the original

system described in Section 8.2.2.1 does not contain any information to derive

such hierarchies or constraints. To avoid creating an artificial system, we

stick to RBAC Core.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirement: The credit card data is only accessible to the User role but

has to be transmitted to the Airline, which has the Airline role. To allow

transmission, a declassification operation asks the user for permission and

explicitly adds the Airline role to the set of roles, which have access to the

credit card data. A potential issue is that this declassification is not done,

e.g. because a software architect forgot that this is necessary. The expected

violation is that the airline accesses credit card data, to which it should not

have access to.
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8.2.2.11. CS11 DistanceTracker (RBAC)

System Source. The system has been published as part of the iFlow project

[Ste+16] and a PhD thesis [Kat17]. According to the PhD thesis, the system

has not been implemented. We adjusted the system to use RBAC instead

of information flow control to ensure confidentiality and published this ad-

justed system [SHR19]. We explain the adjustments when describing the

confidentiality mechanism and requirements.

System Description. The distance tracker is a system consisting of three

actors: A user wants to track the distance, which he/she has run, and shares

his/her location to enable the calculation of the distance. A distance tracker

records these periodically transmitted locations and calculates a run distance

based on these records. A tracking service records the run distance.

Confidentiality Mechanism. The system uses RBAC. We introduce one

role for each actor in the system, which yields the roles TrackingService,
DistanceTracker and User. The actors get assigned their corresponding roles.

The exchanged data has a set of roles attached, which describes the roles

allowed to access the data. We map the classification levels to sets of roles:

The User classification becomes the set consisting of the User role. The

User,DistanceTracker classification becomes the set consisting of the User and
the DistanceTracker roles. The OnlyDistance classification becomes the set

of all roles. The mapping closely matches the intention of the classification

levels with respect to the actors that can access the information.

Confidentiality Requirements. The confidentiality requirement is that the

role of the actor has to be in the set of roles, which have access to data,

when the actor accesses data. This requirement only covers RBAC Core but

not Hierarchical RBAC or Constraint RBAC. It would have been possible to

introduce role hierarchies or constraints in an artificial way but the original

system described in Section 8.2.2.1 does not contain any information to derive

such hierarchies or constraints. To avoid creating an artificial system, we

stick to RBAC Core.
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Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirement: The location data is only accessible to the User role but has to
be transmitted to the distance tracker, which has the role DistanceTracker. To
allow transmission, a declassification operation asks the user for permission

and explicitly adds the DistanceTracker role to the location data. The tracking

service, which shall record the run distance has the role TrackingService. To
avoid a violation of the RBAC requirement, the distance tracker declassifies

the locations by calculating the distance and adding the role TrackingService.
A potential issue is that one of these declassifications is not done, e.g. because

a software architect forgot that this is necessary. The expected violation is

either that the distance tracker accesses the location data, to which it should

not have access to in case of circumventing the first declassification, or that

the tracking service accesses the distance data, to which it should not have

access to in case of circumventing the second declassification.

8.2.2.12. CS12 ContactSMS (RBAC)

System Source. The system has been published as part of a PhD thesis

[Kat17]. The PhD thesis indicates that the system has at least partially been

implemented. We adjusted the system to use RBAC instead of information

flow control to ensure confidentiality and published this adjusted system

[SHR19]. We explain the adjustments when describing the confidentiality

mechanism and requirements.

System Description. The contact SMS system consists of two actors: A user

wants to manage contacts and send a SMS to the contacts. A SMS manager

receives the number of a contact as well as the message and sends the SMS

to the receiver.

Confidentiality Mechanism. The system uses RBAC. We introduce one role

for each actor in the system, which yields the roles Receiver and User. The
actors get assigned their corresponding roles. The exchanged data has a set of

roles attached, which describes the roles allowed to access the data. We map

the classification levels to sets of roles: The User classification becomes the

set consisting of the User role. The User,Receiver classification becomes the set
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of all roles. The mapping closely matches the intention of the classification

levels with respect to the actors that can access the information.

Confidentiality Requirements. The confidentiality requirement is that the

role of the actor has to be in the set of roles, which have access to data,

when the actor accesses data. This requirement only covers RBAC Core but

not Hierarchical RBAC or Constraint RBAC. It would have been possible to

introduce role hierarchies or constraints in an artificial way but the original

system described in Section 8.2.2.1 does not contain any information to derive

such hierarchies or constraints. To avoid creating an artificial system, we

stick to RBAC Core.

Potential Issue. The original description of the system does not describe

an issue but describes the critical part for not violating the confidentiality

requirement: The contact data is only accessible to the User role but the SMS

manager, which needs the phone number from the contact data, only has

the Receiver role. To allow transmission, a declassification operation extracts

the number from the contact data and explicitly adds the Receiver role to
the set of accessible roles of the number data. A potential issue is that this

declassification is not done, e.g. because a software architect forgot that this

is necessary. The expected violation is that the SMS manager accesses contact

data, to which it should not have access to.

8.2.2.13. CS13 ImageSharing (DAC)

System Source. We created the system on our own because the related

approaches do not provide a system using DAC. We derive the domain and

features of the system from a common use case for DAC, which is access

control in filesystems and filesharing applications [Fur08, pp. 61]. We did not

implement the system but published it [Sei+22].

System Description. The system supports sharing images between users.

The users of the system can read images from a store and write images into a

store. The involved users are a mother, a dad, an aunt and an indexing bot of

a search engine. A visualization of the system is available in Figure B.1 on

page 350.

248



8.2. Case Study Systems

Confidentiality Mechanism. The system uses DAC with delegation of rights.

Each user has an identity, which is either Mother, Dad, Aunt or Indexing Bot.
The data store holds a list of identities, which are allowed to read images, a

list of identities, which are allowed to write images, and a list of identities,

which are owners of the data store. Owners can add identities to any of the

three lists.

Confidentiality Requirements. The confidentiality requirements are that

i) the identity of an actor has to be in the list of allowed readers if the actor

wants to read images and that ii) the identity of an actor has to be in the list

of allowed writers if the actor wants to add images. Initially, only the mother

is owner of the data store. The mother and the dad are in the list of allowed

readers. The mother is in the list of allowed writers. The requirements use

all features of DAC with delegation of rights except for the revocation of

access rights. We already recognized this limitation while describing the

DAC analyses in Section 6.2.2.1 and discussed this limitation in Section 6.7.

Integrating this feature in the requirements would only demonstrate an

already known limitation, so it would not provide further insights as part of

the validation. Nevertheless, we will mention this limitation when discussing

the validation results.

Potential Issue. There are multiple potential issues. Because we focus on

confidentiality, we only focus on violations caused by illegal reading of images.

We see two types of issues: The first type of issue is caused by a missing static

assignment of an identity to a list at the data store. The second type of issue

is caused by missing dynamic assignment of an identity to a list at the data

store by an owner. Because the second type of issue is more complex, we

choose this type of issue. The introduced issue is that the mother does not

add reading rights for the aunt anymore. The expected violation is that the

aunt accesses images, although she should not have access to the images.

8.2.2.14. CS14 FlightControl (MAC Military Model)

System Source. We created the system on our own because the related

approaches do not provide a system using MAC with the military security

model. We derive the domain and features of the system from a common

use case for the military security model, which is a military information
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system [FGL93]. We decided to model a system for flight control, because

such systems process information with varying levels of confidentiality and

for various purposes. We did not implement the system but published it

[Sei+22].

System Description. The system supports the flight monitoring and control

of civil as well as military planes. The system has three users: A clerk collects

information about the weather, creates weather reports and stores them

in a database. A civil flight controller registers planes, looks them up and

determines routes for the planes. He/she considers the weather reports to

reduce the risk of directing a plane into dangerous airspaces. The civil planes

are stored in a database. A military flight controller has the same tasks as

the civil flight controller but he/she determines routes for military planes.

He/she considers the weather reports as well as the positions of the civil

planes in a new route. A visualization of the system is available in Figure B.2

on page 351.

Confidentiality Mechanism. The system uses MAC with the military secu-

rity model. There are three levels: Unclassified, Classified and Secret. Weather

data is classified Unclassified and the clerk is cleared for data classified as

Unclassified. Data about civil planes is classified Classified and the civil flight

controller is cleared for data classified as Classified. Data about military

planes is classified Secret and the military flight controller is cleared for data

classified as Secret.

Confidentiality Requirements. The military security model in MAC is com-

parable to non-interference using a linear lattice, so the confidentiality re-

quirement is the same: The confidentiality requirement is that no node with

a clearance level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏.

The order relation < is given by the linear ordered lattice, where a level with a

lower index is considered lower than a level with a higher index. The order of

the lattice is the same as the order of the levels mentioned in the description

of the confidentiality mechanism. The requirement uses all confidentiality

features of MAC using the military security model.
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Potential Issue. To violate the confidentiality requirement, a user must get

access to information, which is classified higher than his/her own clearance.

A potential issue can be that the civil flight controller also uses the positions

of military planes to determine routes for civil planes. The violation is that

the civil flight controller gets to know information about military planes,

which are classified higher than his/her own clearance. This issue is realistic

because it is reasonable to assume that the calculation of routes requires

information about all planes in the airspace.

8.2.2.15. CS15 HealthRecord (MAC Need-to-Know)

System Source. We derived the system from an existing publication [AF08],

which uses a mix of access control mechanisms. We extract the part, which

is about MAC using the Need-to-Know model. We could not find an imple-

mentation of the system.

System Description. The system is a simple electronic health record appli-

cation. The system has three types of users: A physician creates a diagnosis

based on the medical record of the patient and prescribes treatments. He/she

also creates a list of treatments for a clerk. The clerk uses the list of treat-

ments, treatment prices and the contact information of the patient to create

an invoice. The patient receives the invoice after he/she has provided the

patient history and the contact information.

Confidentiality Mechanism. The system uses MAC with the Need-to-Know

model. Medical records are assigned the Medical compartment. Personal in-

formation about the patient are assigned the Personal compartment. Financial

information is assigned the Financial compartment. A physician has a need

to know forMedical information. A clerk has a need to know for Personal and
Financial information. A patient has a need to know for all information.

Confidentiality Requirements. The confidentiality requirement is that a user

of the system must only get access to data, which has a set of compartments,

which is a subset of the needs to know of the user. Because this is the

only confidentiality requirement specified for the Need-to-Know model, the

requirement uses all features of that particular access control model.
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Potential Issue. To violate the confidentiality requirement, a user must get

access to information, which has at least one compartment that is not part of

the needs to know of a user. A simple way to violate this requirement in the

present system is that the physician, which prepares the list of treatments

for the clerk, does no longer remove medical details from these treatments.

This way, the declassification effect of the list creation gets lost, which means

that the treatment list still has the Medical compartment. Because the clerk

does not have a need to know for Medical information, this violates the

confidentiality requirement. The expected violation is that the clerk accesses

treatments including medical details, to which he/she should not have access

to. This issue is realistic because it is reasonable to assume that the need to

declassify this information is overseen by the architect.

8.2.2.16. CS16 BankBranches (ABAC)

System Source. We created the system on our own because the related

approaches do not provide a system using ABAC. It would have been possible

to derive a system from the previously described systems using access control

because ABAC can represent DAC, MAC and RBAC [JKS12]. However, we

would essentially just copy the previous systems, which impedes getting new

insights during the validation. Therefore, we define a new system on our

own. We did not implement the system but published it [Sei+22].

System Description. The system is a banking system for an international

bank. Clerks can register customers and determine a credit line for them.

Managers can use the same features but can use them for regular customers

as well as celebrities. There are two branches of the bank: One branch serves

the United States of America (USA) and one branch serves Asia. Managers

can move customers between the branches. A clerk is always assigned to a

certain branch office. A visualization of the system is available in Figure B.3

on page 352.

Confidentiality Mechanism. The system uses ABAC. The relevant attributes

of subjects are the Role, which can be either a clerk or a manager, and the Lo-
cation, which can be either USA or Asia. The relevant attributes of objects are

the Origin, which can be either USA or Asia, and the CustomerStatus, which
can be either a regular customer or a celebrity customer. Moving customer
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data to a new location changes the Origin attribute. When combining two or

more data items, the resulting data item receives the union of all attributes of

the incoming data items.

Confidentiality Requirements. There are two subject descriptors and two

object descriptors: The Clerk descriptor matches subjects, which have the

Role attribute set to a clerk. The Manager descriptor matches subjects, which

have the Manager attribute set to a manager. The Regular descriptor matches

objects, which have the CustomerStatus set to a regular customer. The All
descriptor matches all objects regardless of particular attribute values. The

confidentiality requirement is that a subject must only access objects if there

exists an authorization for this access. The authorizations are that i) aManager
is allowed to access All objects and that ii) a Clerk is allowed to access Regular
objects if the Location of the subject is the same as the Origin of the object.

This requirement and the authorizations use all features but the hierarchical

descriptors offered by ABAC. We will discuss this limitation as part of the

discussion of the threat to validity of the validation.

Potential Issue. There are many options to introduce an issue. The issue we

introduce is that a manager does not use the system feature for registering

celebrity customers but uses the feature for registering regular customers.

This overrides the separation between regular and celebrity customers. The

expected violation is that clerks access information about celebrities, which

they are not allowed to. The issue is realistic for two reasons: First, it is

possible that managers use the wrong system feature by mistake. A software

architect has to be aware of such a potential problem and has to create

specifications for avoiding such mistakes (e.g. by using different designs or

credentials for different features). Second, it is possible that the software

architect would like to save implementation effort by not using two dedicated

system parts for celebrities and regular customers without considering the

impact on confidentiality.

8.2.2.17. CS17 TravelPlanner (RBAC + Tainting)

System Source. We could not find a system combining access control and

information flow control in related approaches. Therefore, we defined a case

base on CS10 (travel planner using RBAC) and integrated a taint analysis,
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which can be seen as a non-interference using a simple linear lattice. The

combination of access control and taint analysis has already been done and

also has been shown to be beneficial in the literature [Wan+09; ZG02]. We

did not implement the system.

System Description. The travel planner is a system consisting of three

actors: A user wants to book a flight using his/her travel planner app as well

as the credit card center app. A travel agency receives queries for flights

from the travel planner app and returns matching flights. An airline provides

information about flights to the travel agency and processes bookings for a

given flight and credit card data.

Confidentiality Mechanism. The system uses a combination of RBAC and

taint analysis. The handling of roles has already been described in CS10.

To extend the described mechanism by taint analysis, we do the following:

We introduce a validation property on data. Initially data created by a user

is NotValidated. Data created by the system is always considered Validated.
After a node in a system has validated data, it is Validated. Speaking in terms

of a taint analysis, the status NotValidated is equivalent to be tainted and the

status Validated is equivalent to not being tainted. Nodes in the system have

a criticality level, which can be Low, DMZ and High.

Confidentiality Requirements. The confidentiality requirements specified

for CS10 still hold but in order to allow access of a node to data, an additional

confidentiality requirement always has to hold: No node with a clearance

level 𝑎 receives data with a classification level 𝑏 such that 𝑎 < 𝑏. The order

relation < is given by the linear ordered lattice, where a level with a lower

index is considered lower than a level with a higher index. The ordered

lattice in ascending order is Validated, High, NotValidated, Low and DMZ.
Simply said, data, which has not been validated, must be validated before

it might be processed by nodes with high criticality. This requirement is

comparable to the requirements formulated in the literature [Wan+09; ZG02].

The requirements use all features of the taint analysis and RBAC Core. As

discussed for CS10, we only consider RBAC Core to stick closer to the original

travel planner system described in CS1.
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Potential Issue. We could use the same issue as used in CS10 but this would

not provide more insights in the validation compared to only using CS10.

Instead, we define an issue, which can only be shown in the current system.

A realistic issue, which could appear because a software architect forgot to

specify a validation for incoming data, is that the criteria for looking for

flights has not been validated before its processing within the travel planner

app. The expected violation is that the travel planner app processes the not

validated criteria data, which it must not process.

8.3. Validation of Extended Data Flow Diagrams

The validation of the extended DFD syntax, which we described in Section 5.1,

is the first validation goal (VG1). We describe the validation design for an-

swering the validation questions VQ1–VQ4 in Section 8.3.1. The results of

executing the designed validation are presented in Section 8.3.2 and dis-

cussed in Section 8.3.3. We discuss threats to the validity of our results and

conclusions in Section 8.3.4.

8.3.1. Validation Design

The validation design describes the procedure to provide answers to all four

validation questions, which support VG1. The first three validation questions

VQ1, VQ2 and VQ3 ask about the expressiveness of the DFD syntax and

require particular systems for collecting the data to answer the questions.

A case study is appropriate to provide this information because it aims for

gaining insights into the application of the approach in particular cases, which

implies particular systems. We conduct the case study in six steps:

1) For each case study system mentioned in Section 8.2, we try to model

the system and its usage of the confidentiality mechanism in the DFD

syntax.

2) For each case study system, we classify the modeling result either as

successfully modeled or as not successfully modeled. The successfully

modeled case study systems are part of the set of expressible systems

𝑆𝑒 . A system is classified as successfully modeled if the structure and

255



8. Validation

deployment could be represented and if every behavior and usage,

which affects the confidentiality, could be represented.

3) We group the tuples of case study system and its classification by the

confidentiality mechanism mentioned in Table 8.2.

4) We calculate the weighted ratio metrics VM1.1, VM1.2 and VM2.1.

5) For each case study system, we collect the set of used model elements

of the DFD syntax. We consider a model element as used if it has been

instantiated or if any of its subclasses has been instantiated.

6) We calculate the utilization metric VM3.1.

We interpret the metric values as described in Section 8.1.1 and answer the

validation questions VQ1, VQ2 and VQ3.

The last validation question VQ4 asks whether all information to create a

system model is available to the users of the DFD syntax. To answer the

question, we discuss the required information to instantiate every element

of the DFD syntax and build groups of information. For instance, one group

could be the structural information about the architecture. This brings us

to the set 𝐼 of necessary information. Afterwards, we discuss whether this

information is available in the required granularity when creating the soft-

ware architecture. We base our decision about availability by looking at

the information, which other, established ADLs require, and by collecting

commonly required information to use typical architectural viewpoints. This

brings us to the set 𝐼𝑘 of necessary information. After this discussion, we can

classify each information as either known or unknown. The sum of unknown

information is the required metric VM4.1. We adhere to the interpretation

guidelines mentioned in Section 8.1.1 for answering the validation question

based on the metric. A discussion is a reasonable method for collecting the

data to calculate the metric because there is no formal definition of informa-
tion, which is usable for answering the validation question. A discussion can

cover many different influencing factors and provides valuable results as long

as the line of argumentation is clear.

8.3.2. Validation Results

We could successfully express all but one case study system as illustrated

in Table 8.3. The table presents the ratio metric 𝑟 (𝑚) for a mechanism 𝑚.
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Confidentiality Mechanism𝑚 |𝑆 | |𝑆𝑒 | 𝑟 (𝑚)
DAC 1 1 1

MAC Military Model 1 1 1

MAC Need-to-Know 1 1 1

RBAC 3 3 1

ABAC 1 1 1

Non-Interference Linear 3 3 1

Non-Interference Linear with Encryption 4 4 1

Non-Interference Arbitrary with Encryption 1 1 1

Non-Interference Tenant 1 0 0

RBAC + Tainting 1 1 1

Table 8.3.: Overview on ratio 𝑟 (𝑚) of expressible systems |𝑆𝑒 | to total amount of systems |𝑆 |
per used confidentiality mechanism𝑚.

The top part covers the systems using access control, so it provides the data

for calculating VM1.1. Because there are five access control mechanisms,

𝑟 = 5

5
= 1.0. The middle part covers the systems using information flow

control, so it provides the data for calculating VM1.2. Because there are

four information flow control mechanisms, 𝑟 = 3

4
= 0.75. The bottom part

covers the systems using a combination of access control and information

flow control, so it provides the data for calculating VM2.1. Because there is

only one combination of mechanisms, 𝑟 = 1

1
= 1.0.

We calculated the utilization metrics 𝑢𝑓 for all model elements 𝑓 ∈ 𝐹 . For

the most model elements, 𝑢𝑓 was 9, where 9 is the maximum possible value

because there are nine different expressible confidentiality mechanisms. The

model element True has a slightly lower utilization of 8 and Or a value of 7.

The three model elements ActorProcess, And and False have a utilization of 6.

The ContainerCharacteristicReference has a utilization of 3. The only model

element below the threshold of 2 is the model element Not with a utilization

of 0.

In order to calculate VM4.1, we collected the required information to use

the model elements. Table 8.4 lists all model elements, the action to do with

the model elements, the corresponding user and the category of information,

which the user needs to know to perform the action. The triples of category,

action and user build the elements of the set of information 𝐼 . We can show
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for every triple 𝑖 ∈ 𝐼 that the required information is available: Creating the

structure of an architecture and defining its usage is covered by common

architectural viewpoints. According to Rozanski and Woods [RW05, p. 36],

the structure is covered by the functional viewpoint and the usage has to be

covered by the information viewpoint in order to describe the manipulation

of data. Because data flows represent the structure in terms of the wiring of

components as well as the usage in terms of used components by users, they

fall in both categories. Creating model elements, which describe the behavior,

is the responsibility of the security expert. According to an explanation of

the threat modeling process [Tor05], security experts have to collect various

information during threat modeling, which maps to the information required

to specify the BehaviorDefinition: The information about entry points as well

as inputs and outputs matches the information required to create a Pin. The
information on the behavior with respect to inputs and outputs matches the

information required to create an Assignment including all remaining model

elements used to create expressions for the assignments. The information to

bind the BehaviorDefinition to the architecture is also known to the architect

because he/she has to know the data processing of components as defined

by the information viewpoint [RW05, p. 36]. The security expert knows

the information required to create properties because he/she also needs this

information during threat modeling. According to [Tor05], a security expert

has to be aware of the assets to be protected, deployment information as well

as about trust levels of entry points. If the security expert knows the assets

to protect, he/she also knows the properties of the assets, which allows to

define CharacteristicTypes, Enumerations and Literals. If the security experts

knows the trust levels of entry points as well as deployment information,

he/she knows at last some properties of the components, which allows to

define EnumCharacteristics. It is reasonable to assume that the security expert

also knows remaining important properties if they are important for security

analyses. In order to bind these properties to components, the software

architect has to know if the component actually has these properties. The

software architect certainly can bind the deployment information and all

properties related to the deployment because this information is part of the

deployment viewpoint [RW05, p. 36]. For the remaining properties, it is either

reasonable to assume that the security expert provides guidelines on how to

interpret the properties or that the security expert is still available to provide

guidance on applying the properties. In both cases, the software architect

has the information to bind the properties.
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Category Model Element Action User

Structure Process Create Architect

Store Create Architect

Usage ExternalActor Create Architect

ActorProcess Create Architect

Structure/Usage DataFlow Create Architect

Behavior BehaviorDefinition Create Sec. Exp.

Bind Architect

Pin Create Sec. Exp.

Assignment Create Sec. Exp.

And Create Sec. Exp.

Or Create Sec. Exp.

Not Create Sec. Exp.

True Create Sec. Exp.

False Create Sec. Exp.

ContainerCharacteristicReference Create Sec. Exp.

DataCharacteristicReference Create Sec. Exp.

Properties Enumeration Create Sec. Exp.

Literal Create Sec. Exp.

CharacteristicType Create Sec. Exp.

EnumCharacteristic Create Sec. Exp.

Bind Architect

Table 8.4.: Overview on categories of information required to use model elements.

We can now calculate VM4.1. The set of information 𝐼 consists of every triple

of category, action and user from Table 8.4. As explained before, all informa-

tion to create the corresponding model elements is available to the software

architect and the security expert. Therefore, 𝐼 = 𝐼𝑘 holds. Consequently,

𝑠𝑘¯ = |𝐼 \ 𝐼𝑘 | = |∅| = 0 holds.

8.3.3. Result Discussion

We structure the discussion of the results by the corresponding validation

questions.
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Discussion of VQ1. The validation question aims to validate that the ex-

pressiveness of the DFD syntax is not worse than the expressiveness of the

state-of-the-art approaches. As shown by the value 1.0 of VM1.1, the DFD

syntax supports all commonly used access control mechanisms. This means,

we could not show worse expressiveness of access control mechanisms with

respect to the state of the art. However, VM1.2 only has a value of 0.75, which

means that the DFD syntax could not express all information flow control

mechanisms. The syntax could successfully represent all case study systems

using non-interference with linear or arbitrary lattices. Before discussing the

case study system, which the DFD syntax could not express, we give more

details on why the syntax could express the other systems.

For all case study systems, the characteristic types, characteristics and be-

haviors provided in Section 6.2 and Section 6.3 were sufficient to model the

systems. There are only two differences to the provided behaviors: variants

of the behaviors and an additional synchronizing behavior. The variants

affect the joining and forwarding behavior and support more inputs and

outputs. Creating these variants is simple because the behaviors work es-

sentially the same as the ones described by us: The forwarding behaviors

still forward all labels from an input to an output but there are now multiple

pairs of input and output. The joining behaviors still combine labels in the

way described by us (such as building an intersection or finding the highest

label) but the expressions consider more inputs. The synchronizing behavior

is a forwarding behavior, which takes an additional input. However, the

additional input is not considered when determining the labels of the output.

Therefore, the synchronizing behavior just documents an additional input,

which a process receives. The synchronizing behavior could also be replaced

by the forwarding behavior from an analysis point of view.

As shown by Table 8.3, the not-supported confidentiality mechanism is non-

interference between tenants. Tenants are groups of legitimate users of the

same system functions [Fac+13]. This means that these individual tenants

are represented by the same type of user. The DFD syntax describes systems

on such a type level, which means that it cannot express individual users,

i.e. tenants. Consequently, integrating a confidentiality mechanism, which

can distinguish between individual users, is not possible. The case study

system originates from the iFlow approach [Kat17, pp. 187], which can make

use of source code stubs for more detailed analyses. An approach to be

used in the architectural design phase cannot make use of such detailed

implementation information because it is not available at that time. The part
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of iFlow [Kat17, pp. 81], which operates on models, shares such a limitation

and defines one tenant as the whole group of legitimate users and another

tenant as an external, illegitimate user. In consequence, the violations, which

can be detected, are limited compared to the analysis on source code. The DFD

syntax could also express such an attacking user. However, this representation

of the system would be incomplete with respect to the original definition

of the confidentiality requirements – just like the model part of the iFlow

approach. Therefore, we cannot conclude that the expressiveness of the DFD

syntax is worse than the expressiveness of state-of-the-art approaches as long

as only the architecture- and design-time models are considered.

Discussion of VQ2. The validation question aims to validate that the DFD

syntax can represent combinations of access control and information flow

control mechanisms within the same system. As the value 1.0 of VM2.1 shows,

the syntax could successfully represent all case study systems using combina-

tions of both types of confidentiality mechanisms. The characteristic types,

characteristics and behaviors provided by the descriptions of the mechanisms

in Section 6.2 were sufficient to express the systems. The only exception

are joining and forwarding behaviors with more inputs and outputs than

we originally described. However, this does not indicate a problem of the

descriptions because extending the behaviors by more inputs and outputs

is simple as discussed for the previous validation question. A combination

of access control and information flow control within the same system is an

improvement compared to the state of the art.

Discussion of VQ3. The validation question aims to validate that the DFD

syntax does not contain highly specific elements for certain confidentiality

mechanisms. The validation revealed that only the Not element is used in

less than two systems. In fact, the Not element has never been used in any

case study system. This means that the element could be removed without

affecting the expressiveness of the DFD syntax with respect to the case study

systems. However, the element has been added to gain functional complete-

ness [End01, p. 49], i.e. all truth tables, which can be constructed based on

boolean parameters, can be expressed. The DFD syntax intentionally does not

only provide a minimal set of boolean connectives (negation and either logical

disjunction or logical conjunction would be sufficient) but all commonly used

three logical connectives to simplify specifications. To improve VM3.1, we
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could remove either the logical conjunction or the logical disjunction and

transform every expression into the logical equivalent. Because Not has not
been added to support a specific confidentiality mechanism and it can be

replaced by other existing model elements, we can answer VQ3 by stating

that there are no model elements, which are tailored to specific confidentiality

mechanisms.

Discussion of VQ4. The validation question aims to validate that users of the

DFD syntax have access to the information required to use it. As discussed

in Section 8.3.2, the value of VM4.1 is 0, which means that all required

information is available to the software architect and the security expert

while creating the architecture.

8.3.4. Threats to Validity

Because the majority of the validation took place as a case study, we structure

the discussion of threats to validity according to the guidelines of Runeson

and Höst [RH09, pp. 153] for discussing the validity of a case study.

Internal Validity is concerned with how well a taken measure supports a

cause-effect relationship and especially whether there are alternative explana-

tions for the effect. In the context of VG1, we expect the DFD syntax to be the

cause of an effect. The effects are expressiveness, good metamodel utilization

and availability of required information. We discuss potential alternative

explanations of these effects, i.e. other possible influencing factors, in the

following.

The expressiveness (VM1.1, VM1.2 and VM2.1) is certainly affected by the DFD

syntax because it provides the means to express systems. We measure the

amount of systems, which we could express in the DFD syntax, to determine

expressiveness. Besides the DFD syntax, there are other potential influencing

factors: The selection of case study systems influences the expressiveness

measure. For instance, removing CS5 from the set of case study systems

would influence the expressiveness metric positively. We cannot rule out

this factor completely but we mitigated overly positive results by sticking

to the system selection procedure described in Section 8.2.2. The set of case

study systems covers all commonly used confidentiality mechanisms and
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avoids cherry-picking by always selecting all case study systems from closely

related approaches. The aspects of confidentialitymechanisms, which the case

study systems do not cover, focus either on the confidentiality requirements

(hierarchies in RBAC and ABAC) or require stateful modeling (revocation

of rights in DAC). The confidentiality requirements only affect VG2 and

VG3. The stateful modeling is an intentional limitation of our approach,

which we already discussed in Section 6.7. The skill of the software architect

and security expert, which create the DFDs, is another influencing factor.

Because we are interested in the upper bound of expressiveness, this factor

is only important if the skill is too low and thereby lowers the measured

upper bound. We can exclude this factor because the person, who created

the DFDs, is the author of the DFD syntax, which makes low skill in using

the syntax unlikely. Another influencing factor is the chosen abstraction of

the system. By choosing a very high level of abstraction, a complex system

can become expressible even if it misses important details. We mitigated this

factor in two ways: First, we pick case study systems from closely related

approaches, which use a comparable level of abstraction. Second, we reuse

issues from existing case study systems or create issues based on critical

aspects of the system. If an aspect of a system is important for reasoning

about confidentiality, it is unlikely that we can successfully create a system

variant containing an issue when omitting this aspect. For the systems,

which we created on our own, we stuck to common application scenarios

and issues.

The metamodel utilization (VM3.1) is certainly affected by the DFD syntax

because it provides the elements of the metamodel to be used. For every

element, we count the confidentiality mechanisms, for which at least one

system exists, which uses the element. We report elements, which are used

at most once. Besides the DFD syntax, there are other potential influencing

factors: The selection of case study systems directly influences the metamodel

usage. For instance, a set of systems, which do not require a storage, makes the

utilization of the Storage element 0. As explained for the expressiveness, we

carefully selected the case study systems according to the selection procedure

described in Section 8.2.2 to avoid biased selections or small toy examples,

which would lead to an unrepresentative set of systems. Another influencing

factor are the choices done while modeling the system. With respect to

the structure of the system, we do not expect many choices to be available

because of the small amount of model elements in the DFD syntax andmissing

alternatives. With respect to the behavior definitions, there are often multiple
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ways of formulating expressions. For instance, ¬𝑎∨𝑏 is the same as ¬(𝑎∧¬𝑏).
In the first case, negation and logical disjunction is used. In the second case,

negation and logical conjunction is used. Therefore, the metamodel usage

would be different. This means, the metric is susceptible to modeling choices.

Therefore, it is not sufficient to answer the validation question solely by the

metric value but to discuss, whether the model element is only not used

because of design choices. We did this discussion for the only model element,

which has been used never.

The information availability (VM4.1) depends on the DFD syntax because the

syntax prescribes, which information shall be expressed. For every model

element, we determine the information, which is required to create and use

the model element and discuss the information availability. Besides the DFD

syntax, there is another potential influencing factor: The classification of the

availability of information directly influences the metric. If the classification

is wrong, the metric is also wrong. To avoid a wrong classification, we

discussed the availability of every information and justified the classification

by literature.

External Validity is concernedwith the generalization of case study results to

other contexts. Because a case study does not use a representative sample but

a limited set of cases, results cannot be generalized to arbitrary other contexts.

However, the results can be generalized to other cases with comparable

characteristics. We discuss these characteristics in the following.

The result of the expressiveness validation (VM1.1, VM1.2 and VM2.1) is that

the DFD syntax can express systems using the mentioned confidentiality

mechanisms. This finding can be generalized to systems using data flows

and using one of the mentioned confidentiality mechanisms. The restriction

on data flows is important because a DFD cannot represent pure control

flows, which means that confidentiality mechanisms represented by the DFD

syntax always work on exchanged data. A system, in which activities cannot

be represented appropriately by data flows and data processing, cannot be

represented in a DFD. This is a general limitation of DFDs. However, this

limitation is not too restrictive because many different systems have been

initially designed using DFDs.

The result of the metamodel utilization validation (VM3.1) is that there are

no elements specifically tailored to a particular confidentiality mechanism in
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the DFD syntax. Because the validation already covered all model elements

of the DFD syntax and we could show that every element is at least used by

three types of confidentiality mechanisms or only has a low usage because of

arbitrary design decisions while modeling, we could disprove the hypothesis

of the existence of specifically tailored model elements. When executing the

same validation with a different set of systems, the results could be different.

Therefore, the results, i.e. the usage values, can only be generalized if the

set of systems is comparable with respect to the amount of systems, system

sizes and used confidentiality mechanisms. However, the finding, i.e. that

there are no specifically tailored model elements, is generalizable without

restrictions because giving examples is sufficient to disprove the mentioned

hypothesis.

The result of the information availability validation (VM4.1) is that all in-

formation required to express a system in the DFD syntax is available to

the software architect and the security expert. Because the corresponding

validation is not based on a case study but a general discussion, the results

are generalizable to any other system that is expressible.

Construct Validity is concerned with the appropriateness of taken measures

to make statements about the research objective.

The weighted ratio metrics of the expressiveness validation (VM1.1, VM1.2 and

VM2.1) measure the ratio between expressible systems and the total amount of

systems normalized by the amount of systems using the same confidentiality

mechanism. The statement to be made based on the metric value is that the

DFD syntax can express the same amount of confidentiality mechanisms

within systems as state-of-the-art approaches. The metric is appropriate to

provide the information for the statement because a value smaller than 1

means that not all confidentiality mechanisms could be expressed within all

systems, which is worse than state of the art. Apart from this threshold-based

interpretation of the metric, the metric also gives an idea of how bad the

expressiveness is, which is valuable for a discussion. It is reasonable to not

use a simple ratio metric of expressible systems compared to the total amount

of systems because the amount of systems using a certain confidentiality

mechanism varies and we are especially interested in how well the DFD

syntax can express confidentiality mechanisms within systems. Therefore,

not supporting two systems with two different confidentiality mechanism

is worse than not supporting two systems with the same confidentiality
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mechanism. The metric respects this and handles unbalanced sets of systems

with respect to the confidentiality mechanism.

The utilization metric of the metamodel utilization validation (VM3.1) mea-

sures for every element the confidentiality mechanisms, for which at least

one system exists, which uses the element. The statement to be made is that

there are no elements only used by systems using one particular mechanism.

The metric is appropriate to provide the information for this statement: The

metric correctly handles unbalanced sets of systems with respect to the used

confidentiality mechanism. For instance, if only two systems using the same

confidentiality mechanism make use of a model element, its utilization metric

value is still only 1. We cannot use a simple sum of systems using an element

because a large amount of systems using the same confidentiality mechanism

would yield a high usage value, which does no longer provide the information

required to support our statement.

The unknown information metric of the information availability validation

(VM4.1) measures the sum of required information, which cannot be known

by software architects and security experts. The statement to be made is that

all required information can be known by software architects and security

experts. The metric provides the required information because it gives the

sum of unknown information, which can be compared to the expected value

0.

Reliability is concerned with the dependency between the collected data

and the conducting researcher. Best reliability is achieved if the collected

data as well as the conclusions are completely independent of the conducting

researcher.

The data collected in the expressiveness validation (VM1.1, VM1.2 and VM2.1)

certainly depends on the skills of the modeler because two different mod-

elers will most probably not create the very same model. However, this is

not necessary because the validation is about finding an upper bound of

expressiveness. Therefore, it is only necessary that other researchers can

understand the decision of whether a system has been successfully expressed

or not. We provide all created models as part of a data set [Sei22], so other

researchers can decide whether the classification of a system as expressible

was correct. The corresponding metrics can be calculated objectively, which

we also did as part of the validation application in our data set [Sei22].
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The data collected in the metamodel utilization validation (VM3.1) does not

depend on a particular researcher because checking for the usage of a model

element can be done objectively. We have fully automated this step as part of

the validation application in our data set [Sei22].

The data collected in the information availability validation (VM4.1) depends

on the discussion of the availability of information. As part of this discussion,

we explain, why information is available and provide references to literature,

which supports our statements. Other researchers can reproduce the results

by consulting the references.

8.4. Validation of DFD Analyses

The validation of the DFD analyses, which we described in Section 6.2, is the

second validation goal (VG2). We describe the validation design for answer-

ing the validation question VQ5 in Section 8.4.1. The results of executing

the designed validation are presented in Section 8.4.2 and discussed in Sec-

tion 8.4.3. We discuss threats to the validity of our results and conclusions

in Section 8.4.4. Because VQ6 belongs to VG2 as well as to VG3 and uses

the DFD analyses as well as the DFD semantics, we describe the aforemen-

tioned aspects for this validation question only in one place, which is in

Section 8.5.

8.4.1. Validation Design

The validation design describes the procedure to provide answers to VQ5.

The validation question asks about the expressiveness of the DFD analyses

and requires defining the confidentiality requirements of particular systems.

A case study is appropriate to provide this information because it aims for

gaining insights into the application of the approach in particular cases, which

implies particular systems.

In the case study, we reuse the systems, which have already been modeled to

answer VQ1 and VQ2. We use these systems instead of all systems mentioned

in Table 8.2 because to formulate confidentiality requirements for a system,

the system has to use a confidentiality mechanism, which can actually meet

these requirements. For instance, requiring non-interference for a system,
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which uses DAC or no confidentiality mechanism at all, is not reasonable

because the system can only meet this requirement by accident and the

system description does not provide the necessary information to reason

about non-interference. In contrast, the systems modeled to answer VQ1

and VQ2 use the appropriate confidentiality mechanisms and provide the

necessary information to reason about non-interference.

We conduct the case study as follows: For every system resulting from VQ1

and VQ2, we formulate the confidentiality requirements, which have been

described in the case study system descriptions in Section 8.2.2, as a Prolog

query. We use the queries from Section 6.2 and Section 6.3 and replace names

of characteristic types and literals if the names do not already match. If

expected by the analysis definitions, we create the additional Prolog clauses

for covering all confidentiality requirements of the system. For CS17, which

combines access control and information flow control, we apply the combina-

tion procedure described in Section 6.4. Afterwards, we classify the created

confidentiality requirements in either successfully expressed or not expressed.

We classify the confidentiality requirements as successfully expressed i) if

the query is the same as the one presented in the corresponding analysis

definition when ignoring differences in names and ii) if the additional clauses

follow the structure described in the analysis definition. Afterwards, we

calculate the metrics VM5.1, VM5.2 and VM5.3.

8.4.2. Validation Results

We could successfully represent all confidentiality requirements of the case

study systems CS10–CS16, which covers requirements for systems using the

confidentiality mechanisms DAC, MAC Military Model, MAC Need-to-Know,

RBAC and ABAC. Therefore, the weighted ratio for VM5.1 is 𝑟 = 5

5
= 1.0.

We could successfully represent all confidentiality requirements of the case

study systems CS1–CS4 as well as CS6-CS9, which covers requirements for

systems using the confidentiality mechanisms non-interference with linear

lattice, arbitrary lattice including encryption, and linear lattice including

encryption. As explained in the validation design, CS5 is not part of the

considered case study systems for this validation. The weighted ratio for

VM5.2 is 𝑟 = 3

3
= 1.0.

268



8.4. Validation of DFD Analyses

We could successfully represent the confidentiality requirement of the case

study system CS17, which covers the requirements for a system using a

combination of RBAC and a taint analysis. Therefore, the weighted ratio for

VM5.3 is 𝑟 = 1

1
= 1.0.

8.4.3. Result Discussion

Validation question VQ5 aims to validate that the analysis definitions for

DFDs are expressive enough to cover confidentiality requirements of par-

ticular systems. As the metric values for VM5.1, VM5.2 and VM5.3 show,

the DFD analyses provide the necessary means to express the confidential-

ity requirements of the case study systems. The only necessary adjustment

to be made to the Prolog queries was changing the names of characteristic

types. However, this does not indicate a weakness of the analysis definitions.

Security experts can always decide to use different names for characteristic

types if they think, these names fit the particular system better. The analysis

definitions provide the primitives to model systems and execute analyses.

The names used in the analysis definitions do not influence the results of

analyses and are, therefore, interchangeable.

8.4.4. Threats to Validity

Because the validation took place as a case study, we structure the discussion

of threats to validity according to the guidelines of Runeson and Höst [RH09,

pp. 153] for discussing the validity of a case study.

Internal Validity is concerned with how well a taken measure supports a

cause-effect relationship and especially whether there are alternative explana-

tions for the effect. In the context of VG2, we expect the analysis definitions

for DFDs to be the cause of an effect. The expected effect of these analysis

definitions is expressiveness with respect to confidentiality requirements of

systems. We discuss potential alternative explanations of this effect, i.e. other

possible influencing factors, in the following.

The expressiveness (VM5.1, VM5.2 and VM5.3) is certainly affected by the

analysis definitions because they provide the primitives to formulate the

requirements. We measure the amount of systems, for which we could
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express the confidentiality requirements using the analysis definitions, to

determine expressiveness. Besides the analysis definitions, there are other

potential influencing factors: The selection of case study systems also has

an influence on the measured expressiveness because every system having

confidentiality requirements, which cannot be expressed, lowers themeasured

expressiveness. As already discussed in Section 8.3.4, we cannot completely

eliminate this influencing factor but minimize its effect by a careful selection

procedure for case study systems, which covers systems using the most

common information flow control and access control mechanisms as well as

corresponding confidentiality requirements. In addition, the systems have

a considerable size and describe solutions for common problems in various

application domains. Therefore, we consider the results to be representative.

However, we did not cover role hierarchies in RBAC and selector hierarchies

in ABAC. Therefore, we cannot draw conclusions for these particular features.

Excluding CS5 is a logical consequence of a lack of expressiveness regarding

this system, which we already showed and discussed in Section 8.3: If we

cannot express a system, we cannot express confidentiality requirements

for that system. Another potential influencing factor is the expertise of

interpreting confidentiality requirements and mapping them to common

confidentiality mechanisms. For instance, the case study systems originating

from the SecDFD approach [TSB19] distinguish the classification and the

zone of nodes by having different sets of values. However, when also using

the classification values for describing the clearance of nodes, the analysis can

detect the same violations and matches the definition of a non-interference

analysis using a linear lattice. Recognizing this, requires some expertise. A

lack of expertise can have a negative impact on the measured expressiveness.

Because we are interested in the upper bound of expressiveness and we

could not find confidentiality requirements, which we could not express,

this factor had no effect. Another potential influencing factor is that the

formulated confidentiality requirements do not represent the confidentiality

requirements of the case study system. We mitigate this factor by VQ6, which

validates that an analysis based on the requirements detects violations for

the issue contained in the case study system. This does not fully mitigate the

threat but weakens it by showing that the formulated requirements at least

cover the critical aspect of the requirements. Because the issues contained in

the case study system usually demonstrate the most important aspects of the

confidentiality mechanism and requirements used by the systems, we think

that the treat of formulating too simple requirements is negligible.
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External Validity is concernedwith the generalization of case study results to

other contexts. Because a case study does not use a representative sample but

a limited set of cases, results cannot be generalized to arbitrary other contexts.

However, the results can be generalized to other cases with comparable

characteristics. We discuss these characteristics in the following.

The result of the expressiveness validation (VM5.1, VM5.2 and VM5.3) is that

the analysis definitions can express the requirements of systems. This finding

can be generalized to systems using data flows, using one of the mentioned

confidentiality mechanisms and specifying confidentiality requirements in

terms of data. The restriction on data flows is important because a DFD cannot

represent pure control flows, which means that confidentiality mechanisms

represented by the DFD syntax always work on exchanged data. A system, in

which activities cannot be represented appropriately by data flows and data

processing, cannot be represented in a DFD. Consequently, confidentiality

requirements also have to be specified in terms of data. This is a general

limitation of analyses based on DFDs. However, this limitation is not too

restrictive because many different systems have been initially designed using

DFDs and threat modeling, which is one of the most prominent approaches

to identify security issues, also uses requirements based on data. We can

explicitly not generalize the conclusions to confidentiality mechanisms, which

use role hierarchies in RBAC or use selector hierarchies in ABAC because no

case study system covered these aspects.

Construct Validity is concerned with the appropriateness of taken measures

to make statements about the research objective.

The weighted ratio metrics of the expressiveness validation (VM5.1, VM5.2

and VM5.3) measure the ratio between systems, of which we could express

confidentiality requirements, and the total amount of systems. The statement

to be made based on the metric value is that the analysis definitions for DFDs

can express commonly used confidentiality requirements in the context of

particular systems. The metric is appropriate to provide the information

for the statement because non-expressible requirements lower the metric

value and indicate a problem. The threshold for considering the validation to

succeed is 1, which means that all confidentiality requirements have to be

expressible. Apart from this threshold-based interpretation of the metric, the

metric also gives an idea of how bad the expressiveness is, which is valuable

for a discussion. It is reasonable to not use a simple ratio metric of system,
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for which we could express all confidentiality requirements, compared to the

total amount of systems because the amount of systems using a certain confi-

dentiality mechanism and thereby having the same type of confidentiality

requirements varies and we are especially interested in how well the analysis

definitions can express confidentiality requirements for different confidential-

ity mechanisms within systems. Therefore, not supporting the confidentiality

requirements of two systems with two different confidentiality mechanism is

worse than not supporting the requirements of two systems with the same

confidentiality mechanism. The metric respects this and handles unbalanced

sets of systems with respect to the confidentiality mechanism.

Reliability is concerned with the dependency between the collected data

and the conducting researcher. Best reliability is achieved if the collected

data as well as the conclusions are completely independent of the conducting

researcher.

The data collected in the expressiveness validation (VM5.1, VM5.2 and VM5.3)

certainly depends on the expertise in interpreting and modeling confidential-

ity requirements. A person with less expertise might not be able to express the

same amount of requirements as we did. We already mentioned this problem

while discussing the internal validity. However, it is not necessary that an-

other person produces the exactly same results because the validation is about

finding an upper bound of expressiveness. Therefore, it is only necessary

that other researchers can understand the decision of whether confidentiality

requirements have been successfully expressed or not. We provide all created

requirements as part of a data set [Sei22], so other researchers can decide

whether the classification of the requirements as expressible was correct. The

corresponding metrics can be calculated objectively, which we also did as

part of the validation application in our data set [Sei22].

8.5. Validation of DFD Semantics

The validation of the DFD semantics, which we described in Section 5.2, is the

third validation goal (VG3). We describe the validation design for answering

the validation questions VQ6 and VQ7 in Section 8.5.1. The results of execut-

ing the designed validation are presented in Section 8.5.2 and discussed in
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Section 8.5.3. We discuss threats to the validity of our results and conclusions

in Section 8.5.4.

8.5.1. Validation Design

The validation design describes the procedure to provide answers to both

validation questions, which support VG3.

The first validation question VQ6 asks whether analyses, which are built upon

the DFD semantics, can correctly identify systems, which violate confiden-

tiality requirements. A case study is appropriate to provide this information

because it aims for getting insights into the application of the approach in par-

ticular cases, which implies particular systems. We reuse the systems, which

have already been modeled as part of the syntax validation (VQ1 and VQ2),

as well as the confidentiality requirements created as part of the analysis vali-

dation (VQ5). In the validation, we run the analysis for every variant of every

case study system, for which we have a modeled DFD and the corresponding

confidentiality requirements. All case study systems CS1–CS17 except for

CS5 meet these requirements. It is reasonable to exclude CS5 because it is

not possible to run an analysis on a model, which does not exist. For every of

these case study systems, we have two variants: one variant containing no

issue and one variant containing an issue. Running an analysis for a variant

means running the automated analysis steps described in Section 6.1. This

covers the mapping of the system, i.e. the DFD, to a logic program and the

execution of the label comparison, i.e. running the query in the logic program.

The automated analysis steps yield a list of violations.

To calculate the true positive fraction (VM6.1) and the true negative fraction

(VM6.2), we classify the reported violations. All violations reported for the

variants without issue are wrong because there cannot be violations without

an underlying issue in our case study systems. The violations reported for

the variant with issue have to be rated individually. For every such reported

violation, we check if the violation matches the expected violations, which

we described for every case study system in Section 8.2. If a violation does

not match the expected violations, we consider it wrong.

We consider every system variant, for which at least one wrong violation

has been reported, as having wrong results. To calculate the true positive

fraction, we collect all variants containing an issue in a set 𝑆𝑖 and all of these
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variants, which do not have wrong results, in a set 𝑆 ′𝑖 ⊆ 𝑆𝑖 . The true positive

fraction is then 𝑇𝑃𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |. To calculate the true negative fraction, we

collect all variants not containing an issue in a set 𝑆𝑖 and all of these variants,

which do not have wrong results in a set 𝑆 ′
𝑖
⊆ 𝑆𝑖 . The true negative fraction

is then 𝑇𝑁𝐹 = |𝑆 ′𝑖 |/|𝑆𝑖 |.

The second validation question VQ7 asks whether the DFD semantics limit

the automation of analyses. To answer this question, we have to know the

set of analysis steps 𝐴 and the set of automated analysis steps 𝐴𝑎 ⊆ 𝐴. We

define the analysis steps 𝐴 as part of a discussion. Afterwards, we derive

the set of automated analysis steps 𝐴𝑎 from our prototypical implementation

by comparing the set of analysis steps with features of our implementation.

After having both sets, we can identify the amount of not automated steps

𝑎̄ = |𝐴 \𝐴𝑎 |, which is also the required metric VM7.1.

8.5.2. Validation Results

The analyses based on DFD semantics could successfully identify correct

violations for systems containing an issue, which means that the𝑇𝑃𝐹 (VM6.1)

is 1.0. The analyses based on DFD semantics could also successfully identify

that there are no violations in systems not containing an issue, which means

that the 𝑇𝑁𝐹 (VM6.2) is 1.0.

In order to calculate VM7.1, we collected the steps to be done during and

analysis and checked whether our prototypical implementation automates

these steps. The input of the analysis is the system to analyze, i.e. the DFD

including applied confidentiality mechanisms, and the confidentiality require-

ments, i.e. the query for unwanted combinations of labels. The output of the

analysis is a set of violations. Everything between receiving the inputs and

producing the outputs is part of the analysis. The required steps are:

A1 Transforming the DFD into a logic program

A2 Propagating the data including its labels through the system

A3 Comparing the labels of data with labels of nodes

A4 Reporting identified violations
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All of the previously mentioned steps are automated within our prototype.

We described the mapping of a DFD to a logic program (A1) in Section 5.2.2.

The mapping does not require human interpretation or heuristics. Therefore,

we could implement the mapping as a model transformation in our prototype.

The propagation of labels (A2) is the core of the semantics. The semantics

require clear specifications of the propagation functions in the analysis defi-

nitions. Because the propagation functions are limited to logic operations,

constants and references to other labels, the propagation functions can be

executed in a fully automated way. The logic to identify paths through the

DFD, on which labels can be propagated, is also specified in form of a clear

algorithm. Both parts do not require human interaction. The propagation of

labels is automated within the logic program. The comparison of labels (A3)

uses the propagated labels, which can be determined automatically, and a

comparison function. Because the comparison function is given as a query to

a logic program, it can be executed fully automatically. The violations are

also automatically reported (A4) by the Prolog execution environment, which

finds solutions to the label comparison function.

Based on that discussion, we can calculate the sum of not automated analysis

steps (VM7.1). Because the set of analysis steps 𝐴 and the set of automated

analysis steps 𝐴𝑎 are the same, i.e. 𝐴 = 𝐴𝑎 , the amount of not automated

steps 𝑎̄ = |𝐴 \𝐴𝑎 | is 0.

8.5.3. Result Discussion

We structure the discussion of the results by the corresponding validation

questions.

Discussion of VQ6. The validation question aims to validate that analyses

based on the DFD semantics can correctly identify systems containing vio-

lations. As the true positive fraction 𝑇𝑃𝐹 = 1.0 shows, the analyses could

successfully identify all variants of case study systems, which contain an

issue, as containing violations. Because we request that all reported violations

for each individual system are correct in order to consider the results for a

system variant as true positive, we can also state that the analyses did not

report a wrong violation. As the true negative fraction𝑇𝑁𝐹 = 1.0 shows, the

analyses could successfully identify that all variants not containing an issue

do not contain violations. Both metric values are also the required values
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for answering the validation question positively. The results support both,

the validation goal about the DFD analyses (VG2) and the DFD semantics

(VG3): The results show that the DFD semantics are a good foundation for

realizing confidentiality analyses, which yield correct results. It would be

unlikely that weak semantics together with the high degree of automation of

the analyses always yield correct results. Therefore, the results support VG3.

The results also show that the DFD analyses can correctly detect violations

within systems. Too simple analysis definitions or wrongly specified analysis

definitions would, most probably, not always yield correct results. Therefore,

the results support VG2.

Discussion of VQ7. The validation question aims to validate that the seman-

tics do not limit the automation of analyses. As the number of not automated

steps 𝑎̄ = 0 shows, we could automate all steps of the analysis assuming

that the required inputs (DFDs, analysis definitions and confidentiality re-

quirements) are available. In the discussion about the automation, we clearly

stated that the analysis does not rely on human intervention or heuristics.

Because all steps could be automated, the semantics cannot have limited the

automation of analyses.

8.5.4. Threats to Validity

Because one part of the validation took place as a case study, we structure the

discussion of threats to validity according to the guidelines of Runeson and

Höst [RH09, pp. 153] for discussing the validity of a case study. The categories

to be discussed are also suitable for other types of validation designs, such as

the discussion of automation.

Internal Validity is concerned with how well a taken measure supports a

cause-effect relationship and especially whether there are alternative expla-

nations for the effect.

In the context of the correctness of analyses (VQ6), we expect the DFD se-

mantics and the analysis definitions for DFDs to be the causes of an effect.

The expected effect of both are correct analysis results. We discuss potential

alternative explanations of this effect, i.e. other possible influencing factors, in

the following. The DFDs to be analyzed can have an effect on the correctness
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of the analysis results. We distinguish two cases: If the modeled DFD shall

contain an issue but actually does not, we would classify the result as wrong,

which would lower the 𝑇𝑃𝐹 metric. The same holds if the DFD contains an

issue but the issue is not the expected issue, i.e. the resulting violations are

not expected. The described case did not occur in our case study, which can

be seen from the 𝑇𝑃𝐹 , which is 1.0. The second case occurs if the modeled

DFD shall not contain an issue but actually does contain an issue. In this

case, we would classify the result as wrong, which would lower the 𝑇𝑁𝐹

metric. The described case did not occur in our case study, which can be

seen from the 𝑇𝑁𝐹 , which is 1.0. Besides the classification guidelines for

systems, the classification guidelines for violations also influence the result.

If the guidelines accept violations as correct even if the violations are actually

wrong, the 𝑇𝑃𝐹 looks more positive than it actually is. We mitigated this

problem by specifying the expected violations as part of the case study system

descriptions in Section 8.2. These descriptions provide clear guidelines on

how to classify violations.

In the context of the automation of analyses (VQ7), we expect the DFD seman-

tics to be the causes of an effect. The expected effect of the DFD semantics is

the capability to automate all analysis steps. We discuss potential alternative

explanations of this effect, i.e. other possible influencing factors, in the follow-

ing. The scope of the analysis is one potential influencing factor. We defined

the scope of the analysis as reporting violations based on a given DFD and con-

fidentiality requirements. Another definition could be to provide assistance

while creating the DFD by reporting potential violations. The latter definition

would most probably not allow full automation because incomplete DFDs and

confidentiality requirements require additional human input or intervention.

However, even in the real-time analysis, there is one analysis part, which

analyzes the DFD and confidentiality requirements as they are, to identify

the need for human input. Therefore, the discussion of automation is still

applicable to these scenarios. The confidentiality requirements are another

influencing factor. If the requirements are not given in a formal specification,

automation becomes impossible. However, analyses always require inputs to

be given in a particular formalization. We already validated that expressing

the confidentiality requirements of the case study systems is possible in VQ5

and created the requirements in the expected format. Therefore, a lack of

formalization of the requirements is no influencing factor here.
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External Validity is concernedwith the generalization of case study results to

other contexts. Because a case study does not use a representative sample but

a limited set of cases, results cannot be generalized to arbitrary other contexts.

However, the results can be generalized to other cases with comparable

characteristics. We discuss these characteristics in the following.

The result of the correctness validation (VM6.1 and VM6.2) is that the DFD

analyses based on the DFD semantics can correctly identify systems contain-

ing violations. This finding can be generalized to systems, which are given in

the DFD syntax and which use the confidentiality mechanisms and features

of the confidentiality mechanisms, which were considered in the validation.

The confidentiality requirements have to be given in terms of a query to the

logic program and optional additional facts. We cannot draw conclusions for

other confidentiality mechanisms.

The result of the automation validation (VM7.1) is that the DFD semantics

do not limit the automation of analyses. Because this insight is based on

a general applicable discussion, it is not limited to particular cases but is

generally applicable.

Construct Validity is concerned with the appropriateness of taken measures

to make statements about the research objective.

In the correctness validation, we use the true positive fraction𝑇𝑃𝐹 (VM6.1) and

the true negative fraction𝑇𝑁𝐹 (VM6.2). The statement to be made is that the

analyses using the DFD semantics can correctly identify systems containing

violations. The true positive fraction provides the necessary information to

make this statement: Every correctly identified system containing violations

is counted and the ratio between the correctly identified systems and the

systems containing violations is calculated. A value of 1.0 means that all

systems, which should have been identified, have been identified. However,

the true positive fraction does not cover falsely reported systems. This means,

an analysis, which always reports a system to contain a violation without

even analyzing the system, still has a true positive fraction of 1.0. Therefore,

it is necessary to also calculate the true negative fraction, which builds the

ratio between systems, which have been correctly not identified as containing

violations, and the total amount of systems, which actually do not contain

violations. If the true negative fraction is also 1.0, it means that also systems

containing no violations are correctly classified by the analysis. This means
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that the analysis actually analyzes the system. As already discussed by Metz

[Met78], the combination of both metrics is good to rate the quality of binary

classifiers, which is essentially what the validation question is about.

In the validation of the degree of automation, we use the sum of analysis

steps, which are not automated. The statement to be made is that the DFD

semantics do not limit the automation of analyses. The metric is simple and

provides all information to support the statement. As long as the sum of

non-automated analysis steps is 0, the statement is supported.

Reliability is concerned with the dependency between the collected data

and the conducting researcher. Best reliability is achieved if the collected

data as well as the conclusions are completely independent of the conducting

researcher.

The data collected in the correctness validation (VM6.1 and VM6.2) depends on

the conducting researcher when it comes to classifying the reported violations.

Classifying the violations is necessary because a wrongly reported violation

lowers the metric values and therefore influences the conclusions to be drawn

from the data. To classify the violations, a researcher has to understand the

issue introduced in the case study systems as well as the implications of

this issue. To improve the reliability, we described each issue as well as its

implications, i.e. the expected violations, as part of the descriptions of the

case study systems in Section 8.2. In addition, we added the classification of

violations to the application for reproducing the validation results in our data

set [Sei22]. For every case study system, we clearly encode the classification

guidelines in Java, so other researchers can check our classifications. When

using the same classification guidelines, the resulting data is the same because

the remaining parts of the validation design are fully automated by the

application for reproducing the validation. Based on the data, the same

conclusions can be drawn.

The data collected in the validation of the automation (VM7.1) depends on

the identified analysis steps as well as on the discussion about automating

them. The analysis steps can be identified based on the provided discussion

and based on the explanation of the analysis procedure in Section 6.1, so

other researchers can identify the same analysis steps. In the discussion about

the automation of analysis steps, we often refer to the implementation of

our prototype, which shows that an analysis step can be automated. Other
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researchers can check these statements based on the source code and by

executing the application to reproduce the validation results, which we both

provide in our data set [Sei22].

8.6. Validation of ADL Integration Guidelines

The validation of the integration guidelines for existing ADLs, which we

described in Chapter 7, is the fourth validation goal (VG4). The validation of

the guidelines takes place by a validation of integrations, i.e. extended ADLs,

which result from applying the integration guidelines to existing ADLs. We

describe the validation design for answering the validation questions VQ8–

VQ13 in Section 8.6.1. The results of executing the designed validation are

presented in Section 8.6.2 and discussed in Section 8.6.3. We discuss threats

to the validity of our results and conclusions in Section 8.6.4.

8.6.1. Validation Design

The validation design describes the procedure to provide answers to all six

validation questions, which support VG4. The integration guidelines support

ADLs using control flows and ADLs using data flows. Because these types of

ADLs have fundamental differences, we have to ensure that the validation

results are valid for both types of ADLs. Thereto, all metrics to answer the

validation questions belonging to VG4 distinguish two scenarios: In one

scenario, metrics for an ADL focusing on control flows shall be calculated.

In the other scenario, metrics for an ADL focusing on data flows shall be

calculated. The extended Palladio ADL presented in Section 7.2 supports

both scenarios. In the first scenario, we limit the use of the Palladio ADL

to the subset, which focuses on control flows. We treat this subset like an

individual ADL in the following descriptions. In the second scenario, we

use the communication via data flows as often as possible. We cannot solely

use data flows because Palladio does not support communication based on

data flows between the users and the system as described in Section 7.2.2.

We also treat this usage of the ADL as an individual ADL in the following

descriptions. Based on these definitions, we describe the design for answering

the questions in the following.
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Case Study for VQ8. The first validation question asks whether the expres-

siveness of the extended ADL syntax and semantics (VQ8) is lower than

the expressiveness of DFDs. The expressiveness of the DFD syntax and the

semantics has been validated by a case study using particular systems. In

order to allow a comparison of expressiveness, it is reasonable to also conduct

a case study using the same case study systems and the same metrics. We

conduct the case study in three steps:

1) For each case study system described in the overview on case study

systems in Section 8.2, we try to model the system and its usage of

the confidentiality mechanism in the extended Palladio ADL twice:

one time using the Palladio ADL focusing on control flows and one

time using the Palladio ADL focusing on data flows. Because model-

ing a DFD is not directly possible in Palladio using control flows or

data flows, we adapt the structure of the system as well as its usage if

necessary. The adapted systems still have to represent the same func-

tionality as specified in the description of the case study system. In

addition, the critical aspects for analyzing confidentiality still have to

be represented. For instance, data still has to be joined or declassified.

2) For each tuple of case study system and used ADL subset (control flow

or data flow), we classify the modeling result either as successfully

modeled or as not successfully modeled. A system is classified as

successfully modeled if the structure, deployment and confidentiality

requirements could be represented and if every behavior and usage,

which affects the confidentiality, could be represented.

3) We calculate the metrics to answer VQ8.

3.1) We only consider systemsmodeled in the control flowADLwhen

calculating the weighted ratio metrics VM8.1–VM8.3 because

the metrics focus on the expressiveness of the control flow ADL.

For calculating VM8.1, we only consider systems using access

control mechanisms. For calculating VM8.2, we only consider

systems using information flow control mechanisms. For calcu-

lating VM8.3, we only consider systems using a mix of access

control and information flow control mechanisms. The weighted

ratio metric normalizes the weight of a modeling result based

on the used confidentiality mechanism. Therefore, we group

the systems, which are considered for calculating the metrics,

by the particular confidentiality mechanism (e.g. RBAC). The
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information to do so is available in the overview on the case

study systems in Section 8.2. Each group has the same weight in

the final metrics.

3.2) We only consider systems modeled in the data flow ADL when

calculating the weighted ratio metrics VM8.4–VM8.6 because

the metrics focus on the expressiveness of the data flow ADL.

For calculating VM8.4, we only consider systems using access

control mechanisms. For calculating VM8.5, we only consider

systems using information flow control mechanisms. For calcu-

lating VM8.6, we only consider systems using a mix of access

control and information flow control mechanisms. The weighted

ratio metric normalizes the weight of a modeling result based

on the used confidentiality mechanism. Therefore, we group

the systems, which are considered for calculating the metrics,

by the particular confidentiality mechanism (e.g. RBAC). The

information to do so is available in the overview on the case

study systems in Section 8.2. Each group has the same weight in

the final metrics.

Case Study for VQ9. The second validation question asks whether the cor-

rectness of the analysis results (VQ9) is worse compared to the results of

DFD-based analyses. We rated the correctness of DFD-based analyses by

running them on particular systems in a case study. Therefore, we have to

do the same in order to get comparable results. The DFD-based case study

used the same case study systems as the systems considered by the valida-

tion of the expressiveness (VQ8). Therefore, we can run the analyses on the

systems, which already have been modeled for answering VQ8. If we cannot

express a system in VQ8, we exclude it from the case study for VQ9. This

is reasonable because an analysis always requires an input and if that input

is not available, the analysis cannot produce results. Considering a system,

which cannot be expressed, does not provide any insights beyond that our

analyses require a system as an input. For every expressible system, there

are two variants. One variant contains an issue, which leads to violations of

confidentiality requirements. The other variant contains no issue and does

not violate confidentiality requirements. The introduced issues are available

in the descriptions of the case study systems in Section 8.2.2. We use both
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variants in the case study, which we conduct by executing the following three

steps:

1) We run the analysis for violations of confidentiality requirements on

all four models of a case study system: Every system has been modeled

using the control flow ADL and the data flow ADL. For both system

models, there are two variants (one with issue and one without issue),

which results in a total of four system models. Running an analysis

means that the automated tooling takes the modeled system as well as

the label comparison function and reports detected violations.

2) We classify all reported violations as correct or wrong. A reported

violation for a system variant without issue is always wrong because

there are no issues that could lead to a violation. In order to be correct,

a reported violation for a system variant with issue has to be within

the expected violations, which we explain in Section 8.2.2 for every

system. A violation is within the expected violations if it occurs in the

expected locations, which are described in in Section 8.2.2. Otherwise,

the reported violation is wrong.

3) We calculate the metrics to answer the validation question. We al-

ways classify whole system variants based on the classifications of the

reported violations.

3.1) The true positive fraction𝑇𝑃𝐹 (VM9.1) considers system variants

with issues modeled in a control flow ADL. A system variant is

classified as true positive if at least one violation is reported and

all reported violations are correct.

3.2) The true negative fraction 𝑇𝑁𝐹 (VM9.2) considers system vari-

ants without issues modeled in a control flow ADL. A system

variant is classified as true negative if no violations have been

reported.

3.3) The true positive fraction𝑇𝑃𝐹 (VM9.3) considers system variants

with issues modeled in a data flow ADL. A system variant is

classified as true positive if at least one violation is reported and

all reported violations are correct.

3.4) The true negative fraction 𝑇𝑁𝐹 (VM9.4) considers system vari-

ants without issues modeled in a data flow ADL. A system
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variant is classified as true negative if no violations have been

reported.

Discussion of VQ10 VQ10 asks whether the degree of automation of ADL-

based analyses is lower compared to DFD-based analyses. We already rated

the degree of automation for DFD-based analyses by a discussion of analysis

steps and their automation for VQ7. In order to compare the degree of

automation, we use the same validation approach: We collect all analysis

steps for an ADL and classify an analysis step as automated if the prototype

for the Palladio ADL automates this step. Because the analysis steps might

differ between DFD-based analyses and ADL-based analyses, we assign every

analysis step a purpose. After that, we can collect purposes, which are not

automated for DFD-based analyses, and we can collect purposes, which

are not automated for ADL-based analyses. A purpose is classified as not

automated if there is at least one not automated analysis step that serves this

purpose. By identifying the purposes, which are no longer automated for

ADLs, we can calculate the metrics. We do the previously described steps for

the analysis procedure of control flow ADLs to calculate VM10.1 and for the

analysis procedure of data flow ADLs to calculate VM10.2.

Case Study for VQ11 VQ11 asks whether the extended ADL lowers the mod-

eling effort for adding confidentiality mechanisms to software architectures

compared to the state of the art. As discussed in Section 8.1.4, we can show

reduced modeling effort by showing that software architects do not have to

remodel the software architecture from scratch for adding a confidentiality

mechanism. Therefore, it is sufficient to validate that at least one model

element can be reused. Because the integration into Palladio reuses many

ADL elements to describe the structure, behavior, deployment and usage of

the system, it is reasonable to assume that software architects can reuse a

considerable amount of already modeled software architectures, which lowers

the overall modeling effort. This means software architects should always

be able to reuse parts of existing software architectures because of the way

we constructed the ADL integration. However, we would also like to show

the validity of this statement for particular systems and give some numbers

on how much can actually be reused. A case study is appropriate to provide

the answer to the validation question because it focuses on gaining insights

into particular applications of an approach, which is necessary because the
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amount of reuse can vary depending on the particular systems. We conduct

the case study by executing the following three steps:

1) We create variants of case study systems, which do not contain con-

fidentiality mechanisms. These variants represent software architec-

tures, which the software architect already modeled without integrat-

ing confidentiality. We create the variants by modifying the software

architectures, which we already modeled for answering VQ8: We

remove or replace all model elements, which belong to the ADL ex-

tension. We replace operational data stores with regular components.

We remove all applied stereotypes, i.e. characteristics of nodes and

behaviors of data channels, and all variable characterizations describ-

ing confidentiality. Because the removed elements are no mandatory

elements of the Palladio ADL and the elements do not replace other

mandatory elements of the Palladio ADL, the resulting software archi-

tecture is still a valid software architecture. We create these variants

for the case study systems CS1, CS2 and CS3 based on the modeled

software architectures using control flows as well as data flows. Using

these three systems is beneficial because each of these systems shares

the represented system with at least one other case study system. For

instance, CS1 represents the TravelPlanner system just like CS10 and

CS17. This allows us to not only compare the variant without a con-

fidentiality mechanism with the case study system, from which we

derived the variant, but also with other case study systems. This is

useful because the validation would only show that we did not replace

or remove all model elements while creating the variant, otherwise.

2) We calculate the Jaccard Coefficients. To identify equal elements, we

use the comparison approach of EMF Compare [BP08] consisting of

two phases: First, we match elements of two models, which shall be

equal. We match elements based on their unique identifiers. This

works in our case because we created models of case study systems,

which represent the same system, by copying an existing model and

adjusting it to use another confidentiality mechanism. Second, we

compare the matched elements to classify them as equal or not equal.

Two elements are equal if all attributes and references of the elements

are equal. Attributes are equal if the values are equal. References are

equal if the target of the reference in the first model and the target of

the reference in the second model have been matched to each other.
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2.1) We compare the variant of CS1 with the modeled case study

systems for CS1, CS10 and CS17.

2.2) We compare the variant of CS2 with the modeled case study

systems for CS2 and CS11.

2.3) We compare the variant of CS3 with the modeled case study

systems for CS3 and CS12.

2.4) We do the comparisons separately for the models using control

flows and the models using data flows.

3) We compare the Jaccard Coefficient with the threshold in order to

answer the validation question regarding the state of the art. For this

comparison, we assume that many approaches from the state of the

art require the software architect to remodel the whole system, which

brings us to a threshold of 0, i.e. we consider a Jaccard Coefficient

greater than 0 as good.

Case Study for VQ12 VQ12 asks whether the extended ADL lowers the mod-

eling effort for switching between confidentiality mechanisms in software

architectures compared to the state of the art. We use the amount of models

elements, which have to be changed, to reason about the modeling effort.

If not all model elements have to be changed, the modeling effort can be

considered lower than for state-of-the-art approaches, which require remod-

eling the whole system. Because the amount of required changes depends

on the particular system and the involved confidentiality mechanisms, we

conduct a case study. A case study is a good approach because it aims for

gaining insights into the application of an approach in particular contexts.

With respect to this validation, different contexts mean different software

architectures, i.e. case study systems. We conduct the case study by executing

the following three steps:

1) We identify all possible pairs of case study systems, which represent the

same system. For instance, CS2 and CS11 both use the TravelPlanner
system. We use the system models, which we created for answering

VQ8. We do not mix models using control flows and data flows in pairs

but create dedicated pairs.
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2) We calculate the Jaccard Coefficients (VM12.1 and VM12.2) for each

pair of models. We use the comparison procedure already described

for VQ11 to identify equal model elements.

3) We compare the Jaccard Coefficient with the threshold in order to

answer the validation question regarding the state of the art. For this

comparison, we assume that many approaches from the state of the

art require the software architect to remodel the whole system when

switching confidentiality mechanisms. This brings us to a threshold

of 0, i.e. we consider a Jaccard Coefficient greater than 0 as good.

Discussion of VQ13 VQ13 asks whether all information required to model

a software architecture using the extended ADL is available to the software

architect and security expert. To answer the question, we discuss the required

information to instantiate every newly introduced element of the extended

ADL syntax and build groups of information. It is not necessary to consider

elements of the non-extended ADL in the validation because we can assume

that an existing ADL is usable by software architects and the required in-

formation to create software architectures using the ADL is available. For

instance, one group could be the information about the behavior of the archi-

tecture. We use the groups, which we identified in the validation of VQ4 in

Table 8.4 on page 259 whenever possible because VQ4 essentially asks the

same question as VQ13 but with respect to DFDs. This brings us to the set 𝐼

of necessary information. Afterwards, we discuss whether this information is

available in the required granularity when creating the software architecture.

We base our decision about availability by looking at the information, which

other, established ADLs require, and by collecting commonly required infor-

mation to use typical architectural viewpoints. This brings us to the set 𝐼𝑘 of

necessary information. After this discussion, we can classify each information

as either known or unknown. We build the sum of unknown information for

model elements used in the control flow ADL as metric VM13.1. The sum of

unknown information for model elements used in the data flow ADL is metric

VM13.2. A metric value greater than 0 means that information is necessary

but unknown by the users, which means a failed validation. A discussion is

a reasonable method for collecting the data to calculate the metric because

there is no formal definition of information, which is usable for answering

the validation question. A discussion can cover many different influencing
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factors and provides valuable results as long as the line of argumentation is

clear.

8.6.2. Validation Results

We structure the presentation of the validation results by the validation

questions.

Expressiveness of ADL (VQ8). We tried to model all case study systems men-

tioned in Section 8.2 in Palladio using control flows as well as in Palladio using

data flows. We could successfully model all systems using access control

mechanisms in Palladio using control flows, which means that the weighted

ratio metric (VM8.1) is 𝑟 = 1.0. We could model all systems using infor-

mation flow control mechanisms in Palladio using control flows except for

the BankingApp system. This brings us to a weighted ratio metric (VM8.2)

of 𝑟 = 0.75. We could model all systems using mixed access control and

information flow control mechanisms in Palladio using control flows, which

means that the weighted ratio metric (VM8.3) is 𝑟 = 1.0. The results for Palla-

dio using data flows are the same: We could successfully model all systems

using access control as well as all systems using combined access control

and information flow control mechanisms. This means the weighted ratio

metrics VM8.4 and VM8.6 are both 𝑟 = 1.0. We could model all systems using

information flow control mechanisms except for the BankingApp system.

This brings us to a weighted ratio metric (VM8.5) of 𝑟 = 0.75.

Correctness of Analysis Results (VQ9). We executed the automated analyses

on all systems resulting from VQ8. We classified the reported analysis results,

which brings us to the following metric values. The true positive fraction of

the analysis results stemming from models using control flows is 𝑇𝑃𝐹 = 1.0

(VM9.1). The true negative fraction of the analysis results stemming from

models using control flows is 𝑇𝑁𝐹 = 1.0 (VM9.2). The true positive fraction

of the analysis results stemming from models using data flows is 𝑇𝑃𝐹 = 1.0

(VM9.3). The true negative fraction of the analysis results stemming from

models using data flows is 𝑇𝑁𝐹 = 1.0 (VM9.4).
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Automation of Analyses (VQ10). To reason about the automation of analyses,

we first collect the activities to be done in ADL-based analyses. The activities

are visualized in Figure 7.2 on page 153. We do not consider creating inputs for

the analysis as an activity of the analysis itself but as necessary preparations.

Addressing the violations by identifying the underlying issue and changing

the system design is also not part of the analysis itself but a follow-up activity.

Because the analysis procedure for ADL-based analyses is built upon the

analysis procedure for DFD-based analyses, the analysis activities overlap. In

Section 8.5.2, we list the following four activities:

A1 Transforming the DFD into a logic program

A2 Propagating the data including its labels through the system

A3 Comparing the labels of data with labels of nodes

A4 Reporting identified violations

All of these activities are still valid and part of the analysis procedure for

ADLs. In order to reuse these activities, the analysis procedure for ADLs

introduces one additional activity, which has to be done before the other

activities:

A0 Transforming the ADL model into a DFD

By transforming the ADL to a DFD, we can reuse the analysis procedure for

DFDs. This means, there are five activities for ADL-based analyses (A0–A4)

and four activities for DFD-based analyses (A1–A4). The purposes of these

activities are as follows:

P1 Prepare analysis execution

P2 Conduct the analysis for violations

P3 Present the analysis result

The mapping of the analysis activities to the purposes is as follows. The

mappings of the ADL model to a logic program (A0 and A1) as well as the

mapping of the DFD to a logic program (A1) serve purpose P1 because these

activities do not yet look for violations but only map the models into an

artifact, which the tooling can analyze. The activities of propagating labels

and comparing labels for ADLs (A2 and A3) as well as for DFDs (A2 and A3)

serve purpose P2 because they actually look for violations by considering

the system behavior. The activities of reporting the identified violations for
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Metric CS1 CS2 CS3 CS10 CS11 CS12 CS17

VM11.1 0.49 0.59 0.52 0.52 0.60 0.53 0.33

VM11.2 0.47 0.44 0.54 0.50 0.44 0.56 0.40

Table 8.5.: Overview on the Jaccard Coefficients for adding confidentiality mechanisms to case

study systems (CS) using control flows (VM11.1) and data flows (VM11.2).

ADLs (A4) as well as for DFDs (A4) serve purpose P3 because they make the

analysis results accessible to the software architect.

We already discussed that the analysis activities for DFD-based analyses are

completely automated in Section 8.5.2. Because the ADL-based analyses

simply reuse these activities, these activities are also automated for ADL-

based analyses. The mapping of the ADL model into a DFD (A0) is also

automated in the prototypical implementation of the Palladio integration.

This is possible because the mapping does not require heuristics or human

interaction and it provides rules for all relevant parts of the architecture. This

means that there are no activities, which have not been automated in the

ADL-based analyses. Consequently, there is no non-automated purpose, i.e.

𝑝𝑎̄ = 0.

Effort for Introducing Confidentiality Mechanisms (VQ11) We compared the

case study systems with their corresponding variant without integrated con-

fidentiality mechanisms and calculated the Jaccard Coefficient. The results

are shown in Table 8.5. We discuss the results in Section 8.6.3.

Effort for Switching Confidentiality Mechanisms (VQ12) We compared all

case study systems with each other that represent the same system and

calculated the Jaccard Coefficient. The results are shown in Table 8.6. We

discuss the results in Section 8.6.3.

Availability of Information (VQ13) In order to calculate the metric values of

VM13.1 and VM13.2, we collected the required information to use the newly

introduced model elements. Table 8.7 lists all model elements, the action

to do with the model elements, the corresponding user and the category of

information, which the user needs to know to perform the action. The triples
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Metric CS1/CS10 CS1/CS17 CS10/CS17 CS2/CS11 CS3/CS12

VM12.1 0.81 0.50 0.54 0.86 0.75

VM12.2 0.88 0.66 0.71 0.86 0.88

Table 8.6.: Overview on the Jaccard Coefficients for switching confidentiality mechanisms

between case study systems (CS) using control flows (VM12.1) and data flows (VM12.2).

of category, action and user build the elements of the set of information 𝐼 . We

can show for every triple 𝑖 ∈ 𝐼 that the required information is available: The

knowledge required to create data stores is available to software architects

because storing files or data is a common activity of software systems, which

has to be considered when creating the software architecture. Palladio exten-

sions for analyzing storage performance [Bus+15] or performance of database

transactions [MS14] also assume knowledge about such a storage. The in-

formation required to create the model elements describing the behavior is

available to the security expert as we already discussed in Section 8.6.3. We

only discuss the relation from the ADL elements to DFD elements here and

refer to the discussion of available information for the DFD elements. All DFD

elements mentioned in the following can be created by the security expert

as discussed in Section 8.6.3. The Confidentiality Variable Characterization is

the counterpart of an Assignment in DFDs. The model elements representing

terms are the same as for DFDs. Because the extended ADL does not use

pins but names to refer to data, the Named Enum Characteristic Reference and

Lhs Enum Characteristic Reference is the counterpart of the Data Characteristic
Reference in DFDs. The Data Channel Behavior and the Reusable Behavior are
the counterpart of Behavior Definitions in DFDs. None of the mentioned ADL

elements, which describe the behavior, require more information to be created

than their counterparts used in DFDs. Because a security expert has the nec-

essary knowledge to create the DFD elements, he/she also has the knowledge

to create the corresponding ADL elements. The information to bind the Data
Channel Behavior to the architecture by applying the Confidentiality Behavior
and referring to the Data Channel Behavior is also known to the architect be-

cause he/she has to know the data processing of components as defined by the

information viewpoint [RW05, p. 36], which is a common viewpoint required

to create software architectures. Because the knowledge of the structure of

the software architecture as well as the knowledge for selecting a behavior is

available to the architect, he/she can also reuse behaviors by creating Behavior
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Category Model Element Action User

Structure Operational Data Store Component Create Architect

Behavior Confidentiality Variable Charact. Create Sec. Exp.

And Create Sec. Exp.

Or Create Sec. Exp.

Not Create Sec. Exp.

True Create Sec. Exp.

False Create Sec. Exp.

Container Characteristic Reference Create Sec. Exp.

Named Enum Characteristic Reference Create Sec. Exp.

Lhs Enum Characteristic Reference Create Sec. Exp.

Data Channel Behavior Create Sec. Exp.

Data Channel Behavior Bind Architect

Confidentiality Behavior Apply Architect

Reusable Behavior Create Sec. Exp.

Behavior Reuse Create Architect

Variable Binding Create Architect

Properties Characterizable Apply Architect

Characteristic Create Sec. Exp.

Characteristic Bind Architect

Table 8.7.:Overview on categories of information required to use model elements of the extended

ADL.

Reuse elements and Variable Binding elements to bind variable names to the

reused behaviors. Because creating and binding characteristics works the

same way as in DFDs and the procedure requires the same knowledge in

ADLs as well as in DFDs, we can also assume that the security expert can

create the characteristics and that the software architect can bind them to the

structural elements of the software architecture. We refer to the discussion

for DFDs in Section 8.3.3 for a detailed explanation on why the knowledge is

available. Because we could not identify knowledge, which is not available

but required to create the model elements, we can conclude that the set 𝐼 of

required information is equal to the set 𝐼𝑘 of known information, i.e. 𝐼 = 𝐼𝑘
holds. This means that the sum of unknown information for control flow

ADLs (VM13.1) is 0 and that the sum of unknown information for data flow

ADLs (VM13.2) is 0.
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Access Control Information Flow Mixed

Syntax Analyses Syntax Analyses Syntax Analyses

DFD 1.0 1.0 0.75 1.0 1.0 1.0

ADL CF 1.0 1.0 0.75 1.0 1.0 1.0

ADL DF 1.0 1.0 0.75 1.0 1.0 1.0

Table 8.8.: Overview on values of weighted ratio metrics for expressiveness of DFDs and ADLs

using control flows (CF) or data flows (DF).

8.6.3. Result Discussion

We structure the discussion of the results by the corresponding validation

questions.

Expressiveness of ADL (VQ8). The goal of the validation question is to show

that the ADL, on which the integration guidelines have been applied, is

not less expressive than the DFDs with respect to describing systems for

conducting analysis for violations of confidentiality requirements. We can

show this by comparing the expressiveness metrics for the ADL (VM8.1–

VM8.6) with the expressiveness metrics for the DFD syntax (VM1.1, VM1.2,

VM2.1) and DFD-based analyses (VM5.1–VM5.3). Table 8.8 summarizes the

corresponding metric values. As can be seen from the table, the extended ADL

does not have lower expressiveness compared to DFDs for any confidentiality

mechanism or communication paradigm (control flow or data flow). The

extended ADL shares the limitation of the DFDs regarding expressing tenants

in systems, which lowers the metric value of the expressiveness of the ADL

syntax to 0.75. However, this does not affect the validation results negatively

because the metric value of the expressiveness of the DFD syntax is also only

0.75. Therefore, we can conclude that the expressiveness of the ADL is not

lower compared to DFDs with respect to the syntax for expressing systems

as well as for covering confidentiality requirements.

Correctness of Analysis Results (VQ9). The goal of the validation question

is to show that the analysis results of the analysis framework of the ADL, on

which the integration guidelines have been applied, are not less correct than

the analysis results of analyses conducted in the DFDs semantics. Less correct
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means that there are systems, which have not been correctly classified as

containing or not containing violations of confidentiality requirements. We

can answer the validation question by comparing the presented values for the

metrics VM9.1–VM9.4 with the corresponding metric values for DFDs (VM6.1

and VM6.2). The true positive fraction 𝑇𝑃𝐹 is 1.0 for the DFD-based analysis

results (VM6.1) as well as for the analysis results in ADLs using control flows

(VM9.1) or data flows (VM9.3). The true negative fraction 𝑇𝑁𝐹 is also 1.0

for the DFD-based analysis results (VM6.2) as well as for the analysis results

in ADLs using control flows (VM9.2) or data flows (VM9.4). Because the

metric values are identical, we could not show that the correctness of the

ADL-based analysis results is lower than the correctness of the DFD-based

analysis results.

Automation of Analyses (VQ10). The goal of the validation question was

to show that the degree of automation is not lower for ADL-based analyses

compared to DFD-based analyses. Because there are no purposes of analysis

activities, which are no longer automated for ADL-based analyses, we can

conclude that the degree of automation is not lower than for DFD-based

analyses. In fact, all activities to be done in an analysis are automated for

DFDs as well as ADLs.

Effort for Introducing Confidentiality Mechanisms (VQ11) All coefficients

shown in Table 8.5 are greater than 0, whichmeans that it was never necessary

to recreate the whole model from scratch for introducing a confidentiality

mechanism to an existing software architecture. This is a benefit compared to

state-of-the-art approaches, which do not provide an integration into existing

ADLs. The coefficients of the case study systems, which represent the same

system and use the same type of communication, are close to each other. For

instance, the coefficients of the pair CS1 and CS10, the pair CS2 and CS11

as well as the pair CS3 and CS12 only differ by 0.03 at most. This indicates

that introducing information flow control using hierarchical lattices and

introducing RBAC requires roughly the same amount of new model elements.

The coefficient of CS17 has a greater differences to the coefficients of CS1 and

CS10 (up to 0.19 for systems using control flows and up to 0.10 for systems

using data flows) because we had to introduce explicit validation activities

in the software architecture to support the taint analyses required by CS17.

This means, we also had to adjust the structure of the system, which means
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additional new model elements compared to the other case study systems.

We cannot quantify, how much additional modeling effort is required in this

case based on the metric value because the modeling effort for creating two

different types of model elements can be completely different. However, the

goal of the validation was not to quantify the modeling effort but to show

that software architects can reuse parts of the modeled software architectures.

Because creating model elements usually requires more than no effort, we

could show that our approach saves modeling effort compared to approaches

that require remodeling the whole software architecture because of missing

ADL integrations.

Effort for Switching Confidentiality Mechanisms (VQ12) Every coefficient

shown in Table 8.6 is greater than 0, which means that it was never necessary

to recreate the whole model for switching confidentiality mechanisms in a

modeled software architecture. This is a benefit compared to state-of-the-art

approaches, which only support one particular confidentiality mechanism

and require the software architect to remodel the software architecture in an-

other modeling language in order to use another confidentiality mechanism.

The coefficients show that the reuse of existing models works particularly

well when switching between information flow control using hierarchical

lattices and RBAC. All corresponding coefficients are equal or greater than

0.75, which indicates a high degree of reuse. When switching to the combi-

nation of RBAC and taint analyses (CS17), the coefficients drop to a range

from 0.50 up to 0.71. This is comprehensible because this new mechanism

requires structural changes such as for introducing explicit validation of

input data, which increases the amount of new model elements. The coef-

ficients for case study systems using data flows (VM11.2) are higher than

the coefficients for case study systems using control flows (VM12.1). This

is also comprehensible because case study systems using data flows require

roughly one hundred model elements more than the case study systems using

control flows. The ratio of newly introduced model elements compared to

the existing model elements is lower for systems using data flows than for

systems using control flows. Therefore, the influence of the newly introduced

model elements is lower for systems using data flows. We cannot quantify

the modeling effort based on the metric value because the modeling effort for

creating two different types of model elements can be completely different.

However, the goal of the validation was not to quantify the modeling effort

but to show that software architects can reuse parts of the modeled software
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architectures. Because creating model elements usually requires more than

no effort, we could show that our approach saves modeling effort compared

to approaches that require remodeling the whole software architecture when

switching confidentiality mechanisms because of missing support of the new

confidentiality mechanisms.

Availability of Information (VQ13) The validation question aims to validate

that users of the ADL have access to the information required to use it. As

discussed in Section 8.6.2, the values of VM13.1 as well as of VM13.2 are

0, which means that all required information is available to the software

architect and the security expert while creating the architecture. This is true

for ADLs using control flows as well as ADLs using data flows.

8.6.4. Threats to Validity

Because the major part of the validation took place as a case study, we

structure the discussion of threats to validity according to the guidelines of

Runeson and Höst [RH09, pp. 153] for discussing the validity of a case study.

The categories to be discussed are also suitable for other types of validation

designs, such as the discussion of the degree of automation or the availability

of knowledge.

Internal Validity is concerned with how well a taken measure supports a

cause-effect relationship and especially whether there are alternative expla-

nations for the effect. In the context of VG4, we expect various parts of the

ADL integration to be the cause of an effect. The effects are prohibiting de-

graded expressiveness, correctness and automation, reduced modeling effort

for adding and switching confidentiality mechanisms as well as availability

of information. We discuss potential alternative explanations of these effects,

i.e. other possible influencing factors, in the following.

In the validation of the expressiveness (VM8.1–VM8.6), we expect the ADL

syntax to be the cause of an effect. The expected effect is that the expressive-

ness is not degraded compared to the DFD syntax. We measure the amount of

systems, which we could express in the extended ADL syntax, to determine

expressiveness and compare it with the expressiveness of DFDs. However,
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there are other potential explanations of this effect, i.e. other possible influenc-

ing factors: The selection of case study systems and the analysis definitions

for the systems influence the expressiveness because the more systems or

analysis definitions, which cannot be expressed, are added to the selection,

the worse the expressiveness gets. Because we focus on a comparison with

the expressiveness of DFDs and their analysis definitions, we reuse the selec-

tion of systems and analysis definitions from the DFD validations (VQ1, VQ2

and VQ5). Therefore, the influence of the selection of systems and analysis

definitions has the same effect on the expressiveness of the ADL as for DFDs,

which means the effect can be ignored for the comparison and for answering

the validation question. The skill in using the ADL is another influencing

factor because missing skills can impede expressing systems, which leads

to low expressiveness. We can exclude this factor because the person, who

modeled the software architecture, is a maintainer of the Palladio ADL and

also the author of the ADL extension. The skill of the developer of the ADL

extension in using the ADL extension is most probably higher than the skill

of an average software architect or security expert. However, this does not

invalidate the results because we are interested in the upper bound of expres-

siveness. The chosen level of abstraction is another influencing factor on the

expressiveness. If the level of abstraction is too high, a complex system can

become expressible even if it misses important details. We can neglect this

factor because the analysis results based on the modeled software architec-

tures were correct as can be seen from the metric values VM9.1–VM9.4 and it

is unlikely that the results are correct if the system omits important aspects,

which are relevant for reasoning about confidentiality. Therefore, we expect

the system models to represent all important aspects in enough detail.

In the validation of correctness (VM9.1–VM9.4), we expect the DFD mapping

to be the cause of an effect. The expected effect is that the correctness of

analysis results is not degraded compared to DFD-based analyses. We mea-

sure the true positive fraction of case study systems, which contain an issue

and for which only valid violations are reported, as well as the true negative

fraction of case study systems, which do not contain an issue and for which

no violations are reported. However, there are other potential explanations of

this effect, i.e. other possible influencing factors: The analysis framework for

DFD-based analyses affects the analysis results because we use this frame-

work after applying the mapping from a software architecture given in the

ADL to a DFD. Therefore, the framework can also affect the correctness

of the analysis results. However, we are only interested in comparing the
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correctness of analysis results between ADL-based analyses and DFD-based

analyses. If the analysis framework for DFD-based analyses would yield

incorrect results, the analysis results for the ADL-based analyses as well as

for the DFD-based analyses would be affected in the same way. Therefore,

we can exclude the analysis framework for DFDs as alternative explanation

of the effect. The modeled software architectures are another potential influ-

encing factor because they are the input of the mapping and therefore also a

transitive input of the DFD-based analyses. We use the software architectures,

which we modeled for answering VQ8. These software architectures are not

fully equivalent to the DFDs because modeling them in Palladio requires

adjustments. Differences between DFDs and software architectures given in

an ADL potentially affect the analysis results. We cannot completely mitigate

this factor but we do not expect a significant impact on the analysis results

because we ensure that every reported violation is within the expected vio-

lations. If the modeled software architectures would omit an aspect, which

is important to reason about confidentiality, the results would certainly be

affected but it would be unlikely that all reported violations are still within the

expected violations. Because all reported violations were within the expected

violations, we assume that the software architectures cover all important

aspects and do not influence the correctness by significant simplifications.

The classification guidelines are another potential influencing factor because

they decide whether the results for a case study system are classified as true

positive or true negative. If the classification guidelines are wrong or not cor-

rectly applied, the metric values will be wrong. As discussed in Section 8.5.4,

the classification guidelines are based on expected violations, which we mo-

tivated in Section 8.2.2. We apply the same classification guidelines as for

DFDs. Even in presence of faulty classification guidelines, the results would

still be comparable because the classification error happens on both types of

results. Therefore, the classification guidelines are no alternative explanation

of the validation results.

In the validation of the automation (VM10.1 and VM10.2), we expect the DFD

mapping to be the cause of an effect. The expected effect is that the degree of

automation of an analysis is not degraded compared to DFD-based analyses.

We measure the purposes of analysis steps, which are no longer automated

compared to DFD-based analyses. We already discussed factors, which influ-

ence the automation for DFDs in the discussion of threats to validity of VG3

in Section 8.5.4. The mitigation strategies also apply to automated analyses

for ADLs. Even if one of these factors would not have been mitigated suffi-
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ciently, the factor would affect the DFD-based analyses and the ADL-based

analyses in the same way. Therefore, the effect on the automated steps and

the automated purposes would be the same, so a comparison would still be

valid.

In the validations of the modeling effort (VM11.1–VM12.2), we expect the

ADL syntax to be the cause of an effect. The expected effect is that the

modeling effort is lower compared to state-of-the-art approaches, for which

we assume that recreating software architectures from scratch is necessary.

We measure the amount of model elements, which can be reused when adding

(VM11.1 and VM11.2) or switching (VM12.1 and VM12.2) confidentiality

mechanisms. However, there are other potential explanations of this effect,

i.e. other possible influencing factors: The amount of model elements to

be created depends on the person as well as the skill of the person, who

models the software architecture. The amount of model elements varies

because different persons may use different levels of abstraction, interpret the

case study systems differently or express the same things in different ways.

However, the validation neither expects nor requires that a model contains

as less elements as possible because the validation only requires that at least

one model element can be reused, i.e. that the metric value is greater than

0. It is unlikely that a person cannot use any single element just because of

his/her skills in modeling systems. Therefore, the person, who models the

software architecture, influences the metric values but not the conclusions

drawn from the metric values. The method for creating the baseline models

for VQ11 also affects the number of model elements, which have to be added,

because the less elements are part of the baseline model, the more elements

have to be added later. We consider keeping the model elements, which

are commonly used in software architectures using Palladio, as realistic.

The resulting software architectures are still valid Palladio architectures but

without any information for predicting quality properties or violations of

confidentiality requirements. In addition, the validation does not demand

exact numbers because the validation only requires that at least one model

element can be reused, i.e. that the metric value is greater than 0. Therefore,

the creation of the baseline model influences the metric values but not the

conclusions drawn from the metric values. The comparison procedure for

two modeled software architectures also affects the number of changed model

elements because every model element, which is found to be different, is

added to the changed model elements. We use the established comparison

procedure of EMF Compare [BP08] to avoid wrong comparison results. The
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matching of elements by identifiers is a common procedure and reasonable in

the validation scenarios because the software architectures of the case study

systems have been modeled by copying and adjusting existing models, which

represent the same system. Therefore, the models, which we compare, really

share identifiers. Nevertheless, thematching is not necessarily perfect because

we cannot be completely sure that the adjustments of existing models have

been done by a minimal number of changes. However, we already discussed

that the validation does not depend on exact numbers, so a non-perfect

comparison does not invalidate the conclusions drawn from the metrics.

In the validation of the information availability (VM13.1 and VM13.2), we

expect the ADL syntax to be the cause of an effect. The expected effect

is that all information required to create a software architecture including

a confidentiality mechanism is available to the users of the ADL syntax.

We discuss the required information and measure the amount of unknown

information. However, there are other potential explanations of this effect, i.e.

other possible influencing factors: The set of required information is essential

for identifying missing information. If information is missing from the set of

required information, the metric value can look more positive, i.e. lower, than

it actually is. We avoid forgetting information by systematically collecting

the required information to create or use for every single newly introduced

type of model element in the ADL. Therefore, we can consider this potential

threat as mitigated. The classification of required information as known

or unknown also affects the metric value. To avoid a biased decision, we

discuss the availability of every information and motivate its availability by

references from literature or by demonstrating that there is a corresponding

model element in DFDs, for which we already showed its availability as

part of answering VQ4. Therefore, we do not expect the classification to be

invalid.

External Validity is concerned with the generalization of results to other con-

texts. We used case studies and discussions to answer the validation questions

of VG4. The results of discussions can be generalized to other contexts as we

will discuss later. The results of case studies cannot be generalize to arbitrary

other contexts because a case study does not use a representative sample

but a limited set of cases. However, the results can be generalized to other

contexts with comparable characteristics. We discuss these characteristics in

the following.
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The result of the expressiveness validation (VM8.1–VM8.6) is that the extended

ADL does not limit the expressiveness compared to the expressiveness of

DFDs. This finding is valid in other contexts if the following conditions hold

in these contexts: First of all, the systems to be expressed have to use the

same confidentiality mechanisms and the same features of the confidentiality

mechanisms as the case study systems in the case study. We cannot draw

conclusions for other mechanisms and features because we do not know

whether the syntax can express the relevant parts of the system structure or

behavior and we do not know whether the analysis definition can describe

the relevant properties or whether it can express violations in terms of a

label comparison function. We do not see the restriction of the confidentiality

mechanisms and features as too limiting because we covered a broad range

of commonly used confidentiality mechanisms in our case study. Second,

the systems to be expressed either have to exchange data via parameters

and return values in control flows or have to exchange data via data flows.

If data flows are used, the order of the data flows has to be given by data

dependencies and not by additional control flow instructions like suggested

by Ward and Mellor [WM85] for designing and analyzing real-time systems.

The restrictions of the data exchange is necessary because the ADL cannot

express other types of data exchange. This is problematic if the part, which

is not expressible, is relevant for reasoning about confidentiality. Third, the

usage of the system has to be given by calls to the system, which exchange

parameters and return values. The ADL does not support communication

based on data flows between the user and the system. This is problematic if the

part, which is not expressible, is relevant for reasoning about confidentiality.

The restrictions of the data exchange inside systems and between systems

and users is not too limiting because many ADLs use calls, which transmit

parameters and receive return values, to specify the software architecture.

The result of the correctness validation (VM9.1–VM9.4) is that the ADL-based

analyses do not yield results with lower correctness than the results of DFD-

based analyses. This finding is valid in other contexts if the following con-

ditions hold in these contexts: First of all, the software architecture has to

be expressible in the ADL and the confidentiality requirements have to be

expressible in a Prolog query. Otherwise, the inputs for an analysis are not

available. Second, the same confidentiality mechanisms and features of the

confidentiality mechanisms have to be used. We cannot draw conclusions

for other mechanisms and features because we did not consider them in the

case study. However, we do not see the restriction of the confidentiality
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mechanisms and features as too limiting because we covered a broad range

of commonly used confidentiality mechanisms in our case study.

The result of the validation of modeling effort (VM11.1–VM12.2) is that the

modeling effort is reduced compared to state-of-the-art approaches, which

require full remodeling of the software architecture when adding or switching

confidentiality mechanisms. We already discussed that the extended ADL

reuses many parts for describing the structure, deployment, usage and be-

havior of a software architecture from the underlying, non-extended ADL.

Therefore, a reuse is usually given by design. In addition, we demonstrated

that reuse was possible for particular systems. These findings are applicable

to other contexts as long as the software architectures can be expressed using

the extended ADL and as long as the used confidentiality mechanisms are

the same as used in the case study. We expect a reduced modeling effort for

other confidentiality mechanisms as well but there might be confidentiality

mechanisms, which require to restructure the whole system. For instance, the

taint analysis used in CS17 requires structural changes because the software

architecture has to integrate validation of incoming data, which requires

additional actions or components. It is possible that other confidentiality

mechanisms require many changes, which effectively forces a software ar-

chitect to completely restructure the software architecture. However, we

consider such a scenario unlikely for non-trivial software architectures be-

cause such a confidentiality mechanism would be hard to integrate and would

most probably suffer from low acceptance in practice.

The result of the automation validation (VM10.1 and VM10.2) is that analyses

based on the extended ADL are not less automated than DFD-based analyses.

Because the validation took place by a general applicable discussion and

the results do not depend on particular systems or application contexts, the

results can be generalized to any application context of the extended ADL.

The result of the information availability validation (VM13.1 and VM13.2) is

that software architects have all required information to use the extendedADL

while creating and analyzing software architectures. Because the validation

took place by a general applicable discussion and the results do not depend

on particular systems or application contexts, the results can be generalized

to any application context of the extended ADL.
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Construct Validity is concerned with the appropriateness of taken measures

to make statements about the research objective.

The validation questions VQ8 and VQ9 aim for comparing the expressiveness

of the extended ADL and the correctness of the ADL-based analysis results

with their counterparts for DFDs. The statements to be made are that the

expressiveness and correctness are not worse than for DFDs. Because the

validation questions are about comparisons with other validation results,

it is necessary to use the same metrics as for rating expressiveness and

correctness for DFDs. Therefore, we use the weighted ratio metric for the

DFD metrics VM1.1–VM2.1 and VM5.1–VM5.3 as well as for the ADL metrics

VM8.1–VM8.6. These metrics are appropriate to validate expressiveness as

we already discussed in Section 8.3.4 and Section 8.4.4.

The validation question VQ10 aims for comparing the degree of automation

of ADL-based analyses with the degree of automation of DFD-based analyses.

The statement to be made is that the degree of automation of ADL-based

analyses is not worse than the degree of automation of DFD-based analyses.

We use the sum of no longer automated purposes (VM10.1 and VM10.2) for

comparing the degree of automation. The metric is different to the metric

used for rating the degree of automation of DFDs because simply comparing

the number of not automated analysis activities is not appropriate to answer

the validation question: For instance, the new analysis procedure might split

analysis activities without introducing more work to be done to better fit

the existing process for creating a software architecture. Just comparing the

number of analysis steps would falsely report a lower degree of automation.

In contrast, comparing purposes is more adequate because it allows matching

activities between DFD-based analyses and ADL-based analyses. This match-

ing allows identifying purposes, which are automated for DFD-based analyses

but no longer for ADL-based analyses, which is what the validation question

is actually about. The metric reports exactly these purposes. Therefore, the

metric is appropriate to answer the validation question.

The validation questions VQ11 and VQ12 aim for rating modeling effort. The

statement to be made is that adding or switching a confidentiality mecha-

nism requires less modeling effort than doing the same for a state-of-the-art

approach, which requires remodeling the whole software architecture. The

Jaccard Coefficient is the metric used to capture the amount of model ele-

ments, which can be reused, i.e. which do not have to be created or changed.

The metric is a commonly used metric for rating the similarity of two sets.
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Because we can interpret a model as a set of model elements, using the metric

is valid. We explain this interpretation in the descriptions of the validation

questions in Section 8.1.4. The amount of model elements to be created or

changed can be used to reason about the modeling effort because creating a

model element requires either no or more than no effort. However, it is more

likely that creating a model element requires at least some effort. We discuss

the relation between model elements and effort in Section 8.6.1 in more detail.

Because the baseline for the metric is 0, i.e. the model has to be recreated

from scratch, any value above 0 supports the validation statement mentioned

above. Therefore, the particular effort implied by a model element is not

important for answering the validation question. To conclude, the Jaccard

Coefficient is appropriate to answer the validation question.

The validation question VQ13 aims for identifying information, which is

required to create a software architecture using the extended ADL but which

is not available. The statement to be made is that all information is available.

The unknown information metric measures the sum of required information,

which cannot be known by software architects and security experts. The

metric provides the information to answer the validation question because

it gives the sum of unknown information, which can be compared to the

expected value 0.

Reliability is concerned with the dependency between the collected data

and the conducting researcher. Best reliability is achieved if the collected

data as well as the conclusions are completely independent of the conducting

researcher.

We already discussed the reliability for most of the validation design and the

metrics in previous validations. Therefore, we only briefly recap the most

important aspects and refer to the previous explanations.

In the expressiveness validation (VQ8), it is not crucial that other researchers

produce the same models of software architectures as we did because we aim

for an upper bound of expressiveness. However, we provide all models in our

data set [Sei22], so other researchers can check whether we really expressed

the case study systems. Based on the provided data, other researchers can

come to the same metric values. A more detailed explanation is available in

the reliability discussion for the metrics VM1.1–VM2.1 in Section 8.3.4.
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The results of the correctness validation (VQ9) are completely reproducible.

We automated the execution of analyses as well as the classification of the

reported violations. Other researchers can reproduce the results and check

the classification criteria in the source code of our data set [Sei22]. A more

detailed explanation is available in the reliability discussion for the metrics

VM6.2 and VM6.1 in Section 8.5.4.

The results of the information availability validation (VQ13) are completely

reproducible. We provide references to literature or provide the counterparts

of ADL elements in DFDs, for which we already have shown that the required

information is available. Other researchers can check our explanations and

can then come to the same metric values. A more detailed explanation is

available in the reliability discussion for the metric VM4.1 in Section 8.3.4.

The results of the automation validation (VQ10) are completely reproducible.

We describe all analysis activities and provide the source code, which auto-

mates these activities in our data set [Sei22]. Therefore, other researchers

can come to the same empty list of not automated analysis activities. Even if

other researchers find other purposes, to which they can map the analysis

activities, the final metric value of no longer automated purposes will still

be the same because we automated all analysis activities. A more detailed

explanation regarding the reliability of the identification of automated analy-

sis activities is available in the reliability discussion for the metric VM7.1 in

Section 8.5.4.

The results of the modeling effort validations (VQ11 and VQ12) are repro-

ducible. We provide all models, which we use in the comparisons for calcu-

lating the Jaccard Coefficient, in our data set [Sei22]. Therefore, researchers

can check that the used models correctly express the case study systems and

that the baseline models for VQ11 are reasonable. For the validation, it is not

important that other researchers produce the exactly same baseline models

because we aim for an upper bound of modeling effort, which can be reduced.

This means, other researchers only have to be able to check and understand

the used models. The comparison of models as well as the calculation of the

Jaccard Coefficient is fully automated by the validation application in our

data set [Sei22].
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8.7. Summary

In this chapter, we presented the validation of our contributions according to

the GQM plan described in Section 8.1. A major part of our validation took

place in case studies to get insights into the application of our contributions

in particular contexts. Such a context always includes particular systems,

i.e. software architectures. To sufficiently answer the validation questions in

our case studies, we formulated requirements on the selection of case study

systems and presented the selected systems in Section 8.2. In the following,

we summarize the results of our validations. We structure the summary by

the validation goals.

8.7.1. Validation Goal 1: Validate DFD Syntax

The validation of the DFD syntax aims to ensure that the syntax sufficiently

answers the research questions, which it shall address. RQ1 and RQ2 ask for

the necessary information in order to reason about information flow control

and access control requirements in DFDs. Besides the information, which can

already be represented in DFDs, we found properties of nodes and data as

well as label propagation functions to be necessary. RQ3 asks what modeling

primitives, i.e. syntax, is capable of expressing this required information. The

DFD syntax provides the means to express the necessary information.

The validation to answer VQ1 as well as VQ2 demonstrated that the expres-

siveness of the DFD syntax is sufficient to model all seventeen case study

systems except for one system. The case study systems stem from related

approaches or at least represent common application scenarios for the used

confidentiality mechanisms. The system, which the syntax could not ex-

press, requires modeling behaviors of individual users. However, considering

individual users is out of scope of ADLs because it is at least questionable

whether software architects have such detailed information about users while

creating a software architecture. In addition, the related approach, which pro-

vides this system, uses analyses based on source code to identify violations.

Therefore, we do not consider this case study system as a representative

example of a software architecture, which shall be modeled and analyzed in

the architectural design time. As already said, the syntax could represent all

other case study systems. Because this remaining set of case study systems

covers existing systems as well as the most commonly used confidentiality
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mechanisms, we conclude that the syntax is sufficient to express systems

using commonly used confidentiality mechanisms.

The validation to answer VQ3 demonstrated that the elements of the DFD

syntax are commonly used to model the case study systems. This means

that the elements of the syntax are not only sufficient to express systems but

also necessary. The only exception that we found stems from an intended

degree of freedom in formulating expressions: We do not only provide the

minimal functional complete set of logical operations, so it is possible to

formulate equivalent expressions and avoid a logical operation completely.

This does not indicate a useless concept because it is always possible to

formulate the expression in a different way in order to use the previously

unused operation.

The validation to answer VQ4 demonstrated that the information required to

use the DFD syntax is available while creating the software architecture. We

discussed the availability of information for every element of the syntax and

supported the discussion by literature. The availability of information shows

that the level of abstraction is not too low, i.e. there are not too many details

required to use the syntax. On the other side, the level of abstraction is not

too high because the syntax could express all case study systems, which are

appropriate software architectures.

8.7.2. Validation Goal 2: Validate Analysis Definitions

The validation of the analysis definitions aims to ensure that the definitions

sufficiently answer the research questions RQ5 and RQ6, which they shall ad-

dress. RQ5 and RQ6 ask for ways to formalize access control and information

flow control analyses based on the DFD syntax and semantics. We presented

label comparison functions based on Prolog queries and optional additional

clauses to represent specific confidentiality requirements as solution. We

provided analysis definitions for commonly used confidentiality mechanisms,

which consist of characteristic types, behaviors of nodes, the label compari-

son function given as Prolog query and optional additional Prolog clauses to

cover specific confidentiality requirements.

The validation to answer VQ5 demonstrated that the analysis definitions

can express all confidentiality requirements of all case study systems, which

we can express using the DFD syntax. The analysis definitions were often
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sufficient without modifications. The only modifications, which were nec-

essary, are changes of the number of inputs and outputs for behaviors and

the creation of additional Prolog clauses. Changing the number of inputs

and outputs does not imply limitations of the analysis definitions because

the label propagation logic remains the same. For instance, finding the high-

est label of all inputs essentially works the same for any number of inputs.

The additional Prolog clauses always followed the suggested structure in

the analysis definitions. Because these clauses cover specific confidentiality

requirements and this is intended by the analysis definition, this also does not

imply a limitation. We conclude that the analysis definitions are expressive

enough to cover the confidentiality requirements of the modeled case study

systems.

The validation to answer VQ6 demonstrated that the analysis definitions

can correctly identify systems, which violate the given confidentiality re-

quirements. We executed analyses using the analysis definitions on variants

of the case study systems, which do not contain an issue, and on variants,

which contain an issue. The analyses could successfully identify all variants,

which contain an issue, and did not report violations for variants, which do

not contain an issue. We conclude that the analysis definitions provide a

formalization, which is sufficient for automated analyses and is sufficient for

correctly identifying violations.

8.7.3. Validation Goal 3: Validate DFD Semantics

The validation of the DFD semantics aims to ensure that the semantics are

sufficient to answer the research question RQ4, which they shall address.

RQ4 asks for semantics of the DFD syntax, which allow detecting violations

of confidentiality requirements. We defined semantics, which describe the

meaning of the DFD syntax in terms of a label propagation network.

The validation to answer VQ6 demonstrated that the semantics support anal-

yses, which correctly identify systems that violate the given confidentiality

requirements. We executed the analyses for all expressible case study systems

and could correctly classify each variant of a case study system as either

violating or not violating confidentiality requirements. We conclude that

defining properties of nodes and data as labels and propagating these labels

are good semantics to identify violations.
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The validation to answer VQ7 demonstrated that the semantics are sufficient

for driving automated analyses. We discussed the automation of every ac-

tivity in an analysis and showed that the activities can be automated in our

prototypical implementation. For the semantics, this means that they provide

unambiguous definitions, which do not require human intervention. We

conclude that the semantics do not limit the automation of analyses.

8.7.4. Validation Goal 4: Validate ADL Integration Guidelines

The validation of the ADL integration guidelines aims to ensure that the

guidelines are sufficient to answer the research questions, which they shall

address. RQ7 asks how to integration the DFD-based analyses in ADLs

focusing on control flows. RQ7 asks the same for ADLs focusing on data

flows. We provided guidelines on how to integrate the DFD-based analyses

for both types of ADLs.

We validated particular applications of the integration guidelines instead

of the guidelines themselves because validating guidelines involves many

human factors, which impede objective validations. Instead, we applied the

guidelines to the existing Palladio ADL, validated the quality of the integration

into the Palladio ADL and showed that the guidelines can produce usable

integrations. This is no verification of the quality of the integration guidelines

but a failed attempt to falsify the hypothesis that the integration guidelines

do not produce a usable integration. In the following, we summarize the

validations of the integration results, i.e. the integrations into Palladio. We

refer to the integration into the part of Palladio, which focuses on control

flows, as a dedicated integration and to the integration into the part of Palladio,

which focuses on data flows, as a dedicated integration.

The validation to answer VQ8 demonstrated that the integrations are as

expressive as DFDs. We attempted to model all seventeen case study systems

including the used confidentiality mechanisms in both integrations. We could

successfully model all but one case study system in the integrations. We

failed to model the same case study system in the integrations as we already

failed in DFDs for the same reasons. We conclude that the integrations do

not limit the expressiveness compared to DFDs.

The validation to answer VQ9 demonstrated that the analyses within the

integrations deliver results as correctly as DFD-based analyses. We executed
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the same analyses as for DFDs on two variants for every expressible case

study system: one variant contains an issue and the other variant contains no

issue. The analyses correctly reported all variants, which contain violations

of confidentiality requirements, and correctly classified all variants, which

do not contain violations, as not containing violations. The analysis results

were as correct as the results of the DFD-based analyses. We conclude that

the integrations do not limit the correctness of results compared to DFDs.

The validation to answer VQ10 demonstrated that the integrations support

fully automated analyses. We collected all analysis activities and showed that

they can be automated by a prototypical implementation of the integrations.

We conclude that the integrations do not limit the automation of analyses

compared to DFDs.

The validation to answer VQ11 demonstrated that adding a confidentiality

mechanism to an existing software architecture is possible without remodel-

ing the whole software architecture. For all systems, which are represented

by multiple case study systems, we selected all corresponding case study sys-

tems and built a variant, which does not contain a confidentiality mechanism.

We then compared the case study systems with their variant to identify the

amount of model elements, which are shared, i.e. which have been reused.

For all case study systems, a considerable amount of model elements could

be reused. In contrast, dedicated analysis approaches, which are not inte-

grated into existing ADLs, require remodeling the whole architecture in a

new approach. Because creating a model element usually requires at least

some effort, we conclude that the integrations save modeling effort when

adding confidentiality mechanisms to existing architectures.

The validation to answer VQ12 demonstrated that switching to another con-

fidentiality mechanism in an existing architecture is possible without remod-

eling the whole software architecture. For all systems, which are represented

by multiple case study systems, we selected all corresponding case study

systems and compared these systems pairwise. Every comparison detected a

considerable amount of shared model elements, which means these model

elements can be reused. In contrast, analysis approaches or ADLs, which

only support a single confidentiality mechanism, require remodeling the

whole architecture when switching the confidentiality mechanism. Because

creating a model element usually requires at least some effort, we conclude

that the integrations save modeling effort when switching confidentiality

mechanisms in existing architectures.
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The validation to answer VQ13 demonstrated that the information required to

use the integrations is available while creating the software architecture. We

discussed the availability of information for every element of the integrated

syntax by either referring to literature or demonstrating the equivalence to

DFD elements, for which we already have shown the availability of informa-

tion. The availability of information shows that the level of abstraction is not

too low, i.e. there are not too many details required to use the syntax. On

the other side, the level of abstraction is not too high because the syntax is

expressive as shown in VQ8.
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9. Related Work

Developing secure software is a broad topic because security has to be con-

sidered in every development phase [McG06, p. 110], which means many

different development activities influence the security of a software system.

There is a lot of research to improve certain or all development phases by

processes, analyses, mechanisms, and so on. In addition, multiple security

objectives such as confidentiality or integrity have to be achieved to secure a

software system and such objectives require different measures to be taken.

Consequently, giving a complete overview on the topic is unfeasible.

We focus on research on achieving confidentiality in software architectures

or software designs because the approach presented in this thesis also aims

for confidentiality and it belongs to these phases. Despite our focus on

confidentiality, we use to the more general term security in the following if

using confidentiality would be uncommon. For instance, we refer to security
patterns instead of confidentiality patterns in the following because the former

term is widely known and accepted. However, we still focus on how the

approaches can improve confidentiality instead of discussing the effect on

further security objectives.

Themost prominent directions of related research are integrating confidential-

ity and rating confidentiality. Integrating confidentiality describes approaches

to represent confidentiality mechanisms in software architectures or software

designs but also approaches to use such information to support the integra-

tion of confidentiality in following phases. These approaches are related

to our approach because they often use confidentiality analyses like ours

to rate the effectiveness of integrated confidentiality measures. We discuss

approaches for integrating confidentiality in Section 9.1.

Rating confidentiality means that approaches analyze software architectures

or software designs for threats or violation of requirements and report on

the results. The results provide software architects with the information to
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decide about necessary changes and the implications of these changes. We

discuss approaches for analyzing confidentiality in Section 9.2.

In addition to the discussion of full-fledged approaches for improving the

confidentiality in software architectures or software designs, we also discuss

related work for individual parts of our approach. There have been various

attempts to define DFD semantics in order to address shortcomings or to

make DFDs applicable to new problem domains or analyses. We discuss such

previous attempts and relate them to the DFD semantics presented in this

thesis in Section 9.3.

Besides dedicated analysis approaches, there is related work that integrates

confidentiality analyses into existing ADLs. Because we also provide an

ADL integration, we discuss such approaches and compare their integration

approach with ours in Section 9.4.

9.1. Approaches to Integrate Confidentiality

In this thesis, we focus on identifying violations of confidentiality require-

ments by the structure, behavior, deployment or usage of a specified software

architecture. For instance, our approach shall detect that a software architec-

ture requires users to transmit confidential data to non-trustworthy system

parts in order to provide certain functionality. This means, the software ar-

chitecture violates confidentiality requirements by its intended usage. Based

on this knowledge, software architects can adjust the software architecture to

provide the functionality but also meet the confidentiality requirements. In

contrast, approaches to integrate confidentiality into software architectures

focus on the integration of enforcement mechanisms for confidentiality re-

quirements or countermeasures for attacks against confidentiality. However,

the approaches for analyzing confidentiality do not completely ignore the part

of enforcing confidentiality and vice versa. The approaches for integrating

confidentiality usually also analyze the effectiveness of the integrated mecha-

nisms and the approaches for analyzing confidentiality usually consider the

effect of integrated confidentiality mechanisms in their analysis results. In the

following, we discuss the relations of approaches to enforce confidentiality

to our analysis approach. The most prominent approaches to consider the

enforcement of confidentiality in software architectures are security patterns,
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which we briefly discuss in Section 9.1.1, and code generation, which we

briefly discuss in Section 9.1.2.

9.1.1. Security Patterns

Security patterns provide generic solutions for recurring security problems in

certain contexts according to Schumacher et al. [Sch+06, p. 31]. For instance,

Secure Channels [Sch+06, p. 79] is a security pattern, which protects the

confidentiality of information, which is transmitted over public networks, by

encrypting the information. The security patterns are meant to help software

architects with and without security expertise to avoid common security

problems. Many research in security patterns is about building catalogs of

these patterns and to improve their quality [Lav+06].

Our approach does not aim for providing such patterns or for general applica-

ble solutions of integrating security in general or confidentiality in particular

into software architectures. However, our approach considers the effect of

integrated security patterns on meeting the confidentiality requirements. For

instance, encryption can lower the classification of exchanged data and can

avoid a node getting data classified higher than its own clearance. Ignoring

such effects would lead to falsely reported violations.

Besides the research on patterns, there is also research on ensuring that pat-

terns are correctly applied and effective. Taspolatoglu and Heinrich [TH16]

suggest to formalize the prerequisites for applying a pattern, to link these pre-

requisites to the software architecture and to check whether all prerequisites

are met. Heyman, Scandariato, and Joosen [HSJ12] verify that the patterns

work as expected by verifying that defined preconditions and postconditions

hold. It is, especially, useful to verify the effectiveness of patterns in the

context of software evolution because prerequisites might no longer be met

because of changes in the architecture or the context of the architecture.

SecVolution [Bür+18] provides an approach to systematically capture such

changes, identify implications on the security and address them by adaptions

in the software architecture.

The previously described approaches all use analyses to identify degraded

effectiveness of the integrated mechanisms. Our approach can be used as

one of these analyses: For instance, an analysis of violated confidentiality

requirements can reveal an issue in applying a security pattern for improving
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confidentiality. Such a combination is, especially, useful to complement

coarse-grained analyses such as the analysis suggested by Taspolatoglu and

Heinrich [TH16] because their analysis only identifies if the pattern is applied

correctly but not if it effectively protects confidentiality.

9.1.2. Generation of Development Artifacts

The generation of development artifacts such as code or configuration files

based on models of software architectures or software designs is frequently

used. In model-driven software development, code generation is actually

essential according to Stahl and Völter [SV06, Sec. 2.3]. Generating code has

many benefits but the most important benefits in the context of enforcing

confidentiality are that the generated code matches the software architecture

[SB12] and it can contain additional information for introspection [SV06, Sec.

9.1]. Matching the architecture is beneficial because the considerations for

protecting confidentiality, which have been made in the software architec-

ture, could be invalid in the implementation, otherwise. The information for

introspection is beneficial because information, which is only available in

the software architecture but which is also important for protecting confi-

dentiality, can become part of the implementation. In the following, we give

examples on approaches, which use code generation, and how they use the

benefits of code generation for protecting confidentiality. We also discuss the

relation to the approach presented in this thesis.

SecureUML [LBD02] provides a UML profile to annotate roles and access

rights specified in RBAC requirements to software designs given in UML

models. Themajor purpose of the annotations is to generate a RBAC policy, i.e.

enforceable RBAC requirements, and an enforcement platform for the policy.

The expected benefits are increased productivity and quality of systems but

also better consistency between the modeled policy and the actually used

policy. In contrast to our approach, SecureUML does not analyze the software

design and can, therefore, not identify violations of RBAC requirements in

the UML model.

Hoisl, Sobernig, and Strembeck [HSS14] also provide a UML profile to an-

notate existing UML models but focus on information flow in UML activity

diagrams. The objects transferred via object flows can be annotated as sensi-

tive and the nodes can be marked as preserving confidentiality. An analysis

propagates the objects through object flows and ensures that no sensitive
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object traverses a node not marked as preserving confidentiality. The code

generation produces security configurations for web services specified in the

Web Services Description Language (WSDL). In contrast to our approach,

Hoisl, Sobernig, and Strembeck prescribe the behaviors of node types, which

is sufficient for taint analyses but is not capable of describing more complex

behavior such as the declassifications in our running example. Consequently,

the approach only supports information flow control using a linear ordered

lattice containing two levels.

The Component Information Flow (CIF) toolkit [Abd+11] allows to annotate

connectors and attributes of components in a software architecture with

classification levels. The confidentiality requirements are given in terms of

non-interference, which means that information with a certain classification

level must only flow to a connector or attribute with at least this classification

level. CIF ensures that the requirement is not violated by wrong connectors

in the software architecture. CIF generates Java code based on the software

architecture, which includes code to perform information flow control, i.e.

enforce the confidentiality requirements. In contrast to our approach, CIF

requires source code to identify violations caused by the data processing

within components and only focuses on information flow control.

iFlow [Kat+13] aims for generating deployable source code for apps and web

services, which adhere to information flow requirements. They specify the

software architecture by UMLmodels and the operations by a DSL. Annotated

UML models represent the information flow requirements, which are given

as non-transitive non-interference, which essentially is non-interference

using declassifications to allow certain information flows. Analyses of the

UML models propagate data and can detect violations of the information

flow requirements. In addition, verification of the generated source code is

possible. In contrast to our approach, iFlow relies on communication based

on call and return and focuses only on information flow control. In addition,

it operates on a different level of abstraction because operation specifications

in the DSL have a considerable higher complexity than our specifications of

the label propagation. Consequently, it is at least questionable whether such

detailed information is available while creating a software architecture.

To summarize, there are various approaches, which generate policies, source

code stubs or complete applications. Most of these approaches perform anal-

yses on the used input models to identify potential confidentiality violations

before generating artifacts. Because these analyses often are only available to
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support the code generation, they are limited with respect to the supported

confidentiality mechanisms and the complexity of confidentiality require-

ments. In contrast, our approach does not focus on code generation but

on analyzing the modeled software architectures. Therefore, we support

more confidentiality mechanisms and more complex confidentiality require-

ments.

9.2. Approaches to Analyze Confidentiality

There is a wide range of approaches to analyze the confidentiality of software

architectures or software designs. We see three groups of approaches, which

are related to the approach presented in this thesis. Each group has a different

focus and purpose.

The first group focuses on identifying threats, i.e. a vulnerability and an

attacker, who exploits the vulnerability. The goal of approaches in this group

is to identify threats, estimate the impact of the threat and decide how to

mitigate the threat. We discuss this first group in Section 9.2.1.

The second group focuses on identifying violations in the software architec-

ture. This group is different to the first group because it does not require

an active attacker but aims to reveal problems in the software architecture

itself. For instance, if the architecture prescribes sending sensitive data to a

non-trustworthy node in order to provide functionality, this is an issue of the

software architecture independent of any attackers. We discuss this second

group in Section 9.2.2.

The third group focuses on quantifying confidentiality by metrics, which

are called security metrics. This group often aggregates results from the

previous two groups and combines them in a metric. A metric is useful in

trade-off decisions to quantify a benefit for confidentiality and relate this

benefit compared to other factors such as required investments. We discuss

this third group in Section 9.2.3.

9.2.1. Identification of Threats

The identification of threats is a common security-related activity on software

designs and software architectures. Threat Modeling [Sho14] is a commonly
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used term summarizing many different approaches to identify and potentially

also mitigate threats. According to Bedi et al. [Bed+13], “threat modeling

provides a structured way to secure software design by allowing security

designers to accurately estimate the attacker’s capabilities in respect of known

threats”. In a survey, Xiong and Lagerström [XL19] found that many activities

of threat modeling are still done manually. Contributions such as STRIDE

by Microsoft [Her+06] support this manual work by guidelines on how to

identify threats but there are also approaches (partially) automating the threat

modeling process.

The focus of threat modeling approaches is different compared to our ap-

proach: Threat modeling aims to identify threats and to harden the system in

order to mitigate attacks. Instead, our approach focuses on revealing design

issues, which lead to violations of confidentiality requirements by the system

or usage of the system itself, i.e. not by a malicious user or attacker. Never-

theless, such identified violations can indicate vulnerabilities that attackers

can use to compromise the system. This means, our approach provides one

piece of information to identify threats.

In the following, we give an overview on threat modeling approaches and

relate these approaches to the approach presented in this thesis.

Manual Analysis of DFDs Threat modeling does not prescribe a certain way

of identifying potential threats nor does it prescribe particular types of models

to be used. However, DFDs are commonly used because they are intuitive

and recognizing threats in data flows is often better than in control flows

[Sho14, pp. 43]. Inspecting such a DFD manually allows to flexibly incorpo-

rate additional knowledge from other sources or allows to address missing

information by reasonable assumptions. In contrast to our approach, the

results of manual threat modeling on non-extended DFDs heavily depend on

the expertise of a threat modeler as well as on the availability of additional

information, which is not part of the DFDs.

Manual Analysis of Extended DFDs The disadvantage of the simple DFD

syntax is that much information has to be stored outside of DFDs because it

is not expressible within DFDs. Many threat modeling approaches extend the

syntax of DFDs to cover additional information. Yampolskiy et al. [Yam+12]

extended DFDs to fit the need of threat modeling for cyber-physical systems.
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The extensions include distinctions between physical and virtual elements

as well as elements to specify details of the physical and logical communica-

tion. Deng et al. [Den+11] also extend DFDs but focus on capturing threats

and mitigations regarding privacy. Both extended DFDs do not come with

automated analyses in contrast to our approach.

Automated Analysis of Extended DFDs DFD extensions not only allow rep-

resenting additional information but also enable automated threat analyses.

Berger, Sohr, and Koschke [BSK16] introduce data channels, trust areas and

typed data flows. They can identify threats stemming from the databases

Common Weaknesses Enumeration (CWE)
1
or Common Attack Pattern Enu-

meration and Classification (CAPEC)
2
by an automated analysis. Abi-Antoun,

Wang, and Torr [AWT07] also extend DFDs and provide an automated analy-

sis but focusing on threats according to STRIDE [Her+06]. SPARTA [Sio+18a;

Sio+18b] extends DFDs by means to make integrated security or privacy

solutions explicit. The provided automated analyses identify threats and

calculate risks. Frydman et al. [Fry+14] extend the DFDs by attributes such

as the asset value and use a catalog of attack patterns to identify threats in

an automated analysis. In addition, they calculate risk values. All mentioned

automated analyses on the extended DFDs do not consider the behavior of

system parts to derive properties of exchanged data. In consequence, mod-

elers have to define the properties for all exchanged data manually. This

means, the automated analyses are restricted to pattern matching. In contrast,

our approach propagates such data properties, which lowers the amount of

required specifications of data properties significantly.

9.2.2. Identification of Violated Confidentiality Requirements

Confidentiality requirements specify who is allowed to know which infor-

mation. This includes users of a system as well as the parts of the system

itself. During the implementation and runtime of a system, confidentiality

mechanisms like access control enforce such requirements by allowing or

denying access at enforcement points such as the interface to a system. This

is necessary because there can be many different types of users, which also

1 https://web.archive.org/web/20220217013953/https://cwe.mitre.org/
2 https://web.archive.org/web/20220217013947/https://capec.mitre.org/
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includes users, which have not been foreseen when designing the system.

While creating the software architecture or software design, the situation is

different. Software architects specify how the system provides its services

and how users use these services. Therefore, the software architecture only

contains allowed access requests to information. Software architects have to

avoid violations of confidentiality requirements by the structure, behavior,

deployment or usage of the software architecture because the underlying

issues would be implemented in later stages. Consequently, identifying confi-

dentiality violations in a software architecture means identifying violations

caused by issues in the software architecture. In contrast to threat modeling,

this does not require an explicit attacker model.

Various approaches [Ngu+15] to identify violated confidentiality require-

ments in software architectures or software designs are available. Because of

the sheer amount of available approaches, we only consider closely related

approaches, which support propagating properties of exchanged data, in the

following. We distinguish approaches analyzing control flows and approaches

analyzing data flows.

9.2.2.1. Control Flow Analyses

Control flow analyses analyze software architectures using call-and-return

communication. Such approaches require representations of software archi-

tectures, which are more detailed than DFDs. Instead of just describing the

required data and its processing, call-and-return communication requires

software architects to specify execution orders of activities. The execution

order and control flow specifications enable the detection of implicit informa-

tion flows at the cost of additional complexity. Our approach aims for lower

complexity as well as simple, data-oriented specifications of confidentiality

requirements. Besides this fundamental difference, there are additional differ-

ences to the analysis approaches using control flows, which we describe in

the following.

iFlow [Kat+13] is an approach to verify UML models and generate application

code based on the models. An UML profile allows to annotate components,

which describe the structure of the system, as well as elements of sequence

diagrams, which describe the communication between components. The

behavior of components is specified in a DSL. The confidentiality require-

ments are given by a lattice. iFlow can identify violations of non-interference
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requirements, i.e. the lattice, by transforming the UML models into input

for the theorem prover KIV. To identify violations, the analysis determines

the classification level of exchanged information based on the processing in

the components. Our approach also propagates classification levels through

the system but uses behavior descriptions given by assignments, which have

lower complexity than the DSL used in iFlow, to derive the effect of processing.

In addition, our approach also supports access control besides information

flow control.

Gerking and Schubert [GS19] present an approach to verify that models

given in MechatronicUML [SW10], which is a UML profile for representing

mechatronic systems, do not violate information flow requirements given

in terms of non-interference. The approach provides refinement relations

between components, i.e. how to break down a big component into smaller

components, in order to support modular verification of the components.

Software architects specify the behavior of components as timed automata. By

simulating the behavior, the approach can verify that publicly visible behavior

does not changewhen private behavior changes. This simulation also involves

propagating data through the system and keeping track of its classification.

In contrast to our approach, the behavior specifications are more complex

because they are stateful and consider time. Specifying behavior in this

detail is at least challenging while creating a software architecture because it

requires a deep understanding of the behavior of a component. In addition, our

approach supports analyzing access control, which the approach of Gerking

and Schubert does not.

UMLSec [Jür05] is one of the most commonly known approaches for analyz-

ing software designs for security issues. UMLSec extends UML by a profile

that introduces properties, such as the criticality of system parts and calls,

for reasoning about security in general but also confidentiality in particu-

lar. The approach is capable of identifying violations of non-interference

requirements using a high/low lattice as well as violations of requirements

given in terms of RBAC. The analyses take place in UML Machines, which

are transition systems with states using algebraic structures. Using CARiSMA

[Ahm+17], users can define own analyses and extend the existing capabil-

ities. In contrast to our approach, UMLSec has not been shown to support

a range of access control mechanisms, which is as wide as the supported

access control mechanisms of our approach. In addition, UMLSec defines

the RBAC requirements based on actions instead of data, which intertwines

requirements with the system design and, therefore, makes changing the
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system design more complex. In contrast, our approach supports specifying

the confidentiality requirements independently of the system design and only

requires the assignment of roles to users or groups of components.

Hoisl, Sobernig, and Strembeck [HSS14] describe an approach to system-

atically consider confidentiality in Service-Oriented Architectures (SOAs).

The starting point is a UML model extended by a UML profile. The profile

allows marking object flows in activity diagrams as containing sensitive data

and nodes in such a diagram as preserving confidentiality. The behavior of

the involved actions is predefined and essentially follows the logic of a taint

analysis. Nodes affecting the control flow, such as decisions or forks, are an

essential part of the analysis. A node marks an outgoing object flow as con-

taining sensitive data if one of the incoming object flows contains sensitive

data. The corresponding analysis is specified in OCL and reports a violation

if a node, which does not preserve confidentiality, receives an object flow

containing sensitive data. This means, the analysis supports non-interference

requirements given by a lattice consisting of two levels. In contrast, our ap-

proach supports more sophisticated lattices and uses customizable definitions

of node behaviors to support more complex analyses of non-interference as

well as access control.

9.2.2.2. Data Flow Analyses

Data flow analyses detect violations of confidentiality requirements in soft-

ware architectures based on exchanged data. The analyses use networks of

processing steps, which each have inputs and outputs as well as a behavior.

The propagation and comparison of data properties is a core element of these

analyses. The approaches providing such analyses are closely related to our

approach. In the following, we describe the most important approaches and

describe the differences to our approach.

AuthUML [AW03] and FlowUML [AFW06] originate from the same authors.

Because both approaches share many aspects, they can be considered as one

approach. The approaches aim to report violations of confidentiality require-

ments given in terms of access control as well as in information flow control

for software designs given in UML. In a first step, the approach extracts

activities of users from use case diagrams and data flows between actors

or system parts from sequence diagrams. This information is formalized in

a logic program given in Prolog. The user of the approach has to specify
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sensitive information and the confidentiality policy, which is added to the

logic program in order to identify violations. The approaches report on sup-

porting access control using DAC, MAC and RBAC as well as information

flow control. The approaches have many similarities with our approach such

as the use of logic programming to identify violations or the use of annotated

software models as inputs. However, neither AuthUML nor FlowUML report

on a validation, which shows that any of the approaches supports systems

other than the small running examples. An implementation is not avail-

able. In addition, the support of access control mechanisms is only described

vaguely: For MAC, only the military access model is considered. For DAC,

the delegation of rights is missing. The handling of declassification, which is

essential to support realistic systems according to Zdancewic [Zda04], is not

mentioned. Because of the missing validation and the shortcomings in repre-

senting the confidentiality mechanisms, we do not consider the approaches

to have shown a successful combination of access control and information

flow control.

SecDFD [TSB19] uses extended DFDs to identify violations of non-interfer-

ence requirements. The extensions of the DFDs are an additional property

to indicate if a node is within a trusted zone or an attack zone as well as a

predefined set of nodes including a behavior. The behavior is given in terms

of a label propagation function that takes incoming labels and maps them to

outgoing labels. Apart from the fixed node types, the approach follows the

same analysis logic as our approach. Both approaches [TSB19; SHR19] have

been developed independently and have been published at the same venue

in 2019. The major difference is the support of confidentiality requirements.

SecDFD supports non-interference with a high/low lattice and can consider

keyless encryption. In addition, our approach supports non-interference

using arbitrary lattices, encryption using key pairs and various access control

mechanisms.

Berghe et al. [Ber+17] represent systems by a network of predefined process-

ing operations, which propagate data and its properties, in order to identify

illegal access to data. A processing operation receives data, calculates at-

tributes of outgoing data based on the attributes of incoming data and sends

the data. Essentially, this is label propagation. The behavior is specified in

the language of the theorem prover Coq. Consequently, the detection of

violations also is done in Coq. The formalization is more powerful than the

formalization presented in this thesis because it supports stateful modeling

and uses linear-time temporal logic. While this increases the expressiveness,
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it also increases the complexity of the specification. It is at least questionable

if the detailed information for creating such detailed specifications is actually

available while creating the software architecture. As already discussed in

Section 8.3.3, we favor simple specifications over expressiveness of all pos-

sible cases. The approach of Berghe et al. demonstrates the support for a

simple form of non-interference, which is comparable with a taint analysis. In

contrast, our approach supports non-interference using sophisticated lattices

as well as various access control mechanisms.

9.2.3. Calculation of Security Metrics

There is a high demand for security metrics, which quantify the security

of software systems [Fla18]. These metrics shall help answering trade-off

questions such as trade-offs between gained security and budget to be spent

[PC10]. In our approach, we do not aim for quantifying security because

creating a reliable metric that satisfies the expectations on these metrics is a

different field of research. However, our approach can provide one of many

possible inputs for calculating security metrics.

In the following, we give examples of how our approach could provide inputs

for two approaches providing security metrics for software architectures. For

a more exhaustive list of security metrics, we refer to surveys on security

metrics [MFP10; Pen+16].

Busch, Strittmatter, and Koziolek [BSK15] suggest the mean time to security
failure as a metric for trade-off decisions in software architectures. The metric

considers factors like the skills of an attacker, the time spent in securing a

component or security interferences between components. The approach

is probabilistic and requires estimations of factors and probabilities. To

improve these estimations, the results of the approach presented in this thesis

could be used. For instance, our approach can provide information about

security interferences between components by tracing, which information is

transitively exchanged between components.

Almorsy, Grundy, and Ibrahim [AGI13] provide an extensible framework to

calculate security metrics. They use system descriptions and corresponding

security specifications as input. Success conditions of various attacks are

given in OCL. Metric calculations can include arbitrary information but also

the results of testing the success conditions by building weighted sums. There
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are examples ofmetrics such as the attack surface or the compartmentalization

but the authors themselves stress that these are not complete and have to be

extended. Because of the high flexibility in calculatingmetrics and considering

inputs, it is possible to consider our analysis results in the metric calculations.

The analysis results of our approach indicate structural problems of the

software architecture, which can be considered in the attack surface, for

instance.

9.3. DFD Semantics

The major benefit of DFDs is their simplicity. A DFD only consists of three

types of nodes (external actors, processes and stores) and one type of edge

(data flow). DeMarco [DeM79] describes the semantics of these syntacti-

cal elements in an intuitive way. This simple description of semantics is

not really problematic for discussing diagrams with stakeholders. However,

weak semantics impede automated processing of DFDs, which usually relies

on clear meanings for every syntactical element as well as combinations

of these elements. The semantics are a commonly identified weakness of

DFDs. As a survey [Jil+08] on formal semantics for DFDs shows, there are

many different approaches to address the shortcomings of the DFD semantics.

These approaches often do not only extend or redefine the semantics but also

extend the DFD syntax. This is reasonable because additional information

can be necessary to solve ambiguities in the semantics and this additional

information has to be expressed in the DFD syntax. The semantics are not par-

ticularly tailored to confidentiality or security but still point out and address

important shortcomings, which affect many domains including confiden-

tiality. In the following, we report on the four most commonly mentioned

shortcomings, motivate their importance on the running example, discuss

suggested solutions and relate these solutions to the solution, which we used

for defining our DFD semantics. The explanations are based on one of our

previous publications [Sei+22].

Node Properties DeMarco [DeM79] sees the importance of additional prop-

erties and suggests adding them to a data dictionary. However, he does not

prescribe a specific format or typing for these properties, so automated pro-

cessing of the properties is challenging. Representing properties of nodes is

328



9.3. DFD Semantics

important in our running example in order to capture the clearance levels

of processes, stores and actors. The clearance level is necessary to identify

violations of the non-interference requirement that nodes can only access

data if their clearance level is at least the classification level of the data. Some

execution semantics [Fra92] [Pet+94], i.e. semantics that specify the execution

order of processes, describe properties of nodes as part of a global execution

state. Consequently, the properties of nodes can change dynamically over

time. Instead of these dynamically changing node properties, we use statically

assigned node properties to represent information required to detect viola-

tions of confidentiality requirements. We favor these static properties over

dynamic properties because dynamic properties need a definition of state

transitions and this introduces additional complexity to the modeling process.

However, we have demonstrated that dynamic properties are not necessary

to express the information required to identify violations of commonly used

confidentiality requirements.

Multiple Inputs DeMarco [DeM79] is aware of potential different meanings

of multiple incoming data flows but either refers to an intuitive understand-

ing based on the name of a process or suggests describing the process in a

data dictionary. However, he does not prescribe a specific format for this

description, which makes automated processing is challenging. Our running

example also includes situations, in which multiple incoming data flows have

different meanings: The meaning of the two inputs into the book flight pro-
cess in Figure 3.2 on page 31 is that both inputs are required for the booking.

The meaning of the two inputs ccd and declassifiedCcd to the user is that

either of the two is required, i.e. the inputs are alternative flows. It is im-

portant to distinguish these meanings because the DFD shown in Figure 3.2

would always violate the non-interference requirements by always picking

both inputs of the credit card data instead of only violating it when selecting

the wrong input. Tracing back the issue becomes harder if the violation

is reported in more situations than necessary. Related semantics address

this shortcoming differently. A simple approach is to always assume that all

incoming data flows to a node are mandatory. The benefit of such semantics

[Fen+93; LPT94; Pet+94; Xio+17] is that they do not require extensions of the

DFD syntax. However, such semantics do not allow expressing our running

example. Other semantics [Fra92; LT91; PKP91; WBL93; Lea+96; LWB99]

provide a more flexible approach by supporting definitions of valid combina-

tions of incoming data flows via preconditions or sets. Such semantics can
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express our running example. However, the specification via preconditions

or sets implies considerable complexity if an additional, mandatory incoming

data flow shall be added. Adding such a mandatory data flow is not unlikely

because it is comparable with adding an additional parameter to an operation

signature, which occurs quite frequently when designing systems or writing

source code. Instead, we aim to simplify such definitions by the notion of

pins. Pins are already known from UML [Obj17, p. 444], in which they define

inputs and outputs of nodes. The pins define mandatory input data, which

means that there has to be an incoming data flow to every input pin. If

multiple incoming data flows are available, these data flows are alternatives

but at least one of these alternatives always has to be used. Adding another

mandatory input only requires adding a new input pin and does not require

to change other pins or data flows.

Behavior of Nodes DeMarco [DeM79] sees the need to describe the behavior

of nodes and uses entries in a data dictionary to cover this information. How-

ever, he does not prescribe a structure or specific typing of the information,

so processing this information automatically is hard. The behavior of nodes

is necessary to reason about data processing and its effect. Knowing the

effect of data processing is not only important for our running example but

it is essential for the propagation of data properties. Without knowing the

processing effect, we would have to manually classify every exchanged data

flow in the running example to know the classification of arriving data and

to compare it with the clearance of nodes. Semantics [KBB86; BW89; Pet+94;

Xio+17], which do not require the propagation of properties or only use very

simple properties, do not describe the behavior of nodes but use the semantics

for handling multiple inputs to derive necessary properties. This approach is

not capable of expressing the propagation of the classification level in our

running example. Semantics [PKP91; Fra92; Fen+93; LPT94] mainly focusing

on execution semantics support defining trigger conditions. These conditions

can evaluate properties of incoming data such as how many data items are

available and decide to run a process or wait for more or other incoming

data. However, these semantics cannot describe the effect of data processing

on data properties such as that the classification level of outgoing data is

the highest classification level of all incoming data. In contrast, semantics

[LT91; WBL93; Lea+96; LWB99] that support describing the values of outputs

based on inputs support the propagation of data properties. These seman-

tics use general purpose languages to describe the calculation of the output
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values. General purpose languages allow to describe much more than just

the propagation of properties, so they introduce a considerable amount of

complexity. Therefore, we favor the use of a DSL instead of a general purpose

language to describe the behavior of nodes. The DSL only provides a limited

set of operations to derive properties of outgoing data based on incoming

properties of data. We expect the complexity of using the DSL to be lower

compared to a general purpose language.

Behavior of Actors DeMarco [DeM79] does not consider the behavior of ex-

ternal actors because he wants to focus on the system and external actors are,

per definition, not part of the system. However, reducing actors to providing

input to the system and consuming outputs from the system is too restrictive.

In our running example, it is important to know that the actor uses the credit

card details, which he/she has received from the declassification operation,

for booking a flight in the system. This does not violate the non-interference

requirements. In contrast, if the user uses the credit card details received from

the credit card center, a violation of the non-interference requirement occurs

because the data has not been declassified before sending it to the airline.

By making the behavior of the user explicit, we can avoid wrongly reported

violations. There are basically two approaches used by existing semantics:

One set of approaches [KBB86; LT91; BW89; Fen+93] ignores the behavior

of users because it is not necessary to serve the corresponding purpose of

the semantics. The other set of approaches [PKP91; Fra92; LPT94; Lea+96;

LWB99] simply uses the same means to describe the behavior of actors as

already used for describing the behavior of other nodes. We also see the

benefit of using the same means because this provides a streamlined solution.

Therefore, we use the same means to describe the behavior of actors as for

describing the behavior of other nodes.

9.4. ADL Integrations

The integration of confidentiality analyses into existing ADLs is beneficial

to lower the initial learning effort for software architects and to make use

of existing software architectures represented in the ADL. An integration

usually consists of two parts: An extension of the ADL syntax and an inte-

gration of an analysis, which uses inputs given in the extended ADL. We
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briefly discuss both parts and explain the reason for choosing a particular

integration approach in this thesis.

Extension of ADL Syntax. Analyses usually need additional information,

which is not present in the software architecture yet. ADLs are used to rep-

resent software architectures. The ADL is often specified by a metamodel

and the software architecture is a model, i.e. an instance of that metamodel.

To represent the additional information, this metamodel has to be extended.

Heinrich, Strittmatter, and Reussner [HSR21] distinguish intrusive and non-

intrusive extensions. Intrusive extensions change the metamodel, which

means that it becomes cluttered in case of many extensions and that existing

models, i.e. instances of that metamodel, potentially become incompatible

depending on the particular change. In contrast, non-intrusive extensions

do not break existing models. If a metamodel already provides means for

extensions, these extensions should be used. Therefore, many previously

presented approaches [Jür05; LBD02; HSS14; Kat+13], which use UML to

represent the software architecture, use UML profiles to extend the UML by

additional information. If the metamodel does not provide means for exten-

sions, it is still possible to use annotation models, which point to the software

architecture. Almorsy, Grundy, and Ibrahim [AGI13] make use of such an

annotation model. Using inheritance as part of additional metamodels is

another option, which Heinrich, Strittmatter, and Reussner [HSR21] mention

and which we also use. In general, such additional metamodels can be seen

as a fork of the original metamodel. In case of EMF, which Palladio uses to

specify its metamodel, the subtypes specified in the additional metamodels are

integrated into the existing metamodel by the tooling
3
. Therefore, the use of

inheritance is non-invasive in our approach. In fact, we make use of all three

mentioned non-intrusive ADL extension approaches. Using inheritance is

often the most comprehensible solution because the concept of inheritance is

known from object-oriented programming. However, using inheritance is not

always possible because of the structure of the metamodel. Therefore, we also

use profiles in combination with annotation models. The annotation models

contain the additional information and the profiles link the information to

the software architecture.

3 https://web.archive.org/web/20211108130758/https://ed-merks.blogspot.com/2008/0

1/creating-children-you-didnt-know.html
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Integration of Analysis. There are usually two options to integrate analyses

in ADLs: model queries and transformations. Model queries require formu-

lating the analysis as a query to the model of the software architecture. This

works well for matching patterns in the software architecture or for checking

well-formedness rules. The approaches for identifying threats mentioned in

Section 9.2.1 use this approach. Transformations map a software architecture

given in an ADL to another representation tailored for analyses. AuthUML

and FlowUML [AW03; AFW06], iFlow [Kat+13], SecDFD [TSB19], UMLSec

[Jür05] and the approach of Gerking and Schubert [GS19] use this integration

approach. The analyses take place on the dedicated analysis artifact and the

results are reported back to the software architect. The benefit of the transfor-

mation approach is that software architects canmake use of existing, powerful

analysis tools, which allows for more sophisticated analyses. We also use the

transformation approach to provide such sophisticated analyses.
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We conclude this thesis in this chapter. We summarize the contributions,

their validation as well as the differences to state-of-the-art approaches in

Section 10.1. The benefits of the contributions for various stakeholders is part

of Section 10.2. We recap the most important assumptions and limitations in

Section 10.3. Eventually, we discuss future work in Section 10.4.

10.1. Summary

In this thesis, we presented a data-oriented approach to identify violations

of confidentiality requirements in software architectures. We presented four

validated contributions, which answer the research questions described in Sec-

tion 1.4. In the following, we summarize the contributions (C), the correspond-

ing research questions (RQ) and the validation covered by the corresponding

validation questions (VQ).

DFD Syntax (C1) The extended DFD syntax captures additional information,

which is required to identify violations of confidentiality requirements as well

as to avoid ambiguities implied by the original DFD syntax and semantics of

DeMarco. The additional information is structured in three viewpoints. The

functional viewpoint introduces actor processes, which are necessary to rep-

resent non-trivial activities of external actors, and pins, which are necessary

to solve ambiguities caused by multiple incoming data flows. The confidential-

ity primitives viewpoint introduces characteristic types and characteristics,

which represent relevant properties for reasoning about confidentiality viola-

tions, as well as behaviors, which represent the effect of data processing on

properties. The confidentiality viewpoint relates the behaviors and properties

to nodes in the DFD. The benefit of the separation into viewpoints is that the

responsibility of involved roles are clear: A security expert creates potentially
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reusable confidentiality primitives and assists the software architect in using

them. A software architect represents the system as well as its usage and

binds the security primitives to the actual architecture.

The representation of this additional information in an extended DFD meta-

model answers the research question about sufficient modeling primitives for

reasoning about confidentiality (RQ3). In a validation (VQ1 and VQ2) based

on a case study involving seventeen systems, which define confidentiality

requirements in terms of various access control and information flow control

mechanisms, we demonstrated the expressiveness of the extended DFD syn-

tax. In contrast to the state of the art, the extended DFD syntax is capable of

expressing access control and information flow control individually as well

as combinations of these mechanisms within the same syntax.

We found that the additional information in the DFD syntax is necessary in

order to identify violations of confidentiality requirements given in terms

of access control (RQ1) as well as information flow control (RQ2). The val-

idation of the usage frequency of the syntax elements (VQ3) for modeling

the case study systems supports this statement by showing that the elements

of the DFD syntax are frequently used. In contrast to many state-of-the-art

approaches, the syntax does not include special elements, which are only

useful for reasoning about certain confidentiality mechanisms.

DFD Semantics (C2) The semantics for the extended DFD syntax define the

meaning of DFD elements in terms of label propagation. All nodes become

nodes in a label propagation network. The data flows become connections

between the nodes. Characteristics become labels. Behaviors of nodes become

the propagation logic of a node. A mapping from the extended DFD syntax

to clauses of first-order logic given in Prolog assigns the previously described

meaning. The Prolog program resulting from the mapping of a particular DFD

identifies all labels at all places in the DFD. Analyses compare these labels

with expected labels to identify violations of confidentiality requirements.

The validation of the correctness of detected violations (VQ6) on sixteen

case study systems shows that the semantics can correctly identify violations

in systems. Therefore, the semantics provide a sufficient answer to RQ4,

which asks for appropriate semantics for identifying violations. In contrast

to many state-of-the-art approaches, the semantics are sufficient to analyze

the propagation of data through the system. Many other approaches are
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limited to well-formedness constraints or pattern matching. In addition, the

semantics are flexible enough to cover a wide range of different confidentiality

requirements. Many other approaches are limited to one particular type of

analysis.

DFD-based Analyses (C3) The analysis definitions for DFDs provided in this

thesis cover information flow control with non-interference requirements as

well as the four most commonly used access control mechanisms DAC, MAC,

RBAC and ABAC. In addition, a partial analysis definition for encryption is

available, which can be combined with the previously mentioned analysis

definitions. An analysis definition always consists of a set of characteristic

types, characteristics, behaviors and a label comparison function. The label

comparison function is given as a Prolog query, which compares the propa-

gated labels on data with expected labels to identify a violation. For specific

confidentiality requirements, we provide templates for Prolog clauses, which

cover the additional requirements. A security expert creates the analysis defi-

nitions because creating them requires security expertise. Software architects

can reuse these definitions in multiple systems or define custom analyses

using a DSL for creating a label comparison function.

The set of analysis definitions, which considers information flow control,

answers research question RQ5, which asks how an information flow analysis

can be formalized using the extended DFD syntax and the corresponding

semantics. The set of analysis definitions, which considers access control,

answers research question RQ6, which asks about the formalization of ac-

cess control analyses. The validation of the expressiveness of the analysis

definitions (VQ5) shows that the confidentiality requirements of sixteen case

study systems can be expressed in terms of the analysis definitions. The set of

systems contains systems using information flow control as well as systems

using access control. In contrast to many other state-of-the-art approaches,

there are multiple analysis definitions, which software architects can use

within the same architecture. Many state-of-the-art approaches only provide

one particular type of analysis and do not provide means to specify additional

analyses. In contrast, software architects can use the DSL provided in this

thesis to formulate custom analyses. The validation of the correctness of

detected violations (VQ6) shows that confidentiality requirements are not

only expressible but that the analyses based on the analysis definitions can

correctly identify violations.
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ADL Integration Guidelines (C4) The guidelines for integrating the analysis

capabilities of extended DFDs into existing ADLs support ADLs focusing

on control flows as well as ADLs focusing on data flows. The core idea of

the integration guidelines is to extend the syntax of the ADL by necessary

but missing means to express information relevant for confidentiality and

then to map this extended ADL to an extended DFD. Afterwards, software

architects can use the existing DFD-based analyses to identify violations of

confidentiality requirements. To show the applicability of the guidelines, we

apply the integration guidelines to the Palladio ADL, which supports control

flows as well as data flows. This results in two integrations: one integration

into the Palladio subset that uses control flows and one integration into

the Palladio subset that uses data flows. Because applying the integration

guidelines worked for Palladio, we can see the integration guidelines as

answer to RQ7 and RQ8, which ask for a way of using the DFD-based analyses

in ADLs using control flows as well as data flows. In contrast to the state of

the art, the software architect can still use the existing ADL and only has to

learn the newly introduced elements of the syntax. The state of the art either

requires dedicated analysis models or prescribes the ADL, which is often the

UML.

The Palladio integrations are as expressive as the extended DFDs and the

analysis results are also correct. In a validation of the expressiveness (VQ8)

based on seventeen case study systems for each integration, we could show

that we could express the same case study systems by the integrations as by

DFDs. In a validation of the correctness of the analysis results (VQ9) based on

the expressed case study systems, we could show that all reported violations

were correct.

A major benefit of the ADL integration is that already modeled software

architectures can usually be extended by the necessary information to detect

violations of confidentiality requirements. In a validation of the amount of

model elements to be changed when adding such information to an exist-

ing software architecture (VQ11), we could show that a considerable part

of the software architecture does not have to be changed. state-of-the-art

approaches, which do not provide ADL integrations, require the software

architect to remodel the whole software architecture in a new ADL. Because

our ADL integrations support various confidentiality mechanisms, switching

the confidentiality mechanism also does not require remodeling the whole

software architecture. In a validation of the amount of model elements to be

changed when switching confidentiality mechanisms, we could show that
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a considerable amount of model elements can be reused. state-of-the-art

approaches, which only support one particular confidentiality mechanism,

require the software architect to remodel the whole software architecture in

another analysis model or ADL.

10.2. Benefits

With the contributions presented in this thesis, confidentiality requirements

can be considered systematically while defining software architectures. In

the following, we discuss how tool engineers, security experts, software

architects and organizations benefit from these contributions.

Tool Engineers are responsible for creating and maintaining the tools to

specify software architectures. By using the extended DFD syntax, its se-

mantics as well as the ADL integration guidelines, tool engineers can build

new tools or integrate the analysis capabilities presented in this thesis into

existing tools. Because the engineers do not have to define and validate the

propagation logic on their own, they can provide tools faster than by imple-

menting the tools from scratch. They can also use the analysis definitions to

provide a broad range of analyses right from the beginning, which means the

tools provide many features without the need to spend time on implementing

these features.

Security Experts are responsible for supporting the software architect in

meeting the confidentiality requirements. By defining analysis definitions,

the security expert provides the building blocks to represent confidentiality in

software architectures. Because these analysis definitions are often reusable

for multiple systems, the security expert does not have to assist the software

architect for every system, which gives him/her time for other tasks. When

considering a situation without analysis capabilities, which the software

architect can use on his/her own, the security expert would even have to do

the analysis of the software architecture, which implies considerable effort.
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Software Architects are responsible for defining the software architecture

in a way that it meets the requirements on the software system. By using the

ADL integration, software architects can systematically consider confiden-

tiality requirements while defining the software architecture. Because the

analysis capabilities are built into the ADLs, which the software architects

already use, they only have to learn the new elements of the extended ADL.

This lowers the initial learning and training effort. Because the existing ADL

is only extended and not replaced, the software architects can add information

to consider confidentiality requirements to the existing software architectures

instead of recreating the software architectures from scratch in a dedicated

analysis tool. This lowers the modeling effort. Because the reusable analysis

definitions provided by the security expert already specify the important

aspects for analyzing the confidentiality requirements, the software architect

can use these analysis definitions without the need of having high security

expertise. Instead, a short introduction by the security expert should be

sufficient.

Organizations hire employees for creating software systems, which can be

sold for profit. The previously mentioned benefits, especially the benefits for

the security expert and the software architect, contribute to the overall goal

of reducing the cost for creating a software system. Security experts as well

as software architects are highly qualified people, who usually receive high

compensations. Reducing the effort spent by these people to create a software

system reduces the overall cost because less people are required to create the

software system. As explained before, the security expert does not have to be

involved in the analysis of every system anymore, which reduces his/her effort

for a particular software system heavily. The software architects have some

initial effort for getting their head around the extended ADL and the analysis

definitions. However, this one-time effort pays off because the effort spent in

modeling and reasoning about confidentiality requirements is reduced for

every system. By systematically considering confidentiality in the software

architecture, the probability of detecting confidentiality violations already in

the software architecture increases and the probability that the underlying

issue becomes implemented decreases. Because it requires less effort to fix

an issue early, this also reduces the total cost of creating a software system.

Because extensive changes of the implementation caused by undetected

issues in the software architecture are reduced, there is a good chance that

the software system can be sold earlier.
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10.3. Assumptions and Limitations

We already discussed the assumptions and limitations of our contributions

together with the contributions. The assumptions and limitations regarding

the DFD syntax and semantics are discussed in Section 5.3. Section 6.7 does

the same for the DFD-based analyses and Section 7.4 covers the assumptions

and limitations regarding the ADL integration guidelines. In the following,

we recap the most important assumptions and limitations and justify why

the assumptions are reasonable and the limitations are not too restrictive.

Properties as Discrete Values. The DFD syntax as well as the semantics

limit the value range of properties to sets of discrete values. This means a

property of a node or data cannot be an arbitrary numerical value or arbitrary

string, for instance. We do not see this limitation as too restrictive because

properties, which are relevant for confidentiality, are often discrete values.

As we demonstrated by the analysis definitions and their validation, we can

express the aspects, which are relevant in commonly used confidentiality

mechanisms. Out of the most commonly used confidentiality mechanisms,

only ABAC potentially requires the representation of continuous values.

However, we still argue that the limitation to sets of discrete values is not too

limiting here because usually a particular value in a continuous range of values

only has a meaning because it is within a certain interval. Representing the

available intervals as discrete values is possible and, therefore, the limitation

does not impede analyses here.

Explicit Flows. The DFD semantics only consider explicit information flows,

i.e. data flows, in analyses. This means, an analysis only detects a viola-

tion of a confidentiality requirement if the violation occurs because of an

explicit information flow. We do not consider implicit information flows,

which are caused by timing-dependencies, for instance. This limitation is the

result of a trade-off decision: Detecting implicit information flows requires

detailed descriptions of the execution order or even timing information. The

necessary information might not be available while creating the software ar-

chitecture and would certainly complicate the representation of the software

architecture. We decided to focus on explicit flows because we can assume

the information about explicit flows to be available. Consequently, the ADL

integration neither does consider such implicit flows.
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No Information About State, Time and Instances. The DFD-based analyses

do not consider state, time or instance-level information. No information

about time means that the analyses do not consider whether a data processing

happens before another as long as there is no data dependency. State cannot

be supported without a notion of time, so there is no information about the

state of a system. No information about instances means that the analyses do

not consider individual users but only types of users. We do not consider any

of these limitations as inappropriate for analyses of software architectures as

we explain in the following. To represent information about state and time,

software architects have to specify the structure and behavior in a high level of

detail. This increases expressiveness but also complicates the specification of

software architectures and requires detailed specifications, which restrict the

freedom in finding appropriate solutions for the architectural specifications

in later phases. To avoid increasing the effort for specifying a software

architecture significantly, we decided to not consider state and time. We

decided to not consider instance information such as individual users of

a system because there is not enough information about individual users

while creating the software architecture. Instead, we only represent types of

users.

ADL Elements Without Effect. In the ADL integrations of Palladio, we did

not explicitly specify a meaning for every element of the Palladio syntax but

implicitly specified that all elements without explicitly specified meaning

have no meaning for identifying violations of confidentiality requirements.

We consider the assumption that not all ADL elements affect confidentiality

reasonable because Palladio is an ADL, which supports various types of

quality predictions. Existing analyses realized in Palladio also do not consider

every element. For instance, the resource demand of a certain action in the

system is not important for reasoning about confidentiality.

10.4. Future Work

We identified five topics of future work, which we describe in the following.

Further Security Objectives. In this thesis, we focused on the security objec-

tive confidentiality. However, only meeting one security objective is usually
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not sufficient to secure a software system. Therefore, we would like to in-

vestigate whether the DFD syntax and the semantics can also represent the

required information to identify violations of other security objectives. Es-

pecially, researching the representation of aspects relevant for integrity and

formulating analyses to detect violations of integrity are of high interest be-

cause information flow control as well as access control are also mechanisms

to protect the integrity of information.

Consideration of Uncertainty. The most fundamental assumption of model-

based analyses is that the model correctly represents the subject under inves-

tigation. In case of a software architecture, this means that developers realize

the software architecture correctly and that the execution context of the

system matches the execution context specified in the software architecture.

However, there might be aspects in the software architecture, which the soft-

ware architect cannot know yet or which might change dynamically during

runtime. For instance, a component might not be deployed on the expected

node but on another because of a disruption at a cloud provider. This means,

the software architect is uncertain about aspects of the software architecture.

The topic of the ongoing research project FluidTrust
1
is to capture this un-

certainty and identify the influence of uncertainty on confidentiality. There

is already initial work on considering uncertainty in the context [BWH20]

and within the structure and behavior [Hah21] of a software architecture

within the approach described in this thesis. However, the work is limited

with respect to the architectural elements affected by uncertainty and the

validation. Therefore, further research is necessary.

Usage of catalogs. We already discussed, which parts of the analysis defini-

tions depend on particular systems and which parts software architects can

reuse for specifying other systems. In the context of security, catalogs are

frequently used to provide reusable artifacts. However, we see the need for

further research on how an entry of such a catalog has to look like and how

software architects can make use of such a catalog. For instance, we have

to define mechanisms to override parts of an analysis definition or provide

partial analysis definitions if the definition cannot be reused as a whole. A

formalized approach to combine such partial analysis definitions could also

1 https://web.archive.org/web/20200808112444/https://fluidtrust.ipd.kit.edu/home/
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help security experts to integrate encryption into other analysis definitions,

for instance.

Validation of Analysis DSL. We presented a DSL for formulating custom

analyses in this thesis. The DSL is meant to be used by software architects,

so they can formulate label comparison functions without expertise in logic

programming. We provided a concrete syntax for illustration purposes only.

However, we think that software architects can also use this concrete syntax

because we designed it according to common best practices. In another work

[Hah+21], we already validated the DSL according to objective criteria. But

to support the statement about usability, we have to conduct a user study

together with potential users. We would like to validate the usability and

compare it to the usability of Prolog queries.

Extended Validation of ADL Integration. In this thesis, we applied the in-

tegration guidelines to the Palladio ADL to show their applicability and to

perform further validations on the resulting integrations for the commu-

nication paradigms call-and-return as well as for data flows. It would be

interesting to apply the integration guidelines to further ADLs, which use

different communication paradigms, in order to validate the applicability of

the guidelines.
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A. Predicate
exactCharacteristicValues/5

The predicate exactCharacteristicValues/5 tests if the available labels of

a certain characteristic type are exactly the requested labels. The predicate

defined in line 1 of Listing A.1 takes a node identifier N, a pin PIN, a charac-

teristic type CT, a list of values VALS and a flow tree S. The predicate succeeds

if the values, which belong to the given characteristic type and which are

available at the given pin at the given node for the given flow tree, are exactly

the given values. To answer a query to this predicate, it is necessary to collect

all values, which are available at the pin, for the given characteristic type and

test the resulting set for equality with the given set of values.

The allCharacteristicValues/5 predicate finds all available values for a

given characteristic type. The rule in line 5 first finds a flow tree for the given

node and pin because the flow tree is necessary to determine labels. The

rule then queries the allCharacteristicValues/6 predicate, which has the

same signature except for an additional argument for remembering already

considered values of a characteristic type. Two rules realize the allCharacter-

isticValues/6 predicate. The rule shown in line 9 identifies a characteristic

value V, which is available at the given pin and tests if the value has already

been visited by ensuring that the intersection of the visited values and the

set consisting of the new value is empty. Afterwards, the rule ensures that

the found value is smaller than the first element of the already visited values

according to the natural ordering relation. This ensures that the list of visited

values is sorted. Afterwards, the rule adds the new value at the beginning

of the list of visited values and recurses. The rule in line 19 provides the

stop condition for this recursion. The rule succeeds if there are no more

characteristic values are available, which have not been visited before. In this

case, the list of visited values becomes the result.
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Listing A.1: Clauses providing the exactCharacteristicValues/5 predicate.

1 exactCharacteristicValues(N, PIN, CT, VALS, S) :-

2 allCharacteristicValues(N, PIN, CT, V, S),

3 sort(VALS, V).

4

5 allCharacteristicValues(N, PIN, CT, VALS, S) :-

6 flowTree(N, PIN, S),

7 allCharacteristicValues(N, PIN, CT, S, [], VALS).

8

9 allCharacteristicValues(N, PIN, CT, S, VISITED, RESULT) :-

10 characteristic(N, PIN, CT, V, S),

11 intersection(VISITED, [V], []),

12 (

13 VISITED = [];

14 nth0(0, VISITED, FIRSTV),

15 V @< FIRSTV

16 ),

17 allCharacteristicValues(N, PIN, CT, S, [V | VISITED], RESULT).

18

19 allCharacteristicValues(N, PIN, CT, S, RESULT, RESULT) :-

20 \+ (

21 characteristic(N, PIN, CT, V, S),

22 intersection(RESULT, [V], [])

23 ).
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B. DFDs of Self-Created Case Study
Systems

In the following, we provide the DFDs for the case study systems, which we

created completely from scratch. The DFD for CS13 is given in Figure B.1. The

DFD for CS14 is given in Figure B.2. The DFD for CS16 is given in Figure B.3.

We omit the pins in the visualization to enable a more compact representation.

To indicate data flows to the same pin, we let the data flows overlap in the

illustration. All visualizations are based on existing visualizations from one

of our previous publications [Sei+22].

We do not provide the DFDs for the other case study systems because the

respective sources mentioned in Section 8.2.2 already provide enough in-

formation about the cases and their complexity. In addition, the data set of

one of our previous publications [Sei+22] provides further explanations and

visualizations of the cases.
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Figure B.1.: DFD of ImageSharing case study system (CS13) based on visualization in previous

publication [Sei+22]. Removing the crossed data flow introduces an issue.
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Software systems have to protect the confidentiality of processed information to 
cope with laws, regulations and expectations of users. To meet confidentiality 
requirements and avoid costly changes in late development phases, software 
vendors have to consider confidentiality during all phases of the software de-
velopment process. Especially, the phase for creating the software architecture 
is crucial because decisions made here are hard to change later.

In this book, we present an approach for considering confidentiality requirements 
in software architectures by representing and analyzing data flows. Systems 
specify data flows and confidentiality requirements specify limitations of data 
flows. Software architects use detected violations of these limitations to improve 
the system in an iterative development process. We explain and demonstrate 
how to integrate our approach into existing development processes and tools, 
which focus on data flows or control flows. A
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