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Abstract. We present a novel high-resolution inverse modelling system (“FLEXVAR”) based on FLEXPART-
COSMO back trajectories driven by COSMO meteorological fields at 7km×7km resolution over the European
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COSMO-7 domain and the four-dimensional variational (4DVAR) data assimilation technique. FLEXVAR is
coupled offline with the global inverse modelling system TM5-4DVAR to provide background mole fractions
(“baselines”) consistent with the global observations assimilated in TM5-4DVAR. We have applied the FLEX-
VAR system for the inverse modelling of European CH4 emissions in 2018 using 24 stations with in situ mea-
surements, complemented with data from five stations with discrete air sampling (and additional stations outside
the European COSMO-7 domain used for the global TM5-4DVAR inversions). The sensitivity of the FLEXVAR
inversions to different approaches to calculate the baselines, different parameterizations of the model represen-
tation error, different settings of the prior error covariance parameters, different prior inventories, and different
observation data sets are investigated in detail. Furthermore, the FLEXVAR inversions are compared to inver-
sions with the FLEXPART extended Kalman filter (“FLExKF”) system and with TM5-4DVAR inversions at
1◦×1◦ resolution over Europe. The three inverse modelling systems show overall good consistency of the major
spatial patterns of the derived inversion increments and in general only relatively small differences in the derived
annual total emissions of larger country regions. At the same time, the FLEXVAR inversions at 7km× 7km
resolution allow the observations to be better reproduced than the TM5-4DVAR simulations at 1◦× 1◦. The
three inverse models derive higher annual total CH4 emissions in 2018 for Germany, France, and BENELUX
compared to the sum of anthropogenic emissions reported to UNFCCC and natural emissions estimated from
the Global Carbon Project CH4 inventory, but the uncertainty ranges of top-down and bottom-up total emission
estimates overlap for all three country regions. In contrast, the top-down estimates for the sum of emissions from
the UK and Ireland agree relatively well with the total of anthropogenic and natural bottom-up inventories.

1 Introduction

Atmospheric methane (CH4) is the second most important
anthropogenic greenhouse gas (GHG) after carbon diox-
ide (CO2), with an estimated contribution of ∼ 16.3%
(0.520 W m−2) to the direct anthropogenic radiative forc-
ing of all long-lived GHGs in 2020 (NOAA Annual Green-
house Gas Index (AGGI), evaluated relative to 1750; But-
ler and Montzka, 2022). Including also additional indirect
effects (e.g. production of tropospheric ozone), however,
the total radiative forcing of CH4 is considerably higher,
with current estimates of the emission-based effective radia-
tive forcing (ERF) of 1.21 (0.90 to 1.51) W m−2 (Szopa et
al., 2021). The current global average CH4 mole fraction
is 162 % higher than preindustrial levels in 1750 (WMO,
2021) and continues to increase, with recent growth rates
(2014–2020: 10.1± 3.2 ppb yr−1) being again close to the
high growth rates observed during the 1980s (1984–1989:
11.9±0.9 ppb yr−1), while lower growth rates were observed
during the 1990s and almost zero growth rates during 2000–
2006 (Dlugokencky, 2022).

Reducing CH4 emissions plays an essential role in miti-
gating climate change, especially in the near term (Shindell
et al., 2012, 2017; United Nations Environment Programme
and Climate and Clean Air Coalition, 2021), due to CH4’s
relatively short atmospheric lifetime of around 10 years com-
bined with its high radiative efficiency (resulting in a global
warming potential (GWP) around 80 times higher compared
to CO2 on a 20-year timescale; Forster et al., 2021). The
global emissions pathways to limit global warming to 1.5 ◦C,
compiled by IPCC (2018), include significant reductions of
CH4 emissions after 2020 (for scenarios with no or lim-

ited overshoot of temperature above the 1.5 ◦C target). The
recognition of the importance of CH4 emission reductions to
mitigate climate change has also led to the recent “Global
Methane Pledge” (European Commission, 2021), with the
collective goal to reduce methane emissions by 2030 by at
least 30 % compared to 2020.

The development of emission reduction pathways as well
as the control of international climate agreements requires
the accurate quantification of current (and past) GHG emis-
sions. For CH4, however, the quantification of emissions
and sinks is particularly challenging, mainly owing to the
large spatial and temporal variability of emissions from many
source sectors and consequently large uncertainties in as-
sumed mean emission factors (e.g. for natural emissions
from wetlands and anthropogenic emissions from fugitive
sources such as fossil fuels (coal, oil, gas) (e.g. Brandt et
al., 2014) or emissions from the waste sector). Therefore,
bottom-up inventories of CH4, which are compiled by scal-
ing up emissions using activity data and emission factors,
have significant uncertainties. Complementary to bottom-up
inventories, inverse modelling provides top-down emission
estimates using atmospheric measurements and atmospheric
transport models, by optimizing emissions from emission in-
ventories (used as prior estimates) to get an optimal agree-
ment between simulated and observed CH4 mole fractions,
taking into account the uncertainties of prior emission es-
timates, measurements, and model simulations (e.g. Berga-
maschi et al., 2018b; Houweling et al., 2017). The Global
Carbon Project CH4 (GCP-CH4) provides synthesis analy-
ses of the global CH4 cycle based on comprehensive sets of
different bottom-up and top-down estimates from the inter-
national science community working on this topic (Jackson
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et al., 2020; Saunois et al., 2020; Stavert et al., 2021). The
global inverse models used in these analyses have generally
relatively coarse horizontal resolution, in the range of 2.5–
6.0◦ (longitude) ×1.9–4.0◦ (latitude) (Saunois et al., 2020).
Therefore, such models are mainly suitable to provide infor-
mation on the global and larger regional scales.

In order to analyse regional emissions in more detail (and
more accurately), specific regional inversions have been per-
formed, employing regional atmospheric transport models at
higher horizontal resolution (typically in the range of ∼ 20–
100 km) and making use of the increasing number of regional
in situ GHG measurements, which have become available
in recent years in particular in Europe and North America
(e.g. Bergamaschi et al., 2018a; Ganesan et al., 2015; Lunt et
al., 2021; Manning et al., 2011; Miller et al., 2013). The re-
gional models generally require global boundary conditions,
which are usually provided from global inverse models. Al-
ternatively, global models with zooming option for the spe-
cific region of interest have been employed (Bergamaschi
et al., 2018a). A specific purpose of such regional inver-
sions is to verify national bottom-up emission inventories
reported to the United Nations Framework Convention on
Climate Change (UNFCCC), finally aiming at an emission
monitoring and verification system to support the interna-
tional climate agreements using in situ and satellite observa-
tions (Bergamaschi et al., 2018b; Deng et al., 2022; National
Research Council, 2010; Pinty et al., 2017, 2019). Within
the European project VERIFY (https://verify.lsce.ipsl.fr/, last
access: 4 October 2022) a pre-operational GHG verification
system has been developed, employing various state-of-the-
art global and regional atmospheric transport models (Pe-
trescu et al., 2021a, b).

In order to further improve the atmospheric modelling, it
is essential to further increase the spatial resolution, aim-
ing at further improving the simulation of regional moni-
toring stations. A pioneering high-resolution study has been
reported by Henne et al. (2016), using the FLEXPART-
COSMO back trajectories driven by meteorological fields
from the Swiss national weather service (MeteoSwiss) at hor-
izontal resolution of approximately 7km× 7km, analysing
the CH4 emissions from Switzerland using continuous mea-
surements from six atmospheric monitoring stations. The au-
thors generated the FLEXPART-COSMO sensitivity fields
(based on the sampling of released particles) at even higher
resolution (than the resolution of the COSMO meteorolog-
ical fields) of 0.02

◦

× 0.015◦ (≈ 1.7 km) over the Alpine
domain (but coarser horizontal resolution of 0.16◦× 0.12◦

(≈ 13 km) outside the Alpine domain). Since they solved
the inverse problem analytically (denoted by the authors as
the “Bayesian method”), however, they applied a reduced
grid by merging model grid cells in areas with smaller av-
erage source sensitivities in order to reduce the size of the
inversion problem to about 1000 unknowns. As an alterna-
tive to the Bayesian method, Henne et al. (2016) also applied
the extended Kalman filter method described by Brunner et

al. (2012), which – in contrast to the Bayesian method – as-
similates the observations sequentially but for computational
reasons also requires the application of a reduced grid.

Aiming at high-resolution inversions of larger regions
(such as the European domain), we have therefore developed
a novel inversion framework (denoted “FLEXVAR”) based
on the four-dimensional variational (4DVAR) data assimila-
tion technique (Meirink et al., 2008; Talagrand and Courtier,
1987), which allows for the optimization of a much larger
number of parameters and therefore also avoids the need to
apply reduced grids. As in the Henne et al. (2016) study,
the new system uses FLEXPART-COSMO back trajectories
driven by COSMO meteorological fields at 7km× 7km res-
olution but is optimizing emissions from individual grid cells
over the whole European COSMO-7 domain with 393 (lon-
gitude) ×338 (latitude) grid cells. Furthermore, the new sys-
tem uses background mole fractions (baselines) from global
TM5-4DVAR inversions (using two different approaches);
i.e. it is coupling the FLEXPART-COSMO inversions with
the global/European TM5-4DVAR inversions offline.

The objective of this paper is to present the new FLEX-
VAR system and its application to the inversion of European
CH4 emissions for 2018 using a comprehensive data set from
24 stations with in situ measurements, complemented with
data from 5 stations with discrete air sampling (and addi-
tional stations outside the European COSMO-7 domain used
for the global TM5-4DVAR inversions). We analyse in detail
the sensitivity of the FLEXVAR inversions to internal param-
eterizations and model settings, as well as the sensitivity to
the main model input data, i.e. prior inventories and obser-
vational data. Furthermore, we compare the FLEXVAR in-
versions with the extended Kalman filter (FLExKF) method
and with TM5-4DVAR inversions (at 1◦×1◦ resolution over
Europe). Finally, we present an overall analysis of derived
European CH4 emissions and comparison with emissions re-
ported to UNFCCC for some major countries (or group of
countries) which are best constrained by the available obser-
vations (Germany, France, BENELUX, and UK and Ireland).

2 Modelling

2.1 FLEXPART-COSMO back trajectories

FLEXPART is a Lagrangian atmospheric transport model
that simulates the advective, turbulent, and convective trans-
port by tracking the positions of a large number of infinites-
imally small air parcels, so-called particles, either forward
or backward in time (Pisso et al., 2019; Stohl et al., 2005).
FLEXPART is an offline model that requires meteorologi-
cal fields such as 3D wind fields from a numerical weather
prediction (NWP) model as input. FLEXPART-COSMO is
a version of the model that is driven by the output of the
NWP model COSMO, which was jointly developed by a con-
sortium of European weather services under the lead of the
German meteorological service DWD (Baldauf et al., 2011).
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Different from all other FLEXPART versions, FLEXPART-
COSMO operates on the native vertical grid of the driving
model COSMO, which avoids potential loss of information
and inaccuracies associated with the interpolation onto a dif-
ferent grid. More details on the model are provided in Henne
et al. (2016) and Pisso et al. (2019).

In the backward mode, particles are released at the lo-
cations of individual observations and followed backwards
in time over typically a few days. By sampling the near-
surface residence times of the particles along their paths,
a so-called source–receptor sensitivity matrix or “footprint”
is computed, which describes the relationship between the
change in mole fraction at the observation site and the fluxes
discretized in space and time (Seibert and Frank, 2004). A
time series of simulated mole fractions can be obtained by
integrating the time series of source–receptor matrices with
a discretized flux estimate. The simulations were driven by
hourly output from the operational COSMO-7 analyses of
the Swiss weather service MeteoSwiss at a horizontal spatial
resolution of about 7km×7km, largely covering western and
central Europe (Fig. 1). In the simulations used here, 50 000
virtual particles were released at all observation locations ev-
ery 3 h (evenly distributed over each 3 h time interval) and
traced backwards in time for 10 d (or until individual parti-
cles left the COSMO-7 domain). Despite the high spatial res-
olution, the orography of the COSMO-7 model is smoothed
for complex terrain, leading to differences between the model
surface altitude and the altitude of the observation site. When
this difference is greater than 200 m, the release height of the
particles has been chosen as the average between the mea-
surement height above sea level and the model surface alti-
tude. This approach has been used in previous studies (Henne
et al., 2016) and was found to be the most representative re-
lease height (Brunner et al., 2013).

2.2 Coupled FLEXPART-COSMO TM5 4DVAR inverse
modelling system FLEXVAR

2.2.1 Inversion framework

The new coupled FLEXPART-COSMO TM5 4DVAR in-
verse modelling system, denoted FLEXVAR, allows for
the optimization of emissions at grid scale using the four-
dimensional variational (4DVAR) data assimilation tech-
nique (Meirink et al., 2008; Talagrand and Courtier, 1987),
the FLEXPART-COSMO back trajectories described in
Sect. 2.1, and background mole fractions (“baselines”) from
TM5-4DVAR (described in Sect. 2.2.2 and 2.4). The system
follows the classical Bayesian approach minimizing the cost
function J (x):

J (x)=
1
2

(x− xb)TB−1 (x− xb)

+
1
2

(H (x )−y)TR−1 (H (x )−y) , (1)

where x is the state vector, xb the prior estimate of the state
vector (in data assimilation usually called the “background”),
y the set of observations (measurements) to be assimilated,
H (x ) the observation operator (or model operator), repre-
senting the model simulation of the observations, and B and
R the error covariance matrices of the prior estimate and the
observations, respectively. For the regular inversions, a semi-
lognormal probability density function (pdf) is applied for
the emissions e to be optimized (Bergamaschi et al., 2010),
optimizing the emission deviation factors xi,j,t ,

ei,j,t (xi,j,t )=

{
eb, i,j,t exp

(
xi,j,t

)
forxi,j,t < 0

eb, i,j,t
(
1+ xi,j,t

)
forxi,j,t ≥ 0

, (2)

for each element ei,j,t , representing the emissions of an indi-
vidual grid cell with longitude index i, latitude index j , and
at emission time step t (and eb, i,j,t the prior estimate of the
emission ei,j,t ). In contrast, a linear expansion of the emis-
sion deviation factors is used (resulting in a Gaussian pdf of
the emissions) for additional inversions for the evaluation of
posterior uncertainties (as will be described in more detail
below):

ei,j,t (xi,j,t )= eb, i,j,t
(
1+ xi,j,t

)
. (3)

For the prior estimate, the emission deviation factors xi,j,t
are set to zero, i.e. ei,j,t (xi,j,t )= eb, i,j,t (both for the semi-
lognormal and Gaussian pdf). In this study we present
inversions optimizing the monthly total emissions of all
FLEXPART-COSMO grid cells (at 7km× 7km resolution)
for 1 year (2018); hence the dimension of the state vector is

nstate = nlongitude× nlatitude× ntime = 393 × 338 × 12

= 1594008. (4)

The background covariance matrix B is parameterized as the
product

B= SCS, (5)

where S is a diagonal matrix with the diagonal elements con-
taining the uncertainty of emissions (standard deviations),
and C is the correlation matrix, which is parameterized as
a Kronecker product of a horizontal correlation matrix Chor
and a temporal correlation matrix Ct (as in TM5-4DVAR,
Meirink et al., 2008):

C= Chor⊗Ct. (6)

The spatial covariance between two grid cells is parameter-
ized using a Gaussian function:

chor(i1, i2, j1, j2) = exp

(
−

1
2

(
d(i1, i2, j1, j2)

Lcorr

)2
)
, (7)

where d(i1, i2, j1, j2) is the distance between two grid cells
(with longitude indices i1 and i2 and latitude indices j1 and
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j2) and Lcorr a predefined correlation length constant. The
temporal correlation uses an exponential decay function:

ct(t1, t2)= exp
(
−
dt(t1, t2)
tcorr

)
, (8)

where dt(t1, t2) is the temporal distance between two emis-
sion time steps and tcorr a predefined temporal correlation
scale constant.

The observation error covariance matrix R considers only
diagonal elements (i.e. ignores any error correlation between
different observations) and takes into account the uncertain-
ties of the measurements and the model representation error:

R= Robs+Rmod. (9)

We use two different approaches to parameterize the model
representation error, which are described in more detail in
Sect. 2.2.3.

The observation operator H (x ) simulates the measure-
ments as a function of the state vector (i.e. as a function of
emission deviation factors). For a given measurement m in
time interval tm the simulation is computed as

Hm(x, tm)=
∑

t∈Tm

∑
i,j

∑
k∈K

ei,j,t (xi,j,t ) ·
wk

δhk

·
Mair

MCH4

· 109
·φmi,j,k (t, t + δt) [ppb] (10)

using the 3-dimensional FLEXPART-COSMO footprints
φmi,j,k (t, t + δt) (units: [1/((kg air) m−3 s−1)]), described in
Sect. 2.1. ei,j,t (xi,j,t ) denotes the CH4 emissions (computed
according Eq. 2 or Eq. 3) in units of kilograms of methane per
square metre per second (kg CH4 m−2 s−1). Mair and MCH4

are the molecular masses of air and CH4, respectively. δhk
is the layer thickness of vertical layer k (here we use the two
lowermost layers, each with thickness of 50 m), andwk is the
weighting of layer k (here 0.5 for the applied two layers). Tm
represents the time interval of the applied footprints (i.e. 10 d
prior to the measurements) and δt the averaging time (3 h) for
the single footprints (computed for the time interval between
t and t + δt). Hm(x, tm) represents the simulated enhance-
ment of the CH4 mole fraction above the baseline (which
is evaluated using two different approaches as described in
Sect. 2.2.2).

The minimization of the cost function Eq. (1) requires the
evaluation of the gradient of the cost function with respect to
the state vector:

∇xJ (x)= B−1 (x− xb)+HTR−1 (H (x )−y) , (11)

where HT is the adjoint model operator, describing the sen-
sitivity of the simulated observations with respect to changes
of the state vector. HT can be directly computed using the
FLEXPART-COSMO footprints φmi,j,k (t, t + δt).

In order to achieve better convergence of the minimization
algorithm, pre-conditioning is applied, transforming the state

vector x to the control vector w (similarly as, for example, in
TM5-4DVAR, Meirink et al., 2008),

w = B−1/2 (x− xb) , (12)

and in reverse direction,

x = xb+B1/2w. (13)

The square root of the submatrix Ct is calculated by eigen-
value decomposition. However, this is not possible for the
submatrix Chor (in contrast to TM5-4DVAR) due to the large
size of this matrix of

nChor =
(
nlongitude × nlatitude

)2
= 1328342. (14)

Therefore, an Arnoldi factorization (Arnoldi, 1951) is used,
computing only the largest eigenvalues/eigenvectors. Con-
sequently, the square root matrix B1/2 and its inverse in
Eqs. (13) and (12) are replaced by corresponding factoriza-
tions. As default setting, we use a fraction of 1 % of the
eigenpairs, which is reducing the size of the control vector
to 1 % of the size of the state vector. Test inversions with
higher fractions of eigenpairs (up to 3 %) showed that a frac-
tion of 1 % is generally sufficient for the range of correlation
lengths (Lcorr = 50 km 200 km) used in this study.

For the regular inversions, we use the limited memory
quasi-Newton algorithm m1qn3 developed by Gilbert and
Lemaréchal (1989), which also allows for the optimization
of non-linear problems (as the semi-lognormal pdf (Eq. 2) in-
troduces non-linearity to our optimization problem). In order
to evaluate the posterior uncertainties, additional inversions
are performed using a conjugate gradient algorithm (Fisher
and Courtier, 1995; Lanczos, 1950; Meirink et al., 2008) for
minimization and the linear expansion of the emission devi-
ation factors (Eq. 3). The posterior covariance is then com-
puted from the leading eigenvalues of the Hessian of the cost
function:

Bapos = B+
∑K

k=1

(
1
θk
− 1

)(
B1/2υk

)(
B1/2υk

)T
, (15)

with υk and θk the eigenvectors and eigenvalues of the Hes-
sian of the cost function. The inversions based on the conju-
gate gradient algorithm yield in general rather similar pos-
terior emissions as the regular inversions using the m1qn3
algorithm. Derived aggregated annual total CH4 emissions
agree on average (average over all sensitivity inversions)
within −1.0% to 2.1 % for the “country regions” discussed
in this paper (Germany, France, BENELUX, UK+ Ireland;
Fig. 2) and within −6.4% to 6.5 % for individual inversions.

2.2.2 Baselines

Since FLEXPART-COSMO is a limited domain model, pro-
viding the source–receptor relationship due to emissions
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in the European COSMO-7 domain, it requires the provi-
sion of background mole fractions (baselines), represent-
ing the CH4 mole fractions of the air masses entering the
COSMO-7 domain. Here, we simulate the baselines using
the global TM5-4DVAR inverse modelling system (described
in Sect. 2.4), using two different approaches to couple the
regional FLEXPART-COSMO inversion with TM5-4DVAR.
The first approach applies the method described by Röden-
beck et al. (2009) (denoted in the following as “Rödenbeck
baselines”), which is a flexible nesting scheme allowing for
the offline coupling of regional models with global inver-
sions. For this purpose, we use a manipulated version of
TM5 which simulates only the “cis” part of the CH4 fields
(representing the CH4 enhancement due to emissions in the
area to the FLEXPART-COSMO model transported directly
to the European measurement stations, without leaving the
COSMO-7 domain), denoted 1cmod 1, cis. The baseline mole
fractions, cbaseline, are then computed as difference of the
TM5-4DVAR posterior simulation (cmod 1) and the “cis” part
(Rödenbeck et al., 2009), both sampled at the location of the
corresponding station:

cbaseline = cmod 1 − 1cmod 1, cis. (16)

The second approach to couple FLEXPART-COSMO with
TM5-4DVAR uses the particle positions of the FLEXPART-
COSMO back trajectories at the time of termination, i.e. ei-
ther at the applied maximum termination time (set to 10 d in
our study) or when they leave the COSMO-7 domain (which
can be well before the 10 d). For each individual particle po-
sition, the CH4 mole fraction is then extracted from the 3-
dimensional TM5-4DVAR CH4 fields. Since each 3 h aver-
age FLEXPART-COSMO footprint is based on the release
of 50 000 particles, the corresponding (3 h average) baseline
mole fraction is computed as the average of the CH4 mole
fraction at the termination points of all individual 50 000 par-
ticles. In the following, this approach is denoted “particle po-
sition baselines”.

2.2.3 Model representation error

We applied two different approaches to estimate the model
representation error. The first approach, denoted “OBS”, is
similar to the method described by Henne et al. (2016), eval-
uating the residuals (difference between observations and
model simulations) as a function of CH4 enhancement. How-
ever, some details of our method are different from Henne et
al. (2016). Here, we use the following function to parameter-
ize the model representation error, 1yMOD k,i , as a function
of the absolute observed CH4 enhancement (i.e. observed
CH4 mole fraction minus CH4 background),

∣∣yk, i∣∣:
1yMOD k,i = f0,k + ρk

(∣∣yk, i ∣∣+ exp
(
−ak

∣∣yk, i ∣∣)− 1
ak

)
, (17)

where k is the station index, i the index of the individual
observational data point of the time series of station k, and

f0,k , ρk , and ak the three fit parameters evaluated for each
station. These fit parameters are determined by calculating
the fit curve of the absolute residuals,

∣∣yk, i − (H (x ))k,i
∣∣ as

a function of
∣∣yk, i∣∣. For large yk, i , the curve becomes lin-

ear with slope ρk; the minimum value of the fit function is
f0,k , and ak defines how fast the function becomes linear.
The evaluation of the fit function is generally performed iter-
atively. In a first step, the fit parameters are computed using
the prior model simulations, while in subsequent iterations
the posterior simulations of the previous iteration are used.
FLEXVAR includes an outer loop system, which allows for
an arbitrary number of iterations. However, tests have shown
that changes after the second iteration are usually very small.
Therefore, for the inversions presented in this paper, we used
generally only two iterations. Figure S1 in the Supplement
(left column) illustrates the fit functions for some selected
stations.

As alternative to the model representation error OBS de-
scribed above, a second approach, denoted “METEO”, has
been developed, parameterizing the model representation er-
ror as a function of wind speed:

1yMOD k,i = f0,k + ρk exp
(
−akwk, i

)
, (18)

where wk, i is the wind speed (in m s−1) extracted from the
COSMO model corresponding to the data point yk, i , and
f0,k , ρk , and ak are the three fit parameters for station k. The
rationale is that if wind speed at the measurement location is
low, the observed mole fraction might be more influenced by
local sources of emissions and therefore less representative
of the modelled mole fractions. Again, the fit parameters are
determined to get an optimal fit through the absolute resid-
uals,

∣∣yk, i − (H (x ))k,i
∣∣ and they are evaluated in two iter-

ations. For large wind speeds, 1yMOD k,i converges towards
f0,k , while f0,k + ρk represents the model representation er-
ror at wind speed zero. The right column of Fig. S1 shows
the fit functions for the METEO model representation error
for some selected stations.

2.3 FLEXPART extended Kalman filter inverse
modelling system

FLExKF is an inverse modelling system based on an ex-
tended Kalman filter as described in detail in Brunner et
al. (2012, 2017). Observations are assimilated sequentially
(here day by day) to provide the best linear unbiased estimate
of the emissions and their uncertainties based on measure-
ments up to the present time of the assimilation. Rather than
estimating monthly or annual mean emissions, the system ad-
justs the emissions continuously as the assimilation proceeds
and in this way creates a smoothly varying emission field
that later can be averaged to monthly or annual means. The
filter includes a forecast step, which predicts the evolution
of the emissions from one assimilation time step to the next.
The simplest assumption is persistence (i.e. no change with
time), but to incorporate seasonally varying prior emissions,
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a non-zero forecast update was implemented that follows the
linear change in prior emissions from 1 month to the next.
Since the forecast step is associated with an uncertainty, the
posterior uncertainty can become larger than the prior uncer-
tainty in regions that are poorly constrained by observations.
In order to avoid an unrealistic growth of the uncertainties in
these regions, the posterior uncertainties are reset to the prior
uncertainty whenever they become larger.

The state vector consists of two components: (i) emissions
on a reduced grid with a total of 3608 elements for inver-
sions with observation data set O1 and 6497 elements for
inversions with observation data set O2 (Sect. 3.1 and Ta-
ble 1) and (ii) coefficients of an AR(1) autoregressive pro-
cess describing temporal correlations in the residuals at each
individual site. As described in Brunner et al. (2012), the re-
duced grid has high spatial resolution near the measurement
sites and lower resolution further away, reflecting the reduced
contribution of emissions at larger distance to observed CH4
variations. It was constructed based on the combined total an-
nual footprint of all measurement sites. The state vector may
contain the emissions directly or the logarithm of the emis-
sions. The latter option was chosen here to enforce a positive
solution, i.e. positive methane emissions in each grid cell.

Another option in FLExKF is to optimize baseline mole
fractions at each observation site in addition to the grid-
ded emission field. However, in the configuration used here,
the baselines (Rödenbeck baselines) described in Sect. 2.2.2
were used directly without optimization. The results of
FLExKF should be readily comparable to those of FLEX-
VAR, since the same FLEXPART-COSMO back trajectories,
baselines, and observations were used. Spatial correlations
in the prior emission uncertainties were represented in the
prior error covariance matrix with a correlation length scale
of 200 km (exponential decay as in Eq. 8). The matrix was
scaled such that the prior uncertainty of the total domain
emissions was 20 % (1σ ).

2.4 TM5-4DVAR inverse modelling system

TM5-4DVAR is a global inverse modelling system based on
the 4DVAR data assimilation technique and has been de-
scribed in detail by Meirink et al. (2008), while subsequent
updates have been reported in Bergamaschi et al. (2018a,
2010). TM5-4DVAR uses the Eulerian atmospheric chem-
istry transport model TM5 (Krol et al., 2005), a two-way
nested zoom model, which allows the system to zoom in over
specific regions of interest. Here, we apply the 1◦×1◦ zoom-
ing over the European domain−18◦ to 42◦ (longitude)×32◦

to 64◦ (latitude) and an intermediate 3◦ (longitude) ×2◦ (lat-
itude) zooming over the extended European domain −30◦ to
48◦ (longitude) ×26◦ to 70◦ (latitude), while the remaining
global domain is simulated at a horizontal resolution of 6◦

(longitude)×4◦ (latitude). TM5 is an offline transport model,
driven by external meteorological data, preprocessed to pro-
vide consistent meteorological fields for the different TM5

resolutions (Krol et al., 2005). In this study, 3 h interpolated
meteorological fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim reanalysis
(Dee et al., 2011) have been applied, using 25 vertical layers
(defined as a subset of the 60 layers of the ERA-Interim re-
analysis). About 5 layers represent the boundary layer, 10
layers the free troposphere, and 10 layers the stratosphere
(Krol et al., 2005).

As for the regular FLEXVAR inversions, a semi-
lognormal pdf has been used (Eq. 2). Minimization of the
cost function Eq. (1) is performed using the m1qn3 algo-
rithm (Gilbert and Lemaréchal, 1989) and the adjoint of the
tangent linear TM5 model (Krol et al., 2008; Meirink et
al., 2008) for evaluation of the gradient of the cost function
Eq. (11). Four groups of CH4 emissions are optimized inde-
pendently: (1) wetlands, (2) rice, (3) biomass burning, and
(4) all remaining sources (Bergamaschi et al., 2018a). Un-
certainties of 100 % per grid cell and month were applied for
each source group with a spatial correlation length scale of
200 km (Eq. 7). The temporal correlation timescales (Eq. 8)
are set to 12 months for the “remaining” CH4 sources (which
are assumed to have no or only small seasonal variations)
and to zero for the other source groups (wetlands, rice, and
biomass burning), which have pronounced seasonal cycles.
The model representation error is parameterized as a func-
tion of local emissions (i.e. emissions of the grid cell in
which the corresponding monitoring station is located) and
3-dimensional gradients of simulated mole fractions (Berga-
maschi et al., 2010). The photochemical sinks of CH4 in the
troposphere (OH) and stratosphere (OH, Cl, and O(1D)) are
simulated as described in Bergamaschi et al. (2010). For the
coupling of the FLEXPART-COSMO inversions over the Eu-
ropean COSMO domain with the global TM5-4DVAR in-
versions, the baselines at the monitoring stations (within the
COSMO-7 domain) have been computed using the two dif-
ferent approaches described in Sect. 2.2.2.

3 Model input data and inversions

3.1 Atmospheric observations

The atmospheric observations used in this study (within
the COSMO-7 domain) include ground-based CH4 data for
2018 from 24 stations with in situ measurements, comple-
mented with data from 5 stations with discrete air sampling,
as compiled in Table 1. Most of the in situ measurements
(15 stations) are from the atmosphere network of the In-
tegrated Carbon Observation System (ICOS) (Heiskanen et
al., 2022), a pan-European infrastructure providing harmo-
nized atmospheric measurements which are rigorously stan-
dardized in terms of instrumentation, calibration, air sam-
pling, and quality control, including centralized data pro-
cessing and data evaluation at the ICOS Atmospheric The-
matic Centre (https://icos-atc.lsce.ipsl.fr/, last access: 5 Oc-
tober 2022) (Hazan et al., 2016; ICOS RI, 2020; Yver-Kwok
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et al., 2021). Here, we use the ICOS Atmosphere Release
of final, quality-controlled data 2021-1 (ICOS RI, 2021).
For station Lutjewad (LUT), the ICOS data only start on
13 August 2018. Data before that date were provided by
the University of Groningen, with data processing very sim-
ilar to the ICOS data. Data from the ICOS station Ispra
(IPR) have been further processed using the robust extrac-
tion of baseline signal (REBS) spike detection algorithm (El
Yazidi et al., 2018; Ruckstuhl et al., 2012) in order to fil-
ter out data affected by nearby farming activities. In addi-
tion to the ICOS measurements, further in situ measurements
have been used from the UK Deriving Emissions linked to
Climate Change (DECC) network (Bilsdale (BSD), Tacolne-
ston (TAC), Ridge Hill (RGL), Heathfield (HFD)), from the
Advanced Global Atmospheric Gases Experiment (AGAGE)
(Mace Head (MHD)), from the University of East Anglia
(Weybourne (WAO)), from the Netherlands Organisation for
Applied Scientific Research (TNO) (Cabauw (CBW)), from
Empa (Lägern Hochwacht (LHW)), and from the University
of Bern (Beromünster (BRM)). The in situ measurements
are complemented by discrete air samples (which are usu-
ally collected weekly) from the NOAA Earth System Re-
search Laboratory (ESRL) global cooperative air sampling
network (Dlugokencky et al., 2021), with five stations within
the COSMO-7 domain. Additional atmospheric data used for
the TM5-4DVAR inversions are compiled in Table S1 and
include six further ICOS stations with in situ measurements
and 31 NOAA discrete air sampling sites located outside the
COSMO-7 domain. The selected stations outside the Euro-
pean 1◦× 1◦ or 3◦× 2◦ TM5 zoomed-in regions are mostly
global background stations in remote areas which can be rea-
sonably well reproduced with the coarse global TM5 resolu-
tion of 6◦× 4◦.

The atmospheric CH4 data are reported on the WMO
X2004A calibration scale (Dlugokencky et al., 2005; NOAA,
2021), except the AGAGE MHD data which are reported on
the Tohoku University (TU) CH4 standard scale (Aoki et al.,
1992; Prinn et al., 2000). Comparison of parallel measure-
ments by NOAA and AGAGE at five global sites over more
than 25 years showed that the two calibration scales are in
close agreement, with an average ratio of 1.0002± 0.0007.
Therefore, no scale correction has been applied.

For the in situ measurements (which are available quasi-
continuously in time), we assimilate only early afternoon
data for stations in the boundary layer and night-time data
for mountain stations (Bergamaschi et al., 2015), select-
ing the 3 h time interval of the FLEXPART back trajec-
tories (which are provided for [00:00–03:00, 03:00–06:00,
. . . ] UTC), which is closest to the time interval [12:00–
15:00] LT for the stations in the boundary layer and [00:00–
03:00] LT for the mountain stations (indicated in Table 1 by
column “M”), respectively. This procedure ensures consis-
tent averaging of the FLEXPART back trajectories and the
assimilated observations over the same 3 h time intervals.
Discrete air samples were taken as available, i.e. without any

temporal selection. The measurement uncertainty is set to
3 ppb for all observations (for observational part Robs of the
observation error covariance matrix Eq. 9).

In this study, we investigate two observation data sets (Ta-
ble 1). The first data set, denoted O1, is considered the ob-
servational base data set and uses only the ICOS and NOAA
data, while the second data set, O2, also includes all addi-
tional in situ measurements. The largest difference between
the two data sets is the much better observational coverage
of the British Isles in O2 with six in situ measurement sta-
tions located in that area, compared to only one station with
discrete air sampling (MHD/NOAA) in O1.

3.2 Emission inventories

Three different emission inventories are used alternatively
as prior estimates of the major anthropogenic CH4 emis-
sions (Table 2). The first inventory is the Emissions Database
for Global Atmospheric Research (EDGAR) v6.0 (EDGAR
v6.0, 2021), which provides monthly sector-specific global
grid maps of emissions at a horizontal resolution of
0.1◦× 0.1◦ for 2000–2018. The second inventory, TNO-
VERIFYv3.0, is the third version of the TNO greenhouse
gas and co-emitted species (GHGco) emission database,
developed by TNO within the VERIFY project. TNO-
VERIFYv3.0 provides annual European CH4 emissions at a
horizontal resolution of ∼ 6km× 6km for the years 2005–
2018 but includes monthly emission profiles. The third emis-
sion inventory has been provided by GCP-CH4 (Saunois et
al., 2020) globally at a horizontal resolution of 1◦× 1◦ for
2000–2017. In the absence of emission data for 2018 in the
GCP-CH4 inventory, we use here the 2017 data of this inven-
tory. The resulting error of this 1-year inconsistency, how-
ever, is considered to be much smaller compared to the over-
all uncertainties of the emission inventories.

Natural CH4 emissions were used from the GCP-CH4 data
set (Saunois et al., 2020), providing estimates of the clima-
tological mean emissions of the major natural source cat-
egories. Furthermore, CH4 emissions from biomass burn-
ing were taken from the Global Fire Emissions Database
(GFED) version 4.1 (Van Der Werf et al., 2017). However,
these were included only when using the EDGAR v6.0 or
TNO-VERIFYv3.0 inventories, while the GCP-CH4 (anthro-
pogenic) data set already includes emissions from biomass
burning.

Using the above emission inventories, we have assembled
the emission data sets E1, E2, and E3 as compiled in Table 2
and used as prior estimates for the different inversions de-
scribed in Sect. 3.4. All emission data sets have been mapped
on the COSMO-7 grid, using the Python package “emiproc”
(Jähn et al., 2020), which has been integrated into the FLEX-
VAR inverse modelling system.
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Table 1. European monitoring stations used in this study. “Alt” is the surface altitude (m above sea level), “SH” is the sampling height (m)
above ground, “ST” specifies the sampling type (“I”: in situ measurements; “D”: discrete air sample measurements). “FLEX” is the release
height (m) used for calculation of the FLEXPART-COSMO back trajectories (“a.g.l.”: release height above model surface; “a.s.l.”: release
height above sea level). The column “M” indicates the stations which have been classified as mountain stations. The last two columns indicate
the use of the corresponding station data in the observation data sets O1 and O2.

ID Station name Data provider Lat. Long. Alt. SH ST FLEX M O1 O2

HTM Hyltemossa ICOS 56.10 13.42 115 150 I 150 a.g.l. • •

BSD Bilsdale DECC 54.36 −1.15 380 248 I 248 a.g.l. •

LUT Lutjewad RUG/ICOS1 53.40 6.35 1 60 I 60 a.g.l. • •

MHD Mace Head NOAA 53.33 −9.90 5 21 D 10 a.g.l. • •

AGAGE 53.33 −9.90 5 8 I 10 a.g.l. •

GAT Gartow ICOS 53.07 11.44 70 341 I 341 a.g.l. • •

WAO Weybourne Atmospheric Observatory UEA 52.95 1.12 15 10 I 10 a.g.l. •

TAC Tacolneston DECC 52.52 1.14 56 100 I 100 a.g.l. •

LIN Lindenberg ICOS 52.17 14.12 73 98 I 98 a.g.l. • •

RGL Ridge Hill DECC 52.00 −2.54 204 90 I 90 a.g.l. •

CBW Cabauw TNO 51.97 4.93 0 200 I 200 a.g.l. •

TOH Torfhaus ICOS 51.81 10.53 801 147 I 147 a.g.l. • •

HFD Heathfield DECC 50.98 0.23 150 100 I 100 a.g.l. •

OXK Ochsenkopf NOAA 50.03 11.82 1022 163 D 1035 a.s.l. • •

KRE Křešín u Pacova ICOS 49.57 15.08 534 250 I 250 a.g.l. • •

KIT Karlsruhe ICOS 49.09 8.42 110 200 I 200 a.g.l. • •

SAC Saclay ICOS 48.72 2.14 160 100 I 100 a.g.l. • •

OPE Observatoire Perenne3 ICOS 48.56 5.50 390 120 I 120 a.g.l. • •

TRN Trainou ICOS 47.96 2.11 131 180 I 180 a.g.l. • •

HPB Hohenpeissenberg ICOS 47.80 11.02 934 131 I 938 a.s.l. • •

NOAA 47.80 11.01 985 5 D 840 a.s.l. • •

LHW Lägern Hochwacht EMPA 47.48 8.40 840 32 I 699 a.s.l. •

BRM Beromünster UBE 47.19 8.18 797 212 I 212 a.g.l. •

HUN Hegyhátsál NOAA 46.95 16.65 248 96 D 96 a.g.l. • •

JFJ Jungfraujoch ICOS 46.55 7.98 3580 5 I 3137 a.s.l. • • •

IPR Ispra ICOS/JRC2 45.81 8.64 210 100 I 100 a.g.l. • •

PUY Puy de Dôme ICOS 45.77 2.97 1465 10 I 1168 a.s.l. • • •

CMN Monte Cimone ICOS 44.19 10.70 2165 8 I 1753 a.s.l. • • •

CIB CIBA4 NOAA 41.81 −4.93 845 5 D 5 a.g.l. • •

1 Data since 13 August 2018 from ICOS data release and before that date from the University of Groningen. 2 Data filtered with REBS spike detection algorithm (see Sect. 3.1).
3 Observatoire Perenne de l’Environnement. 4 Centro de Investigación de la Baja Atmósfera.

3.3 Post-processing of gridded emission data

In order to extract from gridded emission data (on COSMO-
7 grid) total emissions of countries (or group of coun-
tries), country masks have been generated using the “Nat-
ural Earth dataset” (https://www.naturalearthdata.com/, last
access: 30 July 2021), attributing each 7km×7km COSMO-
7 grid cell to a certain country (or sea). Offshore emissions
over the sea are not included in the country totals.

Since the COSMO-7 domain does not cover the upper
northern part of the UK, a correction factor of 1.057 is ap-
plied to estimate the total emissions of the country region
“UK+ Ireland”; i.e. the UK+ Ireland emissions extracted
from the corresponding grid cells within the COSMO-7 do-
main are multiplied by this factor (for further details, see
Sect. S1 in the Supplement). Furthermore, small correction
factors are applied when extracting country total emissions

from the gridded emissions of data set E3 (at horizontal res-
olution of 1◦× 1◦), since sampling of coastal 1◦× 1◦ grid
cells with the corresponding 7km× 7km COSMO-7 grid
cells leads to a loss of emissions attributed to the countries, if
the emissions of the coastal 1◦×1◦ grid cell originate mainly
from land (for further details, see Sect. S1).

3.4 Sensitivity inversions

Table 3 compiles the different FLEXVAR inversions pre-
sented in this paper. INV-E1-O1 represents the base inver-
sion, using the emission data set E1 as prior estimates, the
observation data set O1, the METEO model representation
error (Sect. 2.2.3), the Rödenbeck baselines (Sect. 2.2.2), and
our default settings for the prior error covariance. A first set
of sensitivity inversions investigates the impact of using al-
ternatively the particle position baselines and the alternative
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Table 2. Emission inventories used in this study. The second col-
umn (“Total”) lists the total CH4 emissions over the COSMO-7 do-
main in units of teragrams of methane per year (Tg CH4 yr−1) for
the individual categories and the totals of each inventory. The last
three columns indicate the use of the corresponding inventory data
in the emission data sets E1, E2, and E3. Data for EDGARv6.0,
TNO-VERIFYv3.0, and GFEDv4.1 are for 2018, and GCP-CH4
(anthropogenic) data are for 2017, while GCP-CH4 (natural) data
represent climatological mean values.

Inventory/category Total E1 E2 E3

EDGARv6.0

Total 17.94
Coal 0.74 •

Oil 0.24 •

Gas 2.20 •

Enteric fermentation 6.84 •

Manure management 2.18 •

Rice agriculture 0.08 •

Solid waste (landfills and incineration) 3.22 •

Wastewater treatment 1.41 •

Energy for buildings 0.71 •

Further minor anthropogenic sources 0.33 •

TNO-VERIFYv3.0

Total 15.67
Fugitive emissions 1.86 •

Waste 4.29 •

Agriculture: livestock 8.37 •

Agriculture: other 0.15 •

Other stationary combustion 0.57 •

Further minor anthropogenic sources 0.44 •

GCP-CH4 (anthropogenic)

Total 21.00
Coal 0.98 •

Oil gas industry 2.78 •

Livestock 9.39 •

Agriculture: rice 0.10 •

Waste 7.12 •

Biofuels and biomass burning 0.63 •

GCP-CH4 (natural)

Total 2.15
Wetlands 1.76 • • •

Geological 0.48 • • •

Termites 0.10 • • •

Ocean 0.55 • • •

Soil sink −0.75 • • •

GFEDv4.1

Biomass burning 0.02 • •

parameterization OBS of the model representation error (and
the combination of both). In a further inversion series, we
analyse the sensitivity of the inversions to the main settings
of the prior error covariance matrix, i.e. for the spatial cor-
relation length constant, Lcorr, the temporal correlation scale

constant, tcorr, and the assumed uncertainty of emissions per
grid cell and month. Furthermore, we examine the sensitivity
of the inversions to the use of the alternative emission inven-
tories E2 and E3 as prior estimates instead of E1 and the use
of the extended observational data set O2 instead of O1.

In addition to the FLEXVAR inversions compiled in Ta-
ble 3, inversions with the FLExKF system (described in
Sect. 2.3) and with TM5-4DVAR (described in Sect. 2.4)
have been performed for comparison with FLEXVAR (and
will be discussed in Sect. 4.3). These inversions have been
made for both observational data sets, O1 and O2, using the
emission inventory E3 as prior estimates. Furthermore, addi-
tional FLExKF inversions have been performed using alter-
natively E1 as prior estimates.

4 Results and discussion

4.1 Sensitivity of FLEXVAR inversions to internal
parameterizations and model settings

4.1.1 Sensitivity of FLEXVAR inversions to baselines

Figure 1 shows maps of European CH4 emissions derived
for the base inversion INV-E1-O1 and the sensitivity inver-
sion INV-E1-O1-S1, in which the particle position baselines
were used instead of the Rödenbeck baselines. Both inver-
sions display in general similar spatial patterns of the inver-
sion increments (i.e. difference between posterior and prior
emissions); however in most regions INV-E1-O1-S1 shows
somewhat lower CH4 emissions than INV-E1-O1, visible
in the slightly larger areas with negative inversion incre-
ments and slightly smaller areas with positive inversion in-
crements. Consequently, also the derived country total emis-
sions (shown in Fig. 2 and compiled in Table S4) are lower
in INV-E1-O1-S1, e.g. −6.6% lower over Germany and
−12.8% lower over France compared to INV-E1-O1.

Figure 3 illustrates the two different baselines at some ex-
ample stations during the 3-month period from 1 April un-
til 1 July 2018. In general, both baselines are rather similar,
including their synoptic variability. However, there are cer-
tain periods during which the particle position baselines are
somewhat higher than the Rödenbeck baselines, for exam-
ple, at KIT, SAC, and OPE during the period between day
140 and day 162. Consequently, the observational forcing
(i.e. the enhancement of the observations above baseline) is
lower during such periods for the particle position baselines,
resulting in lower derived emissions. One major difference
between both approaches is that in the case of the Rödenbeck
baselines, the background mole fractions are transported to
the stations by TM5, while in the case of the particle po-
sition baselines, they are transported by FLEXPART. In or-
der to further investigate which baselines are more realistic,
we have compared model simulations and observations for
“background conditions”, defined as events when the contri-
bution of European emissions (evaluated by Eq. 10) is lower
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Figure 1. Sensitivity of FLEXVAR inversions to different approaches to calculate the baselines and to parameterize the model representation
error. (a) Prior emissions (emission data set E1). (b, c) Posterior emissions (left) and difference between posterior and prior emissions (right)
for base inversion INV-E1-O1 (using the Rödenbeck baselines and the METEO model representation error). (d, e) Inversion INV-E1-O1-S1
using the particle position baselines. (f, g) Inversion INV-E1-O1-S2.1 using the OBS model representation error. All figures show annual
average CH4 emissions (or change in emissions, respectively) for 2018.
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Figure 2. Total CH4 emissions for Germany, France, BENELUX, and UK+ Ireland derived for different sensitivity inversions (Table 3).
Left: 3-month running mean total CH4 emissions of the corresponding country regions. Right: Annual total CH4 emissions. Open symbols
show prior emissions, solid symbols show posterior emissions, and the error bars are the 2σ uncertainties of prior and posterior emissions,
respectively. The solid blue and red rectangles on the right side of the figures show the prior and posterior range from all individual inversions
and the error bars on these rectangles the minimum and maximum values of the 2σ uncertainties of the individual inversions.
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Table 3. FLEXVAR sensitivity inversions. The column “Prior” lists the emission data set used (Table 2) and column “Obs” the observation
data set (Table 1). “MRE” is the applied model representation error (Sect. 2.2.3), and “Baseline” lists the applied approach to calculate the
baselines (Sect. 2.2.2). “Lcorr” is the applied spatial correlation length constant, “tcorr” the temporal correlation scale constant, and “Unc”
the assumed 1σ uncertainty of total emissions per grid cell and month (Sect. 2.2.1).

Inversion Prior Obs MRE Baseline Lcorr tcorr Unc

INV-E1-O1 E1 O1 METEO Rödenbeck 100 km 12 m 100 %

Sensitivity to baselines

INV-E1-O1-S1 E1 O1 METEO particle position 100 km 12 m 100 %

Sensitivity to model representation error

INV-E1-O1-S2.1 E1 O1 OBS Rödenbeck 100 km 12 m 100 %
INV-E1-O1-S2.2 E1 O1 OBS particle position 100 km 12 m 100 %

Sensitivity to spatial correlation length

INV-E1-O1-S3.1 E1 O1 METEO Rödenbeck 50 km 12 m 100 %
INV-E1-O1-S3.2 E1 O1 METEO Rödenbeck 200 km 12 m 100 %

Sensitivity to prior uncertainty

INV-E1-O1-S4.1 E1 O1 METEO Rödenbeck 100 km 12 m 50 %
INV-E1-O1-S4.2 E1 O1 METEO Rödenbeck 100 km 12 m 200 %

Sensitivity to temporal correlation length

INV-E1-O1-S5 E1 O1 METEO Rödenbeck 100 km 1 m 100 %

Sensitivity to prior inventories

INV-E2-O1 E2 O1 METEO Rödenbeck 100 km 12 m 100 %
INV-E3-O1 E3 O1 METEO Rödenbeck 100 km 12 m 100 %

Sensitivity to observations

INV-E1-O2 E1 O2 METEO Rödenbeck 100 km 12 m 100 %
INV-E1-O2-S1 E1 O2 METEO particle position 100 km 12 m 100 %
INV-E1-O2-S2.1 E1 O2 OBS Rödenbeck 100 km 12 m 100 %
INV-E1-O2-S2.2 E1 O2 OBS particle position 100 km 12 m 100 %
INV-E2-O2 E2 O2 METEO Rödenbeck 100 km 12 m 100 %
INV-E3-O2 E3 O2 METEO Rödenbeck 100 km 12 m 100 %

than a certain threshold (here set to 5 ppb). Figure S2 shows
the comparison for eight stations, for which a sufficient num-
ber (> 20) of events with background conditions has been
found. For the Rödenbeck baselines, six of these eight sta-
tions show posterior biases close to zero (< 2 ppb), while
PUY shows a small negative bias (−5.3 ppb) and CMN a
small positive bias (3.7 ppb). In contrast, the particle position
baselines result in a smaller negative bias at PUY (−3.3 ppb)
but larger positive biases at WAO (2.5 ppb), JFJ (5.5 ppb),
and CMN (8.6 ppb). This analysis suggests that the perfor-
mance of the Rödenbeck baselines is slightly better com-
pared to the particle position baselines under background
conditions. However, we note that differences of the base-
lines shown in Fig. 3 are mainly during periods of elevated
CH4 enhancements, for which it is more difficult to evaluate
(based on the observations) which baselines are more realis-
tic.

4.1.2 Sensitivity of FLEXVAR inversions to
parameterization of model representation error

Figure 1 illustrates the sensitivity of the derived emissions
to the applied parameterization of the model representation
error. Inversion INV-E1-O1-S2.1, for which the OBS model
representation error has been used, results in overall lower
CH4 emissions compared to the base inversion INV-E1-O1
with the METEO parameterization, again reflected in the
larger extension of the areas with negative inversion incre-
ments and smaller extension (and magnitude) of the areas
with positive inversion increments. Accordingly, the annual
total emissions derived in INV-E1-O1-S2.1 are lower com-
pared to INV-E1-O1 for all countries or group of countries
(denoted in the following as country regions) shown in Fig. 2.

The OBS model representation error increases with in-
creasing observed CH4 enhancement (i.e. observed CH4
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Figure 3. Time series of simulated and observed CH4 mole fractions at stations GAT, KIT, SAC, and OPE for the 3-month period from 1 April
until 1 July 2018. Blue curve shows the Rödenbeck baselines, green the particle position baselines, red the posterior CH4 mole fractions for
inversion INV-E1-O1 (using the Rödenbeck baselines), and violet the posterior CH4 mole fractions for inversion INV-E1-O1-S1 (using the
particle position baselines) (owing to the similarity of both posterior simulations, however, the results of INV-E1-O1-S1 are largely overlaid
by those of INV-E1-O1). Small black dots: hourly averaged observations. Solid black circles: assimilated observations. Coloured symbols
show the corresponding assimilated values (solid circles: assimilated posterior mole fractions; open circles: baseline values used for the
assimilation).

mole fraction minus CH4 background) (Sect. 2.2.3 and
Fig. S1) and shows a large dynamic range at most stations,
resulting in a generally relative low weighting in the in-
version of events with larger CH4 enhancements. In con-
trast, the dynamic range of the METEO model representa-
tion error is smaller at most stations, leading to a generally
more equal weighting of all data points. Using the METEO
model representation error, the observations can be better re-
produced, achieving a higher average correlation coefficient
(r = 0.85) and lower average root mean square difference
(rms= 30.0 ppb) compared to the OBS model representation
error (r = 0.80; rms = 35.4 ppb), as shown in Fig. S3. Apart
from the better statistical performance, the METEO model
representation is probably better at estimating the capability
of the model to reproduce the observations (which largely
depends on the specific meteorological situation), since wind
speed might be a better indicator of the representativeness of
a certain data point than the observed CH4 enhancement, as
the latter not only depends on the meteorological situation,
but also on the regional CH4 emissions.

Given the relatively large impact of the parameterization
of the model representation error and the baselines, we have
also performed an inversion combining the OBS model rep-
resentation error and the particle position baselines (inver-
sion INV-E1-O1-S2.2), which yields further reduced country
total emissions compared to INV-E1-O1-S2.1 and INV-E1-
O1-S1 (Fig. 2).

4.1.3 Sensitivity of FLEXVAR inversions to model
covariance settings

In the following, the sensitivity of the FLEXVAR inversions
to the main parameters of the prior covariance is investigated,
i.e. horizontal correlation length constant, temporal correla-
tion scale constant, and assumed uncertainties of emissions
per grid cell and emission time step. Figure S4 shows inver-
sions for horizontal correlation length constants Lcorr (Eq. 7)
of 50 km (INV-E1-O1-S3.1), 100 km (default value; INV-E1-
O1), and 200 km (INV-E1-O1-S3.2). As expected, the spa-
tial dimension of the inversion increments is increasing with

Atmos. Chem. Phys., 22, 13243–13268, 2022 https://doi.org/10.5194/acp-22-13243-2022



P. Bergamaschi et al.: High-resolution inverse modelling of European CH4 emissions 13257

increasing Lcorr. Despite these clearly visible differences in
the spatial patterns of the inversion increments, the impact
on the annual total emissions of the country regions shown
in Fig. 2 is relatively small, since apparently the differences
in the smaller-scale spatial patterns are largely averaged out
over larger areas. Associated with the increase of the hor-
izontal correlation length constant is a significant increase
of the prior uncertainties of the annual total emissions per
country, since increasing horizontal correlation length con-
stant implies larger error correlations between neighbour-
ing grid cells and hence increasing aggregated uncertain-
ties (as uncertainties per grid cell and month were kept con-
stant (at 100 %) in this sensitivity inversion series). Analo-
gously, the decrease in the temporal correlation scale con-
stant, tcorr (Eq. 8), results in a decrease of the aggregated
annual prior uncertainty, as illustrated by inversion INV-E1-
O1-S5, in which tcorr has been set to 1 month (instead of the
default value of 12 months applied in all other inversions).
Again, however, the effect on the derived annual emissions
of the country regions remains very small (Fig. 2).

Figure S5 shows the dependence of the inversions on the
assumed uncertainties of prior emissions per grid cell and
month for values of 50 % (INV-E1-O1-S4.1), 100 % (default
value; INV-E1-O1), and 200 % (INV-E1-O1-S4.2). The in-
crease of the assumed prior uncertainty leads to a signifi-
cant increase of the derived regional inversion increments.
This effect is most pronounced at larger distances from the
monitoring stations, where observational constraints are rel-
atively weak. Especially the large inversion increments vis-
ible in INV-E1-O1-S4.2 at the eastern domain boundary are
probably an artefact, since the inversion may generate such
patterns in regions far from the observations to compensate
for systematic errors, for example, in model transport and
with little penalty in the cost function in the case of prior
uncertainties that are assumed very high.

Despite the dependence of the smaller-scale regional in-
version increments on the assumed prior uncertainties, the
impact on the derived annual total emissions remains again
very small for the country regions shown in Fig. 2, since their
emissions are relatively well constrained by the available ob-
servations and since differences in the smaller-scale inver-
sion increments are averaged out over larger areas.

4.2 Sensitivity of FLEXVAR inversions to model input
data

4.2.1 Sensitivity of FLEXVAR inversions to prior
emission inventories

Figure 4 shows maps of the European CH4 emissions for
INV-E1-O1, INV-E2-O1, and INV-E3-O1, which use the
three different emission data sets E1, E2, and E3 (Sect. 3.2;
Table 2) as prior emissions. While the major patterns of
the spatial prior emission distribution look relatively simi-
lar for the three inventories (e.g. the high emissions over the

BENELUX countries and the Po valley), there are signifi-
cant differences in the prior country region total emissions
(Fig. 2; Table S4). E2 has lower emissions over Germany
(16.1 %), France (15.1 %), and BENELUX (27.4 %) com-
pared to E1 (and 11.3 % lower over the whole COSMO-7
domain; Table 2), while E3 has higher total emissions over
the COSMO-7 domain (15.1 % higher than E1) and very high
emissions in particular for UK+ Ireland (42.1 % higher than
E1). Despite these considerable differences in the prior emis-
sions, the annual total posterior emissions of the country re-
gions shown in Fig. 2 are very similar for the three inver-
sions. This indicates that the inversions are largely driven by
the observations. For UK+ Ireland this is somewhat surpris-
ing, since only one measurement station (MHD/NOAA) is
located in this country region in the applied observation data
set O1, but apparently the continental stations provide some
constraints for the emissions from UK+ Ireland. We will see
in the next section, however, that including additional sta-
tions has a significant impact on the CH4 emissions derived
for UK+ Ireland.

4.2.2 Sensitivity of FLEXVAR inversions to assimilated
observations

While the base observation data set O1 uses only the ICOS in
situ stations, complemented by the NOAA discrete air sam-
pling sites, nine further in situ stations from other network-
s/institutions are added in observation data set O2 (Table 1).
Six of the additional stations are located on the British Isles,
two in Switzerland, and one in the Netherlands. Figure 5 dis-
plays the inversions INV-E1-O1 and INV-E1-O2 using the
two different observation data sets. As expected, the largest
differences are visible in the regions around the additional
stations. For UK+ Ireland, the annual total emissions are
23.0 % higher in INV-E1-O2 (2.99 CH4 yr−1) compared to
INV-E1-O1 (2.43 CH4 yr−1) (Fig. 2; Table S4). The signif-
icant additional observational constraints for U K+ Ireland
are also reflected in the significantly lower posterior un-
certainty for INV-E1-O2 (2σ uncertainty: 0.6 Tg CH4 yr−1)
compared to INV-E1-O1 (2σ uncertainty: 1.6 Tg CH4 yr−1;
Fig. 2; Table S4). For the BENELUX country region,
only a moderate change in the annual total emissions
is calculated (INV-E1-O1: 1.71 Tg CH4 yr−1; INV-E1-O2:
1.82 Tg CH4 yr−1; Fig. 2; Table S4), but the spatial distri-
bution of posterior emissions is somewhat different, with
higher emissions around the additional station CBW in INV-
E1-O2 (Fig. 5). For Switzerland, a larger (relative) differ-
ence of posterior emissions is calculated, with annual total
emission increasing from 0.15 Tg CH4 yr−1 (INV-E1-O1) to
0.22 Tg CH4 yr−1 (INV-E1-O2).

Using the extended observation data set O2, we have per-
formed additional inversions, using alternatively the prior
emission data sets E2 or E3 instead of E1. As for observa-
tion data set O1 (discussed in Sect. 4.2.1), the sensitivity of
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Figure 4. Sensitivity of FLEXVAR inversions to applied prior emission inventories. (a, b, c) Inversion INV-E1-O1 using emission data set
E1 as prior estimate. (d, e, f) Inversion INV-E2-O1 using emission data set E2 as prior estimate. (g, h, i) Inversion INV-E3-O1 using emission
data set E3 as prior estimate. (a, d, g) Prior emissions. (b, e, h) Posterior emissions. (c, f, i) Difference between posterior and prior emissions.
All figures show annual average CH4 emissions (or change in emissions, respectively) for 2018.

derived annual total emissions to the applied prior emission
data set is relatively small (Fig. 2).

Furthermore, additional inversions (of observation data set
O2) have been performed using alternatively the particle po-
sition baselines (INV-E1-O2-S1) or the alternative parame-
terization OBS of the model representation error (INV-E1-
O2-S2.1). In a similar way, as shown with observation data
set O1 (discussed in Sect. 4.1.1. and 4.1.2.), the use of these
alternative parameterizations results in generally lower pos-
terior emissions, with lowest posterior emission calculated in

inversion INV-E1-O2-S2.2 (combining the OBS model rep-
resentation error and the particle position baselines).

4.3 Model comparison and analysis of European CH4
emissions

In the following we compare the FLEXVAR inversions with
inversions using the extended Kalman filter (FLExKF) sys-
tem (Sect. 2.3) and TM5-4DVAR (Sect. 2.4). Figure 6 shows
the results of these three models using the emission data set
E3 as prior and the observation data set O2. Overall, all three
inverse models show relatively good consistency of the ma-

Atmos. Chem. Phys., 22, 13243–13268, 2022 https://doi.org/10.5194/acp-22-13243-2022



P. Bergamaschi et al.: High-resolution inverse modelling of European CH4 emissions 13259

Figure 5. Sensitivity of FLEXVAR inversions to assimilated observations. (a) Prior emission. (b, c) Posterior emissions (left) and difference
between posterior and prior emissions (right) for inversion INV-E1-O1 (using observation data set O1). (d, e) Inversion INV-E1-O2 (using
observation data set O2). Solid black circles show locations of stations with in situ data and open circles locations of stations with discrete
air sampling. All figures show annual average CH4 emissions (or change in emissions, respectively) for 2018.

jor spatial patterns of the derived inversion increments, for
example, the increase of emissions over the BENELUX re-
gion and north-western France, the decrease of emissions
around Paris, and the decrease of offshore emissions over the
North Sea compared to the prior emissions. Since FLExKF
uses the same atmospheric transport as FLEXVAR, it is to

be expected that the inversions of these two models should
give similar results. Nevertheless, there are also some sig-
nificant differences visible between the two models, espe-
cially for the southern part of France, for which FLExKF
yields overall lower emissions than FLEXVAR. This dif-
ference is also clearly visible in the derived country to-
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tal emissions (Fig. 7; Table S4), with 10.3 % lower an-
nual total CH4 emission for France calculated by FLExKF
(FLExKF E3-O2: 3.82 CH4 yr−1) compared to FLEXVAR
(INV-E3-O2: 4.26 CH4 yr−1). In contrast, FLExKF derives
somewhat higher CH4 emissions for BENELUX (6.3 %) and
UK+ Ireland (6.8 %) than FLEXVAR, while emissions de-
rived for Germany are very similar (within 1.4 %). One major
difference between FLExKF and FLEXVAR is the different
parameterization of the model representation error, leading
to a different weighting of the individual observational data
points, which can cause differences in the calculated regional
inversion increments as shown for FLEXVAR in Sect. 4.1.2.
Another difference is the magnitude of the prior uncertain-
ties, though this was shown for FLEXVAR to have a rather
small impact on total emissions for the country regions pre-
sented in Fig. 2. Furthermore, it is likely that the differ-
ent inversion techniques have some impact on the calculated
solutions. For example, FLExKF yields generally smoother
seasonal variations of derived emissions, while FLEXVAR
shows larger month-to-month variability. The latter are, how-
ever, largely filtered out by the use of 3-month running mean
values for the seasonal variation of the total emissions of
country regions shown in Fig. 7 (left column).

The spatial emission patterns derived by TM5-4DVAR
are in general similar to those calculated by FLEXVAR
and FLExKF (Fig. 6) but show also some differences, for
example, around the stations PUY and HPB, where TM5-
4DVAR calculates higher emissions than FLEXVAR and
FLExKF, probably related to the particular challenge to sim-
ulate mountain sites and sites in complex topography. Fur-
ther differences between the models are the different de-
rived seasonal variations of emissions, with larger varia-
tions calculated by TM5-4DVAR for Germany, France, and
UK+ Ireland compared to FLEXVAR and FLExKF (while
the FLEXVAR inversions using the observation data set O2
show larger variations for BENELUX than the other mod-
els). In addition to the different model representation error
in TM5-4DVAR, very likely the fundamentally different na-
ture of the models (Eulerian vs. Lagrangian) and the related
different simulation of transport play an essential role.

Nevertheless, the differences in the annual total emissions
for the country regions are only moderate. For Germany,
somewhat higher emissions are calculated by TM5-4DVAR
compared to FLEXVAR and FLExKF, while the posterior
emissions for France, BENELUX, and UK+ Ireland derived
by TM5-4DVAR are in the range of emissions calculated by
FLEXVAR and FLExKF.

Figure 7 also includes inversions of the three models using
the base observation data set O1. As discussed for FLEXVAR
in Sect. 4.2.2., FLExKF and TM5-4DVAR also show higher
emissions for UK+ Ireland, when using O2 instead of O1
due to the six additional stations in data set O2 in that area.
Furthermore, FLExKF inversions have also been performed
using E1 instead of E3 as prior emissions (Fig. 7). As for

FLEXVAR (Sect. 4.2.1), the impact on derived emissions is
relatively small.

In order to evaluate the quality of the derived emissions,
it is useful to analyse how well the observations are repro-
duced by the models. Figure S6 compares the statistics (cor-
relation coefficient and rms difference) for the three models
(using prior emission data set E3 and observation data set
O2). At most stations relatively high correlation coefficients
and low rms differences are obtained by all three models.
However, stations with larger regional emissions (e.g. LUT,
CBW, BRM, IPR) or complex topography (e.g. OXK, IPR)
show generally poorer statistical performance. Figure S6 also
shows that the best statistical performance is achieved by
FLEXVAR with a mean correlation coefficient of r = 0.86
(FLExKF: r = 0.84, TM5-4DVAR: r = 0.81) and a mean
rms difference of 28.21 ppb (FLExKF: 30.53 ppb, TM5-
4DVAR: 31.82 ppb). This finding demonstrates that the high
spatial resolution of FLEXVAR and FLExKF at 7km×7km
allows the observations to be somewhat better reproduced
than the TM5-4DVAR simulations at 1◦×1◦, although – be-
side the different spatial resolution – other factors (such as
fundamental differences in the modelling of transport) are
also likely to play a role. The slightly better statistical per-
formance of FLEXVAR compared to FLExKF could be due
to the higher degree of freedom to optimize the emissions in
FLEXVAR but may also be partly related to other factors,
such as different weighting of observations due to different
parameterizations of the model representation error and dif-
ferences in the model covariance settings. For example, the
FLEXVAR inversion INV-E3-O2 used for the model com-
parison applies a smaller spatial correlation length (Lcorr =

100 km) compared to FLExKF (Lcorr = 200 km). Compari-
son of FLEXVAR inversions INV-E1-O1 and INV-E1-O1-
S3.2 shows that increasing the correlation length from 100
to 200 km is indeed slightly deteriorating the statistical per-
formance (mean correlation coefficient and mean rms differ-
ence), but nevertheless FLEXVAR (INV-E1-O1-S3.2) still
performs slightly better compared to FLExKF (inversion
FLExKF E1-O1). On the other hand, FLExKF applies a
higher prior uncertainty than FLEXVAR (Table S4) in the
model comparison discussed in the paper. For FLEXVAR,
increasing the prior uncertainty from 100 % to 200 % (INV-
E1-O1-S4.2 vs. INV-E1-O1), slightly improves the statisti-
cal performance, i.e. partly compensating for the effect of a
larger correlation length (results not shown).

Figure S7 shows the time series of observed and simulated
CH4 mole fractions for all stations (inversion INV-E1-O2),
illustrating that in general the synoptic variability is well re-
produced at most sites. Furthermore, FLEXVAR also simu-
lates the average diurnal cycle at most sites realistically.

In the following, we compare the annual total CH4 emis-
sions derived by the inverse models with the anthropogenic
CH4 emissions reported by the countries to UNFCCC (UN-
FCCC, 2021). For a consistent comparison, it is necessary
also to take into account estimates of the natural CH4 emis-
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Figure 6. Annual average CH4 emissions derived for year 2018 using FLEXVAR (a, b, c), FLExKF (d, e, f), and TM5-4DVAR (g, h, i). (a,
d, g) Prior emissions. (b, e, h) Posterior emissions. (c, f, i) Difference between posterior and prior emissions. All three inversions shown here
use the same inventory data set E3 as prior and the observation data set O2.

sions, for which we use the bottom-up inventories of nat-
ural sources from the GCP-CH4 data set (Saunois et al.,
2020) (Table 2). Furthermore, the comparison of top-down
and bottom-up emission estimates requires the inclusion of
estimates of their uncertainties. For the uncertainty estimate
of the inverse models, we use the range of results from the
individual inversions (shown by the solid red rectangles in
Fig. 7) and the minimum–maximum values of the 2σ un-
certainty ranges based on the uncertainties computed for the
individual inversions (shown by the error bars). The total un-
certainty ranges are evaluated separately (1) for the whole

set of FLEXVAR sensitivity inversions (as shown in Fig. 2)
and (2) for the whole set of all inversions, i.e. also includ-
ing all FLExKF and TM5-4DVAR inversions. The uncer-
tainties of the UNFCCC emissions are based on the uncer-
tainties reported by the countries for the major CH4 source
categories, while estimates of the uncertainty of total CH4
emissions are not provided by the countries. As in Bergam-
aschi et al. (2015), we estimate the total uncertainties from
the reported uncertainties per category, assuming – among
other things – uncorrelated uncertainties for the different
major source categories (for further details, see Sect. S2).
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Figure 7. Total CH4 emissions for Germany, France, BENELUX, and UK+ Ireland derived by the three different inverse modelling systems
FLEXVAR, FLExKF, and TM5-4DVAR. For FLEXVAR only a subset of inversions is displayed here, while the whole range from all
FLEXVAR sensitivity inversions is shown by the first pair (from left to right) of solid rectangles, which is identical to the pair of rectangles
shown in Fig. 2. The second pair of rectangles shows the range of prior (blue) and posterior (red) CH4 emissions from all three models
(and the error bars the minimum and maximum values of the 2σ uncertainties of all individual inversions). The black symbols show the
anthropogenic CH4 emissions reported to UNFCCC (and their estimated 2σ uncertainties), blue symbols the natural emissions estimated
from the GCP CH4 inventory, and the violet symbols the sum of anthropogenic and natural bottom-up inventories.
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The uncertainties of natural CH4 emissions from wetlands
were estimated from the ensemble of wetland models used
for the GCP-CH4 wetland emissions, taking the minimum–
maximum range of the 11 individual wetland models (Poulter
et al., 2017). For other natural CH4 emissions, we assume an
uncertainty of 100 %.

Figure 7 shows that the CH4 emissions estimated by
the inverse models are higher than the sum of anthro-
pogenic (UNFCCC) and natural bottom-up inventories for
Germany, France, and BENELUX, but the uncertainty ranges
of top-down and bottom-up estimates overlap for all three
country regions. The smallest overlap, however, is found
for BENELUX. In contrast, the top-down estimates for
UK+ Ireland agree relatively well with the total of anthro-
pogenic and natural bottom-up inventories. A tendency to
higher top-down emissions compared to the total (anthro-
pogenic and natural) bottom-up inventories for Germany,
France, and BENELUX has also been found in the analysis
reported by Bergamaschi et al. (2018a) for the period 2006–
2012, but also in that study uncertainty ranges of bottom-up
and top-down estimates were overlapping. Similar tenden-
cies to higher top-down emissions are apparent in the VER-
IFY analyses for the period 2005–2017 (VERIFY, 2021) us-
ing a larger ensemble of regional inversions, while global in-
versions (with coarser resolution) showed in general lower
emissions, closer to the UNFCCC estimates for these coun-
try regions. Based on the observation that several models
showed clear seasonal cycles of the derived emissions with
maximum during summer, Bergamaschi et al. (2018a) sug-
gested that higher natural emissions could explain the dif-
ference between top-down and bottom-up estimates. The
FLEXVAR and FLExKF inversions analysed in this study,
however, show in general only relatively small seasonal vari-
ations for Germany, France, and UK+ Ireland compared to
TM5-4DVAR. The use of seasonal cycles to disentangle an-
thropogenic and natural sources is further hampered by the
fact that the seasonal cycles of major anthropogenic sources
are still not well characterized. Also, the anthropogenic emis-
sion inventories used in this study show rather different sea-
sonal cycles. Most of the anthropogenic GCP-CH4 emission
categories (which are largely based on EDGARv4.3.2, ex-
cept biomass burning, Saunois et al., 2020) have no sea-
sonality, except emissions from rice agriculture and biomass
burning, which however play only a minor role in Europe.
EDGARv6.0 (used for E1) has small seasonal variations
of most energy-related source categories but assumes con-
stant emissions for the agricultural sources (except rice) and
for waste emission. In contrast, most sectors of the TNO-
VERIFYv3.0 inventory (used for E2) show seasonal varia-
tions, including significant seasonal variations of all agricul-
tural sources, resulting in significant seasonal variations of
the total anthropogenic emissions with maximum emissions
in September (Fig. 2).

5 Conclusions

We have presented the novel inverse modelling system
FLEXVAR based on the 4DVAR assimilation technique and
FLEXPART-COSMO back trajectories driven by COSMO
meteorological fields at 7km×7km resolution over the Euro-
pean COSMO-7 domain. A major advantage of the 4DVAR
technique is that it allows a much larger number of vari-
ables to be constrained (in our study about 1.6 million) com-
pared to analytical inversion techniques. The offline coupling
with TM5-4DVAR ensures that the background mole frac-
tions (baselines) used in FLEXVAR are consistent with the
global observations assimilated in TM5-4DVAR. We have
applied the FLEXVAR system for inversions of European
CH4 emissions in 2018 using 24 stations with in situ mea-
surements, complemented with data from 5 stations with dis-
crete air sampling (and additional stations outside the Euro-
pean COSMO-7 domain used for the global TM5-4DVAR
inversions).

We have investigated the sensitivity of the FLEXVAR in-
versions to internal parameterizations, model settings, and
main model input data. Using the particle position baselines
yields in general lower derived emissions compared to in-
versions which apply the Rödenbeck baselines, resulting in
differences in the annual total emissions of 5 %–14 % for
the analysed country regions (Germany, France, BENELUX,
and UK+ Ireland). Furthermore we found a significant im-
pact of the applied parameterization of the model represen-
tation error. Inversions using the OBS model representation
error derive, over large parts of the domain, somewhat lower
emissions compared to the METEO model representation er-
ror, with differences in the annual total emissions of 0 %–
15 % for the analysed country regions. Varying the main pa-
rameters of the prior covariance (i.e. horizontal correlation
length constant, temporal correlation scale constant, and as-
sumed uncertainties of emissions per grid cell and month)
has clearly visible effects on the smaller-scale regional inver-
sion increments, but the impact on the derived annual total
emissions remains very small for the analysed country re-
gions, since the differences in the smaller-scale spatial pat-
terns are largely averaged out over larger areas. Furthermore,
the dependence of derived emissions on the applied prior
emission inventory has been found to be relatively small for
the country regions, which are well constrained by the ob-
servations. Changing these observational constraints by in-
cluding additional sites, however, has a significant impact on
the inversions, especially in the vicinity of these sites. Us-
ing the extended observation data set O2 (which includes six
additional in situ stations located on the British Isles) yields
23 %–28 % higher emissions for UK+ Ireland compared to
inversions using only the base observation data set O1. At the
same time, the calculated uncertainty of the posterior emis-
sions for UK+ Ireland is significantly reduced by these ad-
ditional observational constraints.
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The comparison of the FLEXVAR inversions with inver-
sions using the extended Kalman filter (“FLExKF”) sys-
tem (which both use the same atmospheric transport model)
shows overall good consistency of major spatial patterns of
the derived inversion increments but some difference (7 %–
10 %) for the derived total CH4 emission of France, proba-
bly mostly related to the use of different parameterizations
of the model representation error. TM5-4DVAR also shows
in general similar inversion increments and derives posterior
emissions for France, BENELUX, and UK+ Ireland in the
range of emissions calculated by FLEXVAR and FLExKF.
For Germany, however, TM5-4DVAR estimates 5 %–11 %
higher emissions than the other two models.

The FLEXVAR and FLExKF inversions at high spatial
resolution of 7km× 7km allow for a better reproduction
of the observations compared to the TM5-4DVAR simula-
tions at 1◦× 1◦, reflected in the achieved higher correlation
coefficient and lower rms difference between simulations
and observations. Furthermore, the statistical performance
of FLEXVAR is slightly better than that of FLExKF, which
could be due to the higher degree of freedom to optimize the
emissions in FLEXVAR but could be partly related also to
other differences in the inversions, for example, the differ-
ent parameterizations of the model representation error and
differences in the model covariance settings.

The inverse models derive higher annual total CH4 emis-
sions in 2018 for Germany, France, and BENELUX com-
pared to the sum of emissions reported to UNFCCC and nat-
ural emissions (estimated from the GCP-CH4 inventory), but
the uncertainty ranges of top-down and bottom-up estimates
overlap for all three country regions. In contrast, the top-
down estimates for UK+ Ireland agree relatively well with
the total of anthropogenic and natural bottom-up inventories.

Our study demonstrates that the new FLEXVAR sys-
tem can be applied for verification of reported emissions,
as planned, for example, by Empa for its quasi-operational
system to estimate Switzerland’s annual CH4 emissions as
a contribution to the Swiss National Inventory Reporting.
FLEXVAR inversions with the configuration presented in
this paper could be performed for the years 2002 to 2021, the
period for which meteorological fields from the COSMO-
7 model at 7km× 7km resolution are available. For anal-
ysis periods after 2021, the use of different high-resolution
meteorological input fields could be considered, such as the
operational analysis data from the ECMWF IFS model at
high resolution (0.1◦× 0.1◦) or the operational MeteoSwiss
COSMO-1 analysis at horizontal resolution of 1km× 1km.
COSMO-1, however, is limited to the larger Alpine area but
can be nested into FLEXPART-IFS. A FLEXPART-COSMO
modelling system using COSMO-1 has already been devel-
oped by Empa, including a modification of the turbulence
parameterization (Katharopoulos et al., 2022), which is re-
quired owing to the very high resolution of 1km× 1 km.

While the relatively good agreement among the three mod-
els used in this study gives some confidence in the robust-

ness of the inverse modelling results, further specific studies
should be performed to assess the quality of the top-down es-
timates independently. Such assessments should include the
comparison with further inverse models, comparison with in-
dependent regional emission estimates (e.g. based on aircraft
or satellite measurements), and a more detailed validation of
the applied atmospheric transport models (especially regard-
ing the simulation of boundary layer height dynamics and
vertical transport).

Code and data availability. The code of the FLEXVAR
inverse modelling system is available upon request. The at-
mospheric observations from ICOS are available at https:
//www.icos-cp.eu/data-products/atmosphere-release (ICOS RI,
2021). NOAA data are available at https://doi.org/10.15138/VNCZ-
M766 (Dlugokencky et al., 2021), AGAGE data at
https://doi.org/10.15485/1781803 (Prinn et al., 2021), and
UK DECC data at https://archive.ceda.ac.uk/ (O’Doherty et al.,
2022).
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