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ABSTRACT. We present the algebraic structures behind the approaches used to work with pairwise

comparison matrices and, in general, the representation of preferences. We obtain a general definition of
consistency and a universal decomposition in the space of PCMs, which allow us to define a consistency

index. Also Arrow’s theorem, which is presented in a general form, is relevant.
All the presented results can be seen in the main formulations of PCMs, i.e., multiplicative, additive

and fuzzy approach, by the fact that each of them is a particular interpretation of the more general

algebraic structure needed to deal with these theories.

c©2021
Mathematical Institute

Slovak Academy of Sciences

1. Introduction and motivation

As shown in [19], Riesz spaces can be used as general framework in the context of pairwise
comparison matrices (PCMs, shortly); in fact, it is possible to present at once all approaches and
to describe properties in this context. It is undoubtedly the importance of ordered vector spaces
in economic analysis, since there is a natural ordering for which “more is better”, i.e., preferences
are monotonic in the order. Therefore Riesz spaces seem to be the natural framework to deal with
multi-criteria methods, too.

Riesz spaces have been studied and widely applied in economics and in several other branches
(see, e.g., ([1, 2, 4, 20]).

In this article we investigate the actual mathematical properties behind the most common tools
used in the study of pairwise comparison matrices. Pairwise comparison matrices (PCMs) are a
way in which one can express preferences: the element ai,j indicates the preference of the element
i compared with j (see, e.g., [24]).

They are used in the Analytic Hierarchy Process (AHP) introduced by Saaty in [27], and suc-
cessfully applied to many Multi-Criteria Decision Making problems.
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Inspired by [19], this work wants to enlighten which kind of algebraic structures are strictly
essential to:

• express preferences in the field of PCMs;

• define properties, e.g. consistency, consistency index, weak consistency;

• obtain fundamental theorems, such as Arrow’s Theorem.

The paper is structured as follows. In Section 2, we recall the mathematical definitions used in
the paper. In Section 3 we focus on consistency in the field of PCMs. By results of Subsection 3,
in Section 3.1, we formalize a consistency index. In Section 4 we exhibit Arrow’s theorem in the
field of PCMs with the minimum amount of properties to require to the algebraic structure which
describes preferences. In the conclusions, we recapitulate the obtained results and expose our final
considerations.

2. Algebraic structures for preferences

A partially ordered set G = (G,≤) is a set G equipped with a partial order ≤, that is a reflexive,
antisymmetric and transitive relation.

Definition 1. A partially ordered vector space G = (G,+, ·,≤) is a real vector space with an
order relation ≤ that is compatible with the algebraic structure of G, that is

(1.1) x ≤ y implies x+ z ≤ y + z for each x, y, z ∈ G;

(1.2) x ≤ y implies αx ≤ αy for every x, y ∈ G and α ≥ 0.

In a partially ordered vector space G, the set {x ∈ G : x ≥ 0} is a convex cone, called the positive
cone or the non-negative cone of G, denoted by G+. Any vector of G+ is said to be positive.

For every x ∈ G, the positive part x+, the negative part x−, and the absolute value |x| are
defined by x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x+ + x−, respectively.

Definition 2. A partially ordered vector space G = (G,+, ·,≤) is a Riesz space (or vector lattice)
if the partial order is a lattice order, i.e., every two elements have a unique supremum and a unique
infimum.

Many familiar spaces are Riesz spaces, as the following examples show.

Examples 1. The Euclidean space Rn is a Riesz space under the usual ordering, where

x = (x1, . . . , xn) ≤ y = (y1, . . . , yn)

whenever xi ≤ yi for each i = 1, 2, . . . , n.

The supremum and infimum of two vectors x and y are given by

x ∨ y = (max{x1, y1}, . . . ,max{xn, yn})
and

x ∧ y = (min{x1, y1}, . . . ,min{xn, yn}),
respectively.

Alo-groups, presented in [11], are examples of Riesz spaces. An Alo-group is a totally ordered
lattice group, and hence also an `-group, and by Freudenthal’s theorem (see [20: Theorem 40.2])
every `-group can be embedded into a Riesz space. Let us recall that any archimedean abelian
linearly ordered group is isomorphic to a subgroup of R, as Hölder proved. By this, the results
contained in this paper generalize the ones contained in [11], i.e., we generalize the additive, the
multiplicative and the fuzzy approach (see [5, 23,26], respectively).
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Let G be a Riesz space. For every n ∈ N, Gn is a Riesz space where the ordering is defined
coordinate-wise. In particular, the set of square matrices of order n with entries in a Riesz space

is a Riesz space, being isomorphic to Gn
2

.

Both the vector space C(X) of all continuous real functions and the vector space Cb(X) of all
bounded continuous real functions on the topological space X are Riesz spaces, when the ordering
is defined pointwise.

The space of piecewise linear functions on an interval of the real line, with the usual pointwise
ordering, is a Riesz space.

The vector space Lp(µ) (0 ≤ p ≤ ∞) is a Riesz space under the almost everywhere pointwise
ordering, i.e., f ≤ g in Lp(µ) if f(x) ≤ g(x) µ-almost everywhere.

The vector spaces `p (0 < p ≤ ∞) are Riesz spaces under the usual pointwise ordering.

Definition 3. A Riesz space is said to be order complete (or Dedekind complete) if every nonempty
subset that is order bounded from above has a supremum, or equivalently if every nonempty subset
that is order bounded from below has an infimum.

Definition 4. A vector space X is the direct sum of two subspaces Y and Z if every x ∈ X has
a unique decomposition of the form x = y + z, where y ∈ Y and z ∈ Z.

3. Pairwise comparison matrices and consistency

Let G = (G,+) be an abelian group, and Mn be the set of all n × n-matrices A = (ai,j),
whose entries belong to G. Observe that, if, we endow Mn with an operation ⊕, defined by
A⊕B = (ai,j + bi,j)i,j , where A = (ai,j)i,j and B = (bi,j)i,j , then (Mn,⊕) is an abelian group. If
G is a vector space over a field K, then, we can define a product by α�A = (αai,j)i,j , α ∈ K.

An n × n-matrix A = (ai,j)i,j is said to be skew-symmetric if aj,i = −ai,j for every
i, j = 1, 2, . . . , n, or equivalently if AT = 	A, where AT = (aj,i)i,j and 	A = (−ai,j)i,j de-
note the transpose and the negative matrix of A, respectively. Note that, in any skew-symmetric
matrix, it is

aii = 0 for every i ∈ {1, 2, . . . , n}. (3.1)

From now on, when it is not otherwise explicitly specified, A = (ai,j)i,j denotes a skew-symmetric
matrix and G = (G,+) denotes any abelian group.

We say that A is consistent if

ai,k = ai,j + aj,k for all i, j, k ∈ {1, 2, . . . , n}. (3.2)

We say that A is totally inconsistent if

n∑
j=1

ai,j = 0 for each i ∈ {1, 2, . . . , n}.

A vector v = (v1, v2, . . . , vn) ∈ Gn is said to be coherent for a matrix A if vi − vj = ai,j for
every i, j ∈ {1, 2, . . . , n}.

Remark 1. Observe that the sum of any two consistent matrices A = (ai,j)i,j and B = (bi,j)i,j is
still consistent. Indeed, if A and B satisfy condition (3.2), then for every i, j, k ∈ {1, 2, . . . , n}, we
have

ai,k + bi,k = ai,j + bi,j + aj,k + bj,k,

getting the consistency of A⊕B. Analogously it is possible to see that, if G is a vector space over
a field K, A = (ai,j)i,j is consistent and α ∈ K, then α�A = (αai,j)i,j is also consistent.
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Moreover, if A = (ai,j)i,j and B = (bi,j)i,j are totally inconsistent, then

n∑
j=1

(ai,j + bi,j) =

n∑
j=1

ai,j +

n∑
j=1

bi,j = 0

for each i ∈ {1, 2, . . . , n}. Hence, the sum of any two totally inconsistent matrices is still totally
inconsistent. Similarly, if G is a vector space over K and α ∈ K, then, from the equality

n∑
j=1

(αai,j) = α

n∑
j=1

ai,j , i ∈ {1, 2, . . . , n},

we deduce that α�A is totally inconsistent whenever A is totally inconsistent and α ∈ K.

Therefore, the sets of all consistent matrices and of all totally inconsistent matrices are two
subgroups of Mn, and two subspaces of Mn when Mn is a vector space of K.

Now, we see some examples and fundamental properties of consistent matrices and coherent
vectors, extending to our setting [11: Propositions 5.3 and 5.4] and [12: Propositions 13 and 14].

Proposition 3.1. Let A = (ai,j)i,j. The following results hold.

3.1.1) Any two vectors v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn), coherent for A, differ by a
constant c ∈ G, that is wi − vi = c for every i ∈ {1, 2, . . . , n}.

3.1.2) If v = (v1, v2, . . . , vn) is a coherent vector for A, then A is consistent.

3.1.3) If A is consistent, then each column vector a(h) =


a1,h
a2,h
. . .
an,h

, h ∈ {1, 2, . . . , n}, is coherent

for A.

3.1.4) A matrix A is consistent if and only if there is at least a coherent vector for it.

3.1.5) A matrix A is consistent if and only if at least one of their column vectors is coherent for
it.

3.1.6) If G is a real vector space and α1, α2, . . . , αn∈R,

n∑
r=1

αr=1, then the vector v=(v1, v2, . . . , vn)

of the affine combinations vi =

n∑
r=1

αr ai,r, i ∈ {1, 2, . . . , n}, is coherent for A. More-

over, if G is a vector space over the field Q of the rational numbers, then the vector

w = (w1, w2, . . . , wn) of the means wi =
1

n

n∑
r=1

ai,r, i ∈ {1, 2, . . . , n}, is coherent for A.

P r o o f. 3.1.1) Let v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) be such that vi−vj = wi−wj = ai,j
for each i, j ∈ {1, 2, . . . , n}. Then

wi − vi = wj − vj for all i, j ∈ {1, 2, . . . , n}. (3.3)

If, we denote by c the common value in (3.3), then, we get wi − vi = c for any i ∈ {1, 2, . . . , n}.
This proves 3.1.1).

3.1.2) Let v = (v1, v2, . . . , vn) be as in the hypothesis. For every i, j, k ∈ {1, 2, . . . , n}, it is

vi − vj = −(vj − vi), vi − vk = (vi − vj) + (vj − vk). (3.4)

Thus, if ai,j = vi − vj , i, j ∈ {1, 2, . . . , n}, then from (3.4), we deduce that the matrix A = (ai,j)
is consistent. So, 3.1.2) is proved.
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3.1.3) Fix arbitrarily h ∈ {1, 2, . . . , n}. Since A is consistent, for every i, j ∈ {1, 2, . . . , n}, we
get ai,h = ai,j + aj,h, and hence ai,h − aj,h = ai,j . Thus, 3.1.3) is proved.

3.1.4) and 3.1.5) follow from 3.1.2) and 3.1.3).

3.1.6) Let α1, α2, . . . , αn be as in the hypothesis. As A is consistent, we get

vi − vj =

n∑
r=1

αr(ai,r − aj,r) =

n∑
r=1

αr(ai,r + ar,j) =
( n∑
r=1

αr

)
ai,j = ai,j , (3.5)

getting the consistency of v.

The proof of the last assertion is analogous to that of the previous one, by replacing αr with
1

n
for each r ∈ {1, 2, . . . , n}. �

Now, we give an example of a totally inconsistent matrix.

Example 1. Given A = (ai,j)i,j , for every i, j, k ∈ {1, 2, . . . , n}, set

e
(A)
i,j,k = ai,j + aj,k + ak,i, (3.6)

and for each i, j ∈ {1, 2, . . . , n} put

e
(A)
i,j =

n∑
k=1

e
(A)
i,j,k. (3.7)

Let E(A) = (e
(A)
i,j )i,j . We prove that E(A) is skew-symmetric.

Since A is skew-symmetric, for any i, j ∈ {1, 2, . . . , n} it is

e
(A)
i,j + e

(A)
j,i =

n∑
k=1

(ai,j + aj,k + ak,i + aj,i + ai,k + ak,j)

= n(ai,j + aj,i) +

n∑
k=1

(aj,k + ak,j) +

n∑
k=1

(ak,i + ai,k) = 0.

(3.8)

Thus, E(A) is skew-symmetric.

Now, we prove that E(A) is totally inconsistent, extending [9: Proposition 11] to the context of
arbitrary abelian groups. Choose arbitrarily i ∈ {1, 2, . . . , n}. Thanks to the skew-symmetry of A
and taking into account (3.1), for each i ∈ {1, 2, . . . , n}, we have

n∑
j=1

e
(A)
i,j =

n∑
j=1

n∑
k=1

(ai,j + aj,k + ak,i)

= n

n∑
j=1

ai,j +

n∑
j=1

n∑
k=1

aj,k + n
n∑
k=1

ak,i

= n

n∑
j=1

ai,j +
∑
j=k

aj,k +
∑
j<k

aj,k +
∑
j>k

aj,k + n

n∑
k=1

ak,i

= n

n∑
j=1

ai,j +

n∑
j=1

aj,j +
∑
j<k

aj,k +
∑
j<k

ak,j + n

n∑
j=1

aj,i

(by exchanging k with j)

= n

n∑
j=1

(ai,j + aj,i) +
∑
j<k

(aj,k + ak,j) = 0,

(3.9)

getting the total inconsistency of E(A).
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The next step is to prove that every skew-symmetric matrix A can be decomposed into the
direct sum of a consistent and a totally inconsistent matrix, extending [9: Propositions 12 and 13].
To this aim, we first give some lemmas.

Lemma 3.1. Let Ã = (n � A) 	 E(A) = (ãi,j)i,j = (nai,j − e(A)
i,j )i,j, where E(A) is as in (3.7).

Then Ã is consistent.

P r o o f. First of all, we claim that Ã is skew-symmetric. Indeed, since A and E(A) are skew-
symmetric, for every i, j ∈ {1, 2, . . . , n} it is

naj,i − e(A)
j,i = −nai,j + e

(A)
i,j = −(nai,j − e(A)

i,j ).

Now, we prove that Ã is consistent. Choose arbitrarily i, j, k ∈ {1, 2, . . . , n}. Taking into account
the skew-symmetry of A, we get

ãi,j + ãj,k + ãk,i = nai,j − e(A)
i,j + naj,k − e(A)

j,k + nak,i − e(A)
k,i

= nai,j −
n∑
h=1

e
(A)
i,j,h + naj,k −

n∑
h=1

e
(A)
j,k,h + nak,i −

n∑
h=1

e
(A)
k,i,h

= nai,j + naj,k + nak,i

−
n∑
h=1

(ai,j + aj,h + ah,i + aj,k + ak,h + ah,j + ak,i + ai,h + ah,k)

= nai,j + naj,k + nak,i − nai,j − naj,k − nak,i

−
n∑
h=1

(aj,h + ah,j)−
n∑
h=1

(ah,i + ai,h)−
n∑
h=1

(ak,h + ah,k) = 0,

that is the consistency of Ã. �

Lemma 3.2. Let B = (bi,j)i,j, C = (ci,j)i,j, D = (di,j)i,j, D = B ⊕ C, where B is totally

inconsistent and C is consistent, and let E(D) be as in (3.7). Then, E(D) = n�B.

P r o o f. For every i, j, k ∈ {1, 2, . . . , n}, we have di,j = bi,j + ci,j , and since C is consistent, we
obtain

di,j + dj,k + dk,i = bi,j + bj,k + bk,i + ci,j + cj,k + ck,i

= bi,j + bj,k + bk,i.
(3.10)

From (3.10), taking into account the skew-symmetry and the total inconsistency of B, we deduce

e
(D)
i,j =

n∑
k=1

(di,j + dj,k + dk,i) =

n∑
k=1

(bi,j + bj,k + bk,i)

=

n∑
k=1

bi,j +

n∑
k=1

bj,k +

n∑
k=1

bk,i = n bi,j +

n∑
k=1

bj,k −
n∑
k=1

bi,k = n bi,j ,

that is the assertion. �

Now, we are ready to prove the result on existence and uniqueness of a decomposition of a
skew-symmetric matrix into the direct sum of a consistent and a totally inconsistent matrix.

Theorem 3.2. Let G be a vector space over the field Q and A be a skew-symmetric matrix. Then
there is a totally inconsistent matrix B0 and a consistent matrix C0 such that A = B0 ⊕ C0.

Moreover, if B1 is any totally inconsistent matrix and C1 is any consistent matrix such that
A = B1 ⊕ C1, then B1 = B0 and C1 = C0.
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P r o o f. Let E(A) be as in (3.7), B0 =
1

n
� E(A),

C0 = A	B0 = A	
( 1

n
� E(A)

)
=

1

n
� ( (n�A)	 E(A)). (3.11)

It is not difficult to check that B0 is totally inconsistent, since E(A) is, and that C0 is consistent,
since (n�A)	 E(A) is.

Moreover, if B1 and C1 are as in the hypothesis, then, thanks to Lemma 3.2, we get E(A) =
n�B1, and so B0 = B1. From this and (3.11), we deduce that C1 = A	B1 = A	B0 = C0. This
ends the proof. �

3.1. Consistency index

Let A = (ai,j)i,j be a skew-symmetric matrix, non necessarily consistent. We can estimate the
quantity

e
(A)
i,j,k = ai,j + aj,k + ak,i (3.12)

as i, j, k vary in {1, 2, . . . , n}, taking into account that the expression in (3.12) is equal to 0 for
every choice of i, j and k if and only if A is consistent. The consistency index of a matrix A will
indicate, in a certain sense, “how much A is far from a consistent matrix”. In this section, we
prove some fundamental properties of the consistency index (see also [7,8,18] for related axiomatic
properties and for different kinds of consistency indices existing in the literature).

We begin with proving that e
(A)
i,j,k is permutation invariant up to the sign, extending [16: Propo-

sition 21] to the setting of arbitrary abelian groups.

Proposition 3.3. Let i, j, k ∈ {1, . . . , n}, and let σ : {i, j, k} → {i, j, k} be any permutation.
Then, either

e
(A)
σ(i),σ(j),σ(k) = e

(A)
i,j,k (3.13)

or
e
(A)
σ(i),σ(j),σ(k) = −e(A)

i,j,k. (3.14)

Moreover, if at least two elements among i, j, k are equal, then e
(A)
i,j,k = 0.

P r o o f. First of all, observe that the equality in (3.13) is obvious when σ is the identity, and is
readily seen when σ(i) = j, σ(j) = k and σ(k) = i or σ(i) = k, σ(j) = i and σ(k) = j. When
σ(i) = i, σ(j) = k and σ(k) = j, taking into account the skew-symmetry of A, we get

e
(A)
σ(i),σ(j),σ(k) = e

(A)
i,k,j = ai,k + ak,j + aj,i = −ai,j − aj,k − ak,i = −e(A)

i,j,k. (3.15)

From (3.15) it follows that (3.14) holds also when σ(i) = k, σ(j) = j and σ(k) = i or σ(i) = j,
σ(j) = i and σ(k) = k.

Now, suppose that the set {i, j, k} has at least two equal elements. Without loss of generality,
we can assume that i = j, since the other cases are analogous. By the skew-symmetry of A, we
have

e
(A)
i,j,k = e

(A)
i,i,k = ai,i + ai,k + ak,i = 0.

This completes the proof. �

Now, in order to define the consistency index, we will estimate the “size” of the quantities e
(A)
i,j,k.

To this aim, we endow G = (G,+) with an “extended norm”.

Definition 5 (see [22: Definition 8.3]). Let G = (G,+) be a vector space over a normed field
(K, | · |), and let (Y,≤) be a partially ordered vector space. We say that a function ‖ · ‖ : G→ Y is
a cone norm over K, on G, with respect to Y , if it satisfies the following properties:
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5.1) ‖x‖ ≥ 0 for each x ∈ G, and ‖x‖ = 0 if and only if x = 0;

5.2) ‖αx‖ = |α| ‖x‖ for every x ∈ G and α ∈ K;

5.3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ whenever x, y ∈ G.

In this case, we say that G = (G,+, ‖ · ‖) is a cone normed space over K, with respect to Y .

For example, we observe that any usual norm (with respect to R) on a normed space G is a cone
norm on G. Another example of cone norm is the absolute value in any Riesz space G, defined by
|x| = x ∨ (−x) for each x ∈ G. In this case, we have G = Y .

Let G be a Dedekind complete Riesz space, endowed with a strong order unit e, that is an
element e such that e ≥ 0, e 6= 0 and for every x ∈ G there is a positive real number β with
|x| ≤ β e. An example of “real” norm is the Minkowski functional ‖·‖e associated with the interval

[−e, e] = {x ∈ G : −e ≤ x ≤ e},
defined by

‖x‖e = min{β ∈ R, β ≥ 0 : |x| ≤ β e}. (3.16)

The norm in (3.16) has the property that

‖x‖ ≤ ‖y‖ whenever x, y ∈ G and 0 ≤ x ≤ y (3.17)

(see also [6: §4], [21: Proposition 1.2.13]). In this case, Y = R.

From now on, we suppose that G = (G,+, ‖ · ‖) is a cone normed space.

Now, we define the consistency index for matrices.

If A = (ai,j)i,j is a 3× 3-matrix, then we define the consistency index IC(A) of A by

IC(A) = ‖e(A)
1,2,3‖. (3.18)

Note that, since A is skew-symmetric, IC(A) indicates how “far” A is from a consistent matrix.
Indeed, by Proposition 3.3, we get

{e(A)
i,j,k : i, j, k ∈ {1, 2, 3}} = {e(A)

1,2,3,−e
(A)
1,2,3, 0},

and hence
{‖e(A)

i,j,k‖ : i, j, k ∈ {1, 2, 3}} = {‖e(A)
1,2,3‖, 0}

since, by 5.2), ‖ − x‖ = ‖x‖ for each x ∈ G.

Now, let A = (ai,j)i,j be an n × n-matrix, with n ≥ 4. Set Tn = {(i, j, k) ∈ {1, 2, . . . , n}3 :
i < j < k}, and let ](Tn) denote the cardinality of Tn. Observe that

](Tn) =
n!

3!(n− 3)!
=
n(n− 1)(n− 2)

6
.

Let us define the consistency index IC(A) of A by

IC(A) =

∑
(i,j,k)∈Tn

∥∥∥e(A)
i,j,k

∥∥∥
](Tn)

. (3.19)

Observe that, when n = 3, it is possible to give an analogous definition as in (3.19), which turns
out to be equivalent to that given in (3.18), since ](T3) = 1.

Note that, by Proposition 3.3, we get

{‖e(A)
i,j,k‖ : (i, j, k) ∈ {1, 2, . . . , n}3} = {‖e(A)

i,j,k‖ : (i, j, k) ∈ Tn} ∪ {0}.

Moreover, from equalities (3.13) and (3.14) of Proposition 3.3, we deduce the following result,
which extends [13: Proposition 15] to the cone normed space setting.
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Theorem 3.4. Let A = (ai,j)i,j, σ : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation, and A(σ) =
(aσ(i),σ(j))i,j.

Then, IC(Aσ) = IC(A).

Furthermore, if G is a real vector space, we have the next result, extending [13: Proposition 17]
to our context.

Theorem 3.5. Let G = (G,+, ‖ · ‖) be a cone normed space over R. Let A = (ai,j)i,j, α ∈ R, and
α�A = (αai,j)i,j.

Then, IC(α�A) = |α| IC(A).

P r o o f. Choose arbitrarily α ∈ R. For each (i, j, k) ∈ Tn, we have

e
(α�A)
i,j,k = αai,j + αaj,k + αak,i

= α (ai,j + aj,k + ak,i) = α e
(A)
i,j,k.

(3.20)

Taking in (3.20) the norms, and taking into account 5.2), we get

‖e(α�A)
i,j,k ‖ = |α| ‖e(A)

i,j,k‖.

The assertion follows from the arbitrariness of the triple (i, j, k) in Tn and the definition of consis-
tency index. �

Remark 2. Observe that, when the norm ‖ · ‖ fulfils (3.17), the consistency index satisfies a
“monotonicity-type” property with respect to a fixed single entry, as the involved matrix is farther
than a consistent matrix.

To see this, let A = (ai,j)i,j be a consistent matrix, and ap,q ∈ G be a fixed entry of A, such that
p 6= q. Let bp,q 6= ap,q, bq,p = −bp,q, and set B = (bi,j)i,j , where bi,j = ai,j whenever (i, j) 6= (p, q)
and (i, j) 6= (q, p). For any r ∈ {1, 2, . . . , n} with r 6= p and r 6= q, we get ap,r + ar,q = ap,q 6= bp,q,
so that ap,r + ar,q + bq,p 6= 0. This implies, by the definition of the consistency index, that
IC(B) > 0 = IC(A).

Now, let (Λ,-) be a partially ordered set, (p, q) ∈ {1, 2, . . . , n} be a fixed pair as above, and

suppose that b
(λ)
p,q , b

(λ)
q,p , λ ∈ Λ, are two families of elements of G with 0 ≤ b

(λ1)
p,q ≤ b

(λ2)
p,q whenever

λ1 - λ2, and b
(λ)
q,p = −b(λ)p,q for all λ ∈ Λ. Without loss of generality, we can suppose p < q. Set

B(λ) = (b
(λ)
i,j )i,j , where

b
(λ)
i,j = ai,j whenever (i, j) 6= (p, q) and (i, j) 6= (q, p). (3.21)

Let us consider the triples of the type eB
(λ)

i,j,k , where (i, j, k) ∈ Tn. If p 6= i or q 6= k, then, we get

0 ≤ eB
(λ1)

i,j,k ≤ eB
(λ2)

i,j,k whenever λ1 - λ2. If p = i and q = k, then 0 ≥ eB
(λ1)

i,j,k ≥ eB
(λ2)

i,j,k , that is

0 ≤ −eB(λ1)

i,j,k ≤ −eB
(λ2)

i,j,k , whenever λ1 - λ2. Thanks to (3.17), in the first case, we obtain

‖eB
(λ1)

i,j,k ‖ ≤ ‖eB
(λ2)

i,j,k ‖ whenever λ1 - λ2, (3.22)

and in the second case, taking into account 5.2) and (3.17), we get

‖eB
(λ1)

i,j,k ‖ = ‖ − eB
(λ1)

i,j,k ‖ ≤ ‖ − eB
(λ2)

i,j,k ‖ = ‖eB
(λ2)

i,j,k ‖ whenever λ1 - λ2. (3.23)

From (3.21), (3.22) and (3.23), we deduce that, if λ1 - λ2, then IC(B(λ1)) ≤ IC(B(λ2)). Thus,
our “monotonicity” property with respect to a fixed single entry is proved. This extends [13:
Proposition 19] to our context.
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4. Social preferences and Arrow’s conditions

Let G = (G,≤) be any partially ordered set. Given any two elements a, b ∈ G, we say that
b ≥ a if a ≤ b, and that a < b or b > a if a ≤ b and a 6= b. Let q be any positive integer. Given
any two elements a = (a1, a2, . . . , aq), b = (b1, b2, . . . , bq) ∈ Gq, we say that a ≤ b or b ≥ a (resp.
a < b or b > a) if ai ≤ bi (resp. ai < bi) for every i ∈ {1, 2, . . . , q}.

Let G = (G,+) be an abelian group. Given two elements a=(a1, a2, . . . , aq), b=(b1, b2, . . . , bq)∈
Gq, we put

a + b = (a1 + b1, a2 + b2, . . . , aq + bq), a− b = (a1 − b1, a2 − b2, . . . , aq − bq).
A set G = (G,+,≤) is called a partially ordered abelian group if (G,+) is an abelian group, (G,≤)
is a partially ordered set and a ≤ b implies a + c ≤ b + c whenever a, b, c ∈ G. Observe that, in
this case, we get

a+ b > 0 whenever a > 0 and b ≥ 0. (4.1)

Indeed, let a > 0 and b ≥ 0. Since G is a partially ordered abelian group, it is a+ b ≥ 0. Suppose,
by contradiction, that a+b = 0. Then a = −b, and hence a ≤ 0, because b ≥ 0. This is impossible,
since a > 0 by hypothesis.

Let q ≥ 2 be a positive integer. A function φ : Gq → G is said to be increasing (resp. strictly
increasing) if φ(a) ≤ φ(b) whenever a ≤ b (resp. φ(a) < φ(b) whenever a < b). A function
φ : Gq → G is idempotent if φ(a, a, . . . , a) = a for each a ∈ G. A strictly increasing and idempotent
function φ : Gq → G is called an averaging functional. It is not difficult to check that, if G is a
real vector space, then every convex combination

φ(a1, a2, . . . , aq) =

q∑
i=1

αi ai, (4.2)

with αi ∈ R, αi > 0 for all i ∈ {1, 2, . . . , q} and

q∑
i=1

αi = 1, is an averaging functional (in particular,

note that strict monotonicity follows from (4.1)). As a particular case, if G is a vector space over
Q, then the mean

φ(a1, a2, . . . , aq) =
1

q

q∑
i=1

ai

is an averaging functional.

In the literature, besides consistency of PCMs, the property of weak consistency for skew-
symmetric matrices is investigated. Observe that every consistency matrix is also weak consistent,
but the converse is not true in general. Moreover, note that weak consistency is sometimes easier
to check than consistency (see also [14]). We extend the concepts of ordinal evaluation vector and
weak consistency to partially ordered sets.

Definition 6. Let S be the set of all skew-symmetric n × n-matrices, A = (ai,j)i,j ∈ S, and
v = (v1, v2, . . . , vn) ∈ Gn.

We say that v is an ordinal evaluation vector for A if the following implications hold for every
i, j ∈ {1, 2, . . . , n}:
6.1) [ai,j > 0] =⇒ [vi > vj ];

6.2) [ai,j = 0] =⇒ [vi = vj ].

Remark 3. Observe that condition 6.1) is equivalent to

6.3) [ai,j < 0] =⇒ [vi < vj ].
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Indeed, suppose that ai,j < 0. Then, by the skew-symmetry of A, we get aj,i = −ai,j > 0. By 6.1),
we have vj > vi, that is vi < vj . Thus, 6.1) implies 6.3). The proof of the converse implication is
analogous.

Definition 7. A matrix A = (ai,j)i,j ∈ S is said to be weakly consistent if for every i, j ∈ {1,
2, . . . , n},

[ai,j > 0] =⇒ [ai,k > aj,k for all k ∈ {1, 2, . . . , n}], and

[ai,j = 0] =⇒ [ai,k = aj,k for any k ∈ {1, 2, . . . , n}].

Now, we see some basic properties of weak consistency, extending [14: Theorems 4.1 and 4.2] to
the partially ordered space setting.

Proposition 4.1.

4.1.1) If A is consistent, then A is weakly consistent.

4.1.2) If A is weakly consistent, then every column vector a(h) =


a1,h
a2,h
· · ·
an,h

, h ∈ {1, 2, . . . , n}, is an

ordinal evaluation vector for A.

4.1.3) If φ : Gn → G is a strictly increasing function, then the vector w = (w1, w2, . . . , wn) defined
by

wi = φ(ai,1, ai,2, . . . , ai,n), i ∈ {1, 2, . . . , n}
is an ordinal evaluation vector for A.

P r o o f. 4.1.1) If A is consistent, then for every i, j, k ∈ {1, 2, . . . , n} it is ai,j + aj,k = ai,k, and
hence ai,j = ai,k − aj,k. Thus, if ai,j > 0 (resp. ai,j = 0), then ai,k > aj,k (resp. ai,k = aj,k). By
the arbitrariness of k, we get that A is weakly consistent.

4.1.2) It is a direct consequence of the definitions of weak consistency and ordinal evaluation
vector.

4.1.3) Choose arbitrarily i, j ∈ {1, 2, . . . , n}. By the definition of weak consistency, if ai,j > 0,
then ai,k > aj,k for each k ∈ {1, 2, . . . , n}. Since φ is strictly increasing, then

φ(ai,1, ai,2, . . . , ai,n) > φ(aj,1, aj,2, . . . , aj,n).

Analogously it is possible to check that, if ai,j = 0, then

φ(ai,1, ai,2, . . . , ai,n) = φ(aj,1, aj,2, . . . , aj,n),

getting the assertion. �

Remark 4. Note that, in general, weak consistency does not imply consistency, and the sum of two
weakly consistent matrices is not weakly consistent (see, e.g., [14: Example 4.1], [17: Remark 3]).

The next step is to formulate Arrow’s conditions in the partially ordered space setting, and
extend earlier results of [15] and [17].

Let S be as in Definition 6, and ∅ 6= T ⊂ Sm. A profile is an element of T . A procedure on
T for aggregating and/or synthesizing the preferences of a profile in one matrix is any function
Φ: T0 → S, where ∅ 6= T0 ⊂ T .

For every (A1, A2, . . . , Am) ∈ Sm and (i, j) ∈ {1, 2, . . . , n}2, set ai,j = (a1i,j , a
2
i,j , . . . , a

m
i,j).

Definition 8. We say that a procedure Φ on T satisfies the condition of unrestricted domain (in
short, condition U∗) if T0 = T .
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A procedure Φ fulfils pairwise unanimity (condition P ∗) if for every profile (A1, A2, . . . , Am)∈T0,
with As = (asi,j)i,j , s ∈ {1, 2, . . . ,m}, we get that, if asi,j > 0 for each s ∈ {1, 2, . . . ,m}, then

ãi,j > 0, where ãi,j = (Φ(A1, A2, . . . , Am))i,j , (i, j) ∈ {1, 2, . . . , n}2.

A procedure Φ satisfies the condition of independence from irrelevant alternatives (condition
I∗) if for each nonempty set Y ⊂ {1, 2, . . . , n} and for any two profiles (A1, A2, . . . , Am) =
((a1i,j)i,j , (a

2
i,j)i,j , . . . , (a

m
i,j)i,j), (B1, B2, . . . , Bm) = ((b1i,j)i,j , (b

2
i,j)i,j , . . . , (b

m
i,j)i,j), such that

A(Y )
s = (asi,j)(i,j)∈Y 2 , B(Y )

s = (bsi,j)(i,j)∈Y 2 , s ∈ {1, 2, . . . ,m}, (4.3)

it is (Φ(A1, A2, . . . , Am))(Y ) = (Φ(B1, B2, . . . , Bm))(Y ).

A procedure Φ satisfies the condition of nondictatorship (condition D∗) if there is no element
d ∈ {1, 2, . . . ,m} such that Φ(A1, A2, . . . , Am) = Ad whenever Ai 6= Aj for at least two different i,
j ∈ {1, 2, . . . , n}.

We extend to the setting of partially ordered spaces and averaging functionals [17: Proposi-
tion 10] and [15: Theorem 1].

Proposition 4.2. Let T = T0 = Sm, ϕ : Gm → G be an averaging functional and Φ: Sm → S be
a procedure defined, for each (A1, A2, . . . , Am) ∈ T , by

(Φ(A1, A2, . . . , Am))i,j = ϕ(ai,j), (i, j) ∈ {1, 2, . . . , n}2. (4.4)

Then Φ satisfies U∗, P ∗ and I∗ on T . Moreover, if G is a partially ordered real vector space and
ϕ is a convex combination as in (4.2), then Φ satisfies also D∗ on T .

P r o o f. U∗) It is readily seen that condition U∗ is fulfilled, because Φ is defined on the whole
on T .

P ∗) Let (A1, A2, . . . , Am) ∈ T , As = (asi,j), s ∈ {1, 2, . . . ,m}, be such that

asi,j > 0 for each s ∈ {1, . . . ,m}, i, j ∈ {1, 2, . . . , n}. (4.5)

Since ϕ is strictly increasing, from (4.5), we obtain

ϕ(a1i,j , a
2
i,j , . . . , a

m
i,j) > 0 (4.6)

for any i, j ∈ {1, 2, . . . , n}. Hence, condition P ∗ is fulfilled.

I∗) Let (A1, A2, . . . , Am), (B1, B2, . . . , Bm) ∈ T be as in (4.3), namely such that

A(Y )
s = (asi,j)(i,j)∈Y 2 = B(Y )

s = (bsi,j)(i,j)∈Y 2

for each s ∈ {1, 2, . . . ,m}. This means that

asi,j = bsi,j for any i, j ∈ Y and s ∈ {1, 2, . . . ,m}. (4.7)

From (4.7) it follows that

ϕ(asi,j , a
s
i,j , . . . , a

s
i,j) = ϕ(bsi,j , b

s
i,j , . . . , b

s
i,j) for any i, j ∈ Y.

Thus, I∗ is satisfied. �

The next step is to formulate Arrow’s conditions in the context of partially ordered vector spaces
and averaging functionals for a procedure, in order to aggregate and/or syntesize the preferences
of a profile in a vector, which expresses, in a certain sense, the “order” of preferences, extending
[17: Propositions 11–13].

Let ϕ : Gm → G be an averaging functional, and Φ: Sm → S is a procedure defined, for each
(A1, A2, . . . , Am) ∈ Sm, by

(Φ(A1, A2, . . . , Am))i,j = ϕ(ai,j), (i, j) ∈ {1, 2, . . . , n}2. (4.8)
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We recall that, given an n×n-matrixA=(ai,j)i,j and r∈{1, 2, . . . , n}, then a(r)=(ar,1, ar,2, . . . , ar,n)
denotes the r-th row.

Now, let ϕ : Gm → G and φ : Gn → G be any two fixed averaging functionals, let ∅ 6= T0⊂T ⊂S,
and define ζ : T0 → Gn by setting, for each A ∈ T0 and r ∈ {1, 2, . . . , n},

ζ(A) = (φ(a(1)), φ(a(2)), . . . , φ(a(n)))

= (φ(a1,1, a1,2, . . . , a1,n), φ(a2,1, a2,2, . . . , a2,n), . . . , φ(an,1, an,2, . . . , an,n)).
(4.9)

Let Ψ: T0 → Gn be defined by

Ψ(A1, A2, . . . , Am) = ζ(Φ(A1, A2, . . . , Am)), (A1, A2, . . . , Am) ∈ Sm, (4.10)

where Φ is as in (4.4).

Now, we formulate Arrow’s conditions in our context.

Definition 9. A procedure Ψ on T satisfies the condition of unrestricted domain (in short,
condition U∗∗) if T0 = T .

A procedure Ψ on T fulfils pairwise unanimity (condition P ∗∗) if for every profile (A1, A2, . . . , Am)
∈ T0, with As = (asi,j)i,j , s ∈ {1, 2, . . . ,m}, we get that, if i, j ∈ {1, 2, . . . , n} are such that asi,j > 0
for every s ∈ {1, 2, . . . ,m}, then (Ψ(A1, A2, . . . , Am))i > (Ψ(A1, A2, . . . , Am))j .

A procedure Φ satisfies the condition of independence from irrelevant alternatives (condition
I∗∗) if for each nonempty set Y ⊂ {1, 2, . . . , n} and for any two profiles (A1, A2, . . . , Am) =
((a1i,j)i,j , (a

2
i,j)i,j , . . . , (a

m
i,j)i,j), (B1, B2, . . . , Bm) = ((b1i,j)i,j , (b

2
i,j)i,j , . . . , (b

m
i,j)i,j), such that

A(Y )
s = (asi,j)(i,j)∈Y 2 = B(Y )

s = (bsi,j)(i,j)∈Y 2 , , s ∈ {1, 2, . . . ,m}, (4.11)

it is

((Ψ(A1, A2, . . . , Am))(Y ))i > ((Ψ(A1, A2, . . . , Am))(Y ))j if and only if

((Ψ(B1, B2, . . . , Bm))(Y ))i > ((Ψ(B1, B2, . . . , Bm))(Y ))j

for any i, j ∈ Y .

A procedure Φ satisfies the condition of nondictatorship (condition D∗∗) if there is no element
d ∈ {1, 2, . . . ,m} such that

Ψ(A1, A2, . . . , Am) = Ψ(Ad, Ad, . . . , Ad)

whenever Ai 6= Aj for at least a pair (i, j) ∈ {1, 2, . . . , n}2 such that i 6= j.

Now, we prove the next result about Arrow’s conditions on Ψ in the setting of partially ordered
vector spaces and averaging functionals.

Theorem 4.3. Let C (resp., WC) ⊂ S be the set of all consistent (resp. weakly consistent) n×n-
matrices, ϕ : Gm → G, φ : Gn → G be averaging functionals, and Ψ be the preference aggregation
procedure in (4.10). Then,

4.3.1) the function Ψ, on Sm, (WC)m or Cm, satisfies condition U∗∗, and, when G is a partially
ordered real vector space and φ, ϕ are convex combinations, also condition D∗∗;

4.3.2) the function Ψ, on (WC)m or Cm, satisfies condition P ∗∗;

4.3.3) the function Ψ, on Cm, satisfies condition I∗∗.

P r o o f. 4.3.1) Since Ψ is defined on all elements of Sm without restrictions, condition U∗∗ is
fulfilled for any choice of T ⊂ S.

Moreover, observe that the convex combinations of vectors defined in (4.2) are not identically
equal to anyone of these vectors, and hence they satisfy condition D∗∗.
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4.3.2) Pick T = (WC)m. Let (A1, A2, . . . , Am) ∈ T , As = (asi,j), where s ∈ {1, 2, . . . ,m}, and
i, j ∈ {1, 2, . . . , n} be such that

asi,j > 0 for each s ∈ {1, . . . ,m}. (4.12)

Since, by hypothesis, As = (asi,j)i,j is weakly consistent for all s ∈ {1, 2, . . . ,m}, from (4.12) it
follows that

asi,h > asj,h for all i, j, h ∈ {1, 2, . . . , n} and s ∈ {1, 2, . . . ,m}. (4.13)

Now, set B = (bi,j)i,j = (ϕ(a1i,j , a
2
i,j , . . . , a

m
i,j))i,j . Note that, thanks to (4.4), we get B =

Φ(A1, A2, . . . , Am). As ϕ is strictly increasing, from (4.13), we obtain

bi,h = ϕ(a1i,h, a
2
i,h, . . . , a

m
i,h) > ϕ(a1j,h, a

2
j,h, . . . , a

m
j,h) = bj,h (4.14)

for all i, j, h ∈ {1, 2, . . . , n}. Now, let

ζ(B) = (φ(b1,1, b1,2, . . . , b1,n), φ(b2,1, b2,2, . . . , b2,n), . . . , φ(bn,1, bn,2, . . . , bn,n)). (4.15)

Since ϕ is strictly increasing, from (4.14) and (4.15), we deduce

(ζ(B))i = φ(bi,1, bi,2, . . . , bi,n) > φ(bj,1, bj,2, . . . , bj,n) = (ζ(B))j .

Therefore, condition P ∗∗ is satisfied.

By arguing analogously as above, it is possible to check that 4.3.2) holds even if one takes Cm
instead of (WC)m.

4.3.3) Pick T = Cm. For each Y ⊂ {1, 2, . . . , n} and every matrix A ∈ C, set A(Y ) =

(ai,j)(i,j)∈Y 2 . Let (A1, A2, . . . , Am), (B1, B2, . . . , Bm) ∈ T . Let Ã = (ãi,j)(i,j)∈Y 2 = Φ(A1,

A2, . . . , Am), B̃ = (̃bi,j)(i,j)∈Y 2 = Φ(B1, B2, . . . , Bm). By hypothesis, we get Ã, B̃ ∈ C ⊂ WC
and hence, by Proposition 4.1, (ζ(Ã))i = φ(ãi,1, ãi,2, . . . , ãi,n) and (ζ(B̃))i = φ(̃bi,1, b̃i,2, . . . , b̃i,n)

are ordinal evaluation vectors for each i ∈ Y . Since A
(Y )
s = B

(Y )
s for every s ∈ {1, 2, . . .m}, then

(ζ(Ã))i = (ζ(B̃))i for all i ∈ Y , and hence for every i, j ∈ Y , we get (ζ(Ã))i > (ζ(Ã))j if and only

if (ζ(B̃))i > (ζ(B̃))j . Thus, condition I∗∗ holds. �

Remark 5. Observe that, in general, condition I∗∗ does not hold, when T = (WC)m (see e.g. [17:
Remark 3]).

5. Conclusions

We propose a generalization of algebraic structures used to work with PCMs. This leads us to a
comprehension of which properties, we actually use or need when, we want to represent preferences,
social choices and, in this particular case, PCMs. All the presented results can be easily translated
in the main formulations of PCMs, i.e., multiplicative, additive and fuzzy approach, by the fact
that each of them is a particular interpretation of the more general and essential algebraic structure
needed to deal with this theory. We stress also that the generality of the used structures allows
us to immediately recognize whether a formulation is enough powerful to express preferences and
which kind of properties and theorems can be achieved.
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