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Abstract
The fight against climate change makes extreme but inevitable changes in the en-
ergy sector necessary. These in turn lead to novel and complex challenges for the
transmission system operators (TSOs) of gas transport networks. In this thesis, we
consider four different planning problems emerging from real-world operations and
present mathematical programming models and solution approaches for all of them.

Due to regulatory requirements and side effects of renewable energy production,
controlling today’s gas networks with their involved topologies is becoming increas-
ingly difficult. Based on the “network station” modeling concept for approximating
the technical capabilities of complex subnetworks, e.g., compressor stations, we in-
troduce a tri-level mixed-integer program to determine important global control
decisions. Its goal is to avoid changes in the network elements’ settings while devia-
tions from future inflow pressures as well as supplies and demands are minimized. A
sequential linear programming inspired post-processing routine is run to derive phys-
ically accurate solutions w.r.t. the transient gas flow in pipelines. Computational
experiments based on real-world data show that meaningful solutions are quickly and
reliably determined. Therefore, the algorithmic approach is used within KOMPASS,
a decision support system for the transient network control that we developed with
the Open Grid Europe GmbH (OGE), one of Europe’s largest natural gas TSOs.

Anticipating future use cases, we adapt the aforementioned algorithmic approach
for hydrogen transport. We investigate whether the natural gas infrastructure can be
repurposed and how the network control changes when energy-equivalent amounts of
hydrogen are transported. Besides proving the need for purpose-built compressors,
we observe that, due to the reduced linepack, the network control becomes more
dynamic, compression energy increases by 440% on average, and stricter regulatory
rules regarding the balancing of supply and demand become necessary.

Extreme load flows expose the technical limits of gas networks and are therefore
of great importance to the TSOs. In this context, we introduce the Maximum
Transportation Problem and the Maximum Potential Transport Moment Problem
to determine severe transport scenarios. Both can be modeled as linear bilevel
programs where the leader selects supplies and demands, maximizing the follower’s
transport effort. To solve them, we identify solution-equivalent instances with acyclic
networks, provide variable bounds regarding their KKT reformulations, apply the
big-M technique, and solve the resulting MIPs. A case study shows that the obtained
scenarios exceed the maximum severity values of a provided test set by at least 23%.

OGE’s transmission system is 11,540 km long. Monitoring it is crucial for safe
operations. To this end, we discuss the idea of using uncrewed aerial vehicles and
introduce the Length-Constrained Cycle Partition Problem to optimize their rout-
ing. Its goal is to find a smallest cycle partition satisfying vertex-induced length
requirements. Besides a greedy-style heuristic, we propose two MIP models. Com-
bining them with symmetry-breaking constraints as well as valid inequalities and
lower bounds from conflict hypergraphs yields a highly performant solution algo-
rithm for this class of problems.
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Zusammenfassung
Der Kampf gegen den Klimawandel erfordert eine umfassende Neuausrichtung des
gesamten Energiesektors. Dies wiederum stellt die Betreiber von Gastransportnet-
zen (Transmission System Operators, TSOs) vor beträchtliche Herausforderungen.
In dieser Arbeit befassen wir uns mit diversen Planungsproblemen aus der Praxis
und den sich daraus ergebenden mathematischen Programmen: der Steuerung des
Gasflusses, der Bewertung des Netzwerks hinsichtlich extremer Transportszenarien,
sowie der Kontrolle ihrer Funktionstüchtigkeit mittels unbemannter Luftfahrzeuge
(uncrewed aerial vehicles, UAVs). Darüber hinaus widmen wir uns dem immer
wichtiger werdenden Transport von Wasserstoff, welcher zusätzliche Anforderungen
an die bereits bestehende Infrastruktur stellt.

Die Steuerung heutiger Gastransportnetze mit ihren komplexen Topologien wird
aufgrund schwieriger regulatorischer Rahmenbedingungen und Schwankungen in der
erneuerbaren Energieerzeugung immer komplizierter. In diesem Zusammenhang
stellen wir ein gemischt-ganzzahliges Trilevel-Programm zur Bestimmung wichtiger
globaler Steuerentscheidungen vor. Dieses basiert auf dem Modellierungskonzept der
“Netzstationen”, welches der Approximation der technischen Steuerungsmöglichkei-
ten von komplexen Teilnetzen mit Verdichterstationen dient. Ziel ist es, das Um-
schalten von Netzelementen zu vermeiden, während gleichzeitig Abweichungen von
den vorgegebenen Eingangsdrücken sowie den Ein- und Ausspeisungen minimiert
werden. Zur Erzeugung physikalisch korrekter Lösungen bezüglich des transienten
Gasflusses in Rohren haben wir eine Postprocessing-Routine entwickelt, die auf Se-
quentieller Linearer Programmierung beruht. Rechenexperimente mit realen Daten
zeigen, dass mit diesem Verfahren praktisch einsetzbare Lösungen schnell und zu-
verlässig ermittelt werden. Unser algorithmischer Ansatz wird daher mittlerweile
in KOMPASS eingesetzt, einem Decision-Support-System für die transiente Netz-
steuerung, welches wir zusammen mit einem Entwicklerteam der Open Grid Europe
GmbH (OGE), einem der größten europäischen Erdgas-Fernleitungsnetzbetreiber,
implementiert haben.

Im Hinblick auf zukünftige Anwendungsgebiete untersuchen wir, wie sich der
beschriebene algorithmische Ansatz auf die Steuerung von Wasserstofftransportnet-
zen übertragen lässt. Wir untersuchen, ob die Erdgasinfrastruktur umgewidmet wer-
den kann und wie sich die Netzsteuerung verändert, wenn energieäquivalente Wasser-
stoffmengen transportiert werden. Zum einen weisen wir nach, dass für einen solchen
Einsatz speziell angefertigte Verdichter notwendig sein werden. Zum anderen stellen
wir fest, dass die Netzsteuerung aufgrund des reduzierten Netzpuffers dynamischer
wird, die Gasverdichtung im Schnitt 440% mehr Energie benötigt und strengere
Regulierungsmaßnahmen hinsichtlich der Bilanzierung von Ein- und Ausspeisung
erforderlich sein werden.

Extreme Lastflüsse zeigen die technischen Grenzen der Gastransportnetze auf und
sind daher von großer Bedeutung für die TSOs. Wir stellen das Maximum Trans-
portation Problem und das Maximum Potential Transport Moment Problem vor,
welche der Bestimmung schwieriger Transportszenarien dienen. Beide Probleme kön-
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nen als lineare Bilevel-Programme modelliert werden, bei denen der Leader Ein- und
Ausspeisungen wählt, welche den Transportaufwand des Followers maximieren. Um
diese Optimierungsprobleme zu lösen, identifizieren wir sogenannte lösungsäquiva-
lente Probleminstanzen mit azyklischen Netzwerken, liefern Schranken an die Vari-
ablen ihrer KKT-Reformulierungen, wenden die Big-M -Methode an und lösen die
daraus resultierenden gemischt-ganzzahligen Programme. Eine Fallstudie zeigt, dass
die ermittelten Szenarien die maximalen Schwierigkeitsgrade eines vorgegebenen
Testsatzes um mindestens 23% übertreffen.

Das Fernleitungsnetz von OGE ist 11540 km lang und seine Überwachung ist von
entscheidender Bedeutung für den sicheren Betrieb. Dies kann zum Beispiel durch
den Einsatz von UAVs gewährleistet werden. In diesem Kontext untersuchen wir
deren optimale Streckenführung und führen das Length-Constrained Cycle Parti-
tion Problem ein. Ziel ist es, eine kleinste Kreispartition zu finden, die knoten-
induzierten Längenanforderungen genügt. Neben einer Greedy-Heuristik stellen wir
zwei gemischt-ganzzahlige Optimierungsmodelle vor. Kombinieren wir diese mit
symmetriebrechenden Nebenbedingungen sowie gültigen Ungleichungen und unteren
Schranken, die von Konflikt-Hypergraphen abgeleitet werden, erhalten wir einen sehr
effektiven Algorithmus für diese Klasse von Problemen.
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1. Introduction

During my time as a PhD student, I was a passionate participant in science slams.
These events are similar to poetry slams, but instead of reciting self-written poems
or texts, the contestants give ten-minute talks about their research to an ordinary
audience. In the end, the crowd gets to vote on which presentation it liked best.

Niemann et al. [117] have investigated the perception of the audience and the
reasons for attending science slams. In essence, this combination of scientific content
and entertainment, often referred to as “edutainment”, is considered an excellent
way to impart knowledge. Their results coincide in many aspects with my personal
observations. After having attended many contests, I identified three characteristics
of winning presentations, which seem to have a positive influence on the final vote:
The level of entertainment and fun, the individual relatability of the listeners to the
topic, and the subject’s impact on society.

The design of an entertaining, relatable, and impactful ten-minute talk, “Mathe-
matical Programming for Stable Control and Safe Operation of Gas Transport Net-
works”, turned out to be quite challenging. Of course, a certain amount of fun can be
brought in by insinuating lavatorial humor. However, I can report that this wins you
some pitying smiles at best. On the other hand, it is hard to identify any individ-
ual relationship that Jane or John Doe may have to gas transport networks, except
for heating and cooking maybe, not to mention their nonrelation to mathematical
programming. Thus, all stakes were put on the third horse and I argued why gas
transport networks are essential for our society: To ensure the security of energy
supply and because of their crucial role in the fight against climate change. Af-
ter explaining the underlying connections, the audiences became highly interested
in how our mathematical-programming based algorithmic approaches can help to
enable a stable control and safe operation of these networks, which are necessary
prerequisites to ensure the former and succeed in the latter.

Besides winning some of the slams, the presentation motivated people in the
audience to approach me after the contests, ask further questions, and engage in
discussions on the matter. This interest enormously strengthened my motivation as
it confirmed that this branch of research is indeed of great social relevance. On the
other hand, it also proved that many people are unfortunately not aware of this.

In this thesis, we address various challenges that currently arise in the context of
real-world gas transport networks. We introduce related problem formulations, opti-
mization models based on mathematical programming, and algorithmic approaches
to solve them efficiently. Simultaneously, we aim to raise awareness for the critical
issues related to these challenges and the beautiful concept of mathematical pro-
gramming, which we apply to improve upon the networks’ control and operation.
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1. Introduction

Figure 1.1.: The author of this thesis presenting at a science slam in Halle (Saale) in
October 2020. For more information regarding science slams, we refer
to scienceslam.de [148]. Paedagogic-oriented discussions can be found
in the work of Stimm [117] and Eisenbarth and Weißkopf [154].

Natural Gas Transport Networks – Importance and Challenges

With nearly 25% in the German energy mix (2017), natural gas constitutes one of
the country’s primary energy sources. Heating accounts for the largest share in the
annual demand of approximately 95 billion cubic meters [44], which is about two
times the volume of Bodensee lake [53]. Additionally, natural gas plays a vital role
in the chemical industry and electricity generation as stated by the German Federal
Ministry for Economic Affairs and Energy [44].

The answer to how natural gas is delivered to the demand sites was given decades
ago when the first transport networks have been established. A pipeline between
Bentheim and Chemische Werke Hüls, built in 1938, marked the beginning of the
natural gas transport era [121]. Over the years, the German gas network developed
into a European “hub” due to its geographical location. Today, a great majority of
more than 90% of the natural gas consumed in Germany is imported from Russia,
Norway, and the Netherlands, and nearly 50% of the natural gas entering Germany
is exported to neighboring countries again, mainly to South-Western Europe [17].

Thus, providing a stable control and safe operation of natural gas networks is nec-
essary to ensure the security of the energy supply, not only for Germany. However,
due to several reasons, this task is becoming increasingly difficult.

Growing populations and economies led to drastically increasing energy and nat-
ural gas demands [115], which made extensions, changes, and updates of the infras-
tructure necessary. Many initially simple network structures evolved into complex
and involved topologies, resulting in a substantial increase in technical control op-
tions. These control measures are, in addition, highly interdependent, which makes
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the task of controlling these networks more challenging. This observation is fur-
ther underlined by our explanations in Section 3.1, where we give a brief high-level
introduction to the physics and control of gas transport networks.

Another reason adding to the increasing difficulty regarding the network control
is that, even though experts expect that the overall natural gas consumption will
remain constant or decrease in the near future [145], the hourly supplies and demands
at the entries and exits are becoming more volatile, as reported by practitioners.

A possible explanation for this behavior is the market model that the European
Union implemented in order to decouple natural gas trading and transport [42, 43].
Nowadays, the transport requests for the upcoming day are established twenty-four
hours in advance through nominations of the gas traders. Thereby, they possess
a wide range of options, which complicates long-term planning and makes reliable
forecasting of future inflows and outflows harder. In this context, the question of
what the possible worst-case transport scenarios look like arises.

The growing usage of green energy, e.g., solar and wind power, is a second rea-
son for the fluctuations in supply and demand. Due to the planned nuclear and
coal phase-outs, the share of renewables in the energy mix will continue to increase
in the future. However, there is some natural uncertainty regarding their produc-
tion. One way to mitigate this effect is to use natural gas-fired power plants, which
can be ramped up on short notice [128]. Thus, the TSOs must be prepared for
spontaneously occurring peak demands at the corresponding sites.

Finally, there are rather unpredictable events that impede a stable network control
and its safe operation. Prime examples are political tensions leading to an inter-
ruption of supply [166] or malfunctioning hardware [160], which makes a standard
control impossible. In this context, it is up to the TSOs to take preventive actions
wherever possible, e.g., by monitoring the transport infrastructure on a regular basis
in order to avoid severe failures.

Hydrogen Transport Networks – Backbone of Future Energy Supply

An indispensable part of any policy to tackle climate change is a drastic decrease
in greenhouse gas emissions. Thereby, all commonly accepted strategies envisage
a complete replacement of fossil energy carriers. Applying some variant of the so-
called power-to-gas (P2G) concept, where (surplus) renewable electric energy is used
to produce an intermediate fuel gas, is an essential ingredient. This fuel gas can be
stored and reconverted in times of low electricity supply and high demand or directly
be used in the industry. Depending on the gas and the production technique, the
P2G process can be designed environmentally friendly [157].

Due to its versatility, the currently favored choice for the fuel gas is hydro-
gen, which is underlined by the national hydrogen strategy of the German govern-
ment [33]. While hydrogen already serves as an alternative fuel in the automotive
area, further potential exists in the mobility sector, e.g., the aviation [10] or shipping
industry [134]. Moreover, it could for example also be used in the steel industry to
replace fossil energy carriers [124].

3



1. Introduction

Naturally, the problem of where to store and how to transport the hydrogen arises.
Here, pipeline networks and connected storage facilities seem to be the most suitable
approach for supplying densely populated areas with enormous demands, see for ex-
ample the studies of Yang and Ogden [164] and Reuß et al. [137]. However, planning
and building new pipeline infrastructures is an expensive and time-consuming task.
Hence, the seemingly obvious-looking idea of repurposing the existing billion Euro
valued natural gas transport infrastructure is gaining much attention [2, 35, 70].
The cost of such a conversion is expected to be about 10–15% of a construction
from scratch, whose implementation process would additionally take up five to seven
years from initial planning to commissioning in the best case [2]. Moreover, hydro-
gen transport represents a future business model for natural gas TSOs, and the
European Hydrogen Backbone Initiative is evidence of this [159].

Current Relevant Questions from Practice

All the topics discussed above are at the heart of the GasLab and the EnergyLab
of the Research Campus MODAL (Mathematical Optimization and Data Analysis
Laboratories) [113], a public-private partnership project funded by the Federal Min-
istry of Education and Research [46]. In its context, we were approached by the
experts and practitioners of Open Grid Europe GmbH (OGE) [120], one of Europe’s
largest natural gas TSOs. They had realized that novel operations research and
mathematical optimization techniques are necessary to solve their complex and so
far intractable planning problems. After intensive discussions, we pinned down four
essential questions, which summarize the crucial real-world challenges that OGE
and other natural gas TSOs currently face in daily operations.

▷ How can a TSO guarantee a stable network control?

▷ Can the natural gas network be repurposed for hydrogen transport?

▷ What are possible worst-case transport scenarios that can arise?

▷ How can the transport infrastructure be monitored efficiently?

1.1. Outline and Contribution

Our work regarding these four questions defines the structure of this thesis. After
introducing basic notation and essential concepts from mathematical programming,
graph theory, and flow networks in Chapter 2, we discuss each question in detail,
formulate a corresponding optimization problem as a mathematical programming
based model, and develop a solution approach in Chapters 3, 4, and 5. To this
end, we focus on large-scale networks and real-world data provided by our industry
partner since our results are required to be applicable in practice and shall be applied
in everyday operations at OGE. In the following, we give a detailed overview of
the content of the three chapters by summarizing our contribution w.r.t. the four
questions. A short general conclusion in Chapter 6 marks the end of the thesis.
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1.1. Outline and Contribution

Figure 1.2.: Picture of OGE’s natural gas transport network, which serves as the
basis for our research in the GasLab and EnergyLab of research campus
MODAL. While entry points are shown as green triangles , exit points
are depicted as red triangles . Moreover, grey lines represent segments
of pipelines.

5



1. Introduction

How can a TSO guarantee a stable network control?

The control of gas transport networks is a challenging task incorporating many tech-
nical and regulatory constraints, but necessary to ensure the security of the energy
supply. However, due to the increasingly complex network topologies, the design
of the natural gas market, and interfering but inevitable side effects of renewable
energy production, providing a stable control is becoming increasingly difficult.

In this context, we present KOMPASS (Kontinuierliches Optimierungsmodul zur
prognoseabgesicherten Systemsteuerung / Continuous optimization module for a
prognosis-based system control) in Chapter 3: The first decision support system
for dispatchers controlling natural gas networks. Based on current forecasts of fu-
ture flows and pressures, KOMPASS continuously recommends control measures to
ensure a stable network control. In the following, we present its architecture and dis-
cuss those parts in depth to which the research presented in this thesis contributed.

Given the network topology, technical and physical data related to its entities,
and the current state in terms of gas flows and pressures, future supplies and de-
mands for the entry and exit points are predicted using the approach of Petkovic et
al. [129]. Subsequently, additional time series for the pressure values at the entries
are heuristically generated based on the predicted supplies.

Afterward, in the first stage of KOMPASS, which constitutes a central topic of
Chapter 3, we propose an algorithmic approach for determining a stable transient
control for gas transport networks. It consists of a tri-level MIP model, followed by
a sequential linear programming inspired postprocessing routine.

The tri-level MIP is designed to make important global control decisions, e.g., how
to route the flow and where and when to compress the gas. The objectives of the
two upper levels are to ensure the existence of a feasible technical network control
while deviations from the predicted pressures and flows are minimized. The goal
of the third level is then to actually determine a feasible technical network control
using as few technical measures as possible, i.e., changes in the operation modes of
network elements. The latter is considered a meaningful indicator for stability w.r.t.
the network control by practitioners. To solve the tri-level MIP, we introduce an
algorithm based on solving a sequence of closely related single-level MIPs.

To obtain a computationally tractable formulation, we apply several approxima-
tions of the physics of gas transport networks. For example, we use the concept of
network stations to model complex pipeline intersection areas, which comprise mul-
tiple compressor stations, regulators, and valves. Thereby, the technical capabilities
of each network station, e.g., the increase of gas pressure through compression, are
given by a purpose-built and hand-tailored directed graph representation. The in-
terplay of its arcs is then described using the concepts of so-called flow directions
and simple states. In particular, for each network station and each time step, we
must choose a flow direction, which determines where the gas enters and leaves, and
a supporting simple state, which enables the usage of a subset of the artificial arcs.

Moreover, we apply a linear model for the transient gas flow through pipelines. To
eliminate possible drawbacks regarding its physical accuracy, we propose an iterative
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velocity adjustment procedure (IVAP) as postprocessing routine, which is inspired
by sequential linear programming.

Our algorithmic approach yields promising results in computational experiments,
which we conducted using instances that are based on a major subnetwork of OGE’s
transport infrastructure and corresponding historically measured flow and pressure
values. The experts consider the obtained solutions meaningful, and they are ad-
ditionally quickly and reliably determined, which is a crucial property w.r.t. the
underlying application, i.e., the usage within KOMPASS.

In the second and last stage of KOMPASS, the global control decisions recom-
mended by the first stage algorithm are verified, and highly detailed technical control
measures for the original network elements realizing them are determined. To this
end, the approach proposed by Hennings et al. [78] is applied.

Can the natural gas network be repurposed for hydrogen transport?

Besides the previously discussed economic considerations regarding a transforma-
tion, existing studies have mainly focused on the feasibility w.r.t. the technical com-
ponents, e.g., whether the installed pipelines are suited for hydrogen transport,
see for example Peter et al. [2], Dodds and Demoullin [35], and Haeseldonckx and
D’haeseleer [70]. However, although the crucial question of how the control of such
a network changes compared to natural gas transport has been raised [35], it has
not been investigated yet. This thesis constitutes, as far as we know, the first work
in this direction and reveals several interesting insights.

In the course of Chapter 3, we explicitly state our algorithmic approach for deter-
mining a stable transient network control for hydrogen networks, too. To investigate
whether the natural gas infrastructure can be repurposed and how its control changes
when energy-equivalent amounts of hydrogen are transported, we discuss physical
and technical properties that differ w.r.t. the two gases. Based on this, we propose
a method for converting the natural gas input data into hydrogen transport sce-
narios. Using the converted natural gas instances, we demonstrate that replacing
the currently installed turbo compressors with special hydrogen compressor units is
necessary to allow for feasible technical network control. This is because the maxi-
mum compression ratios of the former are drastically reduced. Due to the reduced
linepack, we also observe that more technical measures need to be conducted as the
hydrogen must be stored in or retrieved from more remote parts of the network. For
the same reasons, the amount of compression energy increases by 440% on average.
Finally, it is necessary to enforce stricter regulatory rules regarding the balancing of
supply and demand to transport energy-equivalent amounts of hydrogen.

What are possible worst-case transport scenarios that can arise?

When discussing stable network control, a natural question is what the most chal-
lenging problem instances look like. Indeed, the identification of severe transport
scenarios is a crucial task in the context of determining the technical capacity of a
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gas transport network, i.e., the maximum amounts of gas it can transport.
Chapter 4 starts with an explanation of the regulatory rules for the German

natural gas market, which is a necessary prerequisite to understand how transport
scenarios arise in the first place. Afterward, we review several methods from the
literature as well as two approaches that are used in practice to determine a network’s
technical capacity, i.e., the amounts of gas it can transport. Both of the latter are
based on evaluating a finite set of severe transport scenarios, which is designed to
cover and represent a wide range of possible but difficult flow situations. Our reviews
demonstrate that it is beneficial to consider multiple, diverse severity measures when
selecting transport scenarios in order to improve coverage.

This is the motivation for the two new severity measures for transport scenarios
we propose: The minimum transport moment and the potential transport moment.
In this context, we introduce the Maximum Transportation Problem (MaxTP) and
the Maximum Potential Transport Moment Problem (MaxPTM), whose goal is to
determine worst-case scenarios corresponding to the respective measures.

MaxTP and MaxPTM can be modeled as Stackelberg games. First, the leader
chooses a transport scenario. Then the follower, i.e., the TSO, routes the flow
through the network according to a given transport model and objective function,
which represents the severity measure. To determine worst-case scenarios, the leader
chooses a transport scenario that leads to a maximum transport effort for the TSO.
In other words, the goal of the leader is to maximize the objective function value of
the follower.

Given a transport scenario selected by the leader, the follower in MaxTP solves the
induced Transportation Problem, i.e., the resulting Minimum Cost Flow Problem
without capacity restrictions, and we obtain a linear bilevel optimization formulation
with interdicting objective functions. To solve MaxTP, we reformulate it as MIP.
Therefore, we first introduce the notion of solution-equivalency for MaxTP instances.
This concept helps us to identify MaxTP instances whose feasible solutions can eas-
ily be mapped onto each other while the objective function values are preserved.
In this context, we introduce the so-called L1 instances, which feature a tripartite
and acyclic network. This structure allows us to apply a KKT-reformulation, pro-
vide bounds for the corresponding variables, and eventually derive a MIP model by
applying the big-M technique.

MaxPTM features a linear potential-based flow model, which can be considered
more realistic w.r.t. the physics of gas flow. This model has the advantage that, given
a transport scenario, it admits a unique feasible solution w.r.t. the flows. There-
fore, and since the potential transport moment exclusively relies on these values,
MaxPTM can directly be reformulated as MIP.

A case study based on the gaslib-582 instance from the GasLib benchmark li-
brary [147] demonstrates that our new severity measures should be considered when
designing test sets for evaluating the technical capacity of gas transport networks.
In particular, the worst-case transport scenarios determined with MaxTP and Max-
PTM exceed the corresponding maximum severity measure values from the provided
instance set by 23% and 30%, respectively.
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How can the transport infrastructure be monitored efficiently?

Malfunctioning hardware does not only affect the control of the entire network but
also poses a threat to its safe operation. For example, it is crucial to regularly
check the pipelines in order to detect leakages early on. In the case of natural
gas networks, this is necessary to prevent methane emissions, while embrittlement
is a major concern in hydrogen transport. Thus, the TSOs have to monitor their
infrastructure continuously, and it is a natural goal to do this cost-efficiently.

Chapter 5 discusses the idea of using uncrewed aerial vehicles (UAVs) for monitor-
ing the transport infrastructure. To optimize their routing, we introduce and discuss
the Length-Constrained Cycle Partition Problem (LCCP), a new generalization of
the Traveling Salesperson Problem (TSP). Let the vertices of a given undirected
graph represent the objects or areas to monitor, and weights on the edges corre-
spond to the flying times between two adjacent vertices. Furthermore, each vertex
is associated with a so-called critical weight value, which represents the maximum
duration for which it can be left unattended. A vertex-disjoint cycle partition is a
feasible solution for LCCP if the length of each cycle, which represents the flying
route of an individual UAV, does not exceed the critical weight value of each of the
vertices it contains. We require the flying routes to be disjoint to avoid interferences.

Next, we introduce the Most-Critical-Vertex-Based Heuristic (MCV) for LCCP. Its
basic idea is to choose a vertex with minimum critical weight, iteratively select other
vertices and extend them to a cycle while the critical weight conditions are satisfied,
stop if no further extension seems to be possible, delete the resulting cycle from the
graph, and restart the process until all vertices have been assigned. Moreover, we
introduce two exact MIP models for LCCP. The first one is based on an adaption
of the Miller–Tucker–Zemlin formulation for TSP, and the second one features a
variant of subtour elimination constraints.

Moreover, we introduce conflict hypergraphs for LCCP, where a hyperedge repre-
sents a set of vertices that cannot be contained in a common cycle. Based on cliques
in this graph, we derive valid inequalities and lower bounds for the MIPs.

Finally, by combining MCV, the MIP models, the valid inequalities and lower
bounds from the conflict hypergraphs, and additional symmetry-breaking constraints,
we determine optimal solutions for problem instances with up to fifty vertices in our
TSPLIB- and ATSPLIB-based computational experiments.

1.2. Publications

Parts of this thesis have already been published in international journals or peer-
reviewed conference proceedings. Others are discussed in articles that have been
submitted and are under review or are currently in preparation. However, nearly all
content is publicly available in technical reports. In particular:

▷ The majority of the content of Chapter 3, especially on natural gas trans-
port, is based on “Optimal Operation of Transient Gas Transport Networks;
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Kai Hoppmann-Baum, Felix Hennings, Ralf Lenz, Uwe Gotzes, Nina Hei-
necke, Klaus Spreckelsen, and Thorsten Koch; Optimization and Engineering,
22(2):735–781, 2021” [86].

Furthermore, basic approaches and first results regarding hydrogen trans-
port are available in “From Natural Gas towards Hydrogen – A Feasibility
Study on Current Transport Network Infrastructure and its Technical Con-
trol; Kai Hoppmann-Baum, Felix Hennings, Janina Zittel, Uwe Gotzes, Nina
Heinecke, Klaus Spreckelsen, and Thorsten Koch; Technical Report 20-27,
ZIB, 2020” [87]. A corresponding paper featuring the updated computational
experiments presented in this thesis has been submitted.

The co-authors provided parts of the input data and helped with multiple fruit-
ful discussions regarding the underlying ideas and topics of this chapter. The
author of this thesis, who is also the main author of the papers, is responsible
for the scientific content.

▷ MaxTP and the corresponding model and a first solution approach in Chap-
ter 4 have first been introduced in “Finding Maximum Minimum Cost Flows
to Evaluate Gas Network Capacities; Kai Hoppmann and Robert Schwarz;
Operations Research Proceedings 2017, pages 339–345, 2018” [83].

The detailed discussions on the Reference Point Method, MaxPTM, and the
case study are available in “Using Bilevel Optimization to find Severe Transport
Situations in Gas Transmission Networks; Kai Hennig and Robert Schwarz;
Technical Report 16-68, ZIB, 2016” [75].

Both articles have been joint work with Robert Schwarz, who motivated the
author to conduct research in this direction in the first place and helped with
many valuable suggestions.

MinTP and all complexity results provided in this chapter have been pub-
lished in “On the Complexity of Computing Maximum and Minimum Min-
Cost-Flows; Kai Hoppmann-Baum; Networks, 79(2):236–248, 2022" [84].

The main results, i.e., the MIP model and the concepts and results needed to
derive it, have been developed by the author of this thesis. A corresponding
paper is currently being prepared.

▷ Chapter 5, which is mainly related to LCCP, is based on two closely related
papers. The first one was published as “Minimum Cycle Partition with Length
Requirements; Kai Hoppmann, Gioni Mexi, Oleg Burdakov, Carl Johan Cas-
selgren, and Thorsten Koch; Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pages 273–282, 2020” [82].

The follow-up paper, which generalizes LCCP and features new theoretical
results, an improved heuristic algorithm, and a novel MIP model, is avail-
able online as “Length-constrained cycle partition with an application to UAV
routing*; Kai Hoppmann-Baum, Oleg Burdakov, Gioni Mexi, Carl Johan Cas-
selgren, and Thorsten Koch; Optimization Methods and Software, 2022” [85].
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Oleg Burdakov had the original idea regarding LCCP and closely advised the
author during his work on it. A first solution approach was developed together
with Gioni Mexi in the context of his Bachelor thesis. The discussions with
Carl Johan Casselgren and Thorsten Koch helped to put the work into context.
The author of this thesis, who is also the main author of both publications, is
responsible for the scientific content.
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2. Mathematical Prerequisites

This chapter introduces the fundamental mathematical concepts that we apply
within the thesis. We start with definitions for mixed-integer and linear program-
ming and discuss important theoretical results as well as main solution approaches
for both in Section 2.1. Afterward, we give a brief idea of general multilevel pro-
gramming and then focus on (mixed-integer) linear bilevel problems in Section 2.2.
Besides motivating the latter using an example application, we describe solution
methods based on a single-level reformulation and techniques from mixed-integer
programming. We conclude this chapter with a short introduction to graphs and
(potential) flow networks and define classic related optimization problems in Sec-
tion 2.3. The motivation here is that gas transport networks are usually modeled as
graphs or flow networks, and problems like the Minimum Cost Flow Problem play
an essential role throughout this thesis.

2.1. Mixed-Integer Programming

A great majority of the modeling approaches and solution methods presented in this
thesis is based on algorithms within which mixed-integer or linear programs must
be solved. Therefore, this section states fundamental definitions, results, and algo-
rithms regarding these two problem classes. Most of the terminology and notation
is adapted from the PhD theses of Achterberg [1] and Berthold [14].

Given a matrix A ∈ Rm×n, as well as vectors b ∈ Rm, c ∈ Rn, l ∈ (R ∪ {−∞})n,
u ∈ (R ∪ {+∞})n, and a subset I ⊆ N := {1, . . . , n}. A mixed-integer (linear)
program (MIP) is an optimization problem of the form

min c⊺x (2.1)
s.t. Ax ≤ b (2.2)

l ≤ x ≤ u (2.3)
xj ∈ Z ∀j ∈ I. (2.4)

While we call xj with j ∈ N \ I a continuous variable, xj with j ∈ I denotes an
integer variable (2.4). Constraint (2.3), which we consider componentwise, denotes
the variable bounds. Here, lj represents a lower and uj an upper bound on xj . If we
have 0 ≤ xj for some variable, we refer to it as nonnegative, and if xj ∈ {0, 1} holds
for some integer variable, it is called a binary or decision variable. The latter term
stems from the fact that “yes/no”-decisions are usually modeled using this type of
variable. In the following, we denote the index set of the binary variables by B ⊆ I.
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Next, we discuss condition (2.2), which we consider componentwise as well. In
particular, each row with index i ∈ {1, . . . ,m} represents a linear constraint∑︂

j∈N
aijxj ≤ bi. (2.5)

In accordance with the “≤”-symbol, bi is called the right-hand side of (2.5). Note
that we synonymously call linear constraints inequalities in the following.

Additionally, c⊺x, i.e., (2.1), is the objective function of the MIP. Note that it
represents a linear function of the x-variables.

A vector x∗ ∈ Rn is called a feasible solution for a MIP if it satisfies (2.2)–(2.4),
and it is called optimal if it minimizes the objective function value among all feasible
solutions, i.e., if c⊺x∗ ≤ c⊺x̃ holds for all feasible solutions x̃.

The format of the MIP presented above is very general. For example, a maxi-
mization problem can be reformulated as minimization problem by multiplying the
objective function coefficients with −1. Similarly, “≥”-constraints can be rewritten
as “≤”-constraints by multiplying both sides with −1. Additionally, equality con-
straints, i.e., “=”-constraints, can be reformulated using two opposing inequalities.

Note that we will usually include the variable bounds as linear constraints in the
constraint matrix except for some special cases, e.g., if we want to emphasize that
some class of variables is binary or nonnegative. The latter can actually be assumed
w.l.o.g. through replacing each variable with two nonnegative variables, i.e., setting
x = x+ − x− with x+, x− ≥ 0. Here, x+ covers all possible nonnegative and x−

all possible nonpositive values after the constraint matrix is extended and adapted
accordingly. Finally, by an abuse of notation, we use MIP as an abbreviation for
the general concept of mixed-integer linear programming in this thesis as well.

There are several special cases of MIP that we are going to come across in the
course of this thesis. In particular, depending on the index sets of the integer and
binary variables I and B, we call a MIP

▷ a linear program (LP) if I = ∅,

▷ an integer program (IP) if I = N ,

▷ a mixed binary program if B = I,

▷ and a binary program (BP) if B = I = N .

Before discussing linear programming in more detail, we briefly introduce a more
general class of mathematical programs for the sake of completeness.

A mathematical program that is defined analogous to MIP but where a subset
of the constraints and the objective can be arbitrary nonlinear functions we call
a mixed-integer nonlinear program (MINLP). If I = ∅, we refer to it as nonlinear
program (NLP). As we focus on MIP and LP in this thesis, we refer to the survey
paper of Burer and Letchford [18], the books of Lee and Leyffer [104] and Belotti et
al. [12], as well as the paper of Sahinidis [142] and the references therein for more
information on this branch of mathematical programming.
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2.1.1. Linear Programming and Duality Theory

An important concept in linear programming is duality. Let us consider an original
(primal) LP in the form

min c⊺x

s.t. Ax ≤ b

x ≥ 0.

Its dual LP is defined as

max −b⊺u
s.t. A⊺u ≥ −c

u ≥ 0.

We say that ui with i ∈ {1, . . . ,m} is the dual variable associated with the i-th
constraint of the primal LP. On the other hand, variable xj with j ∈ {1, . . . , n} is
the primal variable associated with the j-th constraint of the dual LP.

There exists a beautiful and rich theory regarding primal and dual linear programs.
For example, if one of the two problems has an optimal solution, so has the other,
and the objective function values coincide. We refer to the book of Chvatal [25] for
a corresponding proof.

Moreover, the concept of complementary slackness describes a relationship be-
tween the slackness of a primal/dual constraint, i.e., whether it is binding and holds
with equality in the considered solution or not, and the positivity of the associated
dual/primal variable. Suppose we are given an optimal solution x∗ for the primal
LP and an optimal solution u∗ for the corresponding dual LP. It holds that

▷ if x∗j > 0, then the j-th constraint of the dual is binding,

▷ if the i-th constraint of the primal is not binding, then u∗i = 0,

▷ if u∗i > 0, then the i-th constraint of the primal is binding, and

▷ if the j-th constraint of the dual is not binding, then x∗j = 0.

For corresponding proofs, more information about the duality theory, and a more
detailed discussion on linear programming we again refer to the book of Chvatal [25]
as well as to the book of Bertsimas and Tsitsiklis [15].

2.1.2. Complexity, Algorithms for LP, and the LP Relaxation

While binary programs, mixed binary programs, integer programs, and mixed integer
programs are NP-hard problems, see for example Cook [27], linear programs can be
solved in polynomial time, which was first shown by Khatchiyan [91]. One algorithm
for LP is the famous simplex method invented by Dantzig [28], which is known to

15



2. Mathematical Prerequisites

reliably and efficiently solve linear programs in practice. Thus, it is no surprise that
the common algorithmic approach for solving MIPs in practice, which we describe
in the upcoming Subsection 2.1.3, relies on repeatedly solving LPs that correspond
to subproblems closely related to the original MIP.

To describe this approach, we need one more definition. Consider a MIP as defined
above. Relaxing the integrality conditions 2.4, i.e., setting I = ∅, yields an LP, which
is called the LP relaxation of the corresponding MIP. Note that all feasible solutions
of a MIP are also feasible for its LP relaxation.

2.1.3. LP-Based Branch-and-Bound for MIP

Branch-and-bound, which was first described by Land and Doig [103], is the standard
method used in practice to solve MIPs. To the best of our knowledge, all state-of-
the-art MIP solvers, e.g., SCIP, Xpress, Gurobi, or CPLEX, use variants of LP-based
branch-and-bound, which are additionally enhanced by incorporating several other
algorithmic subroutines.

Basic LP-based branch-and-bound can be described as follows. We start with the
original MIP and solve its LP relaxation. If the resulting solution x̃ is optimal for the
LP relaxation and happens to satisfy the integrality conditions (2.4), we have found
an optimal solution for the original MIP. Otherwise, we select an integer variable xj
that takes on some value x̃j ∈ R \ Z and branch on it, i.e., we divide the problem
into two subproblems where we add the additional constraint xj ≤ ⌊x̃j⌋ to one of
them and xj ≥ ⌈x̃j⌉ to the other. The same procedure is now applied to the two
subproblems. There are three cases where we refrain from further branching on a
subproblem. First, the LP relaxation of the subproblem is a feasible solution for
the original MIP, i.e., the integrality conditions (2.4) are satisfied. Second, the LP
relaxation is infeasible. Third, we found a feasible solution for the LP relaxation, but
its objective function value is greater than or equal to the objective function value
of the current incumbent, i.e., the best feasible solution for the MIP that has been
found so far, which represents an upper bound on the value of an optimal solution.
In all of these three cases, it does not make sense to consider further subproblems
with additional constraints as these cannot yield better feasible solutions w.r.t. the
original MIP.

As mentioned above, several algorithmic procedures can be incorporated into the
basic branch-and-bound algorithm to accelerate the solving process. For example,
two obvious points for improvement are elaborate selection rules for the next sub-
problem to process and the integer variable to branch on. For more information
regarding this topic, we refer to the PhD thesis of Gamrath [54]. Moreover, it can
be beneficial to apply heuristic algorithms to determine feasible solutions and de-
crease the upper bound during the branch-and-bound process. We refer to the PhD
thesis of Berthold [14] for a detailed discussion on this topic. Finally, for an overview
of other techniques, e.g., presolving, domain propagation, or cut separation, we refer
to the PhD thesis of Achterberg [1].
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2.2. Multilevel and Bilevel Optimization

Another important modeling concept used in this thesis is multilevel programming.
While we consider a single objective function and a single decision-maker (DM) in
MIP, i.e., all variable values are chosen to minimize the objective function, multilevel
programming allows us to model sequential decision processes involving multiple
DMs. In particular, each DM controls an individual subset of the variables and
pursues to an individual objective function and an individual set of constraints. In
this context, we assume that the DMs have perfect information and act rationally.
This means that the higher levels, i.e., the DMs that act first when selecting values
for their respective variables, can predict the reactions of all lower-level DMs. This is
because the latter act rationally as well, i.e., according to their individual objective
function, their individual set of constraints, the decisions that have already been
taken by the higher-level DMs, and in anticipation of the reactions of subsequent
lower-level DMs. For more information on multilevel programming, we refer to the
book of Migdalas et al. [111]. In the following, we focus on the “simplest” nontrivial
case of multilevel programming and consider two DMs, i.e., bilevel programming.

2.2.1. Linear Bilevel Programming

Bilevel programming was first introduced by the German economist Heinrich Frei-
herr von Stackelberg in his habilitation thesis “Marktform und Gleichgewicht” [158],
and it is therefore also known as Stackelberg game. While the upper-level player
is commonly referred to as the leader, the lower level is called the follower. Con-
sidering a bilevel problem as a game, the leader starts by making the first move
while the follower reacts optimally to it w.r.t. its objective. Thus, the leader has to
anticipate the follower’s response and incorporate it into its considerations to obtain
an outcome that is best w.r.t. its objective.

To illustrate this concept using an example, consider the toll pricing problem
described in the paper of Labbé et al. [100]. Given a transportation network, the
leader represents an authority responsible for setting tolls on a specified subset of
connections. The goal is to maximize the collected tolls. On the other hand, the
follower, whose task is to route the community of the network users, observes the
actions taken by the leader. If the authority calls for too expensive tariffs, the users
take alternative routes to avoid the tolls, which results in lower costs for them. Thus,
in order to determine an optimal toll policy, the leader has to anticipate the routing
behavior of the users, incorporate it into its decisions, and set the tariffs in a way
so that it does not pay off for them to switch routes. This problem is modeled as a
linear bilevel program in [100], which we are going to discuss shortly.

Next, we introduce fundamental notation and definitions regarding bilevel pro-
gramming. We focus on mixed-integer linear bilevel problems here, which can be
seen as a generalization of MIP explained in Section 2.1. In particular, all constraints
and objective functions are linear, and a subset of the variables may have to take
on integer values. Thereby, we mainly follow the book of Bard [8].
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Given matrices A1 ∈ Rm1×n1 , B1 ∈ Rm1×n2 , A2 ∈ Rm2×n1 , B2 ∈ Rm2×n2 , vectors
b1 ∈ Rm1 , b2 ∈ Rm2 , c1 ∈ Rn1 , d1 ∈ Rn2 , c2 ∈ Rn1 , d2 ∈ Rn2 as well as index subsets
I1 ⊆ N1 := {1, . . . , n1} and I2 ⊆ N2 := {n1 + 1, . . . , n1 + n2}. A mixed-integer
(linear) bilevel program (MIBP) is an optimization problem of the form

min
x

c⊺1x+ d⊺1y (2.6)

s.t. A1x+B1y ≤ b1 (2.7)
x ≥ 0 (2.8)
xj ∈ Z ∀j ∈ I1 (2.9)

min
y

c⊺2x+ d⊺2y (2.10)

s.t. A2x+B2y ≤ b2 (2.11)
y ≥ 0 (2.12)
yj ∈ Z ∀j ∈ I2. (2.13)

Constraints (2.6)–(2.9) describe the upper-level or leader’s problem, which addi-
tionally incorporates the lower-level or follower’s problem (2.10)–(2.13). While the
leader controls the x-variables, the follower controls the y-variables. The remaining
nomenclature is similar to MIP, i.e., (2.6) and (2.10) denote the objective functions
and (2.7) and (2.11) denote the linear constraints of the upper and lower level, re-
spectively. Upper-level constraints are synonymously called coupling constraints if
they explicitly depend on y-variables. Similarly, y-variables contained in coupling
constraints are also referred to as coupling variables. Finally, the integrality restric-
tions on the variables regarding index sets I1 ⊆ N1 and I2 ⊆ N2 are stated in (2.9)
and (2.13), respectively.

Next, a tuple (x, y) ∈ Rn1×Rn2 is called a feasible solution for MIBP if it satisfies
(2.7)–(2.13). In particular, y ∈ Rn2 has to be an optimal solution for the MIP
(2.10)–(2.13) induced by the selected x ∈ Rn1 . Moreover, (x, y) is called optimal if
it minimizes the objective function value of the leader among all feasible solutions,
i.e., if c⊺1x+ d⊺1y ≤ c⊺1x̃+ d⊺1ỹ holds for all feasible solutions (x̃, ỹ).

However, the problem above is not well-posed as the optimal solution of the fol-
lower does not necessarily have to be unique. Several methods have been proposed
in the literature to overcome this and all of them require some assumptions regard-
ing the level of cooperation between the leader and the follower. The most common
one and the one we apply in this thesis is optimistic bilevel programming. Here, we
assume that the leader can influence the follower to choose an optimal solution that
is best for the leader w.r.t. its objective function. For the sake of completeness, we
additionally want to mention pessimistic bilevel programming here, where the fol-
lower chooses an optimal solution that is worst for the leader. For more information
on pessimistic bilevel programming, we refer to the book chapter of Liu et al. [107].
Finally, we want to emphasize that the leader has to choose the x-variables such
that the lower level admits a feasible solution. If this is not possible, the MIBP
itself is infeasible.
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When developing solution algorithms for MIBP and bilevel programming in gen-
eral, it is crucial to analyze the degree of coupling between the two levels and the
structure and properties of the lower level. Nevertheless, most state-of-the-art algo-
rithms apply techniques originating from MIP, e.g., branch-and-bound and cutting
planes. For a survey on these techniques, we refer to Kleinert et al. [93].

In the following, we concentrate on solution approaches for linear bilevel programs
(BP). BP is the special case of MIBP where I1 = I2 = ∅, i.e., all variables are
continuous. Furthermore, we again assume w.l.o.g. that all variables are nonnegative.
However, although LP is solvable in polynomial time, BP is NP-hard in the strong
sense as shown by Hansen et al. [71]. We additionally recommend the paper of Audet
et al. [6], where a nice reduction from mixed binary programming is presented.

There exist several solution algorithms for BP, e.g., the Kth-Best Algorithm or
approaches based on parametric programming theory, see the book chapter of Cal-
vete and Galé [21] for more information. In the following, we discuss one of the
most common solution approaches, namely to apply a classic Karush–Kuhn–Tucker
(KKT) reformulation and convert the BP into a single level optimization problem.

2.2.2. KKT-Conditions-Based Algorithms

The Karush–Kuhn–Tucker conditions (KKT) for nonlinear programming are a set of
necessary and sufficient optimality conditions, see the original papers of Karush [90]
and Kuhn and Tucker [99] in the book by Giorgi and Kjeldsen [61] for details. In
the special case of linear programming, they consist of the variables and constraints
of the primal and the dual linear program as well as corresponding complementary
slackness conditions. Lets assume w.l.o.g. that all variables are nonnegative and
that the variable bounds are included in the constraint matrices, i.e., lets consider
the primal and dual LP definitions from Section 2.1. We then derive the following
nonlinear optimization problem when replacing the lower-level LP with its KKT
conditions

min
u,x,y

c⊺1x+ d⊺1y (2.14)

s.t. A1x+B1y ≤ b1 (2.15)
A2x+B2y ≤ b2 (2.16)

−uB2 ≤ d2 (2.17)
(d2 + uB2)y = 0 (2.18)

u(b2 −A2x−B2y) = 0 (2.19)
u, x, y ≥ 0, (2.20)

which is equivalent to (2.6)–(2.13) if I1 = I2 = ∅. Here, y and (2.16) represent
the primal variables and constraints of the lower level LP. Furthermore, u ∈ Rm2

represents the row vector of the corresponding dual nonnegative continuous vari-
ables. The corresponding dual constraints are stated in (2.17). Additionally, (2.18)
and (2.19) model the complementary slackness conditions of the follower’s LP, which
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we synonymously call complementarity constraints. These nonlinear constraints en-
force that a primal/dual inequality is binding or that the corresponding dual/primal
variable is zero. Finally, we want to note that the same reformulation can be applied
even if I1 ̸= ∅.

One way to directly solve the NLP above is to apply the SOS-1 technique. Thereby,
the complementarity conditions are initially omitted and then “branched” on after-
ward during the solving process. For more details on this method, we refer to the
work of Bard and Moore [9].

A second, very popular method is to apply a big-M reformulation of the comple-
mentarity conditions, which was first described by Fortuny-Amat and McCarl [47].
Here, an auxiliary binary variable z ∈ {0, 1} is introduced for each constraint (2.18)
and (2.19). Afterward, the complementarity condition is replaced by two linear
constraints. For example, a constraint of the type (2.19) is replaced by

b2 −A2x−B2y ≤Mp(1− z) (2.21)
u ≤Mdz (2.22)

where are Mp and Md are upper bounds on the terms b2 − A2x − B2y and u,
respectively. Depending on the value of z, one of the two terms is forced to be
equal to zero, which implies (2.19). An analogous reformulation can be applied
to constraints (2.18). Note that the upper bounds have to be valid to derive a
correct MIP model and cannot be chosen arbitrarily, as discussed by Pineda and
Morales [132].

Finally, computational experiments conducted by Kleinert and Schmidt [95] show
that the big-M approach should be preferred if valid (and small) bounds are avail-
able. However, since verifying the correctness of upper bounds is itself an NP-hard
problem, see Kleinert et al. [94], it is often beneficial to exploit problem-specific
knowledge and the structure of the underlying problem to derive them.

2.3. Graphs, Flow Networks, and Related Problems

Gas transport networks are usually modeled as some kind of (potential-based) flow
network. Hence, we introduce basic notation and definitions regarding them in this
section. The nomenclature is adapted to align with the terms that are commonly
used in gas transport. We recommend the books of Grötschel et al. [66] and Korte
and Vygen [98] for an adequate treatment of the topic.

Moreover, we introduce and discuss one of the most fundamental and classic net-
work flow problems, which serves as the basis for many modeling and algorithmic
approaches not only in this thesis: The Minimum Cost Flow Problem (MCF). Based
on it, we afterward derive definitions for two other well-known problems, namely the
Transportation Problem (TP) and the Shortest Path Problem (SP). For more gen-
eral information regarding flow networks, we refer to the book of Ahuja et al. [4]
and the article of Magnanti and Wong [108].
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2.3.1. Graph Theory

A (directed) graph G = (V,A) is a tuple consisting of a nonempty and finite set of
vertices V := {v1, . . . , vn} and a finite set A ⊆ V × V of (ordered pairs of) vertices,
which we call arcs. We assume that each arc features pairwise different vertices,
i.e., we do not consider loops and require that i ̸= j holds for each arc (vi, vj) ∈ A.
However, we explicitly allow parallel arcs, i.e., arcs that have identical start- and
end-vertices. If two arcs connect the same two vertices but in opposite directions,
we call them antiparallel. Finally, while δ+(v) := {(v, w) ∈ A |w ∈ V} ⊆ A and
δ−(v) := {(w, v) ∈ A |w ∈ V} ⊆ A denote the set of outgoing and ingoing arcs,
respectively, δ+(v)∪ δ−(v) =: δ(v) ⊆ A denotes the set of all arcs incident to v ∈ V .

In contrast, an undirected graph G = (V, E) features a finite set of unordered pairs
of vertices E , which we call edges. Again, we do not consider loops, and we note
that edges can be parallel, but no further distinction is possible here. Accordingly,
δ(v) := {{v, w} ∈ E |w ∈ V} ⊆ E denotes the set of edges incident to v ∈ V .

Next, a (directed) path in a (directed) graph G, which starts at v1 ∈ V and ends at
vk ∈ V , is a sequence (v1, a1, v2, a2, . . . , ak−1, vk) =: pv1vk where ai = (vi, vi+1) ∈ A
for all i ∈ {1, . . . , k − 1} and all nodes in the sequence are distinct, i.e., vi ̸= vj for
i, j ∈ {1, . . . , k} with i ̸= j. In case that v1 = vk, the sequence is called a (directed)
cycle. Corresponding definitions for undirected graphs follow accordingly.

2.3.2. Flow Networks

A flow network is a directed graph G = (V,A) where each arc a ∈ A features a
nonnegative capacity value ca ∈ R≥0. We synonymously call V the set of nodes in
the context of flow networks. Additionally, we are given boundary values bv ∈ R for
all nodes v ∈ V . If bu > 0 for some u ∈ V , then u is called an entry and bu its supply.
If bw < 0 for some w ∈ V , then w is called an exit and bw its demand. Accordingly,
we denote the set of entries by V+ := {v ∈ V | bv > 0} ⊆ V and the set of exits by
V− := {v ∈ V | bv < 0} ⊆ V . All other nodes v ∈ V0 := V \ (V+ ∪ V−) with bv = 0
are called inner nodes. Hence, we denote a flow network as a quadruple (V,A, c, b).

Next, a vector f ∈ R|A| is called a feasible (network) flow for (V,A, c, b) if∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V (2.23)

0 ≤ fa ≤ ca ∀a ∈ A. (2.24)

Here, (2.23) ensures that the supplies and demands of the entries and exits are
satisfied and that flow conservation holds at all inner nodes, i.e., the amount of flow
entering an inner node must leave it, too. We refer to (2.23) as flow conservation
constraints in the following. Additionally, the flow fa on arc a ∈ A is nonnegative
and bounded from above by the corresponding capacity ca (2.24). Note that the
sum of the supplies has to equal the sum of the absolute demands to allow for a
feasible flow, i.e., supply and demand must be balanced.
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2.3.3. The Minimum Cost Flow Problem

The Minimum Cost Flow Problem (MCF) is defined on a flow network where we
additionally consider a nonnegative arc length ℓa ∈ R≥0 for each arc a ∈ A. Thus,
an instance of MCF is a quintuple (V,A, ℓ, c, b), and the goal is to find a feasible
network flow f∗ ∈ R|A| that minimizes the sum of the products of the arc flows and
the arc lengths. In other words, MCF can be modeled as the following LP

min
f

∑︂
a∈A

ℓafa (2.25)∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V (2.23)

0 ≤ fa ≤ ca ∀a ∈ A, (2.24)

where fa is the variable representing the flow on the corresponding arc a ∈ A,
and (2.23) and (2.24) are the feasibility conditions concerning the network flow.

Aside from solving the linear programming formulation presented above, several
combinatorial algorithms exist based on the rich mathematical theory arising in the
context of MCF, see for example the book of Ahuja et al. [4]. Well-known examples
are the Minimum Mean Cycle-Cancelling Algorithm of Goldberg and Tarjan [62] or
Successive Shortest Path Algorithms, see Edmonds and Karp [41]. For more details
on MCF and several example applications, we again recommend [4].

2.3.4. The Transportation Problem

The Transportation Problem (TP) is the special case of MCF where all arcs are
uncapacitated, i.e., their capacities are sufficiently large such that they do not have
to be considered when determining an optimal solution. For example, if all capacities
are greater than or equal to the sum of the supplies, i.e., ca ≥

∑︁
u∈V+ bu for all a ∈ A,

and there exists a feasible solution satisfying the flow conservation constraints (2.23),
then there exists an optimal solution satisfying the capacity restrictions (2.24). Thus,
we denote a TP instance as quadruple (V,A, ℓ, b), and considering the LP model for
MCF, we derive an LP model for TP by replacing (2.24) with

fa ≥ 0 ∀a ∈ A. (2.26)

2.3.5. Potential-Based Flow Networks

The following definition of (passive) potential-based flow networks, which represents
an extension of aforementioned classic flow networks, is based on the paper of Gross
et al. [65]. For more details, we additionally refer to the book of Rockafellar [138].

A potential-based flow network is a directed graph G = (V,A) where each node
v ∈ V is associated with a potential pv ∈ R together with lower bounds

¯
pv ∈ R and

upper bounds p̄v ∈ R such that
¯
pv ≤ pv ≤ p̄v holds, and each arc a ∈ A is associated

with a flow qa with corresponding lower bounds
¯
qa ∈ R and upper bounds q̄a ∈ R

22



2.3. Graphs, Flow Networks, and Related Problems

such that
¯
qa ≤ qa ≤ q̄a holds. Note that we explicitly allow negative arc flows here,

which can be interpreted as flow against the arc’s direction. Finally, we are also given
a strictly increasing continuous function ϕ with the property that −ϕ(qa) = ϕ(−qa),
and an arc-specific parameter βa for each a ∈ A.

We call q ∈ R|A| a feasible (potential-based network) flow if there exist node
potentials p ∈ R|V| such that

pv1 − pv2 = βaϕ(qa) ∀a = (v1, v2) ∈ A (2.27)∑︂
a∈δ+(v)

qa −
∑︂

a∈δ−(v)

qa = bv ∀v ∈ V (2.28)

¯
qa ≤ qa ≤ q̄a ∀a ∈ A (2.29)

¯
pv ≤ pv ≤ p̄v ∀v ∈ V . (2.30)

As we can see here, constraint (2.27) couples the flow on an arc with the difference
between the potentials of its end-nodes.

In the context of gas transport networks, potentials are usually used to model the
squared pressures at the nodes. Further, as differences in the gas pressure induce gas
flow, the flow through pipelines typically depends on the potential difference of the
corresponding end-nodes. Our model for the transient gas flow through pipelines is
for example discussed in the corresponding paragraph in Section 3.5.

2.3.6. The Shortest Path Problem

Recall the definition of a path from Subsection 2.3.1. If we are given additional
length values ℓa ∈ A for the arcs, e.g., as in MCF, we define its length ℓ(pv1vk) as
the sum of lengths of the arcs it contains, i.e.,

ℓ(pv1vk) :=
k−1∑︂
i=1

ℓai .

Note that the length of a cycle is defined analogously. The goal of the Shortest Path
Problem (SP) is to determine a path of minimum length between two given vertices.

SP can also be seen a special case of TP. Suppose we want to find a shortest path
from v1 ∈ V to vk ∈ V in a directed graph G = (V,A) with arc lengths ℓ ∈ R|A|≥0 .
Consider the induced TP instance with bv1 = 1, bvk = −1, and bv = 0 for all
v ∈ V \ {v1, vk}. In an optimal solution, flow will only be sent along shortest paths.

Aside from solving the linear programming formulation of the corresponding TP
instance, there are several other famous algorithms for SP. For example, the well-
known Dijkstra Algorithm [34] or the Bellman-Ford Algorithm [11, 45], which can
even be applied in the case of negative arc lengths.

Finally, for two vertices v1, vk ∈ V , we define the distance dv1vk between them as
the length of a shortest path p∗v1vk , i.e., dv1vk := ℓ(p∗v1vk). If no path exists, we define
dv1vk :=∞, and dv1vk = 0 holds if v1 = vk.
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Determining a stable control for natural gas transport networks is crucial in order
to guarantee the security of the energy supply. Therefore, it is often considered the
essential task of the transport system operator (TSO). However, due to the network
topologies, which have become large and quite complex over time, the design of the
natural gas market, which makes long-term planning and the forecasting of future
supplies and demands more complicated, and side effects of green energy production,
e.g., gas-fired power plants being ramped up on short notice to make up for a lack
of renewable electricity generation, ensuring it has become more difficult.

In this context, after a high-level introduction into the physics and the control of
gas transport networks in Section 3.1, and a review of previous and related work in
Section 3.2, we present KOMPASS in Section 3.3. KOMPASS is a decision support
system for the dispatchers controlling the gas networks. It has been developed in the
GasLab of the research campus MODAL [113] in close collaboration with experts
and practitioners at Open Grid Europe GmbH (OGE) [120], one of the largest nat-
ural gas TSOs in Europe. Like a car’s navigation system, KOMPASS continuously
recommends measures to ensure a stable network control based on current forecasts
of future gas flows and pressures. Thereby, the algorithmic routines that we apply
to determine these measures rely on solving mathematical programming models.

Modeling gas transport through networks is a challenging problem mainly due to
two aspects: The physics of the transient gas flow in pipelines and the combinatorics
behind the setup of compressor stations together with corresponding technical re-
strictions and limitations. The basic idea implemented in KOMPASS is to split the
complexity and handle these two issues in successive stages.

The algorithmic approach applied in the first stage, which represents a main con-
tribution of this thesis, is designed to make important global control decisions, e.g.,
how to route the flow and where and when to compress the gas. It consists of a
tri-level MIP model, followed by a sequential linear programming inspired postpro-
cessing routine. The focus of the approach is on accurately capturing the physics of
the transient gas flow through pipelines, while the technical control capabilities of
complex subnetworks, e.g., compressor stations, are approximated using the model-
ing concept of network stations, which we describe in detail in Section 3.4.

The motivation behind the tri-level MIP is to model a hierarchy of different control
measures. Thereby, the first and the second level represent so-called non-technical
control measures, which can be used to alter the forecasted pressure or flow values,
respectively. These values then serve as the basis for the third level, whose goal is
to determine a feasible technical network control using as few technical measures
as necessary, i.e., to minimize changes in the settings of the network elements. The

25



3. Optimizing Transient Network Control

latter is considered a main indicator for stability by practitioners. Hence, the overall
objective of the formulation is to determine a feasible technical network control with
maximum stability while deviations from the predicted flow and pressure values are
minimized. The tri-level MIP is explained in detail in Section 3.5, and a solution
method based on solving a sequence of closely related single-level MIPs is presented
in Section 3.6.

Our model for the transient gas flow in pipelines, which we use in our hierarchi-
cal programming formulation, consists of linear constraints. To overcome possible
inaccuracies associated with the proposed formulation, we introduce the iterative
velocity adjustment procedure (IVAP) as postprocessing routine. This sequential
linear programming inspired method aims at deriving physically more accurate re-
sults and is the topic of Section 3.7. The question of how the tri-level MIP model
and the IVAP are combined is answered in Section 3.8, where a complete description
of the first stage algorithm that is used within KOMPASS is given.

To demonstrate the applicability of our approach to natural gas transport, we
conduct computational experiments based on a major subnetwork of OGE’s infras-
tructure together with real-world measured pressure and flow data. The setup of
these experiments and the results are presented in Section 3.10.

Finally, the first stage’s global control decisions are verified in the second stage,
where corresponding highly detailed technical control measures for the original net-
work elements are determined. Here, the approach presented by Hennings et al. [78]
is used, which we refer to for more information.

Finally, in the context of repurposing the existing natural gas infrastructure, we
also investigate whether the converted network can transport the amounts of hydro-
gen that are necessary to satisfy the energy demands currently covered by natural
gas. Therefore, besides explicitly stating our model for hydrogen transport alongside
the model for natural gas in Section 3.5, we discuss physical and technical properties
that make hydrogen transport challenging and propose a method for converting the
natural gas input data into hydrogen scenarios in Section 3.9. The results of the
corresponding computational experiments can be found in Section 3.10, too.

A conclusion and an outlook on future research are given in Section 3.11.

3.1. The Physics and Control of Gas Transport Networks in
a Nutshell

This section aims at providing some basic knowledge regarding the physics and con-
trol of gas transport networks. Therefore, we give a high-level introduction to both
topics, focusing on the primary sources of complexity when deriving corresponding
mathematical models. The good news is that, although most of the formulas de-
scribing the physics seem rather complex, e.g., the Euler equations for the gas flow
through pipelines or the power equation for turbo compressor units, the fundamental
ideas behind it are not too difficult to understand. For a more detailed introduction
to gas transport networks, we refer to the book of Koch et al. [96]. Additionally, we
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recommend the book chapter of Hante et al. [72], where sources of complexity aris-
ing when modeling the physics and control of gas transport networks are described
in detail. Finally, for detailed technical explanations regarding the single network
elements, we refer to the book of Cerbe [23].

Pipelines

Gas transport networks mainly consist of cylindric steel pipelines through which
the gas can flow. Assuming that all pipelines are horizontal, flow is induced by
imbalances in the gas pressure, i.e., the gas flows from areas of high pressure towards
areas of low pressure to balance out differences. Thus, a first very general principle
when transporting gas from entry to exit points, which are connected via pipelines,
is to have higher pressures at the supply and lower pressures at the demand sites.

Typically, the gas flow through pipelines in large-scale networks is described by
the Euler equations, a set of nonlinear hyperbolic partial differential equations. De-
termining a computationally tractable but meaningful formulation for them is one
of the main challenges when developing mathematical models for gas transport net-
works. The Euler equations and our modeling approach for them are discussed in
detail in the paragraph regarding pipelines in Subsection 3.5.2.

Valves

Valves are usually installed at all pipeline crossings to control the gas flow’s direction
and to navigate the desired amounts from the entries towards the exits. A valve has
two possible settings: Open or closed. If it is open, gas can flow through it, and
the pressures at both ends are identical. On the other hand, if a valve is closed, no
gas can flow through it. Further, if the network is disconnected, the pressures in
the two resulting subnetworks are decoupled and do not have to coincide anymore.
Finally, we remark that there exist several additional operating conditions, e.g., a
maximum allowed pressure difference when opening a valve. However, we do not
consider those within this thesis.

Compressor Stations

Besides deciding which valve to open or close at which point in time, another class
of primary control decisions has to be taken. Due to friction and height differences
that may have to be overcome, there is a drop in the pressure when gas flows through
the pipelines. This is a problem, especially when gas shall be transported over long
distances, as the flow could slow down significantly.

To compensate for this, compressor stations, which comprise multiple compressor
units, are installed evenly distributed at appropriate locations all over the network.
A compressor unit is a mechanical device that can increase the gas pressure in the
direction of the flow. In this thesis, we consider turbo compressors as they represent
most of the units installed in OGE’s transport network. Roughly speaking, turbo
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compressors apply the reverse concept of a turbine and increase the pressure of the
gas by mechanically reducing its volume.

However, there are several physical and technical restrictions associated with this
process that limit their capabilities. For example, there is a bound on the maximum
flow that can pass through, a maximum compression ratio, which bounds the ratio of
the ingoing and outgoing pressure, and a maximum available power. Furthermore,
the amount of flow, the pressure ratio, and the power necessary to realize it are
additionally coupled through the nonlinear power equation. Similar to the Euler
equations, determining a computationally tractable but meaningful formulation for
a compressor is another main modeling issue, which we discuss in detail in the
paragraph regarding compressor arcs in Subsection 3.5.3.

A compressor station usually comprises multiple compressor units that are con-
nected via a dense grid consisting of short pipelines and valves. By choosing cor-
responding settings for the surrounding valves, the capabilities of single compressor
units can be combined. In particular, units can be operated sequentially, which al-
lows for higher compression ratios, in parallel, which enables a higher flow through-
put, or a combination of the two. An example subnetwork with four compressor
units running in different configurations is shown in Figure 3.1. Thus, the number
of possible configurations increases, sometimes even exponentially, with the number
of available compressor units and adds a challenging combinatorial aspect to the
problem of determining a stable control for gas transport networks.

Finally, although we do not consider it in this thesis, for the sake of completeness,
we want to mention that the operation of compressor units is often associated with
some cost, e.g., for the necessary fuel or power or the negative impact on the en-
vironment. Thus, instead of constantly compressing gas, an objective that is often
considered in the literature is to figure out when compression is necessary to achieve
a feasible network control, i.e., to minimize the total compression cost.

Regulators

Pipelines are associated with a maximum pressure value that they can withstand.
For example, according to Barlow’s formula, this upper bound depends on the
wall thickness, the outside diameter, and the allowable hoop stress, see Chin et
al. [92]. Hence, while pipelines in long-distance transport networks often feature
upper bounds of up to 100 bar, the distribution networks of municipalities may only
allow for pressures up to eight bar. These bounds have to be respected and taken
into account when choosing how to route the flow as well as where to compress the
gas and up to which pressures. Additionally, regulators, which are synonymously
called control valves, are available at several locations in the network. Besides being
fully open or closed, these devices can also be partially open and thereby decrease
the pressure in the direction of the flow, which might be necessary to allow for a
safe network control. For more, highly detailed information regarding the control of
regulators, we refer to the technical report of Hennings et al. [79].
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(a) Gas flows from the east to the south and
is compressed by three compressor units
running in parallel.

(b) Gas flows from the east to the south and is
compressed by two compressor units run-
ning in serial.

(c) Gas flows from the north to the south and
is compressed by four compressor units
running in parallel.

(d) Gas flows from the north to the south and
the east and is compressed by one and two
compressor units running in parallel, re-
spectively.

Figure 3.1.: The four pictures above, taken from Figure 2.10 in Koch et al. [96],
show an exemplary subnetwork with four compressor units running in
different configurations. The subnetwork contains pipelines , valves

, a regulator , and four compressor units . If an element
is highlighted in green, it is open or active. If it is red, it is closed, and
there is no flow going through it. Additionally, while gas flows on the
thicker black pipelines, there is no gas flow on the thin grey ones.
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3.2. Previous and Related Work

There exists plenty of literature regarding operations research and optimization in
gas transport, mainly for natural gas. A comprehensive overview of several problem
classes can be found in the survey article of Ríos-Mercado and Borraz-Sánchez [141].
Additionally, we recommend the book chapter of Hante et al. [72], where the sources
of complexity arising when modeling the physics and control of gas transport net-
works are described in detail. In the following literature review, we concentrate on
the most recent work regarding the optimization of the (transient) control of gas
transport networks for the apparent reason.

Most of the research conducted in the past has concentrated on the stationary
(or steady-state) gas transport problem. Here, no temporal resolution is considered,
and the goal is to determine a feasible network state given the necessary boundary
values. Several solution approaches for this problem featuring very detailed models
of the network elements are presented in the book of Koch et al. [96], which we also
refer to for a general overview of the work related to this problem. Additionally,
we want to mention the two more recent papers of Geißler et al. [59, 60] in the
context of this problem since the algorithmic approaches introduced in these articles
use strategies that are similar to the idea that we will apply. In particular, to
solve the basic underlying MINLP model proposed in [60], it is split into two parts,
and an alternating direction method is applied. First, pressure and flow values
as well as discrete control decisions for all elements outside complex subnetworks,
which comprise the compressors, are determined. Afterward, subproblems w.r.t. the
omitted subnetworks are solved.

Although it has gained more attention in the last couple of years, research re-
garding transient (time-dependent) network control is still in its early stages. The
first work we discuss here is the PhD thesis of Moritz [114]. In this work, a MIP
model is presented where the physics of gas flow through pipelines and the fuel gas
consumption of the compressors, a formula closely related to the power equation
mentioned in the previous section, are approximated using piecewise linear func-
tions. The goal of the MIP is to determine a network control that minimizes fuel
consumption while all supplies and demands are satisfied. The author proposes
a branch-and-cut algorithm, which guarantees global optimality w.r.t. the applied
approximations. Further, a simulated-annealing-based heuristic is used to generate
incumbent solutions for the branch-and-bound processes, see Mahlke et al [109]. Fi-
nally, several classes of problem-specific cutting planes are introduced. For example,
one is derived from an analysis of the polyhedron induced by minimum run time,
minimum downtime, and switching conditions regarding the compressors.

Piecewise-linear approximations for the gas flow through pipelines and fuel gas
consumption are also considered in the paper of Domschke et al [36]. Analogous
to [114], the goal of their MIP model is to minimize fuel consumption. The authors
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also propose an algorithmic approach, where this MIP and a closely related NLP
formulation are solved iteratively to reduce the approximation error. Given a solu-
tion for the MIP model, the NLP is derived by fixing the binary switching variables
for the valves and compressors as well as the compressor powers to the values of the
MIP’s solution. Additionally, physically more accurate nonlinear models are applied
instead of the piecewise-linear approximations. The solution of the NLP is, in turn,
used to refine the approximations used in the MIP, which is subsequently solved
again. The algorithm terminates when the MIP and the NLP solution coincide.

Burlacu et al. [19] propose a new discretization scheme for the Euler equations.
Further, compressors are modeled using lower and upper bounds on the compression
ratios and the achievable pressure differences. The resulting MINLP aims at maxi-
mizing the amount of gas stored in the network, i.e., the linepack, and an algorithmic
approach based on solving a series of MIP models is applied, see Burlacu [20], Geißler
et al. [58], and Geißler [57] for details.

Next, Gugat et al. [67] introduce another novel discretization scheme for the Euler
equations in their paper. The main idea behind their approach is to apply an
instantaneous control, i.e., given a specific discretization of the considered time
horizon, they iteratively determine a control for the network considering only the
next time step. Thereby, the goal of the resulting MIP models is to deviate as little
as possible from the supplies, demands, and pressures of the sources and sinks of the
considered time step. The capabilities of the compressors are described as a feasible
region using linear constraints.

Finally, several pure NLP models have been proposed in the literature, too. We
mention the work of Mak et al. [110] and Zlotnik et al. [167] as representatives here.
In both articles, the goal is to decide on compression ratios for the compressors, while
fuel consumption shall be minimized. However, an obvious drawback of these models
is that, in contrast to the work described above, no discrete decisions are considered,
e.g., switching valves or turning on and off compressor station configurations.

3.3. KOMPASS – A Decision Support System for
Dispatchers

The dispatchers at OGE control the natural gas transport network mainly based on
their personal set of skills, e.g., knowledge from training they receive and their expe-
rience. Since they started to face more and more unseen transport scenarios due to
the aforementioned reasons, ensuring a stable network control and guaranteeing the
security of energy supply has become more complex. Hence, the idea for a decision
support system for the transient control of gas transport networks was born: KOM-
PASS (Kontinuierliches Optimierungs-Modul zur Prognose-Abgesicherten System-
steuerung/Continuous optimization module for a prognosis-based system control).
Its architecture, as implemented and running at OGE, is shown in Figure 3.2.

First, KOMPASS receives the topology of the network, its current state, and prog-
nosis data as input. The latter consists of historic gas flows at the network’s entries
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Figure 3.2.: The architecture of KOMPASS and the flow of information within it.
Orange rectangles denote computational modules, blue parallelograms
describe input data (if in the top row) and intermediate output data
(if not in the top row), which serve as input for subsequent algorithmic
modules, and green ellipsoids denote output data.
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and exits, weather data, and information regarding workdays and holidays. Based
on it, future supplies and demands are predicted using the approach of Petkovic et
al. [129], and additional time series of future entry pressures are derived heuristically.

As output, highly detailed technical control recommendations shall be determined
for all remotely controllable elements during the next couple of hours. To do this,
we are given individual characterizations of each element, which are part of the
intersection area data that is available for each complex pipeline junction in the
network. This data also features a set of operation modes, which, in turn, prescribe
settings for all the elements located at that junction and enable particular technical
control possibilities. Thus, a central goal of KOMPASS is to suggest an operation
mode for each junction and each point in time as well as control recommendations
for the single network elements such that the forecasted supplies and demands are
satisfied. At the same time, the goal is to maximize the stability of the network
control. Switching from one operation mode to another is called a technical measure,
and we consider the control of a network to be more stable the less technical measures
are applied. We refer to the paper of Hennings et al. [78] for more details regarding
the characterizations of the single network elements and the operation modes.

In the real world, the dispatchers try to control the network using technical mea-
sures only. However, since this is not always possible, they additionally have some
non-technical measures at hand. The most common and standardized ones result
in changes to the future supplies and demands by, for example, using contractual
options like the interruption of customers or by buying or selling gas, i.e., the usage
of so-called balancing energy. For more details on the latter, we refer to Section 4.1,
where the German natural gas market is explained in detail. If changing the sup-
plies and demands alone does not enable a feasible network control, the last option
is to ask neighboring TSOs for changes in the future entry pressures. In practice,
this is done by phone calls, and it can therefore be seen as an emergency and non-
standardized option. All this establishes a natural hierarchy on the measures: If
the network can be controlled by technical measures only, i.e., without applying
non-technical measures, this is most favorable. As a second option, deviations from
the supplies and demands are allowed. Finally, if there is still no feasible control for
the network, the last resort is to change future entry pressures.

Hence, given the network topology, its current state, time series on supplies and
demands as well as on the entry pressures, and the intersection area data, we need
to solve a transient gas network control problem on a large-scale and complex real-
world gas transport network in KOMPASS as the next step. A corresponding model
has to incorporate the operation modes, which comprise the complex combinatorics
of the setup of compressor stations, a formulation for the transient gas flow through
pipelines, which should be as accurate as possible, and the hierarchy of technical
and non-technical control measures.

Due to the nature of the application for which KOMPASS is designed, run time
plays a crucial role, too. In particular, the decision support system is supposed to run
24/7 and continuously provide technical and non-technical control recommendations
within short time intervals. However, preliminary experiments showed that models
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incorporating all these needs simultaneously were computationally intractable or not
solvable within reasonable amounts of time. Thus, we decided to split the complexity
and pursued a two-stage approach.

In the first stage, we solve a transient control problem where hand-tailored sim-
plified models for each complex pipeline intersection area are applied. In particular,
the original junctions are replaced by simplified graph representations, which we call
network stations. Their description is also part of the intersection area data, and
their derivation is explained in more detail in Section 3.4.

The main idea of the model used here is to conceptually consider the network as
network stations, entries, and exits connected by segments of pipelines. The task is
to determine important global control decisions for each network station and each
point in time, e.g., how to route the flow as well as where and when to compress
the gas, while we apply a physically detailed model for the resulting transient gas
flows between them. Additionally, the non-technical control measures proposed by
KOMPASS are based on the results of the first stage, too.

In the second stage, the flow and pressure values at the boundaries of the network
stations from the first stage serve as input for highly detailed models for the original
complex pipeline intersection areas. These models are used to verify whether actual
operation modes exist that realize the pressure and flow scenarios determined by
the first stage. Thereby, stationary formulations focusing on the combinatorics and
the technical restrictions of the compressor stations are solved in a first step. The
rationale behind this is that intersection areas contain only pipelines of short length,
which cannot store or provide much gas for future usage, i.e., they do not feature
much linepack. Therefore the transient aspect of the gas flow is neglected at first.
However, this aspect is again included in a second step, where a corresponding
mathematical model is solved using a rolling horizon approach. For more details on
the second stage of KOMPASS, we refer to Hennings et al. [78].

It is important to note that we try to avoid introducing non-linear constraints
within our modeling strategy since we aimed at using sophisticated and powerful
state-of-the-art MIP and LP solvers as underlying algorithmic routines. However,
we will discuss whenever a non-linear formulation may be more exact w.r.t. the
physics and the control of gas transport networks in the following.

As it represents a main contribution of this thesis, in the remainder of this chap-
ter, we concentrate on the first stage of KOMPASS, i.e., formulating and solving
the transient gas network control problem using the network station model. Next,
we explain the network station modeling concept and introduce a tri-level MIP
formulation in the upcoming Section 3.4 and Section 3.5, respectively. The latter
incorporates the hierarchy regarding the non-technical measures and the technical
network control and the rationale behind using hierarchical programming for it is
sketched in Figure 3.3.

Nevertheless, for the sake of comprehensibility, we give a written bottom-to-top
explanation here, too. The third level features the technical control problem, which
tries to maximize the stability of the network by minimizing changes in the settings
of the network elements in the network stations, i.e., by minimizing the usage of
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Figure 3.3.: Top-to-bottom explanation of the rationale behind our tri-level formu-
lation. The change instructions are executed such that the sums of the
absolute deviations from the input parameters are minimized.
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technical measures. The second level minimizes the changes of supplies and de-
mands w.r.t. the sum of absolute deviations necessary to guarantee the feasibility
of the third level. The first level pursues a similar goal but minimizes the sum of
deviations from future pressure values at the entries instead. Thereby, it takes all
possible actions of the second level into account. Hence, the first and the second
level minimize the extent of the corresponding non-technical measures in hierarchical
order to ensure that a feasible technical control of the network is possible.

3.4. The Network Station Modeling Concept

Most of the elements in gas transport networks whose behavior can be controlled
remotely by the dispatchers, such as compressor stations, regulators, or valves, are
located at the intersections of major transportation pipelines. The locations of
the seven main network stations of OGE’s subnetwork, which we consider in our
computational experiments in Section 3.10, are shown in Figure 3.4. For each of
these junctions and each point in time, exactly one operation mode has to be in use.
However, there is a vast number of them because the operation modes comprise,
among other things, the combinatorics of the setup of the compressor stations. Thus,
due to the induced computational complexity, together with the experts at OGE we
developed a hand-tailored simplified graph representation called network station to
summarize and approximate the technical control capabilities. The network station
model for the junction in the northwest, for example, is visualized in Figure 3.5.
While detailed mathematical formulations and corresponding explanations regarding
the network station model can be found in Section 3.5, we explain the basic idea
behind it and its derivation process here.

Although we are currently working on an automatized process, the derivation of
the network station models is currently done manually by experts at OGE, who
know the network, its elements, and their control very well. Thus, we give some
intuition of how they are created using examples in the following.

First, the intersection areas are identified as connected subgraphs of the network.
Their topologies are chosen with the goal in mind to include as many remotely
controllable elements as possible while only a few pipelines of significant length are
contained. The latter follows the idea behind the two-stage approach in KOMPASS,
where the transient gas flow through pipelines is initially considered less important
in the second stage, see Section 3.3 for details.

The nodes at the boundaries of these subgraphs are called fence nodes. Addition-
ally, if a subset of the fence nodes features the same behavior, e.g., all are connected
to pipelines of large diameter, which run in parallel and nearly always possess the
same pressure level and the same direction and amount of flow, they are merged in
the network station topology and called a fence group.

Next, we create the topology of the network station. Therefore, we remove the
interior of the subgraph and add artificial nodes together with artificial arcs, which
connect them and the fence nodes. There are four types of artificial arcs: Shortcuts,
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3.4. The Network Station Modeling Concept

Figure 3.4.: Subnetwork of OGE which we use in our computational experiments.
Inner nodes are shown as black squares, entries as green triangles ,
and exits as red triangles . Furthermore, the seven main network
stations are located within the blue circles. All connections visible in
this picture are pipelines.

which can be seen as the equivalents of valves, regulating arcs, which can be seen
as regulators, compressor arcs, which capture the pressure-increasing capabilities
of compressor stations, and combined arcs, which can work as either regulating or
compressor arcs. Besides mono-directed arcs, which only support flow going into
the direction of their topological orientation, there exists a bi-directed version for
each arc type. Here the gas can flow and the mentioned capabilities can be applied
in both directions. Shortcuts are always bi-directed by definition.

Artificial nodes are used to decrease the number of necessary artificial arcs and
to improve the comprehensibility of the network station model. On the other hand,
we can often directly identify artificial arcs with remotely controllable elements in
the original topology. Looking at the example in Figure 3.5, we can, for example,
identify the two anti-parallel regulators in the northeast of the original network
topology with the bi-directed regulating arc in the station model. Additionally, we
see two compressing arcs in the network station model, which directly correspond
to the two compressor stations depicted in the original topology. Here, the experts
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(a) An original pipeline intersection area (b) Corresponding network station

Figure 3.5.: On the left-hand side, an original pipeline intersection area of the net-
work from Figure 3.4 is shown, while the corresponding network station
model is depicted on the right. The colored triangles represent entries

and exits , which are located close to the actual network station
visualized here. The other network elements here are pipelines ,
valves/shortcuts , regulators/regulating arcs , compressor sta-
tions/compressing arcs , and bi-directed regulating arcs .
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know that the compressor station in the east is used to compress gas coming from
the north and leaving to the south, while the other compressor station can be used
to compress gas coming from the south and leaving to the west. This explains the
choice of endnodes and the direction of the artificial arcs. However, it is important
to note that such a mapping is, in general, not possible. Combined arcs, for example,
usually comprise at least one compressor station and one regulator.

Finally, the experts look at the operation modes and create the sets of flow di-
rections and simple states. The former describe possible general directions of flow
through the network station. Thus, each flow direction consists of two subsets of
fence nodes: Entries, where the gas enters the station, and exits, where it leaves it.
On the other hand, a simple state describes a general state of the network station
w.r.t. the technical capabilities being in use. In particular, it features of a subset
of flow directions that it supports and two subsets of artificial arcs: Arcs that have
to be used and arcs that cannot be used. While an unusable arc can conceptually
be seen as a closed valve, the former must be used according to the corresponding
models described in Subsection 3.5.3. When designing these two sets, the goal is to
summarize and approximate the technical capabilities of the operation modes of the
original intersection area while keeping the corresponding cardinalities small.

Creating the flow directions and simple states is mainly based on experience and
data on which operation modes of the corresponding intersection area have been
used in the past. For example, typical flow directions in Figure 3.5 are situations
where gas enters from the north or east and leaves to the south or west. However,
it can also enter from the south and leaves to the west.

3.5. A Tri-Level MIP for the Stable Transient Control of
Gas Networks

Next, we introduce our tri-level MIP model for determining a stable transient control
for gas transport networks. Therefore, we present the entities of our network model
together with corresponding parameters and introduce variables and constraints
capturing the principles of their operation and interplay. Although it can be adapted
to other gases, we explicitly state our model for natural gas and hydrogen.

Beforehand, for the sake of comprehensibility, we give a brief guideline w.r.t. the
model’s structure. While the first level controls the inflow pressure slack variables,
the second is in charge of the boundary flow slack variables. These variables, intro-
duced and discussed in Subsection 3.5.2, are used to model the two non-technical
measures we consider, i.e., deviations from future entry pressures and the supplies
and demands, respectively. The goal of both levels is to minimize the extent of
their usage, i.e., the sums of absolute deviations. On the other hand, all constraints
belong to the third level, i.e., the level responsible for the technical control, which
controls all remaining variables, too. We refer to Section 3.5.5 for more details on
the overall tri-level MIP structure and the objective functions.
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3.5.1. Basic Notation and Conceptual Model View

In the following, we model a gas transport network as a directed graph G = (V,A),
where V denotes the set of nodes and A the set of arcs.

Time Steps and Granularity

Additionally, we consider a set of time steps T0 := {0, . . . , k} together with a mono-
tonically increasing function τ : T0 → N, which represents the granularity. W.l.o.g.
we assume that τ(0) = 0 and τ(t) stands for the number of seconds that have passed
until time step t ∈ T0 w.r.t. time step 0. Furthermore, we define T := T0 \ {0} as
the set of future time steps for notational purposes.

Node Sets

The node set V can be partitioned into the set of entries V+, the set of exits V−,
and the set of inner nodes V0. Additionally, we call the union of the entries and
exits boundary nodes and denote it by Vb := V+∪̇V−.

Arc Sets

The set of arc can be partitioned into pipelines Api and so-called artificial arcs Aar,
i.e., A = Api∪̇Aar. The latter are used to control the gas flow and can further be
split into four disjoint subsets Aar = Asc∪̇Arg∪̇Aco∪̇Acb. Here, Asc denotes the set
of shortcuts, Arg the set of regulating arcs, Aco the set of compressor arcs, and Acb

the set of combined arcs. Additionally, while for some of these arcs the corresponding
technical control capabilities can only be applied in forward direction, i.e., mono-
directed arcs, there also exist bi-directed arcs Abi ⊆ Aar, which can be used in both
directions.

Conceptual Network View

Following the idea that was first mentioned in Section 3.3, we conceptually divide
the network into two parts. In particular, we consider m ∈ N disjoint subgraphs
Gi = (Vi,Aar

i ) with i ∈ I := {1, . . . ,m}, which we call network stations and are
mainly located at major pipeline crossings. Each artificial arc is contained in exactly
one of these network stations, i.e.,

⋃̇︁
i∈IAar

i = Aar, and no pipelines are present, i.e.,
(
⋃︁

i∈I Aar
i ) ∩ Api = ∅. Moreover, no boundary nodes are contained in a network

station and we therefore have
⋃︁

i∈I Vi ⊆ V0.
On the other hand, we call the subgraph induced by the set of pipelines, consisting

of Vpi := {v ∈ V | δ(v) ∩ Api ̸= ∅}, i.e., the set of nodes incident to a pipeline, and
Api, the connecting network as it connects the network stations, the entries, and the
exits with each other.

After stating a mathematical formulation for the connecting network in Subsec-
tion 3.5.2, we turn to the network station model in Subsection 3.5.3 and finally
discuss constraints that connect both in Subsection 3.5.4.
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3.5.2. Connecting Network

This subsection discusses our model for the connecting network, i.e., the subgraph
induced by the set of pipelines.

Pressures and Technical Pressure Bounds

For each node v ∈ Vpi, we are given a nonnegative initial pressure value pv,0 ∈ R≥0.
Further, we introduce pressure variables pv,t ∈ [

¯
pv,t, p̄v,t] ⊆ R≥0 for all t ∈ T . The

lower and upper bounds
¯
pv,t, p̄v,t ∈ R≥0 are called technical pressure bounds and

must be respected as their violation can lead to severe damage to the adjacent
pipelines.

Supplies, Demands, and Boundary Flow Slacks

For each boundary node v ∈ Vb and each time step t ∈ T we are given a boundary
value Dv,t ∈ R. These values represent future requirements in terms of supply,
if Dv,t ∈ R≥0 and v ∈ V+, or demand, if Dv,t ∈ R≤0 and v ∈ V−. However,
the boundary values may be adjusted to ensure feasibility of the third level, i.e.,
the existence of a feasible technical control. Therefore, for each boundary node
v ∈ Vb and each t ∈ T we introduce two continuous variables σd+

v,t , σ
d−
v,t ∈ R≥0. The

boundary values that are then actually considered in the third level are established
through additional variables dv,t ∈ R≥0 for each entry v ∈ V+, dv,t ∈ R≤0 for each
exit v ∈ V−, and constraints

dv,t + σd+
v,t − σd−

v,t =Dv,t ∀v ∈ Vb, ∀t ∈ T . (3.1)

We call σd+
v,t and σd−

v,t boundary flow slack variables, and they are used to model the
non-technical control measure of deviating from given supplies and demands. They
are controlled by the second level of our tri-level MIP, whose goal is to minimize
their sum, see Section 3.5.5 on the objective functions and the complete model.

Inflow Pressure Bounds and Slacks

Next, for each entry v ∈ V+ and each point in time t ∈ T we are additionally given
inflow pressure bounds

¯
pact
v,t ∈ R≥0 and p̄act

v,t ∈ R≥0 if v has nonzero supply. These
bounds, which are tighter than the technical pressure bounds, model the forecasted
entry pressures. However, in contrast to the technical pressure bounds, they can be
relaxed to ensure feasibility of the third level, i.e., the existence of a feasible technical
control. Therefore, we introduce two continuous variables σp+

v,t ∈ [0,
¯
pact
v,t −

¯
pv,t] and

σp−
v,t ∈ [0, p̄v,t − p̄act

v,t ], and constraints

pv,t + σp−
v,t ≥

¯
pact
v,t ∀v ∈ V+ with Dv,t ̸= 0, ∀t ∈ T , (3.2)

pv,t − σp+
v,t ≤ p̄act

v,t ∀v ∈ V+ with Dv,t ̸= 0, ∀t ∈ T . (3.3)

41



3. Optimizing Transient Network Control

We call σp+
v,t and σp−

v,t inflow pressure slack variables, and they are used to model the
non-technical control measure of deviating even further from the forecasted entry
pressures. They are controlled by the first level of our tri-level MIP, whose goal is to
minimize their sum, see Section 3.5.5 on the objective functions and the complete
model. Note that constraints (3.2) and (3.3) depend on Dv,t and not on dv,t as the
converse would lead to the introduction of an additional class of binary variables
and corresponding constraints.

Pipelines

One-dimensional gas flow in cylindric pipelines is usually described by the Eu-
ler equations, a set of nonlinear hyperbolic partial differential equations, see Osi-
adacz [123]. In this thesis, we assume isothermality, i.e., that the gas temperature
remains constant. In that case, these are reduced to the Continuity Equation and
the Momentum Equation. While the former ensures conservation of mass, the latter
describes the interaction between the force acting on the gas particles and the rate
of change in their momentum. For a pipeline a = (ℓ, r) ∈ Api they can be stated as

∂ρ

∂t
+

∂(ρv)

∂x
= 0

∂(ρv)

∂t
+

∂p

∂x
+

∂(ρv2)

∂x
+

λa

2Da
|v|vρ+ gsaρ = 0.

The x-variable represents the position in the pipeline w.r.t. the distance from ℓ.
Furthermore, t denotes the time, and ρ and v the density and the velocity of the
gas, respectively. Additionally, Da denotes the diameter of the pipeline and the
gravitational acceleration is given by g. Further, by λa we denote the friction factor
of the pipe, which we derive from the formula of Nikuradse. The latter depends on
two characteristics of the pipeline only, namely its diameter and integral roughness,
see Fügenschuh et al. [50] and Nikuradse [118] for details. Finally, the slope of the
pipeline is given by sa = hr−hℓ

La
∈ [−1, 1], where hℓ and hr denote the altitude at ℓ

and r.
Next, we reformulate these equations w.r.t. the quantities we are interested in,

i.e., mass flow q, pressure p, and the gas velocity v. Mass flow is defined as

q = Aaρv, (Q)

where Aa = D2
a
π
4 denotes the cross-sectional area of the pipe. Second, we apply

the equation of state for real gases, which describes the relation between the gas
pressure p and its density ρ

p = ρRsTza.

Here, Rs denotes the specific gas constant and za is the compressibility factor of the
gas in the pipeline. In the following, we assume both of these values to be constant
over time. For the former, this is a consequence of the fact that we assume the molar
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mass of the considered gases to be constant. And for the latter, this is a common
assumption in natural gas transport, see for example Osiadacz [123]. Therefore, we
define za as the average of the compressibility factors at both endnodes using the
initial pressure values pℓ,0 and pr,0. Thereby, we apply the approximation formula of
Papay [126] for natural gas. For hydrogen, we apply a linear function, which is the
result of a linear regression for a set of empirically measured values. In particular,
for a = (l, r) ∈ Api we define

za :=
α(pl,0 + pr,0)

2
+ β, (Z)

where pl,0 and pr,0 are the initial pressures, α = 6.35882 · 10−4, and β = 0.99911.
In a next step, we drop the first and the third summand in the Momentum Equa-

tion, since their contribution under typical operating conditions in natural gas trans-
port networks is negligible, see Hennings [77]. Putting this together, we can rewrite
the equations and derive the so-called friction dominated model

∂p

∂t
+

RsTza
Aa

∂q

∂x
= 0

∂p

∂x
+

λaRsTza
2DaA2

a

|q|q
p

+
gsa

RsTza
p = 0.

Next, we discretize these equations using the implicit box scheme proposed by
Domschke et al. [36] and Kolb et al. [97]. Here, the length of the pipeline La serves
as spatial domain while we use the set of time steps T0 as temporal domain. Thus, for
each time step t ∈ T we introduce two continuous variables qℓ,a,t, qr,a,t ∈ [−q̄a,t, q̄a,t],
which represent the mass flow into a at ℓ and out of a at r. Note that negative
variable values represent mass flow out of a at ℓ and into a at r, respectively, and
that q̄a,t denotes a practically reasonable bound on the mass flow. Moreover, for
time step t = 0 we have fixed initial mass flow values, which we denote as qℓ,a,0
and qr,a,0. Using these variables and parameters, the discretized equations for two
adjacent time steps t− 1 and t can then be written as

2RsTza(τ(t)− τ(t− 1))

LaAa
(qr,a,t − qℓ,a,t)

+ pℓ,t + pr,t − pℓ,t−1 − pr,t−1 = 0 (C)

pr,t − pℓ,t +
λaRsTzaLa

4DaA2
a

(︃
|qℓ,a,t|qℓ,a,t

pℓ,t
+
|qr,a,t|qr,a,t

pr,t

)︃
+

gsaLa

2RsTza
(pℓ,t + pr,t) = 0. (M)

Finally, we apply the linear model for the Momentum Equation proposed by
Hennings [76]. To derive it, we fix the absolute velocities in the friction-based
pressure difference term of the Momentum Equation, i.e., in the third summand, to
the absolute gas velocities of the initial time step. Thereby, we derive the following
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equations, which we use in our tri-level MIP to model transient gas flow in pipelines

2RsTza(τ(t)− τ(t− 1))

LaAa
(qr,a,t − qℓ,a,t)

+ pℓ,t + pr,t − pℓ,t−1 − pr,t−1 = 0 ∀t ∈ T (3.4)

pr,t − pℓ,t +
λaLa

4DaAa
(|vℓ,0| qℓ,a,t + |vr,0| qr,a,t)

+
gsaLa

2RsTza
(pℓ,t + pr,t) = 0 ∀t ∈ T . (3.5)

A possible issue that may arise here is that if the velocity of the mass flow increases
or decreases significantly over time, we might underestimate or overestimate the
friction loss, respectively. An analysis of historic real-world data by Hennings [76]
shows that the resulting deviation can be significant, but is negligible in most cases
when considering, for example, a time horizon of 12 hours. Nevertheless, Section 3.7
introduces and discusses our iterative velocity adjustment procedure, which is in-
spired by sequential linear programming. We apply it to determine solutions that
are feasible for the nonlinear Momentum Equation (M).

3.5.3. Network Stations

The idea behind the network station model and the process of its derivation are
discussed in Section 3.3 and Section 3.4, respectively. Formally, within G there
exist ν ∈ N subgraphs Gi = (Vi,Aar

i ) called network stations, which consist of inner
nodes and artificial arcs only, i.e., Vi ⊆ V0 and Aar

i ⊆ Aar for all i ∈ {1, . . . , ν}.
Each artificial arc is contained in exactly one network station and each inner node
is contained in at most one network station, i.e., Aar

i ∩Aar
j = ∅ and Vi ∩Vj = ∅ hold

for i, j ∈ {1, . . . , ν} with i ̸= j and we additionally have Aar =
⋃̇︁ν

i=1Aar
i .

The node set Vi can be further partitioned into fence nodes V fn
i and artificial nodes

Var
i , i.e., Vi = V fn

i ∪ Var
i . A node v ∈ Vi is called a fence node if it is connected to at

least one pipeline outside the network station, i.e., if δ(v)∩Api ̸= ∅. Hence, we note
that a fence node is also part of the connecting network. Otherwise, if δ(v) ⊆ Aar

i ,
we call v an artificial node.

Furthermore, Fi ⊆ P(V fn
i )×P(V fn

i ) represents the set of so-called flow directions
of network station Gi, where P denotes the powerset operator. A flow direction
f = (f+, f−) ∈ Fi consists of its entry fence nodes f+ ⊆ V fn

i and its exit fence nodes
f− ⊆ V fn

i and it holds that f+ ∩ f− = ∅.
Finally, we are given a set Si ⊆ P(Fi)×P(Aar

i )×P(Aar
i ) of so-called simple states

for each network station Gi. A simple state s = (sf , son, soff) ∈ Si is composed of
the set of flow directions sf that it supports as well as the set of its active artificial
arcs son and its inactive artificial arcs soff. We assume that son ∪ soff = ∅, and we
additionally call Aar

i \ (son ∪ soff) the set of optional arcs.
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Network Station Pressures

To differentiate between the role of the nodes in the connecting network and in
the network stations, what is necessary to later on formulate flow direction related
constraints in Subsection 3.5.4, we introduce a second class of pressure variables.
For each v ∈

⋃︁
i∈I Vi, i.e., every node contained in a network station, we introduce

a pressure variable ϕv,t ∈ [
¯
pv,t, p̄v,t] ⊆ R≥0 for each t ∈ T . Here,

¯
pv,t and p̄v,t denote

again technical pressure bounds. Moreover, we are given nonnegative initial pressure
values ϕv,0 ∈ R≥0, too.

Thus, while for the artificial nodes Var we only have pressure variables ϕv,t, for
each fence node v ∈ V fn we additionally have pressure variables pv,t, too. In this
context, we also note that ϕv,0 = pv,0 holds for all fence nodes v ∈ V fn. The interplay
of the two classes of pressure variables is discussed in Subsection 3.5.4.

Network Station Control

In each time step t ∈ T0 := {0, . . . , k}, three types of control decisions have to
be taken for each network station Gi. These decisions impact each other and, in
the following, we introduce the variables and constraints, modeling them and their
interplay.

First, exactly one flow direction f ∈ Fi must be chosen for each Gi. Based on
this, exactly one simple state s ∈ Si which supports this flow direction has to be
selected, i.e., f ∈ sf must hold. Next, given the simple state, all of its arcs in son

must be active, while the inactive arcs soff cannot be used. For the optional arcs
a ∈ Aar

i \ (son ∪ soff) we can independently choose whether they are active or not.
Hence, for each time step t ∈ T0 we introduce binary variables xf,t ∈ {0, 1} for

each flow direction f ∈ Fi, xs,t ∈ {0, 1} for each simple state s ∈ Si, and xa,t ∈ {0, 1}
for each artificial arc a ∈ Aar

i indicating whether the corresponding entity is selected
(or active) or not. Additionally, for each network station Gi we add the following
constraints ∑︂

f∈Fi

xf,t =1 ∀t ∈ T0 (3.6)

∑︂
s∈Si

xs,t =1 ∀t ∈ T0 (3.7)

∑︂
f∈sf

xf,t ≥ xs,t ∀s ∈ Si, ∀t ∈ T (3.8)

xs,t ≤xa,t ∀s ∈ Si, ∀a ∈ son, ∀t ∈ T0 (3.9)

1− xs,t ≥xa,t ∀s ∈ Si, ∀a ∈ soff, ∀t ∈ T0. (3.10)

While constraints (3.6) and (3.7) ensure that exactly one flow direction and one
simple state are chosen for each time step t ∈ T0, (3.8) guarantees that the chosen
simple state supports the chosen flow direction. Additionally, constraints (3.9) and
(3.10) make sure that the artificial arcs corresponding to the selected simple state
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are active or not, respectively. No condition is imposed on the optional arcs. Note
that important constraints related to the chosen flow direction are discussed in
Subsection 3.5.4.

To penalize changes w.r.t. simple states or artificial arcs in the objective function,
which correspond to changes in the settings of original network elements and are
therefore strongly connected to our considered stability measure for the network
control, we introduce additional binary variables and constraints. For each station Gi

and each time step t ∈ T we add δs,t ∈ {0, 1} for each s ∈ Si, δon
a,t, δ

off
a,t ∈ {0, 1} for

each a ∈ Aar
i , and constraints

xs,t−1 − xs,t + δs,t ≥ 0 ∀s ∈ Si, ∀t ∈ T (3.11)

xa,t−1 − xa,t + δon
a,t − δoff

a,t =0 ∀a ∈ Aar
i , ∀t ∈ T . (3.12)

While δs,t and δon
a,t indicate whether a simple state or artificial arc has been switched

on in time step t or not, δoff
a,t shows whether an artificial arc has been switched off or

not. For the simple states we do not need such variables, since we know that exactly
one of them is active in each time step. All variables δs,t are associated with an
individual cost parameter ws ∈ R≥0, while variables δon

a,t as well as δoff
a,t are assigned

a cost parameters wa ∈ R≥0.
Note that we refrain from penalizing changes w.r.t. flow directions. For example,

if a network station is in a bypass state, e.g., only shortcuts are active, the gas may
slosh back and forth between fence nodes. Thus, flow directions changes do not
suggest an unstable behavior but are a common phenomenon.

Artificial Arcs

Next, we explain how the artificial arcs and their capabilities regarding the control
of the gas flow through network stations are modeled. Recall that the set of artificial
arcs can be partitioned into four disjoint subsets Aar = Asc ∪ Arg ∪ Aco ∪ Acb. Asc

denotes the set of shortcuts, Arg the set of regulating arcs, Aco the set of compressor
arcs, and Acb the set of combined arcs. The sets Asc

i ⊆ Asc, Arg
i ⊆ Arg, Aco

i ⊆ Aco,
and Acb

i ⊆ Acb describe the corresponding entities contained in network station Gi.
For each mono-directed arc a ∈ Aar and each time step t ∈ T we introduce a variable
qa,t ∈ [0, q̄a,t], which denotes the mass flow in forward direction w.r.t. the topological
orientation. This flow is bounded by a given maximum mass flow parameter q̄a,t.

Bi-Directed Arcs

In contrast to mono-directed arcs, mass flow and pressure modifications according
to the corresponding artificial arc type are possible in both directions on bi-directed
arcs. Therefore, in our model, we choose a direction for each of these arcs and each
point in time as follows: First, we replace each a = (ℓ, r) ∈ Abi by two anti-parallel
mono-directed arcs −→a = (ℓ, r) and←−a = (r, ℓ) of the same type. Next, by introducing
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binary variables x−→a ,t, x←−a ,t ∈ {0, 1} and constraints

x−→a ,t + x←−a ,t =xa,t ∀a ∈ Abi, ∀t ∈ T , (3.13)

we determine the direction of use for each time step. Afterward, the models for the
corresponding mono-directed arcs, which are explained in the following, apply.

Shortcuts

All shortcuts are bi-directed, i.e., we have Asc ⊆ Abi. They can conceptually be seen
as the equivalent of valves inside a network station and can connect or disconnect
parts of the network. In particular, after choosing a direction in (3.13), we add
constraints

ϕℓ,t − ϕr,t ≤ (1− xa,t)(p̄ℓ,t −
¯
pr,t) ∀t ∈ T (3.14)

ϕℓ,t − ϕr,t ≥ (1− xa,t)(
¯
pℓ,t − p̄r,t) ∀t ∈ T (3.15)

qa,t ≤ q̄a,t xa,t ∀t ∈ T (3.16)

for each (here conceptually mono-directed) shortcut a = (ℓ, r) ∈ Asc. If a shortcut
is active at t ∈ T , i.e., if xa,t = 1, the pressures at ℓ and r are equal and mass flow
in forward direction up to q̄a,t is possible. If it is not active, the pressure values are
decoupled, i.e., they are independent of each other, and there is no flow.

Regulating Arcs

Regulating arcs can be seen as the equivalent of regulators inside a network station.
They are used to decrease the gas pressure in the direction of the flow. This ability
is needed if, for example, gas enters a network part, which is not suited for higher
pressures. Thus, for a regulating arc a = (ℓ, r) ∈ Arg, we introduce the following
constraints

ϕℓ,t − ϕr,t ≥ (1− xa,t)(
¯
pℓ,t − p̄r,t) ∀t ∈ T (3.17)

qa,t ≤ q̄a,t xa,t ∀t ∈ T . (3.18)

If a regulating arc is active at t ∈ T , i.e., if xa,t = 1, the pressure at ℓ has to be
greater than or equal to the pressure at r and mass flow in forward direction up to
q̄a,t is possible. Otherwise, the pressures are decoupled and there is no mass flow.

Compressor Arcs

The compressor arcs Aco are key elements when controlling gas transport networks.
They can compress the gas and increase the pressure in the direction of the flow,
which makes up for pressure loss due to friction in the pipelines or height differences.

In our model, one can conceptually think of one (big) compressor unit being
installed on each arc a ∈ Aco

i of each network station Gi. The maximum power
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available for compression π̃a,t ∈ R≥0, the maximum amount of mass flow that can
pass through q̃a,t ∈ R≥0, and the maximum compression ratio r̃a,t ∈ [1,∞) are
dynamically determined in each time step. Therefore, we consider approximations
of real-world turbo compressor units for each network station, called machines in
the following, which can be assigned to the arcs. Afterward, linear combinations of
the corresponding values yield the parameters described above.

In particular, each network station Gi features a set of machines Mi, and each
machine m ∈Mi possesses an associated maximum power Pm,t ∈ R≥0, a maximum
mass flow Qm,t ∈ R≥0, and a maximum compression ratio Rm,t > 1 for each time
step t ∈ T . Further, for each compressor arc a ∈ Aco

i , there exists a subset of
machinesMa

i ⊆Mi that can potentially be assigned to it, and a maximum number
of assignable machines Mmax

a . Since each machine can be assigned to at most one
compressor arc in each time step t ∈ T , we introduce binary variables ym,a,t ∈ {0, 1}
indicating whether m ∈Mi is assigned to a ∈ Aco

i or not, and add constraints∑︂
a∈Aco

i :m∈Ma
i

ym,a,t ≤ 1 ∀m ∈Mi, ∀t ∈ T (3.19)

∑︂
m∈Ma

i

ym,a,t ≤Mmax
a xa,t ∀a ∈ Aco

i , ∀t ∈ T . (3.20)

Recall that the compressor units can usually be operated individually, in parallel,
sequentially, or in a parallel-sequential setting in the real world. This is achieved by
the opening and closing of valves in the surrounding piping. By setting them up in
parallel, a larger amount of mass flow can be compressed, while a higher compression
ratio can be achieved sequentially. In our model, we refrain from choosing a setup for
the machines and overestimate the capabilities of our compressor arcs in the sense
that we assume that the maximum amount of flow (parallel setting) and the highest
compression ratio (sequential setting) are available at the same time. Therefore, we
add the following constraints∑︂

m∈Ma
i

Pj,t ym,a,t = π̃a,t ∀a ∈ Aco
i , ∀t ∈ T (3.21)

∑︂
m∈Ma

i

Qj,t ym,a,t = q̃a,t ∀a ∈ Aco
i , ∀t ∈ T (3.22)

1 +
∑︂

m∈Ma
i

(Rj,t − 1) ym,a,t = r̃a,t ∀a ∈ Aco
i , ∀t ∈ T . (3.23)

The first constraint (3.21) determines the power available on arc a ∈ Aco by adding
up the maximum powers of the assigned machines. Analogously, the second con-
straint (3.22) determines the maximum amount of flow that can pass through. On
the other hand, the third constraint (3.23) is a linear approximation of the maxi-
mum compression ratio, which we use here to avoid the introduction of a nonlinear
constraint.
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The connection between the pressure ratio, the amount of mass flow passing
through, and the power necessary to realize it is given by the nonlinear power equa-
tion for turbo compressor machines, see Hennings et al. [78] for example.

π̃a,t ≥ πa,t =
qa,t
ηad

RsTzℓ
κ

κ− 1

[︄(︃
ϕr,t

ϕℓ,t

)︃κ−1
κ

− 1

]︄
(P)

Here, πa,t ∈ R≥0 is the variable representing the necessary power when a mass
flow of qa,t with initial pressure ϕℓ,t shall be compressed up to ϕr,t. Further, ηad
is the adiabatic efficiency of the compression, which we assume to be constant for
all compressor units. Moreover, we use κ = 1.296 for natural gas, see Fügenschuh
et al. [50], and κ = 1.5 for hydrogen, see Stolten and Emonts [155], as isentropic
exponents.

To once more avoid the introduction of a nonlinear constraint, we determine a
linear approximation of (P) as follows: For each compressor arc a ∈ Aco and each
t ∈ T , we sample N points (ϕℓ,t, ϕr,t, πa,t) ∈ [

¯
pℓ,t, p̄ℓ,t]×[

¯
pr,t, p̄r,t]×[

πmax
a,t

4 , πmax
a,t ], where

πmax
a,t is the maximum possible power for a at t derived from (3.19) and (3.20), such

that ϕℓ,t ≤ ϕr,t and determine the corresponding mass flow qa,t using the original
power equation. To the resulting set of 4-tuples we apply an ordinary least-squares
method and determine coefficients (α0, α1, α2, α3) for a linear approximation, which
gives rise to constraints

α0 + α1 ϕℓ,t + α2 ϕr,t + qa,t ≤ α3 πa,t + (1− xa,t)(α0 + α1
¯
pℓ,t + α2 p̄r,t), (3.24)

α0 + α1 ϕℓ,t + α2 ϕr,t + qa,t ≥ α3 πa,t + (1− xa,t)(α0 + α1 p̄ℓ,t + α2
¯
pr,t). (3.25)

We assume that α1 ∈ R≤0 and α2 ∈ R≥0 (otherwise we use the corresponding other
bound for the coefficients of xa,t on the right-hand sides). If the compressor arc is
active, it has to respect this linear approximation.

Next, we add the following set of constraints

πa,t ≤ π̃a,t ∀a ∈ Aco
i , ∀t ∈ T (3.26)

qa,t ≤ q̃a,t ∀a ∈ Aco
i , ∀t ∈ T (3.27)

ϕℓ,0r̃a,t − ϕr,t ≥ (1− xa,t)(ϕℓ,0 − p̄r,t) ∀a ∈ Aco
i , ∀t ∈ T . (3.28)

The first two (3.26) and (3.27) ensure that the mass flow and the power used for
compression do not violate the upper bounds given by the machine assignments.
Moreover, the outgoing pressure is bounded by the product of the initial ingoing
pressure at t = 0 and the current maximum compression ratio (3.28) if the arc is
active. Using the variable ϕℓ,t here instead of ϕℓ,0 would yield a nonlinear constraint.

Besides constraints (3.19)–(3.28), for each compressor arc a = (ℓ, r) ∈ Aco and
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each time step t ∈ T we also add constraints

ϕℓ,t − ϕr,t ≤ (1− xa,t)(p̄ℓ,t −
¯
pr,t) ∀t ∈ T (3.29)

rmax
a,t ϕℓ,t − ϕr,t ≥ (1− xa,t)(r

max
a,t

¯
pℓ,t − p̄r,t) ∀t ∈ T . (3.30)

If the arc is active at some point in time t ∈ T , i.e., xa,t = 1, the pressure at ℓ has
to be smaller than or equal to the pressure at r. Further, we bound ϕr,t by rmax

a,t ϕℓ,t.
Here, rmax

a,t is the maximum possible compression ratio of a at time t, which can be
derived from constraints (3.20) and (3.23). If it is not active, the pressure values are
decoupled and there is no mass flow due to constraints (3.20),(3.22), and (3.27).

Combined Arcs

Finally, a combined arc a = (ℓ, r) ∈ Acb can either be used as regulating arc or as
compressor arc. Thus, in our model we replace each combined arc by two corre-
sponding parallel arcs, i.e., a regulating arc arg = (ℓ, r) ∈ Arg and a compressor arc
acp = (ℓ, r) ∈ Aco. Using binary variables xarg,t, xacp,t ∈ {0, 1} and constraints

xarg,t + xacp,t =xa,t ∀a ∈ Acb, ∀t ∈ T , (3.31)

we decide which mode of the combined arc is active in each time step. The corre-
sponding model is then applied accordingly.

Flow Direction Related Constraints

Next, activating a flow direction imposes certain conditions on the mass flows
into and out of a network station Gi. Most importantly, for a flow direction
f = (f+, f−) ∈ Fi, no outflow is allowed at its entry fence nodes and no inflow is al-
lowed at its exit fence nodes. It is, however, allowed that there is no flow at all, which
is the condition that has to hold for all remaining fence nodes v ∈ V fn

i \ (f+ ∪ f−).

Inflow and Outflow Constraints

For each fence node v ∈ V fn
i and each point in time t ∈ T0, we introduce two

continuous variables qin
v,t, q

out
v,t ∈ R≥0. Together with the following constraint, they

account for the total inflow or outflow from the connecting network∑︂
a=(ℓ,v)∈Aar

qa,t −
∑︂

a=(v,r)∈Aar

qa,t = qout
v,t − qin

v,t ∀v ∈ V fn, ∀t ∈ T0. (3.32)

Note that one could alternatively sum up the mass flow values at the incident
pipelines on the left-hand side and switch the signs of the variables on the right-
hand side of the equation. This is because flow conservation, which we introduce
as constraints (3.38) in Subsection 3.5.4, holds for V fn

i ⊆ V0. Finally, for each flow
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direction f = (f+, f−) ∈ Fi, we introduce the following constraints

qin
v,t ≤ qin

v,t (1− xf,t) ∀i ∈ I, ∀f ∈ Fi, ∀v ∈ V fn
i \ f+, ∀t ∈ T (3.33)

qout
v,t ≤ qout

v,t (1− xf,t) ∀i ∈ I, ∀f ∈ Fi, ∀v ∈ V fn
i \ f−, ∀t ∈ T . (3.34)

Here, qin
v,t and qout

v,t are upper and lower bounds on the maximum possible inflow and
outflow, respectively. Both can be derived from the above-mentioned alternative
constraint. If a flow direction is active, qin

v,t can only be nonzero for entry fence
groups and qout

v,t only for exit fence groups.

Exit Fence Node Pressure Bounds

For some fence nodes v ∈ V fn
i , there exists an additional upper pressure bound ϕ̄exit

v .
It is tighter than the corresponding technical bound and must be respected if a flow
direction f = (f+, f−) ∈ Fi is active for which v is an exit fence node, i.e., v ∈ f−.
This can be modeled with constraints

ϕv,t ≤ p̄v,t + xf,t (ϕ̄
exit
v − p̄v,t) ∀i ∈ I, ∀f ∈ Fi, ∀v ∈ f−, ∀t ∈ T . (3.35)

3.5.4. Linking the Connecting Network and the Network Stations

The two models for the connecting network and the network stations are linked
through the following two classes of constraints.

Coupling Fence Node Pressures

Depending on the flow direction, the two classes of pressure variables for fence nodes
must be equal or are decoupled. In particular, pv,t and ϕv,t have to be equal for
v ∈ V fn if it is either an entry or an exit of the flow direction that is active at time
step t ∈ T . Otherwise, the pressures are decoupled. This is modeled via constraints

ϕv,t − pv,t ≤ (1− xf,t)(p̄v,t −
¯
pv,t) ∀f ∈ Fi, ∀v ∈ V fn

i \ (f− ∪ f+), ∀t ∈ T (3.36)

ϕv,t − pv,t ≥ (1− xf,t)(
¯
pv,t − p̄v,t) ∀f ∈ Fi, ∀v ∈ V fn

i \ (f− ∪ f+), ∀t ∈ T . (3.37)

This behavior can be interpreted as having a valve between the fence nodes and the
pipelines incident to them. If a fence node is an entry or exit of the active flow
direction, mass flow from or into the incident pipelines is possible, and the pressures
are equal. Otherwise, no mass flow is possible, and the pressures are decoupled.

Mass Flow Conservation

Finally, for all nodes v ∈ V we introduce mass flow conservation constraints. For
each inner node v ∈ V0 and each time step t ∈ T , the amount of flow entering v has
to leave it, and for each boundary node v ∈ Vb, the supply or demand must be met.
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Thus, we derive ∑︂
a=(v,r)∈Api

qv,a,t +
∑︂

a=(v,r)∈Aar

qa,t

−
∑︂

a=(ℓ,v)∈Api

qv,a,t −
∑︂

a=(ℓ,v)∈Aar

qa,t = 0 ∀v ∈ V0, ∀t ∈ T (3.38)

∑︂
a=(v,r)∈Api

qv,a,t −
∑︂

a=(ℓ,v)∈Api

qv,a,t = dv,t ∀v ∈ Vb, ∀t ∈ T . (3.39)

Hence, the mass flow conservation constraints for the fence nodes v ∈ V fn ⊆ V0
connect the two models for the connecting network and the network stations.

3.5.5. Objective Functions and Complete Model

To conclude the definition of our tri-level MIP model, we finally turn to its three
objective functions. Recall the rationale behind our formulation as explained in
Section 3.4. In the real world, dispatchers try to control the network using technical
measures only, i.e., changing the settings of the remotely controllable elements to
satisfy the supplies and demands. If this does not work, they have several non-
technical measures at hand. The most common and standardized ones are those
changing supplies and demands by applying contractual options like the interruption
of customers or buying or selling gas, e.g., using so-called balancing energy. If
changing the supplies and demands does not help, the last option is to ask other
transport system operators for changes in future entry pressures. In practice, this is
done by phone calls, and it can therefore be seen as a last possible non-standardized
option. Therefore, we state the complete tri-level MIP as

min
σp

∑︂
t∈T

∑︂
v∈Vb

(σp+
v,t + σp−

v,t ) (3.40)

min
σd

∑︂
t∈T

∑︂
v∈Vb

(σd+
v,t + σd−

v,t ) (3.41)

min
...

∑︂
t∈T

(
∑︂
s∈S

wsδs,t +
∑︂

a∈Aar

wa(δon
a,t + δoff

a,t)) (3.42)

s.t. (3.1)− (3.39)

The first level controls the inflow pressure slack variables σp+
v,t and σp−

v,t . The second
level controls the boundary flow slack variables σd+

v,t and σd−
v,t . The goal of both is

to minimize the corresponding sums, i.e., the sum of absolute deviations, see (3.40)
and (3.41), respectively. The third level, which is responsible for the technical control
of the network while the upper two ensure feasibility, controls all other variables. Its
goal is to determine a control with maximum stability for the network. Accordingly,
it minimizes the weighted sum of changes regarding the simple states and artificial
arcs, and reflects the stability indicator proposed by the practitioners, see (3.42).
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3.6. An Algorithm for the Tri-Level MIP

In this section, we present an algorithm to solve the tri-level MIP introduced in
the previous section. It is based on solving a series of closely-related single-level
MIPs. Therefore, we first define MIP L3, which consists of third level’s objective
function (3.42), constraint set (3.1)–(3.39), and both classes of slack variables being
fixed to zero. Second, the MIP given by the second level’s objective (3.41), con-
straints (3.1)–(3.39), and all inflow pressure slack variables being fixed to zero, we
denote by L2. Third, the first level’s objective (3.40) combined with (3.1)–(3.39)
represents MIP formulation L1. In the context of hierarchical optimization, L1 is
called the high point relaxation. The procedure described in Algorithm 1 can then
be used to solve the tri-level MIP.

Algorithm 1: An algorithm for the tri-level MIP model
Input : The tri-level MIP model
Output: An optimal solution for it or INFEASIBLE

1 if L3 is infeasible then
2 if L2 is infeasible then
3 if L1 is infeasible then
4 return INFEASIBLE
5 else
6 SOL1 ← Optimal solution for L1

7 L̃2 ← L2 with inflow pressure slack variables fixed to SOL1

8 ˜SOL2 ← Optimal solution for L̃2

9 L̃3 ← L3 with both classes of slack variables fixed to ˜SOL2

10 return Optimal solution for L̃3

11 else
12 SOL2 ← Optimal solution for L2

13 L̂3 ← L3 with boundary flow slack variables fixed to SOL2

14 return Optimal solution for L̂3

15 else
16 return Optimal solution for L3

If there exists a feasible solution with no slacks, i.e., for L3, an optimal solution
for it is an optimal solution for the tri-level MIP, and it is returned in line 16.
Otherwise, if there exists a feasible solution for L2, we subsequently solve L̂3, i.e.,
L3 with all slack variables being fixed to an optimal solution of L2. Doing this,
we again determine an optimal solution for the hierarchical MIP formulation, see
lines 12–14. Finally, if L2 does not admit a feasible solution, we consider the high
point relaxation L1. If it is infeasible, the tri-level MIP itself is infeasible. Otherwise,
we subsequently solve L̃2 and L̃3 and determine an optimal solution, see lines 6–10.
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3.6.1. Rolling Horizon Heuristic with Backtracking

Determining feasible solutions for the single-level MIPs introduced above before
starting a branch-and-bound algorithm to solve them is beneficial in two aspects.
Besides showing that the problem is not infeasible, the solution can be used as
incumbent and accelerate the solving process. This is the motivation for the intro-
duction of our rolling horizon heuristic. The idea to use this concept here comes
from the fact that rolling horizon has been successively applied to various time-
dependent optimization problems in the past, e.g., disruption management in the
railway industry, see Nielsen et al. [116], or several kinds of scheduling problems, see
for example Addis et al. [3] and Samà et al. [144].

Our heuristic is stated in Algorithm 2. Here, MIPj
k denotes the MIP model for

the first k time steps with all binary variables corresponding to time steps i ∈ T0
with i < j being fixed.

Algorithm 2: Rolling Horizon Heuristic with Backtracking

Input : MIP model L1,L2, L̃2,L3, L̃3, or L̂3 from Algorithm 1
Output: A feasible solution or INFEASIBLE

1 MIP0
0 ← MIP model for time step 0

2 if MIP0
0 is infeasible then

3 INFEASIBLE
4 S0 ← Optimal solution for MIP0

0

5

6 for k ← 1 to n do
7 MIP0

k ← MIP model for time steps {0, . . . , k}
8 MIPk

k ← Fix binary variables for time steps i < k in MIP0
k to Sk−1

9 j ← k

10 while MIPj
k is infeasible do

11 j ← j − 1
12 if j = 0 then
13 return INFEASIBLE
14 MIPj

k ← Fix binary variables for time steps i < j in MIP0
k to Sk−1

15 Sk ← Optimal solution for MIPj
k

16 return Sn

Starting with time step k = 0, in each of the following iterations, we consider the
single-level MIP model MIPj

k with an additional time step and solve it. Here, we
fix all binary variables to the solution values of the corresponding binary variables
of an optimal solution of the previous iteration, i.e., only the binary variables of the
newly added time step are not fixed, see lines 6–10 and 15.

Additionally, we apply backtracking within our heuristic, which is used whenever
a MIP turns out to be infeasible, see lines 10–13. In that case, we iteratively release
(unfix) the binary variables of preceding time steps until a feasible solution is found.
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Afterward, we continue with the rolling horizon approach as usual. Note that if
all binary variables are released, and the current MIP model is still infeasible, this
shows that the original MIP is infeasible as MIP1

k is an inconsistent subsystem in
the original model, see the PhD thesis of Pfetsch [131] for more details on this topic.

If we impose a time limit on the MIP solves within Algorithm 2 and run into it,
the heuristic continues with the incumbent solution. If no feasible solution is found,
we consider the corresponding MIP to be infeasible.

3.6.2. Solution Smoothing

Due to the nature of many LP-based branch-and-bound algorithms, a phenomenon
that can occur is the non-smoothness of the obtained solutions. As an example, we
can observe on the compressor arcs that in many cases, massive amounts of gas are
compressed in a single time step, while there is no compression at all in all other
time steps. The same behavior can be observed for the outgoing pressures of the
compressor arcs as well. Of course, these solutions with considerable differences in
the corresponding variable values for consecutive time steps are feasible w.r.t. the
model. However, such a behavior is not desirable in practice. Instead, we would like
to have constant mass flow and pressure at the fence nodes of the network stations
during the whole time horizon, if this is possible. Considering the extent of absolute
changes in the flow and pressure values at the fence nodes of a network stations for
consecutive time steps as a measure for the smoothness of a solution, we derive the
following LP formulation to determine the smoothest solution w.r.t. fixed binary
decisions.

Given a solution S for the hierarchical MIP formulation, consider the single-level
LP, which consists of the constraints and variables of the third level, but where
we additionally fix all binary variables and slack variables to their corresponding
solution values in S.

Furthermore, for each network station Gi, each fence node v ∈ V fn
i , and each

time step t ∈ T , we add four continuous variables δp+v,t , δ
p−
v,t , δ

q+
v,t , δ

q−
v,t ∈ R≥0, two

continuous variables δ
p
v, δ

q
v ∈ R≥0, and the following constraints

pv,t − pv,t−1 = δp+v,t − δp−v,t ∀v ∈ V fn
i , ∀t ∈ T (3.43)

qout
v,t − qin

v,t − qout
v,t−1 + qin

v,t−1 = δq+v,t − δq−v,t ∀v ∈ V fn
i , ∀t ∈ T (3.44)

δp+v,t + δp−v,t ≤ δ
p
v ∀v ∈ V fn

i , ∀t ∈ T (3.45)

δq+v,t + δq−v,t ≤ δ
q
v ∀v ∈ V fn

i , ∀t ∈ T . (3.46)

Constraint (3.43) measures the difference between the pressure values at v from time
step t − 1 to time step t using variables δp+v,t and δp−v,t . Analogously, the difference
between inflow and outflow is measured by constraint (3.44) using δq+v,t and δq−v,t .
Moreover, the maximum absolute difference between any two consecutive time steps
w.r.t. pressure as well as inflow and outflow at v is determined by constraints (3.45)
and (3.46) using variables δ

p
v and δ

q
v, respectively.
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Further, for each network station Gi and each time step t ∈ T , we add two
continuous variables δ

p
i,t, δ

q
i,t ∈ R≥0, and introduce constraints

δp+v,t + δp−v,t ≤ δ
p
i,t ∀v ∈ V fn

i , ∀t ∈ T (3.47)

δq+v,t + δq−v,t ≤ δ
q
i,t ∀v ∈ V fn

i , ∀t ∈ T . (3.48)

Here, the maximum difference w.r.t. pressure as well as inflow and outflow between
time step t−1 and time step t over all fence nodes of station Gi is determined using
variables δ

p
i,t and δ

q
i,t, respectively.

While the two variables δpv and δ
q
v are associated with positive objective coefficients

wsm-p
v , wsm-q

v ∈ R>0, the variables δ
p
i,t and δ

q
i,t are associated with positive objective

coefficients wsm-p
i , wsm-q

i ∈ R>0, respectively. Note that these are the only vari-
ables with nonzero objective coefficients. Preliminary experiments showed that only
penalizing the maximum differences per station can lead to a majority of the sta-
tions behaving very smoothly, while some show significant differences. On the other
hand, by only penalizing the maximum differences, we could give away smoothness
potential w.r.t. the single stations.

Finally, we denote the linear program described here by LPsm(S) in the following,
i.e., the linear program to smooth S. Since it is based on a feasible solution and
bounded by construction, we note that it admits an optimal solution.

3.7. An Iterative Velocity Adjustment Procedure

A possible drawback of the applied linear model for the transient gas flow through
pipelines is the fixation of the absolute velocity in the friction term of the Momentum
Equation (3.5), see the discussion on the pipeline model in Subsection 3.5.2. If
the mass flows or pressures at the endnodes of a pipeline change significantly in
future time steps, we may underestimate or overestimate the pressure loss, what
can in turn lead to inaccurate control decisions. To prevent this, we introduce
an iterative velocity adjustment procedure (IVAP) as postprocessing step in this
section. Inspired by the successful application of sequential linear programming in
the context of gas network control problems, see for example González-Rueda et
al. [63], its goal is to derive solutions that are feasible for the tri-level MIP with
constraints (3.5) replaced by the nonlinear constraints (M).

The main idea of the IVAP is the following: Given a solution S for the tri-level
MIP model, consider the LP derived from the variables and constraints of the third
level and fixing all binary variables to their corresponding solution values. Next, we
update the friction terms of the linear model for the Momentum Equations by using
the gas velocities at the endnodes of all pipelines derived from S instead of the ve-
locities based on the initial state. The goal now is to determine a solution such that
the pressure and flow variables in constraints (3.5) stay as close as possible to the
corresponding solution values in S. If we can find a solution such that all these vari-
able values are the same, we have determined a solution satisfying constraints (M),
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3.7. An Iterative Velocity Adjustment Procedure

as the gas velocity depends on the mass flow and pressure at the corresponding node
only, see equation (Q). Therefore, to derive such a solution, we introduce additional
variables and constraints to measure deviations, and penalize them through the LP’s
objective function. In the following, for all nodes v ∈ Vpi, let us denote the solution
values of the corresponding variables in S by Spv,t, Sqa,ℓ,t, and Sqa,r,t .

First, for each v ∈ Vpi, i.e., each node incident to a pipeline, and each time step
t ∈ T , we add two variables δp+v,t , δ

p−
v,t ∈ R≥0. Furthermore, we add one additional

variable δ
p ∈ R≥0 and constraints

pv,t − Spv,t = δp+v,t − δp−v,t ∀v ∈ Vpi, ∀t ∈ T (3.49)

δp+v,t + δp−v,t ≤ δ
p ∀v ∈ Vpi, ∀t ∈ T . (3.50)

Constraint (3.49) measures the deviation of the pressure value of node v and time
step t from the corresponding solution value in S using variables δp+v,t and δp−v,t .
The maximum difference for any node and any time step is then determined by
constraints (3.50), and it is equal to δ

p since we assign a positive objective coefficient
wsm-p ∈ R>0 to it. Moreover, we also introduce an objective coefficient wsm-p ∈ R>0

for all variables δp+v,t and δp−v,t .

Next, for each pipeline a = (ℓ, r) ∈ Api and each time step t ∈ T , we add four
continuous variables δq+a,ℓ,t, δ

q−
a,ℓ,t, δ

q+
a,r,t, δ

q−
a,r,t ∈ R≥0. Furthermore, we add one variable

δ
q ∈ R≥0 and constraints

qa,ℓ,t − Sqa,ℓ,t = δq+a,ℓ,t − δq−a,ℓ,t ∀a = (ℓ, r) ∈ Api, ∀t ∈ T (3.51)

qa,r,t − Sqa,r,t = δq+a,r,t − δq−a,r,t ∀a = (ℓ, r) ∈ Api, ∀t ∈ T (3.52)

δq+a,ℓ,t + δq−a,ℓ,t ≤ δ
q ∀a = (ℓ, r) ∈ Api, ∀t ∈ T (3.53)

δq+a,r,t + δq−a,r,t ≤ δ
q ∀a = (ℓ, r) ∈ Api, ∀t ∈ T . (3.54)

Here, constraints (3.51) and (3.52) determine the deviation of the inflow or outflow
at the endnodes ℓ and r of pipeline a from the corresponding solution values in S.
The maximum difference for any pipe, any endnode, and any time step is determined
using constraints (3.53) and (3.54), and it is equal to δ

q because we assign a positive
objective coefficient wsm-q ∈ R>0 to it. For variables δq+a,ℓ,t, δ

q−
a,ℓ,t, δ

q+
a,r,t, δ

q−
a,r,t ∈ R≥0, we

additionally introduce an objective coefficient wsm-q ∈ R>0. Finally, zero is assigned
as objective coefficient to all other variables. We denote the resulting linear program
by LPbase(S) in the following.

However, first experiments with LPbase(S) showed that many slack variables be-
come nonzero or attain solution values in higher magnitudes compared to S in the
corresponding solutions, since they do not contribute to the objective function any-
more. On the other hand, when fixing all slack variables to their corresponding
solution values in S, the resulting LP formulations often become infeasible. These
observations gave rise to a middle ground. For both classes of slack variables, we
introduce a parameter γ ∈ R≥0 with γ ≥ 1, and given the corresponding solution
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Algorithm 3: Iterative Velocity Adjustment Procedure (IVAP)
Input : Solution S0 for tri-level MIP as well as parameters ε, γ, µ, and ∆
Output: Feasible solution where (3.5) is replaced by (M) or UNSUCCESSFUL

1 v0 ← Gas velocities at v ∈ Vpi w.r.t. S0

2 i← 1
3 while i ≤ ∆ do

4 v∗i ←
i−1∑︁

j=max{0,i−µ}

|vj |
min{i,µ}

5 LPiv ← LPbase(Si−1) with |v∗i | used in (3.5) and MG(S0, γ)
6 if LPiv is infeasible then
7 return UNSUCCESSFUL
8 Si ← Optimal solution for LPiv
9 vi ← Gas velocities at v ∈ Vpi w.r.t. Si

10 if |||vi| − |v∗i |||∞ ≤ ε then
11 return Si

12 i← i+ 1

13 return UNSUCCESSFUL

values Sσd+
v,t , Sσd−

v,t , Sσp+
v,t , and Sσp−

v,t , we add constraints

σd+
v,t ≤ γ · Sσd+

v,t ∀v ∈ Vb, ∀t ∈ T (3.55)

σd−
v,t ≤ γ · Sσd−

v,t ∀v ∈ Vb, ∀t ∈ T (3.56)

σp+
v,t ≤ γ · Sσp+

v,t ∀v ∈ Vb, ∀t ∈ T (3.57)

σp−
v,t ≤ γ · Sσp−

v,t ∀v ∈ Vb, ∀t ∈ T . (3.58)

This approach fixes the slack variables with solution value zero, while all other slack
variables stay within a controllable range w.r.t. γ in the resulting LP. We denote
this set of constraints (3.55)–(3.58) by MG(S, γ) in the following.

The final, complete iterative velocity adjustment procedure (IVAP) is stated in
Algorithm 3. Given a feasible solution S0 for the initial tri-level MIP model, we
determine the gas velocities for all v ∈ Vpi and all time steps. Next, we repeat the
following procedure: In iteration i, we determine the average absolute gas velocity of
the last min{i, µ} solutions, i.e., v∗i . Afterward, we obtain the linear program LPiv
as LPbase(Si−1) using |v∗i | in constraints (3.5) together with constraints MG(S0, γ).
If LPiv is infeasible, the procedure is terminated and UNSUCCESSFUL is returned.
Otherwise we retrieve the gas velocities vi from an optimal solution Si. If |vi| and
|v∗i | differ by less than ε for all pipelines, nodes and time steps, Si is returned as
result. If this criterion is not satisfied within ∆ iterations, the procedure is aborted
and UNSUCCESSFUL is returned.
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Algorithm 4: Algorithmic Framework
Input : Tri-level MIP formulation and parameters ∆, ε, γ, and µ
Output: Solution for tri-level MIP with constraints (M) or UNSUCCESSFUL

1 i← 0
2 while i ≤ ∆ do
3 i← i+ 1
4 if the tri-level MIP is infeasible then
5 return UNSUCCESSFUL
6 Si ← Optimal solution for the tri-level MIP
7 Ssm

i ← Smoothening routine applied to Si

8 Siv
i ← IVAP(Ssm

i , ε, γ, µ)
9 if Siv

i ̸= UNSUCCESSFUL then
10 return Siv

i

11 vupdate
i ← Gas velocities at v ∈ Vpi from last IVAP iteration

12 Update Momentum Equations (3.5) in the tri-level MIP with vupdate
i

13 if three solutions with variable values Sixs,t have been considered then
14 Add no-good-cut w.r.t. Sixs,t
15 return UNSUCCESSFUL

3.8. Complete Algorithmic Approach

Our complete algorithmic approach for determining a stable transient control of gas
transport networks is presented in Algorithm 4.

The following procedure is iteratively repeated: In iteration i and lines 4–8, we
solve the tri-level MIP model with Algorithm 1 from Section 3.6. If the model is
infeasible, UNSUCCESSFUL is returned. Otherwise, we apply the smoothing routine
from Subsection 3.6.2 to the obtained solution Si, and subsequently start the IVAP
with the resulting solution Ssm

i , see Section 3.7.
If the IVAP terminates with a feasible solution, it is a feasible solution for the

tri-level MIP with constraints (3.5) being replaced with (M) and Algorithm 4 termi-
nates, see line 10. Otherwise, we retrieve the velocities vupdate

i from the IVAP itera-
tion executed last, and derive a new tri-level MIP formulation where constraints (3.5)
are updated using the corresponding absolute values in the friction terms, see lines 11
and 12. Additionally, we add a so-called no-good-cut w.r.t. the simple state vari-
ables of solution Si, which we denote by Sixs,t, if we have obtained three solutions
coinciding in these values. In particular, we add the constraint∑︂

s∈S

∑︂
t∈T0

Sixs,t · xs,t ≤ n · ν − 1,

where n = |T0| is the number of time steps and ν the number of network stations,
see line 14. Moreover, the algorithm terminates with UNSUCCESSFUL if no solution
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has been found within ∆ iterations.
The reason for starting the IVAP with the smoothed solution Ssm

i instead of Si

is that the differences w.r.t. the gas velocities at the nodes for consecutive time
steps are intuitively smaller. Furthermore, the solution produced by the IVAP may
maintain some degree of the smoothness of the initial Ssm

i .
If the IVAP fails, we use the velocities from its last iteration in the friction terms of

the Momentum Equations of the tri-level model in the next iteration, since they may
be closer to the velocities of some feasible solution for the model with the nonlinear
constraints (M). Moreover, we add a no-good-cut after three unsuccessful attempts
to ensure that the same solution w.r.t. the simple states does not occur again and
thereby avoid cycling between solutions.

Finally, we note that the solutions produced here are not necessarily optimal w.r.t.
the model featuring the nonlinear equations (M). However, if no slack is needed and
the objective function value is zero, then the corresponding solution is optimal.

3.9. Conversion of Natural Gas into Hydrogen Instances

In the context of repurposing existing natural gas transport infrastructure, one of our
goals is to investigate whether such a network can be operated and how its control
changes w.r.t. the transport of energy equivalent amounts of hydrogen. Therefore,
and since all the data necessary to formulate our tri-level model for the natural gas
transport network of OGE is available, we propose a method to convert it and derive
meaningful hydrogen transport instances. The main issues concerning a transfor-
mation are the compression of hydrogen with turbo compressors and the necessary
scaling of supplies and demands.

3.9.1. Hydrogen Compression with Turbo Compressor Units

First, we discuss whether and how the input parameters regarding an approximated
compressor unit m ∈ M have to be changed when hydrogen instead of natural gas
is transported. While the maximum available power Pm,t remains the same, the
maximum compression ratio Rm,t and the maximum possible mass flow Qm,t must
be adapted to reflect underlying physical and technical differences.

We start with a discussion on the maximum compression ratio. Recall that when
gas is compressed by a turbo compressor machine, the connection between the pres-
sure ratio, the amount of mass flow passing through, and the power necessary to
realize it is described by the nonlinear power equation

πa,t =
qa,t
ηad

RsTzℓ
κ

κ− 1

[︄(︃
pr,t
pℓ,t

)︃κ−1
κ

− 1

]︄
, (P)

where πa,t represents the power that is necessary to compress a mass flow of qa,t
with pressure pℓ,t up to a pressure of pr,t, see the discussion on the compressor arc
model in Subsection 3.5.3 for more details.
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Let us consider the equation above as a function of the compression ratio variable
Rm,t := pr,t/pℓ,t by fixing the mass flow value. For small values of Rm,t, in particular
Rm,t ∈ [1, 2.5], which is a typical range for the maximum compression ratio of a single
turbo compressor regarding natural gas, we apply the following approximation

R
κ−1
κ

m,t = eln(R
κ−1
κ

m,t ) = e
κ−1
κ

ln(Rm,t) ≈ e
κ−1
κ

(Rm,t−1).

From the first-order Taylor series at Rm,t = 1 of this expression, we then derive

πa,t =
qa,t
ηad

RsTzℓ(Rm,t − 1).

Next, for fixed mass flow and power values, we compare the compression ratios of
a turbo compressor when hydrogen and natural gas are compressed. Indicating the
corresponding parameters for hydrogen by H2 and natural gas by NG, we obtain

RH2
m,t = 1 +

RNG
s zNGℓ

RH2
s zH2ℓ

(RNG
m,t − 1).

The specific gas constants for hydrogen and natural gas are RH2
s = R/MH2 = R/2.0

and RNG
s = R/MNG = R/17.8, respectively, where R is the universal gas constant and

MH2 and MNG denote the corresponding molar mass values. Note that we use an
average value for Norwegian H-Gas for the latter. The approximation formulas for
the compressibility factors both depend on the gas pressure, see the paragraph on
pipelines in Subsection 3.5.2 for details. Additionally, the approximation formula of
Papay [126] for natural gas also relies on the temperature. Thus, to derive a linear
expression, we assume an operating pressure of 50.0 bar and a temperature of T =
25.0 ◦C, which results in compressibility factors of zH2ℓ = 1.03 and zNGℓ = 0.91. Thus,
for our conversion, we apply the following formula for the maximum compression
ratio of a turbo compressor machine when hydrogen is transported, which is based
on the corresponding maximum compression ratio for natural gas only

RH2
m,t = 1 +

RNG
m,t − 1

10
. (3.59)

Next, we discuss the changes that are necessary w.r.t. maximum possible mass
flow. The feasible operating range of a turbo compressor unit is usually described
by a characteristic diagram. An example of a turbo compressor and natural gas
from the book of Koch et al. [96] is shown in Figure 3.6. For more details regarding
this topic, we refer to [96] and the paper of Odom et al. [119]. We see that the
maximum flow, in this picture the volumetric flow, for the transport of natural gas
is bounded by the so-called chokeline on the right. Choking is the phenomenon
when the mach number, i.e., the ratio between the velocity of the gas and the speed
of sound, reaches 1 in some parts of the unit during compression. In that case, no
further compression is possible, the flow is said to be choked or stonewalled, and
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Figure 3.6.: Characteristic diagram of a turbo compressor for natural gas. Specific
change in adiabatic enthalpy vs. volumetric flow rate: Dashed lines rep-
resent isolines for adiabatic efficiency, thin solid lines represent isolines
for compressor speed. The left thick solid line represents the surgeline,
the right thick solid line represents the chokeline. All curves are the
result of least-squares fits with respect to measurements +.

prolonged operation of the compressor close to this limit can cause severe damage.
As the speed of sound in hydrogen 1, 270m

s is much larger than the speed of sound
in natural gas 446m

s , this phenomenon does not limit the compression of hydrogen
in practice. Considering the diagram in Figure 3.6, one can think of the chokeline
being removed for hydrogen. However, here the maximum flow is limited by the
maximum rotational speed. Experts at OGE estimate this value to be about 20%
larger than the value imposed by the chokeline. Thus, we assume the relation

QH2
m,t = 1.2QNG

m,t. (3.60)

of the maximum mass flow values for natural gas and hydrogen in the following.

3.9.2. Energy Density

The second important aspect that we have to consider for our conversion is the energy
density of hydrogen, which is much lower compared to natural gas. In particular,
the amount of energy transported by natural gas is about 3.19 times bigger if we
consider the same standard volumetric flows as supply and demands, since

3.19 ≈ 40.68MJ/m3

12.75MJ/m3
=

HNG
s,n

HH2
s,n

.

Here, HNG
s,n and HH2

s,n denote an empirical calorific value for Norwegian H-Gas and
hydrogen, see Cerbe [23], respectively. Thus, to evaluate the feasibility of a repur-
posed hydrogen transport network w.r.t. the energy it has to transport, we must
adapt the boundary values accordingly.
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Moreover, naturally, the original initial network state from natural gas for t = 0
does not account for the higher demands. Thus, in order to adapt and “recalibrate”,
e.g., w.r.t. the new compressibility factor, we do not fully scale up the supplies and
demands starting at time step t = 1. In particular, we allow for some ramp-up time
for the network here. Therefore, given the scaling factor of 3.19 and some ts ∈ T ,
we define

DH2
v,t := DNG

v,t +
min{ts, t} (3.19− 1)

ts
DNG

v,t ∀v ∈ Vb, ∀t ∈ T . (3.61)

Thus, for the first ts time steps, supplies and demands are linearly increased while
they are fully scaled for the remaining time steps.

3.10. Computational Experiments

In this section, we present computational experiments that we conducted to test the
suitability of our algorithmic approach for determining a stable transient control
for gas transport networks. Therefore, we used 332 natural gas transport instances
based on a major subnetwork of OGE’s gas transport network and corresponding
historically measured data as input. First, we checked the applicability of our model
to natural gas transport. Afterward, by applying the methods proposed in the
Section 3.9, we tested whether the converted network can transport energy equivalent
amounts of hydrogen, investigated how the transport infrastructure needs to be
changed to enable this, and compared how the network control differs.

3.10.1. Instances and Test Sets

We created six test sets for our experiments that we derived from 332 natural gas in-
stances that OGE provided. The latter are based on one of their major subnetworks
and corresponding historically measured pressure and flow data from two weeks in
September. We considered 168 instances in 30-minute intervals starting at noon of
virtual day one and ending at 11:30PM of virtual day four and 164 instances start-
ing at midnight of virtual day six and ending at 09:30AM on a virtual day 9. The
time difference of 30 minutes between two successive instances does not possess any
meaning and is due to the data creation process.

The network, shown in Figure 3.7 and whose composition is summarized in the
corresponding caption, is identical for all test sets. The properties of the seven
main network stations, whose locations are indicated by blue circles, are stated in
Table 3.1. In this context, Figure 3.5 in Section 3.4 shows network station E and
the original intersection area located in the northwest. Finally, we note that five
additional network stations represent single regulators from the original network.

All parameters and weights that were used in our models and algorithmic proce-
dures are listed in Appendix A.1. In the following, we explicitly state the important
ones w.r.t. the creation of our test sets and the analysis of the results.
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Figure 3.7.: The subnetwork of OGE’s natural gas infrastructure used in our com-
putational experiments. Inner nodes are shown as black squares, entries
as green triangles , and exits as red upside-down triangles . All
connections visible here represent pipelines. The locations of the seven
main network stations A to G are highlighted using blue cycles. The
network features |V| = 179 vertices, |V+| = 12 entries, |V−| = 89 exits,
|Api| = 149 pipes, and |Aar| = 72 artificial arcs.
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Name |V fn
i | |Var

i | |Aar
i | |Aco

i | |Fi| |Si|

A 2 0 3 2 3 5
B 2 0 4 3 2 5
C 6 1 10 1 4 4
D 3 0 5 3 6 10
E 6 0 9 2 12 13
F 6 2 12 3 3 14
G 10 2 24 5 18 32

Table 3.1.: Overview of the properties of the seven main network stations A to G.

We used a temporal granularity of 2 · 60 minutes and 11 · 120 minutes for all
instances, i.e., k = 13 time steps covering a time horizon of twenty-four hours. The
six test sets differed in terms of the transported gas, the type of compressor units we
considered, the supply and demand values and whether they have been balanced or
not, and the inflow pressure bounds. For the sake of comprehensibility, the following
descriptions of our six test sets are additionally summarized in Table 3.2.

The first test set consists of the original real-world instances provided by OGE.
Natural gas is transported, and we used the given supplies and demands as boundary
values for the entries and exits, the given inflow pressure bounds, and the turbo
compressors with their associated parameters. We denote this test set by NG-TC.

Next, we created five test sets for hydrogen transport. Compared to natural gas,
several parameters in our model need to be adapted, e.g., the compressibility factor
or the isentropic exponent, see Section 3.5 on the tri-level MIP for more details.

For the first hydrogen test set, which we denote by H2-TC, we considered the
turbo compressor units as provided in the original data. Hence, the maximum
compression ratio and the maximum flow parameters regarding the machines were
changed according to formulas (3.59) and (3.60), respectively. On the other hand,
we did not apply the scaling procedure as suggested in Subsection 3.9.2. Hence,
we used the same supplies and demands as in test set NG-TC in terms of volumetric
flow, which means that only about one-third of the energy compared to natural gas
is transported in the corresponding instances.

For the remaining four test sets, we replaced each turbo compressor unit with
a special hydrogen compressor unit. We assume that each hypothetical hydrogen
compressor units maintains the same maximum compression ratio, maximum power,
and maximum flow as the corresponding original turbo compressor unit admits for
natural gas. According to a whitepaper of several companies involved in gas trans-
port [2], compressor units like this will be available when needed, i.e., when hydrogen
transport networks are implemented.

Furthermore, for all four test sets, we applied the scaling procedure (3.61) as
described in Subsection 3.9.2 to the boundary values of the underlying natural gas
data to consider the same supplies and demands in terms of energy compared to
NG-TC. In particular, since we use ts = 8 as parameter in (3.61), after linearly
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Test Set Gas Compressor Type Scaling Balancing Relaxing

NG-TC NG TC
H2-TC H2 TC
H2-HC-EQ H2 HC X
H2-HC-EQ-B H2 HC X X
H2-HC-EQ-P H2 HC X X
H2-HC-EQ-B-P H2 HC X X X

Table 3.2.: Summary of the properties of our six test sets. The first column denotes
the names of the test sets, which do also encode the corresponding prop-
erties. The second column shows the type of gas that is transported,
i.e., NG = natural gas or H2 = hydrogen. The third column denotes the
type of compressor unit that we consider, i.e., TC = turbo compressor
units or HC = hydrogen compressor units. Hence, for all hydrogen test
sets, except H2-TC, we use the same machine parameters as the turbo
compressor machines admit for natural gas in test set TC-NG. For H2-TC,
the parameters are adapted according to (3.59) and (3.60). In the fourth
column, an X shows whether the boundary values were scaled according
to (3.61), which is encoded by -EQ in the test sets’ names, too. Similarly,
the last two columns indicate whether the balancing procedure (-B) for
the boundary values and the relaxing of the inflow pressure bounds (-P)
as explained in Subsection 3.10.1 are applied or not, respectively.
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scaling up the boundary values for the first twelve hours. For the last twelve hours,
the supplies and demands are equal in terms of energy.

The second hydrogen test set, H2-HC-EQ, features the original natural gas input
using the hydrogen compressor units as well as the scaled boundary values.

We consider the same setup for the third hydrogen test set as for H2, but we
additionally balanced supply and demand. To do this, we added up all the supply
on the one hand and all the absolute demand on the other hand over the whole time
horizon. Afterward, we evenly scaled up the boundary values of the entries or exits,
depending on which one yielded the smaller sum, such that both sums coincided in
the end. This test set we denote by H2-HC-EQ-B in the following.

Fourth, we again considered the same setup as for H2-HC-EQ, but we additionally
relaxed the inflow pressure bounds by adding one bar to all upper and subtracting
one bar from all lower bounds. Hence, for this test set, which we call H2-HC-EQ-P,
we allow a broader range of future pressure values at the network’s entries.

Finally, for the fifth hydrogen test set, we again took H2-HC-EQ as the basis, and
applied both of the previously described modifications, i.e., we balanced supply and
demand as in test set H2-HC-EQ-B and changed the inflow pressure bounds as in test
set H2-HC-EQ-P. The resulting combination we denote as test set H2-HC-EQ-B-P.

3.10.2. Computational Setup

We performed our computations on a cluster of machines composed of two Intel
Xeon Gold 5122 running at 3.60 GHz, which provide in total eight cores and 96GB of
RAM. As solver for the underlying MIP problems, we used Gurobi version 9.1.2 [69],
accessed via the C interface. Since the MIP and LP models turned out to be nu-
merically challenging, we set the NumericFocus parameter to maximum value 3,
the IntegralityFocus parameter to 1. Otherwise, we used standard settings. In this
context, we also fixed the absolute velocities in the friction-based pressure difference
term of the Momentum Equation (3.5), i.e., in the third summand, to the maximum
of the absolute gas velocity at the corresponding node and vmin := 10−1ms . The
introduction of the threshold vmin is necessary to control the magnitudes of the con-
straint’s coefficients and avoid numerical instabilities. This threshold is decreased
to 10−3ms for the IVAP as the fixation of the binary variables allows for this more
accurate modeling.

Next, we applied the rolling horizon heuristic with backtracking presented in Sub-
section 3.6.1 before each MIP solve to find an incumbent solution.

Finally, we set a cumulative time limit for each instance and all MIP solves,
including the heuristic, of twenty-four hours. Additionally, we set individual time
limits for the single-level MIPs of six hours, and for the MIP solves within the rolling
horizon heuristic we imposed an additional time limit of 300 seconds. Further,
besides the ∆-criterion, Algorithm 4 was terminated if the cumulative run time
exceeded 24 hours, which was checked after each IVAP run. For the IVAP itself, no
time limit was imposed.
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3.10.3. Results

We split the presentation of the results of our computational experiments into three
parts. First, we analyze the applicability of our algorithmic approach to natural
gas transport. Thereby, we concentrate on the properties and the quality of the
obtained solutions and on the run times, as these are essential factors concerning
the underlying application, i.e., the usage within KOMPASS.

Afterward, we turn to the results for our hydrogen test sets. The main focus here is
to check whether converting the natural gas infrastructure into a hydrogen transport
network is feasible w.r.t. the network control. In particular, we are interested in
whether there exist solutions without the usage of slack for the corresponding test
instances or not. We also investigate what changes to the network and regulations
are necessary to admit such a control in this context.

Finally, we compare the control of the network w.r.t. the two different gases. In
particular, we analyze how much the necessary amounts of compression energy differ
and how many technical measures were applied for both.

Results for Natural Gas

First, we focus on the performance of our algorithmic approach w.r.t. natural gas
transport, i.e., we take a closer look at the results for test set NG-TC. The detailed
results of these experiments can be found in the tables in Appendix A.2.

For all instances, a feasible tri-level MIP solution without slack was determined.
Since we used the instances provided by OGE, which are based on historically mea-
sured data, we know that the initial state, future boundary values, and inflow pres-
sure bounds correspond to network states that have occurred in practice. Further-
more, non-technical control measures, which the dispatchers may have applied within
the considered time horizon, are implicitly included in the input data. Thus, if our
model and the network stations capture reality well, we expect such a result.

Additionally, except for instance 6-2000, in which two simple state changes were
performed, at most one was necessary for all the other instances. In particular, we
observe that one technical measure was applied in the solutions for 40 instances,
while in the remaining 291, none was necessary. These observations are in line with
the expectations of the practitioners, who consider these results meaningful w.r.t.
the test instances and the objective function of the third level in particular. Hence,
as a first result, we deduce that our modeling approach is applicable here.

Next, Algorithm 4 terminated with zero optimality gap in its last tri-level MIP
solve for all but nine instances, which also featured the longest run times. The latter
highly depend on whether a simple state change was applied in the corresponding
solution or not: Among the 311 instances, which had a total run time of less than
one hour, are only 21 for which at least one simple state change was performed.
On the other hand, no simple state change was conducted for only one of the 21
instances with longer run times. It is not surprising that those instances for which no
technical measure was applied were often solved faster since they have zero as third-
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level objective value, which is a trivial lower bound on the corresponding objective
function. Additionally, a look into the logfiles of the MIP runs reveals that most
of these solutions as well as most of the final (incumbent) solutions of the other
instances were obtained early on in the solving process. For example, the preceding
rolling horizon heuristic determined the final solutions for 295 instance. Hence, we
can conclude that our algorithm can determine solutions of good quality in short
amounts of time.

Finally, more than one iteration of Algorithm 4 was performed for fifteen instances,
and two no-good cuts were added in total. The IVAP needed at most twelve iter-
ations for each of its runs, i.e., it never hit the iteration limit ∆, and terminated
successfully in all of its last runs except for instances 6-1200 and 6-1230, which both
feature a high final MIP gap. Thus, the physical accuracy of the solutions could
be improved for nearly all instances and in particular if the considered initial solu-
tions were proven optimal for the corresponding tri-level MIP. Since this was often
immediately possible, i.e., within the first iteration of Algorithm 4, the smoothed so-
lutions of the tri-level MIPs, which feature a linear gas flow model, are a reasonable
basis for this postprocessing routine. These results underline that the recommended
measures determined with tri-level MIP can be considered a meaningful technical
control.

Hydrogen Results

Next, we analyze the results for our hydrogen test sets. Note that in none of the
solutions for the corresponding instances, inflow pressure slack was applied. Thus,
if we say slack in the following, this always refers to boundary flow slack.

We start our discussion by comparing the results of test sets H2-TC and H2-HC-EQ,
whose details can be found in the tables in Appendix A.3 and Appendix A.4, respec-
tively. We observe that 281 instances in H2-TC needed boundary flow slack, while
the same holds for only 106 instances in H2-HC-EQ. Moreover, the average amount
of slack needed for the instances in H2-HC-EQ is only about 20% compared to H2-TC,
although the supplies and demands were scaled up here. The comparatively vast
amounts of slack in H2-TC are probably due to the reduced maximum compression
ratios according to formula (3.59). This bottleneck does not affect the results of all
other hydrogen test sets, as we considered special hydrogen compressor units here,
i.e., the formulas proposed in Subsection 3.9.1 were not applied. Hence, the current
turbo compressors units seem not suited for hydrogen transport, even if we consider
the same supplies and demands in terms of volumetric flow as for natural gas in
NG-TC.

Next, we turn to the results for test set H2-HC-EQ. To figure out what needs to
be changed to enable a network control without slack, we analyzed the reasons for
its usage. The first exciting relation we identified was the flow imbalance, which we
define as the difference between an instance’s total supply and its absolute demand
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Flow Imbalance Distribution
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Figure 3.8.: Distribution of flow imbalances in MWh for test sets NG-TC and
H2-HC-EQ. The instances are divided into corresponding intervals in this
diagram, and the x-axis ticks depict their centers. On the other hand,
the ratio of the contained instances is represented on the y-axis.

in terms of power over time (energy), i.e.,⎛⎝∑︂
t∈T

(τ(t)− τ(t− 1))

⎛⎝ ∑︂
v∈V+

Dv,t +
∑︂
v∈V−

Dv,t

⎞⎠⎞⎠Hs,n ρ
0 (3.62)

where Hs,n is the calorific value and ρ0 the norm density of the considered gas.
Recall that τ(k) is the length of the considered time horizon. Figure 3.8 shows a
histogram of the flow imbalances in test sets NG-TC and H2-HC-EQ. The distributions
here differ due to the applied ramp-up procedure (3.61). We observe that many
instances feature a positive flow imbalance, which can be because of the following
factors: First, the real-world natural gas data does not account for fuel gas used
for compression. Second, regulation only demands that supply and demand must
be balanced within the time window from 6AM to 6AM the other day. However,
in practice, this rule is not strictly enforced by the TSOs for operational reasons.
Finally, although we performed several consistency checks, we cannot guarantee
perfect accuracy of the input data, as it originates from real-world measurements.

The relation between the flow imbalance of an instance in H2-HC-EQ and the total
boundary flow slack used in the corresponding solution is shown in the scatter plot in
Figure 3.9. We observe that the amount of slack is typically small and independent
of the flow imbalance values in the range of -40,000 to 40,000 MWh. However, we
also observe that the necessary slack scales linearly starting from an imbalance of
about 40,000 MWh. Here, the inserted amounts of gas cannot be transported away
from the entries. If no slack is applied, the pressure in the incident pipelines would
increase and eventually violate the inflow pressure bounds.

To check whether the flow imbalance is the only reason for the usage of slack, we
conducted the experiments with H2-HC-EQ-B. Recall that these instances are equiva-
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Figure 3.9.: Scatter plot displaying the boundary flow slack in MWh (y-axis) with
respect to the flow imbalance in MWh (x-axis) for each instance of
H2-HC-EQ (blue circles), H2-HC-EQ-P (green circles), and H2-HC-EQ-B
(orange circles).

lent to H2-HC-EQ, but the boundary values were scaled up such that the total supply
and absolute demand are balanced over time, i.e., there is no flow imbalance. Con-
sidering the results, which can be found in Appendix A.5, there are still 96 instances
for which slack is needed. However, the corresponding amounts are relatively small
compared to H2-HC-EQ, as we see in Figure 3.9. An analysis of the corresponding
solutions revealed that most of this slack was still needed to decrease the supply at
some major entries during the first time steps.

A plausible explanation for this behavior is that we start with an initial state
originating from natural gas transport, and so do the considered future inflow pres-
sure bounds. Therefore, when creating the instances, we implicitly assumed that
hydrogen transport would also allow for or utilize such network states. Hence, we
conjectured that this slack might be necessary for the network to adapt to the new
medium and comply with the inflow pressure bounds.

Thus, to test our theory, we relaxed the inflow pressure bounds at the entries,
which resulted in the creation of test set H2-HC-EQ-B-P. Detailed results of these
experiments can be found in the tables in Appendix A.7. Here, all instances could
be solved without any slack. To check whether the balancing is necessary and if the
relaxation of the inflow pressure bounds alone suffices to achieve this goal, we created
and ran test set H2-HC-EQ-P. The results, which can be found in Appendix A.6,
show that this is not the case. There are still 38 instances for which significant
amounts of boundary flow slack were needed. The corresponding relation with the
flow imbalances is again shown in Figure 3.9. However, we observe that compared
to test set H2-HC-EQ, the linear increase in the boundary flow slack is not as steep
here.
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Network Control – Natural Gas vs. Hydrogen

We base our analysis on comparing the network control w.r.t. the two different
gases on the results of test sets NG-TC and H2-HC-EQ. Therefore, we considered all
instances that finished with no slack and zero gap in the last MIP run for both test
sets. In Figure 3.10, all 157 instances with this property are shown on the x-axis in
chronological order. On the left y-axis, the amount of used compression energy is
denoted. We calculated these values a posteriori for each instance using the correct
nonlinear power equation for turbo compressor units (P) with the corresponding
mass flow and pressure values. On the right y-axis, we denote the number of simple
state changes that were conducted simultaneously with flow direction changes in the
same network station. We use this measure for comparison instead of simple state
changes only because the latter is often related to only switching on a compressor
arc in a network station for H2-HC-EQ, which does not go along with a flow direction
change. We do not consider those a genuine technical measure in our analysis as it
does not generally change the overall network control.

First, with the increasing supplies and demands, more technical control measures
become necessary for H2-HC-EQ. While for NG-TC, rarely one control measure needs
to be applied, for H2-HC-EQ, we have one or two simultaneous simple state and flow
direction changes for nearly all instances. An analysis of the solutions reveals that
the increased need for technical control measures is due to the significantly reduced
linepack compared to natural gas w.r.t. energy because of the lower energy density
of hydrogen. Thus, less energy can be buffered and stored for future usage. In
particular, while for instances with a positive flow imbalance, the pipelines in test
set NG-TC can store the ingoing natural gas without the violation of any pressure
bounds. This is an issue for the corresponding H2-HC-EQ instances, as discussed
above. Here, the gas has to be distributed all over the network in order to store it.
This explains the increased number of technical control measures for these instances,
which transport the gas into network parts that were initially not supplied by the
main entries. On the other hand, the reverse behavior can be observed in solutions
of instances with a negative flow imbalance. Here the technical control measures
are necessary to bring gas from initially separated network parts into circulation.
Nevertheless, we note that the reduced linepack w.r.t. energy for hydrogen plays the
decisive role in both cases.

Finally, a lot more compression energy, namely 440% more on average, is needed
for the instances in H2-HC-EQ compared to NG-TC. On the one hand, this is due to
the higher amounts of flow, which makes more compression necessary. On the other
hand, as discussed above, the necessity to distribute the hydrogen in or collect it
from different parts of the network additionally increases the need for compression.

3.11. Conclusion and Future Research

We split our conclusion into three parts. After discussing the applicability of our
algorithmic approach to natural gas transport, we turn to the results regarding a
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Figure 3.10.: Comparison of used compression energy and the simultaneous sim-
ple state and flow direction changes for all instances in NG-TC and
H2-HC-EQ that finished with no slack and zero gap. On the x-axis, the
instances are listed in chronological order. The colored curves together
with the left-hand side y-axis show the amount of energy used for com-
pression. The symbols scaled to the right-hand side y-axis show the
number of simple state changes conducted simultaneously with flow
direction changes.

potential conversion of the infrastructure into a hydrogen transport network. In both
parts, we additionally discuss possible directions for future research. This chapter
ends with some more general remarks regarding the experiments and comments on
the idea of mixing gases with each other.

3.11.1. Natural Gas Transport

Our computational experiments, based on a major subnetwork of OGE’s natural
gas transport network together with historically measured flow and pressure data,
demonstrate that our algorithmic approach represents a valuable basis for further
development in KOMPASS. All test instances were solved without slack, and mean-
ingful solutions were determined early in the solving process. For example, the pre-
ceding rolling horizon heuristic determined the final incumbent solutions for nearly
90% of the instances. Moreover, the number of recommended technical control mea-
sures is small, which is what practitioners expect considering the test set and the
objective function of the third level of our tri-level MIP.

However, we also observe that there is much room for improvement, especially
regarding the lower bound in the MIP solving process. The solver often spends
much time on closing the gap for those instances where at least one simple state
change is performed in the corresponding solution. To improve upon that, we are
currently developing problem-specific inequalities, whose underlying idea is to pre-
vent combinations of simple states and flow directions of “adjacent” network stations
that are physically absurd or not meaningful in practice, e.g., two network stations
compressing gas into opposite directions.
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Additionally, as stated above, the considered test instances are based on histor-
ically measured supplies, demands, and pressure values. However, the model may
need to apply non-technical measures, i.e., slack, when forecasted values are used.
The latter can lead to a significant increase in run time, as the results for the hy-
drogen instances suggest.

From an application-oriented point of view, although the hand-tailored network
stations that we used in our experiments work quite well, an important next step
is creating an automatized process to derive these models based on the original
topologies of the intersection areas and the corresponding operation modes. Such
a routine would not only improve the accuracy of the overall model as it could
be possible to show that the capabilities of each operation mode are included in
the network station model, and we, therefore, consider a relaxation instead of an
approximation here. It would also lead to a better maintainability of KOMPASS.
Whenever the topology at a junction changes in the real world, the network station
models currently have to be revised and adapted by hand, which is a time-consuming
and resource-intensive task.

Furthermore, we aim at applying the model to larger parts of the network and
thereby include more intersection areas. Of course, it is undoubtedly beneficial to
extend our formulation, for example, by modeling parallel and sequential setting
choices for compressor stations or to improve the solution quality by incorporating
features like ramp-up times for compressor units, too. However, our current priority
is to decrease the run time in order to be able to scale our algorithmic approach.

Finally, the whole procedure and the IVAP may benefit from another idea that
we are currently pursuing: Exploiting the information from solutions of previously
solved instances. In particular, consider some problem instance together with the
chronologically preceding one. The former is usually based on the same network
topology and features only slightly different input data compared to the latter. We
are working on a heuristic that uses the solution values of the binary variables corre-
sponding to the jointly covered time horizon. Moreover, we are also experimenting
with using the absolute velocities from the solution directly in the Momentum Equa-
tions (3.5) of the initial tri-level MIP for the current instance. The rationale here is
that these values may be a more realistic starting point than using the same absolute
velocity for all time steps.

3.11.2. Hydrogen Transport

Our experiments on whether the underlying natural gas transport network can be
converted into a pure hydrogen transport network yield promising results and give
a positive answer provided that certain technical and regulatory conditions are met.
However, before stating a conclusion here, we add a disclaimer.

To the best of our knowledge, there is no data regarding real-world, large-scale
hydrogen transport networks since such an infrastructure does not exist yet. The
instances that we used in our experiments are based on measured data from a real-
world natural gas transport network and we converted them in a way that we con-

74



3.11. Conclusion and Future Research

sider reasonable. However, as all the network states originate from natural gas
transport, we implicitly impose that hydrogen transport allows for or even utilizes
them in everyday operation, which is unlikely. Nevertheless, our study on whether
the natural gas transport network can be repurposed reveals several exciting insights.

First of all, without a replacement of the currently installed turbo compressor units
by special hydrogen compressor units, transport cannot be realized as the results
for test set H2-TC demonstrate. This is due to the maximum compression ratio of
the turbo compressor units for hydrogen, which is drastically reduced compared to
natural gas, see equation (3.59) in Subsection 3.9.1.

Additionally, our analysis regarding the remaining test sets shows that transport
is possible in case that supply and demand are balanced over the considered time
horizon. The main reason for this being that, due to the lower energy density of
hydrogen, the linepack w.r.t. energy is significantly reduced compared to natural gas.
Hence, less energy can be stored or retrieved for future usage. Therefore, it seems
necessary to enforce stricter regulatory rules in a future hydrogen transport market,
e.g., to require the traders to balance supplies and demands within twelve or fewer
hours compared to the twenty-four currently established in natural gas transport.

For the same reason, more technical control measures become necessary. For
H2-HC-EQ, at least one simultaneous simple state and flow direction change is per-
formed for nearly all instances, while for NG-TC none is conducted in a majority of
the scenarios. The necessity to distribute the hydrogen in or collect it from more
remote parts of the network, depending on whether we have a surplus in supply or
demand, makes this more dynamic control inevitable.

Furthermore, besides the fact that more than three times the amount of volumetric
flow is transported through the network in H2-HC-EQ, the changes in the control add
to the increased need for compression energy. In particular, we find that 440% more
compression energy is needed on average compared to natural gas test set NG-TC.

Summing up, repurposing the network seems possible if the turbo compressor
machines are replaced with special hydrogen compressor units and stricter rules
regarding the balancing of supply and demand are enforced. However, we expect
that the amount of compression energy would drastically increase and that the
network control becomes more dynamic.

Regarding the algorithmic approach itself, we are currently planning to use it to
develop a decision support system for hydrogen transport, similar to KOMPASS.
As the control of hydrogen networks is likely to be more dynamic, such a tool may
be even more valuable to prospective dispatchers. However, we need to conduct a
more intensive analysis of the balancing requirements and develop suitable pressure
profiles that are feasible for hydrogen transport. The latter is of particular impor-
tance, as the practitioners at OGE assume that it is important to keep the pressure
differences in such a network small over time. A control that does not respect this
requirement may boost pipeline embrittlement. Thus, we are currently discussing
corresponding changes in the objective functions of the tri-level MIP model for hy-
drogen transport.
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3.11.3. General Remarks

As the Energiewende in Germany and worldwide progresses and decisions on im-
plementing power-to-gas options are discussed intensively, there is a great need for
future research regarding the control of prospective transport networks. Regarding
the experiments presented here, we are working on extending them and want to use
a wider variety of test instances in order to verify the obtained results. For example,
as the data that we used stems from two weeks in September, which usually does
not feature the highest annual supplies and demands, additional parallel hydrogen
compressors may actually become necessary during wintertime.

Another critical topic is the mixing of gases. The amounts of produced chemical
energy carriers such as hydrogen will initially be relatively small during an energy
transition. Thus, no complete conversion of the gas networks is going to be necessary
in the near future. Nevertheless, one could insert surplus hydrogen into the network
and blend it with natural gas in an intermediate step. This can be done up to a ratio
of 10% without having any significant impact on compression [2]. However, due to
regulatory constraints, for example industries relying on a certain quality of natural
gas, a practicable ratio will be smaller. A more detailed discussion on this topic as
well as a first case study regarding the hydrogen capacity of the current natural gas
network has been conducted by Pedersen et al. [127]. From a mathematical point of
view, mixing gases adds another source of complexity to the problem of determining
a transient network control. In particular, it becomes necessary to trace the gas
composition, which is typically done using nonlinear pooling constraints.
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In this chapter, we discuss the problem of identifying severe transport scenarios in
natural gas transport. To understand how transport scenarios arise in the first place,
we start with a description of the current natural gas market model, its regulatory
rules, and the corresponding challenges that the transport system operators (TSOs)
face in Section 4.1. Furthermore, we present several methods to determine and
evaluate the technical capacity of a gas network, i.e., the maximum amounts of gas
that can be injected into or withdrawn from the network while its technical control
can still be guaranteed. In this context, we consider approaches from the literature
as well as methods that are applied in practice. The main idea that the latter have
in common is to decide on the feasibility of technical capacities by evaluating a finite
set of severe transport scenarios using highly detailed mathematical models for the
physics of gas transport. These test sets are generated and designed with the goal
in mind to cover and represent all possible difficult flow situations that can arise. If
transport can be realized for all or at least a great majority of these scenarios, the
technical capacity is considered feasible.

However, even for practitioners, e.g., the dispatchers who control the gas networks
and know them very well, it is hard to specify what “severe” means w.r.t. gas trans-
port scenarios. We review existing severity measures and look at the approaches
for generating related test sets. Afterward, we propose two new measures, namely
the minimum transport moment and the potential transport moment, together with
methods to identify corresponding worst-case scenarios. To this end, we introduce
two new network flow problems: The Maximum Transportation Problem in Sec-
tion 4.2, a generalization of the well-known Transportation Problem, and the Max-
imum Potential Transport Moment Problem in Section 4.3. Besides an analysis of
their computational complexity, we propose heuristic and exact solution approaches
for both. A case study based on the gaslib-582 instance from the GasLib benchmark
library [147] is conducted in Section 4.4. The results confirm that our measures
should be considered in the future since the transport scenarios determined with
MaxTP and MaxPTM exceed the corresponding maximum severity values from a
provided test set by 23% and 30%, respectively.

Note that this chapter focuses on natural gas as its transport in pipeline networks
was established decades ago and the regulatory rules are clearly stated. However,
since a similar market model will probably be implemented in a future hydrogen
economy, the obtained results could be relevant in the context of its transport, too.

Finally, we believe that MaxTP and its generalization, the Maximum Minimum
Cost Flow Problem (MaxMCF), which is discussed in Appendix B.1, constitute
challenging new network flow problems for the scientific community on their own.
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4.1. The Entry-Exit Gas Market Model

To determine severe transport scenarios for natural gas networks, we need to un-
derstand how these arise based on the current market model and the corresponding
regulatory rules. Hence, this section discusses the essentials of natural gas trading
in Germany and the challenges that the transmission system operators (TSOs) face.
The following explanations are based on the book chapter of Rövekamp [140].

Traditionally, the same company provided natural gas trading and transport,
which enabled long-term planning based on reliable forecasts of supply and demand.
All necessary information for an efficient network control was available early on, and
critical network situations could be avoided or resolved through internal communi-
cation. On the other hand, due to this organization, the gas customers, e.g., power
plants, industrial sites, or utility networks, had no choice but to buy their gas from
a company to whose transport network they were physically connected. Thus, the
European Union decided to decouple trading and transport to implement a more
liberal market structure according to a directive [42] and subsequent regulation [43].
However, this effort led to the establishment of more complex market models.

In Germany, the so-called entry-exit model was introduced in 2005. Here, for
each market area, which represents a region or a part of the gas grid for which
this model is implemented, a virtual trading point (VTP) is installed. This VTP
incorporates all entry and exit points of the corresponding area. To inject gas into or
withdraw it from the network, the transport customers, which we synonymously call
shippers in the following, book capacity contracts for the desired entries or exits in an
auctioning process. Although there exist capacity contracts that are closed the day
before (day-ahead capacities) or even on the same day (intraday capacities), most of
the bookings, which we focus on in this chapter, are realized several weeks or years
before transport. Within their contractual rights, the shippers then nominate the
actual amounts of gas that they want to transport the day before. Modifications of
these nominations, i.e., renominations, are possible up to two hours before realization
according to specific rules limiting the extent of deviations.

However, when making their nominations, the shippers all together have to ensure
that supply and demand are balanced, i.e., that the amount of gas injected into the
network equals the amount of gas withdrawn from it. This is necessary to allow
for a stable network operation and is typically realized for each gas day, i.e., within
the 24 hours between 6AM and 6AM the next day. To achieve this, the shippers
trade with other transport customers having matching rights by buying or selling
gas, which is virtually exchanged at the VTP. For the sake of understandability,
we assume that all nominations correspond to freely allocable capacities here, i.e.,
there is no restriction on the entries or exits that the shippers can trade with. For
more information on the topic and examples of other available, more restrictive
capacity products, we refer to the thesis of Hayn [74]. The concepts of bookings and
(balanced) nominations are illustrated in Figure 4.1.

Additionally, we distinguish two main types of capacity that are auctioned: Firm
and interruptible capacities. In the case of firm capacities, the TSOs guarantee that
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Figure 4.1.: On the left, a VTP with its entries u1, u2, and u3 as well as its exits
w1, w2, and w3, together with six shippers is shown. Their individual
bookings are stated directly next to them. On the right, we see a set of
possible nominations. Note that supply and demand are balanced.

the corresponding nominated amounts of gas are transported except for situations
considered as force majeure, e.g., severe technical network failures beyond the con-
trol of the TSOs. On the other hand, the TSOs can partially or entirely decline
nominations corresponding to interruptible capacities if this is necessary to ensure
a feasible network control. However, best endeavours have to be taken in order to
realize them. Note that such interruptions are also mentioned and discussed in the
context of non-technical measures for gas transport, see Section 3.3. Nevertheless,
in the remainder of this chapter, we refer to the sum of all booked firm capacity
contracts simply as a booking, and the sum of all nominations w.r.t. firm capacities
is called a transport scenario or a supply and demand vector.

The TSOs are required by law to regularly determine and offer maximum amounts
of firm capacity to the shippers, i.e., they need to determine the technical capacity
of their network. In contrast to short-term agreements, this is more difficult when
considering long-term contracts as forecasting future network states and nominations
becomes harder, see the work of Petkovic et al. [130] as a reference for this claim.

Further, according to the Gas Network Access Ordinance (Gasnetzzugangsverord-
nung 2010, §9 (2)) [56], the corresponding evaluations have to be conducted using
state-of-the-art techniques, including flow simulations, forecasting, and statistical
methods. Thus, even the legislative authority explicitly acknowledges the need for
mathematical methods to ensure the efficiency of the implemented entry-exit mar-
ket model. The relevance of mathematical methods is further emphasized since the
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interaction between the TSOs and the shippers, for example, can be described by a
hierarchical four-level model, see Grimm et al. [64]. Based on this model, an anal-
ysis of the cost of the presented regulatory approach, i.e., the welfare losses due to
unused network capacity, has been conducted by Böttger et al. [16].

Finally, three major mathematical problems of interest to us arise because of the
entry-exit market model. They are, for example, stated and discussed in the paper
of Fügenschuh et al. [49] together with their relations and interdependencies. While
checking the feasibility of a transport scenario w.r.t. the (transient) control of the
network has already been treated in Chapter 3, we review optimization approaches
and complexity results regarding the other two in the remainder of this section. In
particular, after discussing the problem of determining the technical capacity of a
gas transport network, we review methods and results on deciding whether a given
booking is feasible or not, i.e., if transport can be realized for all possible supply
and demand vectors. Note that in contrast to Chapter 3, we focus on stationary
networks in the following, since all previous work and our contributions consider no
temporal resolution.

4.1.1. Technical Capacities

A first mathematical model for determining the technical capacity of natural gas
networks is presented in the PhD thesis of Willert [161], which can be interpreted
as an adjustable robust optimization problem. Furthermore, several properties of
the problem are investigated, e.g., upper bounds on the maximum firm capacities
of individual nodes are described. Moreover, the geometry of the set of feasible
transport scenarios w.r.t. a nonlinear transport model is analyzed. In particular,
the author shows that it can be nonconvex and may even contain holes using small
example networks. Additionally, the important fact that the individual capacities
of entry and exit nodes are in general not independent is discussed. For example,
increasing the firm capacity of one entry may make it necessary to decrease it at
another entry to avoid congestion in an adversarial transport scenario. Furthermore,
it is emphasized that the overall problem itself allows for multiple interpretations
as there is no clear definition of what maximum w.r.t. technical capacity means.
For example, from the least restrictive point of view, the problem admits a set of
Pareto-optimal solutions.

Another option to define the maximum is w.r.t. some weight vector on the entry
and exit nodes, which is, for example, described in the technical report of Fügenschuh
et al. [52]. For this variant of the problem, a solution approach consisting of two
stages is introduced in the PhD thesis of Hayn [74]. In a first step, the set of bookings
is successively split into boxes, and it is checked whether they contain any feasible
supply and demand vector or not. These boxes are then marked as feasible and
infeasible, respectively. Based on this information, maximum technical capacities are
determined in a subsequent step. However, due to the complex geometry of the set
of feasible transport scenarios mentioned above, feasibility can only be guaranteed
up to a certain tolerance.
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The maximization of a weighted sum of the firm capacities is also considered
Schewe et al. [146]. In their article, the authors introduce three variants of the
Computing Technical Capacities Problem (CTC) for passive networks, i.e., no active
elements like compressors or valves are considered here. While the first variant
features a capacitated linear flow formulation, the other two incorporate a linear and
a nonlinear potential-based flow model, respectively. In particular, the nonlinear
model features the well-known Weymouth pressure drop equation. The authors
show that CTC is NP-complete on trees for all three variants using a reduction from
SubsetSum, implying the NP-hardness for general networks.

4.1.2. Deciding the Feasibility of a Booking

After reviewing several approaches for determining the technical capacity of a gas
transport network, i.e., to maximize the firm capacities at its entries and exits, we
consider the decision variant of the problem in this subsection: Given a booking, is
it feasible, i.e., does there exist a feasible technical control for all possible transport
scenarios? We partition the corresponding solution approaches into two categories.
First, we review what we call the complete methods, and as the name suggests,
all possible nominations are checked for feasibility here. On the other hand, if the
validation is based on evaluating a finite set of severe transport scenarios to obtain
a representative and meaningful result, we call the approach sample-based.

Complete Approaches

A bilevel programming approach including active elements has been proposed by
Plein et al. [133]. Here, the upper level chooses a feasible transport scenario, and
the follower has to subsequently determine a feasible network control. Thereby, the
lower-level gas transport model incorporates the Weymouth pressure drop equation
and linearly modeled compressors and control valves. Additionally, to ensure the
existence of a feasible solution, two slack variables on the pressure bounds of the
network nodes are introduced. While it is the goal of the upper level to choose a
scenario such that the sum of the slack variables is maximized, the lower level aims at
minimizing it. If a solution’s objective value is positive, there is no feasible network
control without slack for the corresponding transport scenario. Further, suppose
the active elements are not located on a cycle. In that case, the bilevel model can
be reformulated as a single level problem using the classical KKT approach or one
of three optimal value function reformulations. Computational experiments based
on GasLib data [147] are presented, showing that the considered problem instances
are numerically unstable. However, when replacing the Weymouth equations with
a linear potential-based model, all of them are solved reliably and quickly.

Nevertheless, to the best of our knowledge, the approach described above is the
only one considering active elements. For passive networks and potential-based
flow models, conditions based on supply and demand vectors that induce maximum
potential differences between the network nodes can be used to decide the feasibility
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of the corresponding booking, see Labbé et al. [101]. Due to this result, it can
be shown that the feasibility of a booking can be checked in polynomial time for
the linear potential-based flow model and that the same holds true for nonlinear
potential-based flows on tree networks. Additionally, using techniques from real
algebraic geometry, Labbé et al. [102] show the same result for single cycle networks.

Moreover, a summary of several complexity results for passive networks is given
in the paper of Labbé et al. [101], too. Here, the problems are classified w.r.t.
the network structure, i.e., tree-shaped and cyclic networks, and the underlying gas
flow model, i.e., capacitated and uncapacitated linear, linear potential-based, and
nonlinear potential-based formulations. While most problems are in P, deciding the
feasibility of a booking for cyclic networks and the capacitated linear flow model
is, for example, coNP-complete, which is proven in the thesis of Hayn [74] using a
reduction from GapExpansion.

Sampling-Based Methods

The approaches described above consider all booking-compliant supply and demand
vectors and implicitly check them for feasibility. However, when applying more
detailed models for the physics of gas transport, e.g., formulations including more
accurate and typically nonlinear descriptions of gas compression or valves, which usu-
ally lead to the introduction of binary variables, corresponding formulations would
become computationally intractable. In this case, the commonly used approach is
to base the validation of a booking on the evaluation of a finite set of transport
scenarios. In this context, it is crucial to determine difficult and severe transport
scenarios to obtain a representative and meaningful result.

One approach, which has been developed within the research cooperation “ForNe”
between the German TSO Open Grid Europe GmbH and several research institu-
tions, is documented in the book of Koch et al. [96]. Thereby, historical data for gas
demand at the exits are used to estimate distributions, which are subsequently used
to sample realistic scenarios. Each scenario is completed by supply values that are
chosen to be extreme, meaning that the scenario is balanced and maximal w.r.t. a
random preference order on the entries. Afterward, the numerous resulting trans-
port scenarios are individually checked for feasibility in an automated fashion using
different optimization methods, including detailed MINLP and NLP models.

On the other hand, the TSO Gasunie from The Netherlands applies a slightly
different approach, described in the paper of Steringa et al. [153]. First, a set of
transport scenarios, which they call “stress tests”, is identified. Afterward, these
stress tests are validated using simulation tools, in particular the Multi Case Ap-
proach (MCA) presented in the PhD thesis of van der Hoeven [81]. If all of them
admit a feasible network control, the corresponding booking is considered feasible.

The underlying idea of the approach is to determine stress tests that are maxi-
mally severe w.r.t. the topology of the network. Thereby, the severeness is quantified
using the transport moment, a measure of flow transported over long distances. Ad-
ditionally, all relevant directions of flow shall be covered. The generation procedure
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Figure 4.2.: Example network with cyan entries V+ = {u1, u2, u3, u4} and orange
exits V− = {w1, w2}. The arc lengths and the feasible supply and
demand intervals are located next to the corresponding entities.

for the stress tests is based on distances relative to a reference point and is explained
in more detail in the upcoming paragraph. Finally, the size of the resulting test set
is reduced using a similarity measure, which is described in the Master thesis of
Lindenberg [106].

The Reference Point Method

The Reference Point Method (RPM) presented by Steringa et al. [153] is an algo-
rithm that attempts to find supply and demand vectors that maximize the transport
moment T = QD, which is defined as the product of the system throughput Q, i.e.,
the total flow from the entries towards the exits, and the so-called mean transporta-
tion distance D. To determine it, a reference point in the network is chosen, and
the distances to all entry and exit nodes are determined. Afterward, D is defined
as the difference of the centers of gravity of the entry and exit nodes, which are the
supply- and demand-weighted average distances towards the reference point.

In the following, we discuss the version of the RPM in more detail, which, accord-
ing to [106] and [153], is used in practice to determine the set of stress tests, i.e.,
transport scenarios which are severe w.r.t. the transport moment. Therefore, we
consider a connected flow network G = (V,A) with arc lengths ℓa ∈ R≥0. Further,
for each arc (u, v) ∈ A, there exists an antiparallel arc (v, u) ∈ A having the same
length, i.e., ℓuv = ℓvu. This is because passive networks are considered here where
the flow in the pipelines can go in both directions.

Next, a boundary node v ∈ V+ ∪V− is chosen as reference point, and the lengths
of shortest paths between it and all entries and exits are determined, i.e., duv for
all u ∈ V+ and dvw for all w ∈ V−, using, for example, Dijkstra’s algorithm [34].
Additionally, for each entry u ∈ V+, we are given its maximum possible supply
b̄u ∈ R≥0, and the maximum demand of each exit w ∈ V+ is given as

¯
bw ∈ R≤0. An

example network illustrating this setup is shown in Figure 4.2.
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(a) Using u1 as reference point.
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(b) Using u2 as reference point.
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(c) Using u3 or w1 as reference point.
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(d) Using u4 or w2 as reference point.

Figure 4.3.: The set of global stress tests for the example network in Figure 4.2.
Entries and exits with non-zero supply and demand are highlighted.

RPM starts with the zero flow transport scenario, i.e., all supply and demand
values are equal to zero. Next, the supply at an entry, which is not at its maximum
and closest to v, and the demand at an exit, which is not at its maximum and
farthest from v, are increased until one of them hits its bound. The procedure is
repeated until an increase of the flow leads to a decrease in T . This happens when
the centers of gravity shift, that is, the average distances between entries and exits
are reduced. At this point, a stress test is found, and the algorithm terminates
returning the current supply and demand vector.

In other words, the transport moment can be described as a linear function in
supply and demand variables bv ∈ [0, b̄u] ⊆ R≥0 and bw ∈ [

¯
bw, 0] ⊆ R≤0 for all

u ∈ V+ and w ∈ V−, respectively, with the condition that the resulting transport
scenario it balanced. Hence, the algorithm solves the following linear program

max
b

−
∑︂
u∈V+

duvbu −
∑︂

w∈V−

dvwbw

s.t.
∑︂
u∈V+

bu +
∑︂

w∈V−

bw = 0

bu ∈ [0, b̄u] ∀u ∈ V+

bw ∈ [
¯
bw, 0] ∀w ∈ V−.

The transport scenarios generated by running the algorithm for each v ∈ V+∪V−
are called global stress tests. The six resulting global stress tests for the example
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Figure 4.4.: This picture shows an example transport scenario that RPM does not
find. Additionally, a minimum cost flow for the considered supply and
demand vector is shown. While all cyan arcs carry one unit of flow, the
invisible arcs carry no flow.

network in Figure 4.2 are shown in Figure 4.3.

However, as in the example, especially if multiple entries and exits are located
close to each other, it can happen that some of the global stress tests, which we
derive when using them as reference points, are identical. A set of reference points
leading to the same global stress test is called a cluster. There are two clusters in
our example: The sets {u3, w1} and {u4, w2}. By maximizing the transport moment
within the single clusters, additional so-called local stress tests are derived. For more
details, we refer to the paper of Steringa et al. [153].

Nevertheless, due to the fixation of the distances towards the reference point and
the presence of a cycle in our example network, the transport scenario shown in
Figure 4.4 is not found by the algorithm. Although Steringa et al. [153] mention a
procedure based on the clusters to handle such issues, it is unclear how this particular
result can be derived.

On the other hand, consider the optimal objective values of the Transportation
Problem instances induced by the supply and demand vectors of the six stress tests
and the example in Figure 4.4. While the former yield nine or seven, the latter
maximizes this value among all considered transport scenarios with a cost of twelve.
This demonstrates that the transport scenario from Figure 4.4 should be considered
severe, too, which also becomes evident from a visual inspection.

This observation motivates the definition of a new severity measure for gas trans-
port scenarios: The minimum transport moment, i.e., the objective value of the
induced Transportation Problem instance. In this context, we introduce the Maxi-
mum Transportation Problem (MaxTP) in the upcoming Section 4.2, which is a new
generalization of the Transportation Problem. Its goal is to identify a supply and
demand vector having a maximum minimum transport moment.
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4.2. The Maximum Transportation Problem (MaxTP)

This section considers a new severity measure for transport scenarios, namely the
minimum transport moment, i.e., the optimal objective value of the induced Trans-
portation Problem (TP), which has been motivated and derived at the end of the
previous section. In particular, we are interested in finding the most severe supply
and demand vectors w.r.t. this measure. Thus, in the following, we introduce the
Maximum Transportation Problem (MaxTP).

For MaxTP, we mainly consider the same setup as for general TP, see Section 2.3.1.
We are given a flow network G = (V,A) with entries V+ ⊆ V and exits V− ⊆ V ,
and we assume w.l.o.g. that V+ ∩ V− = ∅. Furthermore, the remaining nodes
V0 := V \ (V+ ∪ V−) are the inner nodes. Additionally, for each arc a ∈ A we are
given a nonnegative length value ℓa ∈ R≥0. However, in contrast to TP, for MaxTP
we are given feasible intervals for the supply and demand values. In particular,
for each entry u ∈ V+, we have a nonempty supply interval [

¯
bu, b̄u] ⊆ R≥0, where

¯
bu ∈ R≥0 is a lower and b̄u ∈ R≥0 is an upper bound on its supply. Analogously, for
each exit w ∈ V−, we have a nonempty demand interval [

¯
bw, b̄w] ⊆ R≤0 with bounds

¯
bw, b̄w ∈ R≤0. We denote an instance of MaxTP as quintuple I = (V,A, ℓ,

¯
b, b̄).

Next, b ∈ R|V+∪V−| is called a supply and demand vector or transport sce-
nario. Furthermore, it is called admissible if bv ∈ [

¯
bv, b̄v] for all v ∈ V+ ∪ V−

and
∑︁

v∈V+∪V− bv = 0, i.e, if supply and demand respect the interval bounds and
are balanced.

A solution for a MaxTP instance I is a tuple (b, f), where b is an admissible supply
and demand vector and f is a feasible solution for the TP instance induced by b. The
cost of a solution c(b, f) is equal to the cost of the flow, i.e., c(b, f) :=

∑︁
a∈A ℓafa.

Moreover, a solution (b, f) is called feasible if f is optimal for the TP instance
induced by b, and we call the corresponding objective value c(b, f) the minimum
transport moment of the transport scenario b.

The goal of MaxTP is to find an admissible supply and demand vector such that
the minimum transport moment is maximized. Thus, a solution (b, f) is optimal for
MaxTP if it is feasible and if c(b, f) ≥ c(b̃, f̃) holds for all feasible solutions (b̃, f̃).
An example instance with three feasible solutions is shown in Figure 4.5.

Similar to Ahuja et al. [4], we assume w.l.o.g. that there exists a directed path
from each entry towards each exit in the network to ensure the existence of a feasible
solution for each TP instance induced by an admissible supply and demand vector.
We impose this connectedness-condition, if necessary, by adding direct arcs with big
length. No such arc appears in a feasible solution for MaxTP unless there exists an
admissible supply and demand vector inducing an originally infeasible TP instance.

4.2.1. Optimal Solution Structure

Next, we prove an interesting result regarding the structure of an optimal solution
for MaxTP. Therefore, we introduce the notion of bound-closeness for admissible
supply and demand vectors.
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(b) A feasible solution featuring the maximum
supply of six units. The optimal solution
of the induced TP instance shown here
yields the corresponding minimum trans-
port moment of c(b, f) = 12.
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(c) A feasible solution featuring four supply
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(d) An optimal solution for the MaxTP in-
stance with four supply units and a min-
imum transport moment of c(b, f) = 20.

Figure 4.5.: While Figure 4.5a shows an example MaxTP instance, Figures 4.5b,
4.5c, and 4.5d depict feasible solutions for it. The supply and demand
values chosen in the latter are stated below or above the corresponding
nodes. Furthermore, the blue arcs have a flow value of fa = 2, while
all invisible arcs carry no flow, i.e., fa = 0. Figure 4.5b shows a solu-
tion featuring the maximum supply of six units. On the other hand,
Figures 4.5c and 4.5d show solutions with a total supply of four units.
Figure 4.5d shows an optimal solution.
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Figure 4.6.: Admissible supply and demand vector b with v1 ∈ V+, v2 ∈ V−, bv1 ∈
(bv1 , b̄v1), and bv2 ∈ (bv2 , b̄v2) (left). In b̃ (middle), the inflow and outflow
have been decreased by Ω1, while in b̂ (right), both have been increased
by Ω2. In both of the latter supply and demand vectors, one node’s
demand or supply is equal to a bound, respectively.

Definition 1. Let I = (V,A, ℓ,
¯
b, b̄) be a MaxTP instance and let b be an admissible

supply and demand vector. We call b bound-close if all of its values are equal to one
of the corresponding bounds except for at most one, i.e., we have bv ∈ (

¯
bv, b̄v) for at

most one node v ∈ V+ ∪ V−.

Lemma 1. Let I = (V,A, ℓ,
¯
b, b̄) be a MaxTP instance. There exists an optimal

solution (b, f) with b being bound-close.

Proof. Let (b, f) be an optimal solution for I. If b is not bound-close, there exist
two nodes v1, v2 ∈ V+ ∪ V− with v1 ̸= v2 such that the corresponding supply or
demand values are not equal to one of their bounds, i.e., we have bv1 ∈ (

¯
bv1 , b̄v1) and

bv2 ∈ (
¯
bv2 , b̄v2).

Let Ω1 := min{bv1 − ¯
bv1 , b̄v2 − bv2} > 0 and Ω2 := min{b̄v1 − bv1 , bv2 − ¯

bv2} > 0.
Consider the supply and demand vectors b̃ and b̂ defined as

b̃v :=

⎧⎪⎨⎪⎩
bv1 − Ω1 if v = v1

bv2 +Ω1 if v = v2

bv otherwise
and b̂v :=

⎧⎪⎨⎪⎩
bv1 +Ω2 if v = v1

bv2 − Ω2 if v = v2

bv otherwise.

By construction, b̃ and b̂ are admissible. Additionally, for b̃ it holds that b̃v1 =
¯
bv1

or b̃v2 = b̄v2 , and for b̂ we have that b̂v1 = b̄v1 or b̂v2 =
¯
bv2 . An example illustrating

these definitions is visualized in Figure 4.6.
Next, let f̃ and f̂ denote optimal solutions for the TP instances induced by b̃ and b̂,

respectively. By construction (b̃, f̃) and (b̂, f̂) are feasible solutions for MaxTP, and
we have c(b, f) ≥ c(b̃, f̃) as well as c(b, f) ≥ c(b̂, f̂) since (b, f) is optimal.

On the other hand, for λ := Ω2
Ω1+Ω2

∈ (0, 1), we have λb̃+(1−λ)b̂ = b. While this
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trivially holds for all v ∈ (V+ ∪ V−) \ {v1, v2}, for v1, we have

λ b̃v1 + (1− λ) b̂v1 =
Ω2

Ω1 +Ω2
(bv1 − Ω1) +

(︃
1− Ω2

Ω1 +Ω2

)︃
(bv1 +Ω2)

=
Ω2

Ω1 +Ω2
(bv1 − Ω1) +

Ω1

Ω1 +Ω2
(bv1 +Ω2)

=
bv1Ω2 − Ω1Ω2 + bv1Ω1 +Ω1Ω2

Ω1 +Ω2

=
bv1(Ω1 +Ω2)

Ω1 +Ω2
= bv1 ,

and an analogous argument can be made for v2. Since λ ∈ (0, 1), it also holds that
λf̃ + (1− λ)f̂ is a feasible flow for the TP instance induced by b since

(b, λf̃ + (1− λ)f̂) = (λb̃+ (1− λ)b̂, λf̃ + (1− λ)f̂) = λ(b̃, f̃) + (1− λ)(b̂, f̂),

but it may not be optimal.
Nevertheless, we have c(b, f) = c(b̃, f̃) = c(b̂, f̂), i.e., it follows that the minimum

transport moments are equal, because

c(b, f) ≤ c(b, λf̃ + (1− λ)f̂)

=
∑︂
a∈A

ℓa(λf̃a + (1− λ)f̂a)

= λ
∑︂
a∈A

ℓaf̃a + (1− λ)
∑︂
a∈A

ℓaf̂a

= λ c(b̃, f̃) + (1− λ) c(b̂, f̂)

≤ λ c(b, f) + (1− λ) c(b, f) = c(b, f).

Thus, (b̃, f̃) and (b̂, f̂) are optimal solutions with the supply or demand value of
bv1 or bv2 being equal to one of the corresponding bounds. Iteratively applying this
algorithmic procedure to node pairs v1, v2 ∈ V+∪V− whose demand or supply values
are not at their bounds, we derive an optimal solution with a bound-close supply
and demand vector after at most |V+ ∪ V−| − 1 iterations.

4.2.2. A Flow-Direction Based Heuristic for MaxTP

Next, we present our Flow-Direction Based Min-Cost-Flow Method (FDB-MCF)
for MaxTP. It is an adaption of the Reference Point Method (RPM) of Steringa
et al. [153], which has been presented at the end of Subsection 4.1.2. Analogously,
the basic idea behind FDB-MCF is to determine supply and demand vectors that
are severe w.r.t. the minimum transport moment while covering all flow directions.
Thereby, bound-closeness, which is the property of an optimal solution for MaxTP,
see Lemma 1, is ensured in every step of the algorithm. Furthermore, in contrast to
RPM, actual routings of the flow are considered within FDB-MCF.
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Before stating FDB-MCF, we first introduce some additional notation. Given an
admissible supply and demand vector b for MaxTP instance (V,A, ℓ,

¯
b, b̄), let us

denote an optimal solution of the induced TP instance by TP(b). Furthermore, if
we talk about distances between sources and sinks in this section, we consider the
underlying undirected flow network when determining them. Based on this, we state
FDB-MCF in Algorithm 5.

Algorithm 5: Flow-Direction Based Min-Cost-Flow Method (FDB-MCF)
Input : A MaxTP instance (V,A, ℓ,

¯
b, b̄)

Output: A feasible and bound-close solution (b, f)
1 cmax ← 0; (b, f)max ← ∅
2 for û ∈ V+ do
3 (b, f)û ← FDB-MCF+((V,A, ℓ,

¯
b, b̄), û)

4 if c((b, f)û) ≥ cmax then
5 cmax ← c((b, f)û); (b, f)max ← (b, f)û
6 for ŵ ∈ V− do
7 (b, f)ŵ ← FDB-MCF−((V,A, ℓ,

¯
b, b̄), ŵ)

8 if c((b, f)ŵ) ≥ cmax then
9 cmax ← c((b, f)ŵ); (b, f)max ← (b, f)ŵ

10 return (b, f)max

FDB-MCF iterates over the entries and exits of the network and applies the corre-
sponding subroutines FDB-MCF+ and FDB-MCF−. These subroutines then gener-
ate a feasible and bound-close MaxTP solution with the corresponding entry or exit
representing the main direction of the flow into or out of the network, respectively.
Finally, a solution with the maximum minimum transport moment among all the
generated ones is returned.

Next, we explain FDB-MCF+, which is stated in Algorithm 6 and applied to the
entries of the network, in detail. Since FDB-MCF−, which is stated in Algorithm 7,
works analogously with the role of the entries and the exits being swapped, we refrain
from a detailed discussion regarding it in the following.

FDB-MCF+ starts with an admissible and bound-close supply and demand vector
b(û) in line 1, which is generated as follows: Consider the b-vector with bu =

¯
bu

for all u ∈ V+ and bw = b̄w for all w ∈ V−. If
∑︁

v∈V+∪V− bv < 0, we increase
the supplies of the entries ordered non-decreasingly by their distance towards û
up to their upper bounds until b is balanced. If

∑︁
v∈V+∪V− bv > 0, we analogously

increase the demands of the exits ordered non-increasingly by their distance towards
û until b is balanced. Afterward, a first feasible solution (b(û),TP(b(û))) is generated
in line 2. Next, in each iteration of the main loop an entry ũ whose supply is
not at its upper bound and which is closest to û and an exit w̃ whose demand is
not at its lower bound and which is farthest from û are chosen. Afterward, the
supply and the demand of these two nodes are increased until one of them hits a
bound, see lines 7–10. If the minimum transport moment of the new supply and
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Algorithm 6: Subroutine FDB-MCF+

Input : A MaxTP instance (V,A, ℓ,
¯
b, b̄), û ∈ V+

Output: A feasible and bound-close solution (b, f)
1 b(û)← Admissible and bound-close supply and demand vector w.r.t. û
2 (b, f)û ← (b(û),TP(b(û))); (b̃, f̃)← (b(û),TP(b(û)))
3 while c((b, f)û) ≤ c(b̃, f̃) do
4 (b, f)û ← (b̃, f̃)
5 if bu = b̄u for all u ∈ V+ or bw =

¯
bw for all w ∈ V− then

6 return (b, f)û
7 ũ← Entry closest to û with bũ < b̄ũ
8 w̃ ← Exit farthest from û with |bw̃| < |̄bw̃|
9 Ω← min{b̄ũ − bũ, |̄bw̃| − |bw̃|}

10 b̃← b; b̃ũ ← b̃ũ +Ω; b̃w̃ ← b̃w̃ − Ω

11 (b̃, f̃)← (b̃,TP(b̃))
12 return (b, f)û

demand vector b̃ is greater than or equal to the minimum transport moment from
the previous iteration, the algorithm continues with (b̃, f̃) as incumbent, see lines 3
and 4. Otherwise, the solution from the previous iteration is returned, see line 12.
Additionally, the algorithm also terminates whenever supplies or demands cannot be
increased any further, compare lines 5 and 6. Due to the construction of the initial
solution (b(û),TP(b(û))) and the choice of ũ and w̃, the supply and demand vector
b remains bound-close in every step of the algorithm, i.e., there is at most one entry
or exit whose supply or demand is not equal to one of its bounds, respectively.

The role of û here is equivalent to the reference point in RPM: It describes the
direction from where the flow is supposed to enter the network. However, by con-
sidering an optimal routing w.r.t. the TP instance induced by the incumbent supply
and demand vector in each iteration, we avoid problems arising from cyclic struc-
tures. In particular, we rule out flow augmentations that might relax the overall
transport situation and decrease the minimum transport moment.

We note that FDB-MCF returns the optimal solution shown in Figure 4.4 for the
example MaxTP instance from Figure 4.2. To see this, consider FDB-MCF− applied
to any of the exits.

4.2.3. Complexity of MaxTP

After introducing a first heuristic for MaxTP with FDB-MCF in the previous Sub-
section 4.2.2, the natural question arises whether there exists any polynomial-time
algorithm for solving it or not. In particular, the underlying uncapacitated linear
flow model may suggest a positive answer. However, in this section, we prove the
following statement.
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Algorithm 7: Subroutine FDB-MCF−

Input : A MaxTP instance (V,A, ℓ,
¯
b, b̄), ŵ ∈ V−

Output: A feasible and bound-close solution (b, f)
1 b(ŵ)← Admissible and bound-close supply and demand vector w.r.t. ŵ
2 (b, f)ŵ ← (b(ŵ),TP(b(ŵ))); (b̃, f̃)← (b(ŵ),TP(b(ŵ)))
3 while c((b, f)ŵ) ≤ c(b̃, f̃) do
4 (b, f)ŵ ← (b̃, f̃)
5 if bu = b̄u for all u ∈ V+ or bw =

¯
bw for all w ∈ V− then

6 return (b, f)ŵ
7 w̃ ← Exit closest to ŵ with bũ < b̄ũ
8 ũ← Entry farthest from ŵ with |bw̃| < |̄bw̃|
9 Ω← min{b̄ũ − bũ, |̄bw̃| − |bw̃|}

10 b̃← b; b̃ũ ← b̃ũ +Ω; b̃w̃ ← b̃w̃ − Ω

11 (b̃, f̃)← (b̃,TP(b̃))
12 return (b, f)ŵ

Theorem 1. MaxTP is NP-hard.

We reduce from Partition. The following definition is adapted from SP12 in [55].

Definition 2. Given a finite set Z := {z1, . . . , zn} and a size s(z) ∈ Z+ for each
element z ∈ Z. Does there exist a feasible partition of Z, i.e., a set Z ′ ⊆ Z such
that

∑︁
z∈Z′ s(z) =

∑︁
z∈Z\Z′ s(z).

Given an instance Z of Partition, we construct a corresponding MaxTP instance
IZ = (V,A, ℓ,

¯
b, b̄) as follows. First of all, for each zi ∈ Z, we add an entry ui ∈ V+

and an exit wi ∈ V−. For each entry ui ∈ V+, we set
¯
bui := 0 and b̄ui := s(zi), while

for each exit wi ∈ V−, we set
¯
bwi = −s(zi) and b̄wi := 0. Additionally, we add a

single inner node v ∈ V0.
The set A consists of three different arc types, i.e., A := A1 ∪A2 ∪A3. First, for

each entry ui ∈ V+, an arc towards the corresponding exit wi ∈ V− is added, i.e.,
A1 := {(ui, wi) | i ∈ {1, . . . , n}}, and we set ℓa := 0 for each a ∈ A1. Second, an
arc between each entry ui ∈ V+ and v is added, i.e., A2 := {(ui, v) | i ∈ {1, . . . , n}},
and we set ℓa := 1 for each a ∈ A2. Third, an arc between the inner node v and
each exit wi ∈ V− is added, i.e., A3 := {(v, wi) | i ∈ {1, . . . , n}}, and we set ℓa := 1
for each a ∈ A3. This concludes the construction of instance IZ , which features
|V| = 2|Z| + 1 vertices and |A| = 3|Z| arcs. Figure 4.7 shows the MaxTP instance
IZ corresponding to the example Partition instance described in its caption.

Next, let us call a supply and demand vector b for IZ complementary if bui = 0
or bwi = 0 holds for all i ∈ {1, . . . , n}.

Lemma 2. For each feasible solution (b, f) of IZ , there exists a feasible solution
(b̃, f̃) with complementary b̃ such that c(b, f) = c(b̃, f̃).
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u1

[0, 1]

u2

[0, 1]

u3

[0, 3]

u4

[0, 4]

u5

[0, 5]

u6

[0, 6]

u7

[0, 6]

u8

[0, 8]

w1

[−1, 0]

w2

[−1, 0]

w3

[−3, 0]

w4

[−4, 0]

w5

[−5, 0]

w6

[−6, 0]

w7

[−6, 0]

w8

[−8, 0]

v

Figure 4.7.: MaxTP instance IZ for the Partition instance Z := {z1, . . . z8} with
s(z1) = 1, s(z2) = 1, s(z3) = 3, s(z4) = 4, s(z5) = 5, s(z6) = 6,
s(z7) = 6, and s(z8) = 8. The dotted arcs represent A1 and have length
ℓa = 0, while the solid arcs represent A2 and A3 and have length ℓa = 1.
The supply and demand intervals are stated above and below the entries
and exits, respectively.

Proof. For each i ∈ {1, . . . , n} let Ωi := min{bvi , |bwi |} ≥ 0. Since f is an optimal
solution for the TP instance induced by b, we have fuiwi = Ωi. Thus,

b̃v :=

{︄
bv − Ωi if v = ui ∈ V+

bv +Ωi if v = wi ∈ V−
and f̃a :=

{︄
fa − Ωi if a = (ui, wi) ∈ A1

fa otherwise

is a feasible solution with complementary b̃. Additionally, since ℓa = 0 for all a ∈ A1,
we have c(b, f) = c(b̃, f̃).

Corollary 1. There exists an optimal solution (b, f) for IZ with complementary
supply and demand vector b.

Lemma 3. There exists a feasible partition Z ′ of Z if and only if there exists a
feasible solution (b, f) for IZ with c(b, f) ≥

∑︁
z∈Z s(z).

Proof. Let Z ′ ⊆ Z be a feasible partition. Therefore, it holds by definition that∑︁
z∈Z′ s(z) =

∑︁
z∈Z

s(z)
2 =

∑︁
z∈Z\Z′ s(z). Consider (b, f) defined as

bv :=

⎧⎪⎨⎪⎩
s(zi) if v = ui ∈ V+, zi ∈ Z ′

−s(zi) if v = wi ∈ V−, zi ∈ Z \ Z ′

0 otherwise,

and
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fa :=

⎧⎪⎨⎪⎩
s(zi) if a = (ui, v) ∈ A2, zi ∈ Z ′

|s(zi)| if a = (v, wi) ∈ A3, zi ∈ Z \ Z ′

0 otherwise.

By construction, b is an admissible supply and demand vector and complementary,
f represents an optimal solution for the TP instance induced by b, and we have

c(b, f) =
∑︂

(ui,v)∈A2

fuiv +
∑︂

(v,wi)∈A3

fvwi =
∑︂
zi∈Z′

fuiv +
∑︂

zi∈Z\Z′

fvwi

=
∑︂
zi∈Z′

bui +
∑︂

zi∈Z\Z′

|bwi | =
∑︂
zi∈Z′

s(zi) +
∑︂

zi∈Z\Z′

s(zi)

=
∑︂
zi∈Z

s(zi).

Conversely, by Lemma 2 there exists a feasible and complementary solution (b, f)
for IZ such that c(b, f) ≥

∑︁
z∈Z s(z). Due to the complementarity of b, we have

fa = 0 for all a ∈ A1. Let Z ′ := {zi ∈ Z | bui > 0} ⊆ Z, then∑︂
z∈Z

s(z) ≤ c(b, f) =
∑︂

(ui,v)∈A2

fuiv +
∑︂

(v,wi)∈A3

fvwi

=
∑︂

(ui,v)∈A2

bui +
∑︂

(v,wi)∈A3

|bwi |

=
∑︂
zi∈Z′

bui +
∑︂

zi∈Z\Z′

|bwi |

≤
∑︂
zi∈Z′

s(zi) +
∑︂

zi∈Z\Z′

s(zi) =
∑︂
z∈Z

s(z).

This shows that c(b, f) =
∑︁

z∈Z s(z) as well as
∑︁

zi∈Z′ bui =
∑︁

zi∈Z′ s(zi) and∑︁
zi∈Z\Z′ |bwi | =

∑︁
zi∈Z\Z′ s(zi) hold with equality. Furthermore, since b is bal-

anced, it follows that∑︂
zi∈Z′

bui =
∑︂
zi∈Z′

s(zi) =
∑︂
z∈Z

s(z)

2
=

∑︂
zi∈Z\Z′

s(zi) =
∑︂

zi∈Z\Z′

|bwi |,

showing that Z ′ is a feasible partition.

Theorem 1. MaxTP is NP-hard.

Proof. Deciding whether there exists a feasible partition or not is an NP-complete
problem, see SP12 in [55]. Hence, MaxTP is NP-hard, since any polynomial-time
algorithm applied to IZ , deciding whether it admits a feasible solution (b, f) with
c(b, f) ≥

∑︁
z∈Z s(z) or not, could also be used to decide whether Z admits a feasible

partition by Lemma 3 or not.
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4.2.4. Bilevel Programming Model

Bilevel programming is often applied to model problems related to energy transport,
see the book chapter of Wogrin et al. [162] and the references therein. Hence, it is not
surprising that MaxTP can be modeled as a linear bilevel program with interdicting
objective functions.

max
b

∑︂
a∈A

ℓafa (4.1)

s.t.
∑︂
u∈V+

bu +
∑︂

w∈V−

bw = 0 (4.2)

bv ∈ [
¯
bv, b̄v] ∀v ∈ V+ ∪ V− (4.3)

min
f

∑︂
a∈A

ℓafa (4.4)

s.t.
∑︂

a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V+ ∪ V− (4.5)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = 0 ∀v ∈ V0 (4.6)

fa ∈ R≥0 ∀a ∈ A (4.7)

For each entry or exit v ∈ V+ ∪ V−, the variable bv represents its supply or de-
mand, respectively. These values are chosen by the leader obeying the corresponding
bounds, see (4.3). Furthermore, we note that in analogy to the natural gas mar-
ket, the leader has to balance supply and demand. Otherwise the induced linear
programming model (4.4)–(4.7) for TP, which the follower solves subsequently, does
not admit a feasible solution. However, to emphasize this necessity, we add the
redundant constraint (4.2). Hence, the resulting b is an admissible supply and de-
mand vector. While the follower routes the flow such that the cost is minimized, the
leader’s goal is to maximize the resulting minimum transport moment, compare (4.4)
and (4.1), respectively.

MaxTP can be considered as some variant of a network interdiction problems.
This class of problems is for example discussed by Smith and Lim [150], Smith and
Song [151], and Wood [163]. For instance, in the Minimum Cost Flow Interdiction
Problem, the supplies and demands of the entries and exits are fixed. However, the
leader has a budget to decrease the arc capacities and thereby tries to maximize the
optimal objective value of the MCF problem of the follower [150].

4.2.5. Classical KKT Reformulation

A common strategy to solve linear bilevel optimization formulations, such as the
one for MaxTP introduced in the previous Subsection 4.2.4, is to reduce them to
single-level problems. We apply a classical KKT reformulation here. Thereby, the
optimization problem of the follower is replaced by its KKT conditions, a set of
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necessary and sufficient optimality conditions, see Section 2.2 for more details. In our
particular case, we remove the lower level and add the constraints and variables of the
corresponding primal and dual linear program for TP and the KKT complementarity
conditions to the upper level. For our model (4.1)–(4.7), the resulting nonlinear
program reads

max
b,f,ϕ,π

∑︂
a∈A

ℓafa (4.8)

s.t.
∑︂
u∈V+

bu +
∑︂

w∈V−

bw = 0 (4.9)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V+ ∪ V− (4.10)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = 0 ∀v ∈ V0 (4.11)

πv − πu + ϕa = ℓa ∀(u, v) = a ∈ A (4.12)
ϕafa = 0 ∀a ∈ A (4.13)

bv ∈ [
¯
bv, b̄v] ∀v ∈ V+ ∪ V− (4.14)

fa ∈ R≥0 ∀a ∈ A (4.15)
ϕa ∈ R≥0 ∀a ∈ A (4.16)
πv ∈ R ∀v ∈ V . (4.17)

Regarding the dual linear program, the π-variables correspond to the flow conserva-
tion constraints (4.10) and (4.11), while the ϕa-variables correspond to the nonneg-
ativity constraints of the flow variables (4.15). Furthermore, the dual constraints
are stated in (4.12). On the other hand, the KKT complementarity conditions can
be found in (4.13).

The additional variables and constraints in this nonlinear model can be interpreted
as follows. The π-variables can be seen as node potentials. If there is nonzero flow
on some arc a = (u, v) ∈ A in a solution, then the potential difference between πv
and πu must be equal to its length ℓa. This ensures, that there exists no cycle of
nonzero length with nonzero flow on it, which is a well-known property of optimal
minimum cost flows. On the other hand, if there is no flow on a, then the potential
difference has to be greater than or equal to ℓa, and equality in constraints (4.12) is
ensured by the ϕa-variables.

One way to directly solve nonlinear mathematical programs resulting from KKT
reformulations of linear bilevel optimization problems is to apply the SOS-1 tech-
nique. Thereby, the complementarity conditions are initially omitted and then
branched on later on during the solving process. For more details on this method,
we refer to the work of Fortuny-Amat and McCarl [47] and Bard and Moore [9].

The second, very popular method is to apply a big-M reformulation of the comple-
mentarity conditions, which was first described by Fortuny-Amat and McCarl [47].
Here, an auxiliary binary variable is introduced for each complementarity condition,
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which is then replaced by two linear constraints. Depending on the value of the
corresponding binary variable, these linear constraints force one of the two terms to
be equal to zero. However, valid upper bounds are needed to derive a correct MILP
model, as demonstrated and discussed by Pineda and Morales [132].

Computational experiments conducted by Kleinert and Schmidt [95] show that
the big-M approach should be preferred if valid (and small) bounds are available.
Hence, the overall goal of the following three subsections is to determine (small)
upper bounds on the ϕ- and f-variables and to eventually obtain a valid MILP
model for MaxTP. Since verifying the correctness of upper bounds is itself an NP-
hard problem, see Kleinert et al. [94], we will exploit problem-specific knowledge
and the structure of the underlying flow network to derive them.

4.2.6. Solution-Equivalency and L1 Instances

This subsection introduces an equivalence relation for MaxTP instances based on
the distances between the entries and the exits of the underlying flow networks. In
particular, we will call two MaxTP instances solution-equivalent if their feasible so-
lutions can easily be mapped onto each other while the objective function values are
preserved. Moreover, we derive a method to generically derive solution-equivalent
MaxTP instances whose flow networks are acyclic, tripartite, and small w.r.t. the
number of arcs. For these L1 instances, whose name stands for the one additional
layer of nodes between the entries and exits, we can prove variable bounds for the
corresponding KKT reformulation from Subsection 4.2.7. Moreover, these bounds
are then used to define a MIP model in Subsection 4.2.8.

Hence, our motivation here can be summarized as follows: The idea for solving an
arbitrary MaxTP instance I is to generate a solution-equivalent L1 instance, derive
variable bounds for its KKT reformulation, solve the resulting MIP model, and map
the obtained solution back to I.

Recall that the distance dv1v2 between two nodes v1, v2 ∈ V is defined as the
length of a shortest path between them. Further, we note that duw < ∞ holds for
all u ∈ V+ and w ∈ V− due to the connectedness-condition, i.e., we assume that
there always exists a direct path between them.

Definition 3. Let I = (V,A, ℓ,
¯
b, b̄) and Ĩ = (Ṽ, Ã, ℓ̃, ˜

¯
b, ˜̄b) be MaxTP instances. We

call I and Ĩ solution-equivalent if there exists a bijection g : V+ ∪ V− → Ṽ+ ∪ Ṽ−
such that duw = dg(u)g(w) for all u ∈ V+ and w ∈ V− as well as

¯
bv = ˜

¯
bg(v) and

b̄v = ˜̄bg(v) for all v ∈ V+ ∪ V−.

Clearly, solution-equivalency constitutes an equivalence relation for MaxTP in-
stances. Next, we give an example of a first generic solution-equivalent instance.

Definition 4. Let I = (V,A, ℓ,
¯
b, b̄) be a MaxTP instance. The MaxTP instance

IP = (VP ,AP , ℓP ,
¯
b, b̄) defined as VP := V+∪V−, AP := {(u,w) |u ∈ V+, w ∈ V−},

and ℓPuw := duw is called the path instance of I.

Corollary 2. Let I be a MaxTP instance. Then IP is solution-equivalent.
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v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

u1

u2

u3

u4

w1

w2

w3

w4

[0, 1]

[1, 3]

[0, 2]

[1, 2]

[−2, 0]

[−3,−1]

[−2, 0]

[−2,−1]

Figure 4.8.: Example MaxTP instance I with entries V+ = {u1, u2, u3, u4} and exits
V− = {w1, w2, w3, w4}. The supply and demand intervals are shown
above or below the corresponding nodes. Further, we consider ℓa = 1
for each a ∈ A as its length.

Proof. Using the identity function as bijection yields the desired result.

The path instance IP corresponding to the example instance I from Figure 4.8 is
shown in Figure 4.9. With its definition, we have simultaneously introduced a first
generic way to derive a solution-equivalent MaxTP instance.

Next, we show how feasible solutions can be mapped between solution-equivalent
instances. Therefore, we introduce the notion of a shortest path system.

Definition 5. Let I = (V,A, ℓ,
¯
b, b̄) be a MaxTP instance and let puw denote a

shortest path from u ∈ V+ to w ∈ V−. Then S :=
⋃︁

u∈V+

⋃︁
w∈V− puw is called a

shortest path system (SPS) for I.

Again, since there exists a path between every u ∈ V+ and every w ∈ V− due to
the connectedness-condition, there always exists an SPS for I.

Lemma 4. Let I = (V,A, ℓ,
¯
b, b̄) and Ĩ = (Ṽ, Ã, ℓ̃, ˜

¯
b, ˜̄b) be solution-equivalent

MaxTP instances with bijection g. Further, let (b, f) be a feasible solution for I.
Then there exists a feasible solution (b̃, f̃) for Ĩ with b̃ = g(b) and c(b, f) = c(b̃, f̃).

Proof. First, we partition the arc flows f into flows on shortest paths between the
entries and the exits of the network. Therefore, consider the subgraph G′ ⊆ G
induced by the arc set {a ∈ A | fa > 0}. Any path between an entry and an
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u1 u2 u3 u4

w1 w2 w3 w4

[0, 1] [1, 3] [0, 2] [1, 2]

[−2, 0] [−3,−1] [−2, 0] [−2,−1]

4 10 6
8 5

3 4
6 3

7 3
5 6

3 4 6

Figure 4.9.: Path instance IP for the example instance I from Figure 4.8. The arc
lengths, i.e., the lengths of shortest paths between the entries and exits
in I, are depicted next to the corresponding entities.

exit in G′ is a shortest path between them in G. Otherwise, there would exist a
negative cycle in the residual graph of G contradicting the optimality of f for the
induced TP instance. Thus, by consecutively determining these shortest paths and
decreasing the corresponding supplies, demands, and flows, we partition f into flows
fpuw between the entries and exits. Next, given any SPS S̃ for Ĩ

b̃v := bg−1(v) for v ∈ Ṽ+ ∪ Ṽ− and f̃a :=
∑︂

puw∈S̃
a∈puw

fpg−1(u)g−1(w)
for a ∈ Ã

is a feasible solution for Ĩ with c(b, f) = c(b̃, f̃).

Corollary 3. Consider the setup from Lemma 4. Let (b, f) be an optimal solution
for I. There exists an optimal solution (b̃, f̃) for Ĩ with b̃ = g(b) and c(b, f) = c(b̃, f̃).

Corollary 4. Let I = (V,A, ℓ,
¯
b, b̄) be a MaxTP instance, (b, f) be a feasible solution

for I, and S be a shortest path system for I. There exists a feasible solution (b̃, f̃)
for I where the arc flows can be partitioned into flows on the shortest paths in S.

Proof. Consider the corresponding path instance IP . Its unique shortest path sys-
tem S̃ consists of the direct arcs between the entries and exits. Using the identity
function as bijection g and applying the algorithmic procedure described in Lemma 4
in forward and backward direction, yields the desired result.

Next, we introduce a procedure for deriving another solution-equivalent MaxTP
instance, which is shall be small w.r.t. the number of arcs. Therefore, we first
observe that the path instance IP from Definition 4 is a solution-equivalent MaxTP
instance with |VP | = |V+| + |V−| nodes and |AP | = |V+| · |V−| arcs. While the
number of nodes is minimal w.r.t. our equivalency relation, the number of arcs can
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become quite large. However, adding an additional intermediate node can reduce
the number of arcs significantly, as the following example demonstrates.

Example 1. Let I be an MaxTP instance. Assume there exists an SPS S and
some v ∈ V0 such that v ∈ puw for all puw ∈ S. Then the instance Ĩ = (Ṽ, Ã, ℓ̃,

¯
b, b̄)

defined as Ṽ := V+ ∪ V− ∪ {v}, Ã := {(u, v) |u ∈ V+} ∪ {(v, w) |w ∈ V−} as well
as ℓuv := duv and ℓvw := dvw is solution-equivalent with the identity function as
bijection. Further, we have |Ṽ| := |V+|+ |V−|+ 1 and |Ã| := |V+|+ |V−|.

Inspired by this example and given some SPS S, the idea for deriving a whole
class of generic solution-equivalent MaxTP instances is to identify subsets of inner
nodes L ⊆ V0, which we call layer nodes in the following, such that many shortest
paths in S contain at least one node in L. Based on this, we define a tripartite flow
network consisting of the entries, the exits, and the layer nodes, which gives rise to
the solution-equivalent L1 instances.

Definition 6. Let I be a MaxTP instance and let S be an SPS for it. Furthermore,
let L ⊆ V0 and d : S → L ∪ {0} be a map from the paths contained in S towards L
together with an auxiliary value 0 such that d(puw) = v ∈ L only if v ∈ puw. Then
IS,L,d := (Ṽ, Ã, ℓ̃,

¯
b, b̄) defined as

Ṽ := V+ ∪ V− ∪ L
Ã := {(u, v), (v, w) | for u ∈ V+, w ∈ V−, and v ∈ L with d(puw) = v}∪

{(u,w) | for u ∈ V+ and w ∈ V− with d(puw) = 0}

with ℓuv := duv, ℓvw := dvw, and ℓuw := duw is called an L1 instance for I.

Corollary 5. Let I be a MaxTP instance together with an SPS S, L ⊆ V0, and a
mapping d as defined in Definition 6. Then I and IS,L,d are solution-equivalent.

Corollary 6. Let I be a MaxTP instance together with an SPS S and the mapping d
with d(puw) = 0 for all puw ∈ S. Then IP = IS,∅,d.

An example L1 instance for the MaxTP instance from Figure 4.8 is shown in
Figure 4.10.

As mentioned at the beginning of this section, one of the goals is to obtain a
solution-equivalent instance having a small number of arcs. Thus, given an in-
stance I of MaxTP and some SPS S for it, the L1 instance for I with the minimum
number of arcs can be determined through solving the following set cover problem,
which we model as a binary program.
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u1 u2 u3 u4

w1 w2 w3 w4

v6 v7

[0, 1] [1, 3] [0, 2] [1, 2]

[−2, 0] [−3,−1] [−2, 0] [−2,−1]

4 5
3

2
25

2

4 1

2 45

1 3

Figure 4.10.: Visualization of the L1 instance IS,L,d for example MaxTP instance
I from Figure 4.8 defined with some arbitrary S, L := {v6, v7} and
the mapping d given as d(pu1w1) = 0, d(pu1w2) = v7, d(pu1w3) = v7,
d(pu1w4) = v7, d(pu2w1) = 0, d(pu2w2) = v6, d(pu2w3) = v6, d(pu2w4) =
v6, d(pu3w1) = 0, d(pu3w2) = v7, d(pu3w3) = v7, d(pu3w4) = v7,
d(pu4w1) = v6, d(pu4w2) = v6, d(pu4w3) = v6, d(pu4w4) = v6. The
lengths can be found next to the corresponding arcs.

min
∑︂
u∈V+

∑︂
w∈V−

xuw +
∑︂
v∈V 0

(
∑︂
u∈V+

xuv +
∑︂

w∈V−

xvw) (4.18)

s.t. 2dvuw − xuv − xvw ≤ 0 ∀puw ∈ S, ∀v ∈ puw ∩ V0 (4.19)

d0uw − xuw = 0 ∀puw ∈ S (4.20)

d0uw +
∑︂

v∈puw∩V0
dvuw = 1 ∀puw ∈ S (4.21)

xuv, xvw, xvw, d
v
uw, d

0
uw ∈ {0, 1}. (4.22)

The binary variables dvuw and d0uw encode the mapping d : S → L ∪ {0}. In
particular, dvuw indicates whether d(puw) = v for v ∈ puw ∩ V0 or not. Additionally,
due to constraint (4.21), each path puw ∈ S is assigned to at most one of its inner
nodes. On the other hand, the binary variables xuv, xvw, and xuw indicate whether
the corresponding arcs must be added or not. Thereby, constraint (4.19) ensures
that (u, v) and (v, w) are added if dvuw = 1 ,while constraint (4.20) ensures that
(u,w) is added in case that d0uw = 1. The smallest set L ⊆ V0 necessary to define d
can then be retrieved from the solution.

However, besides being NP-hard in general, see SP5 in Garey and Johnson [55],
set cover problems are often intrinsically hard to solve in practice. Therefore, we
introduce a greedy heuristic for the mathematical program above to derive a solution-
equivalent L1 instance with a small number of arcs in Algorithm 8. The heuristic
starts with the path instance IP as initial L1 instance, see lines 2–4. Afterward, the
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idea is to iteratively identify inner nodes in the original underlying flow network,
whose addition to L reduces the number of arcs w.r.t. the incumbent L1 instance.
Therefore, we greedily choose a node v ∈ V0 \ L that leads to a biggest relative
reduction rv, i.e., whose addition maximizes the ratio between number of direct arcs
between the entries and the exits that would be removed, which is equal to |Sv|, and
the number of new arcs incident to v that would have to be added, i.e., |V+v |+ |V−v |,
see lines 10 and 22. The algorithm stops as soon as the maximum relative ratio
among the remaining inner nodes that have not been added becomes smaller than
or equal to one, see lines 13 and 23.

Algorithm 8: Greedy heuristic for (4.18)–(4.22) to determine a solution-
equivalent L1 instance with a small number of arcs
Input : A MaxTP instance I = (V,A, ℓ,

¯
b, b̄)

Output: A solution-equivalent L1 instance IS,L,d
1 S ← Generate an SPS for I
2 L ← ∅
3 for puw ∈ S do
4 d(puw)← 0
5

6 for v ∈ V0 do
7 Sv ← {puw ∈ S | v ∈ puw}
8 V+v ← {u ∈ V+ | ∃w ∈ V− such that puw ∈ Sv}
9 V−v ← {w ∈ V− | ∃u ∈ V+ such that puw ∈ Sv}

10 rv ← |Sv |
max{1,|V+

v |+|V−
v |}

11 ṽ ← argmaxv∈V0\L rv
12

13 while rṽ > 1 do
14 L ← L ∪ {ṽ}
15 for puw ∈ Sṽ do
16 d(puw)← ṽ
17

18 for v ∈ V 0 \ L do
19 Sv ← Sv \ Sṽ
20 V+v ← {u ∈ V+ | ∃w ∈ V− such that puw ∈ Sv}
21 V−v ← {w ∈ V− | ∃u ∈ V+ such that puw ∈ Sv}
22 rv ← |Sv |

max{1,|V+
v |+|V−

v |}
23 ṽ ← argmaxv∈V 0\L rv
24

25 return IS,L,d
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4.2.7. Variable Bounds for L1 Instances

Considering the KKT reformulation for MaxTP in Subsection 4.2.5, we are going to
derive corresponding variable bounds for the L1 instances in this section. We start
with the arc flow variables f.

Lemma 5. Let IS,L,d be an L1 instance of some MaxTP instance I. There exists
an optimal solution for IS,L,d such that fa ≤ fa, where fa is defined as

fa := min{b̄u, |̄bw|} if a = (u,w) ∈ A with u ∈ V+, w ∈ V−,

fa := min{bu,
∑︂

w:d(puw)=v
|bw|} if a = (u, v) ∈ A with u ∈ V+, v ∈ L,

fa := min{
∑︂

u:d(puw)=v
bu, |bw|} if a = (v, w) ∈ A with v ∈ L, w ∈ V−.

Proof. This follows from Corollary 4.

Next, we derive bounds for the π- and ϕ-variables. Therefore, we introduce some
additional notation. Consider an L1 instance IS,L,d. For each v ∈ L we denote the
set of entries, for which there exists a shortest path puw ∈ S such that v ∈ puw by
V+v := {u ∈ V+ | ∃w ∈ V− such that d(puw) = v}. The analogous set of exits we
denote by V−v := {w ∈ V− | ∃u ∈ V+ such that d(puw) = v}. Further, given a feasible
solution (b, f), by V+act := {u ∈ V+ | bu > 0} ⊆ V+, V−act := {w ∈ V+ | bw < 0} ⊆ V−,
and Lact := {v ∈ L |

∑︁
u∈V+

v
fuv > 0} ⊆ L we denote the sets of active entries, exits,

and layer nodes, respectively, i.e., nodes that are incident to at least one arc with
nonzero flow. We can now define the following parameters

πw := max{duw |u ∈ V+} for each w ∈ V−,
πw := min{duw |u ∈ V+} for each w ∈ V−,
πu := max{πw − duw |w ∈ V−} for each u ∈ V+,
πv := max{πw − dvw |w ∈ V−v } for each v ∈ L,
πv := min{duv |u ∈ V+v } for each v ∈ L,
πv := min{πu + duv |u ∈ V+v } for each v ∈ L,
π
v
:= max{πw − dvw |w ∈ V−v } for each v ∈ L,

ϕuw := duw − πw + πu for each (u,w) ∈ A with u ∈ V+, w ∈ V−,
ϕuv := duv − πv + πu for each (u, v) ∈ A with u ∈ V+, v ∈ L,
ϕvw := dvw − πw + πv for each (v, w) ∈ A with v ∈ L, w ∈ V−,

ϕuv := duv − π
v
+ πu for each (u, v) ∈ A with u ∈ V+, v ∈ L,

ϕvw := dvw − πw + πv for each (v, w) ∈ A with v ∈ L, w ∈ V−.
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Lemma 6. Let IS,L,d be an L1 instance of some MaxTP instance I. Consider the
nonlinear programming formulation from Subsection 4.2.5. For each feasible solution
(b∗, f∗, π, ϕ) there exists a feasible solution (b∗, f∗, π∗, ϕ∗) such that

π∗u ∈ [0, πu] for each u ∈ V+act,
π∗u = πu for each u ∈ V+ \ V+act,
π∗w ∈ [πw, πw] for each w ∈ V−act,
π∗w = πw for each w ∈ V− \ V−act,
π∗v ∈ [πv, πv] for each v ∈ Lact,

π∗v ∈ [π
v
, πv] for each v ∈ L \ Lact,

ϕ∗uw ∈ [0, ϕuw] for each (u,w) ∈ A with u ∈ V+ and w ∈ V−,
ϕ∗uv ∈ [0, ϕuv] for each (u, v) ∈ A with u ∈ V+ and v ∈ Lact,

ϕ∗uv ∈ [0, ϕuv] for each (u, v) ∈ A with u ∈ V+ and v ∈ L \ Lact,
ϕ∗vw ∈ [0, ϕvw] for each (v, w) ∈ A with v ∈ Lact and w ∈ V−,

ϕ∗vw ∈ [0, ϕvw] for each (v, w) ∈ A with v ∈ L \ Lact and w ∈ V−

with the same objective value. In particular, there exists an optimal solution respect-
ing the bounds stated above.

Proof. Let (b∗, f∗, π, ϕ) be a feasible solution and let πmin := min{πu |u ∈ V+act}.
Consider (b∗, f∗, π∗, ϕ∗) defined as

π∗v :=

⎧⎪⎨⎪⎩
πv − πmin v ∈ V+act ∪ V−act ∪ L
πw v = w ∈ V− \ V−act
πu v = u ∈ V+ \ V+act

and ϕ∗xy :=

{︄
0 f∗v1v2 > 0

dv1v2 + π∗v1 − π∗v2 f∗v1v2 = 0.

Since the arc flow variable values are not changed, the objective value remains the
same. Furthermore, we have π∗u ≥ 0 for all u ∈ V+ and π∗u0

= 0 for some u0 ∈ V+act
by construction. Using this, we can show that the variable bounds stated in the
Lemma are respected.

First, consider w ∈ V−act. If d(pu0w) = 0 and therefore (u0, w) ∈ A, we have

π∗w = π∗w − π∗u0

= πw − πmin − (πu0 − πmin)

= πw − πu0

≤ πw − πu0 + ϕu0w

= ℓu0w = du0w ≤ πw.
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Otherwise, there exists some v ∈ L such that d(pu0w) = v and we have

π∗w = π∗w − πv + πv − π∗u0

= (πw − πmin)− πv + πv − (πu0 − πmin)

= πw − πv + πv − πu0

≤ πw − πv + ϕvw + πv − πu0 + ϕu0v

= ℓvw + ℓu0v = du0w ≤ πw.

On the other hand, since w ∈ V−act there exists some u ∈ V+act such that flow is sent
from u towards w. If d(puw) = 0 and therefore (u,w) ∈ A, we have f∗uw > 0 and
ϕuw = 0, which implies

π∗w ≥ π∗w − π∗u

= π∗w − π∗u + ϕuw

= (πw − πmin)− (πu − πmin) + ϕuw

= πw − πu + ϕuw

= ℓuw = duw ≥ πw.

Otherwise, there exists some v ∈ L with d(puw) = v, f∗uv > 0 and f∗vw > 0, as well
as ϕuv = 0 and ϕvw = 0, which implies

π∗w ≥ π∗w − π∗u

= π∗w − πv + πv − π∗u

= (πw − πmin)− πv + πv − (πu − πmin)

= πw − πv + ϕvw + πv − πu + ϕuv

= ℓvw + ℓuv = duw ≥ πw.

Thus, we have π∗w ∈ [πw, πw] for all w ∈ V−act. Furthermore, since π∗w = πw for all
w ∈ V− \ V−act, it holds that π∗w ∈ [πw, πw] for all w ∈ V−.

Second, for each u ∈ V+act there exists some w ∈ V−act such that flow is sent from u
towards w. If d(puw) = 0, then f∗uw > 0 and ϕuw = 0 implying that

π∗u = π∗w − π∗w + π∗u

= π∗w − (πw − πmin) + (πu − πmin)

= π∗w − πw + πu

= π∗w − πw + πu − ϕuw

= π∗w − ℓuw

= π∗w − duw

≤ πw − duw = πu.

Otherwise, there exists v ∈ L with d(puw) = v, f∗uv > 0 and f∗vw > 0, as well as
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ϕuv = 0 and ϕvw = 0, yielding

π∗u = π∗w − π∗w + πv − πv + π∗u

= π∗w − (πw − πmin) + πv − πv + (πu − πmin)

= π∗w − πw + πv − πv + πu

= π∗w − πw + πv − ϕvw − πv + πu − ϕuv

= π∗w − ℓvw − ℓuv

= π∗w − duw

≤ πw − duw ≤ πu.

Thus, we have π∗u ∈ [0, πu] for all u ∈ V+act. Furthermore, since we set π∗u = πu for
all u ∈ V+ \ V+act, it holds that π∗u ∈ [0, πu] for all u ∈ V+.

Third, for v ∈ L and u ∈ V+v we have

π∗v = ℓuv + π∗u − ϕuv

≤ ℓuv + π∗u

≤ ℓuv + πu

= duv + πu ≤ πv.

On the other hand, for v ∈ L and w ∈ V−v we have

π∗v = π∗w − ℓvw + ϕvw

≥ π∗w − ℓvw

≥ πw − ℓvw

= πw − dvw ≥ π
v
.

Thus, we have π∗v ≥ 0 and π∗v ∈ [π
v
, πv] for all v ∈ L.

Moreover, if an inner node is active, i.e. for any v ∈ Lact, we can tighten these
bounds. In this particular case, there exists some u ∈ V+act such that u ∈ V+v , f∗uv > 0
and ϕuv = 0, which implies

π∗v ≥ π∗v − π∗u

= (πv − πmin)− (πu + πmin)

= πv − πu

= πv − πu − ϕuv

= ℓuv

= duv ≥ πv.

On the other hand, by flow conservation there exists w ∈ V−act such that w ∈ V−v ,
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f∗vw > 0, and ϕvw = 0, implying

π∗v = π∗w − π∗w + π∗v

= π∗w − (πw − πmin) + (πv − πmin)

= π∗w − πw + πv

= π∗w − πw + πv − ϕvw

= π∗w − ℓvw

= π∗w − dvw

≤ πw − dvw ≤ πv.

Thus, π∗v ∈ [πv, πv] for all v ∈ Lact. Finally, we show that these bounds are actually
tighter than the previous ones, i.e., πv ≥ πv ≥ πv ≥ π

v
, since

πv − πv = πu + duv − (πw − dvw)

= πu − πw + duv + dvw

≥ πu − (πw − duw) ≥ 0,

where u = argminu∈V+
v
πu + duv and w = argmaxw∈V−

v
πw − dvw,

πv − π
v
= duv − (πw − dvw)

= duv + dvw − πw

≥ duw − πw ≥ 0,

where u = argminu∈V+
v
duv and w = argmaxw∈V−

v
πw − dvw, and

πv − πv = πw − dvw − πv

≥ duv + dvw − dvw − πv

≥ duv − πv ≥ 0

where w = argmaxw∈V−
v
πw − dvw and we used that πw ≥ duw = duv + dvw for some

path puw ∈ S with d(puw) = v.

Next, we focus on the ϕ-variables. First, we show that ϕ∗uv ∈ [0, duv −πv +πu] for
each (u, v) ∈ A with u ∈ V+ and v ∈ Lact. The upper bound holds since

ϕ∗uv = ℓuv − π∗v + π∗u ≤ ℓuv − πv + πu = duv − πv + πu.

For the lower bound, we consider the following three cases:

1. If u ∈ V+act and v ∈ Lact with f∗uv > 0 we have ϕ∗uv = 0.
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2. If u ∈ V+act and v ∈ Lact with f∗uv = 0 we have

ϕ∗uv = ℓuv − π∗v + π∗u

= ℓuv − (πv − πmin) + (πu − πmin)

= ℓuv − πv + πu = ϕuv ≥ 0.

3. If u ∈ V+ \ V+act and v ∈ Lact we have π∗u = πu implying

ϕ∗uv = ℓuv − π∗v + πu

≥ ℓuv − πv + πu

= ℓuv − (πw − ℓvw) + πu

= −πw + ℓuv + ℓvw + πu

≥ −πw + duw + πu

= −(πw − duw) + πu

≥ −πu + πu = 0,

where w = argmaxw∈V−
v
πw − dvw.

Hence, we have ϕ∗uv ∈ [0, duv−πv+πu] for (u, v) ∈ A with u ∈ V+ and v ∈ Lact. Next,
we show that ϕ∗uv ∈ [0, duv − π

v
+ πu] for (u, v) ∈ A with u ∈ V+ and v ∈ L \ Lact.

The upper bound holds since

ϕ∗uv = ℓuv − π∗v + π∗u ≤ ℓuv − π
v
+ πu = duv − π

v
+ πu.

For the lower bound, we consider two cases:

1. If u ∈ V+ \ V+act and v ∈ L \ Lact we have π∗u = πu

ϕ∗uv = ℓuv − π∗v + πu

≥ ℓuv − πv + πu

= (πu + duv)− πv ≥ 0.

2. If u ∈ V+act and v ∈ L \ Lact we have

ϕ∗uv = ℓuv − π∗v + π∗u

= ℓuv − (πv − πmin) + (πu − πmin)

= ℓuv − πv + πmin + πu − πmin

= ℓuv − πv + πu = ϕuv ≥ 0.

Hence, ϕ∗uv ∈ [0, duv − π
v
+ πu] for u ∈ V+ and each v ∈ L \ Lact.

Next we show, that the ϕ∗vw ∈ [0, dvw − πw + πv] for each (v, w) ∈ A with w ∈ V−
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and v ∈ Lact. The upper bound holds since

ϕ∗vw = ℓvw − π∗w + π∗v ≤ ℓvw − πw + πv = dvw − πw + πv.

For the lower bound, we consider the following three cases:

1. If v ∈ Lact and w ∈ V−act with f∗vw > 0 we have ϕ∗vw = 0.

2. If v ∈ Lact and w ∈ V−act with f∗vw = 0 we have

ϕ∗vw = ℓvw − π∗w + π∗v

= ℓvw − (πw − πmin) + (πv − πmin)

= ℓvw − πw + πmin + πv − πmin

= ℓvw − πw + πv = ϕvw ≥ 0.

3. If v ∈ Lact and w ∈ V− \ V−act we have π∗w = πw

ϕ∗vw = ℓvw − πw + π∗v

≥ ℓvw − πw + πv

= (duv + dvw)− πw

≥ duw − πw ≥ 0,

where u = argmaxu∈V+
v
duv.

Hence, ϕ∗vw ∈ [0, dvw−πw+πv] for each (v, w) ∈ A with w ∈ V− and v ∈ Lact. Next
we show, that the ϕ∗vw ∈ [0, dvw − πw + πv] for each (v, w) ∈ A with w ∈ V− and
v ∈ L \ Lact. The upper bound holds since

ϕ∗vw = ℓvw − π∗w + π∗v ≤ ℓvw − πw + πv = dvw − πw + πv.

For the lower bound, we consider the following two cases:

1. If v ∈ L \ Lact and w ∈ V− \ V−act we have π∗w = πw implying

ϕ∗vw = ℓvw − πw + π∗v

≥ ℓvw − πw + π
v

= π
v
− (πw − dvw) ≥ 0.

2. If v ∈ L \ Lact and w ∈ V−act we have

ϕ∗vw = ℓvw − π∗w + π∗v

= ℓvw − (πw − πmin) + (πv − πmin)

= ℓvw − πw + πmin + πv − πmin

= ℓvw − πw + πv = ϕvw ≥ 0.
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Hence, ϕ∗vw ∈ [0, dvw − πw + πv] for each (v, w) ∈ A with w ∈ V− and v ∈ L \ Lact.
Next we show, that the ϕ∗uw ∈ [0, ℓuw − πw + πu] for each (u,w) ∈ A with u ∈ V+

and w ∈ V−. We consider five cases:

1. If u ∈ V+act and w ∈ V−act with f∗uw > 0 we have ϕ∗uw = 0.

2. If u ∈ V+act and w ∈ V−act with f∗uw = 0 we have

ϕ∗uw = ℓuw − π∗w + π∗u ≤ duw − πw + πu,

ϕ∗uw = ℓuw − π∗w + π∗u

= ℓuw − (πw − πmin) + (πu − πmin)

= ℓuw − πw + πmin + πu − πmin

= ℓuw − πw + πu = ϕuw ≥ 0.

3. If u ∈ V+act and w ∈ V− \ V−act we have π∗w = πw implying

ϕ∗uw = ℓuw − πw + π∗u ≤ duw − πw + πu,

ϕ∗uw = ℓuw − πw + π∗u ≥ ℓuw − πw ≥ 0.

4. If u ∈ V+ \ V+act and w ∈ V−act we have π∗u = πu implying

ϕ∗uw = ℓuw − π∗w + πu ≤ duw − πw + πu

ϕ∗uw = ℓuw − π∗w + πu

≥ ℓuw − πw + πu

= πu − (πw − ℓuw) ≥ 0.

5. If u ∈ V+ \ V+act and w ∈ V− \ V−act we have π∗u = πu and π∗w = πw implying

ϕ∗uw = ℓuw − πw + πu = duw − πw + πu

ϕ∗uw = ℓuw − πw + πu

≥ ℓuw − πw + πu

= πu − (πw − ℓuw) ≥ 0.

Hence, ϕ∗uw ∈ [0, duw − πw + πu] for each (u,w) ∈ A with u ∈ V+ and w ∈ V−.
It remains to show that (b∗, f∗, π∗, ϕ∗) is feasible. The dual constraints (4.12) as

well as the complementarity conditions (4.13) are satisfied by construction. Addi-
tionally, the bounds proven above show that the nonnegativity conditions (4.16) are
respected, too. Finally, since we left the f∗- and b∗-variables unchanged, this shows
that (b∗, f∗, π∗, ϕ∗) is a feasible solution.
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4.2.8. A MIP Model for L1 Instances and Valid Inequalities

Using the bounds from the previous section, i.e., Lemma 5 and Lemma 6, and
applying the big-M technique to the KKT reformulation from Subsection 4.2.5, we
derive the following MIP model for an L1 instance IS,L,d = (V,A, ℓ,

¯
b, b̄) derived

from a MaxTP instance I.

max
b,f,ϕ,π,x

∑︂
a∈A

ℓafa (4.23)

s.t.
∑︂
u∈V+

bu +
∑︂

w∈V−

bw = 0 (4.24)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V+ ∪ V− (4.25)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = 0 ∀v ∈ V0 (4.26)

πv − πu + ϕa = ℓa ∀(u, v) = a ∈ A (4.27)

fa ≤ faxa ∀a ∈ A (4.28)

ϕa ≤ ϕa(1− xa) ∀a ∈ A (4.29)
bv ∈ [

¯
bv, b̄v] ∀v ∈ V+ ∪ V− (4.30)

fa ∈ [0, fa] ∀a ∈ A (4.31)

ϕa ∈ [0, ϕa] ∀a ∈ A (4.32)
πu ∈ [0, πu] ∀u ∈ V+ (4.33)
πw ∈ [πw, πw] ∀w ∈ V− (4.34)
πv ∈ [π

v
, πv] ∀v ∈ L (4.35)

xa ∈ {0, 1} ∀a ∈ A (4.36)

Besides adapting the variable bounds, we introduce an auxiliary binary variable
xa ∈ {0, 1} for each arc a ∈ A here to apply the big-M technique to the comple-
mentarity conditions (4.13). This enables us to replace (4.13) by the two linear
constraints (4.28) and (4.29). Depending on the value of xa, either fa = 0 or ϕa = 0,
which ensures that (4.13) is satisfied.

Activity-Related Bound-Tightening

To enforce the tighter bounds for active layer nodes, we introduce additional auxil-
iary variables yv ∈ {0, 1} for each v ∈ L indicating whether v is active or not through
constraints

yv ≥ xa ∀v ∈ L, ∀a ∈ δ−(v) ∪ δ+(v). (4.37)
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If there is nonzero flow on some arc a ∈ δ−(v) ∪ δ+(v), we have xa = 1 due to
constraints (4.28) and yv = 1 due to constraints (4.37). Thus, using yv, we can
tighten the πv-variable and the ϕa-variables via constraints

πv ≥ π
v
− (π

v
− πv)yv ∀v ∈ L (4.38)

πv ≤ πv − (πv − πv)yv ∀v ∈ L (4.39)

ϕa ≤ ϕa − (ϕa − ϕa)yv ∀v ∈ L, ∀a ∈ δ−(v) ∪ δ+(v). (4.40)

Forcing the πv-variable of an inactive entry or exit v ∈ (V+ \V+act)∪ (V− \V−act) to
be equal to its upper or lower bound, respectively, is more difficult. In particular,
we cannot rely on the xa-variables here, because, if we consider some source u ∈ V+,
then xa = 1 for some a ∈ δ+(u) does not necessarily imply fa > 0 and the activity
of u as the only adjacent source.

However, if all supply and demand intervals have integer bounds, i.e., if b̄v ∈ Z
and

¯
bv ∈ Z for all v ∈ V+∪V−, then there exists an optimal solution such that bv ∈ Z

for all v ∈ V+ ∪ V− due to the bound-closeness result in Lemma 1. In particular,
it holds that bu ≥ 1 and bw ≤ −1 for active entries and exits, respectively. Thus,
constraints

yu ≤ bu ∀u ∈ V+ (4.41)
−yw ≥ bw ∀w ∈ V− (4.42)

enforce the desired behavior in this case. To enforce the tighter bounds for πv-
variables that correspond to non-active entries or exits v ∈ (V+ \ V+act)∪ (V− \ V−act),
we then add the following inequalities:

πu ≥ πu − πuyu ∀u ∈ V+ (4.43)
πw ≤ πw − (πw − πw)yw ∀w ∈ V−. (4.44)

No-Detour Constraints

Finally, another set of valid inequalities is motivated by the following observation:
Let IS,L,d be an L1 derived from some MaxTP instance I. Further, let v ∈ L,
u ∈ V+v and w ∈ V−v , i.e., we have (u, v) ∈ A and (v, w) ∈ A. If d(puw) ̸= v, i.e., the
shortest path puw ∈ S has not been assigned to v, there exists another path between
u and w in the corresponding L1 network, which is not longer than ℓuv+ℓvw. Hence,
the following no-detour constraints, which ensure that fuv = 0 or fvw = 0, can be
added without decreasing the objective value of an optimal solution

xuv + xvw ≤ 1 ∀v ∈ L, ∀u ∈ V+v , and ∀w ∈ V−v with d(puw) ̸= v. (4.45)

112



4.2. The Maximum Transportation Problem (MaxTP)

4.2.9. Side Note: The Minimum Transportation Problem (MinTP)

A natural question to ask when investigating worst case scenarios is what best case
scenarios look like. Thus, in this section, we discuss the Minimum Transportation
Problem (MinTP), whose goal is, in contrast to MaxTP, to find a supply and demand
vector such that the optimal objective value of the induced TP instance is minimized.

Theorem 2. MinTP can be solved in polynomial time.

Given a MinTP instance I = (V,A, ℓ,b̄,
¯
b), we define a corresponding MCF in-

stance IMCF = (VMCF,AMCF, ℓMCF, c, b) as follows. Let

B+
min :=

∑︂
v∈V+

¯
bv, B+

max :=
∑︂
v∈V+

b̄v, B−min :=
∑︂
v∈V−

|b̄v|, B−max :=
∑︂
v∈V−

|̄bv|

Bmin := max{B+
min, B

−
min}, Bmax := min{B+

max, B
−
max}.

B+
min denotes the minimum and B+

max denotes the maximum possible amount of
supply w.r.t. the corresponding bounds. Analogously, B−min and B−max are the mini-
mum and maximum absolute demand. Consequently, Bmin and Bmax represent the
minimum and maximum possible amount of flow to enter and leave the network.

The vertex set VMCF is equal to V together with four additional vertices, i.e., we
set VMCF := V ∪ {s, s′, t′, t}. Thereby, s serves as the only source, while t represents
the only sink of the network. We set bs := Bmax and bt := −Bmax as supply and
demand value, respectively.

Next, we describe the composition of the arc set AMCF. First, we add a copy of
each a ∈ A together with the corresponding length value. We still consider these
arcs to be uncapacitated and therefore define ca := min{

∑︁
u∈V+ b̄u,

∑︁
w∈V− |̄bw|}.

These copied arcs we denote by A1 in the following.
Additionally, we add an arc a = (s, u) from s towards each vertex corresponding

to a source u ∈ V+ in I with capacity ca :=
¯
bu. This set of arcs we denote by

A2 := {(s, u) |u ∈ V+}. Analogously, we add an arc a = (s′, u) from s′ towards
each vertex corresponding to a source u ∈ V+ in I with capacity ca := bu −

¯
bu. In

the following, we denote these arcs by A3 := {(s′, u) |u ∈ V+}. Similarly, we add
an arc a = (w, t) from each vertex corresponding to a sink w ∈ V− in I towards
t with capacity ca := |b̄w|. This set of arcs we denote by A4 := {(w, t) |w ∈ V−}.
Additionally, we add an arc a = (w, t′) from each vertex corresponding to a sink
w ∈ V− in I towards t′ with capacity ca := |̄bw| − |b̄w|. This arc set we denote by
A5 := {(w, t′) |w ∈ V−}.

Finally, we add three more arcs to the network. First, an arc a1 = (s, s′) with
capacity cMCF

a1 := Bmax − B+
min. Second, an arc a2 = (t′, t) with capacity cMCF

a2 :=
Bmax−B−min. Third, an arc a3 = (s′, t′) with capacity cMCF

a3 := Bmax−Bmin. Finally,
for all a ∈ AMCF \ A1 we set ℓMCF

a := 0. The MCF instance IMCF corresponding to
the example MinTP instance I from Figure 4.11 together with an optimal solution
are shown in Figure 4.12.
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u1

[2, 2]

u2

[0, 2]

u3

[0, 2]

w1

[−2, 0]

w2

[−2, 0]

w3

[−2,−2]

1 1 1

1 1 1

3

3

3

3

Figure 4.11.: Example MinTP instance with the supply and demand intervals above
and below the corresponding nodes and the lengths ℓa written next to
the corresponding arcs.

bs = 6

s s′

t′t
bt = −6

u1 u2 u3

w1 w2 w3

1 1 1

1 1 1

3

3

3

3

(a) MCF instance IMCF for the MinTP in-
stance I from Figure 4.11.

bs = 6

s s′

t′t
bt = −6

u1 u2 u3

w1 w2 w3

(b) An optimal solution for IMCF with objec-
tive value 8.

Figure 4.12.: Figure 4.12a shows MCF instance IMCF corresponding to the example
MinTP instance I from Figure 4.11. All arcs with zero capacity, which
would have to be added, are not shown here. On the other hand,
all newly added arcs with nonzero capacity are dotted. They have a
capacity value of ca = 2, except for (s, s′), (s′, t), and (t′, t), for which
we have ca = 4, and zero length, i.e., ℓa = 0. The solid arcs remain
uncapacitated. Figure 4.12b shows an optimal solution for IMCF. The
two thick blue arcs (s, s′) and (t′, t) represent a flow value of fa = 4,
while all other blue arcs have a flow value of fa = 2. The invisible arcs
carry no flow. The cost of the flow is

∑︁
a∈AMCF ℓMCF

a fa = 8.
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Lemma 7. There exists a one-to-one correspondence between the solutions of the
MinTP instance I and the feasible solutions of the corresponding MCF instance
IMCF preserving the objective value.

Proof. Let (b, f) be a solution for I. Then

f̃a :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fa if a ∈ A1

¯
bu if a = (s, u) ∈ A2

bu −
¯
bu if a = (s′, u) ∈ A3

|b̄w| if a = (w, t) ∈ A4

|bw| − |b̄w| if a = (w, t′) ∈ A5

Bmax −B+
min if a = a1

Bmax −B−min if a = a2

Bmax −
∑︁
u∈V

bu if a = a3

is a feasible solution for MCF instance IMCF. The flow values for the arcs in A2

and A4 as well as for a1 and a2 do not depend on (b, f). In fact, these values have
to be the same in all feasible solutions of IMCF to satisfy the supply and demand
of s and t, respectively. Further, the flow values of A1 directly correspond to the
flow values f , and the flow values for the arcs in A3 and A5 depend on the supply
and demand of the corresponding sources u ∈ V+ and sinks w ∈ V−, respectively.
Similarly, the flow on arc a3 depends on the total supply. By construction, all flow
values respect the capacities and flow conservation is ensured. Thus, there are no
two pairwise different feasible solutions for I that are mapped on the same feasible
solution for IMCF.

On the other hand, let f̃a be a feasible solution for MCF instance IMCF. Then

bv :=

{︄
f̃su + f̃s′u for v = u ∈ V+

−f̃wt − f̃wt′ for v = w ∈ V−

and

fa := f̃a for a ∈ A

denotes a solution for MinTP instance I. By construction, flow conservation is
ensured at the inner nodes, the supplies and demands of all sources and sinks are
satisfied, respectively, and the corresponding interval bounds are respected. Addi-
tionally, as argued above, only the flow values of the arcs in A1,A2 and A4 are not
fixed and any change in one of the corresponding variable values leads to a different
solution (b, f). Thus, there are no two pairwise different feasible solutions for IMCF

that map towards a common solution for I.
Finally, only the arcs in A1 in IMCF can have nonzero length by construction.

Thus, since the flow values on these arcs are preserved by the bijection induced by
the two mappings above, the objective value is preserved.
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Corollary 7. There exists a one-to-one mapping between the optimal solutions of
MinTP instance I and the optimal solutions of MCF instance IMCF.

Theorem 2. MinTP can be solved in polynomial time.

Proof. Creating MCF instance IMCF, which has |VMCF| = |V| + 4 vertices and
|AMCF| = |

⋃︁5
i=1Ai ∪ {a1, a2, a3}| = |A| + 2|V+| + 2|V−| + 3 arcs, solving it using

any polynomial-time algorithm for MCF, and applying the mapping defined in the
proof of Lemma 7, yields an optimal solution for I in polynomial time.

Another way to derive this result is to adapt the bilevel formulation for MaxTP
from Section 4.2.4 to model MinTP. To do this, we change the objective sense of the
upper-level objective function (4.1) from max to min. Since the objective functions
of both levels are identical, the formulation can be transformed into a single-level
linear program by lifting the lower-level constraints.

4.3. The Maximum Potential Transport Moment Problem
(MaxPTM)

In this section, we propose an alternative way to distribute the flow on the arcs
as a basis for introducing another severity measure w.r.t. gas transport scenarios.
While the flow on the arcs is distributed to lead to a minimum transport moment
in MaxTP, i.e., the objective value of the corresponding TP instances, this point of
view may be overly simplistic. In particular, in MaxTP only shortest paths in the
network are used, while alternative routes are not considered.

As discussed in Section 3.5.2, gas flow through pipelines causes a friction induced
pressure loss. In the stationary case [96, 81], this is often modeled using the well-
known Weymouth equation, and for a pipeline a = (u, v), it can be stated as

p2u − p2v = ℓaCaqa|qa|.

Here, pu and pv denote the pressures at the corresponding nodes, qa is the mass
flow in the pipe, and the coefficient Ca incorporates associated pipeline parameters
such as the diameter and the integral roughness. These equations imply that mass
flow cannot go in directed cycles and is distributed among several paths from the
entries to the exits depending on the “resistance” given by the coefficients ℓa and Ca.
Furthermore, in passive networks, which consist of pipelines only and contain no
active elements, the flow distribution q is uniquely determined by the supplies and
demands, see [26, 51] for details.

Instead of using the nonlinear Weymouth equation, we employ a similar, but
linear model. In accordance with the definition of the minimum transport moment,
we only consider the pipeline length as resistance coefficient here. For a pipeline
a = (u, v), our model reads

πu − πv = ℓa(f
fwd
a − fbwd

a ).
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In this equation, two nonnegative flow variables are used, which represent flow going
in the forward and backward direction, respectively. Thus, we assume that flow in
both directions is possible on each arc in the following, which is a natural assumption
for passive networks. Nevertheless, the equations still satisfy the conditions that
lead to a unique flow distribution f , which means that no objective function must be
considered when routing the flow through the network. This constitutes a significant
difference compared to MaxTP.

Next, we formulate the optimization problem to find a most severe transport
situation w.r.t. what we call the potential transport moment. In particular, the
Maximum Potential Transport Moment Problem (MaxPTM) can be stated as the
following nonlinear program

max
f,π,b

∑︂
a∈A

ℓafa (4.46)∑︂
a∈δ+(v)

(f fwd
a − fbwd

a )−
∑︂

a∈δ−(v)

(f fwd
a − fbwd

a ) = bv ∀v ∈ V+ ∪ V− (4.47)

∑︂
a∈δ+(v)

(f fwd
a − fbwd

a )−
∑︂

a∈δ−(v)

(f fwd
a − fbwd

a ) = 0 ∀v ∈ V0 (4.48)

πu − πv − ℓa(f
fwd
a − fbwd

a ) = 0 ∀a ∈ A (4.49)

f fwd
a fbwd

a = 0 ∀a ∈ A (4.50)

f fwd
a , fbwd

a ∈ R≥0 ∀a ∈ A (4.51)
bv ∈ [

¯
bv, b̄v] ∀v ∈ V+ ∪ V− (4.52)

πv ∈ R ∀v ∈ V . (4.53)

The complementarity constraints (4.50) are necessary because flow would otherwise
be sent in cycles on the arcs, making the problem unbounded. However, (4.50) can
be reformulated using the big-M technique. Therefore, for each a ∈ A, we introduce
an auxiliary binary variable xa ∈ {0, 1} and replace (4.50) with

f fwd
a ≤ fxa (4.54)

fbwd
a ≤ f(1− xa). (4.55)

Here, f := min{
∑︁

u∈V+ b̄u,
∑︁

w∈V− |̄bw|} denotes the maximum possible flow into
and out of the network. Further, in contrast to MaxTP, the xa-variable indicate
whether flow goes in forward or backward direction on arc a ∈ A.

4.3.1. Complexity of MaxPTM

Due to the similar concepts behind MaxTP and MaxPTM, the following result is
not a surprise.

Theorem 3. MaxPTM is NP-hard.
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We use an adaption of the proof for MaxTP here, compare Theorem 1 in Sec-
tion 4.2.3. In particular, we again reduce from Partition, and given an instance of
it, we create the identical flow network with the same parameters.

Since the arcs in A1 have zero length, it follows that ui and wi have the same node
potential, i.e., we have πui = πwi for all i ∈ {1, . . . , n} due to constraints (4.49). Fur-
thermore, it is easy to see that Lemma 2 and Corollary 1 hold for MaxPTM, too,
i.e., for every feasible (optimal) solution there exists a feasible (optimal) solution
with complementary supply and demand vector and the same objective value. Ad-
ditionally, we assume w.l.o.g. that πv = 0 holds in every feasible solution, since an
arbitrary constant could be added to all node potentials. Thus, given a balanced
and complementary supply and demand value b, the corresponding unique induced
feasible solution is given by

πv :=

{︄
bui+bwi

2 if v = ui ∈ V+ or wi ∈ V−

0 otherwise ,

f→a :=

⎧⎪⎪⎨⎪⎪⎩
bui+|bwi |

2 if a = (ui, wi) ∈ A1

bui
2 if a = (ui, v) ∈ A2

|bwi |
2 if a = (v, wi) ∈ A3

and f←a :=

⎧⎪⎨⎪⎩
0 if a = (ui, wi) ∈ A1

|bwi |
2 if a = (ui, v) ∈ A2

bui
2 if a = (v, wi) ∈ A3.

Further, we can show that Lemma 3 holds for MaxPTM, too. Therefore, we add
a different intermediate step when summing up the flows on the arcs and putting
them into relation to the sum of supplies and absolute demands, i.e., we use

c(b, f) =
∑︂

(ui,v)∈A2

(f→uiv + f←uiv) +
∑︂

(v,wi)∈A3

(f→vwi
+ f←vwi

)

= (
∑︂

(ui,v)∈A2

f→uiv +
∑︂

(v,wi)∈A3

f←vwi
) + (

∑︂
(ui,v)∈A2

f←uiv +
∑︂

(v,wi)∈A3

f→vwi
)

=
∑︂
zi∈Z′

bui +
∑︂

zi∈Z\Z′

|bwi |

in the arguments of both directions of the proof. Hence, MaxPTM is NP-hard, too.

4.4. Case Study: gaslib-582

To conclude this chapter, we present a computational study based on the data from
the gaslib-582 network from the GasLib benchmark library [147]. The network
topology and parameters are based on slightly perturbed real-world data of parts of
the German gas transport infrastructure and summarized below.

instance |V| |A| |V+| |V−|
gaslib-582 582 1170 15 70
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Figure 4.13.: Histogram of minimum transport moment for transport scenarios in
gaslib-582, grouped by feasibility status.

In addition, it contains a collection of 4227 balanced transport scenarios, which
were created with the methods described in Chapter 14 of [96] and should cover
realistic scenarios well. For each of them, we know its feasibility status w.r.t. the
detailed MIP model in Chapter 6 of [96]. This status can be feasible if a solution
for the transport scenario has been found, infeasible if it has been proven that no
such solution exists, or no solution, meaning that no feasible solution has been
found within the considered time limit, although it might still exist. In this sense,
we consider the infeasible supply and demand vectors to be more severe than the
feasible ones.

First, we have computed the optimal solution values of the corresponding Trans-
portation Problem instances for all these transport scenarios, i.e., their minimum
transport moment. They are shown in the histogram in Figure 4.13, grouped by
their feasibility status. The values range from approximately 198847 to 1122826,
and the feasible transport scenarios have a smaller optimal objective value than the
infeasible ones. However, there is some overlap where transport scenarios with the
same minimum transport moment are feasible or infeasible.

Additionally, we computed the potential transport moment for all transport sce-
narios. Here, the values range from approximately 204260 to 1140021. The corre-
sponding histogram shown in Figure 4.14 looks almost identical.

To decide whether the benchmark library contains severe transport situations
w.r.t. our two measures, we solved a MaxTP instance and a MaxPTM instance,
which we generated based on the gaslib-582 data. In particular, for each entry, we
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Figure 4.14.: Histogram of potential transport moment for transport scenarios in
gaslib-582, grouped by feasibility status.

used zero as the lower and the maximum supply value occurring in these scenarios as
upper supply bound. Equivalently, for each exit, we used zero as the upper and the
minimum demand value occurring in these scenarios as the lower demand bound.
To solve MaxTP, we applied the following method: First, we derived a solution-
equivalent L1 instance using the heuristic in Algorithm 8 described at the end of
Section 4.2.6. Afterward, we determined the bounds stated in Subsection 4.2.7 and
subsequently solved the corresponding MIP model presented in Section 4.2.8 with
all described constraints added. Finally, this solution is mapped back to the original
problem using the procedure described in Lemma 4. For MaxPTM, we directly
applied the MIP model defined in Section 4.3. Note that both MIPs were solved in
less than a second using Gurobi [69].

Solving the MaxTP instance yields an optimal solution having objective value
1406674, which is about 23% larger than the maximum value from the data set. On
the other hand, the FDB-MCF heuristic from Subsection 4.2.2 generates a transport
scenario with a minimum transport moment of 1379907 and does not find the optimal
solution. The optimal solution is visualized in Figure 4.15. Green and orange disks
represent entry and exit nodes, respectively, and solid colors show the used capacity
while transparent colors show available but unused capacities. The flow on the arcs
is drawn in blue. However, note that not many nodes are visible in these drawings.
This is because, although the network features 31 entries and 129 exits, only 85 have
nonzero supply or demand and often a relatively small amount.

On the other hand, solving the MaxPTM instance yields an optimal solution with
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Figure 4.15.: An optimal solution of the MaxTP instance for gaslib-582.

an objective value of 1456905, which is almost 30% larger than the maximum value
in the data set. Its optimal solution is visualized in Figure 4.16.

If we calculate the minimum transport moment for the optimal transport sce-
nario for MaxPTM, we derive a value of 1375486. Hence, the two optimal solutions
clearly differ in their supply and demand vector. The absolute supply and demand
differences as well as the absolute flow differences between the two optimal solutions
are visualized in Figure 4.17. Note that flows, demands, and supplies differences
are only shown here if they differ by more than 10−6. We observe that many cyclic
structures are present. This is because MaxPTM uses multiple paths for the flow
between the entries and exits. In contrast, an optimal solution for MaxTP has a
forest- or tree-shaped structure w.r.t. the arc flows.

4.5. Conclusion and Future Research

Chapter 4 discusses the critical problem of identifying severe transport scenarios in
gas transport. The motivation to consider this problem is that most approaches for
determining and evaluating the technical capacity of gas transport networks used
in practice are sample-based. Here, transport scenarios that are severe w.r.t. some
given measure are identified in a first step. The resulting test sets are then created
and designed with the goal in mind to cover and represent all difficult flow situations
that can arise. Afterward, the corresponding scenarios are evaluated using highly
detailed mathematical models for the physics of gas transport using methods from

121



4. Identifying Severe Transport Scenarios

Figure 4.16.: An optimal solution of the MaxPTM instance for gaslib-582.

Figure 4.17.: Absolute supply, demand, and flow differences between the two optimal
solutions of MaxTP and MaxPTM from Figure 4.15 and Figure 4.16.
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optimization or simulation in a second step. If transport can be realized for all or
at least a great majority of them, the corresponding technical capacity is considered
feasible. Two approaches of this type are discussed in Section 4.1.2.

However, the discussion on the Reference Point Method at the end of Section 4.1.2
and the case study in Section 4.4 demonstrate that currently used test sets do
not contain all transport scenarios that should be considered severe. Moreover, it
seems reasonable to apply several diverse severity measures to improve coverage.
This motivates the introduction of our two new severity measures: The minimum
transport moment and the potential transport moment. In this context, the goal
of the Maximum Transportation Problem (MaxTP) and the Maximum Potential
Transport Moment Problem (MaxPTM), which are introduced in Section 4.2 and
Section 4.3, respectively, is to find corresponding worst-case scenarios.

In the real-world entry-exit gas market model, explained in detail in Section 4.1,
the shippers nominate the amounts of gas they want to insert into or withdraw from
the network the day before transport takes place. Afterward, the TSOs then have
to realize transport. MaxTP and MaxPTM are based on the idea of modeling this
process as a Stackelberg game. The leader, i.e., the shippers, chooses a balanced
transport scenario from a feasible supply and demand polytope, while the follower,
i.e., the TSO, subsequently routes the flow through the network according to a
given flow model and objective function, which represents the considered severity
measure. Thus, to determine worst-case scenarios, the leader chooses a transport
scenario leading to a maximum transport effort for the follower, i.e., its goal is to
maximize the objective function value of the follower.

According to the game model described above, we introduce a linear bilevel op-
timization formulation with interdicting objective functions for MaxTP in Subsec-
tion 4.2.4. In order to solve it, we apply a classical KKT reformulation in Subsec-
tion 4.2.5 and obtain a linear programming model with additional complementarity
constraints. To reformulate it as a MIP using the big-M technique, we next introduce
the notion of solution-equivalency for MaxTP instances in Subsection 4.2.6. This
equivalency relation helps us identify MaxTP instances whose feasible solutions can
easily be mapped onto each other while the objective function values are preserved.
In particular, we introduce L1 instances, which are tripartite, and acyclic, and can
generically be constructed in a way that they feature a small number of arcs. Their
structure allows us to prove bounds for the variables in the corresponding KKT
reformulations in Subsection 4.2.7 and to derive a MIP model in Subsection 4.2.8.

The main difference between MaxTP and MaxPTM is the flow model of the fol-
lower. Here, MaxTP incorporates the probably most simple model, an uncapacitated
linear flow. Thus, we were a little surprised to find out that MaxTP is NP-hard,
which is proven in Subsection 4.2.3. For quite some time, we believed that the FDB-
MCF heuristic for MaxTP proposed in Subsection 4.2.2 is an exact algorithm and
solves the problem since it ensures the bound-closeness of the resulting supply and
demand vectors, which is the property of an optimal solution, see Subsection 4.2.1.
However, the NP-hardness proof shows that the complexity lies in the decisions made
in the upper level, i.e., when choosing an admissible supply and the demand vector.
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The flow model plays no role here, which is further underlined by the fact that the
corresponding proof can easily be adapted to show the NP-hardness of MaxPTM in
Subsection 4.3.1.

In contrast to MaxTP, MaxPTM applies a more elaborate linear potential flow
model, which we consider to be more realistic w.r.t. the physics of the gas flow.
Moreover, it has the advantage compared to MaxTP that, given a transport scenario,
it admits a unique feasible solution w.r.t. the arc flows. Therefore, and since the
potential transport moment exclusively relies on these values, MaxPTM can directly
be modeled as MIP.

There are several directions for future research. First, considering the bound-
closeness result for an optimal solution of MaxTP, the question arises whether this
can be exploited to derive additional inequalities for the MIP model. Additionally, it
is often beneficial to further tighten the variable bounds from a computational point
of view. In this regard, the question arises whether other generic classes of solution-
equivalent MaxTP instances exist, which feature an even smaller number of arcs
or allow for tighter variable bounds. Such a question seems interesting for another
more abstract reason: How large does a network have to be to preserve important
information, in our case, the flows between the entry and exit pairs and the objective
function value? Although it seems a long stretch, a similar question is of interest
regarding the designing neural networks. Thereby, small networks carrying the same
information may allow for a higher degree of explainability, which is a current topic
of intensive research in the area of machine learning.

Furthermore, due to the straightforward and natural setup of MaxTP as well as
its natural generalization, the Maximum Min-Cost-Flow Problem (MaxMCF), see
Appendix B.1, there probably exists a vast variety of further real-world applications,
which could be modeled using them. For the same reason and because of their simple
setup, we also believe that the two problems constitute new and challenging network
flow problems on their own, i.e., they are interesting for the scientific community
even without a motivating application in mind. The presence of additional capacity
constraints in MaxMCF makes the problem probably harder from a computational
complexity point of view. However, we have not been able to prove a correspond-
ing result yet. Additionally, it seems more challenging to derive a MIP model for
MaxMCF due to the additional classes of dual variables and complementarity con-
straints, which arise because of the capacity restrictions. Moreover, it is not clear if
and how the concept of solution-equivalency can be extended to it. Summing up, we
believe that further research regarding these two problems is fruitful w.r.t. potential
applications and an exciting mathematical endeavour at the same time.

Finally, returning to the motivating application, using the minimum transport
moment as a severity measure still has its limitations. First, the physical details
of how the gas flow is distributed among the pipelines and the resulting pressure
drop are highly simplified. Here, the potential transport moment can be seen as the
first step towards a more detailed view. Another possibility would be to apply the
Weymouth equations to model the gas flow in the pipelines. However, this would
result in a nonconvex and nonlinear lower-level model. Furthermore, the impact
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and the capacity of active network elements such as compressors or valves have been
completely ignored so far, even though they play a key role in actual operations. In
this regard, a lower bound on the flow throughput does often exist, which is required
when using compressors. With this knowledge in mind, we cannot claim in general
that if a specific transport scenario is feasible, then all scaled-down scenarios are
feasible, too. Finally, another possible severity measure may be the total cost of
compression required to realize transport while satisfying all pressure bounds in this
context. However, this cost is related to the used compression power, a nonlinear
and nonconvex function of pressure ratio and flow.
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The content of this thesis up until now can briefly be summarized as follows. Chap-
ter 3 focuses on the optimization of the transient control of gas transport networks.
We discuss how the gas flow through pipelines and the control of active elements such
as compressors, control valves, and valves can be modeled. Based on this, we present
a two-stage approach for determining a stable network control that minimizes the
usage of technical and non-technical measures.

In Chapter 4, we review the German entry-exit gas market model and explain
how transport scenarios arise due to the interaction between the gas traders and the
TSOs. Afterward, we introduce new concepts and methods for identifying severe
transport scenarios, which is a crucial task in the context of determining a network’s
technical capacity, i.e., the amounts of gas it can transport.

Let us consider personal computers as a metaphor for gas transport networks for
a moment. Up until now, we have mainly talked about the system’s software, which
is undoubtedly important w.r.t. user experience, working efficiency, and quality of
the results. However, as many of us unfortunately experience at some point in our
lives, malfunctioning hardware and problems related to it are not only annoying
but can also lead to complete system breakdowns. Projecting this image back to
gas transport networks, it becomes clear that monitoring its elements is essential in
order to prevent serious failures.

Besides the obvious impact on everyday operations, several other aspects w.r.t. a
malfunctioning transport infrastructure must be taken into account. Let us study
the issue of pipeline leakages. Not only do these result in high monetary costs,
but they can even lead to fatalities [88]. Moreover, the energy sector, especially
the natural gas and coal industry, is responsible for more than a quarter of anthro-
pogenic methane emissions, and methane as a greenhouse gas has a significant global
warming potential [89]. Thus, it is crucial to identify pipeline leaks early on.

Nowadays, monitoring tasks, such as the one implicitly described above, are often
performed by uncrewed aerial vehicles (UAVs). This has several advantages. For
example, their usage is often cheap because the number of necessary person-hours
for operating them is comparatively small. But more importantly, they can gather
information about an area from a long distance or high altitude and visit areas
that are not accessible in any other way. To see this, consider for example their
application in the fight against forest fires, as described by Ollero et al. [122], or
the collection of data to analyze widespread animal populations, as suggested by
Chamoso et al. [24]. Hence, it is not surprising that Hausamann et al. [73] already
discussed the usage of UAVs for monitoring natural gas pipelines in 2005. The
authors find that the developments in technology show that they can provide the
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appropriate platform for a remote sensing-based inspection system. Moreover, their
operation seems technically feasible in controlled and uncontrolled airspace.

The Length-Constrained Cycle Partition Problem (LCCP), which represents the
main topic in the remainder of this chapter, constitutes a new routing problem
regarding these UAVs and is motivated by applications such as the ones described
above. Given a set of areas V = {v1, . . . , vn} to monitor, the goal is to determine
the minimum number of UAVs necessary to do this. Thereby, the individual flying
routes must satisfy the following three conditions: First, each UAV must repeatedly
fly the same tour, which means that it starts and ends its route at the same area
and visits all other areas assigned to it exactly once. Second, each area is visited by
exactly one UAV and therefore contained in exactly one tour. This is required to
avoid possible interferences resulting from intersections. Third, each area vi ∈ V is
associated with a critical weight value Ti ∈ R≥0, which represents an upper bound
on the duration for which it can be left unattended, and a scanning time Si ∈ R≥0,
which is the amount of time a UAV needs to scan it. We require that after scanning
vi for Si time units, the UAV assigned to it has to return and rescan it within Ti.

A possible way to derive critical weight values in UAV-related applications is
the following. Suppose we are given the probability of an undesired event pi(t) at
area vi, which we assume to grow with the time t that has passed after its last scan.
The critical time, i.e., the corresponding weight Ti, is obtained from the equation
pi(Ti) = p̄i where p̄i is a threshold for the risk of an undesired event. The value p̄i
could, for example, depend on the expected damage associated with area vi.

The remainder of this chapter is structured as follows. After giving a proper def-
inition of LCCP in Section 5.1, we discuss previous work on related problems in
Section 5.2. Afterward, we introduce preprocessing techniques and the concept of
conflict hypergraphs for LCCP in Section 5.3 and Section 5.4, respectively. Fur-
thermore, we present our Most-Critical-Vertex-Heuristic and two MIP models in
Section 5.5 and Section 5.6, and conclude with a discussion on our computational
experiments as well as an outlook on future research in Section 5.7 and Section 5.8.

5.1. The Length-Constrained Cycle Partition Problem
(LCCP)

In this section, we formally introduce the Length-Constrained Cycle Partition Prob-
lem (LCCP). As we will discuss later on in detail, LCCP can be seen as a generaliza-
tion of the well-known Traveling Salesperson Problem (TSP). Therefore, in contrast
to the two previous chapters, we apply graph-theoretical nomenclature here.

5.1.1. Problem Definition

For LCCP, we are given an undirected graph G = (V, E) where V = {v1, . . . , vn}
denotes the set of vertices and E ⊆ V × V the set of edges. For each vertex vi ∈ V ,
we are given a critical weight Ti ∈ R≥0 and a scanning time Si ∈ R≥0 such that
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Si ≤ Ti. The weight of an edge eij := {vi, vj} ∈ E is given by L̂ij ∈ R≥0. Note
that in the UAV routing problems described above, L̂ij corresponds to the flying
time between the areas vi and vj . Finally, an LCCP instance on a complete graph
is called metric if the edge weights obey the triangle inequality.

To simplify notation, let us denote a cycle in G as a tuple Ck = (Vk, Ek) in the
following, where Vk and Ek represent its vertices and edges, respectively. Further,
we call a cycle Ck proper if |Vk| ≥ 2, a singleton if |Vk| = 1, and empty otherwise.

Next, we call a cycle Ck feasible if τk ≤ Ti holds for each vi ∈ Vk where

τk :=
∑︂

eij∈Ek

L̂ij +
∑︂
vi∈Vk

Si

denotes the length of Ck, i.e., if the length of a cycle is not greater than the critical
weight value of each of its vertices. Furthermore, a solution for LCCP is a cycle
partition C = {C1, . . . , Cm} of V, i.e., a vertex disjoint cycle cover, and C is called
feasible if all of its cycles are feasible. For example, LCCP always admits the trivial
feasible solution consisting of all vertices being singletons. Nevertheless, the goal of
LCCP is to determine a feasible cycle partition with a minimum number of cycles.

In the following, w.l.o.g. we assume that Si = 0 for all vertices vi ∈ V since we
can add the scanning times to the edge weights. Indeed, let Lij := L̂ij +

Si+Sj

2 for
eij ∈ E and consider some cycle Ck. Then

τk =
∑︂

eij∈Ek

L̂ij +
∑︂
vi∈Vk

Si =
∑︂

eij∈Ek

(︃
L̂ij +

Si + Sj

2

)︃
=

∑︂
eij∈Ek

Lij .

A metric LCCP instance remains metric under this transformation, i.e., the triangle
inequality is preserved. Hence, we finally define an instance of LCCP as a four-
tuple (V, E , T, L) with T ∈ R|V|≥0 and L ∈ R|E|≥0. An example instance illustrating the
previous definitions is shown in Figure 5.1.

5.1.2. Complexity of LCCP

Besides proving NP-hardness, with the following Lemma, it becomes evident that
the Traveling Salesperson Problem (TSP) can be seen as a special case of LCCP.

Lemma 8. LCCP is NP-hard.

Proof. Consider an instance (V, E , L) of TSP and some B ≥ 0. Setting Ti := B for
each vi ∈ V , we create an instance (V, E , T, L) of LCCP. An optimal solution for this
LCCP instance consists of exactly one tour if and only if there exists a Hamiltonian
cycle with length not greater than B. Since the decision variant of TSP is NP-
complete, see Garey and Johnson [55], it follows that LCCP is NP-hard.

This result can further be refined for non-metric instances. Lemma 9 answers the
question if a polynomial-time algorithm exists, which is guaranteed to find a solution
to LCCP within a constant factor of the size of a minimum cycle partition.
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Figure 5.1.: LCCP instance with two infeasible and one optimal solution.
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Lemma 9. General LCCP does not belong to the class of APX problems.

Proof. Consider the Minimum Vertex Disjoint Cycle Cover Problem (MVDCC),
which was shown not to be in APX by Sahni and Gonzalez [143]. MVDCC is defined
on an unweighted undirected graph (V, E) and its goal is to determine a minimum
vertex disjoint cycle cover. Setting Ti = n for all vi ∈ V and Lij = 1 for all eij ∈ E
we derive an LCCP instance (V, E , T, L). Any constant approximation algorithm for
LCCP would induce a constant approximation algorithm for MVDCC.

However, it should be noted that the question whether metric LCCP is in the
class of APX problems or not remains open.

5.2. Related Work

Hoppmann et al. [82] first introduced LCCP, and the results obtained there were
extended and generalized in a follow-up paper by the same authors [85]. In this
section, we review important work on problems related to it.

Drucker et al. consider the Cyclic Routing of UAVs (CR-UAV) problem in [38].
In CR-UAV, closed walks, which have to start and end at the same vertex but can
visit vertices and edges multiple times, must be determined. Additionally, waiting
at vertices is possible and different routes are allowed to intersect. In particular,
they can share vertices as well as edges. The goal is to determine the minimum
number of UAVs necessary to jointly satisfy the critical weight conditions on the
vertices. Thus, we note that each feasible solution for the equivalent LCCP instance
is a feasible solution for CR-UAV, too. However, the reverse statement does not
hold in general. The close relation between CR-UAV and LCCP is further discussed
from a computational point of view in Subsection 5.7.5. Ho and Ouaknine [80] show
that the decision problem corresponding to CR-UAV is PSPACE-complete, even in
the case of a single UAV. In [40], Drucker et al. present a solution approach based
on a binary search on the number k of available UAVs and solving satisfiability
problems. These satisfiability problems try to answer whether CR-UAV admits a
feasible solution for the given k or not. The corresponding formulations use so-called
slots, which correspond to arrival times of the UAVs at the vertices. However, since
the necessary number of slots is not known in advance and the underlying algorithm
answers to a predefined upper bound on them, the proposed method is incomplete,
i.e., it is not guaranteed to determine an optimal solution. The authors present
computational experiments on instances with up to seven vertices and three UAVs.
The corresponding data is provided at [39].

Furthermore, in [37], Drucker et al. suggest a reduction to model-checking and
present an exact algorithm, which runs a bounded model checker for detecting fea-
sible solutions and an explicit-state search attempting to prove their absence in
parallel. Asghar et al. [5], who synonymously call the problem Multi-Robot Rout-
ing for Persistent Monitoring with Latency Constraints, develop a factor O(log ρ)
approximation algorithm, where ρ is the ratio of the maximum and the minimum
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critical weight. They partition the vertices w.r.t. their critical weights and subse-
quently solve a Minimum Cycle Cover Problem (MCCP) on each subset, which we
discuss in the following paragraph.

Given a graph G = (V, E) and some λ, the goal of MCCP is to determine the
minimum number of cycles covering the vertex set, such that the length of each
cycle is not greater than λ. For the metric version of this NP-hard problem, an 32

7
approximation algorithm is proposed in [165].

Furthermore, as demonstrated and introduced in the proof of Lemma 9, the Mini-
mum Vertex Disjoint Cycle Cover Problem (MVDCC) [143] is a problem from com-
binatorial optimization, for which LCCP can be seen as a generalization.

Finally, providing a service to a set of customers on a periodical basis is a re-
curring task inherent to many real-world applications. The corresponding opti-
mization problems, where it is often the goal to determine the minimum number
of agents needed to satisfy the service requirements while taking several resource
restrictions into account, represent a broad area of active research. Classic exam-
ples include the delivery of gasoline to service stations [30] or timetabling in public
transport [105, 149].

In particular, besides TSP, which, as we have shown, is a special case of LCCP,
several other well-known combinatorial optimization problems of this type are closely
related to LCCP. One of them is the Vehicle Routing Problem with Time Windows
(VRPTW), see Solomon and Desrosiers [152] or Desrochers et al. [32] for surveys on
the topic. The goal is to determine a collection of routes for a fleet of homogeneous
vehicles. The routes have to start and end at a common depot v0 and jointly visit a
given set of customers {v1, . . . , vn}. Further, each customer vi ∈ V has some service
requirement qi which has to be satisfied within a time window [li, ui] by precisely one
vehicle. One of the most studied objectives for VRPTW is to minimize the number
of necessary vehicles while the accumulated requirements of the customers are not
allowed to exceed the capacities Q of the assigned vehicles. However, compared to
LCCP, a significant difference is that no repetitions of the tours is considered.

5.3. Preprocessing

In this section, we show how edges can be identified, which cannot be part of any
feasible cycle. Before proving a corresponding condition, we introduce the concept
of a completion for an edge.

Definition 7. Let (V, E , T, L) be an LCCP instance, and let eij ∈ E. A completion
for eij is a path pij between vi and vj such that ℓ(pij) + Lij ≤ Ts for all vs ∈ pij. It
is called a shortest completion if it has minimum length among all completions.

Lemma 10. Let (V, E , T, L) be an LCCP instance, eij ∈ E, and pij be a shortest
completion for eij. Then ℓ(pij)+Lij is a tight lower bound on the length of a proper
feasible cycle containing eij.
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Proof. Let Ck be a feasible cycle of length τk such that eij ∈ Ek. Ck can be split
into eij and a completion p̂ij . Thus,

τk = ℓ(p̂ij) + Lij ≥ ℓ(pij) + Lij ,

and since the cycle induced by pij and eij is feasible, the bound is tight.

Corollary 8. Let (V, E , T, L) be an LCCP instance. If there exists no completion
for some edge eij, there exists no feasible cycle containing it.

Remark 1. In the metric case, if an edge eij ∈ E possesses some completion, then
eij is a shortest completion for itself due to the triangle inequality. Hence, in this
case, there exists no completion for an edge eij ∈ E if 2Lij > min{Ti, Tj}.

The following lemma shows that determining a shortest completion or proving
that no completion exists can be done in polynomial time w.r.t. the size of G.

Lemma 11. Let (V, E , T, L) be an LCCP instance, and let eij ∈ E. Determining
a shortest completion for eij or proving that no completion exists can be done in
O(|V ||E|+ |V |2 · log |V |).

Proof. Consider Algorithm 9. In each iteration, a shortest path pij between vi and vj
is computed. Next, we check if the critical weight values of all of its vertices are
respected. If this is the case, we have found a shortest completion. Otherwise, we
remove all vertices from G whose critical weight values are smaller than ℓ(pij) +Lij

and continue with the next iteration. The removal of vertices does not decrease the
length of a shortest path. Hence, these vertices can never be part of any completion
for eij . If vi or vj is removed at some point, no completion exists.

Algorithm 9: Does there exist a completion for eij ∈ E in G = (V, E)?
1 while vi, vj ∈ V do
2 pij ← Shortest path between vi and vj in G
3 if ℓ(pij) + Lij ≤ Tl for all vl ∈ pij then
4 return True
5 V ← V \ {vl ∈ V | ℓ(pij) + Lij > Tl}
6 return False

Using the algorithm of Fredman and Tarjan [48], a shortest path in a weighted
undirected graph can be computed in O(|E|+ |V | · log |V |). Since in each iteration at
least one vertex is removed, there are at most |V | − 1 iterations. Thus, Algorithm 9
has a run time of O(|V ||E|+ |V |2 · log |V |).

Using Algorithm 9, we can iterate over the edges in arbitrary order, delete the
ones for which it returns False, and thereby remove all edges without a completion.
To see this, suppose there is an edge eij ∈ E such that some other edge ekl ∈ E , which
is part of a completion pij for eij , is removed in a subsequent iteration. Consider
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the cycle induced by eij and pij . When removing ekl from it, the resulting path pkl
is a completion for ekl, since

ℓ(pij) + Lij = ℓ(pkl) + Lkl ≤ Ts for all vs ∈ pkl,

which is a contradiction. Hence, for all remaining edges, there exists some completion
and, therefore, a feasible cycle containing it.

5.4. Conflict Hypergraphs for LCCP

In this section, we introduce the concept of conflict hypergraphs for LCCP. These
graphs contain information about subsets of vertices that cannot be contained in
common feasible cycles. In particular, we are interested in the cliques of these
graphs since they give rise to constraints that can be imposed on the vertices when
modeling LCCP as a mathematical program.

Definition 8. A hypergraph is a pair H = (V, EH) with vertex set V and hyperedge
set EH . A hyperedge eS ∈ EH is a subset S ⊆ V. H is called a c-uniform hypergraph
or c-hypergraph if |S| = c holds for all hyperedges eS ∈ EHc .

Definition 9. Let Hc = (V, EHc ) be a c-hypergraph. A hyperclique is a set U ⊆ V
such that for each subset S ⊆ U with |S| = c we have eS ∈ EH .

Definition 10. Let (V, E , T, L) be an instance of LCCP. Its conflict c-hypergraph
Hc = (V, EHc ) has V as vertex set and there is a hyperedge eS ∈ EHc if no feasible
cycle containing all vertices of S ⊆ V with |S| = c exists.

Corollary 9. Let (V, E , T, L) be an LCCP instance, and let U ⊆ V be a hyperclique
in Hc. A feasible cycle Ck contains at most c−1 vertices from U , i.e., |U∩Vk| ≤ c−1.

Lemma 12. Let (V, E , T, L) be an LCCP instance and let U ⊆ V be a hyperclique
of size |U | = m in Hc. For each feasible cycle partition C we have |C| ≥ ⌈ m

c−1⌉.

Proof. Let C be a cycle partition with |C| < ⌈ m
c−1⌉. By the pigeonhole principle, there

exists a cycle containing at least c vertices from U , which contradicts Corollary 9.

Corollary 10. Let (V, E , T, L) be an LCCP instance and let U ⊆ V with |U | = m
be a maximum clique in Hc. Then ⌈ m

c−1⌉ is a lower bound on the size of an optimal
cycle partition.

Determining a shortest cycle that contains a given subset S ⊆ V of vertices is an
NP-hard problem since TSP can be reduced to it. However, for pairs of vertices,
i.e., if |S| = 2, it can be done in polynomial time.

Lemma 13. Let (V, E , T, L) be an LCCP instance, and let vi, vj ∈ V. A shortest
feasible cycle containing both vertices can be determined in O(|V ||E|+ |V |2 · log |V |).
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Proof. Each feasible cycle containing vi and vj can be split into two vertex disjoint,
except for the start- and end-vertex, paths p1ij and p2ij . Hence, we can equivalently
determine two such paths that minimize the expression ℓ(p1ij) + ℓ(p2ij) to determine
a smallest feasible cycle containing both vertices. This can be done with a modified
version of Suurballe’s algorithm [156], see Algorithm 10.

Algorithm 10: Does there exist a feasible cycle in G = (V, E) containing
vi ∈ V and vj ∈ V?

1 while vi, vj ∈ V do
2 p1ij , p

2
ij ← Two vertex disjoint vi-vj-paths in G minimizing ℓ(p1ij) + ℓ(p2ij)

3 if ℓ(p1ij) + ℓ(p2ij) ≤ Tl for all vl ∈ p1ij ∪ p2ij then
4 return True
5 V ← V \ {vl ∈ G | ℓ(p1ij) + ℓ(p2ij) > Tl}
6 return False

In each iteration, two vertex disjoint shortest paths p1ij and p2ij w.r.t. to the sum
of their lengths are determined. We check if the critical weights of the vertices
contained in both paths are respected. If this is the case, p1ij and p2ij induce a
shortest feasible cycle containing vi and vj . Otherwise, we remove all vertices from G
whose critical weights are smaller than ℓ(p1ij) + ℓ(p2ij) and continue with the next
iteration. Since the removal of vertices does not decrease the sum of the lengths
of two vertex disjoint paths, the removed vertices cannot be part of any feasible
cycle containing vi and vj . Moreover, since at least one vertex is removed after each
iteration, there are at most |V | − 1 iterations. If vi or vj is removed at some point,
there exists no feasible cycle containing both vertices and the algorithm terminates.
Determining two vertex disjoint paths in a weighted undirected graph can be done
in O(|E|+ |V | · log |V |) using Suurballe’s algorithm. Hence, the total running time
of Algorithm 10 is O(|V ||E|+ |V |2 · log |V |).

By applying Algorithm 10 to each vertex pair S := {vi, vj} ⊆ V , we can check
whether eS ∈ EH2 or not and create the complete conflict (hyper)graph H2.

Remark 2. After an iteration of Algorithm 10, we may delete all vertices contained
in {vl ∈ G | ℓ(p1ij) + ℓ(p2ij) > Tl} from G. This implies that there does not exist a
feasible cycle containing S := {vi, vj , vl} ⊆ V for each deleted vertex vl. Hence, the
corresponding hyperedges eS are contained in H3.

5.4.1. Relation to Vertex Coloring

LCCP has a close connection to the Vertex Coloring Problem on its conflict hyper-
graphs. Recall the definition of the chromatic number.

Definition 11. Let H be a hypergraph. The chromatic number χ(H) is the minimum
number of colors needed to color the vertices such that no hyperedge is monochro-
matic, i.e., each hyperedge contains vertices of at least two colors.
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Figure 5.2.: Non-metric LCCP instance for which Lemma 15 does not hold.

Lemma 14. Let (V, E , T, L) be an LCCP instance. Further, consider the hypergraph
H := (V,

⋃︁n
r=2 EHr ), i.e., the union of its c-conflict graphs. Then χ(H) is a lower

bound on the size of an optimal cycle partition.

Proof. The cycles of an optimal cycle partition are feasible by definition. Hence,
no subset of vertices contained in a common cycle forms a hyperedge in H. Hence,
assigning the same color to all vertices in a cycle yields a feasible coloring for H.

Corollary 11. Let (V, E , T, L) be an LCCP instance and let Hc be its corresponding
conflict c-hypergraph. Then χ(Hc) is a lower bound on the size of an optimal cycle
partition.

For metric LCCP, we can even prove the following correspondence lemma.

Lemma 15. Let (V, E , T, L) be a metric LCCP instance. Consider the hypergraph
H := (V,

⋃︁n
r=2 EHr ). The size of a minimum cycle partition is equal to the chromatic

number of H. In particular, there exists a one-to-one mapping of feasible cycle
partitions and feasible colorings of H.

Proof. Given a feasible coloring of H, there exists a feasible cycle C containing all
vertices of the same color. W.l.o.g. we can assume that this cycle C does not contain
vertices of any other colour, since we can remove them due to the triangle inequality.
Therefore, the colors induce a feasible cycle partition which has the same size as the
coloring. On the other hand, given a feasible cycle partition, assigning all the vertices
of a feasible cycle the same color yields a feasible coloring by definition.

Lemma 15 does not hold for non-metric LCCP instances as the example in Fig-
ure 5.2 demonstrates. Here, H2 has no edges, since for any two vertices vi, vj with
i, j ∈ {1, 2, 3, 4} and i < j we have that the set {vi, vj , v5} induces a feasible cycle.
Accordingly, for H3 we have EH3 = {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}},
since all cycles containing three vertices from V \ {v5} contain at least two edges
with weight 3. For the same reason, H4 and H5 are complete. Now, assign-
ing v1 and v2, as well as v3, v4, and v5 common colors yields a feasible coloring
for H and we have χ(H) = 2. However, a minimum cycle partition is given by
C = {({v1}, ∅), ({v2}, ∅), ({v3, v4, v5}, ({v3, v4}, {v4, v5}, {v5, v3}))} and |C| = 3.
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(a) kroB150 (b) kroA200

(c) kroB200 (d) u574

Figure 5.3.: Feasible solutions for LCCP instances found by our MCV heuristic dur-
ing computational experiments, see Table C.6. While solutions (a)-(c)
feature ten cycles, (d) shows nine cycles.
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5.5. A Most-Critical-Vertex-Based Heuristic for LCCP

Next, we present the Most-Critical-Vertex-Based Heuristic (MCV) for LCCP. Here,
cycles are created sequentially. Its basic version is stated in Algorithm 11. The
key idea of MCV is the following: The creation of a new cycle starts with a vertex
having minimum critical weight among all the other vertices that have not yet been
included in any other cycle. Next, this new cycle is extended by iteratively adding
vertices to it, while its length does not exceed the critical weight value of the first
vertex. The fact that the critical weights of the newly added vertices can be ignored
in the process of extending the cycles is a notable advantage. It explains MCV’s
efficiency, which we will see in our computational experiments in Section 5.7. Note
that although we apply the cheapest insertion heuristic [139] for extending the cycles
in Algorithm 11 here, other appropriate TSP heuristics could also be adapted.

In the following, we explain Algorithm 11 in detail. Ṽ ⊆ V denotes the set of
vertices which have not yet been included in any cycle. In each iteration, a vertex
vx ∈ Ṽ with minimum critical weight in Ṽ is selected. If vx is the only vertex in Ṽ or
if there exists no adjacent vertex with which it forms a feasible cycle, it is returned
as singleton, see lines 10 to 14. Otherwise, we continue with a shortest feasible cycle
consisting of two vertices featuring vx. In the following, we repeatedly determine
two vertices va and vb, which are adjacent in Ck, and a vertex vc ∈ Ṽ \ Vk such that
the insertion of vc between va and vb would yield a minimum increase in the total
cycle length. If the augmented cycle length does not exceed Tx, we insert vc and
continue to search for more suitable vertex triples, see lines 19 to 26. If we cannot
extend Ck any further, we remove Vk from Ṽ and continue with the construction
of the next cycle. The algorithm terminates when Ṽ is empty and each vertex is
contained in a cycle. The final set of cycles is a feasible solution for LCCP.

This basic algorithm can be refined in line 24. Instead of returning Ck directly, any
exact or heuristic algorithm for TSP can be applied to the subgraph of G induced
by Vk. If a tour of smaller length is found, i.e., τk can be decreased, further vertices
could be inserted. In that case, the algorithm restarts the while-loop in line 19.

Moreover, the following observation motivates the introduction of an additional
postprocessing routine for MCV: When Algorithm 11 terminates, cycle Ck, which
was created last, often has small length and contains only a small number of vertices
with large critical weights. Thus, the idea is to try to extend Ck by using vertices
that are contained in the other cycles. If no such extension is possible, we return
the current solution. Otherwise, we extend Ck in a similar manner as in lines 19 to
26, but in contrast, we dynamically adjust the minimum critical weight value of the
cycle after each insertion and additionally check whether τk +∆τ ≤ Tc or not when
determining a suitable vertex vc. After extending Ck, we rerun Algorithm 11 with
Ṽ := V \ Vk. The described procedure is repeated until Ṽ = ∅.

Algorithm 11 is of polynomial complexity. As demonstrated in our numerical
experiments, MCV can successfully be used for both, producing an upper bound on
the minimum number of cycles and approximately solving large instances of LCCP
w.r.t. the number of vertices. The latter is of particular interest, since large instances
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Algorithm 11: Most-Critical-Vertex-Based Heuristic (MCV) for LCCP

1 Ṽ ← V
2 k ← 0

3 while Ṽ ̸= ∅ do
4 k ← k + 1

5 Ck ← CreateFeasibleCycle(Ṽ, E , T, L)
6 Ṽ ← Ṽ \ Vk
7 return C1, ..., Ck

8

9 function CreateFeasibleCycle(Ṽ, E , T, L)
10 vx ← argminvi∈Ṽ Ti

11 Nx ← {vy ∈ Ṽ \ {vx} | exy ∈ E and Tx ≥ 2 · Lxy}
12 if Nx = ∅ then
13 Ck ← ({vx}, ∅)
14 return Ck

15

16 vy ← argminvi∈Nx
Lxi

17 Ck ← ({vx, vy}, ({vx, vy}, {vy, vx}))
18 τk ← 2 · Lxy

19 while Ṽ \ Vk ̸= ∅ do
20 (va, vb, vc)← vertices va ∈ Vk and vb ∈ Vk being adjacent in Ck

21 and vc ∈ Ṽ \ Vk with eac, ebc ∈ E minimizing
22 ∆τ := −Lab + Lac + Lcb

23 if τk +∆τ > Tx then
24 return Ck

25 Ck ← (Vk ∪ {vc}, (Ek ∪ {{va, vc}, {vc, vb}}) \ {va, vb})
26 τk ← τk +∆τ
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are computationally intractable for the MIP models proposed in Section 5.6. Some
example solutions for large size instances produced by MCV are shown in Figure 5.3.

From a theoretical point of view, it is interesting to study the worst-case per-
formance of MCV. Although the following lemma follows from LCCP not being in
APX, the following proof is constructive as it describes a class of concrete example
instances.

Lemma 16. Algorithm 11 for LCCP has no constant approximation ratio.

Proof. Consider the metric LCCP instance on the complete graph G = (V, E) with
|V | = n = 2k2 vertices. Let us denote V1 := {v1, . . . , vk} and V2 := V \ V1. For
each vi ∈ V1, let Ti = 2k, and for each vi ∈ V2, let Ti = 2k2 − k. Additionally,
let Lij = 2 for each edge in eij ∈ V1 × V1, and let Lij = 1 otherwise. An optimal
solution consists of the two cycles: One containing all vertices in V1 and the other
containing all vertices in V2. In both cycles, the vertices are ordered according to
their indices. However, the MCV heuristic produces a solution with k cycles, each
featuring one vertex from V1 and 2k − 1 vertices from V2. Hence, Algorithm 11 for
LCCP does not admit a constant approximation ratio.

5.6. Two MIP Models for LCCP

In this section, we present two MIP models for LCCP, which are inspired by two
formulations for TSP. For their definition, we consider the induced directed graph
G = (V,A), whose arc set contains the two directed arcs aij , aji ∈ A for each edge
eij ∈ E . Both arcs are assigned the same weight as the corresponding edge. Before
discussing the differences between the two models, we first describe the variables
and constraints they have in common.

First, for each vertex vi ∈ V , we introduce a binary variable yi indicating whether
it forms a singleton or not. In addition, for each potential proper feasible cycle Ck,
we introduce a binary variable uk with k ∈ K := {1, . . . , ⌊n2 ⌋} indicating whether
it contains any vertices or not. Next, there is a nonnegative continuous variable τk
representing the length of Ck. Further, for each vertex vi ∈ V and each potential
proper cycle Ck, we introduce a binary variable zki indicating whether vi ∈ Vk or
not and analogously for each arc aij ∈ A a binary variable xkij indicating whether
aij ∈ Ek or not.

The objective function (5.1) aims at minimizing the total number of cycles, i.e.,
the sum of singletons and proper cycles. Constraints (5.2) ensure that each vertex
either forms a singleton or is assigned to proper cycle. If a vertex vi is assigned to
proper cycle Ck, then (5.3) accounts for that and vi has to have an outgoing and
an ingoing arc, which is ensured by constraints (5.4) and (5.5), respectively. Next,
constraints (5.6) keep track of the cycle lengths, while constraints (5.7) ensure that
the critical weight values of all vertices are respected. Here, Mk denotes the k-th
biggest critical weight among all vertices.
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min
∑︂
vi∈V

yi +
∑︂
k∈K

uk (5.1)

s.t. yi +
∑︂
k∈K

zki = 1 ∀vi ∈ V (5.2)

zki ≤ uk ∀vi ∈ V , ∀k ∈ K (5.3)∑︂
aij∈N+(vi)

xkij = zki ∀vi ∈ V , ∀k ∈ K (5.4)

∑︂
aji∈N−(vi)

xkji = zki ∀vi ∈ V , ∀k ∈ K (5.5)

∑︂
aij∈A

Lijx
k
ij = τk ∀k ∈ K (5.6)

Ti + (Mk − Ti)(1− zki ) ≥ τk ∀vi ∈ V , ∀k ∈ K (5.7)
uk ∈ {0, 1} ∀k ∈ K (5.8)
yi ∈ {0, 1} ∀vi ∈ V (5.9)

zki ∈ {0, 1} ∀vi ∈ V , ∀k ∈ K (5.10)

xkij ∈ {0, 1} ∀aij ∈ A, ∀k ∈ K (5.11)

τk ∈ R≥0 ∀k ∈ K (5.12)

The formulation above ensures that each vertex is contained in exactly one cycle
and that all critical weight conditions are satisfied. Nevertheless, as it often occurs
when designing MIP formulations for problems related to TSP, we have to take care
of possible subtours. Hence, we extend this basic formulation in two different ways:
One follows the idea of Miller, Tucker, and Zemlin of assigning an order to the
vertices in order to prohibit subtours, which has first been introduced in [82]. The
second one uses a novel and modified version of the well-known subtour elimination
constraints.

5.6.1. Subtour Elimination Constraints

Subtour elimination constraints for TSP ensure that between any two nonempty sets
of vertices there are at least two arcs connecting them. However, in contrast to TSP,
we do not know in advance which vertices form a common cycle in LCCP. Thus,
we cannot directly apply the classic subtour elimination constraints and therefore
introduce constraints

∑︂
vi,vj∈S1:
aij∈A

xkij +
∑︂

vi,vj∈S2:
aij∈A

xkij ≤ |S1|+ |S2| − 2 ∀S1, S2 ⊂ V, S1, S2 ̸= ∅ (5.13)

S1 ∩ S2 = ∅, ∀k ∈ K

141



5. Monitoring Transport Infrastructure

instead. Assume that a subset of the vertices assigned to the set representing Vk in
the basic MIP formulation (5.1)–(5.12) forms two proper cycles C1

k and C2
k . In that

case, constraint (5.13) with S1 = V1k and S2 = V2k is violated, since∑︂
vi,vj∈C1

k :
aij∈A

xkij +
∑︂

vi,vj∈C2
k :

aij∈A

xkij = |V1k |+ |V2k | = |S1|+ |S2|.

Conversely, if the vertices form one proper cycle, no sets S1 and S2 exist such that
the corresponding constraint is violated. Hence, the MIP consisting of (5.1)–(5.12)
and constraints (5.13), which we call SEC in the following, models LCCP. Although
there can be exponentially many subtour elimination constraints, a potential way to
algorithmically incorporate them is described in Subsection 5.7.3.

5.6.2. Miller–Tucker–Zemlin Formulation

An alternative way to avoid subtours in TSP is the Miller–Tucker–Zemlin (MTZ)
formulation [112]. Here, each vertex is assigned a positive weight while the starting
vertex has value zero. For each pair of consecutive vertices in a tour, the weights
must increase except for the last and the starting vertex. Again, a straightforward
use for LCCP is not possible, since we cannot fix the starting vertices for the cycles
in advance. Thus, for each k ∈ K and each vertex vi ∈ V we introduce additional
binary variables ski ∈ {0, 1} indicating whether vi is the starting vertex of cycle Ck

or not. Weight variables wk
i ∈ Z≥0 together with constraints

∑︂
i∈V

ski = uk ∀k ∈ K (5.14)

ski ≤ zki ∀vi ∈ V , ∀k ∈ K (5.15)∑︂
vi∈V

zki − uk ≥ wk
i ∀vi ∈ V , ∀k ∈ K (5.16)

wk
i − wk

j + |V | · (xkij − skj ) ≤ |V | − 1 ∀aij ∈ A, ∀k ∈ K (5.17)

ski ∈ {0, 1} ∀vi ∈ V , ∀k ∈ K (5.18)

wk
i ∈ Z≥0 ∀vi ∈ V , ∀k ∈ K. (5.19)

then model the idea explained above applied to LCCP. Constraints (5.14) deter-
mine a starting vertex for each cycle, which also has to be part of it due to con-
straint (5.15). Furthermore, the necessary weight values are bounded by (5.16)
for each set k ∈ K. Finally, constraints (5.17) are the Miller–Tucker–Zemlin con-
straints as explained above. Thus, the MIP model consisting of (5.1)–(5.12) together
with (5.14)–(5.19) is a model for LCCP and we denote it by MTZ in the following.
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5.6.3. Symmetry Breaking Inequalities

The solution space of the two MIP models is highly symmetric. Given a feasible
solution, all permutations of the proper cycle indices respecting constraints (5.7) are
also feasible. Assume w.l.o.g. that the vertices are ordered non-increasingly by their
critical weights. Then, inequalities

zki ≤
i−1∑︂
j=1

zk−1j ∀vi ∈ V , ∀k ∈ K \ {1} (5.20)

ensure that only the permutation with the cycles sorted non-decreasingly by the
minimum index of the contained vertices remains feasible.

5.6.4. Conflict Clique Inequalities

Let (V, E , T, L) be an LCCP instance and let Hc be its conflict c-hypergraph. Fur-
ther, let U ⊆ V with |U | = m be a hyperclique in Hc. From Corollary 9 we derive∑︂

vi∈U
zki ≤ c− 1 ∀k ∈ K (5.21)

as valid inequalities for LCCP. In addition, the size of each clique induces a lower
bound on the size of an optimal solution by Corollary 10. Thus,∑︂

vi∈V
yi +

∑︂
k∈K

uk ≥ ⌈
m

c− 1
⌉ (5.22)

is a valid inequality, too. The following lemma demonstrates, that none of the
conflict hypergraphs is redundant w.r.t. conflict clique constraints.

Lemma 17. Let c ∈ N with c ≥ 2. There exists an LCCP instance (V, E , T, L) and
a feasible solution for the LP-relaxation of the corresponding MIP models, which is
cut off by conflict clique constraints that can only be derived from the conflict c-
hypergraph. Further, the lower bound induced by the size of a maximum hyperclique
of this c-hypergraph is the only tight one, i.e., it is the only one equal to the size of
an optimal solution.

Proof. Consider the LCCP instance featuring the complete graph on 2c− 1 vertices
where Ti = 2c − 1 for each vertex vi ∈ V and Lij = 2 for each edge eij ∈ E . For
each subset S ⊆ V with |S| < c, there exist a feasible cycle, e.g., the cycle induced
by any permutation of the vertices in S and the corresponding connecting edges.
Hence, all conflict d-hypergraphs with d < c are empty, i.e., they do not contain any
hyperedge. On the other hand, if |S| ≥ c, there does not exist any feasible cycle and
all conflict d-hypergraphs with d ≥ c are complete.

A feasible solution for the LP-relaxations of the two MIP models is given by
uk = 1

2 , z
k
j = 1

2 , x
k
ij =

1
2 for all eij with j = i+1 together with e2c−1,1, and τk = 2c−1
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for k ∈ {1, 2}, while all remaining variables are zero. For model MTZ we additionally
have s11 = s21 =

1
2 . Since the conflict d-hypergraphs with d ≥ c are complete, V is the

maximum hyperclique in each of them. Therefore, the corresponding conflict clique
constraints (5.21) for k ∈ {1, 2}, i.e.,∑︂

vi∈V
zki =

1

2
|V| = c− 1

2
≤ d− 1,

are violated if and only if d = c. Furthermore, the lower bound (5.22) on the size of
a smallest cycle partition is given by

⌈2c− 1

c− 1
⌉ ≥ 2c− 1

c− 1
>

2c− 2

c− 1
= 2

for the conflict c-hypergraph, while for d > c we have

⌈2c− 1

d− 1
⌉ ≤ ⌈2c− 1

c
⌉ = ⌈2− 1

c
⌉ = 2.

Since an optimal cycle partition consists of three cycles, e.g., any cycle induced by
the vertex sets V1 := {v1, . . . , vc−1} and V2 := {vc, . . . , v2c−2}, and the singleton
V3 := {v2c−1}, we know that the bound for d = c is tight.

5.7. Computational Experiments

In this section, we describe, present, and analyze the computational experiments,
which we conducted in order to test the MCV heuristic and both MIP approaches.
Furthermore, we ran LCCP on publicly available CR-UAV instances [39, 40] and
discuss a possible integration of it into existing CR-UAV algorithms.

5.7.1. Computational Setup

We ran all of our experiments on a cluster of machines composed of Intel Xeon Gold
5122 @ 3.60GHz CPUs with 96GB of RAM. All algorithms were implemented in
Python and we used the corresponding interface of the LP-based branch-and-bound
solver Gurobi v9.0 [68] with default parameters and a time limit of 6 hours.

5.7.2. Instances

For our computational experiments, we generated test instances based on the 28
instances from the TSPLIB and 14 instances from the ATSPLIB with 100 or fewer
vertices [136, 135]. The original ATSPLIB instances are defined on a directed graph
and the corresponding arc weights are given using an asymmetric matrix. To create
our LCCP instances, we chose the weights in the upper triangular part.

Furthermore, let τ∗ denote the length of an optimal tour for the corresponding
TSP or ATSP instance. We created two test sets based on these instances. For the
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first test set, we assigned each vertex a random integer from the interval [ τ
∗

6 ,
τ∗

2 ] as
critical weight. For the second test set, we assigned an integer from [ τ

∗

8 ,
τ∗

4 ].

5.7.3. Algorithmic Setup

First of all, we removed all unusable edges using Algorithm 9.
Next, we computed a feasible solution using the MCV heuristic. Thereby, we

simultaneously derived an upper bound on the necessary size of the set K, which
we use in our MIP models. In particular, we applied the refinement step of MCV,
where we used the exact MIP formulation of Dantzig, Fulkerson and Johnson [29]
for solving the induced TSP to reduce the cycle length. Moreover, we also used the
proposed postprocessing routine.

Afterward, we determined the complete conflict 2-hypergraph using Algorithm 10
and determined all maximal cliques using the algorithm of Cazals and Karande [22].
The corresponding constraints (5.21), the lower bound (5.22), and the symmetry
breaking constraints (5.20) were added to both MIP models.

Further, we determined a subset ẼH3 ⊆ EH3 of the hyperedges of H3 as follows. For
each vertex triple vi, vj , vl ∈ V , we checked whether the sum of the shortest paths
between the three vertices is larger than min{Ti, Tj , Tl}. Additionally, we added all
the edges obtained according to Remark 2. All mentioned calculations up to this
point were performed in less than 2 minutes for each test instance.

While the corresponding variables and constraints for the MTZ model were added
before the start of the solving process, the subtour elimination constraints (5.13) for
SEC were separated during the solving process. Let C = {C1, . . . , Cm} be a solution
for the current formulation. If Ck contains subtours, we add the corresponding SEC
constraint (5.13) for every pair of distinct subtours and each k ∈ K.

Moreover, we also heuristically separated constraints from the cliques of our sub-
set of hyperedges of H3 for both models during the solving process. Therefore,
after solving the LP relaxation of each branch-and-bound node, we determined hy-
percliques in H̃3 := (V, ẼH3 ) using a greedy routine: Let z̃ denote the vector of
z-variable values in the current LP-solution, consider the subgraph induced by the
vertex set {vi ∈ V | z̃ki > 0} for some k ∈ K. Using a greedy routine on the hyper-
edges w.r.t. z̃, we compute a maximal clique in this subgraph. Afterward, we extend
this clique to a maximal clique U in H̃3 by adding suitable vertices with z̃ki = 0. The
corresponding constraint (5.21) is then added to the model and cuts off the current
LP-solution if

∑︁
vi∈U z̃ki > 2.

5.7.4. Computational Results

In the following analysis, we call instances with less than 29 vertices small, less than
59 vertices medium-sized, and all others are referred to as large. While all small
instances were solved within a few seconds, all large instances ran into the time
limit. Thus, we focus on the results for medium-sized instances in the following,
which are shown in Tables 5.1 to 5.4. The detailed results for all instances can be
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Table 5.1.: Results for TSPLIB with critical weights from [ τ
∗

8 ,
τ∗

4 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

bayg29 58.6 10 7 8 8 42 8 8 23
bays29 58.1 8 6 8 8 36 8 8 21

dantzig42 56.1 9 7 9 9 1552 9 9 575
swiss42 52.4 9 7 9 8 TL 9 9 284
att48 53.6 9 6 8 8 4563 8 8 2893
gr48 48.0 9 5 9 8 TL 9 8 TL
hk48 48.6 10 6 9 8 TL 9 9 14417
eil51 40.9 9 5 9 8 TL 9 9 19242

berlin52 38.8 9 6 9 9 2956 9 9 2260
brazil58 40.9 9 5 8 7 TL 9 7 TL

Table 5.2.: Results for TSPLIB with critical weights from [ τ
∗

6 ,
τ∗

2 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

bayg29 25.4 6 4 5 5 30 5 5 13
bays29 27.6 6 5 6 6 32 6 6 14

dantzig42 28.7 7 4 6 6 20686 6 6 15081
swiss42 18.6 7 4 6 6 13111 6 6 6833
att48 26.5 8 5 6 5 TL 6 6 4939
gr48 18.5 7 4 7 5 TL 7 6 TL
hk48 25.0 7 4 6 6 18843 6 6 3656
eil51 10.0 7 3 7 5 TL 7 5 TL

berlin52 19.9 7 4 7 6 TL 7 6 TL
brazil58 14.7 6 3 6 4 TL 6 5 TL

found in Tables C.1 to C.4 in Appendix C.1. The instance names in the first columns
incorporate the number of vertices, i.e., instance bayg29 features 29 vertices. For
ATSPLIB instances with the “ftv”-prefix, we must add one vertex, e.g., ftv33 has 34
vertices. Instance kro124p is an outlier w.r.t. this nomenclature and features 100
vertices. In the second column, the percentage of edges that were removed during
preprocessing is shown. Furthermore, while the value of the solution found by the
MCV heuristic is stated in column UB (MCV heur), the lower bound obtained from
the size of a maximum clique in the conflict graph H2 is shown in column LB (H2-
clique). For both MIP approaches, the upper and the lower bound at the end of the
solving processes are stated, which was either reached when the problem was solved
or when the time limit was hit, which is indicated by TL in the time column.

The results for the TSPLIB-based test sets can be found in Table 5.1 for critical
weights in [ τ

∗

8 ,
τ∗

4 ] and Table 5.2 for critical weights in [ τ
∗

6 ,
τ∗

2 ]. For the first test set,
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Table 5.3.: Results ATSPLIB with critical weights from [ τ
∗

8 ,
τ∗

4 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

ftv33 57.9 9 7 8 8 120 8 8 137
ftv35 53.3 9 6 8 8 205 8 8 149
ftv38 48.2 10 6 9 8 TL 9 9 2614
p43 25.0 4 2 4 3 TL 3 3 1398

ftv44 45.6 9 6 9 8 TL 9 9 3297
ftv47 40.6 11 5 11 8 TL 11 8 TL
ry48p 40.2 9 5 9 8 TL 9 8 TL
ft53 10.7 11 3 11 6 TL 11 6 TL
ftv55 40.3 10 5 10 7 TL 10 7 TL

we can solve all but two medium-sized instances. Thereby, model SEC can solve
three more instances than model MTZ and is faster on all medium-sized instances.
The results of the second test set are similar: SEC can solve one more instance than
MTZ and is faster on all instances. However, compared to the first test set, it takes
longer to solve the instances, and four were not solved at all. This is probably due to
the larger critical weights, which allow for a higher degree of freedom when creating
feasible cycles.

The results for the ATSPLIB-based test sets can be found in Table 5.3 for critical
weights in [ τ

∗

8 ,
τ∗

4 ] and Table 5.4 for critical weights in [ τ
∗

6 ,
τ∗

2 ]. The results in
Table 5.3 are similar to the ones for the corresponding metric test instance set in
Table 5.1. We can solve instances with up to 44 vertices using model SEC, while
model MTZ could prove optimality only for two medium-sized instances. However,
for critical weights in [ τ

∗

6 ,
τ∗

2 ], model SEC solves only one instance, and model MTZ
solved two instances, see Table 5.4. Again, due to bigger critical weights, there is a
higher degree of freedom when it comes to the creation of feasible cycles. Thus, these
critical weights combined with general edge weights apparently make the problem
more challenging.

Since it provided high-quality solutions and ran for less than one second on all
instances considered so far, we wanted to analyze the performance of the MCV
heuristic on larger instances in more depth. Therefore, we created additional test
instances, which we derived by applying the same procedure as described above to
all TSPLIB and ATSPLIB instances with more than 100 and less than or equal to
1000 vertices. Again, the instance names incorporate the number of vertices in the
same way as stated above.

We experimented with two variants of MCV: The first on is equivalent to the
variant described above. We again applied the exact TSP algorithm and tried to
decrease the length of each cycle after its creation - this version we denote by MCV
Enhanced. For the second variant, we omit this step and denote this approach by
MCV Basic. The results can be found in Tables C.5 to C.8 in Appendix C.1.
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Table 5.4.: Results ATSPLIB with critical weights from [ τ
∗

6 ,
τ∗

2 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

ftv33 23.9 7 4 7 6 TL 7 6 TL
ftv35 20.0 6 3 5 5 14852 6 5 TL
ftv38 11.7 7 3 7 5 TL 6 5 TL
p43 22.0 3 2 3 3 1 3 3 1

ftv44 11.6 8 3 8 5 TL 8 6 TL
ftv47 14.8 7 3 7 5 TL 7 6 TL
ry48p 14.0 7 3 7 5 TL 7 5 TL
ft53 0.6 7 2 7 4 TL 7 4 TL
ftv55 11.8 8 4 8 5 TL 8 5 TL

Both heuristic variants perform well, as the size of nearly all obtained solutions
features around ten cycles. Thereby, MCV Enhanced has a slight advantage and
often reduces the size of the solutions by one or two cycles compared to MCV Basic.
However, we observe that the run times of both approaches increase with the size
of the instances. Thereby, the increase for MCV Enhanced is stronger and goes
up to around nearly 1000 seconds. The reason is that the TSP instances solved in
between are becoming more challenging and take up more time. In contrast, the
maximum run time of MCV Basic is about 80 seconds. Thus, the results obtained
here demonstrate that MCV is, in general, well suited for finding solutions of good
quality in short amounts of time, even for large instances.

5.7.5. Additional Experiments Regarding CR-UAV

As discussed in Section 5.2, LCCP is closely related to CR-UAV as each feasible
solution for LCCP represents a feasible solution for CR-UAV. However, the reverse
statement does not hold, which directly follows from the following lemma.

Lemma 18. The ratio of the optimal solution values for corresponding LCCP and
CR-UAV instances is not bounded by a constant.

Proof. Consider the complete graph G = (V, E) with |V| = n + 1 vertices. While
we define T1 = 2 for v1 ∈ V , we set Ti = 2n for all other vertices vi ∈ V \ {v1}.
Furthermore, let L1j = 1 for each edge e1j ∈ E that is incident to v1, and let Lij = 2n
hold for all other edges.

An optimal solution for the corresponding CR-UAV instance consists of one cyclic
route, e.g., (v1, e12, v2, e12, v1, e13, v3, e13, v1, . . . , v1, e1n+1, vn+1, e1n+1, v1). On the
other hand, an optimal solution for the corresponding LCCP instance consists of n
cycles, e.g., the cycle connecting v1 and v2 and all other vertices being singletons.

Moreover, we ran the SEC model for LCCP on the 300 test instances presented
by Drucker et al. [40], which are publicly available at [39]. The underlying graphs
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Satisfiable+ Satisfiable Not Satisfiable No Statement Possible
103 76 20 101

Table 5.5.: Results of the experiments comparing the optimal solution values for
LCCP with the fixed number of UAVs used in the corresponding satisfi-
ability problems from [39]. Satisfiable+ denotes the number of instances
where LCCP determined a solution with fewer UAVs, while Satisfiable
relates to instances where their number is equal. For 20 instances, we
show that they are not satisfiable.

feature up to 7 vertices, and all of them were solved in less than 0.1 seconds in the
root nodes of the branch-and-bound trees. Hence, since LCCP yields an upper bound
on the number of UAVs, it is well suited to be applied within solution algorithms
for CR-UAV as it comes with no computational expense regarding run time.

Motivated by Lemma 18, we investigated the quality of our solutions, too. The
instances from [39] feature a fixed parameter representing the number of UAVs since
they correspond to satisfiability problems solved within the solution approach of
Drucker et al. [40], see Section 5.2. Hence, we compared the optimal LCCP solution
values with this parameter, which was either one, two, or three. The results of these
experiments are summarized in Table 5.5.

For 103 instances, we found a feasible solution implying that even fewer UAVs are
necessary, while for 76 of them, we obtained optimal solution values equal to the
parameter. In other words, for about 60% of the instances, we can show that the
instances are satisfiable. On the other hand, for 20 instances (6%), where only one
UAV is available, we can show that they are not satisfiable because the correspond-
ing optimal LCCP solution consists of singletons only. For all other instances, no
statement can be made. Thus, comparing this performance with the average run
times of 26.8 seconds presented in [40] is another argument for applying our solution
approaches for LCCP within CR-UAV algorithms.

5.8. Conclusion and Future Research

Chapter 5 starts with a discussion on the idea of using uncrewed aerial vehicles
(UAVs) to monitor the gas transport infrastructure. Thereby, the necessity of reg-
ularly checking on the network elements is motivated using the example of pipeline
leakage. In this context, we introduce and discuss the Length-Constrained Cycle
Partition Problem (LCCP), a routing problem regarding these UAVs in Section 5.1,
representing a new generalization of the Traveling Salesperson Problem (TSP).

As its name indicates, LCCP is about partitioning an undirected graph into vertex-
disjoint cycles. These cycles represent flying routes for the UAVs, and we require
them to be vertex-disjoint to avoid interferences. Further, each vertex, which corre-
sponds to an area or an object that shall be monitored, is assigned a critical weight
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value, which represents the maximum duration for which it can be left unattended
after its last scan. We require that the length of each cycle is not greater than a
smallest critical weight value of a vertex contained in it. The goal of LCCP is to
find a feasible partition with the smallest number of cycles, i.e., the smallest number
of UAVs necessary to monitor all areas.

Besides the Most-Critical-Vertex-Based Heuristic (MCV) heuristic introduced in
Section 5.5, which yields convincing results in our computational experiments even
for large instances, we present two exact MIP formulations for LCCP in Section 5.6.
While the first one incorporates an adaption of the MTZ model for TSP, the sec-
ond one is based on a generalization of subtour elimination constraints. Symmetry-
breaking constraints are introduced to reduce the number of feasible solutions. More-
over, we introduce the notion of conflict hypergraphs for LCCP in Section 5.4. Here,
a hyperedge represents a set of vertices that cannot be contained in a common cycle.
Based on the cliques of these graphs, we derive lower bounds and another class of
valid inequalities for LCCP. Finally, we can determine optimal solutions for TSPLIB-
and ATSPLIB-based problem instances with up to fifty vertices, see Section 5.7.

There are several directions for future research. First of all, it remains an open
question whether there exists an algorithm with constant approximation ratio for
metric LCCP or not. Currently, we do not dare to state a conjecture here as both
options seem equally likely to us. However, despite its convincing performance in
our computational experiments, the fact that the MCV heuristic does not admit
a constant approximation ratio can be seen as an indicator for the need for more
elaborate algorithmic ideas. We believe that straightforward adaptions of classical
TSP strategies will not be successful in this context.

From a computational perspective, we are currently working on identifying ad-
ditional valid inequalities and are developing a problem-specific branching strategy
to solve instances with even more vertices. In this context, we also aim to exploit
the relation of LCCP’s conflict hypergraphs to the corresponding vertex coloring
problems, which is described in Section 5.4.1, to derive stronger lower bounds.

Finally, we are going to pay more attention to the Cyclic Routing of UAVs Prob-
lem (CR-UAV), which we described in Section 5.2. In this natural generalization of
LCCP, the flying routes of the UAVs have to be cyclic, too. However, they are allowed
to intersect, and the critical weight conditions can be satisfied jointly by specifying
coordinated flying schedules. Lemma 18 demonstrated, there is quite some potential
regarding the minimum number of necessary UAVs for some instance classes when
considering CR-UAV instead of LCCP. However, CR-UAV is very challenging and
all instances considered in the literature so far feature less than ten vertices. Fur-
ther, the resulting solutions and corresponding flight schedules could become quite
complex, which may be a disadvantage in practice compared to LCCP. Therefore,
we will concentrate on heuristic algorithms, which produce solutions of good qual-
ity while maintaining a simple structure. In particular, we aim at establishing a
middle ground here: While we insist that the UAVs continue to fly cycles, like in
LCCP, their routes are allowed to intersect and the critical weight conditions can
be satisfied jointly, as in CR-UAV.

150



6. General Conclusion

In this thesis, we discussed four real-world problems arising in the area of gas trans-
port networks. They originate from different domains, i.e., optimizing transient net-
work control, estimating a network’s capacity by identifying worst-case transport
scenarios, and efficiently monitoring the transport infrastructure using uncrewed
aerial vehicles (UAVs). After defining and analyzing these problems, we presented
modeling and solution approaches based on mathematical programming. We sum-
marize our work as follows:

▷ We contributed to the development of the first decision support system for the
transient control of natural gas transport networks: KOMPASS. In this con-
text, we introduced a tri-level MIP model to determine important global con-
trol decisions, e.g., how to route the flow and where and when to compress the
gas. To this end, we applied the modeling concept of network stations to ap-
proximate the technical control capabilities. A sequential linear programming
inspired post-processing routine is run to derive physically accurate solutions
w.r.t. the transient gas flow in pipelines. Computational experiments based on
real-world data confirm the validity of our approach and its potential for the
further development of KOMPASS towards a fully automated decision-making
system. (Chapter 3)

▷ We adapted the aforementioned algorithmic approach to handle control prob-
lems regarding hydrogen networks and proposed a method for converting input
data from natural gas transport into corresponding transport scenarios for hy-
drogen. Based on this, we conducted computational experiments to investigate
whether the natural gas infrastructure can be repurposed for hydrogen trans-
port and if and how this changes the network control. We find that the installed
turbo compressors must be replaced with (multiple, parallel) special hydrogen
compressors to transport energy-equivalent amounts of hydrogen. Further, due
to the lower energy density of hydrogen, the linepack w.r.t. energy decreases
significantly. This results in more technical control measures as the hydrogen
must be stored in or retrieved from more remote parts of the network. Besides
an average increase of 440% in compression energy compared to natural gas
transport, we observe that supply and demand must be balanced in shorter
time intervals than the currently established twenty-four hours to ensure a fea-
sible technical network control. Hence, repurposing the infrastructure seems
possible if the mentioned criteria are satisfied. However, network control be-
comes more complicated, which would make a decision support system such
as KOMPASS even more valuable. (Chapter 3)
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▷ We discussed the problem of identifying severe transport scenarios, which is
a crucial task when determining the technical capacity of a gas network. In
this context, we proposed two new severity measures: The minimum transport
moment and the potential transport moment. To identify corresponding worst-
case scenarios, we introduced the Maximum Transportation Problem (MaxTP)
and the Maximum Potential Transport Moment Problem (MaxPTM). Both
problems were modeled as linear bilevel programs with interdicting objective
functions where the leader selects a transport scenario that maximizes the
transport effort of the follower. In MaxTP, the latter is equivalent to the
optimal solution value of the Transportation Problem induced by the corre-
sponding supplies and demands, while a linear potential-based flow formulation
is applied in MaxPTM. MaxPTM can be reformulated as MIP. For MaxTP,
we constructed a solution-equivalent instance with a tripartite, acyclic network
structure, derived bounds for the variables of the corresponding KKT reformu-
lation, and applied the big-M technique to derive a MIP model. A case study
on the gaslib-582 instance from the GasLib demonstrates that our severity
measures and the corresponding algorithmic methods should be incorporated
into existing routines for determining test sets of severe transport scenarios in
order to improve their coverage. (Chapter 4)

▷ We discussed the usage of UAVs to monitor the transport infrastructure as well
as their routing, which motivated the introduction of the Length-Constrained
Cycle Partition Problem (LCCP). Its goal is to find a smallest cycle par-
tition that satisfies additional vertex-induced length requirements. Besides
our Most-Critical-Vertex-Based Heuristic, which yields convincing results in
TSPLIB- and ATSPLIB-based computational experiments for large instances,
we introduced two exact MIP formulations. While the first one incorporates
an adaption of the MTZ model for TSP, the second one is based on a gen-
eralization of subtour elimination constraints. Combining them with valid
inequalities and lower bounds derived from cliques of conflict hypergraphs as
well as symmetry-breaking constraints, we determined optimal solutions for
problem instances with up to fifty vertices. This number is significantly larger
than the instance sizes that are currently tractable for similar, related opti-
mization problems, e.g., CR-UAV with less than ten vertices. (Chapter 5)

For more detailed discussions and outlooks on possible directions for future research
regarding the work presented in the three main chapters, we refer to Section 3.11,
Section 4.5, and Section 5.8, respectively.

In recent years, various compelling energy-related optimization problems have
been successfully solved by mathematical programming approaches. These complex
applications often stimulate research regarding new algorithmic approaches and un-
derlying combinatorial structures. At the same time, the technological and theo-
retical advancements in solving large-scale mathematical programs, especially LP
and MIP, constantly enable and motivate researchers to tackle novel or previously
intractable problems.
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We strongly believe that there will continue to be a fruitful synergy between
operations research in the area of gas transport networks and mathematical pro-
gramming, and we consider our results as another small piece of this puzzle. In this
spirit, we hope that our work will help to raise awareness for critical issues related
to gas transport networks and their impact on society, and demonstrate the power
of mathematical programming and its inherent beauty.
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A. Appendix to Chapter 3

A.1. Modeling Parameters and Weights

This section states the parameters and weights used in the different algorithmic
components of Algorithm 4 w.r.t. our computational experiments.

First, for the tri-level MIP model we considered a temporal granularity of 2 · 60
minutes and 11 · 120 minutes for all instances, i.e., we have k = 13 time steps
covering twenty-four hours. The cost parameters regarding the third level objective
were wa = 5 for all a ∈ Aar, and for each simple state s ∈ S an individual cost
ws ∈ {0, . . . , 200} for a change into it was selected according to the practitioners.
Note that the cost for both classes of slack variables is equal to 1, see Section 3.5.5
on the objective functions. Finally, as minimum threshold for the absolute velocity
used within the Momentum Equations (3.5), we applied vmin = 10−1ms .

Second, in the solution smoothing LP, which is described in Subsection 3.6.2, for
each network station Gi and each v ∈ V fn

i we used wsm-q
v = 13, wsm-q

i = |V fn
i |,

wsm-p
v = 1300 and wsm-p

i = 100 · |V fn
i | as objective function coefficients.

Third, for the IVAP, we used wsm-p = 104 and wsm-q = 103 as well as wsm-p
v = 10

and wsm-q
v = 1 for all v ∈ Vpi. Additionally, we set ε := 10−2ms , γ = 10, µ = 3, and

∆ = 100. Further, we decreased the threshold vmin to = 10−3ms .
Finally, we used ts = 8 in equation (3.61) to scale the initial supplies and demands

w.r.t. the four hydrogen test sets H2, H2-B, H2-P, and H2-BP. Thus, after linearly
scaling up the boundary values for the first twelve hours, for the last twelve hours
the supplies and demands were equal in terms of energy w.r.t. the original natural
gas input data. However, we note that the supplies and demands were additionally
balanced in test sets H2-B and H2-BP.
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A.2. Results for NG-TC

The following tables contain the detailed results of the computational experiments
for test set NG-TC, which are described and discussed in Section 3.10. The first
column contains the instance name. It consists of the virtual day and the time in
hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance with
the network state from 4AM on virtual day 2. The second column states the gap of
the MIP solve in % that was performed last. The third column states the runtime
of the complete Algorithm 4. While the fourth column denotes the total number of
conducted simple state changes in the final solution, the fifth column counts only
those for which a flow direction change was simultaneously performed in the same
network station and in the same time step. The sixth column states the amount of
used compression energy in MWh, which we calculated a posteriori using the exact
nonlinear power equation for turbo compressor units (P). Finally, while the seventh
column denotes the flow imbalance over the considered time horizon in kg, the last
two columns state the additional number of iterations of Algorithm 4 that had to
be performed as well as the number of added no-good cuts, respectively.

Instance Gap Time S S+F Energy Imbalance Iter NG

1-1200 0 153 0 0 491 937 587 0 0
1-1230 0 177 0 0 439 957 877 0 0
1-1300 0 156 0 0 468 1 150 775 0 0
1-1330 0 144 0 0 479 1 372 272 0 0
1-1400 0 195 0 0 506 1 450 230 0 0
1-1430 0 170 0 0 498 1 469 730 0 0
1-1500 0 198 0 0 433 1 637 187 0 0
1-1530 0 166 0 0 442 1 665 136 0 0
1-1600 0 162 0 0 442 1 787 531 0 0
1-1630 0 146 0 0 435 1 838 633 0 0
1-1700 0 133 0 0 430 1 828 104 0 0
1-1730 0 179 0 0 445 1 824 838 0 0
1-1800 0 181 0 0 453 1 757 738 0 0
1-1830 0 172 0 0 433 1 725 303 0 0
1-1900 0 226 0 0 453 1 640 375 0 0
1-1930 0 176 0 0 441 1 605 609 0 0
1-2000 0 171 0 0 441 1 490 590 0 0
1-2030 0 126 0 0 434 1 430 600 0 0
1-2100 0 224 0 0 444 1 314 478 0 0
1-2130 0 173 0 0 446 1 256 009 0 0
1-2200 0 252 0 0 451 1 113 943 0 0
1-2230 0 153 0 0 418 1 071 276 0 0
1-2300 0 165 0 0 433 963 572 0 0
1-2330 0 165 0 0 434 925 870 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

2-0000 0 200 0 0 436 865 785 0 0
2-0030 0 150 0 0 465 825 357 0 0
2-0100 0 141 0 0 407 747 585 0 0
2-0130 0 161 0 0 406 712 351 0 0
2-0200 0 149 0 0 413 647 573 0 0
2-0230 0 163 0 0 413 624 758 0 0
2-0300 0 127 0 0 397 529 154 0 0
2-0330 0 151 0 0 409 477 770 0 0
2-0400 0 225 0 0 406 370 497 0 0
2-0430 0 148 0 0 409 310 279 0 0
2-0500 0 131 0 0 396 156 607 0 0
2-0530 0 142 0 0 388 127 120 0 0
2-0600 0 169 0 0 392 84 815 0 0
2-0630 0 226 0 0 406 96 127 0 0
2-0700 0 175 0 0 393 198 562 0 0
2-0730 0 156 0 0 403 247 899 0 0
2-0800 0 168 0 0 415 353 511 0 0
2-0830 0 134 0 0 370 422 181 0 0
2-0900 0 170 0 0 364 462 583 0 0
2-0930 0 135 0 0 367 496 565 0 0
2-1000 0 131 0 0 358 664 575 0 0
2-1030 0 119 0 0 378 664 042 0 0
2-1100 0 121 0 0 380 644 885 0 0
2-1130 0 132 0 0 378 624 691 0 0
2-1200 0 127 0 0 351 651 113 0 0
2-1230 0 128 0 0 344 647 577 0 0
2-1300 0 143 0 0 344 700 762 0 0
2-1330 0 167 0 0 339 672 938 0 0
2-1400 0 142 0 0 340 704 869 0 0
2-1430 0 203 0 0 331 703 785 0 0
2-1500 0 203 0 0 315 735 565 0 0
2-1530 0 166 0 0 322 709 579 0 0
2-1600 0 160 0 0 316 680 715 0 0
2-1630 0 165 0 0 326 700 938 0 0
2-1700 0 170 0 0 327 738 743 0 0
2-1730 0 176 0 0 315 728 191 0 0
2-1800 0 157 0 0 310 464 387 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

2-1830 0 173 0 0 311 360 858 0 0
2-1900 0 177 0 0 299 235 634 0 0
2-1930 0 164 0 0 295 194 344 0 0
2-2000 19 21 796 1 1 295 141 549 0 0
2-2030 0 6322 1 1 292 117 106 0 0
2-2100 0 1712 1 1 288 26 774 0 0
2-2130 4 21 770 1 1 289 −15 695 0 0
2-2200 0 11 274 1 1 272 −108 674 0 0
2-2230 4 21 774 1 1 290 −152 307 0 0
2-2300 99 21 767 1 1 283 −291 601 0 0
2-2330 4 21 770 1 1 276 −328 056 0 0
3-0000 0 217 0 0 290 −409 889 0 0
3-0030 0 4645 1 1 292 −419 117 0 0
3-0100 0 208 0 0 281 −461 657 0 0
3-0130 0 2520 1 1 256 −478 710 0 0
3-0200 0 143 0 0 269 −520 195 0 0
3-0230 4 21 776 1 1 328 −534 862 0 0
3-0300 0 171 0 0 261 −533 922 0 0
3-0330 0 193 0 0 260 −534 444 0 0
3-0400 0 144 0 0 282 −536 085 0 0
3-0430 0 3792 1 1 259 −545 080 0 0
3-0500 0 157 0 0 258 −568 726 0 0
3-0530 0 154 0 0 243 −578 520 0 0
3-0600 0 199 0 0 280 −620 311 0 0
3-0630 0 181 0 0 255 −643 576 0 0
3-0700 0 162 0 0 254 −786 552 0 0
3-0730 0 164 0 0 263 −880 228 0 0
3-0800 0 175 0 0 270 −1 026 394 0 0
3-0830 0 176 0 0 270 −1 026 394 0 0
3-0900 0 174 0 0 261 −1 205 227 0 0
3-0930 0 141 0 0 269 −1 233 964 0 0
3-1000 0 145 0 0 257 −1 051 462 0 0
3-1030 0 179 0 0 267 −917 114 0 0
3-1100 0 168 0 0 284 −803 867 0 0
3-1130 0 168 0 0 227 −711 773 0 0
3-1200 0 149 0 0 215 −536 546 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

3-1230 0 172 0 0 223 −397 205 0 0
3-1300 0 145 0 0 222 −276 225 0 0
3-1330 0 149 0 0 222 −200 417 0 0
3-1400 0 169 0 0 217 −163 930 0 0
3-1430 0 145 0 0 214 −104 913 0 0
3-1500 0 165 0 0 218 −15 604 0 0
3-1530 0 155 0 0 230 29 308 0 0
3-1600 0 154 0 0 220 69 446 0 0
3-1630 0 188 0 0 225 73 285 0 0
3-1700 0 142 0 0 226 100 714 0 0
3-1730 0 171 0 0 221 145 056 0 0
3-1800 0 155 0 0 217 409 485 0 0
3-1830 0 142 0 0 206 549 527 0 0
3-1900 0 150 0 0 224 672 859 0 0
3-1930 0 153 0 0 212 739 446 0 0
3-2000 0 137 0 0 216 816 256 0 0
3-2030 0 146 0 0 276 892 373 0 0
3-2100 0 163 1 0 279 1 024 963 0 0
3-2130 0 165 1 1 267 1 078 579 0 0
3-2200 0 167 1 1 263 1 204 527 0 0
3-2230 0 160 1 0 262 1 286 348 0 0
3-2300 0 136 0 0 272 1 461 524 0 0
3-2330 0 148 0 0 246 1 511 868 0 0
4-0000 0 159 0 0 248 1 622 832 0 0
4-0030 0 124 0 0 248 1 606 114 0 0
4-0100 0 135 0 0 251 1 590 899 0 0
4-0130 0 122 0 0 254 1 561 612 0 0
4-0200 0 168 0 0 216 1 527 549 0 0
4-0230 0 146 0 0 208 1 474 785 0 0
4-0300 0 146 0 0 260 1 429 830 0 0
4-0330 0 127 0 0 222 1 402 420 0 0
4-0400 0 136 0 0 220 1 395 894 0 0
4-0430 0 141 0 0 229 1 396 321 0 0
4-0500 0 140 0 0 218 1 389 218 0 0
4-0530 0 180 0 0 227 1 326 282 0 0
4-0600 0 116 0 0 238 1 254 206 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

4-0630 0 147 0 0 225 1 267 305 0 0
4-0700 0 140 0 0 233 1 448 212 0 0
4-0730 0 150 0 0 224 1 504 836 0 0
4-0800 0 171 0 0 222 1 561 978 1 0
4-0830 0 136 0 0 219 1 499 749 0 0
4-0900 0 186 0 0 218 1 304 440 1 0
4-0930 0 128 0 0 262 1 085 166 0 0
4-1000 0 192 0 0 263 588 151 0 0
4-1030 0 182 0 0 259 306 108 0 0
4-1100 0 158 0 0 268 −42 758 0 0
4-1130 0 179 0 0 264 −283 713 0 0
4-1200 0 194 0 0 264 −686 161 0 0
4-1230 0 178 0 0 299 −991 019 0 0
4-1300 0 200 0 0 278 −1 361 054 0 0
4-1330 0 173 0 0 291 −1 574 419 0 0
4-1400 0 174 0 0 310 −1 792 112 0 0
4-1430 0 191 0 0 302 −1 941 797 0 0
4-1500 0 229 0 0 310 −2 156 480 0 0
4-1530 0 180 0 0 306 −2 224 473 0 0
4-1600 0 157 0 0 332 −2 327 456 0 0
4-1630 0 171 0 0 321 −2 387 498 0 0
4-1700 0 196 0 0 348 −2 548 052 0 0
4-1730 0 189 0 0 345 −2 694 243 0 0
4-1800 0 188 0 0 369 −2 824 433 0 0
4-1830 0 187 0 0 372 −2 893 266 0 0
4-1900 0 218 0 0 377 −2 973 482 0 0
4-1930 0 200 0 0 390 −3 008 679 0 0
4-2000 0 203 0 0 401 −3 027 965 0 0
4-2030 0 206 0 0 390 −3 046 369 0 0
4-2100 0 210 0 0 416 −3 048 737 0 0
4-2130 0 240 0 0 358 −3 015 735 0 0
4-2200 0 189 0 0 433 −3 020 750 0 0
4-2230 0 247 0 0 430 −2 992 784 0 0
4-2300 0 228 0 0 437 −2 959 635 0 0
4-2330 0 197 0 0 479 −2 957 380 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

6-0000 0 6943 1 0 394 −412 131 0 0
6-0030 0 214 0 0 397 −380 339 0 0
6-0100 0 317 0 0 407 −380 498 0 0
6-0130 0 5313 1 0 423 −293 519 0 0
6-0200 0 3560 1 1 387 −293 744 0 0
6-0230 0 557 0 0 394 −13 376 0 0
6-0300 0 212 0 0 409 −13 376 0 0
6-0330 0 1676 1 0 414 191 599 0 0
6-0400 0 11 353 1 0 418 191 127 0 0
6-0430 0 543 0 0 394 148 350 0 0
6-0500 0 284 0 0 381 148 495 0 0
6-0530 0 9988 1 0 404 189 638 1 0
6-0600 0 14 966 1 1 374 189 611 0 0
6-0630 0 200 0 0 355 152 315 0 0
6-0700 0 264 0 0 379 218 470 0 0
6-0730 0 984 1 0 368 396 488 0 0
6-0800 0 810 1 0 386 397 666 0 0
6-0830 0 211 0 0 371 536 175 0 0
6-0900 0 273 0 0 410 535 759 0 0
6-0930 0 783 1 1 403 734 803 0 0
6-1000 0 990 1 0 389 737 781 0 0
6-1030 0 205 0 0 395 748 308 0 0
6-1100 0 185 0 0 389 748 169 0 0
6-1130 0 946 1 0 408 694 453 1 0
6-1200 100 43 737 1 0 569 623 878 2 0
6-1230 100 86 460 1 0 526 581 705 4 0
6-1300 100 86 834 1 1 499 531 697 4 0
6-1330 0 3006 0 0 466 467 111 4 0
6-1400 0 525 0 0 490 361 884 2 0
6-1430 0 5209 0 0 479 297 829 4 1
6-1500 0 1145 0 0 388 361 819 2 0
6-1530 0 342 0 0 389 523 938 0 0
6-1600 0 271 0 0 404 793 081 0 0
6-1630 0 288 0 0 403 964 266 0 0
6-1700 0 264 0 0 435 1 169 320 0 0
6-1730 0 332 0 0 423 1 290 086 0 0
6-1800 0 294 0 0 395 1 492 078 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

6-1830 0 879 1 0 400 1 568 530 0 0
6-1900 0 600 1 0 408 1 662 643 0 0
6-1930 0 735 1 0 403 1 657 723 0 0
6-2000 0 4960 2 0 415 1 639 946 2 0
6-2030 0 966 1 1 413 1 676 963 0 0
6-2100 0 781 1 1 402 1 732 251 0 0
6-2130 0 1078 1 1 406 1 798 113 1 0
6-2200 0 2083 1 0 415 1 906 519 0 0
6-2230 0 1726 1 1 423 1 944 444 1 0
6-2300 0 20 571 1 1 424 1 992 298 7 1
6-2330 0 204 0 0 409 1 992 582 0 0
7-0000 0 221 0 0 428 1 959 515 0 0
7-0030 0 223 0 0 443 1 903 422 0 0
7-0100 0 245 0 0 429 1 774 190 0 0
7-0130 0 227 0 0 442 1 696 005 0 0
7-0200 0 214 0 0 444 1 586 070 0 0
7-0230 0 257 0 0 442 1 526 365 0 0
7-0300 0 261 0 0 424 1 441 760 0 0
7-0330 0 209 0 0 454 1 400 022 0 0
7-0400 0 271 0 0 467 1 370 517 0 0
7-0430 0 218 0 0 445 1 426 812 0 0
7-0500 0 232 0 0 453 1 529 520 0 0
7-0530 0 217 0 0 441 1 547 471 0 0
7-0600 0 274 0 0 448 1 584 125 0 0
7-0630 0 241 0 0 429 1 556 584 0 0
7-0700 0 243 0 0 442 1 509 339 0 0
7-0730 0 214 0 0 461 1 503 959 0 0
7-0800 0 202 0 0 430 1 487 131 0 0
7-0830 0 220 0 0 447 1 473 261 0 0
7-0900 0 170 0 0 449 1 478 892 0 0
7-0930 0 223 0 0 461 1 439 741 1 0
7-1000 0 224 0 0 492 1 434 509 0 0
7-1030 0 204 0 0 451 1 536 512 0 0
7-1100 0 246 0 0 434 1 682 756 0 0
7-1130 0 186 0 0 446 1 753 300 0 0
7-1200 0 182 0 0 445 1 847 006 0 0
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7-1230 0 239 0 0 445 1 854 046 0 0
7-1300 0 199 0 0 444 1 854 363 0 0
7-1330 0 239 0 0 438 1 862 676 1 0
7-1400 0 174 0 0 440 1 830 463 0 0
7-1430 0 170 0 0 440 1 833 944 0 0
7-1500 0 234 0 0 424 1 787 920 0 0
7-1530 0 246 0 0 432 1 754 936 0 0
7-1600 0 161 0 0 420 1 627 178 0 0
7-1630 0 162 0 0 418 1 557 312 0 0
7-1700 0 183 0 0 433 1 475 887 0 0
7-1730 0 204 0 0 434 1 455 084 0 0
7-1800 0 167 0 0 423 1 424 055 0 0
7-1830 0 163 0 0 421 1 377 437 0 0
7-1900 0 159 0 0 411 1 308 076 0 0
7-1930 0 190 0 0 406 1 272 123 0 0
7-2000 0 162 0 0 399 1 209 144 0 0
7-2030 0 178 0 0 394 1 187 809 0 0
7-2100 0 156 0 0 406 1 175 733 0 0
7-2130 0 165 0 0 405 1 174 486 0 0
7-2200 0 167 0 0 403 1 179 305 0 0
7-2230 0 166 0 0 388 1 193 021 0 0
7-2300 0 160 0 0 373 1 209 263 0 0
7-2330 0 217 0 0 370 1 220 138 0 0
8-0000 0 186 0 0 416 1 236 968 0 0
8-0030 0 198 0 0 392 1 273 708 0 0
8-0100 0 202 0 0 407 1 400 688 0 0
8-0130 0 196 0 0 378 1 462 887 0 0
8-0200 0 169 0 0 369 1 527 455 0 0
8-0230 0 176 0 0 383 1 574 493 0 0
8-0300 0 185 0 0 363 1 661 806 0 0
8-0330 0 173 0 0 358 1 682 276 0 0
8-0400 0 134 0 0 338 1 659 721 0 0
8-0430 0 128 0 0 355 1 637 052 0 0
8-0500 0 172 0 0 332 1 608 532 0 0
8-0530 0 109 0 0 391 1 603 445 0 0
8-0600 0 179 0 0 375 1 588 751 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

8-0630 0 175 0 0 331 1 582 110 0 0
8-0700 0 126 0 0 328 1 690 406 0 0
8-0730 0 120 0 0 326 1 737 283 0 0
8-0800 0 136 0 0 304 1 799 537 0 0
8-0830 0 138 0 0 301 1 833 787 0 0
8-0900 0 144 0 0 321 1 875 427 0 0
8-0930 0 163 0 0 291 1 934 056 0 0
8-1000 0 160 0 0 288 2 010 785 0 0
8-1030 0 166 0 0 285 2 055 087 0 0
8-1100 0 156 0 0 277 2 217 295 0 0
8-1130 0 151 0 0 264 2 426 878 0 0
8-1200 0 165 0 0 274 2 788 246 0 0
8-1230 0 144 0 0 259 3 071 818 0 0
8-1300 0 171 0 0 286 3 472 413 0 0
8-1330 0 151 0 0 248 3 660 691 0 0
8-1400 0 128 0 0 271 3 949 092 0 0
8-1430 0 133 0 0 267 4 076 454 0 0
8-1500 0 148 0 0 258 4 275 609 0 0
8-1530 0 173 0 0 243 4 386 862 0 0
8-1600 0 165 0 0 240 4 598 516 0 0
8-1630 0 192 0 0 252 4 721 583 0 0
8-1700 0 130 0 0 239 4 858 012 0 0
8-1730 0 200 0 0 233 4 888 837 0 0
8-1800 0 184 0 0 220 4 904 134 0 0
8-1830 0 148 0 0 216 4 901 191 0 0
8-1900 0 151 0 0 213 4 902 014 0 0
8-1930 0 168 0 0 252 4 875 685 0 0
8-2000 0 144 0 0 259 4 849 345 0 0
8-2030 0 152 0 0 247 4 791 535 0 0
8-2100 0 166 0 0 258 4 697 251 0 0
8-2130 0 161 0 0 234 4 643 512 0 0
8-2200 0 193 0 0 228 4 586 176 0 0
8-2230 0 125 0 0 237 4 499 442 0 0
8-2300 0 139 0 0 234 4 336 682 0 0
8-2330 0 198 0 0 224 4 239 311 0 0
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Instance Gap Time S S+F Energy Imbalance Iter NG

9-0000 0 169 0 0 251 4 141 105 0 0
9-0030 0 167 0 0 242 4 118 445 0 0
9-0100 0 137 0 0 222 4 057 389 0 0
9-0130 0 145 0 0 231 4 040 457 0 0
9-0200 0 175 0 0 236 4 062 370 0 0
9-0230 0 146 0 0 226 4 030 539 0 0
9-0300 0 153 0 0 234 3 924 725 0 0
9-0330 0 161 0 0 237 3 889 521 0 0
9-0400 0 158 0 0 228 3 862 687 0 0
9-0430 0 162 0 0 214 3 842 896 0 0
9-0500 0 187 0 0 230 3 777 439 0 0
9-0530 0 179 0 0 226 3 745 948 0 0
9-0600 0 130 0 0 208 3 707 384 0 0
9-0630 0 146 0 0 214 3 673 858 0 0
9-0700 0 204 0 0 198 3 596 362 0 0
9-0730 0 152 0 0 189 3 525 181 0 0
9-0800 0 166 0 0 224 3 430 246 0 0
9-0830 0 162 0 0 186 3 369 537 0 0
9-0900 0 185 0 0 210 3 280 417 0 0
9-0930 0 168 0 0 170 3 193 766 0 0
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A.3. Results for H2-TC

The following tables contain the detailed results of the computational experiments
for test set H2-TC, which are described and discussed in Section 3.10. The first
column contains the instance name. It consists of the virtual day and the time
in hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance
with the network state from 4AM on virtual day 2. The second column states the
gap of the MIP solve in % that was performed last. The third column states the
runtime of the complete Algorithm 4. The fourth column states the boundary flow
slack in kg applied in the final considered solution. While the fifth column denotes
the total number of conducted simple state changes, the sixth column counts only
those for which a flow direction change was simultaneously performed in the same
network station and in the same time step. The last two columns state the amount of
used compression energy in MWh, which we calculated a posteriori using the exact
nonlinear power equation for turbo compressor units (P), and the flow imbalance of
the instance in kg, respectively.

Instance Gap Time Slack S S+F Energy Imbalance

1-1200 6 24 096 3 918 940 12 8 77 108 659
1-1230 6 24 536 3 988 020 9 5 46 111 428
1-1300 5 24 272 4 098 440 9 4 40 135 055
1-1330 5 47 981 4 005 927 9 5 38 160 376
1-1400 5 24 014 4 196 671 11 7 38 169 046
1-1430 5 24 210 4 111 694 14 9 70 171 421
1-1500 4 24 081 3 647 493 13 7 74 191 044
1-1530 4 23 724 4 054 344 15 9 62 194 522
1-1600 4 23 903 4 245 942 12 7 45 208 731
1-1630 4 23 825 4 166 782 12 6 72 215 274
1-1700 4 23 661 4 286 151 12 8 44 212 662
1-1730 16 23 349 4 310 012 10 6 38 210 074
1-1800 4 23 923 4 314 773 11 7 24 202 376
1-1830 4 23 920 4 238 777 13 7 25 198 873
1-1900 7 23 275 4 309 037 8 6 24 189 331
1-1930 7 23 724 4 298 291 7 5 19 185 204
1-2000 5 23 698 4 310 447 14 6 14 172 105
1-2030 5 23 447 4 292 547 14 9 24 165 165
1-2100 9 23 676 4 398 082 11 8 16 151 947
1-2130 9 86 491 4 477 811 12 7 24 145 180
1-2200 7 23 372 4 314 996 10 7 56 128 844
1-2230 7 22 965 4 398 769 10 6 73 123 922
1-2300 6 23 364 4 373 875 8 6 49 111 405
1-2330 6 23 533 4 348 852 10 5 50 107 219
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Instance Gap Time Slack S S+F Energy Imbalance

2-0000 8 23 505 4 244 613 10 4 53 100 277
2-0030 9 23 486 4 267 154 10 5 48 95 590
2-0100 7 23 332 4 345 322 8 5 32 86 713
2-0130 7 22 940 4 361 591 8 3 30 82 613
2-0200 11 46 485 4 249 571 10 5 42 75 110
2-0230 10 23 323 4 300 273 11 6 104 72 474
2-0300 9 23 298 4 329 312 7 4 39 61 382
2-0330 9 23 044 4 205 723 8 4 43 55 359
2-0400 13 23 199 4 211 908 9 3 49 42 953
2-0430 11 23 407 4 286 186 7 4 59 35 974
2-0500 10 23 289 4 293 421 9 6 76 18 148
2-0530 11 46 577 4 244 747 10 4 88 14 731
2-0600 17 23 097 3 795 534 12 7 116 9829
2-0630 13 22 857 3 868 021 10 5 96 11 145
2-0700 13 23 267 4 184 324 9 5 106 23 023
2-0730 14 23 314 4 169 467 10 5 80 28 744
2-0800 24 23 530 4 047 616 10 4 122 40 858
2-0830 18 23 352 4 069 475 8 4 109 48 902
2-0900 24 23 409 3 950 231 9 7 125 53 690
2-0930 19 70 049 4 028 716 9 5 73 58 241
2-1000 31 23 450 3 965 432 8 5 127 76 918
2-1030 29 23 551 3 947 902 9 5 118 76 876
2-1100 30 23 547 3 909 170 8 4 132 74 826
2-1130 30 47 044 3 892 503 10 7 131 73 034
2-1200 48 47 196 3 841 064 10 6 130 75 426
2-1230 48 47 233 3 822 518 10 7 136 75 442
2-1300 99 47 206 3 714 885 8 6 154 81 898
2-1330 99 46 841 3 675 017 9 7 173 78 961
2-1400 95 47 045 3 670 007 9 7 161 82 074
2-1430 94 47 357 3 564 253 9 7 163 82 156
2-1500 99 49 486 3 523 941 9 5 141 85 850
2-1530 99 47 431 3 393 024 9 7 168 82 877
2-1600 94 71 243 3 291 104 9 5 124 79 443
2-1630 99 70 761 3 213 823 9 6 126 81 775
2-1700 99 46 601 3 140 203 9 7 141 86 196
2-1730 99 70 943 2 983 479 9 7 158 85 050
2-1800 99 47 592 3 099 187 13 7 157 54 282
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Instance Gap Time Slack S S+F Energy Imbalance

2-1830 99 48 739 2 976 854 12 5 133 42 205
2-1900 97 24 436 3 080 905 11 6 152 27 585
2-1930 97 23 835 3 042 801 10 5 123 22 721
2-2000 100 24 096 3 080 798 11 6 167 16 552
2-2030 92 24 444 3 009 209 11 7 171 13 716
2-2100 100 24 028 2 937 592 11 8 212 3134
2-2130 99 24 426 2 977 590 11 7 190 −1846
2-2200 100 24 741 2 980 281 11 7 154 −12 776
2-2230 100 24 213 2 884 710 11 7 172 −17 829
2-2300 82 23 968 2 832 975 12 4 181 −34 301
2-2330 99 24 073 2 929 658 13 4 155 −38 623
3-0000 18 23 667 3 048 813 15 9 193 −48 280
3-0030 8 23 940 3 205 801 13 8 187 −49 430
3-0100 7 23 651 3 299 317 13 8 184 −53 977
3-0130 6 70 824 2 902 799 15 7 66 −56 094
3-0200 6 47 517 3 101 896 16 11 109 −60 903
3-0230 6 23 718 3 239 685 12 5 120 −62 536
3-0300 4 23 742 3 306 979 11 5 115 −62 352
3-0330 4 23 968 3 303 395 11 7 74 −62 384
3-0400 5 23 967 3 266 966 11 7 80 −62 547
3-0430 5 23 772 3 343 802 13 8 76 −63 529
3-0500 4 23 672 3 185 559 12 5 65 −66 297
3-0530 5 23 933 3 185 535 14 8 62 −67 443
3-0600 5 23 767 2 833 438 15 13 86 −72 326
3-0630 7 23 839 2 702 297 18 11 89 −74 997
3-0700 4 23 820 2 962 463 13 5 84 −91 772
3-0730 0 22 435 773 251 9 2 93 −102 661
3-0800 0 86 509 1 096 571 12 4 89 −119 647
3-0830 0 86 510 1 096 571 12 4 89 −119 647
3-0900 0 22 425 926 630 10 4 178 −140 902
3-0930 0 22 466 862 336 11 4 157 −144 744
3-1000 0 86 552 931 939 13 6 151 −122 668
3-1030 0 23 098 988 718 12 4 161 −107 113
3-1100 0 22 614 801 634 11 3 141 −94 310
3-1130 1 22 485 305 123 9 5 153 −83 026
3-1200 17 23 187 576 806 12 6 155 −62 984
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Instance Gap Time Slack S S+F Energy Imbalance

3-1230 0 23 452 659 987 10 5 141 −46 161
3-1300 0 22 844 600 109 11 4 193 −32 108
3-1330 0 22 569 209 429 10 5 176 −23 330
3-1400 0 22 953 469 214 13 2 202 −19 102
3-1430 0 22 244 527 468 11 5 225 −12 246
3-1500 0 22 356 611 296 10 3 217 −1817
3-1530 0 86 495 210 479 10 4 221 3407
3-1600 0 22 235 479 220 12 5 229 8056
3-1630 0 22 548 537 118 11 4 244 8509
3-1700 0 22 201 556 501 11 3 247 11 693
3-1730 0 22 062 213 221 12 6 190 16 959
3-1800 0 22 072 449 972 12 4 256 48 355
3-1830 0 22 111 534 683 11 7 228 64 283
3-1900 0 22 046 562 778 11 4 224 79 035
3-1930 0 22 051 210 536 10 2 191 86 872
3-2000 0 21 990 470 034 12 3 245 95 943
3-2030 0 22 206 529 069 11 5 243 104 983
3-2100 0 21 901 499 488 11 3 234 120 646
3-2130 0 21 980 175 247 10 6 186 127 026
3-2200 0 22 024 544 446 11 5 176 141 850
3-2230 0 21 761 609 619 9 3 164 152 188
3-2300 0 10 671 526 282 8 2 164 172 286
3-2330 0 456 208 818 10 3 151 178 028
4-0000 0 21 793 508 563 10 1 162 191 179
4-0030 0 14 150 417 821 7 1 169 189 287
4-0100 0 11 161 324 748 9 4 190 187 668
4-0130 0 662 135 491 9 3 146 184 249
4-0200 0 9397 465 330 8 3 124 180 193
4-0230 0 3081 465 381 6 2 127 174 014
4-0300 0 21 792 407 805 8 2 137 168 700
4-0330 0 480 149 084 8 1 136 165 410
4-0400 0 11 845 237 125 7 1 176 164 319
4-0430 0 21 825 269 756 7 2 145 164 428
4-0500 0 1702 348 392 7 3 137 163 655
4-0530 0 1021 147 129 8 3 136 156 890
4-0600 0 11 989 244 384 6 1 159 148 258
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Instance Gap Time Slack S S+F Energy Imbalance

4-0630 0 1136 106 684 7 3 160 149 214
4-0700 0 1441 295 526 6 2 127 170 571
4-0730 0 737 114 836 6 1 168 177 632
4-0800 0 702 130 356 6 2 123 184 110
4-0830 0 694 127 840 6 1 140 176 705
4-0900 0 1658 125 063 6 1 143 153 710
4-0930 0 1761 59 935 6 2 160 128 466
4-1000 0 824 78 537 6 1 137 69 704
4-1030 0 17 660 0 5 1 159 36 310
4-1100 0 3648 0 5 2 146 −5012
4-1130 0 30 630 0 5 2 154 −33 243
4-1200 0 27 472 0 5 2 160 −80 390
4-1230 0 7105 0 5 1 181 −116 126
4-1300 23 23 695 0 5 2 157 −159 546
4-1330 0 18 076 0 5 2 174 −184 847
4-1400 46 27 853 0 5 1 178 −210 481
4-1430 44 24 718 0 5 1 177 −227 879
4-1500 46 30 275 0 5 2 175 −253 014
4-1530 28 22 743 0 5 2 180 −261 979
4-1600 46 43 422 0 5 1 190 −273 584
4-1630 0 78 986 1239 5 2 190 −280 975
4-1700 25 75 263 11 183 5 1 186 −299 741
4-1730 0 72 271 16 560 5 2 178 −316 893
4-1800 0 54 994 8419 5 2 189 −332 034
4-1830 49 86 516 9327 5 2 198 −339 961
4-1900 0 54 190 9365 5 2 187 −349 435
4-1930 29 86 467 16 744 5 2 183 −353 749
4-2000 35 73 491 38 363 5 1 189 −356 692
4-2030 23 84 482 48 477 5 1 198 −359 025
4-2100 16 86 430 6424 5 2 193 −358 917
4-2130 0 83 112 9286 5 2 187 −355 127
4-2200 0 68 665 0 5 2 202 −353 558
4-2230 37 86 582 0 5 2 168 −350 585
4-2300 37 66 022 0 5 2 166 −348 497
4-2330 24 86 437 0 5 2 156 −346 338
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Instance Gap Time Slack S S+F Energy Imbalance

6-0000 0 22 659 239 542 12 8 201 −47 740
6-0030 0 66 649 190 325 8 4 144 −43 946
6-0100 0 22 162 198 837 8 5 149 −43 946
6-0130 0 22 752 252 711 12 7 203 −33 954
6-0200 0 22 760 228 549 12 7 191 −33 954
6-0230 0 22 289 193 416 8 4 144 −1546
6-0300 0 22 131 193 221 8 4 142 −1546
6-0330 0 22 240 218 514 12 7 269 22 146
6-0400 0 22 338 214 862 12 8 262 22 146
6-0430 1 21 906 191 070 8 4 146 17 257
6-0500 1 22 050 173 671 8 2 178 17 257
6-0530 0 86 489 126 947 12 8 219 22 025
6-0600 0 21 927 176 220 13 7 198 22 025
6-0630 0 22 051 317 547 10 2 134 17 713
6-0700 0 86 557 161 585 8 1 172 25 457
6-0730 0 8367 80 306 6 3 182 46 146
6-0800 0 4401 80 306 6 3 158 46 146
6-0830 0 359 71 089 6 2 157 62 259
6-0900 0 1008 88 110 6 2 179 62 259
6-0930 0 86 444 35 554 9 4 204 85 646
6-1000 0 86 436 35 554 9 5 252 85 646
6-1030 1 21 893 228 668 10 6 163 86 849
6-1100 1 86 531 228 799 10 5 149 86 849
6-1130 0 86 432 162 146 9 2 145 80 803
6-1200 1 86 424 84 407 11 6 190 72 775
6-1230 0 20 257 0 5 2 210 67 924
6-1300 0 15 125 0 5 1 277 61 893
6-1330 0 43 809 83 642 5 1 224 54 410
6-1400 0 64 175 6647 5 1 353 42 333
6-1430 0 26 557 0 5 1 253 34 753
6-1500 79 86 418 107 545 7 4 149 42 136
6-1530 1 86 526 58 637 6 2 199 61 309
6-1600 35 45 262 48 536 7 3 145 92 934
6-1630 32 66 993 30 440 7 4 146 112 419
6-1700 21 45 122 56 877 7 4 146 135 988
6-1730 2 21 753 182 008 7 3 162 149 777
6-1800 44 43 375 46 498 7 3 168 173 170
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Instance Gap Time Slack S S+F Energy Imbalance

6-1830 84 31 034 210 818 8 5 180 181 559
6-1900 66 51 261 91 259 8 4 164 192 243
6-1930 0 1709 29 508 5 3 182 191 720
6-2000 9 21 738 0 7 4 200 189 759
6-2030 0 14 080 47 037 5 3 237 194 229
6-2100 27 22 012 0 6 4 192 200 822
6-2130 26 22 094 0 6 5 183 208 609
6-2200 27 22 070 0 6 3 189 221 339
6-2230 40 22 010 0 6 5 181 225 661
6-2300 42 47 608 15 606 6 3 177 231 221
6-2330 75 22 344 0 7 3 179 231 616
7-0000 44 22 337 0 4 2 184 228 524
7-0030 45 22 178 0 4 2 174 220 801
7-0100 60 44 048 0 5 3 190 206 007
7-0130 44 21 957 0 4 3 185 197 131
7-0200 44 22 087 0 4 2 205 184 488
7-0230 0 658 0 3 1 178 177 394
7-0300 44 22 055 0 4 3 194 167 316
7-0330 25 22 062 0 3 2 169 162 370
7-0400 40 22 061 0 4 2 179 159 063
7-0430 0 156 0 3 2 187 165 449
7-0500 40 22 072 0 4 1 178 177 422
7-0530 0 485 0 3 2 185 179 615
7-0600 0 162 0 3 2 206 183 753
7-0630 0 134 0 3 2 167 181 551
7-0700 18 22 055 0 4 2 205 176 015
7-0730 0 272 0 3 2 203 174 156
7-0800 0 176 0 3 2 169 172 492
7-0830 18 22 044 0 4 1 185 170 943
7-0900 0 8707 0 4 1 167 171 656
7-0930 0 25 545 0 4 1 186 167 284
7-1000 20 22 029 0 4 2 167 166 693
7-1030 20 22 063 0 4 2 179 179 497
7-1100 22 22 168 0 4 2 182 195 345
7-1130 22 22 194 0 4 1 165 203 253
7-1200 45 22 628 0 5 3 162 214 524

172



A.3. Results for H2-TC

Instance Gap Time Slack S S+F Energy Imbalance

7-1230 44 22 650 0 5 1 164 215 325
7-1300 97 24 335 1 020 667 8 3 185 215 108
7-1330 44 22 066 0 5 2 155 217 380
7-1400 98 26 387 1 058 808 8 3 181 212 525
7-1430 98 24 849 1 175 965 8 3 189 212 613
7-1500 96 24 176 1 230 254 8 2 185 207 426
7-1530 97 24 919 1 255 182 10 3 157 203 663
7-1600 59 24 158 1 238 947 11 2 159 188 892
7-1630 98 25 470 1 277 345 8 2 172 180 676
7-1700 56 23 916 1 424 928 11 3 263 171 180
7-1730 16 23 889 1 861 670 8 4 155 168 865
7-1800 56 47 206 984 095 8 5 149 165 243
7-1830 98 26 242 1 565 130 8 5 150 160 003
7-1900 97 47 319 977 721 8 2 143 151 932
7-1930 98 23 873 1 474 521 10 3 160 147 728
7-2000 92 46 601 723 040 12 4 164 140 529
7-2030 97 24 826 1 130 538 10 3 160 138 114
7-2100 91 23 627 1 184 558 6 2 160 136 810
7-2130 90 24 422 1 175 302 8 2 169 136 668
7-2200 88 24 346 1 271 026 8 2 162 137 491
7-2230 90 23 666 917 842 7 3 160 138 798
7-2300 80 46 861 431 412 6 2 154 140 389
7-2330 91 23 996 946 427 10 2 254 141 463
8-0000 88 24 187 848 920 9 2 262 143 412
8-0030 89 24 177 879 271 7 2 166 147 706
8-0100 85 23 615 919 288 7 2 162 162 764
8-0130 86 25 649 883 993 5 2 168 170 023
8-0200 93 24 404 866 104 5 2 156 177 398
8-0230 93 23 913 817 251 5 2 165 182 791
8-0300 96 23 900 767 121 5 2 149 192 962
8-0330 92 24 842 834 360 5 2 154 195 336
8-0400 95 24 871 642 333 5 2 140 192 778
8-0430 89 24 085 438 114 5 2 197 190 254
8-0500 93 23 493 449 133 5 2 189 187 001
8-0530 91 23 839 394 198 6 3 166 186 046
8-0600 88 23 557 332 682 6 3 196 184 540

173



A. Appendix to Chapter 3

Instance Gap Time Slack S S+F Energy Imbalance

8-0630 91 25 288 255 322 9 3 219 184 195
8-0700 86 27 223 228 718 7 2 204 196 707
8-0730 90 34 505 203 542 8 2 211 202 093
8-0800 42 24 277 156 082 9 3 193 209 292
8-0830 53 26 076 97 043 7 3 127 213 198
8-0900 8 86 516 33 173 6 2 131 218 061
8-0930 15 50 067 40 679 5 3 136 224 723
8-1000 0 45 612 31 778 4 2 135 233 656
8-1030 34 86 676 22 015 6 2 165 238 750
8-1100 24 65 790 40 101 7 2 144 257 563
8-1130 37 25 133 84 961 7 2 142 282 241
8-1200 47 65 804 88 561 7 2 162 324 816
8-1230 0 66 050 124 012 9 3 197 358 860
8-1300 1 86 552 135 044 9 4 215 405 887
8-1330 1 66 757 156 268 6 2 229 426 934
8-1400 2 22 450 336 344 6 3 115 459 974
8-1430 1 86 515 302 180 6 3 203 475 915
8-1500 1 86 521 337 241 7 2 123 497 880
8-1530 1 86 530 364 359 7 3 146 511 877
8-1600 1 86 429 498 793 8 3 94 537 500
8-1630 1 22 956 564 484 6 4 89 551 752
8-1700 1 23 163 588 071 6 3 93 566 743
8-1730 1 22 884 623 612 6 4 95 569 700
8-1800 1 22 969 769 997 6 3 91 572 070
8-1830 1 23 080 755 558 6 4 84 572 059
8-1900 1 22 936 783 011 7 3 99 572 307
8-1930 1 23 068 810 851 7 2 85 569 785
8-2000 1 23 228 952 444 7 2 80 567 156
8-2030 1 23 306 967 186 7 3 80 561 602
8-2100 1 22 844 980 584 8 3 85 550 431
8-2130 1 68 861 1 019 481 7 4 89 543 224
8-2200 1 22 986 1 134 107 7 1 61 534 997
8-2230 1 68 719 1 100 537 8 3 70 524 445
8-2300 0 23 355 1 083 086 8 4 69 505 467
8-2330 1 86 464 1 087 750 8 5 114 494 317
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Instance Gap Time Slack S S+F Energy Imbalance

9-0000 0 86 425 1 126 051 7 3 114 481 847
9-0030 1 86 425 1 158 726 9 4 62 479 754
9-0100 1 23 303 1 160 206 9 5 59 472 289
9-0130 0 86 431 1 242 531 7 4 64 471 986
9-0200 1 86 429 1 209 383 9 5 56 473 695
9-0230 1 46 166 1 277 999 9 3 56 468 894
9-0300 1 22 901 1 303 593 8 4 54 458 252
9-0330 0 23 188 1 314 998 9 4 60 453 971
9-0400 1 23 017 1 342 475 9 5 52 450 731
9-0430 1 23 467 1 383 246 9 5 57 446 778
9-0500 1 23 366 1 445 593 8 5 50 439 101
9-0530 1 22 622 1 498 384 7 5 47 436 740
9-0600 1 22 545 1 371 765 7 3 34 432 035
9-0630 1 22 767 1 345 654 7 4 32 427 060
9-0700 1 23 161 1 400 312 10 7 41 419 863
9-0730 1 23 040 1 458 821 7 3 29 411 934
9-0800 0 45 616 1 325 050 7 4 31 401 090
9-0830 0 45 707 1 309 378 9 6 29 394 350
9-0900 1 22 983 1 345 638 10 6 35 384 087
9-0930 1 46 355 1 378 671 10 5 36 373 408
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A.4. Results for H2-HC-EQ

The following tables contain the detailed results of the computational experiments
for test set H2-HC-EQ, which are described and discussed in Section 3.10. The first
column contains the instance name. It consists of the virtual day, and the time
in hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance
having the initial state from 4AM of virtual day 2. The second column states the
gap of the MIP solve in % that was performed last. The third column states the
runtime of the complete Algorithm 4. The fourth column states the boundary flow
slack in kg applied in the final considered solution. While the fifth column denotes
the total number of conducted simple state changes, the sixth column counts only
those for which a flow direction change was simultaneously performed in the same
network station and in the same time step. The last two columns state the amount of
used compression energy in MWh, which we calculated a posteriori using the exact
nonlinear power equation for turbo compressor units (P), and the flow imbalance of
the instance in kg, respectively.

Instance Gap Time Slack S S+F Energy Imbalance

1-1200 12 43 568 0 3 1 1812 421 688
1-1230 15 65 118 0 2 2 1900 430 550
1-1300 10 65 053 0 3 1 1900 468 299
1-1330 13 21 860 0 3 1 1948 513 584
1-1400 12 65 507 0 3 2 1931 536 159
1-1430 44 86 609 0 4 2 1584 541 295
1-1500 49 58 780 0 3 1 1795 565 504
1-1530 44 35 050 0 4 2 1807 571 352
1-1600 44 35 109 0 4 2 1728 584 697
1-1630 44 52 675 0 4 3 1730 584 303
1-1700 44 43 494 0 4 3 1675 557 165
1-1730 44 40 517 0 4 2 1677 543 744
1-1800 44 54 076 0 4 3 1919 515 907
1-1830 34 86 693 0 3 1 1885 504 971
1-1900 0 22 363 0 3 2 1861 473 779
1-1930 29 43 696 0 3 2 1868 458 004
1-2000 34 52 187 0 3 2 1824 411 780
1-2030 0 21 810 0 3 2 1796 387 060
1-2100 34 43 901 0 3 1 1802 338 842
1-2130 34 23 203 0 3 2 1792 320 216
1-2200 34 44 460 0 3 1 1806 275 409
1-2230 33 22 693 0 3 1 1780 260 648
1-2300 0 1994 0 2 0 1759 218 127
1-2330 0 1453 0 2 1 1861 205 624

176



A.4. Results for H2-HC-EQ

Instance Gap Time Slack S S+F Energy Imbalance

2-0000 0 264 0 2 0 1797 191 852
2-0030 0 267 0 2 1 1790 182 084
2-0100 0 246 0 2 0 1752 154 060
2-0130 0 242 0 2 1 1774 143 990
2-0200 0 366 0 3 2 2064 134 096
2-0230 0 817 0 3 2 2026 132 436
2-0300 0 784 0 3 2 2266 105 463
2-0330 0 408 0 3 2 1650 91 437
2-0400 0 3232 0 3 1 1749 70 823
2-0430 0 699 0 3 2 1876 60 218
2-0500 0 3213 0 3 2 2065 25 495
2-0530 0 1975 0 3 2 1775 16 664
2-0600 0 1269 0 3 2 1866 14 458
2-0630 0 2101 0 3 2 1813 16 150
2-0700 0 1063 0 3 2 1753 45 926
2-0730 0 4350 0 3 2 1618 61 188
2-0800 0 630 0 3 1 1673 88 950
2-0830 0 644 0 3 2 1880 108 047
2-0900 0 419 0 3 1 1591 135 930
2-0930 0 800 0 3 1 1704 147 940
2-1000 0 743 0 3 2 1732 177 891
2-1030 0 457 0 3 2 1696 178 880
2-1100 0 451 0 3 2 1848 198 235
2-1130 0 501 0 3 2 1622 198 987
2-1200 0 1530 0 3 2 1632 207 889
2-1230 0 493 0 3 1 1762 207 995
2-1300 0 339 0 3 1 1671 237 899
2-1330 0 372 0 3 2 1628 240 882
2-1400 0 3144 0 3 2 1656 269 083
2-1430 0 326 0 3 2 1828 275 109
2-1500 0 5319 0 3 2 1580 292 683
2-1530 0 385 0 3 1 1612 289 323
2-1600 0 4640 0 3 1 1569 289 876
2-1630 0 4028 0 3 1 1604 295 941
2-1700 0 287 0 3 1 1479 305 198
2-1730 0 2416 0 3 2 1413 300 301
2-1800 0 523 0 3 2 1360 206 229
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Instance Gap Time Slack S S+F Energy Imbalance

2-1830 0 1651 0 3 1 1507 171 279
2-1900 0 1384 0 3 1 1409 130 091
2-1930 0 287 0 3 2 1348 114 038
2-2000 0 1232 0 3 2 1260 84 244
2-2030 0 1227 0 3 1 1263 66 394
2-2100 0 311 0 3 1 1385 19 775
2-2130 0 663 0 3 1 1230 −464
2-2200 0 1101 0 3 1 1130 −48 388
2-2230 0 758 0 3 1 1215 −70 581
2-2300 0 945 0 3 2 1369 −138 978
2-2330 0 535 0 3 1 1287 −157 131
3-0000 0 547 0 3 2 1236 −191 191
3-0030 0 754 0 3 1 1216 −197 923
3-0100 0 491 0 3 2 1246 −221 151
3-0130 0 1014 0 3 2 1232 −231 406
3-0200 0 1229 0 3 1 1238 −248 023
3-0230 0 493 0 3 2 1113 −251 053
3-0300 0 509 0 3 2 1291 −259 381
3-0330 0 673 0 3 2 1248 −264 174
3-0400 0 752 0 3 1 1282 −273 247
3-0430 0 356 0 3 2 1410 −280 462
3-0500 0 2040 0 3 2 1450 −305 829
3-0530 0 617 0 3 1 1329 −315 787
3-0600 0 601 0 3 2 1434 −339 683
3-0630 0 367 0 3 2 1365 −348 107
3-0700 0 422 0 3 2 1380 −400 159
3-0730 0 1432 0 3 2 1440 −427 580
3-0800 0 581 0 3 2 1598 −467 193
3-0830 0 582 0 3 2 1598 −467 193
3-0900 0 521 0 2 2 1342 −506 959
3-0930 0 575 0 2 2 1581 −505 470
3-1000 0 800 0 2 2 1621 −422 805
3-1030 0 824 0 2 1 1511 −366 117
3-1100 0 422 0 2 2 1709 −304 120
3-1130 0 720 0 2 2 1141 −258 292
3-1200 0 470 0 2 2 1161 −179 362
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Instance Gap Time Slack S S+F Energy Imbalance

3-1230 0 664 0 2 2 1161 −118 777
3-1300 0 522 0 2 2 1258 −45 652
3-1330 0 729 0 2 1 1178 −1530
3-1400 0 1690 0 2 2 1099 48 976
3-1430 0 525 0 2 1 1263 86 928
3-1500 0 232 0 1 1 1257 142 136
3-1530 0 290 0 1 1 1248 165 065
3-1600 0 226 0 1 1 1145 200 802
3-1630 0 340 0 1 1 1269 216 797
3-1700 0 240 0 1 0 1071 249 341
3-1730 0 271 0 1 1 1068 272 188
3-1800 0 629 0 1 1 1138 329 495
3-1830 0 266 0 1 1 1113 362 301
3-1900 0 247 0 1 1 1037 401 509
3-1930 0 281 0 1 1 968 419 486
3-2000 0 306 0 1 1 1064 440 155
3-2030 44 66 346 0 2 2 1338 456 655
3-2100 0 1472 0 2 1 1255 491 127
3-2130 0 10 627 0 2 2 1200 502 371
3-2200 0 18 831 0 2 1 1282 533 371
3-2230 0 26 484 0 2 1 1282 551 802
3-2300 0 32 212 0 2 1 1125 586 075
3-2330 0 26 274 0 2 1 1159 595 024
4-0000 0 59 572 0 2 0 1109 619 899
4-0030 2 48 843 0 2 1 1114 607 913
4-0100 39 21 814 0 2 1 1123 593 827
4-0130 0 13 456 0 2 1 1146 576 335
4-0200 0 28 413 0 2 1 1037 548 328
4-0230 0 5299 0 2 2 1129 522 243
4-0300 0 4744 0 2 2 1035 498 447
4-0330 0 16 916 0 2 0 1100 482 321
4-0400 0 11 434 0 2 1 1088 463 541
4-0430 0 44 064 0 2 2 964 448 161
4-0500 0 6711 0 2 1 991 424 710
4-0530 0 300 0 1 0 974 391 595
4-0600 0 240 0 1 0 985 342 883
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Instance Gap Time Slack S S+F Energy Imbalance

4-0630 0 185 0 1 1 948 332 101
4-0700 0 395 0 1 1 937 368 170
4-0730 0 202 0 1 1 930 367 137
4-0800 0 357 0 1 1 998 353 137
4-0830 0 268 0 1 1 941 311 370
4-0900 0 296 0 1 1 891 206 669
4-0930 0 595 0 1 1 994 117 741
4-1000 0 333 0 1 1 1158 −37 321
4-1030 0 225 0 1 1 1209 −123 817
4-1100 0 258 0 1 1 1287 −231 631
4-1130 0 227 0 1 1 1359 −304 191
4-1200 0 323 0 1 1 1374 −422 774
4-1230 0 265 0 1 1 1466 −511 622
4-1300 43 22 692 0 2 1 1311 −613 531
4-1330 43 22 331 0 2 1 1451 −671 400
4-1400 0 427 0 1 0 1243 −732 058
4-1430 0 45 145 0 2 1 1404 −769 397
4-1500 11 38 605 0 2 2 1668 −823 725
4-1530 48 66 405 0 2 2 1822 −842 444
4-1600 11 86 449 1636 1 0 1712 −869 657
4-1630 0 27 796 47 925 1 1 1532 −887 273
4-1700 67 81 962 0 2 1 2360 −940 434
4-1730 88 86 620 0 7 5 2111 −987 021
4-1800 73 44 414 0 3 1 2304 −1 032 249
4-1830 73 44 425 0 3 1 2392 −1 050 887
4-1900 74 22 426 0 3 1 2480 −1 071 872
4-1930 75 44 604 0 3 2 2333 −1 079 959
4-2000 73 44 534 0 3 2 2724 −1 089 419
4-2030 74 44 291 0 3 1 2518 −1 097 059
4-2100 75 44 245 0 3 2 3115 −1 095 365
4-2130 60 66 876 0 3 1 3445 −1 083 522
4-2200 18 66 225 0 3 1 3123 −1 074 838
4-2230 61 44 330 0 3 1 3155 −1 060 043
4-2300 74 43 774 0 3 1 3217 −1 044 514
4-2330 72 44 028 0 3 2 3398 −1 026 087
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Instance Gap Time Slack S S+F Energy Imbalance

6-0000 0 1199 0 3 1 2063 −168 101
6-0030 0 377 0 3 0 2272 −125 703
6-0100 0 563 0 3 1 2073 −125 703
6-0130 0 3496 0 3 1 2125 −85 628
6-0200 0 1422 0 3 2 1994 −85 628
6-0230 0 580 0 3 1 2223 −893
6-0300 0 578 0 3 1 2109 −893
6-0330 0 1130 0 3 2 2141 64 965
6-0400 0 657 0 3 2 2168 64 965
6-0430 0 3086 0 3 1 1945 70 211
6-0500 0 871 0 3 1 2264 70 211
6-0530 0 1852 0 3 1 2110 106 844
6-0600 0 583 0 3 2 2126 106 844
6-0630 0 520 0 3 1 2035 123 335
6-0700 0 386 0 3 1 2019 147 573
6-0730 0 466 0 3 1 2237 215 106
6-0800 0 1909 0 3 2 1976 215 106
6-0830 61 68 628 0 4 1 1894 269 142
6-0900 68 47 190 0 3 0 2154 269 142
6-0930 61 44 133 0 4 2 1948 348 771
6-1000 61 52 226 0 4 3 1888 348 771
6-1030 59 45 197 0 4 2 1948 340 505
6-1100 59 27 082 0 4 1 1613 340 505
6-1130 61 86 485 0 4 1 1959 325 773
6-1200 5 86 448 0 3 1 1920 309 076
6-1230 6 86 441 0 3 1 1827 297 295
6-1300 6 86 431 0 3 2 1745 281 896
6-1330 6 86 435 0 3 2 1827 270 218
6-1400 6 86 449 0 3 1 2079 260 492
6-1430 43 86 440 0 3 1 1843 255 025
6-1500 41 86 546 0 3 1 1824 269 484
6-1530 0 2284 0 1 1 1729 294 761
6-1600 46 86 448 0 3 2 1778 337 288
6-1630 46 43 643 0 3 0 1938 358 072
6-1700 41 65 939 811 3 1 1801 381 247
6-1730 42 65 666 645 3 1 1808 394 147
6-1800 42 65 601 652 3 1 2064 422 147
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Instance Gap Time Slack S S+F Energy Imbalance

6-1830 31 44 174 615 4 1 1903 438 785
6-1900 46 34 463 650 4 1 1866 462 488
6-1930 33 86 632 641 4 2 1786 470 473
6-2000 52 67 087 565 5 2 1919 482 749
6-2030 54 86 672 24 313 4 3 1807 495 675
6-2100 42 86 626 26 703 4 1 1874 515 946
6-2130 32 86 444 589 4 1 1818 531 204
6-2200 55 86 578 590 4 2 1859 552 744
6-2230 56 65 341 598 4 2 1775 563 174
6-2300 59 86 607 25 286 4 1 1792 579 301
6-2330 55 86 666 625 4 1 1815 583 580
7-0000 46 65 890 646 3 1 1842 579 605
7-0030 46 86 605 658 3 1 1843 563 881
7-0100 46 86 568 676 4 1 2182 528 849
7-0130 28 86 688 25 370 3 1 1901 500 177
7-0200 24 86 667 40 848 3 1 1903 460 889
7-0230 4 22 048 723 3 2 1890 451 006
7-0300 4 22 019 740 3 0 1955 440 883
7-0330 6 43 775 751 3 1 1953 438 928
7-0400 4 21 962 768 3 1 1928 446 867
7-0430 4 21 963 761 3 1 1875 470 411
7-0500 4 43 822 751 3 1 1939 511 560
7-0530 6 86 731 736 3 2 1992 522 933
7-0600 6 21 962 511 3 2 1883 542 113
7-0630 4 45 220 513 3 1 1885 538 961
7-0700 52 86 466 5446 3 1 2033 532 849
7-0730 44 65 477 15 759 3 2 1943 533 304
7-0800 10 86 456 7664 3 1 1859 533 816
7-0830 43 86 650 742 4 3 1890 534 017
7-0900 56 86 626 708 4 3 1871 541 202
7-0930 56 70 708 694 4 2 1877 542 968
7-1000 57 86 446 673 4 2 1801 558 647
7-1030 57 86 655 692 4 2 1948 591 341
7-1100 57 66 152 687 4 2 1960 623 877
7-1130 58 86 651 697 4 3 1937 633 294
7-1200 58 86 469 664 4 2 1899 647 838
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Instance Gap Time Slack S S+F Energy Imbalance

7-1230 58 86 477 660 4 2 1903 638 318
7-1300 28 66 526 660 4 2 1884 617 415
7-1330 55 86 625 746 4 2 1845 612 553
7-1400 54 46 368 1311 4 3 1807 582 059
7-1430 29 70 798 609 4 2 1865 572 114
7-1500 57 86 674 3736 4 3 1854 541 467
7-1530 27 46 123 661 4 2 1977 520 202
7-1600 33 86 696 6586 4 3 1907 462 470
7-1630 29 50 691 664 4 2 1814 427 210
7-1700 54 86 658 556 4 2 1919 383 423
7-1730 54 86 470 9269 3 2 2083 370 414
7-1800 0 13 768 25 222 3 2 1988 355 831
7-1830 0 3074 393 3 2 1985 345 176
7-1900 0 1293 332 3 2 1912 330 505
7-1930 0 1561 357 3 2 1942 325 703
7-2000 0 2887 6274 3 2 1860 316 659
7-2030 0 10 183 249 3 2 2089 315 644
7-2100 0 14 455 129 3 2 1951 323 383
7-2130 0 318 167 2 1 1786 330 707
7-2200 0 800 66 2 1 1803 341 571
7-2230 0 301 0 2 0 1817 353 935
7-2300 0 245 0 2 0 1716 374 228
7-2330 0 383 0 2 1 1641 389 140
8-0000 0 289 0 2 1 1734 404 080
8-0030 0 431 0 2 1 1651 411 925
8-0100 0 303 0 2 1 1647 443 340
8-0130 0 479 0 2 0 1626 451 453
8-0200 0 478 0 2 1 1550 451 809
8-0230 0 1945 0 2 0 1519 464 515
8-0300 0 1031 0 2 1 1523 493 553
8-0330 0 4607 0 2 1 1885 501 667
8-0400 36 25 046 0 3 1 1543 499 744
8-0430 0 1446 0 2 0 1466 503 261
8-0500 0 343 0 2 0 1429 515 749
8-0530 0 332 0 2 1 1707 521 780
8-0600 0 2086 0 2 1 1627 535 867
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Instance Gap Time Slack S S+F Energy Imbalance

8-0630 0 19 949 0 3 1 1406 534 509
8-0700 0 3295 0 3 2 1522 574 149
8-0730 0 33 624 0 3 1 1528 594 440
8-0800 0 25 144 0 3 1 1444 623 264
8-0830 0 16 309 0 3 1 1459 638 968
8-0900 24 67 417 0 3 1 1509 662 791
8-0930 38 86 086 0 3 2 1285 687 248
8-1000 88 43 132 0 14 9 1096 732 672
8-1030 35 66 096 0 4 3 1109 766 761
8-1100 29 86 551 0 4 3 1323 841 468
8-1130 75 86 462 56 460 4 3 1333 920 051
8-1200 83 47 679 277 720 4 1 1459 1 062 235
8-1230 75 47 859 462 999 4 1 1551 1 161 941
8-1300 55 47 759 593 488 4 2 1420 1 296 826
8-1330 49 22 158 650 981 3 1 1461 1 357 700
8-1400 38 31 902 625 942 3 2 1540 1 445 475
8-1430 49 37 689 665 988 3 2 1596 1 489 579
8-1500 74 27 077 817 919 4 1 1849 1 539 617
8-1530 98 31 420 823 380 4 2 1340 1 569 065
8-1600 35 30 265 862 689 4 0 1621 1 613 890
8-1630 24 72 318 900 074 4 2 1272 1 633 645
8-1700 77 75 162 736 693 4 2 1030 1 644 957
8-1730 24 51 065 708 975 4 2 1070 1 643 884
8-1800 27 68 980 776 684 4 3 1089 1 643 781
8-1830 31 46 097 858 651 4 2 1076 1 639 362
8-1900 26 22 606 722 085 3 2 1087 1 631 411
8-1930 30 22 806 890 641 3 2 1073 1 622 010
8-2000 72 68 671 713 709 4 2 1056 1 612 670
8-2030 32 22 631 688 373 3 2 1001 1 593 477
8-2100 90 22 747 743 655 3 2 1009 1 558 237
8-2130 34 23 067 620 039 3 3 1065 1 538 186
8-2200 72 22 599 703 210 3 0 954 1 517 949
8-2230 69 22 721 671 400 5 4 1052 1 490 478
8-2300 37 24 812 704 412 3 2 870 1 438 243
8-2330 42 24 586 715 057 3 2 825 1 409 241
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Instance Gap Time Slack S S+F Energy Imbalance

9-0000 38 24 691 569 070 3 2 827 1 372 108
9-0030 34 47 032 484 577 3 3 1025 1 360 573
9-0100 38 47 286 532 847 3 2 1033 1 335 136
9-0130 44 25 024 543 478 3 1 976 1 319 586
9-0200 55 46 558 401 928 3 1 973 1 295 948
9-0230 49 23 642 580 413 3 2 919 1 272 133
9-0300 44 46 413 475 909 3 1 899 1 232 558
9-0330 71 24 084 473 691 3 3 859 1 207 653
9-0400 64 23 839 424 109 3 1 824 1 172 457
9-0430 63 23 808 314 390 3 3 1099 1 147 827
9-0500 58 25 560 250 369 3 1 983 1 110 494
9-0530 61 86 456 173 805 4 2 818 1 087 135
9-0600 55 45 066 136 922 2 2 933 1 050 451
9-0630 51 67 088 105 912 3 1 838 1 019 131
9-0700 43 86 487 42 852 3 2 890 975 895
9-0730 26 86 448 22 265 4 1 809 942 052
9-0800 15 86 484 808 3 3 859 891 820
9-0830 29 65 165 804 3 3 748 858 214
9-0900 15 86 587 916 3 3 760 809 500
9-0930 14 47 072 1114 3 2 742 771 985
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A.5. Results for H2-HC-EQ-B

The columns of the following tables contain the detailed results of the computational
experiments for test set H2-HC-EQ-B described and discussed in Section 3.10. The
first column contains the instance name. It consists of the virtual day, and the time
in hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance
having the initial state from 4AM of virtual day 2. The second column states the
gap of the MIP solve in % that was performed last. The third column states the
runtime of the complete Algorithm 4. The fourth column states the boundary flow
slack in kg applied in the final considered solution. While the fifth column denotes
the total number of conducted simple state changes, the sixth column counts only
those for which a flow direction change was simultaneously performed in the same
network station and in the same time step. The last column states the amount of
used compression energy in MWh, which we calculated a posteriori using the exact
nonlinear power equation for turbo compressor units (P).

Instance Gap Time Slack S S+F Energy

1-1200 0 441 0 2 1 1761
1-1230 0 471 0 1 1 1625
1-1300 0 329 0 2 1 1596
1-1330 0 328 0 2 0 1743
1-1400 0 345 0 2 0 1674
1-1430 0 705 0 2 1 1591
1-1500 0 345 0 1 1 1575
1-1530 0 338 0 2 1 1658
1-1600 0 593 2243 2 1 1637
1-1630 0 1131 2126 2 1 1622
1-1700 0 576 1634 2 1 1551
1-1730 0 567 2081 2 0 1615
1-1800 0 1183 0 2 1 1721
1-1830 0 445 0 2 1 2282
1-1900 0 252 0 2 1 1963
1-1930 0 279 0 2 1 1877
1-2000 0 302 0 2 1 2028
1-2030 0 322 0 2 0 1885
1-2100 0 298 0 2 1 2214
1-2130 0 424 0 2 1 2032
1-2200 0 1184 0 2 1 1859
1-2230 0 463 0 2 1 2004
1-2300 0 223 0 2 1 1944
1-2330 0 208 0 2 1 1839
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Instance Gap Time Slack S S+F Energy

2-0000 0 505 0 2 0 1836
2-0030 0 444 0 2 1 2052
2-0100 0 310 0 2 1 1803
2-0130 0 394 0 2 0 1749
2-0200 0 347 7295 2 0 1820
2-0230 0 715 7271 2 1 1940
2-0300 0 476 0 3 2 2560
2-0330 0 366 0 3 2 1825
2-0400 0 1746 0 3 2 2041
2-0430 0 2593 0 3 2 1719
2-0500 0 4674 0 3 2 1918
2-0530 0 2649 0 3 2 1895
2-0600 0 1981 0 3 2 1784
2-0630 0 1327 0 3 2 1675
2-0700 0 901 0 3 2 1822
2-0730 0 3329 0 3 2 1680
2-0800 0 416 0 3 2 1793
2-0830 0 714 0 3 2 1763
2-0900 0 1615 0 3 2 1942
2-0930 0 563 0 3 2 1847
2-1000 0 566 0 3 1 1831
2-1030 0 442 0 3 2 1794
2-1100 0 3621 0 3 1 1614
2-1130 0 1898 0 3 2 1877
2-1200 0 888 0 3 2 1745
2-1230 0 390 0 3 2 1885
2-1300 0 328 0 3 2 1696
2-1330 0 688 0 3 2 1787
2-1400 0 2713 0 3 2 1925
2-1430 0 359 0 3 2 1500
2-1500 0 1738 0 3 2 1577
2-1530 0 620 0 3 2 1676
2-1600 0 265 0 3 2 1548
2-1630 0 282 0 3 1 1701
2-1700 0 429 0 3 2 1547
2-1730 0 1938 0 3 2 1517
2-1800 0 1051 0 3 2 1330
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Instance Gap Time Slack S S+F Energy

2-1830 0 336 0 3 2 1615
2-1900 0 297 0 3 1 1390
2-1930 0 3219 0 3 2 1362
2-2000 0 424 0 3 1 1465
2-2030 0 384 0 3 1 1293
2-2100 0 394 0 3 2 1309
2-2130 0 967 0 3 1 1301
2-2200 0 905 0 3 2 1135
2-2230 0 765 0 3 1 1326
2-2300 0 4175 0 3 2 1165
2-2330 0 6025 0 3 2 1233
3-0000 0 16 273 0 3 2 1105
3-0030 0 9636 0 3 1 1043
3-0100 0 4996 0 3 1 1071
3-0130 0 2316 0 3 2 1019
3-0200 0 735 0 3 2 1049
3-0230 0 2397 0 3 2 1055
3-0300 0 1217 0 3 1 1079
3-0330 0 1697 0 3 2 1067
3-0400 0 699 0 3 2 1052
3-0430 0 303 0 3 1 1007
3-0500 0 634 0 3 1 956
3-0530 0 1225 0 3 1 1033
3-0600 0 987 0 3 1 806
3-0630 0 1242 0 3 1 918
3-0700 0 462 0 3 2 1045
3-0730 0 850 0 3 2 942
3-0800 0 964 0 3 2 1056
3-0830 0 958 0 3 2 1056
3-0900 0 436 0 2 2 964
3-0930 0 652 0 2 2 1018
3-1000 0 251 0 2 1 1156
3-1030 0 627 0 2 1 1093
3-1100 0 385 0 2 1 1269
3-1130 0 2014 0 2 2 1059
3-1200 0 4809 0 2 2 957
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A.5. Results for H2-HC-EQ-B

Instance Gap Time Slack S S+F Energy

3-1230 0 434 0 2 2 1318
3-1300 0 437 0 2 2 1289
3-1330 0 287 0 2 2 1332
3-1400 0 1864 0 2 2 1176
3-1430 0 480 0 2 2 1175
3-1500 0 181 0 1 1 1419
3-1530 0 161 0 1 1 1236
3-1600 0 481 0 1 1 1114
3-1630 0 226 0 1 1 1244
3-1700 0 202 0 1 0 1237
3-1730 0 202 0 1 0 1245
3-1800 0 398 0 1 1 1007
3-1830 0 199 0 1 1 1176
3-1900 0 347 0 1 1 1228
3-1930 0 250 0 1 1 1133
3-2000 0 242 0 1 1 1149
3-2030 0 212 0 1 1 1637
3-2100 0 209 0 2 1 1593
3-2130 0 304 0 2 2 1347
3-2200 0 258 0 2 2 1165
3-2230 0 409 0 1 1 1430
3-2300 0 309 0 1 1 1477
3-2330 0 423 0 1 1 1210
4-0000 0 389 0 1 0 1253
4-0030 0 295 0 1 1 1222
4-0100 0 267 0 1 1 1424
4-0130 0 374 0 1 1 1180
4-0200 0 302 0 1 1 1198
4-0230 0 401 0 1 0 1087
4-0300 0 307 0 1 1 1235
4-0330 0 322 0 1 0 1116
4-0400 0 312 0 1 1 1087
4-0430 0 331 0 1 1 933
4-0500 0 366 0 1 1 985
4-0530 0 372 0 1 1 1025
4-0600 0 332 0 1 1 950
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Instance Gap Time Slack S S+F Energy

4-0630 0 413 0 1 1 1004
4-0700 0 343 0 1 1 1017
4-0730 0 332 0 1 1 1080
4-0800 0 307 0 1 1 1074
4-0830 0 290 0 1 1 1078
4-0900 0 310 0 1 1 1182
4-0930 0 351 0 1 1 1188
4-1000 0 310 0 1 1 1191
4-1030 0 225 0 1 1 1205
4-1100 0 249 0 1 0 1207
4-1130 0 281 0 1 1 1100
4-1200 0 398 0 1 1 1195
4-1230 0 20 169 0 2 1 1237
4-1300 0 33 345 0 2 2 1169
4-1330 0 9681 0 2 1 1256
4-1400 0 12 425 0 2 0 1291
4-1430 0 6259 0 2 1 1416
4-1500 0 10 947 0 2 1 1280
4-1530 0 1522 0 2 0 1261
4-1600 0 13 811 0 2 2 1484
4-1630 0 3848 0 2 1 1452
4-1700 0 12 297 0 2 1 1491
4-1730 0 1640 26 653 1 1 1414
4-1800 0 7668 0 2 1 1691
4-1830 0 2099 0 2 0 1528
4-1900 0 3054 0 2 1 1560
4-1930 0 661 0 1 1 1541
4-2000 0 3759 0 2 2 1556
4-2030 0 2283 0 2 1 1701
4-2100 0 257 0 1 0 1769
4-2130 0 438 0 1 0 1749
4-2200 0 240 0 1 1 1387
4-2230 0 214 0 1 0 1610
4-2300 0 223 0 1 1 1751
4-2330 0 451 0 1 1 1686
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Instance Gap Time Slack S S+F Energy

6-0000 0 1157 0 3 1 2069
6-0030 0 1314 0 3 1 2075
6-0100 0 350 0 3 1 2090
6-0130 0 1922 0 3 1 2167
6-0200 0 2269 0 3 2 2143
6-0230 0 630 0 3 2 2231
6-0300 0 465 0 3 1 2231
6-0330 0 882 0 3 1 2314
6-0400 0 563 0 3 1 2298
6-0430 0 306 0 3 0 2217
6-0500 0 328 0 3 2 2157
6-0530 0 1607 0 3 1 2408
6-0600 0 1159 0 3 2 2167
6-0630 0 675 0 3 1 2106
6-0700 0 347 0 3 1 2060
6-0730 0 471 0 3 1 2249
6-0800 0 422 0 3 2 2419
6-0830 0 254 0 3 1 2306
6-0900 0 347 0 3 1 2584
6-0930 0 979 0 3 1 2574
6-1000 0 442 0 3 2 2430
6-1030 0 442 0 3 1 2565
6-1100 0 423 0 3 1 2429
6-1130 0 908 0 3 1 2147
6-1200 0 9754 0 3 1 1976
6-1230 0 5512 0 3 1 1827
6-1300 0 24 891 0 3 1 2029
6-1330 0 30 157 0 3 1 1847
6-1400 42 22 712 0 3 0 1965
6-1430 42 86 824 0 3 0 1876
6-1500 0 73 395 0 3 1 1713
6-1530 0 1095 0 1 0 1983
6-1600 0 88 211 0 2 1 2019
6-1630 0 588 0 2 1 2125
6-1700 0 294 750 2 1 2071
6-1730 0 285 672 2 1 1869
6-1800 0 886 608 2 0 1941
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Instance Gap Time Slack S S+F Energy

6-1830 0 929 626 3 1 1990
6-1900 0 863 670 3 1 1909
6-1930 0 936 561 3 2 1849
6-2000 0 1811 587 4 1 1933
6-2030 0 533 586 3 1 1940
6-2100 0 4217 3344 3 1 2037
6-2130 0 7746 5367 3 1 2120
6-2200 0 2701 7210 3 1 2032
6-2230 0 17 070 16 074 3 1 2402
6-2300 0 4551 15 808 3 1 2045
6-2330 0 1606 22 087 3 1 2079
7-0000 0 1885 15 697 2 1 2318
7-0030 0 3615 18 016 2 0 2099
7-0100 0 2010 25 508 2 1 2120
7-0130 0 1459 17 717 2 1 1995
7-0200 0 1579 29 715 2 1 2140
7-0230 0 4977 14 427 2 1 2289
7-0300 0 1039 28 111 2 0 2312
7-0330 0 956 19 842 2 0 2139
7-0400 0 2640 21 554 2 1 2089
7-0430 0 2908 25 342 2 1 2070
7-0500 0 1561 673 2 1 1989
7-0530 0 26 695 760 2 1 2068
7-0600 0 1460 528 2 1 2514
7-0630 0 1245 93 820 2 1 2134
7-0700 0 2634 773 2 1 2815
7-0730 0 1413 782 2 0 2135
7-0800 0 956 717 2 1 1940
7-0830 0 1461 700 2 1 1982
7-0900 0 932 740 2 1 1806
7-0930 0 770 711 2 0 1935
7-1000 0 2320 669 2 1 1833
7-1030 0 6000 714 2 1 1839
7-1100 0 913 711 2 0 1810
7-1130 0 3314 111 355 2 1 1958
7-1200 0 706 737 2 1 2005
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Instance Gap Time Slack S S+F Energy

7-1230 0 856 748 2 1 2196
7-1300 0 1096 666 2 1 1754
7-1330 0 492 55 454 2 1 2063
7-1400 0 1325 23 038 2 1 1869
7-1430 0 915 21 617 2 1 1948
7-1500 0 2789 20 386 2 1 1823
7-1530 0 882 13 937 2 0 1848
7-1600 0 3764 7774 2 1 1818
7-1630 0 655 7808 2 1 2165
7-1700 0 273 590 2 1 2197
7-1730 0 305 600 2 1 1817
7-1800 0 449 615 2 1 1869
7-1830 0 405 379 2 0 1849
7-1900 0 331 369 2 1 1943
7-1930 0 649 333 2 1 1732
7-2000 0 2344 380 2 0 1748
7-2030 0 422 107 2 1 1912
7-2100 0 475 131 2 1 1631
7-2130 0 333 171 2 1 2031
7-2200 0 286 170 2 1 2169
7-2230 0 359 0 2 1 1599
7-2300 0 368 0 2 0 1824
7-2330 0 336 0 2 1 1778
8-0000 0 235 0 2 0 1756
8-0030 0 616 0 2 1 1467
8-0100 0 363 0 2 1 1587
8-0130 0 549 0 2 0 1859
8-0200 0 270 0 2 0 1679
8-0230 0 313 0 2 0 1543
8-0300 0 437 0 2 1 1839
8-0330 0 361 0 2 1 1915
8-0400 0 279 0 2 1 1590
8-0430 0 332 0 2 1 1862
8-0500 0 244 0 2 1 2306
8-0530 0 361 0 2 1 1480
8-0600 0 302 0 2 1 2009
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Instance Gap Time Slack S S+F Energy

8-0630 0 244 0 2 1 1865
8-0700 0 218 0 2 1 1619
8-0730 0 240 0 2 1 2143
8-0800 0 262 0 2 1 1996
8-0830 0 308 0 2 0 1540
8-0900 0 383 0 2 0 1610
8-0930 0 301 0 2 1 1580
8-1000 0 247 0 2 1 1899
8-1030 0 224 0 2 1 1887
8-1100 0 225 0 2 1 1593
8-1130 0 251 0 2 1 2101
8-1200 0 244 0 2 0 2276
8-1230 0 347 0 2 0 1809
8-1300 0 247 0 2 1 1861
8-1330 0 221 0 2 0 2097
8-1400 0 266 0 2 1 1888
8-1430 0 369 0 2 1 1808
8-1500 0 314 0 2 1 1641
8-1530 0 332 0 2 1 1978
8-1600 0 395 0 2 1 1823
8-1630 0 260 0 2 1 1744
8-1700 0 255 0 2 1 1896
8-1730 0 282 0 2 1 1692
8-1800 0 364 0 2 1 1607
8-1830 0 275 0 2 1 1555
8-1900 0 325 2085 1 1 1597
8-1930 0 211 1356 1 1 1816
8-2000 0 225 1341 1 1 1644
8-2030 0 207 1342 1 0 1576
8-2100 0 207 1342 1 0 1508
8-2130 0 207 1344 1 1 1441
8-2200 0 221 1346 1 1 1437
8-2230 0 225 1347 1 1 1571
8-2300 0 205 1348 1 1 1475
8-2330 0 236 1348 1 0 1461
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Instance Gap Time Slack S S+F Energy

9-0000 0 224 1348 1 1 1495
9-0030 0 205 1347 1 1 1501
9-0100 0 214 1347 1 1 1410
9-0130 0 230 1347 1 1 1376
9-0200 0 409 1347 1 0 1334
9-0230 0 244 1346 1 1 1413
9-0300 0 261 1344 1 1 1303
9-0330 0 353 1343 1 1 1266
9-0400 0 230 1341 1 1 1209
9-0430 0 243 1337 1 0 1281
9-0500 0 249 1331 1 1 1040
9-0530 0 221 1546 1 1 1085
9-0600 0 210 1273 1 0 1071
9-0630 0 206 1268 1 0 1200
9-0700 0 209 1261 1 1 1113
9-0730 0 197 1257 1 0 1120
9-0800 0 206 844 1 1 1138
9-0830 0 218 839 1 0 1129
9-0900 0 204 832 1 1 1052
9-0930 0 207 829 1 1 904
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A.6. Results for H2-HC-EQ-P

The columns of the following tables contain the detailed results of the computational
experiments for test set H2-HC-EQ-P described and discussed in Section 3.10. The
first column contains the instance name. It consists of the virtual day, and the time
in hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance
having the initial state from 4AM of virtual day 2. The second column states the gap
of the MIP solve in % that was performed last. The third column states the runtime
of the complete Algorithm 4. The fourth column states the boundary flow slack in
kg applied in the final solution. While the fifth column denotes the total number of
conducted simple state changes, the sixth column counts only those for which a flow
direction change was simultaneously performed in the same network station and in
the same time step. The last two columns state the amount of used compression
energy in MWh, which we calculated a posteriori using the exact nonlinear power
equation for turbo compressor units (P) and the flow imbalance of the instance in
kg, respectively.

Instance Gap Time Slack S S+F Energy Imbalance

1-1200 14 22 108 0 3 2 1773 421 688
1-1230 17 22 605 0 2 2 1842 430 550
1-1300 14 23 498 0 3 1 1824 468 299
1-1330 14 21 908 0 3 2 1823 513 584
1-1400 12 43 541 0 3 2 1812 536 159
1-1430 12 22 365 0 3 2 1833 541 295
1-1500 17 25 284 0 2 1 1836 565 504
1-1530 0 31 830 0 3 2 1817 571 352
1-1600 13 43 435 0 3 2 1834 584 697
1-1630 14 22 061 0 3 2 1787 584 303
1-1700 0 43 740 0 3 2 1778 557 165
1-1730 14 21 937 0 3 2 1754 543 744
1-1800 0 64 338 0 3 2 1690 515 907
1-1830 36 23 438 0 3 2 1693 504 971
1-1900 0 273 0 2 1 1868 473 779
1-1930 0 820 0 2 1 1747 458 004
1-2000 0 402 0 2 0 1786 411 780
1-2030 0 336 0 2 1 1779 387 060
1-2100 0 313 0 2 1 1742 338 842
1-2130 0 310 0 2 0 1684 320 216
1-2200 0 247 0 2 0 1728 275 409
1-2230 0 485 0 2 1 1720 260 648
1-2300 0 257 0 2 1 1743 218 127
1-2330 0 273 0 2 1 1760 205 624
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Instance Gap Time Slack S S+F Energy Imbalance

2-0000 0 308 0 2 1 1747 191 852
2-0030 0 234 0 2 1 1775 182 084
2-0100 0 236 0 2 1 1640 154 060
2-0130 0 230 0 2 1 1698 143 990
2-0200 0 229 0 2 1 1742 134 096
2-0230 0 246 0 2 1 1700 132 436
2-0300 0 214 0 2 0 1891 105 463
2-0330 0 219 0 2 1 1777 91 437
2-0400 0 270 0 2 1 1675 70 823
2-0430 0 242 0 2 0 1689 60 218
2-0500 0 217 0 2 0 1684 25 495
2-0530 0 224 0 2 0 1742 16 664
2-0600 0 234 0 2 1 1715 14 458
2-0630 0 215 0 2 1 1615 16 150
2-0700 0 398 0 3 2 1747 45 926
2-0730 0 1025 0 3 1 1698 61 188
2-0800 0 1234 0 3 2 1539 88 950
2-0830 0 995 0 3 2 1563 108 047
2-0900 0 1018 0 3 2 1673 135 930
2-0930 0 1199 0 3 2 1628 147 940
2-1000 0 633 0 3 2 1746 177 891
2-1030 0 930 0 3 1 1767 178 880
2-1100 0 761 0 3 2 1472 198 235
2-1130 0 957 0 3 2 1600 198 987
2-1200 0 751 0 3 2 1557 207 889
2-1230 0 821 0 3 2 1585 207 995
2-1300 0 1018 0 3 2 1498 237 899
2-1330 0 340 0 3 1 1482 240 882
2-1400 0 551 0 3 2 1394 269 083
2-1430 0 647 0 3 1 1688 275 109
2-1500 0 3281 0 3 1 1670 292 683
2-1530 0 502 0 3 2 1607 289 323
2-1600 0 681 0 3 1 1458 289 876
2-1630 0 310 0 3 2 1453 295 941
2-1700 0 1036 0 3 2 1445 305 198
2-1730 0 806 0 3 1 1298 300 301
2-1800 0 715 0 3 2 1415 206 229
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Instance Gap Time Slack S S+F Energy Imbalance

2-1830 0 3480 0 3 2 1325 171 279
2-1900 0 393 0 3 2 1299 130 091
2-1930 0 1439 0 3 2 1244 114 038
2-2000 0 454 0 3 2 1109 84 244
2-2030 0 747 0 3 2 1394 66 394
2-2100 0 305 0 3 2 1196 19 775
2-2130 0 571 0 3 1 1310 −464
2-2200 0 415 0 3 1 1275 −48 388
2-2230 0 324 0 3 2 1252 −70 581
2-2300 0 389 0 3 2 1312 −138 978
2-2330 0 501 0 3 2 1211 −157 131
3-0000 0 329 0 3 2 1300 −191 191
3-0030 0 447 0 3 2 1315 −197 923
3-0100 0 380 0 3 2 1153 −221 151
3-0130 0 313 0 3 2 1107 −231 406
3-0200 0 417 0 3 1 1177 −248 023
3-0230 0 503 0 3 1 1156 −251 053
3-0300 0 406 0 3 2 1153 −259 381
3-0330 0 337 0 3 2 1119 −264 174
3-0400 0 363 0 3 2 1415 −273 247
3-0430 0 278 0 3 2 1180 −280 462
3-0500 0 295 0 3 2 1399 −305 829
3-0530 0 378 0 3 2 1430 −315 787
3-0600 0 413 0 3 1 1381 −339 683
3-0630 0 427 0 3 2 1340 −348 107
3-0700 0 309 0 3 2 1361 −400 159
3-0730 0 978 0 3 2 1527 −427 580
3-0800 0 322 0 3 1 1838 −467 193
3-0830 0 324 0 3 1 1838 −467 193
3-0900 0 302 0 2 2 1547 −506 959
3-0930 0 828 0 2 2 1642 −505 470
3-1000 0 13 927 0 2 2 1550 −422 805
3-1030 0 229 0 2 2 1529 −366 117
3-1100 0 180 0 1 1 1593 −304 120
3-1130 0 185 0 1 1 1284 −258 292
3-1200 0 175 0 1 1 1246 −179 362
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Instance Gap Time Slack S S+F Energy Imbalance

3-1230 0 191 0 1 1 1488 −118 777
3-1300 0 226 0 1 1 1263 −45 652
3-1330 0 180 0 1 1 1339 −1530
3-1400 0 175 0 1 1 1220 48 976
3-1430 0 161 0 1 1 1131 86 928
3-1500 0 184 0 1 1 1337 142 136
3-1530 0 191 0 1 1 1339 165 065
3-1600 0 196 0 1 1 1155 200 802
3-1630 0 170 0 1 1 1157 216 797
3-1700 0 195 0 1 1 1210 249 341
3-1730 0 203 0 1 1 1158 272 188
3-1800 0 196 0 1 1 1084 329 495
3-1830 0 210 0 1 1 1030 362 301
3-1900 0 201 0 1 1 1072 401 509
3-1930 0 228 0 1 1 1006 419 486
3-2000 0 213 0 1 1 966 440 155
3-2030 0 216 0 1 1 1248 456 655
3-2100 0 258 0 1 0 1262 491 127
3-2130 0 256 0 1 1 1187 502 371
3-2200 0 246 0 1 1 1134 533 371
3-2230 0 237 0 1 1 1084 551 802
3-2300 0 298 0 1 0 1109 586 075
3-2330 0 277 0 1 0 1051 595 024
4-0000 0 370 0 1 1 1078 619 899
4-0030 0 280 0 1 1 1088 607 913
4-0100 0 262 0 1 1 1044 593 827
4-0130 0 282 0 1 0 1030 576 335
4-0200 0 292 0 1 1 971 548 328
4-0230 0 244 0 1 1 1010 522 243
4-0300 0 235 0 1 1 965 498 447
4-0330 0 231 0 1 1 956 482 321
4-0400 0 266 0 1 1 953 463 541
4-0430 0 251 0 1 1 932 448 161
4-0500 0 243 0 1 1 907 424 710
4-0530 0 244 0 1 1 916 391 595
4-0600 0 196 0 1 1 993 342 883
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Instance Gap Time Slack S S+F Energy Imbalance

4-0630 0 197 0 1 1 907 332 101
4-0700 0 202 0 1 1 930 368 170
4-0730 0 176 0 1 1 924 367 137
4-0800 0 216 0 1 1 1004 353 137
4-0830 0 210 0 1 0 984 311 370
4-0900 0 229 0 1 1 906 206 669
4-0930 0 181 0 1 1 1021 117 741
4-1000 0 224 0 1 1 1085 −37 321
4-1030 0 201 0 1 1 1099 −123 817
4-1100 0 210 0 1 1 1285 −231 631
4-1130 0 178 0 1 1 1182 −304 191
4-1200 0 190 0 1 1 1406 −422 774
4-1230 0 212 0 1 1 1360 −511 622
4-1300 0 238 0 1 1 1395 −613 531
4-1330 0 234 0 1 1 1449 −671 400
4-1400 0 242 0 1 1 1431 −732 058
4-1430 0 328 0 1 1 1736 −769 397
4-1500 0 390 0 1 0 1824 −823 725
4-1530 44 22 240 0 2 1 1676 −842 444
4-1600 43 44 864 0 2 1 1640 −869 657
4-1630 0 23 692 0 2 0 1601 −887 273
4-1700 51 42 975 0 2 1 2279 −940 434
4-1730 69 66 188 0 2 1 1902 −987 021
4-1800 69 62 633 0 2 0 2555 −1 032 249
4-1830 0 46 495 0 2 1 2229 −1 050 887
4-1900 69 44 269 0 2 1 2548 −1 071 872
4-1930 68 66 610 0 2 1 2728 −1 079 959
4-2000 0 24 054 0 2 0 2866 −1 089 419
4-2030 85 44 188 0 2 1 2853 −1 097 059
4-2100 0 45 147 0 2 1 2644 −1 095 365
4-2130 40 44 173 0 2 1 2736 −1 083 522
4-2200 0 48 718 0 2 0 3149 −1 074 838
4-2230 44 44 513 0 2 1 3185 −1 060 043
4-2300 65 44 095 0 2 1 3290 −1 044 514
4-2330 64 44 127 0 2 1 3351 −1 026 087
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Instance Gap Time Slack S S+F Energy Imbalance

6-0000 0 280 0 2 1 2098 −168 101
6-0030 0 293 0 2 1 2140 −125 703
6-0100 0 291 0 2 1 2354 −125 703
6-0130 0 474 0 2 1 1879 −85 628
6-0200 0 418 0 2 1 2362 −85 628
6-0230 0 621 0 2 1 1766 −893
6-0300 0 803 0 2 1 2451 −893
6-0330 0 279 0 2 0 2312 64 965
6-0400 0 269 0 2 0 1959 64 965
6-0430 0 563 0 2 1 1978 70 211
6-0500 0 258 0 2 0 2087 70 211
6-0530 0 272 0 2 0 2476 106 844
6-0600 0 441 0 2 1 1990 106 844
6-0630 0 279 0 2 1 1934 123 335
6-0700 0 270 0 2 0 2303 147 573
6-0730 0 242 0 2 1 2119 215 106
6-0800 0 359 0 2 0 2265 215 106
6-0830 0 446 0 2 1 2126 269 142
6-0900 0 261 0 2 1 2077 269 142
6-0930 0 366 0 2 1 2073 348 771
6-1000 0 515 0 2 1 1876 348 771
6-1030 0 762 0 2 1 1948 340 505
6-1100 0 548 0 2 0 2114 340 505
6-1130 0 304 0 2 1 2063 325 773
6-1200 0 30 848 0 3 1 1966 309 076
6-1230 42 22 296 0 3 2 1876 297 295
6-1300 0 45 888 0 3 0 1757 281 896
6-1330 0 42 231 0 3 1 1728 270 218
6-1400 0 41 885 0 3 0 1810 260 492
6-1430 42 65 202 0 3 1 1823 255 025
6-1500 0 14 643 0 3 0 1755 269 484
6-1530 0 402 0 1 0 1736 294 761
6-1600 46 44 177 0 3 1 1572 337 288
6-1630 46 22 008 0 3 1 1674 358 072
6-1700 46 21 980 0 3 2 1917 381 247
6-1730 0 3250 0 2 0 1988 394 147
6-1800 46 47 123 0 3 0 1634 422 147
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Instance Gap Time Slack S S+F Energy Imbalance

6-1830 0 1136 0 2 1 1940 438 785
6-1900 0 1922 0 2 1 1906 462 488
6-1930 42 45 442 0 3 2 2185 470 473
6-2000 39 44 537 0 4 2 1597 482 749
6-2030 46 44 034 0 3 2 1649 495 675
6-2100 46 22 333 0 3 2 1691 515 946
6-2130 46 23 659 0 3 2 1779 531 204
6-2200 6 21 994 0 3 2 1767 552 744
6-2230 45 22 102 0 3 2 1990 563 174
6-2300 5 66 090 0 3 0 1905 579 301
6-2330 46 22 245 0 3 1 1841 583 580
7-0000 4 86 644 0 3 0 1757 579 605
7-0030 46 22 215 0 3 1 1870 563 881
7-0100 6 44 255 0 3 1 1851 528 849
7-0130 44 22 223 0 3 1 1940 500 177
7-0200 44 22 222 0 3 2 1967 460 889
7-0230 46 22 757 0 3 1 1985 451 006
7-0300 45 22 101 0 3 1 1809 440 883
7-0330 46 22 203 0 3 2 1792 438 928
7-0400 45 43 839 0 3 1 1749 446 867
7-0430 46 44 215 0 3 2 1750 470 411
7-0500 46 44 129 0 3 0 1922 511 560
7-0530 46 22 225 0 3 2 1963 522 933
7-0600 43 23 815 0 3 2 1848 542 113
7-0630 0 852 0 2 0 2214 538 961
7-0700 46 31 810 0 3 1 1879 532 849
7-0730 45 44 345 0 3 2 1828 533 304
7-0800 45 44 430 0 3 1 1868 533 816
7-0830 44 41 236 0 3 2 1838 534 017
7-0900 0 54 990 0 3 1 2155 541 202
7-0930 44 48 971 0 3 2 1817 542 968
7-1000 46 86 607 0 3 1 1719 558 647
7-1030 36 86 480 0 3 1 1873 591 341
7-1100 58 86 690 0 4 2 1689 623 877
7-1130 58 66 363 0 4 2 1847 633 294
7-1200 58 66 631 0 4 2 1847 647 838
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Instance Gap Time Slack S S+F Energy Imbalance

7-1230 58 66 984 0 4 1 1781 638 318
7-1300 58 79 312 0 4 2 1826 617 415
7-1330 58 72 945 0 4 2 1829 612 553
7-1400 58 55 228 0 4 2 1745 582 059
7-1430 0 23 890 0 3 2 1934 572 114
7-1500 0 30 252 0 3 2 1870 541 467
7-1530 0 32 967 0 3 2 1824 520 202
7-1600 0 46 125 0 3 2 1964 462 470
7-1630 0 25 063 0 3 2 1874 427 210
7-1700 0 15 098 0 3 2 1864 383 423
7-1730 0 11 501 0 3 2 1879 370 414
7-1800 0 20 866 0 3 2 1825 355 831
7-1830 31 40 359 0 3 2 1795 345 176
7-1900 0 324 0 2 1 1680 330 505
7-1930 0 276 0 2 1 1641 325 703
7-2000 0 271 0 2 1 1975 316 659
7-2030 0 270 0 2 1 1552 315 644
7-2100 0 256 0 2 1 1962 323 383
7-2130 0 241 0 2 0 1989 330 707
7-2200 0 249 0 2 1 1534 341 571
7-2230 0 278 0 2 1 1585 353 935
7-2300 0 229 0 2 1 1634 374 228
7-2330 0 295 0 2 0 1616 389 140
8-0000 0 238 0 2 0 1731 404 080
8-0030 0 211 0 2 0 1507 411 925
8-0100 0 201 0 2 0 1489 443 340
8-0130 0 232 0 2 0 1387 451 453
8-0200 0 195 0 2 1 1634 451 809
8-0230 0 201 0 2 0 1399 464 515
8-0300 0 198 0 2 1 1626 493 553
8-0330 0 192 0 2 1 1424 501 667
8-0400 0 275 0 2 1 1623 499 744
8-0430 0 197 0 2 1 1446 503 261
8-0500 0 237 0 2 0 1619 515 749
8-0530 0 300 0 2 1 1640 521 780
8-0600 0 203 0 2 1 1640 535 867
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Instance Gap Time Slack S S+F Energy Imbalance

8-0630 0 218 0 2 0 1410 534 509
8-0700 0 295 0 2 0 1427 574 149
8-0730 0 284 0 2 1 1334 594 440
8-0800 0 267 0 2 1 1533 623 264
8-0830 36 22 168 0 3 1 1419 638 968
8-0900 35 22 226 0 3 0 1580 662 791
8-0930 36 22 444 0 3 2 1403 687 248
8-1000 46 43 603 0 3 1 1184 732 672
8-1030 0 40 357 0 3 0 1251 766 761
8-1100 57 44 027 0 4 2 1138 841 468
8-1130 30 86 635 9580 4 2 1049 920 051
8-1200 80 69 649 106 591 4 3 1212 1 062 235
8-1230 88 86 639 230 899 4 3 953 1 161 941
8-1300 61 47 405 469 892 4 1 1259 1 296 826
8-1330 58 69 870 433 345 3 2 1020 1 357 700
8-1400 46 47 698 427 080 3 2 1527 1 445 475
8-1430 40 47 958 509 612 3 1 1551 1 489 579
8-1500 33 69 924 536 804 4 2 1130 1 539 617
8-1530 37 48 394 523 854 4 2 1642 1 569 065
8-1600 37 46 845 578 781 4 2 1267 1 613 890
8-1630 33 63 612 586 068 5 3 1155 1 633 645
8-1700 64 47 598 670 759 5 4 917 1 644 957
8-1730 37 67 423 576 504 4 2 1116 1 643 884
8-1800 34 47 338 681 299 4 3 1120 1 643 781
8-1830 80 47 298 590 654 4 2 993 1 639 362
8-1900 80 41 964 628 313 3 2 898 1 631 411
8-1930 80 47 132 660 233 5 4 1119 1 622 010
8-2000 97 45 789 709 573 3 1 1377 1 612 670
8-2030 44 54 612 545 477 4 2 673 1 593 477
8-2100 36 75 692 481 187 4 1 719 1 558 237
8-2130 37 86 453 476 630 4 3 671 1 538 186
8-2200 36 56 490 477 184 3 3 670 1 517 949
8-2230 49 46 611 440 183 3 1 1048 1 490 478
8-2300 42 69 259 396 320 4 2 667 1 438 243
8-2330 40 86 660 371 803 4 1 893 1 409 241
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Instance Gap Time Slack S S+F Energy Imbalance

9-0000 45 75 274 353 447 4 3 978 1 372 108
9-0030 48 69 520 332 147 4 2 826 1 360 573
9-0100 51 86 724 295 386 4 2 903 1 335 136
9-0130 61 68 756 286 432 4 3 952 1 319 586
9-0200 82 46 268 304 288 3 3 686 1 295 948
9-0230 89 46 293 347 916 3 2 735 1 272 133
9-0300 84 46 614 340 428 3 2 744 1 232 558
9-0330 89 86 616 201 520 4 1 715 1 207 653
9-0400 82 86 614 154 683 4 2 732 1 172 457
9-0430 75 45 985 274 165 5 5 762 1 147 827
9-0500 77 86 580 94 797 7 6 787 1 110 494
9-0530 83 68 959 114 911 3 3 749 1 087 135
9-0600 75 86 436 8317 3 2 689 1 050 451
9-0630 54 86 439 0 2 2 701 1 019 131
9-0700 70 86 520 0 3 2 789 975 895
9-0730 67 86 604 0 3 0 785 942 052
9-0800 66 39 378 0 3 2 737 891 820
9-0830 66 23 378 0 3 2 662 858 214
9-0900 66 54 855 0 3 2 682 809 500
9-0930 0 26 597 0 2 0 706 771 985
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A.7. Results for H2-HC-EQ-B-P

The columns of the following tables contain the detailed results of the computational
experiments for test set H2-HC-EQ-B-P described and discussed in Section 3.10. The
first column contains the instance name. It consists of the virtual day, and the time
in hours and minutes of the corresponding initial state, i.e., 2-0400 is the instance
having the initial state from 4AM of virtual day 2. The second column states the gap
of the MIP solve in % that was performed last. The third column states the runtime
of the complete Algorithm 4. The fourth column states the boundary flow slack in
kg applied in the final solution. While the fifth column denotes the total number of
conducted simple state changes, the sixth column counts only those for which a flow
direction change was simultaneously performed in the same network station and in
the same time step. The last column states the amount of used compression energy
in MWh, which we calculated a posteriori using the exact nonlinear power equation
for turbo compressor units (P).

Instance Gap Time Slack S S+F Energy

1-1200 0 358 0 2 1 1761
1-1230 0 261 0 1 1 1990
1-1300 0 271 0 2 1 1667
1-1330 0 335 0 2 1 1657
1-1400 0 428 0 2 1 1702
1-1430 0 298 0 2 1 1807
1-1500 0 394 0 1 1 1702
1-1530 0 324 0 2 1 1754
1-1600 0 2326 0 2 1 1611
1-1630 0 1942 0 2 1 1576
1-1700 0 2918 0 2 1 1977
1-1730 0 3443 0 2 0 1984
1-1800 0 228 0 2 1 2308
1-1830 0 224 0 2 1 2401
1-1900 0 199 0 2 0 2144
1-1930 0 220 0 2 1 2091
1-2000 0 283 0 2 1 1879
1-2030 0 240 0 2 1 2217
1-2100 0 223 0 2 1 1932
1-2130 0 226 0 2 1 2189
1-2200 0 222 0 2 1 1812
1-2230 0 229 0 2 1 1814
1-2300 0 252 0 2 1 1735
1-2330 0 211 0 2 0 1773
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Instance Gap Time Slack S S+F Energy

2-0000 0 220 0 2 0 1915
2-0030 0 229 0 2 1 1791
2-0100 0 228 0 2 1 1812
2-0130 0 215 0 2 1 2051
2-0200 0 243 0 2 1 1788
2-0230 0 218 0 2 1 1855
2-0300 0 216 0 2 1 1709
2-0330 0 227 0 2 1 1915
2-0400 0 219 0 2 1 1716
2-0430 0 217 0 2 1 1819
2-0500 0 198 0 2 1 1779
2-0530 0 218 0 2 1 1681
2-0600 0 231 0 2 0 1717
2-0630 0 225 0 2 1 1867
2-0700 0 1122 0 3 2 1684
2-0730 0 965 0 3 2 1798
2-0800 0 1438 0 3 2 1712
2-0830 0 494 0 3 1 1601
2-0900 0 614 0 3 1 1856
2-0930 0 1005 0 3 2 1902
2-1000 0 881 0 3 1 1778
2-1030 0 458 0 3 1 1728
2-1100 0 388 0 3 1 1587
2-1130 0 788 0 3 2 1611
2-1200 0 643 0 3 2 1724
2-1230 0 1140 0 3 2 1763
2-1300 0 678 0 3 2 1574
2-1330 0 2752 0 3 2 1646
2-1400 0 569 0 3 2 1794
2-1430 0 370 0 3 2 1704
2-1500 0 594 0 3 2 1687
2-1530 0 886 0 3 2 1536
2-1600 0 410 0 3 2 1402
2-1630 0 394 0 3 2 2240
2-1700 0 810 0 3 2 1838
2-1730 0 2563 0 3 1 1444
2-1800 0 460 0 3 2 1405
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Instance Gap Time Slack S S+F Energy

2-1830 0 359 0 3 2 1353
2-1900 0 477 0 3 2 1349
2-1930 0 557 0 3 2 1258
2-2000 0 346 0 3 2 1137
2-2030 0 436 0 3 1 1247
2-2100 0 851 0 3 2 1173
2-2130 0 739 0 3 2 1205
2-2200 0 578 0 3 2 1157
2-2230 0 522 0 3 2 1192
2-2300 0 323 0 3 2 1114
2-2330 0 536 0 3 2 1113
3-0000 0 556 0 3 2 1182
3-0030 0 683 0 3 2 1087
3-0100 0 464 0 3 2 980
3-0130 0 441 0 3 1 1074
3-0200 0 490 0 3 2 998
3-0230 0 396 0 3 2 1087
3-0300 0 432 0 3 1 1081
3-0330 0 358 0 3 2 1045
3-0400 0 350 0 3 2 1054
3-0430 0 466 0 3 2 1124
3-0500 0 446 0 3 2 1107
3-0530 0 355 0 3 2 1322
3-0600 0 360 0 3 2 915
3-0630 0 290 0 3 1 1038
3-0700 0 293 0 3 2 1073
3-0730 0 718 0 3 2 1190
3-0800 0 635 0 3 2 920
3-0830 0 633 0 3 2 920
3-0900 0 147 0 1 0 1050
3-0930 0 153 0 1 1 995
3-1000 0 148 0 1 1 972
3-1030 0 199 0 2 2 1153
3-1100 0 180 0 1 1 1359
3-1130 0 149 0 1 1 1086
3-1200 0 162 0 1 1 1066
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Instance Gap Time Slack S S+F Energy

3-1230 0 157 0 1 1 1172
3-1300 0 176 0 1 0 1283
3-1330 0 189 0 1 1 1356
3-1400 0 185 0 1 1 1328
3-1430 0 177 0 1 1 1340
3-1500 0 179 0 1 1 1437
3-1530 0 186 0 1 1 1275
3-1600 0 177 0 1 1 1275
3-1630 0 187 0 1 1 1275
3-1700 0 181 0 1 1 1317
3-1730 0 177 0 1 0 1264
3-1800 0 193 0 1 1 1214
3-1830 0 166 0 1 1 1219
3-1900 0 192 0 1 1 1289
3-1930 0 185 0 1 1 1256
3-2000 0 180 0 1 1 1175
3-2030 0 194 0 1 1 1582
3-2100 0 236 0 1 1 1555
3-2130 0 199 0 1 1 1401
3-2200 0 182 0 1 1 1457
3-2230 0 168 0 1 1 1614
3-2300 0 189 0 1 1 1648
3-2330 0 179 0 1 1 1460
4-0000 0 185 0 1 0 1391
4-0030 0 208 0 1 1 1375
4-0100 0 316 0 1 1 1526
4-0130 0 197 0 1 1 1351
4-0200 0 197 0 1 1 1217
4-0230 0 184 0 1 1 1117
4-0300 0 202 0 1 1 1110
4-0330 0 202 0 1 1 1154
4-0400 0 216 0 1 1 1084
4-0430 0 191 0 1 1 1047
4-0500 0 202 0 1 1 986
4-0530 0 223 0 1 1 1052
4-0600 0 213 0 1 0 961
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Instance Gap Time Slack S S+F Energy

4-0630 0 221 0 1 0 1028
4-0700 0 506 0 1 1 1073
4-0730 0 163 0 1 1 1056
4-0800 0 364 0 1 1 1036
4-0830 0 205 0 1 1 1281
4-0900 0 240 0 1 1 1141
4-0930 0 192 0 1 1 1090
4-1000 0 195 0 1 1 1329
4-1030 0 166 0 1 1 1125
4-1100 0 222 0 1 1 1062
4-1130 0 159 0 1 1 996
4-1200 0 227 0 1 1 1115
4-1230 0 223 0 1 1 1113
4-1300 0 245 0 1 1 1188
4-1330 0 272 0 1 1 1145
4-1400 44 22 014 0 2 1 1189
4-1430 0 10 781 0 2 1 1226
4-1500 0 290 0 1 1 1275
4-1530 0 325 0 1 1 1233
4-1600 0 3402 0 2 0 1389
4-1630 0 1950 0 1 1 1345
4-1700 0 259 0 1 1 1341
4-1730 0 282 0 1 1 1397
4-1800 0 1051 0 2 2 1562
4-1830 0 383 0 1 1 1395
4-1900 0 269 0 1 1 1429
4-1930 0 219 0 1 0 1190
4-2000 0 221 0 1 1 1267
4-2030 0 221 0 1 0 1678
4-2100 0 259 0 1 0 1211
4-2130 0 248 0 1 0 1582
4-2200 0 246 0 1 0 1379
4-2230 0 234 0 1 1 1624
4-2300 0 233 0 1 0 1679
4-2330 0 249 0 1 1 1729
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Instance Gap Time Slack S S+F Energy

6-0000 0 252 0 2 1 2352
6-0030 0 306 0 2 1 1521
6-0100 0 261 0 2 1 2177
6-0130 0 363 0 2 0 1757
6-0200 0 270 0 2 1 2208
6-0230 0 784 0 2 1 1777
6-0300 0 748 0 2 1 1893
6-0330 0 310 0 2 1 2371
6-0400 0 301 0 2 1 2299
6-0430 0 313 0 2 1 2257
6-0500 0 281 0 2 1 2098
6-0530 0 318 0 2 1 2203
6-0600 0 414 0 2 1 2491
6-0630 0 250 0 2 0 2303
6-0700 0 241 0 2 1 2108
6-0730 0 267 0 2 1 2214
6-0800 0 247 0 2 0 2272
6-0830 0 250 0 2 1 2375
6-0900 0 226 0 2 1 2547
6-0930 0 253 0 2 1 2350
6-1000 0 280 0 2 1 2522
6-1030 0 225 0 2 1 2043
6-1100 0 264 0 2 1 2366
6-1130 0 262 0 2 1 2408
6-1200 0 31 742 0 3 1 1899
6-1230 0 3473 0 3 1 1793
6-1300 0 6614 0 3 1 1642
6-1330 0 6664 0 3 1 1988
6-1400 0 10 623 0 3 0 1949
6-1430 0 7103 0 3 1 1717
6-1500 42 40 091 0 3 1 1760
6-1530 0 226 0 1 0 1792
6-1600 0 217 0 2 0 2021
6-1630 0 201 0 2 1 1657
6-1700 0 286 0 2 1 1755
6-1730 0 232 0 2 1 1796
6-1800 0 572 0 2 1 1877
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Instance Gap Time Slack S S+F Energy

6-1830 0 233 0 2 1 2481
6-1900 0 307 0 2 0 2239
6-1930 0 249 0 2 0 2403
6-2000 0 298 0 3 0 2468
6-2030 0 13 694 0 2 1 1843
6-2100 0 7749 0 2 1 2665
6-2130 0 946 0 2 1 1883
6-2200 0 1448 0 2 1 2721
6-2230 0 1253 0 2 0 1865
6-2300 0 1195 0 2 1 2025
6-2330 0 1074 0 2 1 1918
7-0000 0 828 0 2 1 2218
7-0030 0 1524 0 2 1 2002
7-0100 0 1377 0 2 1 2550
7-0130 0 1570 0 2 0 1898
7-0200 0 1151 0 2 1 1907
7-0230 0 2303 0 2 0 2761
7-0300 0 5597 0 2 0 1903
7-0330 0 1299 0 2 1 1973
7-0400 0 4019 0 2 1 1879
7-0430 0 2124 0 2 1 2160
7-0500 0 1020 0 2 1 2294
7-0530 0 1025 0 2 1 2123
7-0600 0 1326 0 2 0 1987
7-0630 0 1726 0 2 0 2104
7-0700 0 716 0 2 0 2150
7-0730 0 954 0 2 1 2058
7-0800 0 696 0 2 1 2085
7-0830 0 917 0 2 0 2254
7-0900 0 852 0 2 1 1955
7-0930 0 725 0 2 1 1930
7-1000 0 837 0 2 1 2307
7-1030 0 615 0 2 1 1831
7-1100 0 3578 0 2 1 2324
7-1130 0 403 0 2 1 2455
7-1200 0 1140 0 2 1 2781
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Instance Gap Time Slack S S+F Energy

7-1230 0 339 0 2 1 1919
7-1300 0 724 0 2 1 2246
7-1330 0 991 0 2 1 1886
7-1400 0 477 0 2 1 2075
7-1430 0 814 0 2 0 1881
7-1500 0 516 0 2 1 1591
7-1530 0 1026 0 2 1 1675
7-1600 0 710 0 2 0 1714
7-1630 0 261 0 2 0 2194
7-1700 0 243 0 2 1 2370
7-1730 0 236 0 2 1 2498
7-1800 0 295 0 2 0 1755
7-1830 0 282 0 2 0 1647
7-1900 0 267 0 2 1 1977
7-1930 0 222 0 2 1 2422
7-2000 0 236 0 2 0 2354
7-2030 0 292 0 2 1 2000
7-2100 0 292 0 2 0 2095
7-2130 0 201 0 2 1 1896
7-2200 0 322 0 2 1 1846
7-2230 0 261 0 2 1 1777
7-2300 0 210 0 2 0 1783
7-2330 0 245 0 2 1 1906
8-0000 0 199 0 2 0 1760
8-0030 0 202 0 2 0 1703
8-0100 0 385 0 2 0 1802
8-0130 0 376 0 2 0 1862
8-0200 0 378 0 2 1 1739
8-0230 0 364 0 2 0 1646
8-0300 0 307 0 2 1 2500
8-0330 0 297 0 2 0 1936
8-0400 0 268 0 2 0 2008
8-0430 0 348 0 2 0 2380
8-0500 0 383 0 2 1 1905
8-0530 0 337 0 2 1 2008
8-0600 0 458 0 2 0 1663
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Instance Gap Time Slack S S+F Energy

8-0630 0 336 0 2 1 2315
8-0700 0 332 0 2 1 2090
8-0730 0 329 0 2 0 1685
8-0800 0 431 0 2 1 1655
8-0830 0 328 0 2 0 2181
8-0900 0 422 0 2 1 1713
8-0930 0 625 0 2 1 2218
8-1000 0 416 0 2 1 1926
8-1030 0 390 0 2 1 1560
8-1100 0 398 0 2 0 1875
8-1130 0 323 0 2 0 2093
8-1200 0 394 0 2 0 1838
8-1230 0 316 0 2 1 1697
8-1300 0 332 0 2 0 2191
8-1330 0 441 0 2 1 1790
8-1400 0 350 0 2 1 2032
8-1430 0 318 0 2 1 2020
8-1500 0 394 0 2 1 1872
8-1530 0 423 0 2 1 1899
8-1600 0 379 0 2 1 1843
8-1630 0 624 0 2 1 1795
8-1700 0 431 0 2 1 1712
8-1730 0 435 0 2 1 1676
8-1800 0 401 0 2 1 1742
8-1830 0 305 0 2 1 1692
8-1900 0 304 0 1 1 1544
8-1930 0 262 0 1 1 1938
8-2000 0 271 0 1 1 1732
8-2030 0 267 0 1 0 1782
8-2100 0 312 0 1 1 1490
8-2130 0 271 0 1 1 1665
8-2200 0 262 0 1 1 1433
8-2230 0 283 0 1 0 1440
8-2300 0 312 0 1 1 1439
8-2330 0 302 0 1 1 1522
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Instance Gap Time Slack S S+F Energy

9-0000 0 336 0 1 1 1444
9-0030 0 268 0 1 0 1112
9-0100 0 301 0 1 0 1413
9-0130 0 289 0 1 1 1275
9-0200 0 233 0 1 1 967
9-0230 0 293 0 1 1 1266
9-0300 0 309 0 1 1 1339
9-0330 0 286 0 1 1 1073
9-0400 0 294 0 1 1 1247
9-0430 0 306 0 1 0 1229
9-0500 0 332 0 1 1 1222
9-0530 0 247 0 1 1 914
9-0600 0 288 0 1 1 1167
9-0630 0 284 0 1 1 1024
9-0700 0 287 0 1 1 1149
9-0730 0 265 0 1 0 1119
9-0800 0 278 0 1 1 1160
9-0830 0 346 0 1 1 1128
9-0900 0 300 0 1 1 1103
9-0930 0 1114 0 1 1 973
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B.1. The Maximum Minimum Cost Flow Problem

This section discusses the Maximum Min-Cost-Flow Problem (MaxMCF), a natu-
ral generalization of the Maximum Transportation Problem (MaxTP) introduced in
Section 4.2. It is equivalent to MaxTP, but we consider additional capacity restric-
tions on the arcs. In particular, for MaxMCF, we are given capacity values ca for
each a ∈ A, which the arc flows fa are not allowed to exceed in any feasible solu-
tion, see Section 2.3.1 for more information regarding MCF. Thus, an instance of
MaxMCF is a sextuple I = (V,A, ℓ, c,

¯
b, b̄). Accordingly, the goal of MaxMCF is to

find an admissible supply and demand vector such that the optimal objective value
of the induced MCF instance is maximized. Again, we assume that there exists an
uncapacitated directed path from each entry towards each exit to ensure the exis-
tence of a feasible solution for all MCF instances induced by admissible supply and
demand vectors. The bilevel model for MaxTP from Section 4.2.4 can be adapted
as follows.

max
b

∑︂
a∈A

ℓafa (B.1)

s.t.
∑︂
u∈V+

bu +
∑︂

w∈V−

bw = 0 (B.2)

bv ∈ [
¯
bv, b̄v] ∀v ∈ V+ ∪ V− (B.3)

min
f

∑︂
a∈A

ℓafa (B.4)

s.t.
∑︂

a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = bv ∀v ∈ V+ ∪ V− (B.5)

∑︂
a∈δ+(v)

fa −
∑︂

a∈δ−(v)

fa = 0 ∀v ∈ V0 (B.6)

fa ∈ [0, ca] ∀a ∈ A (B.7)

Since MaxMCF is a generalization of MaxTP, its NP-hardness follows directly
from Theorem 1 in Section 4.2.3. However, due to the capacity constraints, we con-
jecture that an even stronger statement holds. The complicating fact that Lemma 1
regarding the structure of an optimal solution does not hold for MaxMCF, namely
that there exists one with a bound-close supply and demand vector, can be seen as
evidence for our claim. A counterexample demonstrating this is shown in Figure B.1.
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u

bu ∈ [0, 2]

w

bw ∈ [−2, 0]

cuw = 1

Figure B.1.: Counterexample demonstrating that Lemma 1 regarding the bound-
closeness of an optimal solution for MaxTP does not hold for MaxMCF.
The unique optimal solution for the example instance shown here is
bu = 1, bw = −1, and fuw = 1.

Conjecture 1. MaxMCF is APX-hard.

Although we have not proven Conjecture 1 yet, we can show the same statement
for a different variant of MaxMCF. As mentioned, we assume that there exists
an uncapacitated directed path from each entry towards each exit in the network,
guaranteeing the existence of a feasible solution for all MCF instances induced by
admissible supply and demand vectors. In the following, we consider MaxMCF with
this connectedness-condition being dropped, which we denote by MaxMCF-CC. The
goal of MaxMCF-CC is to find an admissible supply and demand vector b for which
the induced MCF instance admits a feasible solution and for which the objective
value of an optimal solution is maximized. Note that the bilevel optimization model
presented above remains valid since the leader must ensure that the lower level, i.e.,
the MCF instance, admits a feasible solution by definition. Nevertheless, we once
more note that there may now exist admissible supply and demand vectors that
induce infeasible MCF instances and are therefore not chosen by the leader.

Theorem 4. MaxMCF-CC is APX-hard.

We reduce from the Maximum Independent Set with Bounded Degree Problem
(MIS). Its definition is adapted from GT23 in Ausiello et al. [7]:

Definition 12. Let H = (W,E) be an undirected graph such that the degree of each
node is bounded by some constant B ≥ 3, i.e., we have δ(v) ≤ B for all v ∈W . The
goal of the Maximum Independent Set with Bounded Degree Problem is to find a
maximum subset W ′ ⊆W w.r.t. the cardinality such that no two vertices in W ′ are
joined by an edge.

Theorem 5. MIS is APX-complete.

Proof. A proof can be found in the papers of Berman and Fujito [13] and Papadim-
itriou and Yannakakis [125].

Given an undirected graph H = (W,E) as instance of MIS, we create a corre-
sponding MaxMCF-CC instance IH as follows. Note that we assume w.l.o.g. that
H contains no isolated vertices since these are trivially contained in every maximum
independent set.
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q
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z

e1

e2

e3

e4

Figure B.2.: An example MIS instance H = (W,E).

First, for each vertex v ∈ W , we add an entry v+ ∈ V+ and two inner nodes
v0, v1 ∈ V0. Furthermore, for each edge e ∈ E, we add an exit e− ∈ V−. For
each entry v+ ∈ V+, we define

¯
bv+ := 0 as the lower supply bound while the upper

supply bound is set to b̄v+ := δ(v), i.e., the degree of the corresponding vertex
v ∈W . Additionally, for each exit e− ∈ V−, we define

¯
be− := −1 and b̄e− := 0.

Next, we add four different types of arcs to IH , i.e., A := A1 ∪ A2 ∪ A3 ∪ A4.
First, for each vertex v ∈ W , we add an arc from v+ ∈ V+ to v0 ∈ V0, i.e.,
A1 := {(v+, v0) | v ∈ W}. Second, for v ∈ W , we add an arc from v0 ∈ V0 to
each exit e− ∈ V− whose corresponding edge e ∈ E is incident to v, i.e., A2 :=
{(v0, e−) | v ∈ W, e ∈ δ(v)}. Third, for v ∈ W , we add an arc from v+ ∈ V+ to
v1 ∈ V0, i.e., A3 := {(v+, v1) | v ∈ W}. And fourth, for each v ∈ W , we add an arc
from v1 ∈ V+ to each exit e− ∈ V− whose corresponding edge e ∈ E is incident to
v, i.e., A4 := {(v1, e−) | v ∈ W, e ∈ δ(v)}. Additionally, we define ℓa := 0 for each
a ∈ A1 ∪ A2 ∪ A4 and ℓa := 1 for each a ∈ A3. Finally, we set ca := δ(v) − 1 for
all a = (v+, v0) ∈ A1 and ca := 1 for all a ∈ A2 ∪ A3 ∪ A4. This concludes the
construction of instance IH .

Note that IH is of linear size w.r.t. H since the number of nodes is equal to
|V| = 3|W |+|E| and the number of arcs is equal to |A| = 2|W |+4|E|. The MaxMCF-
CC instance IH corresponding to the example MIS instance H in Figure B.2 is shown
in Figure B.3.

Next, we introduce some definitions regarding a feasible solution (b, f) for IH . For
each entry v+ ∈ V+, the flow towards an exit e− ∈ V−, whose corresponding edge
e ∈ E is incident to the corresponding node v ∈W , can be uniquely partitioned into
flow on two different paths: Flow on the short path v+ → v0 → e− having length 0,
and flow on the long path v+ → v1 → e− with having length 1. The corresponding
values can directly be read from fv0e− and fv1e− , respectively.

Furthermore, we call a solution (b, f) assigning if it is feasible, and for each exit
e− ∈ V− with be− < 0, corresponding to an edge e = {x, y} ∈ E, we have that either
fx0e− + fx1e− > 0 or fy0e− + fy1e− > 0 holds but not both.
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q+

bq+ ∈ [0, 2]

x+

bx+ ∈ [0, 3]

y+

by+ ∈ [0, 2]

z+

bz+ ∈ [0, 1]

q0 x0 y0 z0q1 x1 y1 z1

e−1

b
e−1

∈ [−1, 0]

e−2

b
e−2

∈ [−1, 0]

e−3

b
e−3

∈ [−1, 0]

e−4

b
e−4

∈ [−1, 0]

Figure B.3.: MaxMCF-CC instance IH corresponding to MIS instance H from Fig-
ure B.2. For a dashed arc a = (v+, v0) ∈ A1, we have ca = δ(v) − 1
and ℓa = 0, while for a dotted arc a ∈ A3, we have ca = 1 and ℓa = 1.
Finally, for a solid arc a ∈ A2 ∪ A4, we have ca = 1 and ℓa = 0. Note
that the connectedness-condition described in Section 4.2 does not hold
for this flow network.
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Lemma 19. Let (b, f) be a feasible solution for IH . There exists an assigning
solution (b̃, f̃), which can be determined in O(|E|), such that c(b̃, f̃) ≥ c(b, f).

Proof. Let (b, f) be a feasible solution and assume there exists an exit e− ∈ V−
corresponding to e = {x, y} ∈ E such that we have f e

x := fx0e− + fx1e− > 0 and
f e
y := fy0e− + fy1e− > 0. W.l.o.g. we assume that b̄x+ − bx+ ≤ b̄y+ − by+ . Next, we

shift the supply routed from y+ towards e− to x+. Therefore, let Ω := cx+x0−fx+x0

denote the remaining capacity on the short path from x+ towards e−. We define

b̃v :=

⎧⎪⎨⎪⎩
bx+ + f e

y for v = x+ ∈ V+

by+ − f e
y for v = y+ ∈ V+

bv otherwise

and

f̃a :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fx+x0 +min{Ω, f e
y} if a = (x+, x0)

fx0e− +min{Ω, f e
y} if a = (x0, e−)

fx+x1 +max{f e
y − Ω, 0} if a = (x+, x1)

fx1e− +max{f e
y − Ω, 0} if a = (x1, e−)

fy+y0 − fy0e− if a = (y+, y0)

0 if a = (y0, e−)

fy+y1 − fy1e− if a = (y+, y1)

0 if a = (y1, e−)

fa otherwise.

We know that x+ can only supply exits whose corresponding edges are incident to
x ∈W . Thus, we have

bx+ = fx+x0 + fx+x1 =
∑︂

ẽ∈δ(x)

fx0ẽ− +
∑︂

ẽ∈δ(x)

fx1ẽ− =
∑︂

ẽ∈δ(x)

(fx0ẽ− + fx1ẽ−)

≤ (
∑︂

ẽ∈δ(x)

|bẽ− |)− (fy0e− + fy1e−) ≤ δ(x)− f e
y = b̄x − f e

y ,

showing that b̃x+ = bx+ + f e
y ≤ b̄x. Hence, b̃ is an admissible supply and demand

vector. Furthermore, while the flow on the short and long path from y+ towards e−

is set to 0, we route up to Ω units from x+ towards e− on the short path, and the
remaining supply on the long path.

If there was flow on the short path from y+ towards e− in f and if there is still
flow on some long paths starting at y+ in f̃ , we need to shift it to the short paths
to transform f̃ to an optimal solution for the induced MCF instance. This is done
through Algorithm 12.

Finally, it remains to show that c(b̃, f̃) ≥ c(b, f). Recall that we assumed that
b̄x+−bx+ ≤ b̄y+−by+ . There are two cases we have to consider: First, if b̄y+−by+ ≤ 1,
then b̄x+ − bx+ ≤ 1, and all the shifted supply is routed along the long path from x+
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Algorithm 12: Shift flow to ensure the optimality of f̃
1 for e ∈ δ(y) do
2 r ← min{cy+y0 − f̃y+y0 , f̃y1e−}
3 f̃y+y0 ← f̃y+y0 + r

4 f̃y0e− ← f̃y0e− + r

5 f̃y+y1 ← f̃y+y1 − r

6 f̃y1e− ← f̃y1e− − r

towards e−. Second, if b̄y+ − by+ ≥ 1, all the supply from y+ towards e− was routed
along the short path in f . In both cases, we the objective value is not decreased,
implying c(b̃, f̃) ≥ c(b, f).

Iteratively applying the procedure above to all exits e− results in an assigning
solution (b̃, f̃) such that c(b̃, f̃) ≥ c(b, f) in O(|E|). This is because for each exit
e− ∈ V−, the construction of (b̃, f̃) can be done in constant time.

Next, let us call a solution (b, f) bound-tight if it is feasible, and if either bv+ = 0
or bv+ = δ(v) holds for all v+ ∈ V+.

Lemma 20. Let (b, f) be a feasible solution for IH . There exists a bound-tight
solution (b̃, f̃), which can be determined in O(|V |+ |E|), with c(b̃, f̃) ≥ c(b, f).

Proof. Let (b, f) be a feasible solution. Using Lemma 19, w.l.o.g. we assume that
(b, f) is assigning. We define

b̃v :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b̄x+ if v = x+ ∈ V+ with bx+ > δ(x)− 1

−1 if v = e− ∈ V− with e = {x, y} if bx+ > δ(x)− 1 or by+ > δ(y)− 1

0 if v = x+ ∈ V+ with bx+ ≤ δ(x)− 1

0 if v = e− ∈ V− with e = {x, y} if bx+ ≤ δ(x)− 1 and by+ ≤ δ(y)− 1

and

f̃a :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ(x)− 1 if a = x+x0 and bx+ > δ(x)− 1

1 if a = x+x1 and bx+ > δ(x)− 1

fa if a = x0e− and bx+ > δ(x)− 1

fa + (1− |be− |) if a = x1e− and bx+ > δ(x)− 1

0 otherwise.

First, the supply of each entry x+ ∈ V+ with bx+ > δ(x) − 1 is increased up to its
upper bound, i.e., b̃x+ := b̄x+ = δ(x), and the demand of each exit e− with e ∈ δ(x)
up to −1, i.e., b̃e− := −1. The additional supply of 1 − |be− | is then routed along
the corresponding long path.
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Second, the supply of all entries x+ with bx+ ≤ δ(x) − 1, the demands of their
assigned exits, as well as the flows on the corresponding short paths are set to 0.
Since bx+ ≤ δ(x)− 1, there is no flow on any of the corresponding long paths.

In both cases, the objective value does not decrease and we determined a bound-
tight solution (b̃, f̃) with c(b̃, f̃) ≥ c(b, f) in O(|V |+ |E|).

Lemma 21. Let (b, f) be a bound-tight solution for MaxMCF-CC instance IH .
Then W ′ := {v ∈W | bv+ = b̄v+} is an independent set in H. Furthermore, we have
that c(b, f) = |W ′|.

Proof. Assume W ′ is not independent. Hence, there exist two nodes x, y ∈ W ′

such that bx+ = b̄x+ , by+ = b̄y+ , and {x, y} = e ∈ E. Since only exits whose
corresponding edges are contained in δ(x)∪ δ(y) can be supplied by x+ and y+, and
because e ∈ δ(x) ∩ δ(y), it holds that

b̄x+ + b̄y+ =
∑︂

e∈δ(x)∪δ(y)

|be− | ≤ |δ(x) ∪ δ(y)| ≤ δ(x) + δ(y)− 1 < b̄x+ + b̄y+ ,

which is a contradiction. Thus, W ′ is an independent set and

c(b, f) =
∑︂
a∈A1

ℓafa +
∑︂
a∈A2

ℓafa +
∑︂
a∈A3

ℓafa +
∑︂
a∈A4

ℓafa

=
∑︂
a∈A3

fv+v1 =
∑︂
v∈W

fv+v1 =
∑︂
v∈W ′

1 = |W ′|.

Lemma 22. Let W ′ be an independent set in H. Then there exists a bound-tight
solution (b, f) for IH with |W ′| = c(b, f).

Proof. Consider (b, f) defined as

bv :=

⎧⎪⎨⎪⎩
δ(x) if v = x+ ∈ V+ and x ∈W ′

−1 if v = e− ∈ V− and e ∈ δ(W ′)

0 otherwise

and

fa :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ(x)− 1 if a = x+x0 and x ∈W ′

δ(x)−1
δ(x) if a = x0e− and x ∈W ′

1 if a = x+x1 and x ∈W ′

1
δ(x) if a = x1e− and x ∈W ′

0 otherwise.

By construction, (b, f) is feasible, bound-tight and we have c(b, f) = |W ′|.

223



B. Appendix to Chapter 4

Lemma 23. There exists an independent set W ′ of H of size |W ′| = k if and only
if there exists a bound-tight solution (b, f) for IH with c(b, f) = k.

Proof. Given a feasible and bound-tight solution (b, f) for IH with c(b, f) = k,
the induced independent set W ′ from Lemma 21 has size |W ′| = k. Conversely, if
there exists an independent set W ′ of H with size k, by Lemma 22 there exists a
bound-tight solution (b, f) for IH with c(b, f) = k.

Corollary 12. The size of a maximum independent set W ′ of H is |W ′| = k if and
only if an optimal solution (b, f) for IH has objective value c(b, f) = k.

Using the previous results, we can now prove Theorem 4.

Theorem 4. MaxMCF-CC is APX-hard.

Proof. Suppose there exists a PTAS for MaxMCF-CC yielding a (1 − ε)-factor ap-
proximate solution. Let IH = (V,A) be the corresponding MaxMCF-CC instance for
MIS instance H = (W,E) and let k denote the optimal objective value of IH , which is
equal to the size of a maximum independent set in H by Corollary 12. A PTAS would
give us a feasible solution (b, f) for IH with solution value c(b, f) ≥ (1− ε)k. Using
Lemma 19 and Lemma 20, we can determine a bound-tight feasible solution (b̃, f̃)
in polynomial time w.r.t. the number of vertices and edges with c(b̃, f̃) ≥ c(b, f).
Next, by Lemma 21 we can extract an independent set in O(|W |), which has size
at least (1− ε)k. Hence, a (1− ε)-factor PTAS for MaxMCF-CC together with the
algorithms in Lemma 19, Lemma 20, and Lemma 21 would yield a (1 − ε)-factor
PTAS for MIS. Thus, no PTAS for MaxMCF-CC can exist unless P=NP.
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C.1. Detailed Computational Results for LCCP

This appendix contains the detailed results regarding the computational experiments
described and analyzed in Section 5.7.

In Tables C.1 to C.4, we present the results of our experiments regarding the two
MIP approaches for instances with up to 100 vertices. Here, the instance names
are stated in the first column and incorporate the number of vertices, i.e., instance
bayg29 features 29 vertices. For the ATSPLIB instances with the “ftv”-prefix, we
must add one vertex, e.g., ftv33 has 34 vertices. Instance kro124p is an outlier
w.r.t. this nomenclature and features 100 vertices. The second column shows the
percentage of edges that were removed by the preprocessing routine. The size of the
MCV heuristic solution is stated in column UB (MCV heur). Moreover, the lower
bound obtained from a maximum clique in the conflict graph H2 is shown in column
LB (H2-clique). For both MIP approaches, the upper and the lower bound at the
end of the solving processes are stated, which was either reached when the problem
was solved or when the time limit was hit, which is indicated by TL in the column
denoting the respective run times.

In Tables C.5 to C.8, we present the results of the computational experiments
regarding the MCV heuristic on large instances between 100 and 1000 vertices.
Recall that we considered two versions of MCV. First, MCV Enhanced, where we
applied the an TSP algorithm in an intermediate step and and thereby try to directly
decrease the length of current cycle after its creation. Second, MCV Basic, where
we omit this step. The instance names are again stated in the first column and
incorporate the number of vertices, i.e., instance eil101 features 101 vertices. For
the ATSPLIB instances with the “ftv”-prefix, we must add one vertex, i.e., ftv170
has 171 vertices. For both versions of the heuristic, we state the size of the obtained
solutions in the SolVal column and their run times.
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Table C.1.: Results for TSPLIB with critical weights from [ τ
∗

8 ,
τ∗

4 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

burma14 73.6 6 6 6 6 1 6 6 1
ulysses16 54.2 6 5 6 6 1 6 6 1

gr17 70.6 8 7 8 8 1 8 8 1
gr21 67.6 8 6 8 8 4 8 8 3

ulysses22 55.0 7 6 7 7 4 7 7 2
gr24 62.7 7 7 7 7 1 7 7 1
fri26 57.8 8 6 8 8 6 8 8 10

bayg29 58.6 10 7 8 8 42 8 8 23
bays29 58.1 8 6 8 8 36 8 8 21

dantzig42 56.1 9 7 9 9 1552 9 9 575
swiss42 52.4 9 7 9 8 TL 9 9 284
att48 53.6 9 6 8 8 4563 8 8 2893
gr48 48.0 9 5 9 8 TL 9 8 TL
hk48 48.6 10 6 9 8 TL 9 9 14417
eil51 40.9 9 5 9 8 TL 9 9 19242

berlin52 38.8 9 6 9 9 2956 9 9 2260
brazil58 40.9 9 5 8 7 TL 9 7 TL

st70 44.5 10 5 10 7 TL 10 7 TL
eil76 27.4 10 5 10 6 TL 10 6 TL
pr76 32.5 10 6 10 7 TL 10 7 TL
gr96 34.8 10 5 10 6 TL 10 7 TL
rat99 34.5 10 5 10 6 TL 10 6 TL

kroA100 43.3 10 5 10 6 TL 10 5 TL
kroB100 40.0 10 5 10 6 TL 10 6 TL
kroC100 44.1 11 6 11 7 TL 11 6 TL
kroD100 39.6 11 6 11 6 TL 11 6 TL
kroE100 42.3 11 5 11 6 TL 11 6 TL
rd100 36.7 11 5 11 6 TL 11 6 TL
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Table C.2.: Results for TSPLIB with critical weights from [ τ
∗

6 ,
τ∗

2 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

burma14 44.0 5 4 5 5 1 5 5 1
ulysses16 32.5 4 4 4 4 1 4 4 1

gr17 44.9 5 4 5 5 1 5 5 1
gr21 41.0 6 3 5 5 2 5 5 1

ulysses22 28.6 5 4 5 5 4 5 5 1
gr24 20.7 6 4 5 5 11 5 5 3
fri26 32.3 6 5 6 6 87 6 6 9

bayg29 25.4 6 4 5 5 30 5 5 13
bays29 27.6 6 5 6 6 32 6 6 14

dantzig42 28.7 7 4 6 6 20686 6 6 15081
swiss42 18.6 7 4 6 6 13111 6 6 6833
att48 26.5 8 5 6 5 TL 6 6 4939
gr48 18.5 7 4 7 5 TL 7 6 TL
hk48 25.0 7 4 6 6 18843 6 6 3656
eil51 10.0 7 3 7 5 TL 7 5 TL

berlin52 19.9 7 4 7 6 TL 7 6 TL
brazil58 14.7 6 3 6 4 TL 6 5 TL

st70 9.0 7 3 7 5 TL 7 5 TL
eil76 6.5 7 3 7 5 TL 7 5 TL
pr76 7.3 7 3 7 5 TL 7 5 TL
gr96 8.9 7 3 7 5 TL 7 5 TL
rat99 12.1 7 3 7 5 TL 7 5 TL

kroA100 16.2 8 3 8 5 TL 8 5 TL
kroB100 13.0 8 3 8 5 TL 8 5 TL
kroC100 17.3 7 3 7 5 TL 7 5 TL
kroD100 12.8 7 3 7 5 TL 7 5 TL
kroE100 13.7 7 3 7 5 TL 7 5 TL
rd100 9.0 8 4 8 4 TL 8 5 TL

227



C. Appendix to Chapter 5

Table C.3.: Results ATSPLIB with critical weights from [ τ
∗

8 ,
τ∗

4 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

br17 83.8 6 6 6 6 1 6 6 1
ftv33 57.9 9 7 8 8 120 8 8 137
ftv35 53.3 9 6 8 8 205 8 8 149
ftv38 48.2 10 6 9 8 TL 9 9 2614
p43 25.0 4 2 4 3 TL 3 3 1398

ftv44 45.6 9 6 9 8 TL 9 9 3297
ftv47 40.6 11 5 11 8 TL 11 8 TL
ry48p 40.2 9 5 9 8 TL 9 8 TL
ft53 10.7 11 3 11 6 TL 11 6 TL
ftv55 40.3 10 5 10 7 TL 10 7 TL
ftv64 35.6 10 5 10 7 TL 10 7 TL
ft70 0.0 9 1 9 6 TL 9 5 TL
ftv70 29.3 11 5 11 6 TL 11 7 TL

kro124p 16.4 10 3 10 5 TL 10 5 TL

Table C.4.: Results ATSPLIB with critical weights from [ τ
∗

6 ,
τ∗

2 ]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges in % (MCV heur) (H2-clique) (sec) (sec)

br17 67.6 5 5 5 5 1 5 5 1
ftv33 23.9 7 4 7 6 TL 7 6 TL
ftv35 20.0 6 3 5 5 14852 6 5 TL
ftv38 11.7 7 3 7 5 TL 6 5 TL
p43 22.0 3 2 3 3 1 3 3 1

ftv44 11.6 8 3 8 5 TL 8 6 TL
ftv47 14.8 7 3 7 5 TL 7 6 TL
ry48p 14.0 7 3 7 5 TL 7 5 TL
ft53 0.6 7 2 7 4 TL 7 4 TL
ftv55 11.8 8 4 8 5 TL 8 5 TL
ftv64 10.0 8 3 8 5 TL 8 5 TL
ft70 0.0 7 1 7 4 TL 7 4 TL
ftv70 6.6 7 2 7 4 TL 7 5 TL

kro124p 0.6 7 2 7 4 TL 7 4 TL
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Table C.5.: MCV for large TSPLIB instances with critical weights in [ τ
∗

8 ,
τ∗

4 ]

Instance MCV Basic MCV Enhanced

name SolVal time SolVal time(sec)

eil101 11 0.1 9 0.5
lin105 11 0.1 10 0.4
pr107 8 0.1 8 0.4
gr120 12 0.1 10 0.8
pr124 11 0.1 9 1.3
bier127 11 0.2 10 2.0
ch130 12 0.1 10 1.0
pr136 8 0.1 8 0.7
gr137 11 0.1 11 1.0
pr144 10 0.1 10 0.6
ch150 11 0.2 10 1.5
kroA150 10 0.1 10 1.2
kroB150 11 0.2 10 1.3
pr152 9 0.1 9 0.7
u159 11 0.2 10 1.3
si175 9 0.3 9 2.3
brg180 14 0.1 13 0.8
rat195 11 0.4 10 2.4
d198 9 0.6 9 3.6
kroA200 11 0.4 10 3.8
kroB200 10 0.4 10 3.8
gr202 11 0.7 10 9.9
ts225 11 0.5 11 3.3
tsp225 11 0.6 9 4.4
pr226 10 0.4 9 5.1
gr229 12 0.8 10 12.9
gil262 11 1.0 10 9.3
pr264 9 0.7 8 7.3
a280 11 1.1 10 7.9
pr299 11 1.2 10 12.0
lin318 11 1.9 10 13.0
linhp318 11 1.7 10 12.5
rd400 11 3.8 10 33.6
fl417 10 2.9 9 33.0
gr431 11 9.0 10 132.9
pr439 11 5.4 10 56.5
pcb442 11 5.3 10 34.5
d493 10 12.0 9 283.4
att532 11 11.3 10 69.4
ali535 11 13.2 10 431.2
si535 9 9.8 9 61.3
pa561 12 11.6 10 118.5
u574 11 12.3 9 99.8
rat575 11 10.9 10 73.1
p654 11 15.3 9 169.0
d657 12 17.3 10 205.2
gr666 11 24.8 10 220.2
u724 12 21.5 10 206.4
rat783 11 27.9 10 218.6
dsj1000 11 62.9 10 580.1
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Table C.6.: MCV for large TSPLIB instances with critical weights in [ τ
∗

6 ,
τ∗

2 ]

Instance MCV Basic MCV Enhanced

name SolVal time SolVal time(sec)

eil101 8 0.1 7 0.7
lin105 9 0.1 7 1.0
pr107 6 0.1 6 0.5
gr120 8 0.2 7 1.2
pr124 8 0.1 8 2.2
bier127 8 0.3 7 2.4
ch130 7 0.2 7 1.4
pr136 8 0.2 7 1.4
gr137 9 0.2 7 2.2
pr144 8 0.2 8 1.5
ch150 8 0.3 7 2.3
kroA150 9 0.2 8 1.8
kroB150 8 0.2 7 1.8
pr152 7 0.2 7 1.7
u159 8 0.3 7 1.6
si175 7 0.5 6 0.9
brg180 14 0.1 13 0.8
rat195 9 0.6 7 3.4
d198 7 0.9 6 6.7
kroA200 8 0.6 7 4.7
kroB200 8 0.6 7 4.6
gr202 8 1.0 8 9.3
ts225 9 0.8 8 4.1
tsp225 8 0.9 7 5.6
pr226 9 0.7 8 8.9
gr229 8 1.2 7 7.0
gil262 8 1.3 7 10.2
pr264 8 1.3 6 11.9
a280 8 1.7 7 10.8
pr299 9 1.9 8 12.6
lin318 8 2.6 7 26.8
linhp318 8 2.5 7 22.7
logs 8 2.5 7 22.7
rd400 8 4.8 7 39.9
fl417 8 5.4 7 21.9
gr431 8 12.8 7 143.5
pr439 8 8.8 7 72.9
pcb442 8 7.2 7 51.2
d493 8 14.7 7 503.0
att532 8 15.0 7 156.5
ali535 9 21.8 7 277.8
si535 7 12.9 6 67.4
pa561 8 14.7 7 93.4
u574 9 14.0 7 134.8
rat575 8 14.3 8 114.9
p654 9 22.8 7 215.1
d657 9 24.5 7 211.8
gr666 8 34.3 7 625.4
u724 8 26.2 7 298.6
rat783 8 36.2 7 312.1
dsj1000 8 78.4 7 936.1
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C.1. Detailed Computational Results for LCCP

Table C.7.: MCV for large ATSPLIB instances with critical weights in [ τ
∗

8 ,
τ∗

4 ]

Instance MCV Basic MCV Enhanced

name SolVal time SolVal time(sec)

ftv170 14 0.2 13 2.1
rbg323 9 3.6 8 17.0
rbg358 11 5.9 10 29.0
rbg403 8 11.0 6 89.0
rbg443 8 16.8 7 84.7

Table C.8.: MCV for large ATSPLIB instances with critical weights in [ τ
∗

6 ,
τ∗

2 ]

Instance MCV Basic MCV Enhanced

name SolVal time SolVal time(sec)

ftv170 10 0.3 10 2.4
rbg323 7 4.3 6 24.7
rbg358 8 7.0 6 50.8
rbg403 6 13.3 5 115.0
rbg443 6 18.5 5 84.7
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