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Abstract. Droughts affect terrestrial ecosystems directly and
concurrently and can additionally induce lagged effects in
subsequent seasons and years. Such legacy effects of drought
on vegetation growth and state have been widely studied in
tree ring records and satellite-based vegetation greenness,
while legacies on ecosystem carbon fluxes are still poorly
quantified and understood. Here, we focus on two ecosys-
tem monitoring sites in central Germany with a similar cli-
mate but characterised by different species and age struc-
tures. Using eddy covariance measurements, we detect lega-
cies on gross primary productivity (GPP) by calculating the
difference between random forest model estimates of po-
tential GPP and observed GPP. Our results showed that, at
both sites, droughts caused significant legacy effects on GPP
at seasonal and annual timescales, which were partly ex-
plained by reduced leaf development. The GPP reduction due
to drought legacy effects is of comparable magnitude to the
concurrent drought effects but differed between two neigh-
bouring forests with divergent species and age structures.
The methodology proposed here allows the quantification of
the temporal dynamics of legacy effects at the sub-seasonal
scale and the separation of legacy effects from model uncer-

tainties. The application of the methodology at a larger range
of sites will help us to quantify whether the identified lag
effects are general and on which factors they may depend.

1 Introduction

The frequency, intensity, duration, and spatial extent of
drought are expected to increase in the next few decades due
to anthropogenic global warming in many regions (IPCC,
2022). A great number of studies, considering both long-term
observations (Schwalm et al., 2010; Zscheischler et al., 2014)
and model simulations (Reichstein et al., 2007; Sun et al.,
2015) across various spatial scales, have shown that droughts
concurrently impact the structure and function of terrestrial
ecosystems (Assal et al., 2016; Frank et al., 2015; Lewis et
al., 2011; Ma et al., 2015; Orth et al., 2020), potentially turn-
ing ecosystems from sinks to temporary sources of carbon
(Ciais et al., 2005; Reichstein et al., 2013). Therefore, under-
standing the impact of droughts on terrestrial ecosystems is
a key research question in Earth sciences (Piao et al., 2019).
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Drought impacts on terrestrial ecosystems are not lim-
ited to concurrent effects but also include legacy effects dur-
ing the following seasons and years (Anderegg et al., 2015;
Frank et al., 2015; Kannenberg et al., 2020; Müller and Bahn,
2022). Legacy effects at tree and/or stand scale can be caused
by the higher vulnerability to drought due to previous wa-
ter depletion of the soil (Krishnan et al., 2006, Galvagno et
al., 2013), reduced or delayed leaf development (Migliavacca
et al., 2009; Rocha and Goulden, 2010; Kannenberg et al.,
2019), drought-induced hydraulic damage of the xylem (An-
deregg et al., 2013), adjustments in carbon allocation within
the trees (Huang et al., 2021), depletion of non-structural car-
bohydrates (Peltier et al., 2022) due to reduced carbon avail-
ability and adjustments in carbon allocation (Hartman and
Trumbore, 2016), and tree mortality (Allen et al., 2015), as
well as reduced resistance to disturbances (e.g. insect out-
breaks) due to depleted non-structural carbohydrates (Erbil-
gin et al., 2021). However, at the ecosystem level, the im-
pact of species and age structures on legacy effects are still
poorly understood (Haberstroh and Werner, 2022; Wang et
al., 2022).

Tree ring records cover periods from decades to cen-
turies and can cover multiple drought events and are there-
fore widely used to analyse the interannual legacy effects
of drought on tree growth (Anderegg et al., 2015; Huang
et al., 2018; Kannenberg et al., 2019). Beyond the level of
individual trees, satellite-based observations and model out-
puts, as expressed through vegetation greenness (Wolf et al.,
2016; Wu et al., 2018), canopy backscatter (Saatchi et al.,
2013), aboveground carbon stocks (Wigneron et al., 2020),
and gross primary productivity (Schwalm et al., 2017; Bas-
tos et al., 2020), have also been used to study the seasonal
and interannual legacy effects of drought. However, studies
focusing on carbon fluxes, especially based on eddy covari-
ance measurements, are still rare (Kannenberg et al., 2020).
Eddy covariance data with hydrometeorological variables
measured in parallel have the potential to quantify the timing
and magnitude of legacy effects at the sub-seasonal and an-
nual scales and might provide insights into the mechanisms
of legacy effects that might not be fully reflected in vegeta-
tion indices and tree rings.

Assessments of drought impacts on the ecosystem carbon
fluxes usually focus on direct and concurrent effects (Ciais et
al., 2005; Reichstein et al., 2007) without considering legacy
effects. This is probably due to the challenge to attribute sig-
nals in the observations to a previous drought and hence iden-
tify them as legacy effects on ecosystem carbon fluxes (Kan-
nenberg et al., 2020) and the inability of models to reproduce
these legacy effects (Bastos et al., 2021). A number of stud-
ies consider ecosystems to have “recovered” when the target
variable such as gross primary productivity (GPP) and tree
ring width returns to the baseline, which is usually based on
pre-drought values of the target variable (Bose et al., 2020;
González de Andrés et al., 2021; Zhang et al., 2021). How-
ever, this might complicate the detection of legacies, since

GPP recovery dynamics are affected by hydrometeorological
conditions in legacy years, which can either stimulate or slow
down recovery. Here, by estimating potential GPP, given hy-
drometeorological conditions in legacy years, we consider
that “recovery” happens when the actual GPP reaches the po-
tential GPP under the given hydrometeorological conditions
rather than the absolute flux.

Therefore, we aimed to develop a novel approach to quan-
tify drought legacy effects on GPP at sub-seasonal and an-
nual scales. To do this, we followed a residual approach
(Beringer et al., 2007) to identify legacy effects as the resid-
uals between actual and potential GPP, which is estimated
by a machine learning algorithm (specifically, random for-
est regression). Furthermore, it is crucial to understand if the
residuals are caused by model uncertainties or can be inter-
preted as legacy effects. By overlooking model uncertainties,
one could misinterpret small residuals as legacy effects. Here
we quantified model uncertainties to provide more robust es-
timates of drought legacies and avoid misinterpretation of re-
sults. To test our approach, we used eddy covariance mea-
surements at two neighbouring sites that experienced sim-
ilar climate but are characterised by different species and
age structures in central Germany. We asked the following
questions: (1) can we detect drought legacy effects on GPP?
(2) Is the GPP reduction due to drought legacy effects sig-
nificant compared to the magnitude of drought concurrent
effects? (3) How do drought legacy effects on GPP differ
at two neighbouring forests with different species and age
structures?

2 Data

2.1 Study sites

The two neighbouring temperate forest sites studied here,
Hainich (DE-Hai; 51◦04′46′′ N, 10◦27′07′′ E) and Leinefelde
(DE-Lnf; 51◦19′42′′ N, 10◦22′04′′ E), are located in central
Germany, approximately 30 km from each other. These two
sites share similar climate conditions, with a long-term an-
nual mean of 8 ◦C for 2 m air temperature and 750 mm of
total annual precipitation (Tamrakar et al., 2018). Both sites
were affected by the two extreme central European droughts
in 2003 and 2018, which reduced gross primary productivity
(Fu et al., 2020; Herbst et al., 2015).

The forest at Hainich is an old-growth, unevenly aged
(1–250 years), mixed forest dominated by beech (Fagus
sylvatica, representing approximately 64 % of the tree car-
bon stocks). Ash (Fraxinus excelsior, 28 %) and sycamore
(Acer pseudoplatanus, 7 %) are co-dominant tree species,
and additionally, there are few trees of European hornbeam
(Carpinus betulus), Norway maple (Acer platanoides), and
other deciduous species (Knohl et al., 2003). The forest at
Leinefelde can be characterised as a managed, evenly aged
(ca. 130 years), pure beech forest (Anthoni et al., 2004).
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2.2 Eddy covariance and meteorological measurements

Identical eddy covariance instrumental set-ups and data ac-
quisition techniques were carried out at the two sites. The
methodology of data collection and quality control fol-
lowed those of Aubinet et al. (2000). The standard pro-
cessing methods (Pastorello et al., 2020) adopted by the In-
tegrated Carbon Observation System (ICOS) were used to
carry out the gap filling and the partitioning (Warm Win-
ter 2020 Team and ICOS Ecosystem Thematic Centre, 2022).
The GPP estimated from the nighttime partitioning algo-
rithm (Reichstein et al., 2005) was used for the analy-
sis (GPP_NT_VUT_REF). A detailed description of the me-
teorological data and instrumentation can be found in previ-
ous studies (Anthoni et al., 2004; Knohl et al., 2003). We
used daily meteorological data alongside carbon and wa-
ter fluxes, namely GPP, latent heat flux after the energy
balance correction (LE_CORR), which was converted to
evapotranspiration (ET) using the heat of vaporisation, in-
coming shortwave radiation (SW_IN), air temperature (TA),
vapour pressure deficit (VPD), soil water content at the first
layer (SWC_1, 8 cm), the second layer (SWC_2, 16 cm), the
third layer (SWC_3, 32 cm), and potential incoming short-
wave radiation (SW_IN_POT) for the years 2000–2020 at
DE-Hai and 2002–2012, with a gap during 2007–2009, at
DE-Lnf.

Additionally, we used daily enhanced vegetation in-
dex (EVI) data from the FluxnetEO v1.0 dataset (Walther et
al., 2022) for the same years as the eddy covariance data.
EVI was derived from the MCD43A4 product of MODIS,
with a 500 m spatial resolution, and we used an average over
2×2 pixels surrounding the tower. We further estimated daily
transpiration based on the Transpiration Estimation Algo-
rithm (Nelson et al., 2018).

2.3 Radial increment and net primary productivity of
fruits and leaves

The annual radial increment (RI) was calculated from per-
manent band dendrometers which measure changes in stem
girth (or circumference) over bark. The effect, due to the in-
clusion of the shrinkage and swelling of the bark, is a negli-
gible uncertainty for four reasons: (1) we used only the an-
nual increment, (2) the dominant species is beech, which has
only a thin bark, (3) we recorded the final stem diameter of
each year in winter when the water status of the xylem and
the bark is relatively constant and when the stem wood or the
bark are not affected by frost or late/early growth or water up-
take, and (4) in this study, we were interested only in the in-
terannual variability in stem growth, which is less affected by
shrinkage and swelling at the described temporal scale than
absolute growth rates. The dendrometer trees represented the
main species and their respective size classes of the main
footprint at DE-Hai for the years 2003 to 2020. Because of
technical constraints, damages, and a natural dieback of sin-

gle trees, the number of measurement trees per year varied
between 54 and 95. Net primary productivity (NPP) of fruits
for the years 2003 to 2020 and NPP of leaves for the years
2003 to 2016 resulted from litter samplings (25–29 traps)
within the main footprint area of the flux tower. The high
fluctuation of annual fruit NPP is caused by the periodically
high fruit production (masting) of beech (Fagus sylvatica).
In mast years, the proportion of beech fruits (nuts and shells)
amounted to almost 92 % of total fruit mass. At DE-Lnf,
these data are not available. A detailed description of the
measurement and processing methods can be found in a pre-
vious study (Mund et al., 2020).

3 Methodology

3.1 Data processing

As the first step, we filtered and processed the eddy covari-
ance and meteorological data in the following way:

1. To ensure reliable data for our analysis, we used gap-
filled daily data for days for which more than 70 % of
measured and good quality gap-fill data (Reichstein et
al., 2005) were available.

2. We only used data during the growing season, which
was defined as the period when GPP was greater than
10 % of the maximum of GPP as inferred from a
smoothed (centred 7 d moving averages) daily average
GPP across all years.

3. We calculated anomalies of all variables by subtract-
ing the mean seasonal cycle and any significant long-
term linear trend detected by the Mann–Kendall test
(Kendall, 1948), as these can obscure drought-related
signals. We took the mean of each day across all consid-
ered years and then used centred 7 d moving averages to
calculate the mean seasonal cycle.

4. Furthermore, a 7 d moving average smoothing was ap-
plied to the anomaly time series to filter out noise at
daily timescales. We expect this to increase the accuracy
of our model while preserving drought legacy patterns
which rather/better emerge at longer timescales.

As for RI data, we removed, for each individual tree, any
significant long-term linear trend detected using the Mann–
Kendall test (Kendall, 1948).

3.2 Water availability index estimation

Soil moisture at the two study sites was measured only at the
upper 30 cm and thus does not account for water availability
in deeper layers (see Sect. 5.4). Therefore, we used a bucket
model approach, based on observed evapotranspiration and
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precipitation, to estimate a vegetation water availability in-
dex, WAI (Tramontana et al., 2016), calculated as follows:

WAI0 =WAIwam-up (1)
WAIt =min(WAImax,WAIt−1+Pt −ETt ) , (2)

where WAI0 was the initial value of the water availability
index (WAI), and WAIwarm-up was the end value of WAI
from the warm-up of the bucket model (Eq. 1). To warm up
the bucket model, we ran it five times through the first year
before starting the actual computation across all considered
years. WAIt−1 (mm) and WAIt (mm) were WAI at time steps
t − 1 and t , respectively, and Pt (mm) and ETt (mm) were
precipitation and evapotranspiration at time step t (Eq. 2).
We set the bucket size (i.e. WAImax) as the maximum cumu-
lative water deficit (CWD) at each site. The estimated bucket
sizes were 205 and 191 mm at DE-Hai and DE-Lnf, respec-
tively.

Additionally, we calculated the CWD, which was esti-
mated from cumulative differences between observed evap-
otranspiration and precipitation over periods where cumula-
tive net water loss from the soil (6(ET−P )) is positive.

3.3 Drought and legacy years selection

Since legacy effects should result from significant impacts of
droughts on ecosystems, we adopted a combined driver and
impact-based approach to define droughts. Drought years
were defined as those years when both low water availability
and a concurrent biospheric response were found and were
evaluated as follows:

1. First, we selected the minimum of negative GPP anoma-
lies relative to the mean seasonal cycle during the grow-
ing season (minimum GPPanom) as a proxy to reflect the
severity of drought impact on GPP in each year.

2. Then, we calculated the mean WAI anomalies rela-
tive to the mean seasonal cycle for days when mini-
mum GPPanom occurred and the previous 14 d (mean
WAIanom_15) to reflect the water availability during the
development of the GPP anomaly. To identify drought-
related GPP reductions, we considered only years in
which negative GPP anomalies were associated with dry
conditions.

3. Finally, we selected the years with both the lowest min-
imum GPPanom and mean WAIanom_15 (Fig. S1 in the
Supplement). These were 2003 and 2018 at DE-Hai and
2003 at DE-Lnf (2018 data are not available here).

In our data, we define non-legacy years as normal and
drought years, while legacy years correspond to the 2 calen-
dar years following a drought year. Including too few legacy
years could lead to an underestimation of legacy effects, and
too many legacy years would result in the lack of training
data (see Sect. 3.4). As a trade-off, we selected a legacy

period of 2 years, and this choice was justified by the fact
that GPP anomalies residuals returned to the range of model
uncertainties (i.e. 25th–75th percentiles of model residuals),
which is considered as the point when GPP recovers. This
happened in 2005 (see Sect. 4.3), following the 2003 drought
at both sites. For the 2018 drought at DE-Hai, data were only
available up to 2020.

3.4 Quantification of legacy effects on GPP and
transpiration

Here, we followed a residual approach (Beringer et al., 2007)
to detect drought legacy effects on GPP. To do this, we fit-
ted a random forest regression model (RF; Breiman 2001)
for daily GPP anomalies using the anomalies of hydrome-
teorological variables in non-legacy years as predictors. We
chose RF because it has the ability to effectively learn (1) the
relationship between independent and dependent variables
regardless of linear or non-linear relationships and (2) the
interactions between independent variables (Ryo and Rillig,
2017). The model was then used to predict GPP anomalies in
the legacy years, thereby reflecting the potential GPP anoma-
lies given the climate conditions in that year. Specifically, the
approach included the following steps (Fig. 1).

First, all daily data in non-legacy years were used as in-
put for the RF model to determine the relationships between
the anomalies of GPP (GPPanom) and anomalies of hydrome-
teorological variables (SW_INanom, TAanom, VPDanom, and
WAIanom), along with absolute values of SW_IN_POT to
capture seasonal variations in the response of ecosystems
to hydrometeorological conditions. These relationships rep-
resented long-term controls of climate on GPP, including
drought events and near-average or wet conditions. The out-
of-bag (OOB) scores indicating the prediction ability of RF
models were ∼ 0.7 and ∼ 0.8 (where 0 indicates no skill and
1 denotes perfect performance) at DE-Hai and DE-Lnf, re-
spectively (Fig. S2). WAIanom is the most important explana-
tory factor at both sites, followed by SW_INanom at DE-Hai
and the phenological stage (given by SW_IN_POT) at DE-
Lnf (Fig. S3). The randomForest package in R 4.0.3 was
used, and the number of trees, the number of variables ran-
domly sampled as candidates at each split, and the node size
of RF were set to 400, 5, and 5, respectively. Tuning those
hyperparameters did not significantly change our results.

Based on these relationships and the meteorological
anomalies in legacy years, we used the trained RF model to
predict the potential GPPanom in the absence of legacy ef-
fects and calculated the model’s residuals (GPPanom residu-
als; i.e. observed minus predicted values), which should re-
flect legacies from the past drought, where negative residu-
als corresponded to more negative or less positive GPPanom
than would be expected given the meteorological conditions
in that year, indicating negative legacies of drought, while
positive residuals corresponded to less negative or more pos-
itive GPPanom, indicating beneficial legacies of drought. In
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Figure 1. Conceptual diagram of quantification of legacy effects. A random forest (RF) model (or linear regression, represented by the black
cube on the right) was used to determine the relationship between the target variable (GPPanom or RI) and hydrometeorological conditions
using a training dataset that excludes data in all legacy years and one of the non-legacy years for each loop. The legacy effects could be
quantified as the residuals between observed (red line) and modelled (blue line) target variable (i.e. GPPanom, RI, . . . ) in legacy years. And
the residuals between observed and modelled target variable (i.e. GPPanom, RI, . . . ) in all non-legacy years from all loops indicated RF model
uncertainties using a leave-one-out approach (see the text).

order to reduce the noise at the daily scale, daily results were
aggregated to the weekly scale.

To account for model uncertainties and evaluate the signif-
icance of legacy effects, we used a leave-one-out approach to
quantify model uncertainties. In the training phase, one of the
non-legacy years was excluded from the training dataset, and
the trained RF model was then used to predict the GPPanom
in that year. This was done for all non-legacy years, and the
GPPanom residuals in non-legacy years for each leave-one-
out iteration were then considered as model uncertainties. In
order to reduce the noise at the daily scale, all the daily re-
sults were aggregated to the weekly scale.

In order to infer possible legacy effects due to plant hy-
draulic damage, the same method was used to quantify
legacy effects on transpiration (Tr) as estimated by the TEA
(Transpiration Estimation Algorithm) approach (Nelson et
al., 2018). The TEA approach first isolates the periods when
evapotranspiration is most likely dominated by transpiration.
Then, a quantile random forest model (Breiman, 2001; Mein-
shausen and Ridgeway, 2006) is trained during the separated
periods, and transpiration can be estimated at every time step.
More detail can be found in Nelson et al. (2018). We use Tr,
rather than evapotranspiration (ET), because decreases in Tr
due to hydraulic damage could be offset by increased soil
evaporation, making the aggregated ET signal difficult to in-
terpret.

3.5 Quantification of legacy effects on tree growth

To detect legacy effects on tree growth, we used a multivari-
ate linear regression instead of RF to develop the relationship
between tree growth (detrended radial increment – RI) due
to the fewer data points available. We used the following ex-
planatory variables: detrended growing season mean WAI,
detrended growing season mean VPD, detrended growing
season mean SW_IN, and detrended growing season mean
TA for each species. We detrended the time series of all vari-

ables by removing any significant long-term linear trend de-
tected using the Mann–Kendall test (Kendall, 1948). In par-
ticular, the annual net primary productivity of fruits (fruits-
NPP) was added as an additional predictor to only the model
for beech since the high fluctuation of annual fruit NPP could
be caused by the periodically high fruit production (mast-
ing) of beech. We considered fruits-NPP as a predictor to
account for the trade-off between tree growth and reproduc-
tion in mast years, which could also cause the change in tree
growth, in addition to legacy effects, from previous droughts
(Hacket-Pain et al., 2015).

The strategy to quantify legacy effects and model uncer-
tainties was the same as in the case of GPP. We trained the
model in non-legacy years, except for one of them, iteratively
and predicted potential RI in legacy years and the year addi-
tionally excluded. The residuals between observed and po-
tential RI in non-legacy years and legacy years were then
considered as model uncertainties and legacy effects, respec-
tively.

3.6 Separation of legacy effects on GPP due to
structural and physiological effects

Drought legacy effects on GPP might result from changes
in canopy structure (structural effects) and photosynthesis
capacity (physiological effects) (Kannenberg et al., 2019).
Combining GPP and satellite-based EVI allows the sepa-
ration of these structural and physiological effects. To do
this separation, we used the following two model settings:
(1) RF, which was the original setting described in Sect. 3.4
and included both structural and physiological effects, and
(2) RFEVI, which added EVI anomalies as an additional pre-
dictor to the original model and only included physiologi-
cal effects because structural effects were already included
in the predictor EVI anomalies, and GPPanom residuals from
this model were expected to be caused by physiological ef-
fects. Therefore, physiological legacy effects on GPP were
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quantified as GPPanom residuals from RFEVI, while structural
legacies were quantified as the difference between GPPanom
residuals from RF and RFEVI (i.e. RF–RFEVI). The same
method was used to separate structural and physiological ef-
fects of legacy effects on Tr.

3.7 Quantifying concurrent and lagged reduction in
GPP from drought

Additionally, we compared the estimated legacy effects on
GPP to the concurrent drought-induced GPP anomalies.
To compute the concurrent reduction in GPP, we summed
up all GPP anomalies over each identified drought pe-
riod. Here, drought periods were defined as the periods in
which WAIanom was lower than −1 of the standard devia-
tion (WAISD). WAISD was calculated for each day of the year
by using a centred 7 d moving window instead of a single
value over the whole time series because WAISD showed a
seasonality. This definition only relied on the water availabil-
ity, without considering biospheric responses, because WAI
directly indicated the water supply for vegetation, while GPP
could include other factors in addition to drought in short pe-
riods. We quantified the lagged reduction in GPP at the an-
nual scale as the difference between GPPanom residuals in
legacy years and the median of the model uncertainties. To
compare the reduction in GPP across sites, both concurrent
and lagged values were normalised relative to the averaged
total GPP over the growing season.

4 Results

4.1 GPP time series in drought and legacy years

In Fig. 2, we show the measured absolute GPP time series
in the selected drought (2003 and 2018) and legacy years
(2004, 2005, 2019, and 2020), together with the long-term
median, 25th–75th, and 5th–95th percentiles GPP at DE-Hai
and DE-Lnf. In the drought year 2003, GPP was significantly
lower than the baseline, defined as the 25th percentile GPP,
during July–September at DE-Hai and July–August at DE-
Lnf, respectively. In the post-drought years 2004 and 2005,
there was no systematic decrease in GPP at DE-Hai, while
GPP at DE-Lnf was slightly lower than the baseline during
June–August 2004. During the 2018 drought, GPP signifi-
cantly differed from the baseline during June–September at
DE-Hai. After the 2018 drought, we could not find any sys-
tematic decrease in GPP in 2019, while GPP was consistently
lower than the baseline from mid-May to September 2020 at
DE-Hai.

4.2 Drought legacy effects on GPP: seasonal patterns

At the seasonal scale, residuals of GPP anomalies (GPPanom
residuals) showed significant departures from model uncer-
tainties at both sites (Fig. 3). After the 2003 drought at DE-

Hai, we found negative residuals below the 25th percentile
of model residuals in non-legacy years (model uncertainties)
during the early and late growing season of 2004 (April–July
and September) and May–June 2005 and below the 5th per-
centile for short periods in April and May 2004 and May
2005. After June 2005, residuals were mostly within 5 %–
95 % of the model residuals. After the 2018 drought at DE-
Hai, we found negative residuals (below the 25th percentile
of model residuals) during May, June, August, and Septem-
ber 2019. In 2020, residuals showed a persistent decrease
from May to July and generally stayed well below the 5th
and 25th percentile of model residuals from mid-May until
July and September, respectively.

After the 2003 drought at DE-Lnf, we found that per-
sistent negative residuals were below the 25th percentile of
model residuals over almost the complete growing season
(from May to October) in 2004 and below the 5th percentile
of model residuals for periods in June–September. In 2005,
residuals remained mostly within 25th–75th percentiles of
model residuals.

4.3 Drought legacy effects on GPP: annual patterns

There were systematic departures of integrated residuals of
GPP anomalies in legacy years from model uncertainties at
the annual scale (Fig. 4), although the seasonal patterns var-
ied (Fig. 3). After the 2003 drought at DE-Hai, integrated
residuals in 2004 were significantly below the 25th percentile
of model residuals, while integrated residuals were within
the 25th–75th percentiles of model residuals in 2005. After
the 2018 drought, integrated residuals in 2019 were near the
25th percentiles of model residuals, while in 2020, integrated
residuals were far below the 25th percentile of model residu-
als.

At DE-Lnf, after the 2003 drought, integrated residuals in
2004 were below the 25th percentile of residuals in non-
legacy years, while integrated residuals almost remained
within the 25th–75th percentiles of the model residuals in
2005.

4.4 Drought legacy effects on GPP due to structural
and physiological effects

At the seasonal scale, residuals of GPP anomalies from
RFEVI (ResEVI) showed significant departures from GPPanom
residuals from RF (Res) over some periods at both sites
(Fig. 5). At DE-Hai, we found ResEVI was above Res in
the early growing season (April–May) of 2004, 2005, 2019,
and 2020 and also in the late growing season of 2004
(August–October) and 2019 (August–September). After the
2003 drought, we found negative ResEVI below the 25th per-
centile of the model residuals from RFEVI in non-legacy
years (model uncertainties) during the early and late grow-
ing season of 2004 (May–July and September) and May of
2005 and below the 5th percentile for short periods in May of
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Figure 2. Daily GPP in the selected drought and legacy years at (a) DE-Hai 2003, (b) DE-Hai 2018, and (c) DE-Lnf 2003, showing the
droughts and following legacy years, respectively. Coloured points and lines show the original and smoothed (7 d average) GPP, respectively,
in drought and legacy years. The grey lines and shaded areas show the median, 25th–75th (dark grey), and 5th–95th (light grey) percentiles
of GPP, respectively, over non-drought and non-legacy years. The shaded coral areas indicate the average growing seasons of DE-Hai and
DE-Lnf.

2005. After the 2018 drought, we found negative ResEVI (be-
low 25th percentile of model residuals) during June 2019. In
2020, ResEVI showed a persistent decrease from May to July
and generally stayed well below the 5th and 25th percentile
of model residuals from mid-May until July and September,
respectively.

At DE-Lnf, ResEVI was below Res from April to mid-May
and significantly above Res almost over the growing season
of 2004 (from mid-May to September). We found negative
ResEVI below the 25th percentile of model residuals from
RFEVI in non-legacy years (model uncertainties) during June,
August, and September 2004 and below the 5th percentile for
short periods in June and September 2004.

4.5 Drought legacy effects on radial increment

To complement the analysis of the legacy effects on GPP at
the seasonal and annual scales, we also evaluated legacy ef-
fects on tree growth at the annual scale (Fig. 6). RI of Fa-
gus sylvatica was below the 25th percentile of model resid-
uals in the post-drought year 2004 and returned to the 25th–

75th percentiles of model residuals in 2005. For species of
Acer pseudoplatanus, Fraxinus excelsior, and others, residu-
als of RI were almost within 25th–75th percentiles of model
residuals in 2004 and 2005. After the 2018 drought, RI of
all species for 2019 and 2020 was almost within or close to
25th–75th percentiles of model residuals.

4.6 Concurrent and lagged reduction in GPP

Finally, we compared the concurrent impacts on GPP with
the lagged impacts due to drought (Fig. 7). We found that, at
DE-Hai, the concurrent reduction in GPP was 9.4 % relative
to averaged total GPP over the growing season (hereinafter)
in 2003, while 6.1 %–12.3 % indirectly reduced in 2004. And
in 2018, the concurrent reduction in GPP was 21.0 %, while
3.5 %–10.0 % and 23.5 %–29.6 % indirectly reduced in 2019
and 2020, respectively. At DE-Lnf, the concurrent reduction
in GPP was negligible in 2003 (2.2 %), while we estimated
a 14.4 %–24.8 % GPP reduction in 2004, which was higher
than the corresponding values at DE-Hai in the same year.
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Figure 3. Residuals of GPP anomalies at the seasonal scale in
legacy years at (a) DE-Hai and (b) DE-Lnf. Residuals of GPP
anomalies were characterised by observed minus predicted GPP
anomalies (GPPanom residuals). The coloured lines and bands show
the median and 5th–95th percentile GPPanom residuals of ensemble
model runs (see Sect. 3.4), respectively. Negative residuals corre-
sponded to more negative or less positive GPPanom than would be
expected given the climate in that year, indicating negative lega-
cies of drought, while positive residuals corresponded to less neg-
ative or more positive GPPanom, indicating beneficial legacies of
drought. The model uncertainties (dark and light grey shaded areas,
respectively) are characterised by the 25th–75th and 5th–95th quan-
tile ranges of GPPanom residuals in non-legacy years. The black line
represents the median of GPPanom residuals in non-legacy years.
The ticks denote the start of each month.

5 Discussion

5.1 A novel methodology to detect drought legacy
effects on GPP

There is limited research on discovering the legacy effects
of drought on the ecosystem carbon cycle using eddy co-
variance observations (Kannenberg et al., 2019). Here, we
propose a residual-based methodology using a random for-
est regression model to detect legacy effects on GPP and
found significant legacy effects on GPP using eddy covari-
ance data at two forests in central Germany with the simi-
lar climate but with different age and species composition.
There are three advantages to our methodology: (1) captur-
ing the temporal dynamics of legacy effects at the seasonal
scales, (2) separating the influence of meteorological condi-
tions during the post-drought period on recovery rates, and
(3) estimating model uncertainties to avoid misinterpreting
small residuals as “legacy effects”.

Figure 4. Integrated residuals of GPP anomalies at the annual scale
in legacy years at DE-Hai and DE-Lnf. The coloured points and
line ranges show the median and 5 %–95 % percentile integrated
GPPanom residuals of the ensemble model runs (see Sect. 3.4), re-
spectively. The model uncertainties (the box plot) are characterised
as the 25th–75th quantile range of integrated GPPanom residuals in
non-legacy years.

First, because we used measurements with a high temporal
resolution (daily), legacy effects could be determined across
different timescales. Previous studies based on tree ring or
satellite greenness data have mainly focused on legacy ef-
fects at the annual scale (Anderegg et al., 2015; Wu et al.,
2018) or monthly scale (Bastos et al., 2021), but the legacies
can be more ephemeral, for example, if they appear only in
critical periods of the growing season, as we have found here.
Such temporally confined effects may not necessarily man-
ifest themselves at the annual scale. For example, after the
2003 drought, the annual GPP at DE-Hai in 2005 was close
to normal, which was the 25th percentile of model residu-
als here, but we found short legacies at the seasonal scale
(Fig. 3).

Second, recovery is usually considered when the target
variable (i.e. GPP, tree ring width, etc.) returns to the base-
line, which is usually based on pre-drought values of the tar-
get variable (Bose et al., 2020; González de Andrés et al.,
2021; Zhang et al., 2021). However, meteorological condi-
tions during the recovery period will modulate recovery rates
so that recovery can be delayed, for example, if a drought is
followed by other unfavourable climatic conditions. Hence,
the evaluation of possible legacy effects should be based on
the functional relations between the target variable and me-
teorological conditions. Our model takes this into account by
considering that ecosystems recovered when observed GPP
reaches the potential GPP when given the meteorological
conditions rather than the absolute flux.

Finally, our approach allows the determination of the un-
certainties in estimated legacy effects. Previous studies (An-
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Figure 5. Residuals of GPP anomalies from RF and RFEVI (see
Sect. 3.6) in legacy years at (a) DE-Hai and (b) DE-Lnf. Resid-
uals of GPP anomalies are characterised by observed minus pre-
dicted GPP anomalies (GPPanom residuals). The coloured lines and
bands show the median and 5th–95th percentile GPPanom residuals
of ensemble model runs (see Sect. 3.4), respectively. The solid and
dashed lines show the residuals based on RF and RFEVI, respec-
tively. The model uncertainties from RFEVI (dark and light grey
shaded areas, respectively) are characterised by the 25th–75th and
5th–95th quantile ranges of GPPanom residuals in non-legacy years.
The black dashed line was the median of GPPanom residuals from
RFEVI in non-legacy years. The ticks denote the start of each month.
Figure S4 shows the results for April–June and August–October at
DE-Hai in more detail.

Figure 6. Residuals of RI in legacy years at DE-Hai across species.
Residuals of RI are characterised as observed minus predicted RI
anomalies (RI residuals). The model uncertainties (the grey area)
are characterised as the 25th–75th quantile range of RI residuals in
non-legacy years.

Figure 7. Concurrent (dashed black bars) and lagged (coloured
bars) reduction in GPP from the 2003 and 2018 droughts at (a) DE-
Hai and (b) DE-Lnf. Concurrent impacts in GPP were quantified
as the sum of GPP anomalies over drought periods in drought years
relative to averaged total GPP over the growing season (see Sect. 3).
Lagged impacts in GPP are characterised as the difference between
GPPanom residuals in legacy years and median of the model un-
certainties relative to averaged total GPP over the growing season.
Coloured bars and error bars show the median and 5 %–95 %, re-
spectively, of lagged reduction in GPP from ensemble model runs.

deregg et al., 2015; Huang et al., 2018) quantified legacy
effects as the residuals between observed and predicted tar-
get variables (i.e. tree ring width, vegetation indices, etc.) in
legacy years but were not able to consider uncertainties of
their trained models. Yet, it is crucial to understand if the
residuals are caused by model uncertainties or can be inter-
preted as legacy effects. In this study, legacy effects are iden-
tified only when the model residuals are outside the range
of the model uncertainties so that we are confident that the
legacies reported here are significant and avoid interpreting
residuals caused by model error as legacy effects. A limita-
tion of our approach is that we have to assume that there are
no legacy effects in the climate system because this would
potentially bias the interpretation of the residuals.

The methodology we proposed is able to detect the legacy
effects of drought on GPP and can be easily applied to other
eddy covariance sites and variables (i.e. evapotranspiration,
transpiration, etc.) in order to improve our understanding of
drought legacy effects on the ecosystem carbon cycle at dif-
ferent timescales.

5.2 Seasonal and annual legacy drought impacts on
GPP

We found that residuals of GPP anomalies (GPPanom residu-
als) in legacy years were significantly larger than model un-
certainties at both seasonal and annual scales at both sites,
which indicated the strong legacy effects of drought on GPP
at least in the 2 years following the drought events.

We found negative legacies on GPP (reduced uptake) in
the early growing season of all legacy years (2004, 2005,
2019, and 2020) at DE-Hai. Reduced and delayed leaf de-
velopment due to the physiological effects of the 2003 and
2018 droughts (e.g. metabolic damage and non-structural
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carbohydrates depletion) could result in reduced ecosystem-
level photosynthesis (Migliavacca et al., 2009; Rocha and
Goulden, 2010; Kannenberg et al., 2019) and could poten-
tially explain negative legacies on GPP at the start of the
growing season. In line with this hypothesis, we found that
the enhanced vegetation index (EVI, a proxy of leaf area in-
dex; Figs. S5 and S6) at the sites showed lower values than
other years in the early growing seasons of 2004, 2005, and
2019, and this delayed the spring phenology that propagated
over the years of 2004 and 2019 with a shift of seasonality.
We found consistently lower values of NPP allocated to fo-
liage growth in 2004 than other years (Fig. S7). Furthermore,
the detected negative legacies in the early growing season be-
came smaller when adding EVI anomalies as an additional
predictor in the random forest model (Fig. 5), indicating that
the reduced and delayed leaf development partly explained
the estimated legacy effects by the RF model trained with
climate predictors only.

Another possible mechanism explaining legacy effects
could be hydraulic damage induced by drought (Anderegg
et al., 2013) and, therefore, insufficient ability of water trans-
port limiting sink strength (Körner, 2015) and photosynthetic
capacity (Chen et al., 2010), at least until the damage is
repaired. If this was the case, then the transpiration fluxes
should be reduced. However, we did not find similar neg-
ative legacy patterns on transpiration in the early growing
season (Fig. S8a). Therefore, hydraulic damage did not seem
a likely cause of drought legacies on GPP for these events.
Overall, we cannot pinpoint the physiological causes of the
detected legacy effects due to the limited availability of mea-
surements. This calls for establishing more plant physiolog-
ical measurements complementing eddy covariance and RI
measurements to capture sufficient information about plant
water relations, such as sap flow (Poyatos et al., 2021), tree
water deficit (Nehemy et al., 2021), and carbon allocation
(Hartmann et al., 2020), to provide a more detailed process
understanding of the mechanisms underlying drought legacy
effects.

Negative legacies on GPP in terms of lagged reduction in
GPP in 2004 at DE-Lnf (14.4 %–24.8 %) were stronger than
those at DE-Hai (6.1 %–12.3 %) in the seasonal and annual
scales. The persistence of negative legacies throughout the
full growing season in 2004 indicates that the 2003 drought
likely caused stronger damage, especially reduced leaf de-
velopment, which was supported by largely reduced negative
legacies of RFEVI with EVI comparing to RF without EVI
(Fig. 5), on the ecosystem at DE-Lnf than that at DE-Hai.
From the community-level perspective, the stronger legacy
effects found at DE-Lnf compared to DE-Hai may have been
partly related to differences in forest composition between
the two sites (Tamrakar et al., 2018; Pardos et al., 2021).
Measurements of GPP at tree species level were not avail-
able; therefore, we relied on the legacies found for RI (re-
flecting growth) that were available for individual trees at
DE-Hai. It should be noted, though, that the relationship be-

tween GPP and growth is complex (Fatichi et al., 2014). Neg-
ative legacy effects on RI of Fagus sylvatica, dominating at
DE-Hai, in 2004, were found, whereas other co-dominating
species (Acer pseudoplatanus and Fraxinus excelsior) did not
show negative legacies. Therefore, the lower resilience of
Fagus sylvatica compared to other species may have partly
resulted in stronger negative legacies at the pure European
beech forest at DE-Lnf than at DE-Hai. In addition, contrast-
ing legacy effects of these two sites could also be associated
with different age classes and the absolute stand age since
the effects of stand age modulating the heat and drought im-
pact on carbon exchange (Arain et al., 2022) and ecosystem-
level photosynthetic capacity (Musavi et al., 2017) have been
recognised. However, the evidence of species diversity and
age structure effects on legacy effects needs to be further ex-
plored using more sites in future.

Stronger negative legacy effects on GPP in 2020 than those
in other legacy years were found at DE-Hai in the seasonal
and annual scales. This might be associated with significant
tree mortality in the whole forest, including the main foot-
print in the period 2018–2020 (about 6 % yr−1 between 2017
and 2020 compared to less than 1 % yr−1 between 2005 and
2017) mainly caused by Storm David in January 2018 and
the heat and/or drought in summer 2018 and 2019 (unpub-
lished data). RI of Fagus sylvatica in 2020 showed slightly
positive legacy effects in growth, since only living trees were
sampled. This might be explained by the favourable weather
conditions in winter/spring 2019/2020 associated with high
mineralisation rates and reduced competition for nutrients,
light, and water of the surviving trees (Grossiord, 2020). The
RI data reflected mean growth signals from individual sur-
viving trees, while the GPP data reflected mean carbon as-
similation at stand level, including positive, negative, or ab-
sent legacy effects at individual tree level and the reduction
in assimilating individuals due to higher tree mortality.

Overall, we found that the lagged impacts of drought on
GPP are significant compared with concurrent drought im-
pacts at the two sites studied here. The lagged reduction in
GPP resulting from drought is usually not quantified (Ciais et
al., 2005; Reichstein et al., 2007), perhaps because separating
legacy effects on ecosystem carbon fluxes from observations
is challenging (Kannenberg et al., 2019), and process-based
models have been shown to miss such legacy effects (Bas-
tos et al., 2021). This implies that the impact of droughts on
ecosystem carbon cycling in most studies might be underes-
timated.

5.3 Importance of deep root zone soil moisture data

Deep root zone soil moisture has been recognised as be-
ing an important water source for vegetation, especially dur-
ing droughts (Miguez-Macho and Fan, 2021; Werner et al.,
2021). Although soil moisture measurements across three
soil layers are available at both sites, the deepest depth
(ca. 30 cm) cannot capture the entire soil water reservoir
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available for European beech, which has been observed
to have non-negligible amounts of fine roots below 30 cm
across different sites (Leuschner et al., 2004; Gessler et al.,
2022).

We tested an initial model using anomalies of soil moisture
at three layers as predictors (RFSM) and found strong positive
legacy effects in the late growing season in 2019 at DE-Hai
(Fig. S9), which, however, could not be reproduced by any of
the models using soil moisture information from deeper lay-
ers (Fig. S9), including the local water balance (WAI, CWD)
and the reanalysis data (ERA5). Comparing the predicted
time series of GPPanom of the RFSM model with observa-
tions, we found the predicted GPPanom became much more
negative in the late growing season, while observed GPPanom
were close to zero (Fig. S10). Therefore, although soil mois-
ture anomalies in the third layer (30 cm) were largely neg-
ative when the positive residuals appeared (Fig. S11), soil
moisture from layers deeper than 30 cm may maintain the
water supply for photosynthesis. Also, we found the evapo-
transpiration from the shallow layers (0–30 cm) estimated by
the soil moisture decrease was less than the observed evapo-
transpiration during dry-down periods (Fig. S12), which in-
dicated plant water uptake from layers deeper than 30 cm
during dry-down periods, in line with our hypothesis. In
summary, these positive patterns are likely due to model er-
rors from incomplete information on the soil moisture profile
rather than actual positive legacy effects.

These results highlight the importance of soil moisture
measurements that capture the entire root zone for more reli-
able understanding of ecosystem functioning, particularly in
the case of drought legacy effects.

6 Conclusions

The frequency, intensity, duration, and spatial extent of
droughts are expected to increase in the next few decades
due to anthropogenically caused global warming in many re-
gions (IPCC, 2022). Drought not only impacts ecosystems
concurrently but also can have legacy effects on ecosystem
carbon fluxes. We developed a residual-based approach us-
ing a random forest regression model to detect drought lega-
cies on gross primary productivity (GPP) using eddy covari-
ance data. The methodology proposed here allows the quan-
tification of significant drought legacy effects on GPP at the
sub-seasonal and annual scales. The GPP reduction due to
drought legacy effects is of comparable magnitude to the
concurrent drought effects at the studied sites, which con-
firms the importance of legacy effects. We found contrast-
ing legacy effects at two neighbouring forests with different
species and age structures, yet the importance of these factors
could not be evaluated. Future studies across a larger range
of sites will be needed to understand whether the crucial role
of legacy effects is general and on which mediating factors
they depend.
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F. M., Tor-ngern, P., Urban, J., Valladares, F., van der Tol, C.,
van Meerveld, I., Varlagin, A., Voigt, H., Warren, J., Werner, C.,
Werner, W., Wieser, G., Wingate, L., Wullschleger, S., Yi, K.,
Zweifel, R., Steppe, K., Mencuccini, M., and Martínez-Vilalta,
J.: Global transpiration data from sap flow measurements: the
SAPFLUXNET database, Earth Syst. Sci. Data, 13, 2607–2649,
https://doi.org/10.5194/essd-13-2607-2021, 2021.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet,
M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,
Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Mat-
teucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen,
J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert,
G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On
the separation of net ecosystem exchange into assimilation and
ecosystem respiration: review and improved algorithm, Glob.
Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-
2486.2005.001002.x, 2005.

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S.,
Viovy, N., Cramer, W., Granier, A., Ogée, J., Allard, V., Aubi-
net, M., Bernhofer, C., Buchmann, N., Carrara, A., Grünwald,

Biogeosciences, 19, 4315–4329, 2022 https://doi.org/10.5194/bg-19-4315-2022

https://doi.org/10.1002/2015JG003144
https://doi.org/10.1016/j.agrformet.2009.04.003
https://doi.org/10.1038/s41586-021-03958-6
https://doi.org/10.1111/gcb.16270
https://doi.org/10.1111/nph.16408
https://doi.org/10.1038/s41559-016-0048
https://doi.org/10.1002/hyp.14004
https://doi.org/10.1029/2018JG004727
https://doi.org/10.5194/bg-17-2647-2020
https://doi.org/10.1016/j.foreco.2020.118687
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1093/treephys/tpab091
https://doi.org/10.1007/s11430-018-9363-5
https://doi.org/10.5194/essd-13-2607-2021
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1111/j.1365-2486.2005.001002.x


X. Yu et al.: Contrasting drought legacy effects on GPP in a mixed vs. pure beech forest 4329

T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau,
D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pile-
gaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G.,
Soussana, J.-F., Sanz, M.-J., Vesala, T., and Zhao, M.: Reduction
of ecosystem productivity and respiration during the European
summer 2003 climate anomaly: a joint flux tower, remote sens-
ing and modelling analysis, Glob. Change Biol., 13, 634–651,
https://doi.org/10.1111/j.1365-2486.2006.01224.x, 2007.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D.,
Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N.,
Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K.,
van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.:
Climate extremes and the carbon cycle, Nature, 500, 287–295,
https://doi.org/10.1038/nature12350, 2013.

Rocha, A. V. and Goulden, M. L.: Drought legacies in-
fluence the long-term carbon balance of a freshwa-
ter marsh, J. Geophys. Res.-Biogeo., 115, G00H02,
https://doi.org/10.1029/2009JG001215, 2010.

Ryo, M. and Rillig, M. C.: Statistically reinforced machine learn-
ing for nonlinear patterns and variable interactions, Ecosphere,
8, e01976, https://doi.org/10.1002/ecs2.1976, 2017.

Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragão, L. E.
O. C., Anderson, L. O., Myneni, R. B., and Nemani,
R.: Persistent effects of a severe drought on Amazonian
forest canopy, P. Natl. Acad. Sci. USA, 110, 565570,
https://doi.org/10.1073/pnas.1204651110, 2013.

Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal,
D., Buchmann, N., Chen, J., Law, B. E., Lindroth, A., Luys-
saert, S., Reichstein, M., and Richardson, A. D.: Assimilation ex-
ceeds respiration sensitivity to drought: A FLUXNET synthesis,
Glob. Change Biol., 16, 657–670, https://doi.org/10.1111/j.1365-
2486.2009.01991.x, 2010.

Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher,
J. B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J.
D., Wolf, A., Huntzinger, D. N., Schaefer, K., Cook, R., Wei,
Y., Fang, Y., Hayes, D., Huang, M., Jain, A., and Tian, H.:
Global patterns of drought recovery, Nature, 548, 202205,
https://doi.org/10.1038/nature23021, 2017.

Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., and
Zhang, Y.: Drought impacts on ecosystem functions of the U.S.
National Forests and Grasslands: Part II assessment results and
management implications, Forest Ecol. Manage., 353, 269–279,
https://doi.org/10.1016/j.foreco.2015.04.002, 2015.

Tamrakar, R., Rayment, M. B., Moyano, F., Mund, M., and
Knohl, A.: Implications of structural diversity for sea-
sonal and annual carbon dioxide fluxes in two temper-
ate deciduous forests, Agr. Forest Meteorol., 263, 465–476,
https://doi.org/10.1016/j.agrformet.2018.08.027, 2018.

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls,
G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely,
G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and
Papale, D.: Predicting carbon dioxide and energy fluxes across
global FLUXNET sites with regression algorithms, Biogeo-
sciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-
2016, 2016.

Walther, S., Besnard, S., Nelson, J. A., and Weber, U.:
Supplementary data to Walther et al. (2021), A view
from space on global flux towers by MODIS and Land-
sat: The FluxnetEO dataset (Landsat) (Version 1.0). ICOS

ERIC – Carbon Portal, https://doi.org/10.18160/0Z7J-J3TR,
2021 (data available at https://meta.icos-cp.eu/collections/
TVBRaxjolfakaoov-JTup4pe, last access: 12 May 2021).

Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migli-
avacca, M., Weber, U., Carvalhais, N., Ermida, S. L., Brümmer,
C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.:
Technical note: A view from space on global flux towers by
MODIS and Landsat: the FluxnetEO data set, Biogeosciences,
19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 2022.

Wang, B., Chen, T., Li, C., Xu, G., Wu, G., and Liu, G.:
Discrepancy in growth resilience to drought among differ-
ent stand-aged forests declines going from a semi-humid re-
gion to an arid region, Forest Ecol. Manage., 511, 120135,
https://doi.org/10.1016/j.foreco.2022.120135, 2022.

Warm Winter 2020 Team and ICOS Ecosystem Thematic Cen-
tre: Warm Winter 2020 ecosystem eddy covariance flux
product for 73 stations in FLUXNET-Archive format – re-
lease 2022-1 (Version 1.0), ICOS Carbon Portal [data set],
https://doi.org/10.18160/2G60-ZHAK, 2022.

Werner, C., Meredith, L. K., Ladd, S. N., Ingrisch, J., Kübert, A.,
van Haren, J., Bahn, M., Bailey, K., Bamberger, I., Beyer, M.,
Blomdahl, D., Byron, J., Daber, E., Deleeuw, J., Dippold, M.
A., Fudyma, J., Gil-Loaiza, J., Honeker, L. K., Hu, J., Huang,
J., Klüpfel, T., Krechmer, J., Kreuzwieser, J., Kühnhammer,
K., Lehmann, M. M., Meeran, K., Misztal, P. K., Ng, W.-R.,
Pfannerstill, E., Pugliese, G., Purser, G., Roscioli, J., Shi, L.,
Tfaily, M., and Williams, J.: Ecosystem fluxes during drought
and recovery in an experimental forest, Science, 374, 1514–1518,
https://doi.org/10.1126/science.abj6789, 2021.

Wigneron, J.-P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave,
J., Saatchi, S., Baccini, A., and Fensholt, R.: Tropical forests did
not recover from the strong 20152016 El Niño event, Sci. Adv.,
6, eaay4603, https://doi.org/10.1126/sciadv.aay4603, 2020.

Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai,
A. R., Richardson, A. D., Scott, R. L., Law, B. E., Litvak,
M. E., Brunsell, N. A., Peters, W., and van der Laan-Luijkx,
I. T.: Warm spring reduced carbon cycle impact of the 2012
US summer drought, P. Natl. Acad. Sci. USA, 113, 58805885,
https://doi.org/10.1073/pnas.1519620113, 2016.

Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., Zhang, C.,
Magliulo, V., Pavelka, M., Liu, S., Huang, Y., Wang, P., Shi, C.,
and Ma, Y.: Differentiating drought legacy effects on vegetation
growth over the temperate Northern Hemisphere, Glob. Change
Biol., 24, 504–516, https://doi.org/10.1111/gcb.13920, 2018.

Zhang, S., Yang, Y., Wu, X., Li, X., and Shi, F.: Post-
drought Recovery Time Across Global Terrestrial Ecosys-
tems, J. Geophys. Res.-Biogeo., 126, e2020JG005699,
https://doi.org/10.1029/2020JG005699, 2021.

Zscheischler, J., Mahecha, M. D., Buttlar, J. von, Harmeling,
S., Jung, M., Rammig, A., Randerson, J. T., Schölkopf, B.,
Seneviratne, S. I., Tomelleri, E., Zaehle, S., and Reichstein, M.:
A few extreme events dominate global interannual variability
in gross primary production, Environ. Res. Lett., 9, 035001,
https://doi.org/10.1088/1748-9326/9/3/035001, 2014.

https://doi.org/10.5194/bg-19-4315-2022 Biogeosciences, 19, 4315–4329, 2022

https://doi.org/10.1111/j.1365-2486.2006.01224.x
https://doi.org/10.1038/nature12350
https://doi.org/10.1029/2009JG001215
https://doi.org/10.1002/ecs2.1976
https://doi.org/10.1111/j.1365-2486.2009.01991.x
https://doi.org/10.1111/j.1365-2486.2009.01991.x
https://doi.org/10.1038/nature23021
https://doi.org/10.1016/j.foreco.2015.04.002
https://doi.org/10.1016/j.agrformet.2018.08.027
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.18160/0Z7J-J3TR
https://meta.icos-cp.eu/collections/TVBRaxjolfakaoov-JTup4pe
https://meta.icos-cp.eu/collections/TVBRaxjolfakaoov-JTup4pe
https://doi.org/10.5194/bg-19-2805-2022
https://doi.org/10.1016/j.foreco.2022.120135
https://doi.org/10.18160/2G60-ZHAK
https://doi.org/10.1126/science.abj6789
https://doi.org/10.1126/sciadv.aay4603
https://doi.org/10.1073/pnas.1519620113
https://doi.org/10.1111/gcb.13920
https://doi.org/10.1029/2020JG005699
https://doi.org/10.1088/1748-9326/9/3/035001

	Abstract
	Introduction
	Data
	Study sites
	Eddy covariance and meteorological measurements
	Radial increment and net primary productivity of fruits and leaves

	Methodology
	Data processing
	Water availability index estimation
	Drought and legacy years selection
	Quantification of legacy effects on GPP and transpiration
	Quantification of legacy effects on tree growth
	Separation of legacy effects on GPP due to structural and physiological effects
	Quantifying concurrent and lagged reduction in GPP from drought

	Results
	GPP time series in drought and legacy years
	Drought legacy effects on GPP: seasonal patterns
	Drought legacy effects on GPP: annual patterns
	Drought legacy effects on GPP due to structural and physiological effects
	Drought legacy effects on radial increment
	Concurrent and lagged reduction in GPP

	Discussion
	A novel methodology to detect drought legacy effects on GPP
	Seasonal and annual legacy drought impacts on GPP
	Importance of deep root zone soil moisture data

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

