Skip to main content
Log in

Rotating Disk Sorptive Extraction of Cu-Bisdiethyldithiocarbamate Complex from Water and Its Application to Solid Phase Spectrophotometric Quantification

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study demonstrates the first use of polydimethylsiloxane (PDMS) immobilized on a rotating disk for the extraction of copper from aqueous matrices and its subsequent direct determination by solid phase UV-Visible spectrophotometry. To accomplish the solid-phase extraction and the direct solvent-free spectrophotometric measurement, sodium diethyldithiocarbamate (NaDDTC) was used as an analytical reagent to form the uncharged chromophore complex Cu(DDTC)2, which absorbs at 432 nm. Different physicochemical conditions (pH, temperature, reagent concentration, chemical modifiers) and hydrodynamic factors (rotation velocity, extraction time, sample volume) were optimized. Under the optimized conditions, extraction equilibrium times of 30, 53 and 90 min were obtained for 100, 500 and 1000 mL of sample, respectively, with preconcentration factors of 286, 712 and 1284, respectively. The methodology was precise (repeatability and reproducibility of 7.2 and 8.4%, respectively, as relative standard deviation) and accurate (recovery of 96.7%) when analyzing a multielement certified reference standard. The latter study also confirmed the high selectivity of the extraction and determination of the copper chromophore over other metal ions. The obtained limits of detection and quantification reached values lower than 12 μg L−1, which can be reduced further by increasing the sample volume. Accuracy was also assessed using both recovery tests on drinking water matrices (95.5% recovery) and comparison with results obtained by an independent method using inductively coupled plasma-optical emission spectroscopy (ICP-OES); no significant differences were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Mirnaghi, D. Hein, and J. Pawliszyn, Chromatographia, 2013, 76, 1215.

    Article  CAS  Google Scholar 

  2. R. P. Belardi and J. Pawliszyn, Water Pollut. Res. J. Can., 1989, 24, 179.

    Article  CAS  Google Scholar 

  3. M. He, B. Chen, and B. Hu, Anal. Bioanal. Chem., DOI: 10.1007/s00216-013-7395-y.

  4. M. C. Alcudia-León, R. Lucena, S. Cárdenas, and M. Valcárcel, Anal. Chem., 2009, 81, 8957.

    Article  PubMed  Google Scholar 

  5. P. Richter, C. Leiva, C. Choque, A. Giordano, and B. Sepúlveda, J. Chromatogr. A, 2009, 1216, 8598.

    Article  CAS  PubMed  Google Scholar 

  6. P. Richter, A. Cañas, C. Muñoz, C. Leiva, and I. Ahumada, Anal. Chim. Acta, 2011, 695, 73.

    Article  CAS  PubMed  Google Scholar 

  7. A. Giordano, P. Richter, and I. Ahumada, Talanta, 2011, 85, 2425.

    Article  CAS  PubMed  Google Scholar 

  8. A. Cañas and P. Richter, Anal. Chim. Acta, 2012, 743, 75.

    Article  PubMed  Google Scholar 

  9. L. Jachero, B. Sepúlveda, I. Ahumada, E. Fuentes, and P. Richter, Anal. Bioanal. Chem., 2013, 405, 7711.

    Article  CAS  PubMed  Google Scholar 

  10. V. Manzo, O. Navarro, L. Honda, K. Sánchez, M. I. Toral, and P. Richter, Talanta, 2013, 106, 305.

    Article  CAS  PubMed  Google Scholar 

  11. P. Sandra, E. Baltussen, F. David, and A. Hoffman, “Global Analytical Solutions”, Gerstel, AppNote 2/2000.

  12. A. Martín-Esteban, TrAC, Trends Anal. Chem., 2013, 45, 169.

    Article  Google Scholar 

  13. J. M. Chilton, Anal. Chem., 1953, 25, 1274.

    Article  CAS  Google Scholar 

  14. X. Wen, Q. Yang, Z. Yan, and Q. Deng, Microchem. J., 2011, 97, 249.

    Article  CAS  Google Scholar 

  15. G. A. Shar and M. I. Bhanger, J. Chem. Soc. Pak., 2002, 24, 185.

    CAS  Google Scholar 

  16. S. J. Yeh, J. M. Lo, and L. H. Shen, Anal. Chem., 1980, 52, 528.

    Article  CAS  Google Scholar 

  17. J. H. Santos, A. M. Bond, J. Mocak, and T. J. Cardwell, Anal. Chem., 1994, 66, 1925.

    Article  CAS  Google Scholar 

  18. K. D. Karlin (ed.), “Progress in Inorganic Chemistry”, 2005, Vol. 53, John Wiley & Sons, New York, 75.

    Book  Google Scholar 

  19. L. P. Melo, A. M. Nogueira, F. M. Lanças, and M. E. C. Queiroz, Anal. Chim. Acta, 2009, 663, 57.

    Article  Google Scholar 

  20. A. Prieto, O. Basauri, R. Rodil, A. Usobiaga, L. A. Fernández, N. Extebarria, and O. Zuloaga, J. Chromathogr. A, 2010, 1217, 2642.

    Article  CAS  Google Scholar 

  21. J. B. Quintana, R. Rodil, S. Muniategui-Lorenzo, P. Lopez-Mahía, and D. Prada-Rodriguez, J. Chromatogr. A, 2007, 1174, 27.

    Article  CAS  PubMed  Google Scholar 

  22. F. C. M. Portugal, M. L. Pinto, and J. M. F. Nogueira, Talanta, 2008, 77, 765.

    Article  CAS  Google Scholar 

  23. W. L. McCabe, J. C. Smith, and P. Harriott, “Operaciones Unitarias en Ingeniería Química”, 1991, 4th ed., McGraw-Hill, Mexico, 678.

    Google Scholar 

  24. V. S. Sastri, K. I. Aspila, and C. L. Chakrabarti, Can. J. Chem., 1969, 47, 2320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, C., Toral, M.I., Ahumada, I. et al. Rotating Disk Sorptive Extraction of Cu-Bisdiethyldithiocarbamate Complex from Water and Its Application to Solid Phase Spectrophotometric Quantification. ANAL. SCI. 30, 613–617 (2014). https://doi.org/10.2116/analsci.30.613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.613

Keywords

Navigation