Skip to main content

Advertisement

Log in

Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background

The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity.

Methods

By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome.

Results

These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions.

Conclusion

Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bowden DH. Cell turnover in the lung. Am Rev Respir Dis. 1983;128:S46-8.

    CAS  PubMed  Google Scholar 

  2. James AL, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur Respir J. 2007;30:134–55.

    Article  CAS  PubMed  Google Scholar 

  3. Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol. 2014;107:207–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kadzik R, Morrisey E. Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell. 2012;10:355–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011;29:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teo AK, Ali Y, Wong KY, Chipperfield H, Sadasivam A, Poobalan Y, et al. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells. 2012;30:631–42.

    Article  CAS  PubMed  Google Scholar 

  7. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.

    CAS  PubMed  Google Scholar 

  8. Chen YW, Huang SX, de Carvalho ALRT, Ho SH, Islam MN, Volpi S, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol. 2017;19:542–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leibel SL, McVicar RN, Winquist AM, Niles WD, Snyder EY. Generation of complete multi-cell type lung organoids from human embryonic and patient-specific induced pluripotent stem cells for infectious disease modeling and therapeutics validation. Curr Protoc Stem Cell Biol. 2020;54:e118.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell. 2012;10:398–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012;10:385–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikonomou L, Kotton DN. Derivation of endodermal progenitors from pluripotent stem cells. J Cell Physiol. 2015;230:246–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abo KM, Ma L, Matte T, Huang J, Alysandratos KD, Werder RB, et al. Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors. bioRxiv. 2020. https://doi.org/10.1101/2020.06.03.132639.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123:4950–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller AJ, Hill DR, Nagy MS, Aoki Y, Dye BR, Chin AM, et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Reports. 2018;10:101–19.

    CAS  PubMed  Google Scholar 

  16. Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports. 2014;3:394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Herrera B, Inman GJ. A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol. 2009;10:20.

  18. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32:84–91.

    CAS  PubMed  Google Scholar 

  19. Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. 2012;30:876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang SX, Green MD, de Carvalho AT, Mumau M, Chen YW, D’Souza SL, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc. 2015;10:413–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de Carvalho ALRT, Strikoudis A, Liu HY, Chen YW, Dantas TJ, Vallee RB, et al. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development. 2019;146:dev171652.

    PubMed  PubMed Central  Google Scholar 

  22. Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I, et al. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells. 2010;28:45–56.

    CAS  PubMed  Google Scholar 

  23. Roszell B, Mondrinos MJ, Seaton A, Simons DM, Koutzaki SH, Fong GH, et al. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng Part A. 2009;15:3351–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmeckebier S, Mauritz C, Katsirntaki K, Sgodda M, Puppe V, Duerr J, et al. Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells. Tissue Eng Part A. 2013;19:938–51.

    CAS  PubMed  Google Scholar 

  25. Ali NN, Edgar AJ, Samadikuchaksaraei A, Timson CM, Romanska HM, Polak JM, et al. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 2002;8:541–50.

    CAS  PubMed  Google Scholar 

  26. Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson WR. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 2012;7:e33165.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Samadikuchaksaraei A, Bishop AE. Derivation and characterization of alveolar epithelial cells from murine embryonic stem cells in vitro. Methods Mol Biol. 2006;330:233–48.

    Article  CAS  PubMed  Google Scholar 

  28. Rippon HJ, Ali NN, Polak JM, Bishop AE. Initial observations on the effect of medium composition on the differentiation of murine embryonic stem cells to alveolar type II cells. Cloning Stem Cells. 2004;6:49–56.

    CAS  PubMed  Google Scholar 

  29. Shojaie S, Lee J, Wang J, Ackerley C, Post M. Generation of ESC-derived mouse airway epithelial cells using decellularized lung scaffolds. J Vis Exp 2016. https://doi.org/10.3791/54019.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir SH, et al. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med. 2020;24:9853–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hannan NR, Fordham RP, Syed YA, Moignard V, Berry A, Bautista R, et al. Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Reports. 2013;1:293–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Q, Ye X, Sun R, Matsumoto Y, Moriyama M, Asano Y, et al. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl Med. 2014;3:675–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hawkins FJ, Suzuki S, Beermann ML, Barillà C, Wang R, Villacorta-Martin C, et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell. 2021;28:79-95.e8.

    CAS  PubMed  Google Scholar 

  34. Soh BS, Zheng D, Li Yeo JS, Yang HH, Ng SY, Wong LH, et al. CD166(pos) subpopulation from differentiated human ES and iPS cells support repair of acute lung injury. Mol Ther. 2012;20:2335–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18:625–34.

    PubMed  PubMed Central  Google Scholar 

  36. Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;4:e05098.

    PubMed Central  Google Scholar 

  37. Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods. 2017;14:1097–106.

    CAS  PubMed  Google Scholar 

  38. Nikolić MZ, Caritg O, Jeng Q, Johnson JA, Sun D, Howell KJ, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife. 2017;6:e26575.

    PubMed  PubMed Central  Google Scholar 

  39. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McCauley KB, Hawkins F, Kotton DN. Derivation of epithelial-only airway organoids from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2018;45:e51.

    PubMed  PubMed Central  Google Scholar 

  41. Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14:518–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. The Human Pluripotent Stem Cell Registry. 2021 [cited 2021 February 23]. Available from: https://hpscreg.eu/.

  44. Serra M, Alysandratos KD, Hawkins F, McCauley KB, Jacob A, Choi J, et al. Pluripotent stem cell differentiation reveals distinct developmental pathways regulating lung- versus thyroid-lineage specification. Development. 2017;144:3879–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herbert BS, Hochreiter AE, Wright WE, Shay JW. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat Protoc. 2006;1:1583–90.

    CAS  PubMed  Google Scholar 

  46. Hellemans J, Vandesompele J. qPCR data analysis-unlocking the secret to successful results. PCR Troubl Optim: Essent Guide. 2011;1:13.

    Google Scholar 

  47. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131:1651–62.

    CAS  PubMed  Google Scholar 

  48. Maeda Y, Davé V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87:219–44.

    CAS  PubMed  Google Scholar 

  49. Vaňhara P, Kučera L, Prokeš L, Jurečková L, Peña-Méndez EM, Havel J, et al. Intact cell mass spectrometry as a quality control tool for revealing minute phenotypic changes of cultured human embryonic stem cells. Stem Cells Transl Med. 2018;7:109–14.

    PubMed  Google Scholar 

  50. Vaňhara P, Moráň L, Pečinka L, Porokh V, Pivetta T, Masuri S, et al. Intact cell mass spectrometry for embryonic stem cell biotyping. In: Mitulović G, editor. Mass spectrometry in life sciences and clinical laboratory. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.95074.

  51. Rubtsova MP, Vasilkova DP, Malyavko AN, Naraikina YV, Zvereva MI, Dontsova OA. Telomere lengthening and other functions of telomerase. Acta Naturae. 2012;4:44–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    CAS  PubMed  Google Scholar 

  53. Huang Y, Liang P, Liu D, Huang J, Songyang Z. Telomere regulation in pluripotent stem cells. Protein Cell. 2014;5:194–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–16.

    CAS  PubMed  Google Scholar 

  55. Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem. 2005;280:13809–16.

    CAS  PubMed  Google Scholar 

  56. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol. 2008;317:296–309.

    CAS  PubMed  Google Scholar 

  57. Kearns NA, Genga RM, Ziller M, Kapinas K, Peters H, Brehm MA, et al. Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules. Stem Cell Res. 2013;11:1003–12.

    CAS  PubMed  Google Scholar 

  58. Hosoyama T, Meyer MG, Krakora D, Suzuki M. Isolation and in vitro propagation of human skeletal muscle progenitor cells from fetal muscle. Cell Biol Int. 2013;37:191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Biernaskie JA, McKenzie IA, Toma JG, Miller FD. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc. 2006;1:2803–12.

    CAS  PubMed  Google Scholar 

  60. Azari H, Rahman M, Sharififar S, Reynolds BA. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp. 2010. https://doi.org/10.3791/2393.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cocola C, Molgora S, Piscitelli E, Veronesi MC, Greco M, Bragato C, et al. FGF2 and EGF Are required for self-renewal and organoid formation of canine normal and tumor breast stem cells. J Cell Biochem. 2017;118:570–84.

    CAS  PubMed  Google Scholar 

  62. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136:1899–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kwan KY, Shen J, Corey DP. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells. Stem Cell Reports. 2015;4:47–60.

    CAS  PubMed  Google Scholar 

  64. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shim JH, Lee TR, Shin DW. Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells. Mol Cells. 2013;36:556–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A. 1994;91:2900–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ridsdale R, Post M. Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L743-51.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (grant no. 18-00145S), by the Ministry of Health of the Czech Republic (grant no. 16-31501A (AH), NV18-08-00299 (PV), 18-08-00245 (KS)), by Masaryk University (MUNI/A/1390/2020, MUNI/A/1689/2020), by the European Regional Development Fund—Project INBIO (No. CZ.02.1.01/0.0/0.0/16_026/0008451). LM is supported by funds from the Faculty of Medicine MU to junior researcher (Lukáš Moráň, ROZV/28/LF/2020), supported by MH CZ-DRO (Masaryk Memorial Cancer Institute, 00209805) and Brno PhD Talent scholarship holder, funded by the Brno City Municipality. The authors thank Katarína Marečková and Dobromila Klemová for assistance with laboratory techniques and Nina Tokanová and Ráchel Víchová for maintenance of the animal facility and Eva Slabáková for TEER.

Author information

Authors and Affiliations

Authors

Contributions

HK: Conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript. MC: Collection and/or assembly of data, data analysis and interpretation, manuscript writing. VP: Collection and/or assembly of data, data analysis and interpretation, manuscript writing. JD: Collection and/or assembly of data, data analysis and interpretation, manuscript writing. ZK: Collection and/or assembly of data, data analysis and interpretation, manuscript writing, other (animal work). JR: Collection and/or assembly of data, other (animal work). KS: Conception and design, manuscript writing. ZG: Collection and/or assembly of data. VS: Collection and/or assembly of data, data analysis and interpretation, manuscript writing. AR: Collection and/or assembly of data other (animal work). PV: Collection and/or assembly of data, data analysis and interpretation, manuscript writing. LM: Collection and/or assembly of data, data analysis and interpretation. LP: Collection and/or assembly of data, data analysis and interpretation. VP: Collection and/or assembly of data. MK: Telomerase assay, collection and/or assembly of data. LS: Surgical samples of human skin, collection and/or assembly of data. JH: Data analysis and interpretation, manuscript writing. AH: Conception and design, financial support, administrative support, manuscript writing, final approval of manuscript.

Corresponding author

Correspondence to Aleš Hampl.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

Human lung tissue samples were obtained from therapeutical lung surgery based on the written informed consent by the patient and approval of Ethics Committee of the University Hospital Brno (28–170621/EK). Human skin samples were obtained from healthy donors undergoing surgical procedures based on the written informed consent by the patient and approval of Ethics Committee St. Anne’s University Hospital Brno (8 V/2020). For animal experiments, all European Union Animal Welfare lines (EU Directive 2010/63/EU for animal experiments) were respected. Animal experiments were approved by the Academy of Sciences of the Czech Republic (AVCR 13/2015), supervised by the local ethical committee and performed by certified individuals (JR, AR, ZK).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13770_2022_458_MOESM1_ESM.tif

S1. Western blot analysis of phosphorylated (pSMAD2, pSMAD1/5/9) or total (SMAD1, SMAD2) SMADs in DE cells cultivated for 1 hour in the absence ( − ) or presence (+) of ITS, FBS, 50 ng/ml of Activin A and 50 ng/ml of BMP4, respectively.This analysis has shown the activation of BMP signaling after treatment with FBS and/or BMP4 and activation of Activin A/Nodal signaling after treatment with FBS and/or Activin A as opposed to inactive signaling after using serum free media. (TIF 1812 KB)

13770_2022_458_MOESM2_ESM.tif

S2. Analysis of forebrain neuronal marker FOXG1 expression during differentiation of hESC into ELEP. Relative gene expression of FOXG1 in nondifferentiated hESC, definitive endoderm cells (DE), foregut endoderm cells (FE), ELEP low and ELEP high, human lung and human brain tissue, normalized to GAPDH and related to hESC. Data are presented as the mean + SEM, log transformed data were used for statistical analysis, graphs show non-transformed data. *P < 0.05, **P < 0.01, ***P < 0.001. (TIF 844 KB)

13770_2022_458_MOESM3_ESM.tif

S3. Transepithelial electrical resistance (TEER) and dextran permeability. TEER (A) was measured on day 1, 5, and 10 in ELEP, differentiating ELEP, and H441 cells cultured at A-Li. TEER was determined as resistance (Ωcm2) = (Rsample – Rblank) related to effective membrane area (cm2). Permeability to FITC-conjugated dextran (B) was measured on day 6 and 10 in ELEP, differentiating ELEP and H441 cells cultured at A-Li. (TIF 2021 KB)

13770_2022_458_MOESM4_ESM.tif

S4. Histological and immunohistochemistry analysis of outgrowths formed from ELEP. Histological analysis (A) shows kidney parenchyma (ki) and outgrowth tissue (ou). Immunohistochemistry analysis shows cytokeratin 5 and 8 (B and C, respectively) confirming epithelial nature of ELEP, pro-SPC, marker of pneumocytes II (D) and human nucleolar antigen (E). (TIF 11016 KB)

Supplementary file5 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotasová, H., Capandová, M., Pelková, V. et al. Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells. Tissue Eng Regen Med 19, 1033–1050 (2022). https://doi.org/10.1007/s13770-022-00458-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00458-0

Keywords

Navigation