Skip to main content
Log in

Development and coupling of numerical techniques for modeling micromechanical discrete and continuous media using real particle morphologies

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The main objective of this research is to formulate and couple technologies for modeling discrete and continuous media using real particle morphologies. To that end, two coupled formulations based on virtual modeling technologies of single real particles with another one called real particle packing technique are presented. The first formulation employs Fourier descriptors’ theory to virtually achieve the morphology and construct a repository of real particle geometries. The second formulation is a particle packing method, supported by advancing front techniques combined with dynamic methods. This method presents a stochastic formulation and allows the packing of particle systems following continuous, discrete and empirical statistical distributions. The coupling of both techniques is a very efficient tool to achieve discrete or continuous media geometries to solve engineering problems. Three different examples are developed to illustrate the usefulness of the formulations. The first one is a discrete angle-of-repose problem involving clusters of spheres (real particle morphologies are described with groups of spheres); in the second example the same angle-of-repose problem is resolved with real particles. In the third case, which involves continuous medium mechanics, a small-scale road engineering problem is modeled, specifically, the testing of an asphalt concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Xu MQ, Guo N, Yang ZX (2021) Particle shape effects on the shear behaviors of granular assemblies: irregularity and elongation. Granul Matter 23:25. https://doi.org/10.1007/s10035-021-01096-4

    Article  Google Scholar 

  2. Richard P, Edil TB, Bosscher PJ, Plesha ME, Kahla NB (2001) Effect of particle shape on interface behavior of DEM-simulated granular materials. Int J Geomech 1(1):1–19

    Article  Google Scholar 

  3. Xie YH, Yang ZX, Barreto D et al (2017) The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granul Matter 19:35. https://doi.org/10.1007/s10035-017-0723-8

    Article  Google Scholar 

  4. Irazábal J, Salazar F, Oñate E (2017) Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast. Comput Geotech 85:220–229

    Article  Google Scholar 

  5. Fu P, Dafalias Y (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Num Anal Meth Geomech 35(18):1918–1948

    Article  Google Scholar 

  6. Lin X, Ng TT (1997) A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2):319–329

    Article  Google Scholar 

  7. Ng T-T (2009) Particle shape effect on macro- and micro-behavior of monodisperse ellipsoids. Int J Num Anal Meth Geomech 33:511–527

    Article  MATH  Google Scholar 

  8. Ouadfel H, Rothenburg L (2001) “Stress-force fabric” relationship for assemblies of ellipsoids. Mech Mater 33:201–221

    Article  Google Scholar 

  9. Pournin L, Weber M, Tsukahara M, Ferrez J-A, Ramaioli M, Liebling TM (2005) Three-dimensional distinct element simulation of spherocylinder crystallization. Granular Matter 7(2):119–126

    Article  MATH  Google Scholar 

  10. Tillemans H-J, Herrmann H-J (1995) Simulating deformations of granular solids under shear. Phys Rev A 217:261–288

    Google Scholar 

  11. Pena AA, Garcia-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granular Matter 9:279–291

    Article  MATH  Google Scholar 

  12. Lu M, McDowell GR (2007) The importance of modelling ballast particle shape in DEM. Granul Matter 9(2):71–82

    Google Scholar 

  13. Azema E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41:729–741

    Article  Google Scholar 

  14. Galindo-Torres S-A, Pedroso D-M (2010) Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys Rev E 81:061303

    Article  Google Scholar 

  15. Galindo-Torres S-A, Munoz J-D, Alonso-Marroquin F (2010) Minkowski-Voronoi diagrams as a method to generate random packing of spheropolygons for the simulation of soils. Phys Rev E 82:056713

    Article  Google Scholar 

  16. Richefeu V, Mollon G, Daudon D, Villard P (2012) Dissipative contacts and realistic block shapes for modelling rock avalanches. Eng Geol 19(150):78–92

    Article  Google Scholar 

  17. Mollon G, Richefeu V, Villard P, Daudon D (2013) Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J Geophys Res Solid Earth 117:F02036

    Google Scholar 

  18. Al Rousan TM (2004) Characterization of aggregate shape properties using a computer automated system. PhD Dissertation. December

  19. Mollon G, Zhao J (2013) Generating realistic 3D sand particles using Fourier descriptors. Granul Matter 15(1):95–108

    Article  Google Scholar 

  20. Recarey Morfa CA, Rosello Valera R, Castro Fuentes M, Pena Águila J (2019) Formulación de tecnologías de modelación virtual de partículas soportadas en técnicas de estocasticidad. Proyectos de Investigación 95634, Ministerio de la Construcción. República de Cuba. Informe Técnico del Proyectos 2019

  21. Mollon G, Zhao J (2012) Fourier-Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul Matter 2012(14):621–638. https://doi.org/10.1007/s10035-012-0356-x

    Article  Google Scholar 

  22. Mollon G, Zhao J (2014) 3D generation of realistic granular samples based on random fields theory and Fourier Shape Descriptors. Comput Methods Appl Mech Eng 279(2014):46–65. https://doi.org/10.1016/j.cma.2014.06.022

    Article  MATH  Google Scholar 

  23. Morales IP et al (2009) Procedimiento de empaquetamiento de partículas genéricas para el Método de Elementos Discretos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 25(2):95–110

    Google Scholar 

  24. Morales IP et al (2016) Contributions to the generalization of advancing front particle packing algorithms. Int J Numer Methods Eng 107(12):993–1008

    Article  MathSciNet  MATH  Google Scholar 

  25. PérezMorales I et al (2017) Dense packing of general-shaped particles using a minimization technique. Comput Part Mech 4(2):165–179

    Article  Google Scholar 

  26. Recarey C, Pérez I, Roselló R, Muniz M, Hernández E, Giraldo R, Oñate E (2019) Advances in particle packing algorithms for generating the medium in the discrete element method. Comput Methods Appl Mech Eng 345:336–362. https://doi.org/10.1016/j.cma.2018.11.011

    Article  MathSciNet  MATH  Google Scholar 

  27. Shi C, Shen J, Xu W et al (2017) Micromorphological characterization and random reconstruction of 3D particles based on spherical harmonic analysis. J Cent South Univ 24:1197–1206. https://doi.org/10.1007/s11771-017-3523-8

    Article  Google Scholar 

  28. Brechbühler C, Gerig G, Kübler O (1995) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 61(2):154–170

    Article  Google Scholar 

  29. Wei D, Wang J, Zhao B (2018) A simple method for particle shape generation with spherical harmonics. Powder Technol 330:284–291

    Article  Google Scholar 

  30. Feng YT, Han K, Owen DRJ (2003) Filling domains with disks: an advancing front approach. Int J Numer Methods Eng 56:699–713

    Article  MATH  Google Scholar 

  31. Benabbou A et al (2009) Geometrical modelling of granular structures in two and three dimensions. Application to nanostructures. Int J Numer Methods Eng 80(4):425–454

    Article  MathSciNet  MATH  Google Scholar 

  32. Zarowski CJ (2004) An introduction to numerical analysis for electrical and computer engineers. Wiley

    Book  MATH  Google Scholar 

  33. Möller T, Haines E, Peters AK (1999) Real-time rendering. A. K. Peters

    Google Scholar 

  34. Gottschalk S, Lin MC, Manocha D Technical report TR96-013, Department of Computer Science, University of North Carolina, Chapel Hill. In: Proceedings of ACM Siggraph’96.

  35. Gottschalk S, Larsen E Proximity query package. UNC, Chapel Hill Computer Science. https://github.com/GammaUNC/PQP

  36. Gottschalk S (1996) Separating axis theorem. Technical Report TR96-024, Department of Computer Science, UNC Chapel Hill

  37. Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM. Powder Technol 217:409–417

    Article  Google Scholar 

  38. Lane JE, Metzger PT, Wilkinson RA (2010) A review of discrete element method (DEM) particle shapes and size distributions for lunar soil. Technical report NASA

  39. Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci 127:425–465

    Article  Google Scholar 

  40. Thomas PA, Bray JD (1999) Capturing nonspherical shape of granular media with disk clusters. J Geotech Geoenviron Eng 125:169–178

    Article  Google Scholar 

  41. Ferellec J-F, McDowell G (2010) A method to model realistic particle shape and inertia in DEM. Granul Matter 12:459–467

    Article  MATH  Google Scholar 

  42. Mollon G, Zhao J (2013) Characterization of fluctuations in granular hopper flows. Granul Matter 15(6):827–840

    Article  Google Scholar 

  43. Jensen RP, Edil TB, Bosscher PJ, Plesha ME, Ben Kahla N (2001) Effect of particle shape on interface behavior of DEM-simulated granular materials. Int J Geomech 1(1):1–19

    Article  Google Scholar 

  44. Stahl M, Konietzky H (2011) Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul Matter 13:417–428

    Article  Google Scholar 

  45. Katagiri J, Matsushima T, Yamada Y (2010) Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul Matter 12:491–497

    Article  MATH  Google Scholar 

  46. Matsushima T, Katagiri J, Uesugi K, Tsuchiyama A, Nakano T (2009) 3D shapes characterization and image-based DEM simulation of the Lunar soil simulant FJS-1. J Aerosp Eng 22(1):15–23

    Article  Google Scholar 

  47. McDowel G, Li H, Lowndes I (2011) The importance of particle shape in discrete-element modelling of particle flow in a chute. Geotech Lett 1(3):59–64

    Article  Google Scholar 

  48. Chen C, McDowell GR, Thom NH (2014) Investigating geogrid-reinforced ballast: Experimental pull-out tests and discrete element modelling. In: Soils and foundations. Special issue on 2nd international conference on transportation geotechnics IS-Hokkaido2012, vol 54, no 1, pp 1–11

  49. García X, Xiang J, Latham JP, Harrison JP (2009) A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Géotechnique 59(9):779–784

    Article  Google Scholar 

  50. Ngo NT, Indraratna B, Rujikiatkamjorn C (2014) DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Comput Geotech 55:224–231

    Article  Google Scholar 

  51. Indraratna B, Ngo NT, Rujikiatkamjorn C, Vinod JS (2014) Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation. Int J Geomech 14(1):34–44

    Article  Google Scholar 

  52. Irazábal González J (2017) Numerical analysis of railway ballast behaviour using the Discrete Element Method. PhD dissertation thesis. Departament d’Enginyeria Civil i Ambiental, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports de Barcelona, Universitat Politècnica de Catalunya

  53. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  MATH  Google Scholar 

  54. Taylor DW (1948) Fundamentals of soil mechanics. Wiley

    Book  Google Scholar 

  55. Recarey Morfa CA, Rosello Valera R, Castro Fuentes M, Pena Águila J (2019) Formulación del método de los elementos discretos para partículas reales. Proyectos de Investigación 98944, Ministerio de la Construcción. República de Cuba. Informe Técnico del Proyectos

  56. Oliveira Junior M (2018) Análise Numérica De Fluência Estática De Misturas Asfálticas Via Mef: Estudo Da Fase Agregados Graúdo. Dissertação De Mestrado Em Geotecnia. Publicação: G.Dm-311/18. Universidade de Brasília

  57. Oliveira Junior M, Farias MM (2020) A simple numerical methodology to simulate creep tests in HMA. Constr. Build. Mater. 262

  58. Oliveira Junior M, Farias MM, Recarey Morfa CA (2020) A numerical study of the influence of aggregates shape on cree and recovery tests behavior. In: RILEM international symposium on bituminous materials (ISBM Lyon)

  59. Farmer IW (1968) Engineering behaviour of rocks. Chapman and Hall Ltd., London

    Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the valuable funding, resources and support of the following institutions: Brazilian Electricity Regulatory Agency (ANEEL) e Furnas Centrais Elétricas S. A., Project P&D 0394-1709/2017 via Fundação de Empreendimentos Científicos e Tecnológicos, FINATEC e Project P&D PD-0394-1705/2017 via Fundação de Apoio a Pesquisa, FUNAPE; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Process No. 140938/2018-4; Doctoral Studies Commission of the Nueva Granada Military University, Bogotá, Colombia; International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by RLRV, JIG, MdeOJ, MA and CARM. Real particle shape generation was performed by RLRV, MMdeF, MACF, JPA, LAMA and CARM. Particle packings of cluster of spheres and real particles were performed by RLRV, MMdeF, MACF, RTM, JPA and CARM. Micromechanical simulations and analysis of continuous media were performed by RLRV, MdeOJ, MMdeF and CARM. Discrete simulations and analysis with cluster of spheres were performed by JIG, EO, RLRV and CARM. The first draft of the manuscript was written by RLRV, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roberto L. Roselló Valera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valera, R.L.R., González, J.I., de Oliveira Junior, M. et al. Development and coupling of numerical techniques for modeling micromechanical discrete and continuous media using real particle morphologies. Comp. Part. Mech. 10, 121–141 (2023). https://doi.org/10.1007/s40571-022-00481-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00481-x

Keywords

Navigation