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1
Introduction

“The function of selective discrimination with the
complementary power of adaptive response is regarded
as the root-principle of mind.”

Science, IV. 17

One of the key branches of mathematical optimization is mixed-integer programming
(MIP), in which a linear objective function should be optimized subject to linear side-
constraints and integrality requirements on a subset of the variables. This combination
of constraints makes mixed-integer models a valuable asset for many practically relevant
decision problems in business and industry. This thesis comprises a collection of adaptive
algorithmic enhancements for solving mixed-integer programs.

One of the key factors for the success of the MIP paradigm is its expressiveness. As
an example, take a use case from a logistics provider. This provider regularly makes
decisions on building new warehouses and connecting them with customers to meet each
customer’s demand. MIPs are very suitable for such business decision problems, as they
allow to:

1. formulate discrete choices represented as binary or integer variables,
Should I build a warehouse here?

2. formulate cardinality or logical conditions between those variables,
How many warehouses should I construct in total?

3. link those discrete decisions with quantitative decisions.
Has customer demand been met?

1



1. Introduction

The applications of MIP range from transportation, which includes railway scheduling
and airline planning, to network design problems for telecommunication and energy
grids to more abstract tasks such as chip verification.

The second key success factor is the availability of powerful general-purpose software
to solve MIP models of practically relevant size to proven optimality. The most powerful
commercial MIP solvers of today, some of which were originally released in the 1980s, have
seen stunning progress over the years [Achterberg and Wunderling, 2013; Bixby, 2002].
Some models, however, are still unsolvable even by today’s sophisticated machinery. This
is not at all surprising since MIP is an NP-hard optimization problem in theory [Karp,
1972]. Therefore, almost all general-purpose software incorporates a form of the branch-
and-bound (B&B) algorithm [Dakin, 1965; Land and Doig, 1960] as their main working
horse, an algorithm with exponential worst-case behavior.

One of the main advantages of the B&B Algorithm is its completeness: When the
search terminates, the best solution found is proven to be optimal. The other advantage
is practicality. The algorithm may be interrupted by the user before the search is
completed. In this case, the algorithm returns both the best solution found and a bound
on the remaining gap to optimality.

Closing this gap further has motivated decades of research on MIP solution techniques.
Numerous auxiliary algorithmic components have been introduced to aid the branch-
and-bound algorithm, for example new primal heuristic algorithms. So far, a new
component is often added as a standalone technique to the solver, with no interaction
or communication with other components.

When I started my research position at Zuse Institute Berlin, I soon carried the label
“solver intelligence” as part of the description of my (various) tasks in the group. What
do we actually mean by “solver intelligence”? Quoting Legg and Hutter [2008],

“Intelligence measures an agent’s ability to achieve goals in a wide range
of environments.”

For our purposes, the “agent” is the MIP solver. The “wide range of environments”
are the numerous practical applications of MIP mentioned above. Intuitively, different
applications may differ in the components that the solver should use predominantly for
their solution. In this sense, we call an algorithm “adaptive” if it adjusts its decisions
on the fly by taking into account past information collected only during the search
itself without prior training. The aim of this thesis is to investigate the use of adaptive
algorithmic techniques to improve MIP solvers.

What are the available techniques to adapt a MIP solver agent to a particular
environment? Traditionally, MIP solvers have a huge number of user controls to enable
or modulate the intensity of certain components. We use the open source MIP solver
SCIP (Solving Constraint Integer Programs) for all computational experiments in this
thesis. SCIP in its newest version 7.0.2 [Gamrath et al., 2020] features more than 2600

2



parameters. By default, these control settings are calibrated to maximize the performance
of a solver on heterogeneous MIP benchmark sets. They are not specifically targeted
to the application at hand. Control parameters give a user a lot of freedom, but also
impose the burden to experiment with different control settings to customize the solver
to the task at hand. This manual process can be cumbersome and requires a lot of
knowledge, experience, and intuition. How could the MIP solver adapt automatically to
a particular problem without this user effort?

When we consider adaptive or automated algorithmic decisions, we also discuss
recent advances in Machine Learning (ML) and its applications inside a MIP solver. Bar
some exceptions [Alvarez et al., 2016; Khalil et al., 2016], most ML approaches [Gasse
et al., 2019; Khalil et al., 2017; Tang et al., 2020] studied so far that enhance MIP
components use a representation of instances and/or variables in a designated feature
space. This feature space is often application-specific [Xavier et al., 2019] and has to be
provided by the user. After a data collection, which may be time-consuming, most ML
methods [Alvarez et al., 2015; He et al., 2014] require an offline training phase of the
method. In particular the training of neural networks may even require special hardware
such as GPUs [Nair et al., 2020]. This cumbersome offline training phase fundamentally
contradicts the power of a general-purpose MIP solver as an out-of-the-box tool.

On the contrary, the methods proposed in this thesis are often inspired by statistical
methods such as time series forecasting or multi-armed bandit selection strategies. Our
methods are specifically designed to be used inside a MIP solver. They require very
little to no structural information about the underlying MIP problem that needs to be
solved. This intended independence from structural features of a MIP often makes our
methods widely applicable, which leads to substantial performance improvements of
SCIP on the hardest and most heterogeneous MIP benchmark sets available.

From a methodological point of view, we often pursue the incorporation of new
statistical methods in two stages. In a first stage, we collect data over a set of instances
for a calibration of our methods. In a second stage, we transfer the simulation results
back into the solver itself. The initial simulation stage is valuable for three reasons. First,
data-driven simulations are much faster to perform outside the solver. This allows us
to conduct repetitions and tests that would be impossible or too slow to do inside the
solver. Second, beyond a pure calibration of the newly proposed methods, the simulation
results also lead to new and interesting insights of the underlying MIP technology. For
example, the simulation approach enables us to conduct one of the largest comparisons
of existing Large Neighborhood Search (LNS) primal heuristics to date in Chapter 6.
As a consequence, we re-enabled several LNS heuristics such as DINS [Ghosh, 2007]
or Local Branching [Fischetti and Lodi, 2003] to help diversify the search inside our
new heuristic framework Adaptive Large Neighborhood Search. Last, (re-)implementing
an algorithm for the simulation stage provides additional testing, which may help to

3



1. Introduction

identify potential bugs and pitfalls that would be hard to detect in MIP production
code.

Undoubtedly, this thesis builds upon an extraordinarily rich history of more than
70 years of algorithmic development for solving MIP, starting with the introduction of
the primal simplex algorithm by Dantzig [1951] and the dual simplex algorithm [Lemke,
1954, more in Chapter 2]. We argue that adaptive algorithmic behavior has been part of
that rich history. Pseudo-costs [Bénichou et al., 1971] are commonly used by state-of-the-
art codes to guide branching decisions inside Reliability Branching [Achterberg et al.,
2004]. We make Reliability Branching adaptive by introducing new notions of reliability
that take into account the sample variance of pseudo-costs. Goldilocks [Rothberg, 2007]
modulate the difficulty of the subproblems solved inside LNS heuristics, but have not been
used in SCIP so far, which we remedy. We propose several novel adaptive extensions
to individual algorithmic components of modern branch-and-bound solvers such as
branching strategies, LP pricing, and different groups of primal heuristics. Ultimately,
we revise the classical branch-and-bound algorithm itself by introducing an intelligent
restart strategy based on tree size estimation.

Organization of the Thesis

Before we get started, we introduce the necessary notation for our endeavor in Chapter 2,
accompanied by rich and colorful illustrative examples of the well-known concepts around
branch-and-bound.

In Chapter 3, we describe the contributions of the author of this thesis leading to the
sixth version of the Mixed-Integer Programming Library MIPLIB 2017. For the first time,
this edition was compiled using a data-driven selection process supported by the solution
of a sequence of mixed-integer programming problems, which encode requirements on
diversity and balance with respect to instance features and performance data. Selected
from an initial pool of 5,721 instances, the new MIPLIB 2017 collection consists of 1,065
instances. A subset of 240 instances was especially selected for benchmarking solver
performance.

After this methodological contribution, we turn our attention towards actual
solver improvements. In Chapter 4, we generalize the established reliability branching
rule [Achterberg et al., 2004]. We suggest two novel notions of reliability motivated
by mathematical statistics that take into account the sample variance of the past
observations on each variable individually. The first method prioritizes additional
strong branching look-aheads on variables whose pseudo-costs show a large variance by
measuring the relative error of a pseudo-cost confidence interval. The second method
performs a specialized version of a two-sample Student’s t-test for filtering branching
candidates with a high probability to perform better than the best history candidate.

4



Both methods have been integrated into SCIP. Our computational results on show that
they are particularly valuable for accelerating the dual convergence on hard instances.

In Chapter 5, we take a closer look at the typical run of a MIP solver. Typically, the
different components of a MIP solver are tuned to minimize the average overall running
time to prove optimality. We argue that the solution process consists of three distinct
phases, namely achieving feasibility, improving the incumbent solution, and proving
optimality. We first show that the entire solving process can be improved by adapting
the search strategy with respect to the phase-specific aims using different control tunings.
Afterwards, we provide criteria to predict the transition between the individual phases
and evaluate the performance impact of altering the algorithmic behavior of SCIP at
the predicted phase transition points.

Chapter 6 introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a novel
framework for eight popular LNS heuristics. In ALNS, the decision which LNS heuristic
should be executed is guided by selection strategies for the multi-armed bandit problem,
an optimization problem under uncertainty during which suitable actions have to be
chosen to maximize a reward function. To apply bandit selection strategies to our LNS
setting, we propose an LNS-specific reward function. As an algorithmic enhancement to
ALNS, we also propose a generic variable fixing prioritization, which ALNS employs to
adjust the subproblem complexity as needed. This is particularly useful for those LNS
heuristics that do not fix variables by themselves. An example is Local Branching, which
only restricts the Hamming Distance between the current incumbent and an improving
solution.

The proposed ALNS framework has been implemented in SCIP. An extensive
computational study is conducted to compare different LNS strategies within our
ALNS framework on a large set of MIP instances. The results of this simulation are
used to calibrate the parameters of the bandit selection strategies. Finally, a second
computational experiment shows the computational benefits of the proposed ALNS
framework within SCIP.

We extend these ideas further in Chapter 7 by proposing adaptive algorithmic
behavior for two other important MIP solving components, namely diving heuristics
and simplex pricing strategies. For each class, we propose a selection strategy that
is updated based on the observed runtime behavior, aiming to ultimately select only
the best algorithms for a given MIP instance. With the goal to apply bandit selection
strategies, we carefully design reward functions to rank and compare each individual
diving heuristic or pricing algorithm within its respective class. Finally, we discuss the
computational benefits of using the proposed adaptive algorithmic behavior within
SCIP.

Some of our adaptive algorithmic decisions require an online estimation of the final
size of the B&B search tree, for which we investigate different methods in Chapter 8.
We review measures of progress of the B&B search, such as the well-known gap and the
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1. Introduction

tree weight [Kilby et al., 2006], and propose a new measure, which we call leaf frequency.
We study two simple ways to transform these progress measures into B&B tree size
estimates, either as a direct projection, or via double-exponential smoothing, a standard
time-series forecasting technique. We then combine different progress measures and their
trends into nontrivial estimates using Machine Learning techniques, which yield more
precise estimates than any individual measure. The best method we have identified uses
all individual measures as features of a random forest model. In a large computational
study, we train and validate all methods. On average, the best method estimates B&B
tree sizes within a factor of 3 on the set of unseen test instances even during the early
stage of the search, and improves in accuracy as the search progresses. It also achieves a
factor 2 over the entire search on each of six additional sets of homogeneous instances
we have tested. Traditionally the gap used to be the de-facto progress measure of MIP
search. These new estimations improve upon the accuracy of the gap by an order of
magnitude.

Equipped with tree size estimation, we finally show in Chapter 9 how this information
can help the search algorithmically at runtime by designing a restart strategy for MIP
that decides whether to restart the search based on the current estimate of the number
of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our
clairvoyant restart strategy outperforms SCIP on MIPLIB 2017 by up to 20 %. Together
with tree size estimation, clairvoyant restarts have been publicly available since SCIP 7.0.

Finally, we wrap up our findings with some concluding remarks in Chapter 10. All
proposed techniques are available since version 7 of the branch-and-cut framework
SCIP.
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2
Preliminaries: An Overview of
Solution Techniques for MIP

2.1 Mixed-Integer Programs

A mixed-integer program denotes the problem to minimize a linear objective function
under linear inequalities and integrality restrictions for a subset of the variables. We
use the term “mixed” to refer to the occurrence of two variable types, continuous and
integer variables, in the problem formulation.

Definition 2.1 (Mixed-integer program). Let n, m ∈ N, A ∈ Qm,n be a rational
matrix, and let c ∈ Qn and b ∈ Qm be a cost and a right-hand side vector, respectively.
Let further ℓ, u ∈ Qn

±∞ denote bound requirements for the variables, and let a subset
I ⊆ {1, . . . , n} of the variable index set denote integrality restrictions. An optimization
problem defined by c, A, b, ℓ, u, I as

min
x∈Qn

ctx (objective)

s.t. Ax ≥ b (inequalities)
ℓ ≤ x ≤ u (bound requirements)

xj ∈ Z j ∈ I (integrality restrictions)

is called a mixed-integer program (MIP).

Solving a MIP consists in finding a provably optimal solution or in proving that no
such solution exists. A vector x̃ ∈ Qn is called a (feasible) solution for a MIP P , if it
satisfies all inequalities, bound requirements, and integrality restrictions of P . The set
of all solutions of P is denoted by SP .

7



2. Preliminaries: An Overview of Solution Techniques for MIP

We use a shorthand matrix notation for the m linear inequalities, which a solution
must simultaneously satisfy. We denote a single inequality (row) i ∈ {1, . . . , m} using
the notation at

ix ≥ bi. We denote by Aj the j’th column vector of A. Given a nonempty
set J ⊆ {1, . . . , n}, we denote by A[J ] the m-by-|J | matrix that consists of only those
columns of A that are contained in J . If J = (j1, . . . , jk) is an ordered tuple instead of
an ordinary set, the columns of A[J ] are rearranged to respect this ordering.

Note that the exclusive use of “≥” inequalities does not represent a real restriction
for MIP applications modelled in the above form, since the opposite sense “≤” is easily
expressed by multiplying the desired row coefficients and right-hand side with −1 to
match the sense “≥”. An equation atx = b can be formulated by combining two separate
rows atx ≥ b and −atx ≥ −b.

We denote the optimal objective value of P by

Zopt := inf
x∈SP

ctx,

which may be infinite in both directions, namely if SP = ∅ or if SP admits decreasing
the objective arbitrarily. In the first case, P is called infeasible and Zopt = +∞. In the
second case, in which for all Z ′ ∈ Q there exists a solution x̃ ∈ SP such that ctx̃ ≤ Z ′,
we call P unbounded with optimal objective value Zopt = −∞. A solution x̃opt that
satisfies ctx̃opt = Zopt is called optimal. Obviously, no optimal solution exists for P if P

is unbounded or infeasible. Conversely, if Zopt is finite, then an optimal solution exists.
Note that an optimal solution does not need to be unique in general.

Variables indexed by j ∈ I are called integer variables. An important subset of the
integer variables are the binary variables. A binary variable j ∈ I is an integer variable
with lower bound ℓj = 0 and upper bound uj = 1. We denote the set of binary variables
by B ⊆ I. Conversely, integer variables that are not binary are called general integer
variables and denoted by G := I \ B.

The remaining variables in the set C := {1, . . . , n} \ I are called continuous variables.
The individual numbers of binary, general integer, integer, and continuous variables are
denoted by nbin := |B|, ngen := |G|, nint := |I|, ncon := |C|. Binary variables are often
used to encode essential yes/no-decisions in an optimization scenario such as whether a
facility should be built at a certain location. Therefore, binary variables often receive a
prioritized treatment by various MIP solving components (see Section 2.3.3).

Example 1. We consider an example of a MIP for illustrating the concepts defined so
far. This example will be used as a recurring example throughout this chapter. Consider
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2.1 Mixed-Integer Programs

the following MIP P with n = nint = 5 variables, i.e., I := {1, . . . , 5}.

min −5 x4 −3 x5 −23 x1 −15 x2 −9 x3

s.t. 0 = 1 −1 x1 −1 x2 −1 x3

x4 ≥ 0.5 +4 x2 +2 x3

x5 ≤ 0.2 +1.9 x1 +3.7 x2 +5.9 x3

−2 x4 +3 x5 ≥ −0.2 x1 −6 x2 +4.6 x3

x4 ≤ 6
1 ≥ x1, x2, x3

0 ≤ x1, x2, x3

x4, x5 ≥ 0

(2.1)

We assume all lower bounds ℓ to be zero. The upper bounds u1, u2, u3 are 1. Together
with the lower bounds, this means that {x1, x2, x3} form the set of binary variables of
P (in other words, B = {1, . . . , 3}), and x4 and x5 are general integer. While x4 has an
explicit upper bound of 6, x5 has an upper bound of u5 =∞, but is implicitly bounded
by the rows of P , as we will see shortly.

The first line contains the objective function coefficients. For the rows of P , we
deviate slightly from the notation of Definition 2.1 to highlight the interaction of the
variables better. Namely, the rows are presented in such a way that the effect on the
two general integer variables x4, x5 is apparent. Therefore, we allow an equation and
mix the senses of the shown inequalities. A transformation into the form of MIP of
Definition 2.1 can be obtained easily by splitting the equation into two inequalities first,
and multiplying all inequalities with the “wrong” sense by −1.

The first row is an equation that requires that exactly one of x1, x2, x3 be set to 1.
Since x1, x2, x3 are binary variables, setting one of them to 1 forces the remaining two
variables to 0. A row like the first line is often called a “set partitioning” or also a
“multiple-choice” constraint. Note that the explicit upper bounds on x1, x2, and x3 are
not really necessary because they are implied by the multiple choice constraint, lower
bounds of zero, and integrality restrictions.

Note that in this example each choice of x1 = 1, x2 = 1, or x3 = 1 can be extended
to a feasible solution. Depending on this choice, we treat x1, x2, x3 as constants such
that the remaining rows become inequalities on x4 and x5; the second row represents a
lower bound on x4, the third row represents an upper bound on x5, and the last row
constrains the feasible assignments of x4 and x5 further.

In Figure 2.1 we illustrate the projection of the solution set SP onto the x4-x5-plane.
For each solution x̃ ∈ SP , the multiple choice constraint enforces that x̃1 = 1 or x̃2 = 1
or x̃3 = 1, and the remaining two binaries to 0. All feasible solutions correspond to grid
points, because x4 and x5 are required to be integer. x4 must not be larger than 6.

9



2. Preliminaries: An Overview of Solution Techniques for MIP

Figure 2.1: Illustration of the
MIP Example (2.1). We show a
projection of the solution set SP

into the x4-x5-plane. To the right,
the feasible region is bounded by
x4 ≤ 6. The three filled regions
correspond to the feasible region
given by the linear inequalities
on x4 and x5 if x1, x2, or x3
are set to 1, respectively. Only
solid circles correspond to feasible
solutions in SP . Further elements
shown are one example inequality
−2x4 + 3x5 ≥ −6, which bounds
the feasible region if (and only if)
x2 = 1, the objective function for
x4 and x5, and best solutions in
each region for j = 1, 2, 3.

x4

x5 x4 ≤ 6

x1 = 1

x2 = 1

x3 = 1

5x4 + 3x5

x̃x3=1

x̃x1=1

x̃x2=1

−2y4 + 3y5 ≥ −6

Three colored regions show the feasible region as defined solely by the inequalities on
x4 and x5, if we drop the integrality restrictions. (The projections of) feasible solutions
lie within one of these regions after choosing x1, x2, or x3. They are shown in the figure
as filled black circles.

An example inequality is shown in the figure. Assuming the choice of x2 = 1 (and
hence x1 = x3 = 0), the fourth row of P simplifies to −2x4 + 3y5 ≥ −6. This inequality
defines a hyperplane whose boundary is shown as a dashed line. If x1 or x3 was selected
instead of x2, the right-hand side of the inequality changes. We easily spot the two lines
parallel to −2x4 + 3y5 = −6 bounding the two other feasible regions.

All grid points outside (the union of) those regions are infeasible for P . A projection
of the objective function is also shown as a red dashed line. Note that minimizing
−5x4 − 3x5 is equivalent to maximizing 5x4 + 3x5. Points on the red dashed line have
the same objective value. An arrow indicates the improving direction of the objective.

Note that the multiple choice constraint also has an impact on the objective: Each
of x1, x2, and x3 adds a different offset value to the objective. In order to truly find
the optimal solution geometrically, we have to take into account this offset. The best
projected solution for x1 = 1 is the point x̃x1=1 = (3, 2)t, the best projected solution for
x2 = 1 is x̃x2=1 = (6, 3)t, and the best projected solution for x3 = 1 is x̃x3=1 = (6, 6)t.
By plugging everything into the original objective function for P , we calculate

ct (1, 0, 0, 3, 2)t = −44 ≥ ct (0, 1, 0, 6, 3)t = −54 ≥ ct (0, 0, 1, 6, 6)t = −57.

Therefore, the optimal solution for P is x̃opt = (0, 0, 1, 6, 6)t (in the original, unprojected
space) with an objective value Zopt = −57.
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2.1 Mixed-Integer Programs

We could solve the MIP of Example 1 geometrically, but what about higher
dimensions? One could try to enumerate all possible solutions, at least if all variables
are restricted to be integer and bounded, but at the price of having to enumerate all
exponentially many possible combinations of values. Note that enumeration already falls
short for the example above, in which one variable has an infinite upper bound.

It becomes clear that a more structured approach is needed for solving MIPs. MIP
is known to be NP-hard [Garey and Johnson, 1979]. If a MIP P has no integrality
restrictions, i.e., I = ∅, we call P a linear program (LP). An LP P̆ is called the LP
relaxation of a MIP P if it is derived from P by dropping the integrality restrictions.

The close connection between P and its LP relaxation P̆ results in two key properties
that will help in developing the branch-and-bound (B&B) algorithm [Dakin, 1965; Land
and Doig, 1960, explained in Section 2.3] to solve P .

The first key property of linear programs and LP relaxations is their solvability in
polynomial time [Khachiyan, 1979]. Second, since the solution set SP̆ of P̆ is a superset
of the solution set SP of P , it holds that

Z̆ ≤ Zopt, (2.2)

where Z̆ denotes the optimal objective value of P̆ . Due to inequality (2.2), we obtain a
lower bound on the optimal objective of P by solving its LP relaxation to optimality.
Since P̆ is itself a MIP according to Definition 2.1, Z̆ is infinite if P̆ is unbounded or
infeasible. Otherwise, if Z̆ is finite, there exists a solution x̆ ∈ SP̆ that attains ctx̆ = Z̆.
We never consider suboptimal LP solutions in this thesis; whenever we use an LP solution
x̆ for an LP relaxation P̆ , we implicitly assume that x̆ is optimal for P̆ . If x̆ satisfies
the integrality requirements of P , i.e., if x̆j ∈ Z for all j ∈ I, x̆ is also optimal for P .
Conversely, an infeasible LP relaxation P̆ proves the infeasibility of P , as well.

Note that an infeasible MIP P need not necessarily have an infeasible LP relaxation.
It is possible in this case that the LP relaxation P̆ is feasible or even unbounded.

If an LP relaxation P̆ is unbounded, P can be infeasible or unbounded as well. The
fact that P cannot have an optimal solution follows from the input data being rational.
With rational data, any unbounded ray for the LP that starts from an integer feasible
solution will always hit a second (and thus infinitely many) integer feasible solutions
with improved objective value. This is not necessarily true in the case of irrational data.1

The unbounded case plays a less critical role in practice, where unboundedness
usually indicates a mistake in the formulation of P such as the omission of a crucial row.
A MIP and its LP relaxation are always bounded if all variables have finite bounds.

For a textbook introduction to integer programming, we refer to [Wolsey, 2020].
1For example, consider the problem max y : y = π · x; x, y ∈ Z, x, y ≥ 0. There is only one integer

feasible solution but the LP relaxation (in real-valued variables) is unbounded.
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2. Preliminaries: An Overview of Solution Techniques for MIP

2.2 Solving Linear Programs (LP)

In this section, we outline the dual simplex algorithm introduced by Lemke [1954] for
solving linear programs. We review this important algorithm for several reasons. First,
the dual simplex algorithm is nowadays the most common algorithm to (re-)optimize
LPs during the B&B algorithm for MIPs, which we introduce in Section 2.3. Second,
in Chapter 7, we propose adaptive LP pricing, which dynamically switches the pricing
strategy of the dual simplex algorithm during the search. Third, there are some related
notions such as reduced costs that we need later for the generic fixing scheme of ALNS
in Chapter 6.

For the sake of space, we will keep the necessary notation and theory at a minimum.
The reader is referred to text books by Chvátal [1983] or Vanderbei [2014] for more details.
A more theoretical introduction into polyhedral theory around linear programming is
given by [Schrijver, 1986]. Our notation in this section is in large parts based on a lecture
on solving linear programs by Robert E. Bixby, which is available online.2

2.2.1 The Primal and Dual LP

According to Definition 2.1, an LP P ′ has the form

min
x∈Qn′

c′tx

s.t. A′x ≥ b

ℓ ≤ x ≤ u.

(P’)

with A′ ∈ Qm,n′ . As an LP, P ′ has no integrality restrictions.
For this section, we transform P ′ into an equivalent LP P with equations instead

of inequalities, lower bounds of zero, and no explicit upper bounds. Without loss of
generality, we may assume that ℓ = 0. The following variable substitutions ensure this.

Let j ∈ {1, . . . , n′} be a variable index of a variable xj with lower bound ℓj and uj.

• |ℓj| <∞ ⇒ Substitute xj by xj − ℓj.

• ℓj = −∞, uj <∞ ⇒ Substitute xj by uj − xj.

• ℓj = −∞, uj = +∞ ⇒ Substitute xj by introducing two variables xj+ − xj− with
lower bounds ℓj+ = ℓj− = 0.

Note that all these substitutions require updates of the right-hand side b and/or
matrix A′. The third substitution increases n′ by one for each variable without finite
bounds.3 For j ∈ {1, . . . , n′} we denote by ej ∈ Qn′ the j’th unit vector. Now that

2Robert E. Bixby: Solving Linear Programs, https://www.youtube.com/watch?v=z1xvqwQR6xU
3Such variables are called free variables.
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2.2 Solving Linear Programs (LP)

all lower bounds are 0, any remaining finite upper bound uj < ∞ is added as a new
inequality −et

jx ≥ −uj to the matrix A′ and right-hand side b. Each finite upper bound
thereby increases m by one.

Now that we have established lower bounds of zero and no explicit upper bounds,
we transform inequalities into equations by introducing one slack variable per row.
Therefore, we set n := n′ + m and extend A′ by an m-by-m identity matrix Em to
define A := (A′,−Em) ∈ Qm,n. We extend c′ ∈ Qn′ to c ∈ Qn by setting cn′+i := 0 for
i ∈ {1, . . . , m}. By construction, we have m ≤ n. Since A contains an m-by-m identity
matrix, A has full rank m.

For the remainder of this section we consider an LP P in standard form:

min
x∈Qn

ctx

s.t. Ax = b

x ≥ 0.

(P)

P is equivalent to P ′ in the sense that an optimal solution for P can be transformed
into an optimal solution for P ′ by considering only the solution values of the first n′

variables. The important difference to Definition 2.1 is the presence of equations.
P in the above form is also called primal LP. The search for a lower bound on the

optimal objective value Zopt of P gives rise to the dual of P :

max
π∈Qm,d∈Qn

πtb

s.t. Atπ + d = c

π free, d ≥ 0

(P dual)

The rationale behind P dual is to find the best possible lower bound on the optimal
objective value Zopt of P . To this end, we search for a linear combination of the rows of
A that does not exceed any of the objective coefficients c of the primal LP.

Note that π are free variables, which means that they can also take negative values.
P dual has one π variable for each row of P and one dual slack variable d for each column
of P . The dual slack variables have a lower bound of zero, which ensures that the linear
row combination Atπ does not exceed c.

Consequently, it is easy to verify that the following inequality holds for any primal-
dual pair of solutions x̃ ∈ SP , (π̃, d̃) ∈ SP dual .

ctx̃ = (π̃tA + d̃
t)x̃ ≥ π̃tAx̃ = π̃tb. (2.3)

The first part of (2.3) holds because (π̃, d̃) is dual feasible, i.e. it satisfies Atπ̃ + d̃ = c.
The inequality holds because both d̃ and x̃ are nonnegative. The last part holds because
x̃ is primal feasible, i.e. Ax̃ = b. Inequality (2.3) proves the weak duality theorem, which
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2. Preliminaries: An Overview of Solution Techniques for MIP

states that if both P and P dual are feasible, the optimal value of P dual is a lower bound on
Zopt. The strong duality theorem [see, e.g., Vanderbei, 2014] states that Inequality (2.3)
becomes an equality if x̃ and (π̃, d̃) are optimal for P and P dual, respectively.

Definition 2.2 (Basic Solution). Let P be an LP in standard form with m rows
and n columns. Let P dual be the corresponding dual LP. Let B = (B1, . . . , Bm) be an
ordered tuple of m distinct column indices: Bi ∈ {1, . . . , n}, Bi ≠ Bj if i ̸= j. Let
N := {1, . . . , n} \B.

• B is called a basis if the submatrix A[B] is nonsingular.

• Variables x[B] are called basic variables and variables x[N ] are called nonbasic
variables.

• A basic solution x̃ is obtained by setting x̃[N ] := 0 and x̃[B] := (A[B])−1b.

• A basic solution x̃ is called primal feasible if x̃ ≥ 0.

• B is called optimal if its basic solution is optimal for P .

A basis B can be used to partition the rows of P dual as follows.

 (A[B])t E[B] 0
(A[N ])t 0 E[N ]




π

d[B]

d[N ]

 =
 c[B]

c[N ]

 . (2.4)

In (2.4) we denote by E[B] an m×m identity matrix whose columns are ordered according
to B. In this representation of P dual, we see that the submatrix corresponding to the
π and d[N ] variables has full rank, because A[B] and E[N ] have full rank, respectively.
The corresponding dual variables π and d[N ] are therefore called the dual basic variables
and the d[B] variables are called dual nonbasic variables. The corresponding dual basic
solution

(︂
π̃, d̃

)︂
is obtained by setting d̃[B] := 0 and computing the remaining values

according to (2.4):

π̃ := (A[B])−tc[B], d̃[N ] := c[N ] −
(︂
A[N ]

)︂t
π̃. (2.5)

We use the shorthand notation A−t to denote the inverse of the transposed matrix At.
The solution values d̃ of the dual slack variables are also called reduced costs.

We call B dual feasible if d̃[N ] ≥ 0. A basis that is both primal feasible and dual
feasible is optimal for P and P dual due to the strong duality theorem. It can be shown
that every LP which has an optimal solution also has an optimal basic solution. In other
words, it is sufficient to consider basic solutions to solve an LP to optimality. This is the
idea of the simplex algorithm, which is the subject of Section 2.2.2.

Example 2. (Example 1 continued)
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We examine the LP relaxation P̆ of our MIP P from Example (2.1). Since the
integrality restrictions are dropped in P̆ , the multiple choice row can now mix values of
x1, x2, and x3 freely as long as their sum is equal to 1.

All variables have a lower bound of zero. We express each finite upper bound on a
variable uj as a matrix inequality −et

jx ≥ −uj. We split the multiple choice constraint
into two inequalities. We normalize the inequalities such that they all have the same
sense ≥. We arrive at the following form of P̆ with matrix A′ and right-hand side b

1.0 1.0 1.0
−1.0 −1.0 −1.0

−4.0 −2.0 1.0
1.9 3.7 5.9 −1.0
0.2 6.0 −4.6 −2.0 3.0

−1.0
−1.0

−1.0
−1.0




x1

x2

x3

x4

x5

 ≥



1.0
−1.0

0.5
−0.2

0.0
−6.0
−1.0
−1.0
−1.0


in 5 variables and 9 inequalities. The omitted entries in A′ are 0.

We extend A′ by a negative identity matrix and introduce slack variables, one per
row. All slack variables have an objective coefficient of zero. This yields the standard
form of P̆ with 14 variables representing our primal problem:

1.0 1.0 1.0 −1.0 . . .

−1.0 −1.0 −1.0 −1.0
−4.0 −2.0 1.0

1.9 3.7 5.9 −1.0

0.2 6.0 −4.6 −2.0 3.0
... . . . ...

−1.0
−1.0

−1.0
−1.0 . . . −1.0





x1

x2

x3

x4

x5

x6
...

x14


=



1.0
−1.0

0.5
−0.2

0.0
−6.0
−1.0
−1.0
−1.0



The dual P̆
dual of P̆ has 23 variables, namely 9 row multipliers π1, . . . , π9 and 14

dual slack variables d1, . . . , d14, one for each variable in the primal problem.
A basis consists of 9 out of the 14 primal variable indices, one per row. Not every

choice of indices is valid because for a basis the corresponding submatrix A[B] has to
be nonsingular. For example, observe that a basis must contain at least one of {6, 7}.
These correspond to the slack variables of the first two rows. In a quadratic submatrix
without columns A6 and/or A7 the two first rows are parallel such that the submatrix
does not have full rank.

Consider the basis B := (1, 2, 4, 5, 6, 8, 12, 13, 14). It can be verified that the
corresponding submatrix A[B] is nonsingular. The corresponding nonbasic variables
are N := (3, 7, 9, 10, 11).
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We compute the basic solution x̃ as defined in Definition 2.2. We set the nonbasic
variables x̃[N ] to 0. To obtain the basic solution values x̃[B], we solve the equation system
A[B]x̃[B] = b. Both the existence and uniqueness of x̃[B] are guaranteed because A[B] is
nonsingular.

We obtain a basic solution with solution values

x̃[(1,2,3,4,5)] = (0.509, 0.491, 0, 6, 2.984)

for the original variables, and

x̃[(6,7,...,14)] = (0, 0, 3.536, 0, 0, 0, 0.491, 0.509, 1.000)

in the slack variables. Since all basic solution values are nonnegative, B is primal feasible.
Is it also dual feasible?

Recall that B is dual feasible if all reduced costs are nonnegative. We calculate the
reduced costs as part of the dual solution. We compute the dual basic solution π̃, d̃ as
shown in Formula (2.5):

d̃[B] := 0, π̃ := (A[B])−tc[B], d̃[N ] := c[N ] −
(︂
A[N ]

)︂t
π̃.

We obtain as reduced costs d̃[B] = 0 for all indices in B by definition. Furthermore, for
the nonbasic indices N , we obtain

d̃[N ] = (30.070, 3.696, 0.232, 4.536, 0) .

In summary, all reduced costs are nonnegative. Hence, B is dual feasible.
We have established that B is primal and dual feasible. Therefore, B is optimal for

P̆ due to the strong duality theorem. An optimal solution in the five original variables
x1, . . . , x5 is given by the corresponding basic solution x̃[1,2,3,4,5].

We examine the LP relaxation P̆ of our MIP P from Example (2.1) graphically in
Figure 2.2. The figure shows the projection of the convex hull of all feasible solutions
to the LP relaxation P̆ in the x4-x5-plane as one single shaded region. For a better
orientation, the three feasible regions depending on the choice between x1, x2, or x3 are
shown as dashed triangles.

This is indeed what happens. The optimal solution for P̆ is x̆ =
(0.509, 0.491, 0, 6, 2.984)t.

The solid triangle in the figure corresponds to the feasible region of the LP relaxation
for x1, x2, x3 set to their values in x̆. In other words, this solid triangle is a convex
combination of the triangles for x1 = 1 and x2 = 1 corresponding exactly to the values
of x̆1 = 0.509 and x̆2 = 0.491 = 1− x̆1.
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Figure 2.2: Illustration of the
LP relaxation of MIP Exam-
ple (2.1) projected into the x4-
x5-plane. The dashed triangles
represent the boundaries of the
feasible regions depending on the
choice between x1, x2, or x3.
The shaded hexagon represents
the (projection of) all solutions
of the LP relaxation P̆ . It is
the convex hull of the three
extremal feasible regions. Note
that while the LP solution x̆ =
(0.509, 0.491, 0, 6, 2.984)t is a ver-
tex solution of the 5-dimensional
LP-feasible region, this is not the
case in the projection to the x4-
x5-plane.

x4

x5 x4 ≤ 6

x̆

2.2.2 The Dual Simplex Algorithm

With the notion of a primal or dual feasible basis, we are ready to state the dual simplex
algorithm, see Algorithm 1. In essence, the algorithm visits a sequence of dual feasible
bases with increasing cost until it becomes primal feasible. In order to pivot from one
basis to the next, a carefully chosen basis index is exchanged by a non-basic index.
The dual simplex algorithm guarantees that each of these basis updates preserves dual
feasibility.

Algorithm 1 proceeds in iterations which are counted by k. If the initial basis is not
primal feasible, the main loop starts with the pricing step in line 4. The idea of the
pricing step is to select a basic variable whose current basic solution value violates the
nonnegativity condition of P . This simple variant uses the index corresponding to the
most negative basic solution value. In practice, this is a poor pricing rule, and much
better rules exist [Forrest and Goldfarb, 1992].

Our goal is to resolve the primal infeasibility x̃
(k)
B

(k)
i

< 0. We do this by removing B
(k)
i

from the basis (and therefore, we get x̃
(k+1)
B

(k)
i

= 0).
But this forces us to select a new variable index j ∈ N (k) to enter the basis. Now, in

order to preserve dual feasibility, we have to select j such that all reduced costs stay
non-negative.

For the selected index i, we currently have d̃
(k)
B

(k)
i

= 0. In order to preserve dual

feasibility, we have to ensure that d̃
(k+1)
B

(k)
i′

= 0 for all other elements i′ ̸= i in the
basis. Therefore, the overall change in in the reduced costs needs to be of the form
d̃

(k+1)
[B(k)] = d̃

(k)
[B(k)] + θei, the i’th unit vector, with some θ ≥ 0. The values of the reduced

costs of the nonbasic indices will change as d̃
(k+1)
[N(k)] = d̃

(k)
[N(k)] − θα[N(k)]. The direction
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2. Preliminaries: An Overview of Solution Techniques for MIP

Algorithm 1: The dual simplex algorithm
Input: Primal LP P , dual feasible basis B = B(0) =

(︂
B

(0)
1 , . . . , B(0)

m

)︂
.

Output: Basis B′ that is either optimal for P , if it is primal feasible, or that
proves infeasibility of P .

1 k ← 0;
2 Compute basic solution x̃(k) as by Definition 2.2 and reduced costs d̃

(k) ;
3 while x̃(k) ≱ 0 do
4 Select i← argmin

{︃
x̃

(k)
B

(k)
i′

: i′ ∈ {1, . . . , m}
}︃

; /* pricing */

5 Compute y′ that satisfies
(︂
A[B(k)]

)︂t
y′ = ei; /* BTRAN */

6 Set α[B(k)] ← −ei, α[N(k)] ← −
(︂
A[N(k)]

)︂t
y′;

7 if α[N(k)] ≤ 0 then
8 return B(k) ; /* P dual unbounded ⇒ P infeasible */
9 end

10 Determine j ← argmin
{︄

d̃
(k)
j′

αj′
: j′ ∈ N (k), αj′ > 0

}︄
; /* Ratio test */

11 Update Basis: B(k+1) ←
(︂
B

(k)
1 , . . . , B

(k)
i−1, j, B

(k)
i+1, . . . , B(k)

m

)︂
;

12 Compute new basic solution x̃(k+1) as by Definition 2.2;

13 Update reduced costs d̃
(k+1) ← d̃

(k) − d̃
(k)
j

αj
α;

14 k ← k + 1;
15 end
16 return B(k);
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2.2 Solving Linear Programs (LP)

α[N(k)] is uniquely determined in accordance with the rule (2.5) for computing the dual
basic solution.

Since we want to maintain dual feasibility, all reduced costs must stay nonnegative.
Therefore, for all indices j ∈ N (k) where αj > 0, θ must not exceed d̃

(k)
j

αj
. This is ensured

by the ratio test in line 10.
The π variables will be updated as π̃(k+1) ← π̃(k) − θy′, where y′ is the result of the

backward transformation (BTRAN) operation. The change in the dual objective from
iteration k to iteration k + 1 is computed as follows.

(︂
π̃(k+1)

)︂t
b =

(︂
π̃(k) − θy′

)︂t
b

=
(︂
π̃(k)

)︂t
b− θet

i

(︂
A[B(k)]

)︂−1
b

=
(︂
π̃(k)

)︂t
b− θx̃

(k)
B

(k)
i

≥
(︂
π̃(k)

)︂t
b.

The last inequality results from the strictly negative entry x̃
(k)
B

(k)
i

, and the nonnegativity
of θ. If θ > 0, the inequality becomes strict. This also shows why θ needs to be bounded
by at least one positive entry of α[N(k)].

Otherwise, we could raise the objective value arbitrarily large while preserving dual
feasibility. In this case we have proven that P dual is unbounded and P is infeasible.
There are cases where the algorithm finishes in 0 iterations, namely if the initial basis
B(0) is already primal feasible or if P dual is shown to be unbounded. In the latter case,
P must be infeasible because a primal feasible basis bounds the possible values of πtb

from above due to the weak duality theorem.
Ultimately, we are interested in solving a MIP. We have taken an important step

now that we are able to solve the LP relaxation P̆ using the dual simplex algorithm.

Remarks We presented a simplified version of the dual simplex algorithm where we
treat bounds on variables as additional rows in the matrix A. There exist more efficient
procedures that treat variable bounds implicitly in the algorithm instead, thereby
reducing the number of rows of the (transformed) primal and dual LP relaxations.

We assume in this section that we already have a dual feasible basis to start the
dual simplex algorithm. It is sometimes easy to construct an initial dual feasible basis,
for example if all variables have finite lower and upper bounds. In general, however, an
initial dual feasible basis must be constructed first.

In this section, reduced costs are simply nonnegative, and variables have lower bounds
of 0 and infinite upper bounds. In Section 6.2, we use a generalization of reduced costs
by taking the lower and upper bounds into account.

Before the dual simplex algorithm was introduced by Lemke [1954] in the context
of game theory, the primal simplex algorithm for solving linear programs (LPs) was
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2. Preliminaries: An Overview of Solution Techniques for MIP

introduced by Dantzig [1951]. The primal simplex algorithm starts from a primal feasible
basis. In each iteration, it selects a nonbasic variable with negative reduced costs to
enter the basis while preserving primal feasibility.

An optimal basis need not be unique. Also, at intermediate steps of the dual simplex
algorithm, it may happen that the step length θ is zero. We call such a pivot degenerate.
After a degenerate pivot, care has to be taken to prevent the dual simplex algorithm
from so-called cycling, which denotes the selection of the same basis B(k) in a later
iteration k + t. One of the first discussions of cycling in the case of the dual simplex
algorithm can be found in [Beale, 1955].

In the pricing step in line 4 of Algorithm 1, we use a “textbook approach” by selecting
the most negative primal basic solution. There exist other pricing strategies for the dual
simplex algorithm that require fewer iterations in practice, see also Chapter 7.

In Algorithm 1, we compute the basic solution and reduced costs from scratch in
each iteration. Moreover, in the BTRAN operation in line 5, we solve a linear system,
which requires a factorization of the transpose of the basis matrix (A[B(k)])t in each
iteration. In practice, it is possible to maintain a single factorization for this purpose,
which is incrementally updated in each iteration. We refer to [Forrest and Tomlin, 1972]
for details about such updates.

The simplex algorithm was shown to exhibit exponential worst case behavior [Klee and
Minty, 1970], and new algorithms for solving LPs in polynomial time were introduced
by Khachiyan [1979] and later by Karmarkar [1984]. The latter method, known as
interior-point or barrier algorithm, is run in modern MIP solvers during the so-called
concurrent phase against the primal and dual simplex algorithms in parallel. During
the branch-and-bound search, the dual simplex algorithm is by far the most commonly
used algorithm for solving LP relaxations. The reason is that branching on a fractional
variable of an optimal LP solution preserves the dual feasibility of the basis, whereas
primal feasibility is lost. The dual simplex algorithm can therefore be warmstarted from
the previous basis. It can often restore primal feasibility within a few simplex iterations.
The barrier algorithm lacks this superior warmstarting property of the dual simplex
algorithm [Potra and Wright, 2000].

2.3 The Branch-and-Bound Algorithm

The branch-and-bound algorithm is commonly attributed to the works of Land and
Doig [1960] and Dakin [1965]. For more information on the historical development of
the method, please see [Cook, 2012].

The idea behind branch-and-bound is as follows: a MIP P is recursively split into
smaller subproblems, thereby creating a search tree and implicitly enumerating all
potential assignments of the integer variables. The root node of the search tree represents
the original input MIP P . Each descendant node v represents a MIP Pv that was derived
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2.3 The Branch-and-Bound Algorithm

from P by a sequence of additional restrictions imposed via branching. Due to the close
relationship between a node v and the corresponding MIP Pv, we will use these two
terms interchangeably, i.e., we use the simplified notation v for the corresponding MIP
Pv, as well. As potential branching disjunctions, we only consider restrictions of the
lower and upper bounds of integer variables in this thesis.

From now on, we will always assume that the LP relaxation of P is infeasible or has
a finite optimal objective value. This is always the case of all variable bounds are finite.
Moreover, boundedness is not a strong assumption in the sense that real-world MIP
instances that originate from industrial applications are usually bounded. Before we dive
into the algorithm, we highlight its two fundamental concepts: branching and bounding.

2.3.1 Fundamental Concepts

The integer variables that take a noninteger value in an LP solution x̆ have a special
role.

Definition 2.3 (Fractionals). Let P̆ denote the LP relaxation of a MIP P with
integrality restrictions I, and let x̆ denote an optimal solution of P̆ . The set

F := {j ∈ I : x̆j /∈ Z} (2.6)

is called fractionals, and every variable j ∈ F is called fractional (variable). For each
fractional variable j ∈ F we define its up-fractionality and down-fractionality as

f+
j := ⌈x̆j⌉ − x̆j and f−

j := x̆j − ⌊x̆j⌋,

respectively.

Fractional variables are the most popular candidates for problem subdivision during the
branch-and-bound algorithm.

Example 3. (Example 1 continued) Consider again the MIP P from Example (2.1),
whose LP relaxation is visualized in Figure 2.2. The optimal solution for the LP
Relaxation P̆ is x̆ = (0.509, 0.491, 0, 6, 2.984)t, which is quite far from the (in this case
unique) optimal solution of P , x̃opt = (0, 0, 1, 6, 6)t. Interestingly, x3 is set to 0 in x̆,
in other words, it is not even partially selected, in contrast to x1 and x2. The set of
fractionals arising from x̆ is F = {1, 2, 5}.

The term branching denotes a problem subdivision of a given MIP P . It works as
follows. We first solve the LP relaxation P̆ . If the LP solution value Z̆ =∞, i.e., if P̆

is infeasible, this also proves the infeasibility of P and the solution process terminates.
Otherwise, since we assume that P̆ is bounded, we obtain a finite Z̆ together with an
LP solution x̆ that attains Z̆.
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We immediately inspect the fractional variables F in x̆. If F = ∅, x̆ fulfills all
integrality requirements of P . Hence, we have x̆ ∈ SP , and since ctx̆ = Z̆ ≤ Zopt due to
inequality (2.2), x̆ is a proven optimal solution for P .

Most likely, however, x̆ violates some integrality requirements of P . In this case the
set of fractionals F ̸= ∅ is nonempty. Now, branching consists of splitting the problem
into two or more subproblems. Usually, this is done in such a way that x̆ is no longer
feasible for the LP relaxations of each of the subproblems.

In practice, one often resorts to so-called "branching on variables". This special case
of branching consists of selecting any fractional variable j ∈ F , and creating two new
MIP problems P ′, P ′′ with refined solution sets by restricting the bounds of j as follows:

SP ′ := SP ∩ {xj ≤ ⌊x̆j⌋} and SP ′′ := SP ∩ {xj ≥ ⌈x̆j⌉} . (2.7)

Since in every solution x̃ ∈ SP , j has an integer solution value x̃j ∈ Z, it holds that
either x̃j ≤ ⌊x̆j⌋, in which case x̃ ∈ SP ′ , or x̃j ≥ ⌈x̆j⌉, in which case x̃ ∈ SP ′′ . From this
observation, we can safely state that branching disjunction (2.7) preserves each feasible
solution for P in (exactly) one of the two new solution sets, i.e.

SP ′ ∪̇ SP ′′ = SP . (2.8)

One of the benefits of the branching disjunction (2.7) lies in the tightening of the
LP relaxations P̆

′
, P̆

′′. Concretely, it holds that Z̆P ′ ≥ Z̆P and that Z̆P ′′ ≥ Z̆P because
of the additional restriction on the bound of j imposed by a branching disjunction (2.7).
Note that x̆ is not feasible anymore for either P̆

′ or P̆
′′.

Combining the above inequalities and Equation (2.8), we obtain the following
inequality on the lower bounds.

Z̆P ≤ min{Z̆P ′ , Z̆P ′′} ≤ min{Zopt
P ′ , Zopt

P ′′ } = Zopt
P (2.9)

In a nutshell, the branching disjunction (2.7) preserves all solutions for P and possibly
tightens the lower bound on Zopt

P at the price of introducing two MIPs that must be
solved in order to solve P .

As most readers might expect at this point, a single branching operation is usually
not enough to solve most MIPs. For a notable example class of MIPs where a single
branching operation suffices, we refer to Le Bodic and Nemhauser [2015]. The general
case, however, requires performing branching (2.7) multiple times in a recursive manner,
thereby creating a search tree. The subproblems P ′ and P ′′ created by branching become
the children of P in the search tree, and P is accordingly called the parent of P ′ and
P ′′. After the first branching, the algorithm will continue by selecting one of the two
newly created P ′ or P ′′, solving its LP relaxation, and eventually branching again on a
fractional variable from the obtained LP relaxation solution.
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2.3 The Branch-and-Bound Algorithm

Figure 2.3: Illustration of a
branching disjunction of MIP
Example (2.1) projected into
the x4-x5-plane. The solution
of the LP relaxation was
x̆ = (0.509, 0.491, 0, 6, 2.984)t,
with three fractional variables
F = {1, 2, 5}. After branching
on the variable x5, we obtain
two subproblems, one with the
additional inequality x5 ≤ 2
and one with the additional
inequality x5 ≥ 3. No integer
solution is discarded by this split.
In particular the optimal solution
x̃opt = (0, 0, 1, 6, 6)t is contained
in the x5 ≥ 3 subproblem.

x4

x5 x4 ≤ 6

x5 ≤ 2

x5 ≥ 3

x̆

x̃opt

The root node of the search tree, v0, represents P itself. For our purposes, it will be
convenient to partition the nodes of the search tree into the following three sets. Upon
creation in iteration k of the branch-and-bound algorithm 2, each node is first assigned
to the set of open nodes V open

k . V open
k represents the list of unsolved subproblems from

which the algorithm selects in each iteration.4

When v gets selected for processing in a subsequent iteration k′ ≥ k, v is removed
from V open

k′ . Its LP relaxation is solved. Depending on the result, v either enters the set
of inner nodes V inner

k′ , if a branching was performed on Pv. Otherwise, v enters the set of
final leaf nodes V leaf

k′ , namely if its LP relaxation P̆ v is either infeasible, or if the optimal
LP objective value exceeds the primal bound, or if solving P̆ v yields an integer feasible
solution x̆v ∈ SP .

The nodes of the search tree at iteration k are given by the union of the three above
sets: Vk := V inner

k ∪ V leaf
k ∪ V open

k . We use two intuitive operators: children(v) denotes the
set of children of an (inner) search tree node v ∈ V inner

k created by branching; parent(v)
denotes the immediate parent node of v ∈ Vk \ {v0} whose branching led to the creation
of v.

Besides branching, the second fundamental concept of the branch-and-bound
algorithm is the availability of lower and upper bounds for the optimal solution value
Zopt. The first such lower bound is obtained after solving the LP relaxation of the root
node (in iteration 1 of the branch-and-bound algorithm 2). Due to inequality 2.9, a
tighter bound for Zopt becomes available after solving the LP relaxations of the children,
grand children etc. of P .

4The unprocessed subproblems are also called “node frontier” [Koch et al., 2013].
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Definition 2.4 (Node/Global Dual Bound). Let P be a MIP and let k be an
iteration of the branch-and-bound algorithm 2. Let the nodes of the search tree be
Vk = V inner

k ∪ V open
k ∪ V leaf

k . For an inner node v ∈ V inner
k , we denote by Z̆Pv the optimal

solution of its LP relaxation. For a node v ∈ Vk, we define its node dual bound as

z∗
k(v) :=



−∞, if k = 0,

∞, if v ∈ V leaf
k ,

Z̆Pparent(v) , if v ∈ V open
k ,

min {z∗
k(v′) : v′ ∈ children(v)} , if v ∈ V inner

k .

The node dual bound of the root node v0 is called (global) dual bound and denoted by

Z∗
k := z∗

k(v0).

Due to inequality (2.9), the node dual bound z∗
k(v) of each node v ∈ Vk is nondecreasing

in k, in particular the global dual bound Z∗
k . During the course of the branch-and-bound

algorithm, when nodes are solved and branched, the newly created children first inherit
the (necessarily finite) LP objective value of their parent until their own LP relaxation
is solved in a subsequent iteration. Conversely, the smaller of the children’s dual bounds
of an inner node v ∈ V inner

k represents a lower bound on the best solution of the MIP
corresponding to v that has not been discovered until iteration k.

If the node LP relaxation solution x̆v is feasible for P , no further branching is needed
on v. Therefore, v is added to the final leaf nodes V leaf

k+1. From iteration k + 1 onwards, it
has a node dual bound of z∗

k+1(v) =∞ due to Definition 2.4.
The algorithm maintains a set of feasible solutions Sk ⊂ SP . We call Sk solution

pool. The solution pool is initially empty, i.e. S0 = ∅. Each integer feasible LP relaxation
solution x̆v is added to the solution pool.

We call the solution in the solution pool with the smallest objective value the
incumbent, which we denote by

x̃best := argmin {ctx̃ : x̃ ∈ Sk} . (2.10)

We call the objective value of the current incumbent primal bound. We denote the
primal bound by

Zk := inf{ctx̃ : x̃ ∈ Sk}. (2.11)

It follows that at the beginning of the search, Zk = +∞.
In general, the primal bound represents an upper bound on Zopt. It is not necessarily

optimal for P because v may be a node deep in the search tree with many additional
bound restrictions on integer variables imposed through a branching disjunction (2.7).
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Each feasible solution found during the course of the branch-and-bound algorithm
potentially provides an improved primal bound. Besides LP relaxation solutions, also
primal heuristics (see Section 2.6) are used to decrease the primal bound faster (see also
line 13 of Algorithm 2).

Even a suboptimal primal bound Zk can be used to filter out open nodes based on
their node dual bound. If there exists a node v′ ∈ V open

k with node dual bound z∗
k(v′) ≥ Zk,

it is unnecessary to continue searching under v′ for improving solutions. Therefore, v′

can be added to the final leaf nodes V leaf
k+1. Eliminating such open subproblems based on

node dual bounds is called bounding or also pruning.
Due to bounding, a branch-and-bound search can often be completed in reasonable

time even on large MIPs with thousands or even millions of integer variables, where a
complete enumeration of the solution space would be hopeless.

2.3.2 The Algorithm

We are now ready to formulate a version of the branch-and-bound algorithm in our
notation. Algorithm 2 works essentially as described in the previous section. In iteration
k, the algorithm selects an open subproblem v from the nodes V open

k , solves its LP
relaxation P̆ v, and either branches on v or prunes v depending on the outcome. Our
Algorithm 2 differs from existing descriptions of the B&B algorithm in that it records a
sequence of so-called search states. Search states are a useful concept for the discussion
of the tree size estimation techniques introduced in Chapter 8.

Definition 2.5 (Search State). Let P be a MIP that is solved by the B&B algorithm.
For an iteration k = 0, . . . , U of the B&B algorithm, the search state Tk consists of

Tk :=
(︂
V inner

k , V leaf
k , V open

k , Zk, z∗
k, Sk

)︂
,

where V inner
k are the inner nodes at iteration k; V leaf

k are final leaves at iteration k, i.e.,
nodes that were infeasible, or whose LP relaxation was integer feasible, or nodes that were
pruned; V open

k are open nodes at the end of iteration k, which are still to be processed;
Zk is the primal bound at iteration k; z∗

k : Vk → Q±∞ are the node dual bounds for each
node; and Sk ⊂ SP denotes the set of already found integer feasible solutions.

A search state summarizes all the information available at (the end of) iteration k of
the branch-and-bound algorithm. A search state sequence consists of all the k + 1 search
states from the initial search state until the current iteration.

As input, Algorithm 2 receives a search state sequence and a desired limit K on
the number of (additional) iterations that should be performed. This unusual input
specification allows us to launch Algorithm 2 as a subroutine, and to interrupt it for a
decision whether to continue or perhaps restart the search, based on an inspection of
the current search state (sequence).
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Algorithm 2: branch-and-bound algorithm for MIP
Input: Search state sequence T = (T0, . . . , Tk), additional iteration limit K ≥ 1
Output: Search state sequence of length (at most) k + K + 1

1 k0 ← k; // save current length of sequence
2 while V open

k ̸= ∅ and k < k0 + K do
3 k ← k + 1;
4 select v ∈ V open

k−1 and set V open
k ← V open

k−1 \ {v};
5 apply preprocessing to v;
6 Z̆Pv ← LP objective value of P̆ v ; // ∞ if infeasible
7 Zk ← Zk−1 and Sk ← Sk−1;
8 if Z̆Pv < Zk−1 then
9 if x̆v ∈ SP then

10 Zk ← Z̆Pv and Sk ← Sk ∪ x̆v; // feasible LP relaxation solution
11 end
12 end
13 use primal heuristics to (potentially) extend Sk and improve Zk;
14 if Z̆Pv =∞ or Z̆Pv ≥ Zk then
15 V inner

k ← V inner
k−1 , V leaf

k ← V leaf
k−1 ∪ {v}; // add v to terminal nodes

16 else branch on v:
17 V leaf

k ← V leaf
k−1;

18 V inner
k ← V inner

k+1 ∪ {v};
19 select fractional j ∈ F ; // F ̸= ∅ in this path of the algorithm
20 create two children v′ and v′′ by creating a branching disjunction (2.7) for

j:
Sv′ ← Sv ∩

{︂
xj ≤ ⌊x̆v

j⌋
}︂

and Sv′′ ← Sv ∩
{︂
xj ≥ ⌈x̆v

j⌉
}︂

V open
k ← V open

k ∪ {v′, v′′};
21 end
22 T ← (Ti = (V inner

i , V leaf
i , V open

i , Zi, z∗
i , Si) : i = 0, . . . , k);

23 end
24 return T ;
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We start the B&B search algorithm from the initial search state defined as

T0 :=
(︂
V inner

0 = ∅, V leaf
0 = ∅, V open

0 = {v0}, Z0 =∞, z∗
0 = −∞, S0 = ∅

)︂
.

where v0 denotes a (yet) isolated node that represents the original MIP problem without
any branching restrictions. With the intention of completing the B&B search without
interruption, we assume an iteration limit of K =∞.

At the beginning of every iteration k = 1, 2, . . . , a node v is selected from the
currently open nodes. In line 5, node preprocessing is applied to tighten the variable
bounds of the MIP at node v, see also Section 2.3.3. The first iteration k = 1 of
Algorithm 2 selects v0 as the only open node and solves the LP relaxation P̆ in line 6.

The primal bound Zk is updated to Z̆Pv , if Z̆Pv < Zk and the solution x̆v is feasible
for P , otherwise Zk = Zk−1. Recall that if the optimal solution to the root LP relaxation
already satisfies all integrality requirements, it is necessarily optimal for P itself. Even
in this extreme case that the solution process only requires a single node, i.e., the root
node v0, there will be two search states T0 and T1. The use of primal heuristics in line 13
may also provide an improved or even optimal primal bound.

In all cases in which Z1 > Z̆Pv0
, at least one branching operation takes place. Every

time that Z̆Pv is still smaller than the current primal bound Zk, a branching operation
in line 16 creates two children for the currently active node v and adds them to V open

k .
It should be noted that the algorithm can only reach line 16 and the following lines if
the set of fractionals F is nonempty.

Namely, if the LP relaxation is infeasible, we have Z̆Pv =∞, and v is added to the
set of leaves. In case that x̆v satisfies all integrality restrictions, the primal bound Zk

has already been updated when x̆v was added to the solution pool in line 10. Therefore,
Z̆Pv ≥ Zk if F = ∅.

Every node v ∈ V leaf
k ∪V inner

k is denoted solved. Note that the number of solved nodes
increases by 1 with every iteration, such that k =

⃓⃓⃓
V leaf

k ∪ V inner
k

⃓⃓⃓
, i.e., the number of

solved nodes is always equal to k. An important detail of Algorithm 2 is that pruning
is performed explicitly so that each pruned node is counted. This ensures that each
search state Tk represents a binary search tree, i.e., a tree in which each node is either a
terminal node or an inner node with exactly two children.

It is not guaranteed that the branch-and-bound algorithm terminates. In fact, there
exist examples where the procedure continues the search ad infinitum. The algorithm is
finite if all integer variables have finite lower and upper bounds.

If the search terminates, let the final search state be denoted by TU . We denote by
Ubb := |VU | the total number of solved nodes. For every iteration k = 0, . . . , U it holds
that Zopt ≤ Zk. At search state U , Zopt = Zk.
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2.3.3 Algorithmic Components

Algorithm 2 provides a basic branch-and-bound algorithm. For the sake of notational
brevity and clarity, we omit a lot of the details regarding particular choices of the
algorithm such as which node to explore next, or which fractional variable to branch on.
Such details are not essential for the algorithm to work correctly. However, in particular
a careful branching decision is fundamental for a branch-and-bound implementation to
work in practice, where simply choosing any fractional candidate is a hopeless rule.

In modern MIP solvers such as SCIP, the basic branch-and-bound method as
presented in Algorithm 2 is enhanced by various auxiliary algorithms with the purpose
of improving the primal or dual convergence of the branch-and-bound method. We
call such auxiliary algorithms solving components. Among the most important types of
solving components are

1. Branching rules: a scoring mechanism that ranks the fractionals for the decision
on which of them a branching disjunction (2.7) should be imposed to split the
current subproblem’s feasible region.

2. Node selection: A node selection rule determines the choice of the next open node
from the search tree. Classical node selection rules include depth-first, breadth-first,
best-bound and best-estimate [Bénichou et al., 1971].

3. Primal heuristics: Primal heuristics are auxiliary algorithms aimed at providing
feasible solutions and improving the primal bound during search.

4. Presolving: Presolving (Also preprocessing) transforms the given problem instance
into an equivalent instance that is (hopefully) easier to solve. Presolving removes
redundant constraints or variables and strengthens the LP relaxation by exploiting
integrality information. For more details on presolving, see [Achterberg et al.,
2019] about presolving in general, and [Gamrath et al., 2015b] for SCIP-related
information.

5. Cutting plane separation: Cutting planes separate the current LP relaxation
solution from the convex hull of the solutions of the MIP. They are added to the
LP relaxation to tighten it. For an overview of computationally useful cutting
plane techniques, see [Cornuéjols, 2008; Marchand et al., 2002].

We now introduce SCIP, the MIP solver used throughout this thesis. Afterwards, we
will take a closer look at branching rules in Section 2.5, primal heuristics in Section 2.6,
and presolving in Section 2.7 as a foundation for the methods introduced in the subsequent
chapters.
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2.4 SCIP–Solving Constraint Integer Programs

All computational experiments for this thesis have been conducted with the academic
MIP solver SCIP, which is short for Solving Constraint Integer Programs. SCIP is a
state-of-the-art code for solving mixed-integer programs written in the programming
language C [Kernighan and Ritchie, 1988], with interfaces to other languages such as Java
and Python. SCIP has been introduced by Achterberg [2007a, 2009] as a framework for
solving so-called Constraint Integer Programs (CIPs), a generalization of mixed-integer
programs. After its release in 2007, SCIP has been extended to incorporate solving
capabilities for mixed-integer quadratic [Berthold et al., 2010] and also mixed-integer
nonlinear optimization problems (MINLPs), see [Vigerske, 2013].

SCIP does not solve LPs by itself; for solving LP relaxations, SCIP uses an external
LP solver such as SoPlex [Soplex]. By the time of this writing, the newest version of
SCIP is version 7.0 [Gamrath et al., 2020], which incorporates all the (polished and
documented) code used for the computational experiments in this thesis. Since version
3.2, each major release of a new SCIP version is accompanied by a technical report
(the “release report”) with detailed descriptions of new features and also conclusive
performance results. The full source code of the SCIP software can be obtained as part
of the SCIP optimization suite (that contains SoPlex as well) from www.scipopt.org.

SCIP has a plugin-based design to allow for user-written extensions of the so-called
“core”, which implements a branch-and-bound algorithm as described in Section 2.3.
Among others, SCIP provides particular plugin classes for all solving components
introduced in Section 2.3.3 to enrich the basic B&B Algorithm 2, for example branching
rules and primal heuristics. Each plugin added to SCIP registers a handful of callback
functions that the SCIP core executes at the appropriate stages of the search. A branching
rule plugin, for example, provides a callback function that implements the branching
on a suitable fractional candidate in line 16 of Algorithm 2. When the core algorithm
reaches the point at which a branching decision must be made, it calls the registered
branching rules in decreasing order of a (user-specified) priority until one successfully
splits the problem. If no branching rule has been registered, SCIP will simply branch
on the first unfixed integer variable. SCIP already features a handful of branching rule
plugins implementing certain popular choices such as strong branching, a pseudo-cost
based branching rule [Bénichou et al., 1971], and hybrid branching [Achterberg and
Berthold, 2009], which will be explained in the next section.

2.5 Branching Rules

Research on branching rules for MIP has been a focus of interest since the advent of
the branch-and-bound procedure in the 1960’s [Dakin, 1965; Land and Doig, 1960].
Pseudo-costs, which measure the average objective gain for every integer variable, and
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their use for branching first appeared in [Bénichou et al., 1971]. The use of degradation
bounds for the pseudo-cost initialization was suggested in [Gauthier and Ribière, 1977].
Equipped with more computational power, strong branching was first applied in the
context of the Traveling Salesman Problem [Applegate et al., 1998], whereas its first
use for general MIP solving is attributed to the commercial MIP solver CPLEX.5 An
important computational study of these and different node selection techniques has been
conducted by Linderoth and Savelsbergh [1999]. Liberatore [2000] shows that the problem
of choosing an optimal branching variable is NP-hard in the context satistifiability
(SAT) problems. This result also holds for MIP because MIP is a generalization of SAT.

As already briefly explained in Section 2.3.3, a branching rule is a scoring mechanism
to guide the selection of a branching variable at each inner node of the search tree in
line 16 of Algorithm 2. The decision on which fractional variable to branch is crucial for
the success of the branch-and-bound search.

With the explicit intention to “fool MIP solvers”, Le Bodic and Nemhauser [2015]
introduce a certain family of graphs for which they wish to determine the chromatic
number.6 Even if the graphs grow in size, Le Bodic and Nemhauser [2015] prove that the
corresponding MIP formulation of the studied graph family always admits a constant
size branch-and-bound search tree of size Ubb = 3 in the best case in which a particular
candidate variable is immediately selected at the root node. Inferior branching choices,
however, may result in trees of exponential size. Le Bodic and Nemhauser [2015]
demonstrate for several MIP solvers that these often fail to find the good branching
decision on larger instances.

Recall that at a node v of the search tree with fractional LP solution x̆v, branching
consists of a problem split, the so-called branching disjunction (2.7),

SP ′
v

:= SPv ∩
{︂
xj ≤ ⌊x̆v

j⌋
}︂

and SP ′′
v

:= SPv ∩
{︂
xj ≥ ⌈x̆v

j⌉
}︂

after a suitable choice of a fractional j ∈ F . Branching disjunctions on variables can be
performed with little computational overhead by restricting the lower and upper bounds
of j in the children.

Concretely, we obtain P ′
v by setting u′

j ← ⌊x̆v
j⌋ and P ′′

v by setting ℓ′′
j ← ⌈x̆v

j⌉. In
branching terminology, P ′

v is also called the down-child of Pv because the domain of
variable j is restricted to a lower interval than in P ′′

v , which is also called the up-child. If
xj is binary, i.e. j ∈ B, branching on j always results in fixing xj to 0 in the down-child
and to 1 in the up child.

How to choose a good j ∈ F? Ultimately, we would like to choose a fractional for
branching that minimizes the size of the search tree under the current node. Recall that
due to inequality (2.9), the LP relaxation value of the children will be no smaller than

5https://www.ibm.com/analytics/cplex-optimizer
6In graph theory, the chromatic number of a graph denotes the smallest possible number of colors in

a vertex coloring such that each pair of adjacent vertices receives two different colors.
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2.5 Branching Rules

the LP relaxation value at the current node. Typically, branching rules aim at raising
the difference between the parent and both child LP relaxations, which we call gain, in
both subproblems as much as possible.

Definition 2.6. Let P be a MIP and let v ̸= v0 be a node in the search tree. The gain
of v is defined as the LP objective difference between P̆ v and its parent

∆ (Pv) = Z̆Pv − Z̆Pparent(v) (2.12)

Due to the observations in Section 2.3, the gain ∆ (Pv) is always nonnegative.

2.5.1 Strong Branching

Strong branching scores the fractional candidates by explicitly creating and solving the
resulting child node LP relaxations for all possible branching disjunctions. The first
use of such a technique in the context of branching is due to [Gauthier and Ribière,
1977]. The term strong branching was coined by [Applegate et al., 1998] in the context
of solving traveling salesman problems.

Definition 2.7 (Strong Branching Score). Let F be the remaining fractionals at a
node v of the B&B search tree, let j ∈ F be a candidate for branching, and let ε > 0.
Let P −

j denote the (potential) down-child after branching on j, and P +
j the potential

up-child. We compute the strong branching score of j as

ϑstr (j) := max
{︂
∆
(︂
P −

j

)︂
, ε
}︂
·max

{︂
∆
(︂
P +

j

)︂
, ε
}︂

(2.13)

The value of ε guarantees that the strong branching score is never zero even if one of
the gains is zero. In SCIP, the value of ε equals 10−6 by default.

The strong branching rule selects the candidate that maximizes the strong branching
score:

j ← argmax
j′∈F

ϑstr (j′) . (2.14)

Since the gains in the children are unknown by the time a candidate needs to be selected,
the strong branching rule determines ϑstr (j) by virtually solving 2 · |F| child node
relaxations and evaluating their gains (2.12). Although strong branching is guaranteed
to select the best local candidate regarding the objective gain, the exhaustive solving
of auxiliary LP relaxations makes the computational cost of this procedure often too
expensive to be used throughout the search. However, it is well suited as an initialization
method for pseudo-costs.

Figure 2.4 illustrates strong branching at the root node of our example MIP 1. The
LP solution has three fractional candidates F = {1, 2, 5}. Strong branching creates six
child node relaxations in total. In the figure, we show the projections of each of these
feasible regions in color. We blend out the part that is no longer feasible.
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For example, in the child node relaxation P +
1 that corresponds to the branching

restriction x1 ≥ 1, we find ourselves in the triangle in the lower left. In the down branch
x1 ≤ 0, however, all convex mixtures of x2 and x3 are still possible. The root node
LP relaxation has an LP objective value of Z̆ = −58.023. The strong branching LPs
have gains of ∆

(︂
P −

1

)︂
= 0.723, ∆

(︂
P +

1

)︂
= 12.473, ∆

(︂
P −

2

)︂
= 0.231, ∆

(︂
P +

2

)︂
= 1.323,

∆
(︂
P −

5

)︂
= 7.023, and ∆

(︂
P +

5

)︂
= 0.023.

The strong branching score (2.13) of each fractional is simply the product of the two
gains, and x1 gets selected for branching.

Remarks The use of the product in the strong branch score (2.13) to combine the
gains of the two individual directions was first proposed by Achterberg et al. [2004]
as a means to favor candidates that yield a balanced improvement in both directions.
Achterberg, Koch, and Martin [2004] showed that the product was empirically superior
to previous methods that used a convex combination of the up and down gains. Recently,
Le Bodic and Nemhauser [2017] proposed a novel function as a replacement of the
product function. To this end, Le Bodic and Nemhauser [2017] derived an explicit
combinatorial formula for the size of the resulting subtrees under the assumption that
the gains stay constant. This method has also been recently made available in SCIP.

Gamrath [2013] improved the strong branching procedure of SCIP by applying
domain propagation techniques at each sub-node in addition to solving the LP relaxation.
Fischetti and Monaci [2012] observed unnecessary strong branching effort in the presence
of chimerical variables, i.e. fractional variables with little or no effect on the objective
of the LP solutions. They exploit this fact to safely ignore such candidates for the
strong branching procedure. Strong branching as presented here performs a lookahead
of one level into the prospective search tree. Gamrath [2020] has recently discussed a
generalization of this concept called “lookahead branching” that strong branches deeper
than one level on some candidate variables.

Cloud branching [Berthold and Salvagnin, 2013] has been proposed as a novel
approach for better dealing with the frequent degeneracy of LP solutions. It computes
several optimal LP solutions and considers variable fractionalities as intervals rather
than points.

2.5.2 Pseudo-Cost Branching

The pseudo-costs [Bénichou et al., 1971] of a fractional variable j ∈ F are the most
widely used estimation of the impact of a branching decision on the children objective
gains ∆

(︂
P −

j

)︂
, ∆

(︂
P +

j

)︂
. The idea of the estimation is to use the average of the already

observed gains after past branching decisions for each integer variable individually.
Concretely, let v be a node with LP relaxation P̆ v. Assume that Pv emerged from its

parent node parent(v) by branching down on a variable j ∈ F that was fractional in the
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Figure 2.4: We illustrate strong branching on our example.
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LP relaxation solution x̆parent(v). We call the normalized gain between the LP relaxation
objectives of Pv and parent(v),

ς−(Pv) := ∆ (Pv)
x̆

parent(v)
j − ⌊x̆parent(v)

j ⌋

the unit gain of j at Pv. This unit gain is well-defined because x̆
parent(v)
j −⌊x̆parent(v)

j ⌋ > 0
since j was fractional at parent(v). Like the gain, the unit gain is always nonnegative.

Let D−
j := {P1, . . . , Pη−

j
} denote all feasible LP relaxations that resulted from a down

branch on j and have been solved already. We average all observed unit gains via

Ψ−
j :=

∑︂
Pi∈D−

j

ς−(Pi)
η−

j

. (2.15)

By definition of an empty sum, Ψ−
j = 0 if η−

j = 0. Similarly, we define Ψ+
j over all

feasible LP relaxations that have been solved after branching up on j. If η−
j or η+

j is 0,
we call j uninitialized in this direction.

Definition 2.8 (Pseudo-costs [Bénichou et al., 1971]). Let j ∈ I be an integer
variable of a MIP P and let Ψ+

j and Ψ−
j denote the current average unit gains after

branching up and down on j, respectively. We define the pseudo-cost function of j as

Ψj : Q → Q≥0

z ↦→

Ψ+
j · z, if z ≥ 0

−Ψ−
j · z, if z < 0.

(2.16)

At a node v for which x̆v
j /∈ Z, the pseudo-costs for branching up and down on j are

computed as Ψj(f+
j ) and Ψj(−f−

j ), respectively.

The definition of the pseudo-cost function ensures that pseudo-costs are always
nonnegative. When the branching rule is invoked, pseudo-costs represent an estimation
of the gains of the potential children P −

j and P +
j of a fractional j ∈ F . For the purpose

of branching, it would be sufficient to restrict the domain of Ψj to the interval [−1, 1]
instead of Q. However, in Chapter 6, we use this function to compute a score based on
inputs for Ψj outside of [−1, 1] in general.

For branching, the pseudo-cost score function combines the pseudo-cost functions

ϑps (j) := max
{︂
Ψj(−f−

j ), ε
}︂
·max

{︂
Ψj(f+

j ), ε
}︂

(2.17)

that estimate the objective gains in the (potential) children after branching on j ∈ F
using the product score, following the same logic like the strong branching score (2.13). As
before, the role of ε is to avoid a pseudo-cost score of zero if one of the two directions has a
pseudo-cost estimation of zero. In contrast to the strong branching score, the pseudo-cost
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score function is cheap to evaluate at every node. Practically, an implementation only
needs to store the four values Ψ−

j , η−
j , Ψ+

j , η+
j , from which pseudo-costs can be efficiently

computed and updated, but not the lists D−
j and D+

j .

2.5.3 Reliability Branching

The pseudo-cost branching rule is an effective replacement of the strong branching rule at
later stages of the search but lacks information at the beginning. For that reason, several
combinations of pseudo-cost branching and strong branching have been developed: One
possibility is to use a single strong branching initialization on uninitialized variables
and pseudo-costs for every initialized candidate. Another possibility consists of strong
branching at the topmost d levels of the tree and pseudo-cost branching at deeper levels.
In SCIP, all uninitialized fractional variables use the average of all unit gains, i.e., from
initialized variables and solved B&B node LP relaxations, for their pseudo-cost score.
This idea is due to [Eckstein, 1994].

The state-of-the-art branching scheme, which is applied by most modern MIP solvers
albeit the concrete implementation might vary, is reliability branching [Achterberg et al.,
2004], which we discuss in more detail in Chapter 4. The basic idea of reliability branching
is a distinction between candidate variables with “reliable” and “unreliable” pseudo-cost
scores. Achterberg et al. [2004] suggests to base the reliability of a pseudo-cost score
ϑps (j) (2.17) on the number of past branching observations, denoted by η−

j , η+
j . Too few

observations render ϑps (j) unreliable, and a strong branching score is computed instead.

2.5.4 Hybrid Branching

Pseudo-costs are not the only piece of information that the solver might learn about the
integer variables that it branches on during the search. As shown in line 5 of Algorithm 2,
node preprocessing is applied before the LP relaxation in iteration k is solved. Starting
from the bound requirement imposed by branching, node preprocessing may often infer
additional domain tightenings for other variables. This information can be stored as
inference history, which measures the impact of a branching decision j ∈ F upon the
domains of other variables.

Similarly to pseudo-costs, the average number of domain reductions inferred from
branching on j is recorded and updated during the search to form the inference score
ϑinf (j) as the product of the average domain reductions after up and down branches on
j. An analogous score has also been proposed and successfully applied in the area of
Constraint Programming (CP) [Refalo, 2004].

A subtlety in the Definition 2.8 of pseudo-costs is that they are only recorded from
feasible child LP relaxations, i.e., nodes with a finite LP objective. If a node is cut
off due to an infeasible LP relaxation, no pseudo-costs are recorded because the gain
would be infinite in this case. Instead, the number of cases where branching up/down on
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variable j ∈ I resulted in an infeasible LP relaxation is recorded as separate branching
history.

The corresponding cutoff score ϑcut (j), which combines the two average numbers of
infeasible nodes resulting from branching up and/or down on j, can be used for selecting
a good branching variable, as well. By selecting a candidate with a high cutoff score for
branching, chances are that the resulting child nodes are infeasible or that, at least, the
subtree under the current node stays small.

In team sports like Basketball, the value of each player is determined not only by how
often he or she scores in a game, but also how often he or she assisted in another player’s
score by passing the ball. Similarly, in MIP branching, an infeasible LP relaxation is
often the result of the effort of a team of branching decisions rather than only the final
one that is rewarded by the cutoff score.

The technique of finding a subset of branching decisions that represent the “reason”
of an infeasibility is called conflict analysis. Conflict analysis originates from the area of
Satisfiability (SAT) solving and has been successfully transferred into a MIP solving
component of SCIP by Achterberg [2007b], with recent extensions by Witzig et al. [2017].

The theory behind conflict analysis requires too much notation overhead to be rolled
out here for the sake of explaining a branching score. Briefly, a conflict clause in MIP is
a disjunction of bound restrictions, which can be linearized if all involved variables are
binary. Conflict clauses can be derived from infeasible subproblems using the so-called
“conflict graph”.

A second form of conflict analysis consists of constructing so-called “Farkas proof”. A
Farkas proof is a globally valid linear inequality that is violated within the local variable
bounds. Farkas proofs are derived from an infeasible node LP relaxation, see [Witzig
et al., 2017].

A conflict clause learned in one part of the search tree may help to detect the
infeasibility of open nodes of the search tree, if their local bound changes violate the
conflict clause. Ideally, a conflict clause contains only few variables such that it is active
high in the search tree.

Conflict scores for branching in SCIP borrow an idea originally suggested in the
area of SAT solving called variable state independent decaying sum [Moskewicz et al.,
2001]. Variables are preferred if they are part of many recent conflicts. Every time a new
conflict clause is added, the counters of the involved variable-direction combinations
are incremented by 1. Periodically, the counters are multiplied with a small scalar less
than 1 to geometrically decay the contribution of older conflict clauses on the score.
We denote this conflict score by ϑconf (j), which multiplies the two counters, one per
branching direction of j, as usual.

The combination of all the above scores and pseudo-costs into a single score
was introduced as Hybrid branching by Achterberg and Berthold [2009]. Technically,
Achterberg and Berthold [2009] observe that the four branching scores ϑps (j), ϑinf (j),
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ϑcut (j), and ϑconf (j) generally act on very different scales and need to be normalized first.
Therefore, they propose to normalize each score in two steps as follows. First, they divide
each score by the corresponding average score across all variables. For pseudo-costs, a
fractionality of 0.5 is used to compute this average score. We denote the four average
scores by ϑps, ϑinf, ϑcut, and ϑconf. Second, the resulting scores are normalized using the
function

s : R≥0 → [0, 1), s(x) = x

x + 1 .

Hybrid branching combines these ingredients into the following hybrid score:

ϑhybrid (j) := wpss
(︂

ϑps(j)
ϑps

)︂
+ winfs

(︂
ϑinf(j)

ϑinf

)︂
+ wcuts

(︂
ϑcut(j)

ϑcut

)︂
+ wconfs

(︂
ϑconf(j)

ϑconf

)︂
. (2.18)

Here, the four weights wps, . . . denote positive weights for the individual scores. By
default, SCIP version 7.0 uses weights of wps = 1.0, wconf = 10−2, winf = wcut = 10−4 at
the beginning of the search.

A fifth ingredient to the above hybrid score (2.18) of SCIP measures the average
length of the conflicts of a variable, an idea due to [Kılınç Karzan et al., 2009]. By
default, this score is disabled in SCIP.

While Achterberg and Berthold [2009] proposed the method with static weights as
above throughout the search, several adaptive enhancements have been proposed. The
first dynamic weight adjustment was implemented as a byproduct of the implementation
of phase-specific settings for Chapter 5 based on the pruning behavior of the search. If
many more nodes are detected to be infeasible compared to nodes that exceeded the
primal bound (assuming a finite primal bound), driving the search towards infeasibility
seems a superior strategy instead of raising the dual bound. Therefore, in the above
situation, the weight of pseudo-costs is dynamically weakened in favor of the other three
feasibility-based scores.

Concretely, let k denote an iteration of the branch-and-bound Algorithm and let
U infeas

k and Uprune
k denote the number of leaf nodes that were infeasible and the number

of leaf nodes that were pruned because the LP relaxation objective exceeded the primal
bound, respectively. We multiply the three weights wconf, wcut, and winf each with
U infeas

k +1
Uprune

k
+1 , and we multiply wps with the reciprocal of this fraction. Due to this dynamic

factor, a large number of infeasible leaves U infeas
k that exceeds the number of pruned

nodes Uprune
k by a factor of 10 will make the conflict score the dominant score of Hybrid

Branching (2.18) at this stage of the search. The second adaptive behavior presented
by Berthold et al. [2019a] adjusts the weights at each branch-and-bound node depending
on the level of dual degeneracy. At highly degenerate nodes, the weight of pseudo-costs
is reduced in favor of the other scores. Nowadays, SCIP by default uses both dynamic
adjustments in Hybrid Branching.
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2.5.5 Remarks

Note that in this thesis, we only consider variable-based branching. This concept is
generalizable by incorporating branching on general disjunctions, which was introduced
by Ryan and Foster [1981] in the context of problems with set-partitioning (multiple
choice) constraints.

For branching methods on variables that use other techniques than history
information, see, e.g., [Gilpin and Sandholm, 2011; Kılınç Karzan et al., 2009]. The
branching strategies presented in [Pryor and Chinneck, 2011] aim at quickly finding
feasible solutions. To this end, solution densities are approximated by means of normal
distributions. Fischetti and Monaci [2011] proposed a method for restricting the set of
branching candidates by calculating so-called backdoor sets in advance.

For more information on branching with a focus on recent advances of branching
methods in SCIP, we refer to [Gamrath, 2020].

2.6 Primal Heuristics

The B&B Algorithm finds a sequence of incumbent solutions for a MIP P by storing
integer feasible LP relaxation solutions, thereby shrinking the primal bound until it is
optimal for P . With each improved primal bound, chances are that open nodes of the
search tree can be pruned without necessitating further exploration. However, integer
feasible LP relaxation solutions are usually located at deeper nodes of the search tree
and may be hard to find. In addition, as long as the primal bound is large or even
infinite, the B&B search may get stuck in a part of the search tree that could be cut off
right away with a better (or any) solution and corresponding primal bound at hand.

Therefore, modern MIP solvers employ primal heuristics tightly integrated with the
main B&B search. Berthold [2014b] defines primal heuristics as “algorithms that try
to find feasible solutions of good quality within a reasonably short amount of time”,
but without a guarantee to succeed. Primal heuristics are often designed with a specific
application or problem structure in mind. In contrast, the primal heuristics discussed in
the following and in subsequent chapters make little assumptions about the structure
of the MIP problem, except that some require the presence of binary variables or a
nonzero objective function. Over the years, many different primal heuristic algorithms
have been proposed, which are highly diverse in the computational effort they require.
A survey article on primal heuristic algorithms for MIP can be found in [Fischetti and
Lodi, 2010]. For a general overview of the primal heuristics implemented in SCIP, we
refer the reader to [Berthold, 2014b] and the references therein.

Following the classification by Achterberg, Berthold, and Hendel [2012], primal
heuristics for MIP can be grouped based on the techniques they apply into rounding,
propagation, diving and large neighborhood search heuristics. The first group searches
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Figure 2.5: Illustration how SCIP executes heuristics
during branch-and-bound. The nodes labeled 1 – 5 are
the branch-and-bound search tree, representing the order in
which the search nodes are explored. In SCIP, each primal
heuristic is executed according to its frequency parameter
f ≥ 0 that determines the depth levels of the search tree at
which the heuristic is called. Only heuristics with frequency
f = 1 are called at every branch-and-bound node. An
example of a heuristic H with frequency f = 2 is illustrated
here. We highlight those nodes at which H is called. Node
4 is special because it may have been pruned before or
after H has been called. It may even be that H found a
solution, e.g, by rounding the LP solution at 4, and 4 could
be pruned as an immediate result.

for improving solutions in the set of feasible roundings among the fractionals after each
LP solution.7 As propagation heuristics, we denote constructive algorithms that greedily
perform a sequence of local assignments and apply domain propagation in between to
increase the chances to terminate with a feasible solution.

An example of a propagation heuristic called shift-and-propagate (S&P) has been
introduced by Berthold and Hendel [2014]. Let P be a MIP, for which S&P is called
during the B&B algorithm.8 Let ℓ′ and u′ denote the current local lower and upper bounds
that may include fixings of selected variables and subsequent domain reductions on
other variables. Throughout the algorithm, shift-and-propagate maintains an assignment
x̃s&p of the variables that satisfies the bound requirements ℓ ≤ ℓ′ ≤ x̃s&p ≤ u′ ≤ u and
integrality restrictions x̃s&p

j ∈ Z for j ∈ I of P , but potentially violates the rows of P .
As soon as Ax̃s&p ≥ b, S&P returns the feasible solution x̃s&p ∈ SP .

If, however, there still exists a row that is violated by x̃s&p, S&P selects an (unfixed)
integer variable j ∈ I that appears in a maximal number of violated rows, and computes
a (finite) value ℓ′

j ≤ yj ≤ u′
j that maximizes the number of additionally satisfied rows

if we reassign (shift) x̃s&p
j to yj. It is possible that x̃s&p

j = yj. Then, S&P fixes the
domain of j temporarily to yj by setting ℓ′

j ← yj and u′
j ← yj. Since j was unfixed

before, this fixing restricts the search domain and therefore the size of the remaining
search space even if x̃s&p =yj might stay unchanged in this iteration of the algorithm.
The domain change of j is then propagated to find further domain reductions, and
undone (backtracked) if domain propagation concludes that the remaining subproblem
within the local bounds became infeasible. In this case, j is discarded from the set of
variables to select from, and S&P continues the search with the remaining, unfixed

7See the neighborhood definition (6.3) of the RENS heuristic [Berthold, 2014a] for a definition of
the set of feasible roundings.

8We should note at this point that line 13 of the B&B algorithm is not the only place during the
processing of a node at which SCIP calls primal heuristics. S&P, as an example, is actually called
before the LP relaxation is solved, whereas diving heuristics are typically called after branching.
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integer variables. If no feasibility was detected, S&P assigns x̃s&p
j ← yj and continues in

the reduced search domain.
Propagation heuristics such as S&P are considered computationally inexpensive,

because they do not solve intermediate LP relaxations to drive the assignment. S&P
does not require a feasible solution as starting point and is called before the initial root
node LP relaxation is solved.

A higher computational effort is usually required by diving and objective diving
heuristics. Both heuristic classes solve sequences of modified LP relaxations to drive the
search forward. According to Fischetti and Lodi [2010], diving heuristics belong to the
“folklore” of heuristic strategies, like rounding. Diving heuristics in SCIP [Achterberg,
2007a] work similarly to a branch-and-bound tree search with depth-first node selection
and limited backtracking; if a diving heuristic encounters an infeasible node, it backtracks
to try the alternative direction, until it finishes in a node where both children are
infeasible, or due to a depth or simplex iteration limit. One specialty is that diving in
SCIP is conducted in an auxiliary path of the search tree. Starting from a search tree
node, the auxiliary path is only maintained during the dive and is discarded afterwards.
Hence, diving strategies which might be considered ineffective for a global tree search
can be used within a diving heuristic as a temporary replacement of the main branching
strategy to search for improving solutions, without a negative effect on the main B&B
search tree. We postpone a more detailed discussion of the diving strategies in SCIP
until Chapter 7.

An effort similar to diving is required by the feasibility-pump [Fischetti, Glover, and
Lodi, 2005] procedure, which has seen numerous improvements [Achterberg and Berthold,
2007; Dey et al., 2018; Fischetti and Salvagnin, 2009, to name only a few] over the years.
The basic idea behind feasibility pump as originally presented by Fischetti et al. [2005] is
to solve a sequence of LPs with a modified objective function. Feasibility pump iterates
between a rounding step and a so-called projection step: In its first iteration, feasibility
pump rounds the LP relaxation solution x̆ of a MIP P to obtain x̃fp := [x̆]. Of course, the
rounding operation [·] is restricted to the integer variables. Clearly, while x̆ potentially
violates integrality restrictions, x̃fp potentially violates linear constraints. If Ax̃fp ≥ b,
feasibility pump returns x̃fp. Otherwise, during the projection step, feasibility pump
solves an LP relaxation with a new objective function, trying to minimize a distance
function to x̃fp. As distance function, Fischetti et al. [2005] suggest the binary distance,
which we define in Section 6.1.2. The binary distance has the advantage that it can be
expressed as a linear objective function without additional variables. Early improvements
to the projection step consisted in new distance functions; Bertacco et al. [2007] proposed
to include the integer variables of the problem at the expense of additional variables and
constraints, whereas [Achterberg and Berthold, 2007] mix the actual objective function
of P into the projection step. A recent survey article [Berthold, Lodi, and Salvagnin,
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2019b] is dedicated to these and many more enhancements proposed for feasibility pump
over the years.

At the most expensive end of the scale are large neighborhood search (LNS)
heuristics that solve auxiliary MIPs, such as Relaxation Induced Neighborhood Search
(RINS) [Danna et al., 2005]. We give an overview of LNS techniques in Section 6.1.

Since [Berthold, 2014b], there have been several new developments in SCIP covering
most of the aforementioned primal heuristic categories. Two of these developments are
presented in detail in Chapters 6 and 7. Besides, Witzig and Gleixner [2020] proposed two
new diving heuristics that aim at both finding feasible solutions and at deriving useful
conflict clauses. Another recent development in SCIP are specialized primal heuristics
that exploit user decompositions, if provided. For an overview of these primal heuristics,
see [Gamrath et al., 2020].

Gamrath et al. [2015a, 2019] proposed three new propagation heuristics to construct
initial feasible solution. Similarly to S&P, all three heuristics conduct greedy variable
assignments and use propagation to deduce necessary domain reductions on other
variables. In contrast to S&P, these structure-based heuristics by Gamrath et al. [2015a,
2019] select variables and values based on auxiliary structures such as the “conflict
graph” [Atamtürk et al., 2000] on the binary variables. The conflict graph, which is
called “clique table” in SCIP because of the ambiguity with the conflict graph used for
conflict analysis, collects constraints of the form

∑︂
j∈B+

xj +
∑︂

j∈B−

(1− xj) ≤ 1,

where B+ ∪ B− ⊆ B. Constraints of the above form are often called cliques. From the
multiple choice constraint from Example (2.1), a clique can be readily derived. However,
it is also possible to infer cliques that are implied by general linear constraints.

For their clique-driven heuristic, Gamrath et al. [2015a, 2019, Algorithm 2] propose
to first select a clique C from the clique table with maximum number of unfixed variables,
and to assign the binary variable j contained in C with minimum cost to 1 or 0 depending
on whether j ∈ B+ or j ∈ B−, respectively. In the subsequent propagation step, this
fixing will always force that all other variables from C be fixed to either 0 or 1, depending
on whether they are in B+ \ {j} or B− \ {j}. This clique-driven fixing scheme aims at
quickly fixing as many binary variables as possible. Of course, the clique table must
cover most binary variables of a MIP for this procedure to make good selections.

2.7 Presolving and Propagation

In Section 2.3.3 we mentioned presolving as one of the commonly used components
inside a MIP solver. Recall that presolving denotes valid transformations that preserve
the optimal objective value of an input MIP.
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Some of the most common operations applied during presolving are

• the removal of fixed variables (variables with equal lower and upper bounds),

• the removal of redundant rows, and

• the tightening of variable lower and upper bounds based on row activities [Brearley
et al., 1975] (see Section 2.7.1 below for a special case of activity-based bound
tightening).

It may happen during presolving that a variable domain becomes empty. This proves
the infeasibility of the original input MIP.

Since the tightening of variable lower and upper bounds can result in new fixed
variables, presolving is usually applied in rounds. Presolving is iterated until no more
valid transformations can be found, the problem is proven infeasible, or working limits
are reached.

Presolving techniques are applicable at each node of the B&B search tree. A node is
created by adding a bound restriction on an integer variable through branching. This
bound restriction can help to reduce the domains of other variables.

Typically, the full set of presolving transformations is applied only at the root node
of a MIP before the initial LP relaxation is solved. All applied transformations to the
root node of the search are valid thereafter also in descendant nodes. At descendant
nodes, only a reduced set of transformations is applied, typically activity-based bound
tightening starting from the new bound on the branching variable.

The application of valid problem transformations at non-root nodes is called
propagation. In our version of the B&B algorithm 2, we execute “node preprocessing” in
line 5. By node preprocessing, we denote

• presolving before the root node of the search, and

• propagation at all other nodes.

There are many more valid problem transformations than listed above. For more
details on presolving, see [Achterberg et al., 2019] about presolving in general,
and [Gamrath et al., 2015b] for SCIP-related information.

2.7.1 Reduced Cost Strengthening

In fact, propagation need not only be applied at the very beginning of a node. An
example of a valid transformation that involves LP information is the so-called reduced
cost strengthening. Reduced cost strengthening uses the dual solution values to deduce
tighter bounds on variables that are nonbasic in the optimal LP basis. One of the earliest
works that describe reduced cost fixing in the context of the traveling salesman problem
is [Dantzig et al., 1954].
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Reduced cost strengthening is a special type of activity-based bound tightening. We
explain this reduction here because reduced costs also play a role in Chapter 6, where
we use reduced costs to design a variable fixing score.

Let P be a MIP with lower bounds ℓ = 0 for all variables, infinite upper bounds, and
LP relaxation P̆ . We consider an optimal basic LP solution x̆ =

(︂
x̆[B], x̆[N ]

)︂
for P̆ with

corresponding dual basic solution (π̃, d̃). Note that all reduced costs d̃ are nonnegative
because B is dual feasible.

Let Z̆ be the objective value of x̆. Note that Z̆ = π̃tb. Let Z ′ be a given upper
bound on Zopt, the optimal objective of P . The upper bound Z ′ can be considered as
an inequality ctx ≤ Z ′ on the objective function of P .

Let j ∈ N be a variable whose column is nonbasic with positive reduced costs d̃j > 0.
We derive an upper bound on xj using its reduced cost dj as follows.

ctx = (π̃tA + d̃
t)x ≤ Z ′

⇔ π̃tb + d̃
t
x ≤ Z ′

⇔ Z̆ + d̃
t
x ≤ Z ′

⇔
n∑︂

j′=1
d̃j′xj′⏞ ⏟⏟ ⏞
≥ 0

≤ Z ′ − Z̆

⇒ d̃jxj ≤ Z ′ − Z̆

⇔ xj ≤
Z ′ − Z̆

d̃j

.

If the right term in the last inequality is smaller than the upper bound uj, we can
tighten the domain of xj . If, in addition, j ∈ I, the right term in the last inequality may
be rounded down.

2.8 Machine Learning Inside B&B

So far, we have reviewed classical techniques for solving MIP. We have pointed out
that branching rules such as the pseudo-cost score (2.17) represent an estimation of the
potential gains in the prospective children. Recently, a lot of research has been conducted
to enhance B&B solving components by sophisticated techniques inspired by Machine
Learning (ML), in particular to derive new branching rules. In this section, we briefly
introduce ML at the examples of linear regression and of a regression tree [Breiman
et al., 1983], which will be useful for Chapter 9. Then, we review the recent literature at
the cross-section between ML and MIP.
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2.8.1 A Quick Primer on Supervised Machine Learning

A very practical setup usually looks as follows. We have collected n independent data
points (samples) in d dimensions, which we represent as a feature matrix X ∈ Rn,d. The
i’th row of X, xi ∈ R1,d, contains the features of the i’th such sample. In addition, each
data point also has a continuous label yi ∈ R. We assume that features and labels are
connected via an underlying functional relationship f : Rn → R, such that for each
record i = 1 . . . n the label yi = f(xi) + ϵi. In words, yi is the result of f applied to the
sample (the i’th row of X) xi and some random noise ϵi that may result from properties
of the object corresponding to xi unaccounted for by our d-dimensional feature vector,
or from errors in measuring yi. 9

We wish to approximate (aka “learn”) f as well as possible. Since we have features
and labels as training data, this is called a supervised learning problem. Since the labels
are a continuous quantity, this learning problem is called more specifically a regression
problem.

Typically, for learning f , we restrict ourselves to a family of parametrized model
functions FΘ := {fθ : θ ∈ Θ}. Here, each element θ from the parameter space Θ describes
a function fθ : Rn → R. For example, if d = 1, we are facing a 1-dimensional regression
problem, and we may wish to find a linear relationship yi ≈ axi + b between the (single)
input feature and output label of our training data. In this case, the parameter space
Θ = R2 and each θ = (a, b) ∈ Θ describes one feasible function in this model. Due to
the (assumed) linear relationship between the inputs and the output, this regression
problem is the famous linear regression, sometimes also called simple linear regression
in case of 1-dimensional input.

In a regression task, we commonly search for a model that minimizes the residual
sum of squares

θ∗ = argmin
θ∈Θ

{︄
n∑︂

i=1
(yi − fθ(xi))2

}︄
.

In the 1-dimensional linear regression example, there is an analytic solution for θ∗ that
can be computed in linear time in the number of data points n:

θ∗ =

a∗ =

n∑︁
i=1

(xi − x̄) (yi − ȳ)
n∑︁

i=1
(xi − x̄)2

, b∗ = ȳ − a∗x̄

 . (2.19)

Here, ȳ and x̄ denote the mean values of the labels and inputs. Statistically adept
readers immediately notice the appearance of the variance in x and the covariance
between x and y. A closed formula similar to (2.19) also exists for linear regression with
multidimensional input.

9For the more general case in which errors can occur in both X and Y , we refer to [York et al.,
2004].
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At this point, we familiarized ourselves with regression tasks in general, and are able
to address them by linear regression, for which there exists an optimal closed formula
to compute the optimal parameters θ∗.10 However, this is of course not the end of the
story, because we made the implicit assumption that the relationship between the input
features and output label is linear.

2.8.2 Regression Trees

Obviously, linearity is a strong assumption about the “true” nature of the function
f , and may be too much of a restriction of the function space. As an alternative,
Breiman et al. [1983] introduced a regression technique in which the set of data points is
recursively partitioned with the goal of reducing the residual sum of squares. Similarly
to branch-and-bound, the recursive partitioning of the regression task eventually leads
to a tree hierarchy, which is appropriately named regression tree.

A regression tree is a quadruple G = (V, E, g, h), where V and E are the nodes and
edges of a binary tree. In addition, we equip each node with two functions g : V →
{1, . . . , d} and h : V → R. We use g and h to describe the split at an inner node of G,
and a prediction at a leaf.

A prediction by a regression tree works as follows. Let z ∈ Rd be a new data point
in feature space, for which we wish to compute its label f(z). The prediction follows the
unique path from the root of G to reach the leaf node that describes the average label
of all training data in the vicinity around z.

Concretely, we begin at v := root(G). If v is a leaf, we return h(v) as prediction for
f(z). Otherwise, if v is an inner node, we compare zg(v) with h(v). If zg(v) ≤ h(v), we
continue in the left subtree of v, otherwise we continue in its right subtree.

The classic CART (Classification and Regression Tree) algorithm is a greedy algorithm
that constructs a regression tree by recursively partitioning the training data. For a node
v, let I(v) ⊆ {1, . . . , n} denote the indices of the training data that respect all splits
from the root node to v. We use bracket notation to denote the labels that correspond
to the records in I(v) as y[I(v)] ∈ R|I(v)|.

The algorithm declares v a leaf node if the prediction cannot be improved further
(all remaining data points I(v) have the same label y[I(v)]), in which case h(v) := ȳ[I(v)].
Otherwise, it selects the feature dimension d∗ ∈ {1, . . . , d} and split value s∗ ∈ R that
achieve the highest variance reduction by partitioning the training data at v further. In
this case two children are created for v. The left child v′ will contain the training data
indices I(v′) = I(v)∩{i : xi,d∗ ≤ s∗}, and the right child v′′ will contain the complement
I(v′′) = I(v) ∩ {i : xi,d∗ > s∗}. Additionally, we set g(v) := d∗, h(v) := s∗.

Practically, the CART algorithm terminates earlier, for example at nodes v where
|I(v)| falls below a given limit to allow for a further split. Advantages of regression

10The closed formula (2.19) works at least for all data sets with nonzero variation in the input
features.
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trees are, for example, that they can cope with largely nonlinear functional relationships
between the inputs and the output. In addition, a regression tree provides a simple
explanation (the data splits along a path) for its predictions on unknown data points.

However, regression trees as such are not that frequently used in practice. One of
their main disadvantages is that they have a tendency to overfit to the training data but
lack generalization abilities to unseen data. The discretized nature of the predictions
may not have the desired properties of an output, which we will see in Chapter 8 at the
example of B&B tree size prediction.

More often, regression trees are used as so-called weak learners within ensemble
methods such as random forests [Breiman, 2001] or Adaboost [Friedman, 2001], which
compensate the discussed weaknesses of single trees by training many regression trees,
each of which on randomly selected subsets of the training data and with only a subset
of the feature dimensions available to each split.

While in this chapter, we focus solely on a regression task with continuous input,
regression trees are straightforwardly generalizable to other types of input data such
as categorical input dimensions like the gender of a patient. Similarly, we have only
addressed regression on a continuous label y. If y represented a categorical class label
instead of a continuous quantity, we would be facing a so-called classification task, for
which there exist other ML methods, one of which are classification trees. Classification
trees work similarly to regression trees, but differ in the way they predict a class label:
Instead of returning the mean label, which does not make sense in the case of categorical
labels, they predict the majority label among the samples represented by a leaf node.

2.8.3 Recent Combinations of ML and MIP

Several ML methods have recently been proposed in the context of solving mixed-integer
programs. Much work has been conducted in specific application areas, for example to
solve unit commitment instances repeatedly [Xavier et al., 2019]. In the following, we
mainly focus on literature that addresses general purpose MIP solving.

A classic playground for ML methods is strong branching, whose score (see
Definition 2.7) generally produces good branching decisions leading to small B&B
trees, but which is very expensive to compute. Alvarez et al. [2015] were among the first
to approximate strong branching via Machine Learning. To this end, they use static
and dynamic properties that describe the search state and the variables as features.
The observed strong branching scores are used as labels. On this data, they train a
variant of random forest regression offline, which they apply at runtime to predict strong
branching scores and select branching variables. In a follow-up work, Alvarez et al. [2016]
present an online algorithm that records strong branching scores and features during
the search, and uses gradient descent to modify the weights of a linear regression type
strong branching score prediction.
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Directly predicting the strong branching score itself has some disadvantages: It is
the product of the two objective gains and may vary by orders of magnitude between
different MIP instances. Khalil et al. [2016] observe that instead of predicting actual
strong branching scores, it is sufficient to predict how strong branching will rank two
candidates relative to each other. Khalil et al. [2016] record some features and strong
branching scores during the first 500 nodes of the search tree, after which they interrupt
the search to train a ranking Support Vector Machine [Joachims, 2002] on the recorded
data once. Afterwards, they continue the search using the trained ranking method for
selecting the branching variable.

All of those methods have in common that they use hand-made features that aggregate
the MIP instance at hand. In contrast, recent work often uses a loss-free encoding of MIP
instances using graph convolutional neural networks, used for example by [Gasse et al.,
2019]. Similarly, in a very recent work, Nair et al. [2020] propose two deep neural network
architectures based on graph convolutional neural networks to address branching and
finding feasible solutions. They make use of modern GPU processors to accelerate the
collection of strong branching data, which enables them to train their neural branching
with a lot more strong branching records than was previously possible.

Learning approaches from the recent literature are not limited to branching. Khalil
et al. [2017] propose to use logistic regression to predict the success rate of a diving
heuristic. Fischetti et al. [2019] propose to train classifiers to predict at specific points
in time whether a solution process will terminate before the time limit. Tang et al.
[2020] suggest training cutting plane separation, more specifically Gomory cuts, via
reinforcement learning. Interestingly, they show that their trained models are able to
generalize to unseen instances that are larger (in terms of variables and constraints)
than the instances they use for training.

Another aspect that can be learned about MIP solvers are good parameters for
the instances at hand. The study of finding good parameters of search algorithms is
called algorithm configuration and often colloquially referred to as tuning. Commercial
MIP solvers are usually equipped with internal tuning tools, which try a variety of
promising parameter combinations. Algorithm configuration is often approached via
methods for black-box function optimization to minimize the number of costly MIP
solver evaluations. Hutter et al. [2011] presented an algorithm called SMAC, which stands
for sequential model-based algorithm configuration. SMAC approximates the parameter
landscape by a multivariate Gaussian distribution to quickly identify regions of the
parameter space with high expected improvement. A competing method for algorithm
configuration is iterated F-race [López-Ibáñez et al., 2016], in which a few candidate
configurations are randomly sampled and then compared in a racing-like fashion. One
of the main ideas behind F-race is to quickly discard inferior configurations based on
a statistical test. Discarded configurations are withdrawn from the remaining race to
reserve computing resources for better configurations. The best surviving configuration
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is then used to update the sampling distributions before new configurations are sampled
for the next race. Recently, Li et al. [2018] presented Hyperband, a well-performing
algorithm configuration method based on random search.

Most of the aforementioned work mainly addresses MIP solver performance. Berthold
and Hendel [2021] are the first ones to explicitly improve numerical stability of the FICO
Xpress solver by learning the appropriate scaling method for each instance. The trained
scaling improves not only the numerical stability substantially, but also improves the
performance of the primal and dual simplex routines as a side effect.

2.9 MIP Benchmarking

In each of the subsequent chapters, we discuss computational results of our proposed
methods. The central goal of integrating new solver components for MIP has always been
to reduce the overall runtime of the solver on a representative set of MIP benchmark
instances. However, besides runtime, there also exist several other performance criteria,
each of which has certain advantages depending on the experimental setup. In this
section, we give a brief overview of other performance criteria such as the well-known
gap and the more recently proposed primal and dual integrals [Berthold, 2013]. The
compilation of a representative MIP benchmark set is subject of Chapter 3.

2.9.1 Gap

Recall that we always assume that the objective sense is minimization. We use a standard
gap definition.

Definition 2.9 (gap). Let Z ∈ Q±∞ and Z∗ ∈ Q±∞ denote a primal and dual bound
of a MIP P , respectively. The (primal dual) gap is the relative difference between Z and
Z∗, computed as

γ(Z, Z∗) :=


1, if Z∗ <∞ and Z =∞,

0, if Z ≤ Z∗,

min
{︂
1, Z−Z∗

max{|Z|, |Z∗|}

}︂
, otherwise.

(2.20)

Before the first solution is found, the gap is equal to 1. The use of “min” in the third
case of the definition of γ(Z, Z∗) is necessary to ensure that the gap is bounded from
above by 1 even if Z∗ < 0 < Z <∞. Definition 2.9 is different from the gap definition
that SCIP uses for reporting the gap [see, e.g., Gamrath, 2020].

We sometimes refer to the gap between the current primal and dual bounds more
precisely as primal-dual gap to distinguish it from the following primal gap and dual
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gap, which take into account the optimal solution value Zopt of a MIP P . The primal
gap is defined as

γprimal (Z) := γ(Z, Zopt)

and the dual gap is defined as

γdual (Z∗) := γ(Zopt, Z∗).

At a search state Tk of the B&B algorithm, a primal gap γprimal (Zk) of zero means that
the incumbent is an optimal solution, although this might not be proven so far because
the dual bound Z∗

k < Zopt is less than the optimal objective, or, in other words, the
dual gap γdual (Z∗

k) > 0.
Note that all three gaps are well-defined also in case that P is infeasible. Since

the optimal objective value Zopt is unknown before termination of the branch-and-
bound algorithm, both the primal and the dual gap are artificial measures used for
benchmarking that can only be computed when the search is complete.

2.9.2 Primal and Dual Integrals

The (primal-dual) gap is an established measure to compare two solvers at termination.
An important drawback is that the gap is always recorded at an instant, for example
at the precise moment when a solver hit an allowed time limit. Reporting the gap at
termination may not reflect the progress during the search as a whole.

A performance measure to capture the progress during the entire search, the primal
integral, has been proposed by Berthold [2013]. Consider the primal and dual bounds
Z(t) and Z∗(t) as functions of the elapsed time t ∈ R≥0 since the B&B algorithm started.

For a point in time T ≥ 0, the primal integral is the integral of the primal gap of
Z(t) from the beginning of the search until T :

Γprimal (T ) :=
T∫︂

t=0

γprimal (Z(t)) dt. (2.21)

Berthold [2013] suggests the primal integral as a performance measure that captures the
benefits of primal heuristics particularly well. If a search finished at a time T ′ < T , the
primal gap function is zero by definition for the remaining time [T ′, T ]. For comparing
two different B&B search algorithms in a computational experiment, it is therefore fair
to use the overall time limit as the point in time T in above integral calculation because
Γprimal (T ′) = Γprimal (T ).

Analogously to the primal integral, we compute the dual integral

Γdual (T ) :=
T∫︂

t=0

γdual (Z∗(t)) dt (2.22)
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as the integral of the dual gap over time since the beginning of the search until T , where
T is usually the time limit of a computational experiment. The distinction between the
primal and the dual integrals enables us to analyze solving components regarding their
influence on the primal and dual progress separately.

We define the primal and dual integrals as integrals of a continuous function. Observe
that changes to the primal and dual bound during the B&B search occur as discrete events.
Hence, the corresponding functions Z(t) and Z∗(t) are piecewise constant functions of t.
Therefore, the integrals can be computed by recording each change to the primal/dual
bound and the time of this event.

The primal and dual integrals allow to analyze the effects of a MIP solving component
on the primal and dual convergence of the B&B algorithm individually. For example,
while primal heuristics are expected to mainly improve the primal convergence, other
solving components such as branching merely work on the dual side. We refer to
Section 5.1 for an evaluation of the impact of solving components on the primal and
dual convergence of SCIP.

For completeness, it is possible to also define a primal dual integral as

Γ (T ) :=
T∫︂

t=0

γ(Z(t), Z∗(t))dt

based on the primal-dual gap. We do not use this integral for the computational
experiments in this thesis. In practice, however, the primal dual integral is the only
integral that a solver can actually evaluate at runtime.

The solvers SCIP and Xpress11 report the measured primal dual integral in their
final statistics. More recently, SCIP has been extended to also report primal reference
and dual reference integrals, if a user provided a so-called reference value. The reference
value replaces the optimal objective value Zopt when computing the primal and dual
gaps. If this reference value is indeed the optimal objective value, the primal reference
and dual reference integrals coincide with the above definitions considering the optimal
objective.

2.9.3 Shifted Geometric Mean

In computational experiments we are often interested in a compressed overall performance
indicator that summarizes a measure such as runtime or primal integral across a set of
MIP instances. The exponential nature of the B&B algorithm poses some challenges
upon this aggregation process. When we compare runtimes XA and XB observed for
two versions of the B&B algorithm for an instance, it is often more meaningful to
compare the relative runtime XA

XB
instead of an absolute difference |XA −XB|. This is

11http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.
aspx
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even more true when considering sets of heterogeneous benchmark instances such as
MIPLIB [Achterberg et al., 2006; Bixby et al., 1998; Gleixner et al., 2021; Koch et al.,
2011; MIPLIB, more in Chapter 3], where the solving time of different MIP instances
may vary by several orders of magnitude: seconds, minutes, or even hours.

As a common practice in evaluating computational results, we often aggregate
sets of measurements such as the observed runtime, required B&B nodes, or the
primal/dual integrals obtained over sets of instances using the so-called shifted geometric
mean [Achterberg, 2007a]. For a shift τ ≥ 0, the shifted geometric mean of a nonnegative
vector X ∈ Rd

≥0 is

sgm(X) := −τ +
d∏︂

i=1
(Xi + τ)

1
d . (2.23)

The shifted geometric mean weakens the influence of extreme cases at both ends of the
measurement scale: As a geometric mean, it is less affected by single large measurements.
The shift value τ , on the other hand, is used to weaken the influence of extreme
measurements at the lower end of the scale, for example time measurements of less than
a second. Especially when we compare solving times in a computing environment, there
could be measurement discrepancies caused by the environment that we cannot control.

For example, if we record 0.1 seconds as runtime of a setting A and 0.2 seconds
as runtime of setting B, the ratio between A and B is 0.5, i.e., A is reported as 50 %
faster than B. However, we are not sure that the improvement of A compared to B was
purely algorithmic, or rather caused by random noise from the environment. Moreover,
MIP instances that take less than a second to solve are usually considered easy. Using
a shift value of τ = 1 sec., the ratio becomes XA+τ

XB+τ
∼ 0.92, a much less pronounced

improvement of A over B.

2.9.4 Wilcoxon Signed Rank Test Using Shifts

Recall that MIP benchmark results such as the total solving time can vary between
instances by orders of magnitude, which is why we are more interested in relative
improvements or deteriorations than in absolute improvements. It can happen that
a single instance transcends from easy to unsolvable in a computational experiment
comparing two settings. Such an outlier instance can dominate the shifted geometric
mean even though the shifted geometric mean is less sensitive to such single observations
than the arithmetic mean.

The question arises if an improvement or degradation in shifted geometric mean is
also statistically significant. For some of our computational studies, we use a modified
version of the standard Wilcoxon Signed Rank Test to address this question.

The Wilcoxon Signed Rank Test is a nonparametric alternative to the paired t-
test [Falk et al., 2003] if the underlying distribution cannot be assumed as normal. This
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test can be used to falsify the hypothesis that two vectors of samples X and Y come
from the same distribution.

While the standard version considers differences X − Y , we are more interested in
ratios X/Y . In addition, in our modified version of this test, we also take the shift value
τ into account. Here, we present the main idea behind this modified test. For further
information, we refer to [Hendel, 2014, Chapter 2, and the references therein].

Let n ∈ N, and (X1, . . . , Xn) and (Y1, . . . , Yn) be two independent and nonnegative
observations that come in pairs (Xi, Yi) for 1 ≤ i ≤ n. An example of such paired
observations are benchmark results of two MIP solvers X and Y on a set of n MIP
instances, such that Xi and Yi are the observed realizations of one of the discussed
performance metrics such as the solving time on the i-th instance.

Let 1 ≤ i ≤ n, and let τ > 0 be a shift value like for the shifted geometric mean (2.23).
We define the logarithmic shifted quotient as

Qi := log
(︃

Xi + τ

Yi + τ

)︃
. (2.24)

Note that Qi is well-defined because (Xi+τ )/(Yi+τ ) > 0 since Xi and Yi are nonnegative.
A logarithmic shifted quotient Qi < 0 is negative if and only if Xi < Yi. The use of
the logarithm is an order-preserving transformation of the shifted quotients. It has the
additional property that an improvement by 1 + ϵ, i.e., 1 > Xi+τ

Yi+τ
= 1

1+ϵ
> 0 and a

deterioration by ϵ, i.e., Xj+τ

Yj+τ
= 1 + ϵ, yield the same absolutes for Qi and Qj:

|Qi| =
⃓⃓⃓⃓
log

(︃
Xi + τ

Yi + τ

)︃⃓⃓⃓⃓
=
⃓⃓⃓⃓
log

(︃ 1
1 + ϵ

)︃⃓⃓⃓⃓
= |log 1− log (1 + ϵ)| = log (1 + ϵ) = |Qj|.

We test against the hypothesis H0 that the underlying distributions of X and Y are
equal. Under H0, the distribution of Qi should be centered around the origin. Without
loss of generality, we assume that |Q1| < |Q2| < · · · < |Qn|, such that each index i also
represents the rank of the i-th sample and that |Q1| ̸= 0. In practice, the samples are
reduced first by filtering out all occurrences of Qi = 0, and ties between ranks are solved
by assigning the average rank to each of the samples in question.

We compute the Wilcoxon sum statistics W +, W − as

W + :=
n∑︂

i=1:Qi>0
i and W − :=

n∑︂
i=1:Qi<0

i.

The intuition behind the test is that if X and Y come from the same distribution, the
two sum statistics should be approximately equal. Notably, W + and W − always sum up
to n·(n+1)/2, the sum of all ranks. Under the hypothesis H0, W + and W − are identically
distributed around a mean µ = n ·(n+1)/4 with variance σ2 := n(n+1)(2n+1)/24 [Falk
et al., 2003], and can be approximated by means of a normal distribution if n is sufficiently
large. Let Wmin := min{W −, W +} denote the minimum of W − and W +, and let α ∈ (0, 1)
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be a fixed error rate which we use as threshold for rejecting H0. Let z(1−α/2) denote the
α/2-quantile of the standard normal distribution, i.e.

P
(︃

z − µ

σ
≥ z(1−α/2)

)︃
= α

2 .

We reject H0 if the condition Wmin ≤ µ− z(1−α/2)σ is satisfied, see [Hendel, 2014] for a
deduction and further reference.

2.9.5 IPET–An Interactive Performance Evaluation Tool

The scientific assessment of computational results in the field of mixed-integer
programming requires special, nonstandard measures and tools, some of which we
have discussed in this section. We conclude this section with a brief overview of the
interactive performance evaluation tools (IPET) [Hendel], which has been written by the
author of this thesis in the programming language Python. IPET is a Python module
for facilitating the extraction of scientific tables from raw solver output.

IPET specifically supports aggregation via shifted geometric mean, the modified
Wilcoxon test, and the computation of primal and dual integrals. It has been first
presented in [Hendel, 2014] as a graphical user interface for this purpose. Since then, the
graphical user interface has been discontinued. Instead, the core functionality of IPET
has been rewritten and extended to suit the needs as a backend tool for the continuous
integration and performance testing by the SCIP group.

At its heart, IPET now consists of three main parts, namely

1. parsing capabilities for raw solver output,

2. tools for validating the correctness of results,

3. an evaluation engine.

IPET comes with parsing capabilities for raw solver output of 11 different commercial
and noncommercial MIP solvers, including SCIP, CBC12, FICO Xpress13, and all of the
solvers participating in the curation of MIPLIB 2017, which we present in Chapter 3.

For IPET, the “Solver” class basically corresponds to a list of regular expressions
that define how IPET recognizes the MIP solver that produced the log file and a few
key statistics: the solving time, number of branch-and-bound nodes, primal and dual
bound at termination, and so on. Support for new solvers can be very easily integrated
into IPET itself by defining a corresponding class.

Moreover, IPET automatically loads additional solvers written by the user and
stored in a special directory under the users home directory, which makes it possible to

12https://projects.coin-or.org/Cbc
13http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.

aspx
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extend IPET’s parsing capabilities to proprietary solver output. IPET also supports the
addition of custom readers for further data parsing from the solver output, such as new
output added during the development of a new solving component.

The parsed data is automatically validated against external information about the
feasibility and optimal objective values of the tested instances, if provided. Examples of
such external validation information can be found on the web page of MIPLIB 2017,
Section Test Scripts and Solution Information.14 The validation of the correctness and
consistency of computational results is essential in the development of new solving
components for MIP. Otherwise, it might happen that for example a coding mistake
in a presolving technique wrongly renders a feasible MIP instance infeasible, thereby
even saving the time to conduct the tree search. If such a mistake slips into the solver
unnoticed, this erroneous result may be accidentally reported as a substantial speed up.
With the intention to identify numerically spurious instances, IPET validation has been
used to identify inconsistent results from the more than 40,000 individual data records
collected during the MIPLIB 2017 selection process. See also Section 3.5.5 for details.

Finally, at the heart of IPET lies its evaluation functionality. An IPET evaluation
consists of a series of rules for processing and displaying the parsed data in tables. Rules
consist of data columns that should be displayed, and filter groups to select records to
display and summarize. A typical column, for examples, defines that the parsed solving
time should be aggregated by a shifted geometric mean with a shift value of 1 sec, and
that missing data should be filled by the time limit used, as well as further formatting
options like a name for displaying the column.

Column rules need not correspond to existing records in the data, instead they
can also be computed from existing columns. As an example, take the computation
of the ratio between the runtime of each setting and each instance, and the smallest
runtime across all evaluated runs on each instance. IPET keeps track of the inter-column
dependencies as a topological sorting.

Filter groups allow selecting subsets of the data matching different criteria. A typical
example of a filter group are the so-called brackets, which contain all instances for which
at least one setting needed more than 10/100/1000 seconds. See Table 7.1 for an example
table using bracket notation.

The rules can be stored in XML format. Once an evaluation has been established
in XML format, it can be readily used for new data as well. One of the advantages
of such an evaluation specification over experiment-specific evaluation code is that it
transparently documents how exactly the computational results in a manuscript were
obtained. The possibility to reuse evaluations on new or modified data even saves time
that is usually spent on writing such manual evaluation code.

14http://miplib.zib.de/download.html
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IPET is publicly available on Github.15 All experimental results in this thesis have
been evaluated using IPET.

15https://github.com/GregorCH/ipet
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3
MIPLIB 2017

Measuring performance on benchmark test instances has lain at the heart of compu-
tational research since the early days of mathematical optimization. Hoffman et al.
[1953] first reported on a computational experiment comparing implementations of three
algorithms for linear optimization. Their observation that “[many] conjectures about
the relative merits of the three methods by various criteria could only be verified by
actual trial” seems to hold to an even greater extent today. The variety of and complex
interaction between different techniques regularly calls for empirical evaluation and
motivates the collection and curation of relevant test instances.

Brought into existence by Bixby, Boyd, and Indovina [1992], the goal of the MIPLIB
project has been to provide the research community with a curated set of challenging,
real-world instances from academic and industrial applications that are suitable for
testing new algorithms and quantifying performance. It has previously been updated
four times [Achterberg et al., 2006; Bixby et al., 1998; Koch et al., 2011; MIPLIB] in
order to reflect the increasing diversity and complexity of the MIPs arising in practice
and the improved performance of available MIP solvers. In this chapter, we describe
its sixth version, MIPLIB 2017, together with a new selection methodology developed
during this process. This chapter is a shortened version of the journal article MIPLIB
2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library [Gleixner
et al., 2021].

3.1 Introduction: A Motivation for a new MIPLIB

The exceptional algorithmic progress in solving real-world MIP instances over the last
decades is recorded in various articles [Bixby, 2002; Koch et al., 2011; Laundy et al.,
2009; Lodi, 2009]. Specifically, this can be observed by examining results on the previous
version, MIPLIB 2010, both in terms of solvability and speed. By the end of 2018, the
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number of unsolved instances was reduced by nearly half. Of the 134 instances for which
no solution with provable optimality guarantee was initially known, only 70 remain
open. Comparable progress in the overall speed of solvers can be observed in the results
of benchmark testing with different versions of available solvers. Since its release in
April 2011, the subset of instances of MIPLIB 2010 that form the so-called “benchmark
set”, consisting of 87 problem instances, has been the accepted standard for evaluating
solvers. Using this benchmark set, Hans Mittelmann has been evaluating a number
of MIP solvers, including CPLEX1, Gurobi2, and Xpress3. When MIPLIB 2010 was
released, the version numbers of these three commercial solvers were CPLEX 12.2.0.2,
Gurobi 4.5.1, and Xpress 7.2. Aggregating the benchmark results of these three
solvers at that time, we can construct results corresponding to a so-called “virtual best”
solver and a so-called “virtual worst” solver. These are hypothetical solvers that, for
each instance, produce runtimes that are equal to the best and the worst of the three,
respectively. Doing this analysis yields shifted geometric mean runtimes of 36.3 and
113.0 seconds for the virtual best and virtual worst solver, respectively.4 In December
2018, the solver versions were CPLEX 12.8.0, Gurobi 8.1.0, and Xpress 8.5.1. On the
same hardware (with a newer operating system) the shifted geometric means of the
runtimes had decreased to 13.5 seconds for the virtual best, and 31.3 seconds for the
virtual worst solver. This corresponds to speed-up factor of 2.70 and 3.62, respectively,
which amounts to roughly 16 % per year, just from improvements in the algorithms.

It was because of this development that the MIPLIB 2010 benchmark set was no
longer considered to sufficiently reflect the frontier of new challenges in the field and
the process of constructing a new MIPLIB began. In November 2016, a public call
for contributions was launched and a group of 21 interested researchers, including
representatives of the development teams of nine MIP solvers formed a committee in
order to steer the process of compiling an updated library.5 As with MIPLIB 2010, the
overall goal was the compilation of two sets of instances. The MIPLIB 2017 benchmark
set was to be suitable, to the extent possible, for performing a meaningful and fair
comparison of the average performance of MIP solvers (and different versions of the
same solver) across a wide range of instances with different properties, in a reasonable
amount of computing time. The larger MIPLIB 2017 collection was to provide additional
instances for a broader coverage without restrictions on the total runtime of the test
set, including unsolved instances (as a challenge for future research) and instances not

1https://www.ibm.com/analytics/cplex-optimizer
2http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
3http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.

aspx
4The means were computed with a shift of 1 second. The computations used 12 threads. The

corresponding log files can be found at [Mittelmann].
5The members of the MIPLIB 2017 committee were Tobias Achterberg, Michael Bastubbe, Timo

Berthold, Philipp Christophel, Mary Felenon, Koichi Fujii, Gerald Gamrath, Ambros Gleixner, Gregor
Hendel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans Mittelmann, Derya Ozyurt,
Imre Pólik, Ted Ralphs, Domenico Salvagnin, Yuji Shinano, Franz Wesselmann, and Michael Winkler.
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suitable for benchmarking due to problematic numerical properties, special constraint
types (such as indicators), or exceptionally large memory requirements.

It should be emphasized that the constructed benchmark set is designed for the
purpose of comparing the overall performance of general purpose solvers on a wide-
ranging set of instances. Average performance on this set is not a suitable criterion to
decide which MIP solver to use in a particular application scenario. For such decisions,
it is important to consider what specific class(es) of instances are relevant, as well as
what criteria beyond the raw speed and the ability to solve a wide range of problems
are of interest. This is also underlined by the fact that each of the eight solvers that
were used to collect performance data (see Section 3.5.5) proved to be the fastest solver
on at least one instance.

Compiling a representative and meaningful instance library is a nontrivial endeavor.
Compared to previous editions of MIPLIB, the increased number of submissions, the
goals of compiling a significantly larger collection of instances and including a larger
number of representatives of solvers posed new challenges to the selection process. In
addition, MIPLIB 2017 is the first edition to provide supplementary data regarding the
instances, such as the matrix structure and decomposability, as well as the underlying
models from which the instances originated, where available. In order to produce a
well-balanced library in a fair and transparent manner, we designed a new, heavily
data-driven process. The steps applied between the initial submissions and the final
MIPLIB 2017 are outlined in Figure 3.1. Driven by a diverse set of instance features, our
methodology used multiple clusterings to populate a MIP model that was then solved
to generate suitable candidates for the final library to be presented to the MIPLIB
committee.

We consider this process of selecting instances from a large pool of submissions
to be the main new feature of MIPLIB 2017. By contrast, the instances constituting
previous versions of MIPLIB were manually selected by the members of the committee,
depending heavily on their expertise in benchmarking to avoid common pitfalls like
overrepresentation of certain problem classes. As one byproduct of this data-driven
approach, we are now able to identify similar instances, which leads to sometimes
surprising insights into connections between different, seemingly unrelated instances in
the library. In addition to the raw feature data, we provide, for each instance, the five
most similar instances in the collection on a newly designed web page (see Section 3.7.3).

This selection process inherently requires many manual decisions and heuristic
choices. Some examples are the choice of features, the number of clusters to use when
clustering instances according to this feature data, the definition of which instances to
consider as computationally easy or hard, and our formalization of diversity and balance
with respect to the feature data. All of these decisions have a high impact on the final
result. This work tries to both adhere to and extend the established standards for MIP
benchmarking, which we summarized in Section 2.9. Hence, in the remainder of this
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Submissions (5,721)

Msub (5,666)

Instance cleanup (Section 3.3) and trivial presolving (Section 3.5.1)

Ground set Mpre

for MIPLIB 2017
collection (2,182)

Diversity preselection for large model groups (Section 3.6.2)

MIPLIB 2017
collection Mcol (1,065)

Selection via collection MIP (Section 3.6.4)

Ground set
Mcol ∩ Mbm-suit

for benchmark
selection (499)

Reduction to benchmark-suitable instances (Definition 3.2)

MIPLIB 2017
benchmark set
Mbench (240)

Selection via benchmark MIP (Section 3.6.6)

Figure 3.1: Outline of the steps involved in the selection of the MIPLIB 2017 collection
and benchmark set. Number of instances remaining are given in parentheses.

chapter we try to describe the collection and selection of MIPLIB 2017 at a sufficient
level of technical detail in order to make this process transparent to the reader.

The chapter is organized as follows. Section 3.3 briefly summarizes the submission
and data cleanup phases of the MIPLIB 2017 project. In Section 3.4, we explain how
we categorized all instances from the submission pool into so-called model groups.
Section 3.5 details the collection of feature data for each instance that forms the basis for
establishing similarity between instances and balance of a given selection. In Section 3.6,
we describe how this data was used as input in order to compute good candidates for
the library by solving a MIP model. Section 3.7 summarizes the obtained library of MIP
instances. We wrap up this chapter with some concluding remarks in Section 3.8.

3.2 Related Work

With the evolution of computational research, standards and guidelines for conducting
computational experiments were proposed and updated. Next to performance measures,
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software availability and machine specifications, these guidelines also discuss the choice
of test problems and the availability of standard test sets.

In 1978, Crowder et al. [Crowder et al., 1978] presented an early list of best practices,
emphasizing the necessity of reproducibility of computational experiments. In this course,
they also discussed the value of test problems being documented and the importance
of using real-world problems. At the same time, they pointed out that sharing test
problems is expensive and time-consuming—an issue that we have fortunately overcome.

The work of Jackson et al. [Jackson et al., 1991] was motivated by a controversy
around the first published computational results for interior point LP solvers. Besides
others, the ad-hoc committee stated: “We recommend that standard test problem
sets and standard test problem generators be used wherever possible.” Further, they
encouraged researchers that “whenever new problems are used in a computational
evaluation, these problems be . . . submit[ed] to a standard collection like netlib.”

In his seminal paper from 1993, John Hooker characterized an empirical science
of algorithms [Hooker, 1994]. He discussed the importance of identifying typical
representatives of a problem class to conduct a study on, at the same time mentioning
that any choice is open to the criticism of being unrepresentative. There are several
resolutions for this issue; a well-known, long-standing and publicly available standard
test set is certainly one of them. Another resolution that Hooker pointed out is to make
“the issue of problem choice . . . one of experimental design”. This means making the
question of how performance depends on test set characteristics part of the experiment
itself. The approach taken to set up MIPLIB 2017—a data-driven instance selection
that parameterizes the creation of a test set—can be seen as an extension of this idea.

There are various publications that formalize the problem of compiling a test set.
McGeoch [McGeoch, 1996, 2001] developed an abstract model of algorithms and the
paradigm of simulation research, partially in response to Hooker’s paper.

A complementary line of research that is not touched on in this chapter is the creation
of new test instances to fill “gaps” in a test set, by learning from the instance parameter
space, see [Smith-Miles and Bowly, 2015]. Smith-Miles et al. [Smith-Miles et al., 2014] use
such an approach to work out the strengths and weaknesses of optimization algorithms
on an enlarged instance set that they extrapolated from a standard test set. They
detect so-called pockets where algorithm performance significantly differs from average
performance. This take on instance diversity complements our approach of trying to
achieve a best possible coverage of the feature space subject to a fixed set of candidate
instances.

Work on standard test sets for benchmarking naturally connects to work on algorithm
selection [Rice, 1976]. The work of Bischl et al. [Bischl et al., 2016] brings both fields
together by publishing a benchmark library for algorithm selection. They introduce
a data format to formally define features, scenarios, working limits and performance
metrics. Since 2016, this library contains a MIP section, based on MIPLIB 2010.
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Finally, related work of course includes various other libraries for mathematical
optimization problems, including, but not limited to MINLPLib [Bussieck et al., 2003],
QPLIB [Furini et al., 2019], Netlib [Browne et al., 1995], the COR@L collection [Lin-
deroth and Ralphs, 2005], and OR-Library [Beasley, 1990]. The latter is one of the oldest
online collections of optimization problems, existing for 30 years now and still being
regularly updated.

3.3 First Steps: Collection of Instances and Data
Cleanup

Following a public call for contributions, we received more than 120 submissions, where
a single submission sometimes contained more than 100 MIP instances. One particularly
large contribution comprises a curated set 785 new instances from the NEOS server.
The NEOS Server is a free internet-based service for solving numerical optimization
problems hosted by the Wisconsin Institute for Discovery at the University of Wisconsin
in Madison, with remote solving services provided by various sites, such as Arizona State
University. Details on the selection of the new NEOS instances can be found in [Gleixner
et al., 2021]. An even larger contribution consisted in 988 MIP models of instances that
were part of the MiniZinc Challenges from 2012 to 2016.6

In total, 3,670 instances were newly submitted to MIPLIB 2017. We arrived at a
total of 5,721 instances by adding 2,051 instances that were submitted for inclusion
in MIPLIB 2010, keeping their original submission information intact. Those 2,051
comprised most of the submissions to MIPLIB 2010 except for a few duplicates already
present in other MIPLIB 2017 submissions.

During a subsequent data cleanup phase, all instances were converted into MPS [IBM,
1969; Nazareth, 1987] format. Further data cleanup steps consisted in

• the conversion of maximization into minimization,

• the conversion of lazy constraints into normal constraints,

• a renaming of files to match the MIPLIB file name conventions, and

• a renaming of NEOS files using names of rivers as suffices to facilitate communica-
tion.

Again, for more details, we refer the interested reader to [Gleixner et al., 2021]. Not all
5721 instances were considered as candidates. After removing all instances for which the
integer variables could be entirely fixed via trivial presolving explained in Section 3.5.1,
leaving the solver with either an empty problem or an LP to solve, the remaining set of
candidates consisted of 5666 nontrivial instances.

6https://www.minizinc.org/challenge.html
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3.4 Model Groups

In most cases, the instances in a single submission are closely related in the sense that
they originate from the same or a very similar MIP model. Some submissions, however,
contain many unrelated instances. Therefore, we introduced model groups to keep track
of this form of meta information that may not be directly inferable from the submission
ID or the numerical instance features described in Section 3.5. A model group represents
a set of instances that is based on the same model or a very similar formulation but
with different data. This grouping allowed us to avoid overrepresentation of a particular
application or model class in the final library by limiting the number of instances with
known similar model background during the selection process.

Each instance was assigned to one model group as follows. Initially, a submission of
homogeneous instances was assigned to its own model group. If a submission contained
multiple sets of instances, each implementing a different model for the same problem
and data set, an individual group was created for each of the different model types. This
procedure was applied to both the submissions to MIPLIB 2017 and the submissions
to MIPLIB 2010. Publicly available instances with known application were grouped by
hand by the authors. Examples for such cases are the MiniZinc instances submitted to
MIPLIB 2017 and the instances from older MIPLIB versions and public instance sets
submitted to MIPLIB 2010.

Instances from the NEOS server, however, are anonymous and lack meta data from
the submitters that could be used to infer model groups. Nevertheless, users often submit
multiple, similar instances. Hence, we used feature data described in the next section
in order to infer synthetic model groups in an automated way. In order to group the
NEOS instances, a k-means clustering was computed with respect to the entire instance
feature space (see Section 3.5). The parameter k = 110 was chosen manually to achieve
a clustering with very similar instances in each NEOS model group. This clustering was
applied to all 1,176 NEOS instances both from new submissions and previously available
sources.

Table 3.1 summarizes the number of resulting model groups and the corresponding
group sizes for the different sources of instances. These numbers are given with respect to
the 5,666 instances in Msub (see Figure 3.1). The largest model group cmflsp comprises
360 instances of a capacitated multi-family lot-sizing problem.

3.5 Feature Computation

The ultimate goal of the selection process was to select a representative sample of all
available instances with respect to problem structure and computational difficulty, while
avoiding overrepresentation of models that are too similar. In the spirit of data-driven
decision-making and in light of related work in the fields of algorithm selection and
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Group Size ∈

Type Groups {1} {2, . . . , 5} {6, . . . , 10} {11, . . . , 360}

MiniZinc 80 0 16 38 26
NEOS 110 8 24 34 44
MIPLIB 2017 submissions 130 81 15 10 24
MIPLIB 2010 submissions 241 172 30 16 23

Table 3.1: Model groups and counts for the different instance sources. Each group is
counted only in the first applicable row.

machine learning, we based this process both on performance data and on an extensive
set of instance features. The first step in the selection process was simply to determine
the features of interest. In the terminology of [Smith-Miles et al., 2014], this means
we defined a feature space of measurable characteristics and computed a feature vector
associated to each element of the problem space of candidate instances.

Although this may seem straightforward, it is important to note that the feature
vector corresponding to an instance can be affected by seemingly irrelevant properties
of its representation in MPS format. For instance, some raw MPS instances contained
modeling language artifacts or artificial redundancies. For this reason, the instance
features were computed only after applying some straightforward simplification steps,
which we refer to as trivial presolving. We first describe this presolving process before
describing what features of the instances were used and how their values were determined
for each instance.

3.5.1 Trivial Presolving

As is traditional for MIPLIB, the submitted instances are being made available in
their original, unmodified form (except minor corrections to MPS formatting that were
necessary in some cases). This means that the distributed instances were not presolved
or simplified in any way for the purposes of distribution. For the purposes of extracting
features of the instances, however, so-called “trivial” presolving was applied, as described
below. It may seem strange that the version of each instance made publicly available in
the final collection may actually be slightly different from the version considered during
the selection process, but there are good reasons for this approach that we elaborate on
in this section.

The justification for distributing the instances in their original submitted form is
simply that this allows the most complete and realistic testing of the ability of each
solver to deal with real-world instances, including all of the idiosyncratic artifacts that
may arise in the modeling process. In particular, algorithms for presolving instances are
actively developed and have a high impact on the performance of a solver (see [Achterberg
et al., 2019; Gamrath et al., 2015b]). They not only strengthen the original formulation,
but also simplify and remove unnecessary artifacts. These procedures are computational
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in nature and their efficiency and effectiveness also needs testing. In some cases, there
may be choices made in the presolving that can only be made with foreknowledge of the
properties of the solution algorithm itself. For all these reasons, it was considered highly
desirable in promoting test conditions that are as reflective of real-world conditions as
possible to avoid modifying the distributed versions of the instances.

On the other hand, because MIP solvers do universally apply certain well-known
simplification procedures to an instance before the branch-and-bound search, the
unmodified descriptive data of the original instance may not properly reflect the “true”
features of that instance for the purposes of clustering instances according to similarity,
as we did during the selection process. The features considered that may be affected by
presolving include not only obvious properties, such as instance size, but less obvious
ones, such as the type of constraints and variables present in the model. A model may,
for example, have all variables integer except for one continuous variable whose value is
fixed to 1 and whose purpose is to model an objective offset. It would be unreasonable to
consider such an instance to be an instance with both integer and continuous variables.
At the other extreme, we may have an instance in which all binary and integer variables
are implicitly fixed, leaving a purely continuous problem after presolving.

While it seems necessary to do some presolving before computing instance features,
the full presolving done by solvers is itself a difficult computational balancing act and
each solver does it differently. Too much presolving before feature computation would
result in a presolved instance with features no more representative of the “true” ones than
the completely unpresolved instance. As a compromise, all instance features introduced
in Sections 3.5.3–3.5.4 were collected after applying a reduced set of the most obvious
presolving techniques to the instance, but no more sophisticated techniques.

For this trivial presolving, we used SCIP 5.0, but disabled most presolving techniques,
applying only simple ones, such as the removal of redundant constraints and fixed
variables, activity-based bound tightening, and coefficient tightening. In contrast to
standard SCIP presolving, which stops if the problem size could be reduced by only
a small percentage during the last presolving round, we applied the simple presolving
steps until a fixed point was reached. The complete set of SCIP parameters used to do
the presolving is provided on the MIPLIB web page (see Section 3.7.3) as part of the
feature extractor download.

For 55 of the 5,721 submitted instances, trivial presolving turns the instance into
a pure LP or is even able to solve the instance by fixing all variables. These instances
were not considered for inclusion and also serve to emphasize the importance of this
preprocessing step. Overall, trivial presolving reduced the number of variables on 3,782
instances (66 % of the submission pool), sometimes by as much as 93 % (instance
a2864-99blp). For 445 instances (8 %), more than 50 % of the variables were fixed. On
average, trivial presolving reduced the number of variables by 15 %.
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3.5.2 Canonical Form

Let P be a trivially presolved MIP with m rows. For computing the instance features of
P , we represent the rows of P by both a lower and an upper bound bleft, bright ∈ Qm

±∞,
on the row activities to obtain the following representation of P ,

min
{︂
ctx : bleft ≤ Ax ≤ bright, ℓ ≤ x ≤ u, x ∈ Qn, xj ∈ Z for all j ∈ I

}︂
. (3.1)

The main difference between Representation (3.1) and our usual representation of MIP
as by Definition 2.1 is that for the latter, two rows are required to represent an equality
constraint. In contrast, in the notation of (3.1), an equation atx = b can be represented
as a single row using bleft

i = bright
i = b.

It is important to note that the canonical form (3.1) is not uniquely determined for
each instance. There remain certain degrees of freedom to formulate equivalent instances
by scaling continuous columns, scaling the objective function ctx, or scaling a constraint
bleft

i ≤ at
ix ≤ bright

i . This may cause problems with the computation of some features.
For example, some features of interest involve comparison of row coefficients, but this
comparison is difficult if coefficients of different rows of the constraint matrix differ
by several orders of magnitude, We address these issues by normalizing the objective
coefficients c and every constraint bleft

i ≤ at
ix ≤ bright

i by their maximum absolute
coefficient ∥c∥∞ and ∥ai∥∞, respectively, so that all objective and matrix coefficients
lie in the interval [−1, 1] before computing the feature matrix F (the downloadable
instances are not altered).

It is based on this final presolved canonical representation that we define the Q = 105
features we consider. This results in a feature matrix F ∈ RN×Q, where N is the total
number of instances submitted. Table 3.2 lists these features, divided into K = 11 feature
groups. Feature groups were used for the selection process, during which instance clusters
were computed for each feature group individually. Every feature group was chosen to
represent a particular aspect of an instance in the form specified by Equation (3.1). The
computation of features in most of the groups only requires information that can be
extracted directly from the input of the (trivially presolved) problem. Two exceptions are
the constraint classification and decomposition groups, which need to identify structures
in the model.

3.5.3 Instance Features

Here, we describe the first nine feature groups in Table 3.2. We use the shorthand vector
statistics to refer to five values summarizing the entries of a vector v ∈ Rd

±∞.

Definition 3.1 (Vector Statistics). Let v ∈ Rd
±∞, and let d′ = |{j : |vj| < ∞}| be

the number of finite entries of v, which can be smaller than d in the case of, e.g., bound
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Group D Description Scaling

Size 3 size m,n of matrix, nonzero entries |{A ≠ 0}| log10(x)2

Variable types 3 Proportion of binary, general integer, and
continuous variables
nbin

n
, ngen

n
, ncon

n

Objective
nonzero
density

5 Nonzero density of objective function |{c ̸=0}|
n

both total and by variable type (bin., gen.,
cont.), 0-1 indicator for feasibility problems
without objective

Objective
coefficients

6 vector stats. and dynamism of c c normalized by
∥c∥∞

Variable
bounds

12 Finite densities |{|ℓ|<∞}|
n

, |{|u|<∞}|
n

of bounds,
vector stats. of upper bounds u and bound
ranges u− ℓ.

vector stats.
scaled by
siglog(x)

Matrix nonze-
ros

6 vector stats. of nonzero entries |{ai ̸= 0}| by
row in A, nonzeros per column |{A ̸=0}|

n

log10(x) for
nonzeros per
column

Matrix
coefficients

19 vector statistics of the four m-dimensional
vectors describing the min, mean, max, and
std of the nonzero coefficients {ai ̸= 0} in
each row

every ai normal-
ized by ∥ai∥∞

Row dynamism 5 vector stats. of row dynamism ∥ai∥∞
minj{|aij |̸=0} log10(x)

Sides 19 vector stats. of left- and right-hand sides
bleft, bright and concatenated (|bleft|||bright|),
nonzero and finite densities of bleft, bright

every ai normal-
ized by ∥ai∥∞

Constraint
classification

17 Proportion of classes of special linear con-
straints: singleton, precedence, knapsack,
mixed binary (see Section 3.5.4)

Decomposition 10 Features describing a decomposition found
by GCG with maximum area score.
Area Score, Number of Blocks, vector stats.
of block sizes relative to the rows and
columns. Not available for all instances.

Table 3.2: Description of instance features used. Set notation is abbreviated, e.g., {A ≠ 0}
denotes {(i, j) ∈ {1, . . . , m} × {1, . . . , n} : ai,j ̸= 0}.
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vectors, and let v′ be the restriction of v to its finite entries. We assume without loss of
generality that v′ is sorted, v′

1 ≤ v′
2 ≤ · · · ≤ v′

d′. The vector statistics of v′ (and v) are

• min : v ↦→ v′
1,

• max : v ↦→ v′
d′,

• mean : v ↦→ 1
d′

d′∑︁
j=1

v′
j,

• median : v ↦→
(︃

v′
⌊ d′+1

2 ⌋
+ v′

⌈ d′+1
2 ⌉

)︃
/2, and

• std : v ↦→
√︄

1
d′

d′∑︁
j=1

(︂
v′

j −mean(v′)
)︂2

.

Note that infinite entries can only occur for the variable bound vectors ℓ and u and the
left- and right-hand side vectors bleft, bright. For a vector v that contains only infinite
entries, i.e., for which d′ = 0, the above vector summaries are not well-defined. If d′ = 0,
the corresponding statistics were set to 0 in the data. Note that even if the original
formulation has infinite bounds on variables, trivial presolving may often infer finite
bounds for those variables.

The dynamism of a vector with finite entries is the ratio of the largest and smallest
absolute entries, i.e., ∥v∥∞/min{|vj| : vj ̸= 0}. The dynamism is always at least 1. If the
dynamism of any single constraint exceeds 106, this is an indication of a numerically
difficult formulation. Note that the dynamism is invariant to the normalization procedure.
Combining the dynamism of each constraint yields an m-dimensional vector, which can
be summarized using vector statistics.

The feature group Matrix coefficients summarizes the nonzero coefficients of
the matrix A as follows. First, each row ai, 1 ≤ i ≤ m, of A is normalized by its largest
absolute coefficient, such that all coefficients are in the range [−1, 1]. The nonzero entries
of ai are then summarized by four of the five vector statistics explained above, namely
the min, max, mean, and std. Going through all rows, we obtain four m-dimensional
vectors describing the min, max, mean, and std per row. Each of these vectors is then
summarized via vector statistics, which yields a total of 20 statistics that summarize
the coefficients of A. Examples are the mean minimum coefficient over all m rows, or
the standard deviation of all m maximum coefficients, etc. The feature group comprises
19 out of these 20 coefficient statistics. We dropped the maximum over all m maximum
coefficients because it was equal to 1 for every instance in our data set.

For the feature group Sides, the m-dimensional left and right-hand side vectors bleft

and bright are summarized individually via vector statistics of all their finite elements.
Besides, we compute vector statistics for the finite elements of the concatenated 2m-
dimensional vector (|bleft|, |bright|) that combines the absolute left and right-hand sides
of all rows. Note that the row normalization by the maximum absolute coefficient also
affects the row left and right-hand sides.
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The last group in Table 3.2 consists of 10 features describing a decomposition found
by GCG [Gamrath and Lübbecke, 2010]. A decomposition of a MIP is a partition of the
rows and columns of A into blocks such that all the nonzero coefficients of a column (row)
lie in the corresponding row (column) block, except for a special row and column border
that may contain the rest. A suitable decomposition is a prerequisite for specialized
solution techniques for large MIPs such as Dantzig-Wolfe reformulation [Dantzig and
Wolfe, 1960] and Benders’ decomposition. A trivial decomposition always exists, in which
all rows/columns are labeled as “border”. However, not every MIP admits a nontrivial
decomposition into several, independent blocks. The features describe the number and
quality of the decomposition as well as vector statistics of the relative sizes of the blocks.
We refer to [Gleixner et al., 2021] for details.

For features such as the row or objective dynamism, which may differ by orders
of magnitude between instances, we used a logarithmic scaling. While logarithmic
scaling is fine for vectors with positive entries, it is not applicable to vectors with
potentially negative entries such as the variable upper bounds u. In those cases, we
apply a customized scaling

siglog : R→ R, x ↦→ sig(x) log10(|x|+ 1)

to every entry of the corresponding column in the feature matrix F . The map siglog
preserves the sign of each entry.

The collection of the instance features was performed with a small C++ application
called the feature extractor, which extends SCIP by the necessary functionality needed
to report features after trivial presolving and optionally accepts a settings file to modify
the default presolving explained in Section 3.5.1. The feature extractor is a modified
version of a code used already by [Georges et al., 2018] and available for download on
the MIPLIB 2017 web page (see Section 3.7.3). 7

3.5.4 Constraint Classification

Table 3.3 lists the constraint classification types used for the feature group Constraint
classification. A total of 17 types of linear constraints that often occur as a subset
of the constraints of MIP instances were identified . The table is sorted from most
specific to most general. If a constraint belongs to multiple types, the classification
always assigns the most specific, i.e., topmost, type that applies. Note that even empty,
free, and singleton constraints are listed. While these types are removed during trivial
presolving, they may well be present in the original formulation.

7The actual computations reported in the following were carried out with five additional, redundant
matrix features. Only during the preparation of the manuscript, they were identified to be identical to
other features.
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Type Linear constraints of the form. . .

Empty a = 0 (no variables)

Free bleft = −∞, bright =∞ (no finite side)

Singleton aj = 0, for all j ̸= j∗ (single variable)

Aggregation a1x1 + a2x2 = b

Precedence ax1 − ax2 ≤ b where both x1 and x2 are binary/general/continuous

Variable Bound a1x1 + a2x2 ≤ b, x1 ∈ {0, 1}

Set Partitioning ∑︁
xj = 1, xj ∈ {0, 1} for all j

Set Packing ∑︁
xj ≤ 1, xj ∈ {0, 1} for all j

Set Covering ∑︁
xj ≥ 1, xj ∈ {0, 1} for all j

Cardinality ∑︁
xj = k, xj ∈ {0, 1} for all j, k ≥ 2

Invariant Knapsack ∑︁
xj ≤ b, xj ∈ {0, 1} for all j, b ∈ N, b ≥ 2

Equation Knapsack ∑︁
ajxj = b, xj ∈ {0, 1} for all j, b ∈ N, b ≥ 2

Binpacking ∑︁
ajxj + aj′xj′ ≤ aj′ , xj′ , xj ∈ {0, 1} for all j, aj′ ∈ N, aj′ ≥ 2

Knapsack ∑︁
ajxj ≤ b, xj ∈ {0, 1} for all j, b ∈ N, b ≥ 2

Integer Knapsack ∑︁
ajxj ≤ b, xj ∈ Z for all j, b ∈ N

Mixed Binary ∑︁
j∈B′ ajxj +∑︁

j∈C′ ajxj {≤, =} b, B′ ⊆ B, C ′ ⊆ C

General Linear bleft ≤ atx ≤ bright (no special structure)

Table 3.3: Classification of a linear row bleft ≤ atx ≤ bright, sorted from most specific to
most general. A constraint is always assigned the first (topmost) type that applies. Note
that we omit the row index i to simplify notation.

There are several types of constraints supported by the MPS format [IBM, 1969;
Nazareth, 1987] that are not strictly linear as required by Equation (3.1). A well-known
extension are indicator constraints, which are conditional, linear constraints that only
need to be satisfied if a corresponding binary variable, the so-called indicator variable,
is set to 1. It is possible to linearize such a constraint by employing a sufficiently large
coefficient M for the indicator variable, in which case the reformulation is called a
big-M formulation. In many practical applications, big-M formulations require a very
large value of M , which is why they often lead to numerically difficult models. Directly
expressing such constraints as indicator constraint allows the solver to circumvent these
numerical difficulties.

Indicator constraints were allowed into the MIPLIB 2017 collection, but (as we
describe later) were not allowed in the benchmark set. The only feature used that
involves indicator constraints was their fraction among all constraints. This feature
is also part of the feature group Constraint classification in Table 3.2. Other
features regarding, e.g., the linear part of the indicator constraint, are not collected.
In total, 437 of the submitted instances contain indicator constraints. Many of them
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appear in instances of the MiniZinc submission, which were additionally submitted as
big-M formulations.

There are other special types of constraints allowed by MPS, such special-ordered sets
(SOSs), semicontinuous variables, and piecewise linear constraints that not all solvers
support. However, none of the submitted instances used such constraints.

3.5.5 Acquisition of Performance Data

The selection of the complete MIPLIB 2017 collection (see Sections 3.6.2–3.6.4) was
mainly driven by the feature data described above. The selection of the benchmark
set (see Sections 3.6.1, 3.6.5, and 3.6.6), however, took into account information about
the computational and numerical difficulty of the instances. In order to quantify these
empirically, we collected performance data using current solver software.

Every submitted instance was processed with each of the eight solvers listed in
Table 3.4 to collect performance data. The experiments were performed on two Linux
clusters. The first one consisted of 32 nodes, each equipped with two 3.20 GHz 4-core Intel
Xeon X5672 CPUs and 48 GB RAM, the second consisted of 16 nodes, each equipped
with two 2.50 GHz 10-core Intel Xeon E5-2670 v2 CPUs and 64 GB RAM. Two such jobs
were run in parallel on the same cluster node, each job using a time limit of 4 hours and
4 threads, except for SCIP and MATLAB, which are both single-threaded.8 In total,
this performance evaluation required almost 40 CPU years.

Figure 3.2a shows for every possible cardinality k = 0, 1, . . . , 8 the number of instances
solved by exactly k solvers. 1,969 of the 5,721 instances (34 %) were not solved by any
solver within 4 hours (an instance was considered solved if there were no inconsistencies
between solvers and the solution was verified to be feasible (see Section 3.5.6). There
were 1,155 instances (20 %) that could be solved by all eight solvers.

To summarize the results of the experiments, we report here the performance measures
for virtual solver, as described in the introduction. For each instance, a virtual solver is a
summary of all tested solvers by means of an aggregation function such as min, max, and
median, resulting in the best, worst, and median virtual solvers, respectively. The term
“virtual” is used to distinguish the presentation from the best (fastest) or worst (slowest)
actual solver over the complete set of instances. The performance measures collected
are the time to optimality and the number of branch and bound nodes processed.

Figure 3.2b compares the fraction of instances solved by the virtual best and worst
solvers. A large discrepancy between the curves can be observed. The virtual best solver
finished on about 20 %, 40 %, and 60 % of the submissions within 1 sec., 1 minute, and 1
hour, respectively. The virtual worst solver required more than a second for any instance,
and solved only 20.2 % of the instances within the time limit of 4 hours. The virtual
best solver solved more instances in 2 seconds than the virtual worst solver was able to

8MATLAB was run using the command intlinprog, which is part of the Optimization Toolbox
(TM).
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Figure 3.2: Aggregated results of the performance evaluation on the entire submission.
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Solver Version Threads

CBC 9 2.9.8 4
IBM CPLEX 10 12.7.1 4
Gurobi 11 7.5.1 4
MATLAB 12 R2017b 1
MOSEK 13 8.1.0.30 4
SAS/OR 14 14.2 4
SCIP 15 4.0.0 1
FICO Xpress 16 8.2 4

Table 3.4: List of solvers used for performance evaluation.

solve in 4 hours. Note that all eight tested solvers contributed to the performance of the
virtual best solver, i.e., each solver was the fastest on at least one instance.

Figure 3.2c summarizes data about the number of branch-and-bound nodes processed.
As expected, the number of branch-and-bound nodes varies significantly between
instances, but also between solvers on individual instances. In Figure 3.2c, the minimum
and maximum number of explored nodes are shown. In this figure, we consider only
runs that completed successfully. Note that there are differences in how solvers report
the required number of branch-and-bound nodes. Concretely, the solution of an instance
during presolving may be reported as 0 or 1 nodes depending on the solver used. We
therefore normalize the node results so they are always at least 1, i.e., we consider
presolving as part of the root node solution process. This is also justified because we
only consider instances that could not be solved completely by trivial presolving. At the
left end of the scale are the instances that could be solved within 1 node. This group
amounts to 1,507 instances, which corresponds to 40 % of the instances that could be
solved at all and 26 % overall. For more than 50 % of the solved instances, the solution
process required less than 1,000 nodes. The maximum number of explored nodes is
considerably larger. Less than 25 % of the considered instances were solved within 1,000
nodes by all solvers that finished within the time limit. Note that for all 385 records
(see Figure 3.2a) for which only one solver finished within the time limit, the minimum
and maximum number of explored nodes coincide.

9https://projects.coin-or.org/Cbc
10https://www.ibm.com/analytics/cplex-optimizer
11http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
12https://de.mathworks.com/products/optimization.html
13https://www.mosek.com/
14https://www.sas.com/en_us/software/or.html
15http://www.scipopt.org/
16http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.

aspx
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3.5.6 Consistency Check of Solver Results

In order to identify numerically challenging instances and incorrect answers returned
by the solvers, the results of the performance runs were independently verified in two
different ways.

As for MIPLIB 2010, a solution checker tool has been used that verifies the feasibility
of each returned solution against the input MIP in rational arithmetic using the
arbitrary precision library GMP [Granlund and the GMP development team, 2016].
The refinements of the solution checker for MIPLIB 2017 consist of a more fine-grained
computation of the activity of a constraint, and the integration of indicator constraints
into the checker. For details, we refer to [Gleixner et al., 2021].

Following the feasibility check via the solution checker tool, which can be done
independently for each solver and solved instance, the results were compared between
solvers to identify discrepancies in the optimal values reported or inconsistencies in
primal and dual bounds. We used the publicly available tool IPET [Hendel] to parse the
solver log files and validate the results. We considered results inconsistent when solver A
reported a verified, feasible solution x̃ with objective value Z = ctx̃, while solver B timed
out reporting a dual (lower) bound that was higher than Z. This included the special
case that an instance had been reported infeasible by solver B. For example, on the
instance bc1, seven of eight solvers agreed on an optimal value of 3.338 after exploring
search trees with 3k–20k nodes. The eighth solver, however, reported a solution of value
3.418 as optimal after 720 nodes. The eighth solver cut off the optimal solution. Note
that while such a behavior can be caused by a bug in the solver, it is also possible that
different optimal values can be “correctly” obtained when different tolerances are used.
Since all MIP solvers rely on floating-point arithmetic and use feasibility tolerances,
the definition of “the optimal objective value” for a problem instance is ambiguous.
In particular, for numerically challenging problems, a solver might return a different
optimal objective value as a result of applying slightly stricter tolerances within the
algorithm. Instances exhibiting such ambiguity are not suitable for benchmarking, since
handling this numerical ambiguity can be done in different ways, requiring different
amounts of computational effort. This leads to difficulties in comparison. Therefore, we
disregarded all instances with such inconsistencies during the selection of the benchmark
set (see Section 3.6.6), unless the inconsistency was obviously caused by a bug in one
solver; 328 instances (5 %) were removed for this reason.

3.6 Selection Methodology

Due to the vast number of collected instances and the stark overrepresentation of some
problem classes and instance types, it was crucial to reduce the submitted instances
to a carefully chosen selection that provides both researchers and practitioners with a
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meaningful basis for experimental comparison. MIPLIB 2017 provides two main instance
sets, namely the benchmark set and the collection. In the following, we discuss the actual
selection process and the obtained result.

We approached this task in reverse order by first selecting the larger MIPLIB
2017 collection from the submitted instances, and then choosing the MIPLIB 2017
benchmark set as a subset of the collection. An overarching goal for both the collection
and benchmark sets was to provide good coverage of the feature space of all submissions
while maintaining balance. Note that we thus explicitly avoid allowing the distribution of
instance properties observed in the set of submitted instances to affect the distribution
in the final collection, since it is to be expected that the set of submitted instances would
be highly unbalanced in its instance feature representation, if for no other reason than
that some submissions contained many more related instances than others. A second
overarching goal was to choose a collection as large as possible, in order to obtain a rich
and diverse test set, but without sacrificing balance. As explained above, the benchmark
selection step required additional restrictions. With respect to the benchmark, the
goal was to choose a large set of instances, but with a bias towards instances that are
currently hard for all solvers and keeping in mind that it should be possible to perform
benchmarking in a “reasonable” amount of time.

It seems quite natural to formulate the selection task as an optimization problem.
In fact, we approach the generation of MIPLIB 2017 with a sequence of optimization
problems: a set of diversity preselection MIPs, the collection MIP, and finally, the
benchmark MIP. After an initial cleanup, large model groups (see Section 3.4) are cut
down to a handful of diverse instances by the application of the diversity preselection
model described in Section 3.6.2. The main purpose of the first selection procedure was to
avoid overrepresentation of instance types from large and very homogeneous submissions
that do not add to the diversity of the instance library. Sections 3.6.3 and 3.6.5 introduce
the clustering procedures to partition the instances based on instance features and
performance data, respectively. Sections 3.6.4 and 3.6.6 describe the mixed-integer
programming models used to compute the MIPLIB 2017 collection and benchmark sets.
Although the selection of the benchmark set is only the final step of the process, the
initial reduction steps must be aware of which instances are judged to be suitable for the
benchmark set. Otherwise, too many benchmark-suitable instances might be excluded
initially for selecting a good benchmark set later. Hence, we start in Section 3.6.1 by
giving our definition of benchmark suitability.

Note that before the selection steps outlined here, the submission pool of 5,721
instances was already reduced to 5,666 instances by the removal of LPs (no discrete
variables) and instances that are empty after a trivial presolving (see Section 3.5.1).
Furthermore, we removed pairs of duplicate instances identified during the selection
process.
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3.6.1 Benchmark Suitability

The following definition characterizes the requirements for an instance to be in the
benchmark set of MIPLIB 2017. It is important to point out that because we allow
infeasible instances, successful “solution” of an instance for the purposes of this definition
means that the solver either produced a (claimed) optimal solution or a (claimed) proof
of infeasibility.

Definition 3.2 (Benchmark-suitable instance). Denote by Msub the 5666 in-
stances from the submission pool. We call an instance i ∈ Msub benchmark-suitable
if

1. it can be solved by at least one considered solver within 4 hours;

2. it requires at least 10 seconds with 50 % of the solvers;

3. it has a constraint and objective dynamism of at most 106 (see Section 3.5.3);

4. the absolute value of each matrix coefficient is smaller than 1010;

5. the results of all solvers on i are consistent (see Section 3.5.6);

6. it has no indicator constraints (see Section 3.5.4);

7. it has a finite optimum if it is feasible;

8. the solution (objective) value of i is smaller than 1010;

9. it has at most 106 nonzero entries.

The subset of benchmark-suitable instances from the ground set Msub is denoted
by Mbm-suit.

2 eliminates instances from the benchmark selection that are too easy. Conversely, 1
ensures that benchmark instances can be solved by at least one solver, as already done
for MIPLIB 2010. This avoids the situation of MIPLIB 2003, for which four instances
still remain unsolved 15 years after the release of the test set. The criteria 3, 4, 5, 8
ensure that the benchmark set does not contain numerically difficult instances for which
results may be ambiguous. Furthermore, benchmark instances should not contain special
constructs that are not supported by all solvers. As noted in Section 3.5.4, the only
special constraint type in the submissions are constraints of indicator type, which are
excluded from the benchmark set via 6. 7 excludes feasible instances that do not have a
finite optimal value from the benchmark set for two reasons. First, a feasible, rational
MIP has a finite optimal value if and only if its LP relaxation has a finite optimal value,
rendering detection of this property more a continuous than a discrete problem. Second,
there is currently no clear consensus on the expected behavior and output of MIP solvers
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Crit. Exclusion reason Instances

1 Too hard: min. solver time > 4 hours 1,958
2 Too easy: median solver performance ≤ 10 seconds 741
3 Objective or constraint dynamism too large 552
4 Absolute matrix coefficients > 1010 525
6 Presence of indicator constraints 437
5 Instances excluded for inconsistent results 334
7 Unbounded instances 87
8 Best known solution exceeds 1010 80
9 Too many (> 106) nonzeros 40

Table 3.5: Number of instances considered not benchmark-suitable (Msub \Mbm-suit),
as described in Section 3.6. The column Crit. refers to the corresponding criterion in
Definition 3.2. The ground set is the set of 5,666 instances available before preselection.

in the case of a feasible MIP without a finite optimum. Note that in contrast, infeasible
instances are deliberately not excluded. Finally, 9 reduces the hardware requirements to
perform tests with the benchmark set.

Table 3.5 lists for each criterion the number of excluded instances. Note that an
instance may be excluded for several reasons. In total, 3,407 instances were labeled as
not benchmark-suitable, the majority of them because no solver solved them within the
time limit of four hours.

The larger MIPLIB 2017 collection covers a broader range of MIP instances. It
includes at least one instance from each submitter, a constraint that cannot be enforced
for the benchmark set due to runtime considerations. It may contain instances that
are considered too easy or too hard for the benchmark set. It may contain instances
with more dubious numerics suited for testing the robustness of solvers in general
and techniques that explicitly aim at increasing numerical robustness. It may contain
unbounded instances and instances with indicator constraints. It may contain up to five
instances from each model group.

3.6.2 Diversity Preselection

As with previous editions of MIPLIB, the number of instances varies significantly between
different submissions and, more importantly, also between the model groups described
in Section 3.4. While some model groups contain a single MIP instance that represents
an optimization problem on a specific data set, other model groups contain hundreds of
instances using the same underlying model for different data. Hence, for larger model
groups, we preselect a diverse subset of instances as follows.

LetM =Msub denote the index set of submitted instances and letMbm-suit ⊆Msub

be the subset of benchmark-suitable instances according to Definition 3.2. The choice of
a subset of instances can be naturally encoded using a vector of binary variables xi equal
to one if and only if instance i ∈M is selected. For two instances i, j ∈M, di,j denotes
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the Euclidean distance of their feature vectors. Then for a given model group G ⊂M
of instances and a target cardinality κG ∈ N, we wish to choose κG instances maximally
diverse in the sense that the minimum distance between two selected instances becomes
maximal. Moreover, if the model group contains benchmark-suitable instances, at least
one of these should be included in the preselection. Such a preselection can be performed
by solving the mixed binary optimization problem

max z (3.2a)
s.t. z ≤ (di,j − d̄)xixj + d̄ for all i, j ∈ G, i ̸= j (3.2b)∑︂

i∈G

xi = κG (3.2c)
∑︂

i∈G∩Mbm-suit

xi ≥ 1 if G ∩Mbm-suit ̸= ∅ (3.2d)

x ∈ {0, 1}G, z ∈ [0, d̄] (3.2e)

The value d̄ := max{di,j : i, j ∈ G} acts as big-M in Constraint (3.2b). In order to solve
this optimization problem with a MIP solver, the bilinear product xixj in (3.2b) must
be linearized by replacing it with an auxiliary binary variable wi,j under the additional
constraints wi,j ≤ xi, wi,j ≤ xj, and wi,j ≥ xi + xj − 1 for all pairs i ̸= j ∈ G.

This preselection was performed for each model group with six or more instances.
We use κG = 5 for groups with 6 ≤ |G| ≤ 10 and κG = 10 for larger groups. The
number of variables and constraints of the preselection model depends on the size of
the corresponding model group. For the largest model group “cmflsp”, which comprises
360 instances of a capacitated multi-family lot-sizing problem, the diversity preselection
instance has 129,242 rows, 64,981 columns, and 323,485 nonzeros. Except for this largest
model group, which required approx. 800 seconds, all preselection problems could be
solved to optimality within a time limit of 500 seconds using Gurobi 7.5.1.

As an example, Figure 3.3 depicts the results of the preselection procedure for the
model group “drayage”, which consists of 165 instances in total. The plot shows the
instances from this group three times. The x and y-coordinates are computed using
t-distributed stochastic neighbor embedding (t-SNE) [van der Maaten and Hinton, 2008],
a technique to embed points of the high-dimensional feature space in 2D based on their
distances. The leftmost plot highlights the optimal solution of the corresponding diversity
preselection instance. Visually, the selected solution for this group is scattered evenly
across the feature space of this group. The middle and right plot show the instances
from this group that are selected for the collection and benchmark set, respectively, for
which stricter cardinality restrictions on model groups apply. Despite those cardinality
restrictions, the corresponding selections appear evenly spread across the ground set.
A look at the performance results, which are taken into account for the selection
of the benchmark set, reveals that the two selected instances also vary substantially
regarding solution time. The easier of the two instances, namely drayage-100-23 could
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Diversity Preselection MIPLIB 2017 Collection MIPLIB 2017 Benchmark Set

Figure 3.3: The results of diversity preselection for the model group “drayage”, which
contains a total of 165 instances, in a t-SNE plot. A red diamond indicates that the
instance has been selected for the corresponding set.

be solved by seven solvers with a median running time of 40 seconds. The harder instance
drayage-25-23 on the other hand could only be solved by three solvers and hence has
a median running time of four hours. The three other instances that are part of the
collection lie in between. In total, diversity preselection reduces the instance set from
5,666 to 2,182 instances.

The preselected instances form a reduced index set Mpre, which serves as input for
the selection of the MIPLIB 2017 collection. Although the following selection procedure
could have been applied to the entire set of submissions, we noticed several benefits of
preselection empirically. It improves the results of the k-means clustering heuristic in
the next Section 3.6.3, reduces the size and difficulty of the selection MIPs to be solved,
and finally leads to a larger collection and benchmark set.

3.6.3 Preparing Multiple Clusterings

One major challenge in selecting a test set is how to navigate the trade-off of good
coverage of all observed instance properties against a balanced selection that avoids
overrepresentation. The first goal is best achieved by simply selecting all suitable
instances, while balance explicitly asks for removing instances from overrepresented
problem classes.

A straightforward method would be to compute one clustering according to the
entire feature matrix and pick instances uniformly from each cluster. When applied in
a high-dimensional feature space, as in our setting, this naïve approach suffers from
several problems well-known in data analysis, such as the curse of dimensionality [Beyer
et al., 1999] and the relative scaling of numerical features. The first term refers to the
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fact that with increasing dimensionality of the feature space, the difference of distances
of one point to its nearest and to its farthest neighbor becomes smaller in relative
terms. Hence, similar instances cannot be identified reliably. Conversely, depending
on scaling, the distance with respect to one crucial feature may be dominated by less
useful features, such that different instances cannot be distinguished reliably. Arguably,
the same problem holds true everywhere where we use Euclidean distances in the
selection process, for example during the diversity preselection in the previous section.
An important difference between this section and the preselection is that for preselection,
we only considered one model group (with many instances) at a time so that we already
knew that all instances were similar to each other. In this and the following sections,
however, this model group association is no longer used for the clustering, as we now
incorporate also instances with no known model group association.

We therefore counteract the problems of a high-dimensional feature space by using
multiple clusterings of the entire preselected instance set Mpre according to disjoint
groups of features. Subsequently, we select instances such that they are balanced with
respect to each of these clusterings. This selection process is more complex and cannot
be achieved by simply picking uniformly from each cluster of each clustering. Instead, we
formulate a mixed-integer programming problem with approximate balancing constraints
for each of the multiple clusterings.

Formally, for a given index set M of instances we have K different clusterings, i.e.,

M = Ck,1 ∪ · · · ∪ Ck,Lk
(3.3)

for k ∈ K = {1, . . . , K}, with disjoint Ck,1, . . . , Ck,Lk
being a partition of the index set

M for every k. The number of clusters Lk is allowed to vary, since different subsets of
features may require a different number of clusters to achieve a high-quality clustering.
We denote the index set of all clusters by C := {(k, ℓ) : k = 1, . . . , K, ℓ = 1, . . . , Lk}.
Furthermore, the cluster sizes contain outliers, which need special treatment in order to
avoid limiting the size of the resulting test set too much. Hence, we partition the set of
clusters into small, medium (regular-sized), and large clusters and denote the respective
index sets by Csmall, Cmedium, and Clarge ⊆ C, as follows. A cluster Ck,l is denoted small if
its size is less than half the average size of Ck,1, . . . , Ck,Lk

. On the other hand, a cluster
is treated as large if it is displayed as an outlier in a typical boxplot. Concretely, Ck,l

is considered large if its size exceeds the 75 % quantile among Ck,1, . . . , Ck,Lk
by more

than 1.5 interquartiles.
For the selection of the MIPLIB 2017 collection, we use one clustering for each of the

K = 11 groups of instance features listed in Table 3.2. The clusterings of all preselected
instances (2,182 instances) are computed using a k-means heuristic [Hartigan and Wong,
1979], which yields a first family of clusterings denoted by K1 = {1, . . . , 11}.
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δk,p

Feature group Quality [%] Lk Small Large Min. Max.

Variable bounds 91.28 23 7 1 6.57 22.03
Matrix coefficients 87.73 41 2 1 5.33 13.95
Matrix nonzeros 89.10 33 3 0 5.86 16.70
Decomposition 99.99 9 1 1 11.54 15.53
Row dynamism 91.70 17 3 3 9.85 18.12
Constraint classification 87.77 35 6 1 6.63 12.92
Objective nonzero density 93.17 9 0 1 9.95 14.01
Objective coefficients 96.51 43 2 3 4.39 23.05
Sides 98.33 35 10 0 1.00 18.77
Size 87.46 9 2 0 10.95 15.01
Variable types 95.26 7 0 1 8.89 13.54

Table 3.6: Clustering statistics for the collection MIP in Section 3.6.4.

Table 3.6 gives insight into the result of this clustering process. It shows the total
number of clusters (value of Lk) for each feature group clustering. The quality column
describes the percentage of the total feature group distance between clusters. More
formally, for a clustering k ∈ {1, . . . , K} of instances, the quality of this clustering is

∑︁
i ̸=j∈M

di,j −
Lk∑︁
ℓ=1

∑︁
i ̸=j∈Ck,ℓ

di,j∑︁
i ̸=j∈M

di,j

· 100 %.

The value range of the above fraction is the interval [0, 1] such that the quality lies
between 0 and 100 %. A clustering has a high quality if long distances between instances
are between different clusters. Note that for the distance computation for the quality
measure, only features contained in the corresponding feature group were considered.
The table shows that the quality of the clustering was at least 87 % and often significantly
above 90 %, yielding an average quality of 92 %. The individual value of Lk has been
manually selected for every feature group as the minimum integer L that admits a
clustering with at least 90 % quality over the set Msub (5,666 instances) unless the
targeted quality was not achievable using a reasonable amount of clusters. In addition
to the number of clusters Lk, the table presents the number of small and large clusters,
which are constrained less strictly than the medium clusters, see Constraints (3.5a) and
(3.5b) below.

The last two columns report the minimum and maximum total dissimilarity per
feature group. For each cluster (k, ℓ) ∈ C, its total dissimilarity δk,ℓ ≥ 1 is defined as
the shifted geometric mean of the pairwise Euclidean distances {di,j : i < j ∈ Ck,ℓ}
between its instances, using a shift of 1. Here, distances are computed with respect to
the entire feature space, in contrast to the above cluster quality computation. Because
of the shift by 1, the smallest possible value of δk,ℓ is 1, which only occurs for clusters
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containing exactly one element, or for clusters that contain only instances which are
indistinguishable in the feature space. All cluster parameters from Table 3.6 enter the
selection constraints described in the next section.

For the selection of the benchmark set, we additionally use performance data to
hand-craft three clusterings for each of the eight participating solvers, which yields
additional clusterings K2 = {12, . . . , 35}, see Section 3.6.5 below.

3.6.4 Selection of the MIPLIB 2017 Collection

In the following, we describe linear formulations to enforce the requirements specified by
the committee. At this stage, the instance set was limited to the instances M =Mpre

left after the diversity preselection procedure. The set of clusterings K = K1 was the
one determined using the instance feature groups from Table 3.2.

To express balance, consider one clustering M = Ck,1 ∪ · · · ∪ Ck,Lk
. Naïvely, we

would like to pick the same number of instances from each cluster, i.e., ∑︁i∈Ck,ℓ
xi ≈ yk

for an auxiliary variable yk ≥ 0. However, enforcing this for all clusterings is highly
restrictive. Furthermore, while the instances in each of the clusters Ck,1, . . . , Ck,Lk

should
be homogeneous with respect to the features that were used to compute clustering k,
they may be heterogeneous with respect to the entire feature vector. This interaction
between different clusterings must be taken into account.

To achieve this, we consider the total dissimilarity of the clusters that was introduced
above. Arguably, from clusters with higher total dissimilarity, more instances should
be picked, i.e., ∑︁i∈Ck,ℓ

xi ≈ δk,ℓyk. Introducing a tolerance parameter ϵ, 0 < ϵ < 1, we
arrive at the balance constraints

(1− ϵ)δk,ℓyk ≤
∑︂

i∈Ck,ℓ

xi ≤ (1 + ϵ)δk,ℓyk. (3.4)

Concretely, we used ϵ = 0.5 for the selection of the collection and the benchmark set.
In practice, we discard the left inequality for small clusters and the right inequality for
large clusters and use

∑︂
i∈Ck,ℓ

xi ≥ (1− ϵ)δk,ℓyk for all (k, ℓ) ∈ C \ Csmall, (3.5a)

∑︂
i∈Ck,ℓ

xi ≤ (1 + ϵ)δk,ℓyk for all (k, ℓ) ∈ C \ C large. (3.5b)

Additionally, if two instances have identical feature vectors, then at most one of them
should be chosen , i.e.,

xi + xj ≤ 1 for all i, j ∈M×M with i < j, di,j = 0. (3.5c)
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At most five instances should be selected from each model group. If the model group
contains benchmark-suitable instances, at least one of those should be included into the
MIPLIB 2017 collection. Let M = G1 ∪ . . . ∪GP denote the partition of instances into
different model groups, then this condition reads

∑︂
i∈Gp

xi ≤ 5 for all p = 1, . . . , P, (3.5d)

∑︂
i∈Gp∩Mbm-suit

xi ≥ 1 for all p = 1, . . . , P with Gp ∩Mbm-suit ̸= ∅. (3.5e)

Furthermore, from each submitter at least one instance should be selected, i.e.,

∑︂
i∈Ss

xi ≥ 1 for all s = 1, . . . , S, (3.5f)

whereM = S1 ∪ . . .∪SS denotes the partition of instances with respect to S submitters.
Finally, we imposed relative limits on a small number of specific subsets of instances,

Rr ⊂M, by requiring

∑︂
i∈Rr

xi ≤ ρr

∑︂
i∈M

xi for all r ∈ {MiniZinc, NEOS, small, medium, BP}.

(3.5g)

The concrete values for ρr, for both the collection MIP and the benchmark MIP described
in Section 3.6.6, are given in Table 3.7. The numbers in parentheses show the size of
respective ground sets Mpre and Mcol ∩Mbm-suit, from which instances were selected.
The number of instances from the NEOS server was limited by the committee because of
the lack of reliable information on their application and model background. Purely binary
problems (BP) were limited because they often represent academic applications such
as combinatorial puzzles, but less often occur in industrial, “real-world” instances. The
limit ensures that enough actual mixed-integer instances are selected for the collection
and benchmark sets. For the groups in Table 3.7 that refer to instance features, the
features are always evaluated after trivial presolving.

Subject to those constraints, our objective was to include as many instances as
possible, preferring benchmark-suitable instances. Hence, we formulate the collection
MIP as the mixed binary optimization problem

max
{︃∑︂

i

βixi : (3.5a)− (3.5g), x ∈ {0, 1}Mpre
, y ∈ RK

≥0

}︃
, (3.6)

with objective cofficients β to prefer benchmark-suitable instances,

βi =

2, if i ∈Mbm-suit,

1, otherwise.
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Coll. MIP (2182) Bench. MIP (499)

k Sets Size ρk Size ρk

1 MiniZinc instances 484 0.05 14 0.05
2 NEOS instances 696 0.33 182 1.00
3 small (n ≤ 2,000) 691 0.20 124 0.20
4 medium (n ≤ 10,000) 1,309 0.50 290 0.50
5 BP (n = nbin) 422 0.20 109 0.20

Table 3.7: Instance sets for which relative limits on the selection apply, with limits shown
for the collection and benchmark MIPs individually. The Size columns show the size of
this set within the respective ground set the selection is based on. The parameter ρk

is a relative limit on the allowed instances from this set in a solution as specified by
Constraint (3.5g).

We solved the collection MIP over the ground setMpre of 2,182 instances (after diversity
preselection). Despite our efforts to remove obvious duplicates, there remained 48 pairs
of instances in Mpre with a feature distance of zero. From each such pair, at most one
instance was selected for Mcol because of Constraint (3.5c). We obtained the MIPLIB
2017 collection Mcol, which comprises 1,065 instances, 499 of which are benchmark-
suitable.

The choice of the balance parameter ϵ used in Constraints (3.5a) and (3.5b) clearly
plays a central role in the formulation of the collection MIP. In order to analyze the
sensitivity of the result to this parameter, we solved the collection MIP for different
values of ϵ. Table 3.8 reports on the sizes of the resulting collection sets. The smallest
tested value of 0.1 makes the collection MIP infeasible, while the second-smallest value
of 0.2 did not return with a feasible selection after 15 minutes. For larger values of ϵ, the
collection MIP is feasible and can be solved reasonably quickly. The number of selected
and benchmark suitable instances increases along with the balance parameter and allows
us to control the number of selected and benchmark-suitable instances.

3.6.5 Performance Clusterings

In addition to instance features that depend exclusively on instance data, computational
difficulty is an important aspect to consider for the benchmark set. We assessed the
computational difficulty of every instance empirically by considering the performance
data of the eight tested solvers (see Section 3.5.5). To quantify performance, we consider
the observed running time τi (w) > 0 for each solver w ∈ W := {1, . . . , W} and
instance i ∈M. If w could not solve the instance i, τi (w) was set to the time limit of
four hours. We denote by Mw ⊆M the set of instances that were solved by w within
the time limit.

For each of the participating solvers, we created three different clusterings of the
instances to capture different aspects of performance. The base setM for these clusterings
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ϵ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

selected instances – – 740 946 1065 1110 1125 1140 1140
benchmark-suitable – – 355 465 499 546 560 561 564

Table 3.8: Influence of the parameter ϵ used in Constraints (3.5a) and (3.5b) on the
number of instances selected for the collection set. The second row reports how many of
the selected instances are benchmark-suitable.

are the 499 benchmark-suitable instances within the MIPLIB 2017 collection, i.e.,
M =Mcol ∩Mbm-suit. The overall goal was to avoid a biased selection of instances, i.e.,
to avoid that the absolute and relative performance of a solver on the benchmark set
appears different than on Mcol. Each of the three clusterings avoids a different bias.

Absolute performance clustering. The first clustering uses an absolute perfor-
mance ranking. For each solver w, we sorted the instances inMw according to increasing
running time τi (w). For a fixed number of clusters B, which we set to B = 11, we
grouped the instances inMw into B equally-sized clusters w.r.t. increasing rank, i.e., we
assigned the instances solved fastest to the first cluster, the next fastest set of instances
to the second cluster, . . . , and the slowest instances to the last cluster, so that each
cluster contained approximately |Mw|/B instances.

The instances inM\Mw that could not be solved by solver w seem indistinguishable
with respect to performance. However, it could be that the solution process was
terminated only seconds prior to concluding the proof of optimality, or that the solution
process would have continued unfinished for days or even months. We took this into
account by inspecting the performance of the other solvers and formed two more clusters
from those instances: instances that could be solved by exactly one solver and instances
that could be solved by more than one solver. The case that instances could be solved
by no other solver does not appear since such instances are not benchmark-suitable
(Definition 3.2, Criterion 1).

Relative performance clustering. In contrast to the absolute performance clus-
tering, the instances were ranked based on relative solver performance for a second
clustering as follows. To this end, we defined the relative performance of solver w on
instance i with respect to the other solvers as

trel
w,i := τi (w) + τ

min
w′ ̸=w

τi (w′) + τ
, (3.7)

where τ ∈ R≥0 is a nonnegative shift as in the computation of shifted geometric means.
Relative performance locates the individual solver performance relative to all other
solvers on an instance, regardless of the absolute scale. The motivation is that solvers
and solver improvements are traditionally measured by the shifted geometric mean
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instead of the arithmetic mean. For the instances that could be solved by this solver,
we used this ranking to define B equally-sized clusters in the same fashion as with
the absolute performance ranking. The timeout instances were again divided into two
further clusters of instances that could be solved by exactly one and by more than one
other solver, respectively.

Binned absolute performance clustering. The third clustering uses absolute
solving time directly, partitioning possible solving times into B′ = 7 intervals

[T0 = 0, T1), [T1, T2), . . . , [TB′−1, TB′), (3.8)

whose breakpoints are equal for all solvers. The concrete bin width used grows
exponentially as follows.

Tj = 10−3.5+0.5j · 14400, j = 1, . . . , 7.

Hence, the righmost bin T7 has the time limit of four hours as right breakpoint. Then
for each solver w ∈ W we formed B′ clusters {i ∈ Mw : τi (w) ∈ [Tj−1, Tj)}, j =
1, . . . , B′. Empty clusters were discarded. This is different from the absolute and relative
performance clusterings in that it partitions the instances solved by a solver into clusters
that differ in size. The instances in M\Mw, which could not be solved by solver w,
were again treated as two further clusters as above.

All in all, this led to 24 clusterings, K2 = {12, . . . , 35}. The ranking-based clusterings
yield approximately equal cluster sizes overMw, but these cluster sizes may differ to the
ones on M\Mw. The binned absolute performance clustering does not control cluster
size and may yield very unequally sized clusters. In the following benchmark MIP we
picked from the performance clusters according to their size, i.e., we use δk,ℓ = |Ck,ℓ| for
all k ∈ K2 in Constraint (3.5a) and (3.5b).

In the case of SCIP, as an example of an absolute performance clustering, each of the
11 parts contained between 20 and 22 instances, and the remaining 263 instances were
split into 58 instances which could only be solved by one solver, and 205 instances solved
by at least two solvers. Although the absolute and relative performance clusters were,
by design, almost equal in size, we observed quite different partitions of the ground set.
An example is the fastest relative performance cluster for SCIP, which shares 8 of its 21
instances with the fastest absolute cluster. The remaining 13 instances, for which SCIP
was particularly fast compared to its competitors, were spread across 8 of 10 possible
absolute clusters. This shows that, to some extent, the two suggested clusterings exhibit
an almost orthogonal instance partition.
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3.6.6 Selecting the MIPLIB 2017 Benchmark Set

The benchmark set was selected from the ground set of benchmark-suitable instances in
the MIPLIB 2017 collection, M =Mcol ∩Mbm-suit. The balance constraints (3.5a) and
(3.5b) are now defined using instance feature and performance clusterings, K = K1 ∪K2.
The rationale is that the current performance of solvers in the collection should be
reflected by the performance on the benchmark set in order to avoid any unintentional
bias towards a solver during the selection of instances. The relative limit constraints (3.5g)
are kept, but the restriction on instances from the same model group is reduced to
one instance from NEOS groups and two instances, otherwise. The stricter limit on
NEOS instances is imposed because little information is available for these anonymously
submitted instances and the chance for duplicate instances in the same model group is
deemed higher.

In addition, executing one benchmark run on this test set should be possible within
a reasonable time frame on modern hardware, possibly a compute cluster. We specified
a total time limit τ lim of 32 days for running the benchmark set with a hypothetical
solver with median running times capped to a time limit of two hours, i.e., t̄i :=
min{median{τi (w) : w ∈ W}, 7200}. The resulting benchmark MIP reads

max
∑︂

i

βixi (3.9a)

s. t. (3.5a), (3.5b), (3.5g),

∑︂
i∈Gp

xi ≤


1

2

for all p = 1, . . . , P from NEOS,

otherwise,
(3.9b)

∑︂
i∈M

t̄ixi ≤ τ lim, (3.9c)

x ∈ {0, 1}M, (3.9d)
y ∈ RK

≥0. (3.9e)

This approach has a potential drawback. Representing current solver performance
may overly favor instances that are tractable by current solver technology. This is
opposed to one main goal of the MIPLIB project, which is to provide a test bed that
drives solver development forward. Hence, we used the objective coefficient

βi := 1 + 1
20
√︃

min
w∈W

τi (w) (3.10)

for instance i ∈M. This favors instances that are challenging even for the virtual best
solver. The concrete choice of the square root was empirically motivated.
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Using Mcol ∩ Mbm-suit containing 499 instances as ground set, we solved the
benchmark MIP that respects all feature group and performance clusterings. The solution
to the benchmark MIP contained 240 instances and now constitutes the MIPLIB 2017
benchmark set Mbench. We note that the imposed running time constraint (3.9c) was
not tight on our performance data. A solver with median running times and a time limit
of two hours would take about 14 days to process all benchmark instances sequentially.

We also note that for several reasons, the goal of representing computational difficulty
in the reduced benchmark set cannot be achieved perfectly and is not even well-defined:
The performance data is only a snapshot of current algorithms. It was gathered using
a time limit, performance variability and parallel scalability were not captured, and
correctness was only enforced approximately with respect to the tolerance parameter ϵ.
Last but not least, the different performance clusterings may even contradict each other.
However, we hope that it helps to avoid unintentionally and unconsciously introducing
a bias both towards instances of a particular difficulty and towards any of the solvers.

3.7 The Final Collection and Benchmark Sets

The MIPLIB 2017 collection Mcol has been compiled with a focus on a balanced
and diverse representation/coverage of the feature space. The benchmark set Mbench

incorporates similar requirements also for the performance data. This section discusses
the feature and performance aspects of the compiled sets. We also assess the descriptive
power of the feature space by (re-)detecting known model group associations.

3.7.1 Representation in Feature Space

A frequent question during the discussions about the MIPLIB 2017 compilation process
was whether the choice of features and their scaling is able to distinguish instances in a
useful way. Ideally, two instances based on the same model for the same application,
but with different data, should be close to each other in the feature space, regardless
of variations of, e.g., the size of the matrix. For MIPLIB 2017, we have two sources
to assess similarity between instances, namely their distances in feature space and the
model groups G from Section 3.4. In this paragraph, we evaluate the descriptive power of
the feature space by comparing similarity in feature space and model group association
of instances.

Let M =Mcol denote the instances in the MIPLIB 2017 collection (|M| = 1065).
The complete graph KM = (M, E) on the vertex set M has |E| =

(︂
|M|

2

)︂
= 566580

edges. Now consider two subsets of the edges. Let EG denote edges between instances
from the same model group. Furthermore, let for every i ∈M, Si ⊂M\ {i} denote the
set of five most similar instances to i in the collection w.r.t. the distance in the scaled
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feature space. With the sets Si, we define ES to be the set of similarity edges as

ES := {(i, j) ∈ E : i ∈ Sj or j ∈ Si}.

Note that i ∈ Sj does not necessarily imply the opposite containment j ∈ Si, but holds
in many cases. The actual cardinalities of the two sets are |EG| = 1327 and |ES | = 3747
and hence comprise less than 1 % of the total edge set. Indeed, computing the probability
for an edge e that was selected uniformly at random from E to be a similarity edge is

P(e ∈ ES) = |ES |
|E|
≈ 0.007

Now what is the probability that a group edge is also a similarity edge? This question
can be answered by computing the conditional probability

P(e ∈ ES | e ∈ EG) = P(e ∈ ES ∩ EG)
P(e ∈ EG) = |ES ∩ EG|

|EG|
= 974

1327 ≈ 0.734.

The majority of group edges is contained in the similarity set, and the probability for a
group edge to be a similarity edge is more than 100 times higher than for a randomly
selected edge.

Recall from Section 3.4 that the model groups have been partially derived from the
feature data. For submissions from the NEOS server, which have an unknown origin,
clustering has been used to group similar NEOS instances into pseudogroups. If we
omit all NEOS instances from the above computations (by considering the complete
graph KM\MNEOS with 714 vertices), the probability for an edge to be a similarity edge
is about the same, P(e ∈ ES) ≈ 0.008, whereas the conditional probability of a group
edge to be a similarity edge is ≈ 0.815 and hence even higher than for KM.

From this observation, we conclude that the feature space has been designed
sufficiently well for the clustering approach. In fact, the used feature space recovers the
model group data better than we expected. Even for an instance that does not belong
to a dedicated model group or lacks bibliographical information, the similarity to other
model groups can yield interesting hints at the type and application of this instance.
Therefore, the web page of MIPLIB 2017 (see also Section 3.7.3) allows to browse the
five most similar instances for every instance of the MIPLIB 2017 collection.

Figure 3.4 uses t-SNE [van der Maaten and Hinton, 2008] to give a spatial impression
of the locations of the MIPLIB 2017 benchmark set, the benchmark-suitable instances,
and the collection, relative to each other in feature space. The distance computation is
based on the feature vectors after they have been scaled over the entire set of submissions.
Note that there is a subset relation for those sets, i.e.,

Benchmark Set ⊊ Benchmark-suitable ⊊ Collection,
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MIPLIB 2017

Benchmark Set (240)

Benchmark−suitable (499)

Collection (1065)

Figure 3.4: Two-dimensional embedding of the distances in the feature space using t-SNE.

such that the plot only shows the innermost set membership for every instance. Figure 3.4
shows that benchmark-suitable instances cover the majority of the feature space that is
comprised by the collection except for a few regions.

3.7.2 Solver Performance

One of the goals of MIPLIB has always been to provide a representative set to measure
and compare solver performance. In this section, we analyze the solver performance on
the collection, and in particular on the new benchmark set of 240 instances. For this
analysis, we use the computational results obtained during 4-hour runs conducted for
the selection process. Note, however, that in this chapter, solver performance is not
reported directly for several reasons. One reason is that due to hardware restrictions,
not all runs could be performed exclusively on the same hardware, and should hence
not be reported in a way that could be confused for an actual benchmark. Again, the
individual results are aggregated into the virtual best solver, i.e., a solver that always
finishes as fast as the fastest actual solver for each individual problem instance.

In Figure 3.5, we compare the performance of this virtual best solver on the benchmark
sets of MIPLIB 2010 and 2017. One of the motivations for the creation of MIPLIB 2017
was the demand for a harder benchmark set. As a consequence of Definition 3.2, the
virtual best solver solves all instances within 4 hours (or 14400 seconds) as this is one
of the criteria for benchmark suitability. The plot shows that the majority of the old
benchmark set can be solved by the virtual best solver in less than 100 seconds, and
that there is no instance left where the virtual best solver requires one hour or more. By
contrast, the benchmark set of MIPLIB 2017 is much more demanding, as a significant
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Figure 3.5: Minimum solving time in seconds of the benchmark sets of MIPLIB 2010
and MIPLIB 2017.

virtual median virtual best

2010 2017 2010 2017

> 1 h 17.2 % 66.7 % 0 % 19.6 %
> 2 h 12.6 % 61.7 % 0 % 8.8 %
> 3 h 6.9 % 51.2 % 0 % 4.2 %
> 4 h 5.7 % 48.3 % 0 % 0.0 %

Table 3.9: Percentage of benchmark instances that could not be solved within 1–4 hours
by the virtual best and median solvers. The percentages are relative to the individual
benchmark sets (2010: 87 instances, 2017: 240 instances).

portion of instances lies at the right end of the scale. Due to its increased size, the
bars for the MIPLIB 2017 benchmark set lie almost consistently above the ones for
the previous set. The MIPLIB 2017 benchmark set covers much more of the relevant
performance scale than its predecessor covers nowadays. Note that the MIPLIB 2010
benchmark set appearing easy is an impressive result of 7 years of continuous solver
improvements.

Table 3.9 shows the percentage of instances of the respective benchmark set (2010
or 2017) for which the virtual best solver takes longer than a certain time threshold,
which we vary between 1 and 4 hours. As mentioned before, all instances of the 2010
benchmark set could be solved within one hour by the virtual best solver. The table
shows that among the new benchmark set, almost 20 % of the instances cannot be
solved within one hour by the virtual best solver. Along with the virtual best solver,
Table 3.9 also shows the performance of the virtual median solver, based on the median
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solution time over the eight involved solvers. Since the number of involved solvers is
even, the median is computed by averaging the timing result of the two solvers ranking
4th and 5th for each instance individually. Therefore, the virtual median solver is faster
than half of the solvers. On the MIPLIB 2010 benchmark set, 17.2 % of the instances
are not solved within one hour by the virtual median solver. In contrast to the virtual
best solver, the virtual median solver still times out after 4 hours on 5.7 % (5 of 87)
instances even on the 2010 benchmark set. On the MIPLIB 2017 benchmark set, the
virtual median solver needs more than one hour on two thirds of the instances, and still
needs more than four hours of solving time on almost 50 % of the instances.

In Figure 3.6, the fraction of instances solved by the virtual median solver as a
function of time is shown. The figure shows the corresponding curves for the MIPLIB
2017 collection of 1,065 instances, the set Mcol ∩Mbm-suit of 499 benchmark-suitable
instances, and the MIPLIB 2017 benchmark set (240 instances). Recall that an instance
is only a candidate for the benchmark set if it takes the virtual median solver at least
10 seconds to solve it, which is also visible from the plot. As minimum for any time
measurement, 0.5 seconds were used, which is visible in the curve of the MIPLIB 2017
collection. The objective function for the benchmark set was designed to prefer harder
instances. The effect of this design choice is visible in the figure, in which the percentage
of solved instances of the benchmark set consistently lies below the curve for the 499
benchmark-suitable instances. The slope of the curve for the collection is approximately
linear for about 90 % of the visible area. Due to the logarithmic scaling of the horizontal
(time) axis, this suggests that to a certain extent, the solving behavior of the virtual
median solver can be approximated by fitting a logarithmic function. Note that the clear
change in behavior of the curves, which are otherwise almost logarithmic, towards the
right end of the scale is an artifact from the median computation, which weighs in as
soon as the 4th solver could still solve the instance, but the 5th solver couldn’t. Their
timings can even be very different. On the instance blp-ic98, the four best performing
solvers finish within 1,700 seconds, while the fifth solver times out after four hours. The
median solver therefore has a performance of 8,050 seconds. All individual curves of
the actual solvers tested have a similar, almost logarithmic shape without the median
artifact.

Statistically speaking, the curves in Figure 3.6 describe empirical cumulative density
functions (CDF) of the random variable that represents median solving time for an
instance. The Kolmogorov-Smirnov (KS) test is a statistical approach to measuring
the similarity between a pair of CDF F1, F2. To this end, the KS test measures the
maximum vertical distance D between F1 and F2.17 With increasing D, the likelihood
decreases that F1 and F2 represent samples from the same distribution. In order to
further quantify the hardness of the benchmark set, a KS test has been performed for
every solver, comparing its individual CDF pair on the benchmark set and the set of

17This distance D is the supremum norm supx∈R |F1(x)− F2(x)|.

92



3.7 The Final Collection and Benchmark Sets

0.00

0.25

0.50

0.75

1.00

10 1000

median Time (sec.)

F
ra

c.
 o

f I
ns

ta
nc

es

Set

Benchmark−suitable (499)

MIPLIB 2017 Benchmark Set (240)

MIPLIB 2017 Collection (1065)

Figure 3.6: Virtual median solver performance on subsets of the MIPLIB 2017 collection.

benchmark-suitable instances. As alternative serves the hypothesis that the CDF of the
benchmark set lies below the CDF of the larger set.

For the performance of the virtual median solver as depicted in Figure 3.6, the
distance D is approximately 0.10, which results in a p-value of 0.04. A much smaller
p-value of 6.513 · 10−5 is obtained for the virtual best solver at a distance of D = 0.17.
For four of the actual solvers, the maximum D is larger than 0.1, and the accompanying
p-value is smaller than 1 %. This is significant evidence that for those solvers, the
benchmark set has been selected as a particularly hard selection among all suitable
instances. For the other four solvers, the value of D is smaller, which in turn results
in larger p-values (each greater than 0.1). Note that even here, the curves of the CDF
on the benchmark set tends to undercut the CDF of the set of suitable instances, but
this discrepancy is not large enough to render the KS test significant. Hence, for those
four solvers, the performance curve is more or less representative of the CDF over all
suitable instances. The results show that the selection methodology has achieved both its
conflicting goals, hardness and representability, with respect to the solver performance,
equally well.

3.7.3 The MIPLIB 2017 Web Page

For the release of MIPLIB 2017, the web page miplib.zib.de has been written from
scratch and received a modern design. The main page shows the current status of
instances regarding the categories easy, hard, and open. The two main tables list the
instances of the MIPLIB 2017 collection and benchmark set together with some key
properties, their model group, and their optimal or best known objective value. All
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tables use tags on the instances to highlight certain properties that may be interesting
for researchers, such as pure feasibility instances with no objective function, instances
for which good decompositions are known, instances with critical numerics, the presence
of indicator constraints, etc. It is possible to search and filter for instances by name,
status, model group, or tag, or to sort the table by column.

The individual instance pages offer a short description of this instance and
bibliographical information. Also, more information on the constraint mix for this
instance before and after presolving is displayed, as well as decomposition information,
if available. Finally, the optimal or best known solutions for every instance are displayed,
as well as the five most similar instances as explained in Section 3.7.1. The web page
also offers additional downloadable content, including

• the MIPLIB 2017 collection and benchmark sets,

• lists of instances with certain tags,

• available solutions,

• optimal/best known objective values for all instances,

• the collection and benchmark MIPs,

• the feature extractor, and

• bash scripts to run and validate solver performance experiments.

Some tags may change over time, such as the instances that fall into the categories
easy, medium, and hard. Also, best known objective values are naturally changing or
eventually proven to be optimal. Therefore, we provide versioned files for accurate
referencing. The versioned files are periodically updated. All downloadable solutions are
checked for feasibility with the solution checker from Section 3.5.6. Also, their exact
solution values after fixing all integer variables are computed using SoPlex with iterative
refinement. The actual collection and benchmark MIPs are also available for download.
Obviously, these instances cannot be part of the actual collection and benchmark sets,
respectively, since their presence would alter the feature space and hence their own
formulation. Contributions in terms of updated bibliographic information or corrections
to the instance descriptions are very welcome. In particular, we are constantly accepting
and checking improving solutions to the open instances of the MIPLIB 2017 collection.
In contrast to previous MIPLIBs, not only new optimal, but any improving solution will
be considered for the periodic update of the page data. Improving solutions should be
sent to the maintainers of the page, together with a description of how they have been
obtained. Note that every submitted solution must adhere to the format accepted by
the MIPLIB solution checker (Section 3.5.6), which is also available on the web page.
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3.8 Summary

The sixth version of MIPLIB has substantially increased in size compared to its
predecessors. The distinction between a dedicated benchmark set and the entire collection,
which was introduced with MIPLIB 2010, has been preserved. These sets now contain
240 and 1,065 instances, respectively. The process of how to reduce the initial submission
pool of over 5000 instances to a balanced selection of this size, however, has been
completely redesigned. Beyond the new MIPLIB 2017 itself, the development of this
fully data-driven and optimization-based methodology is the main contribution of this
chapter.

We propose two related MIP models that have successfully provided decision support
for the selection process to the MIPLIB committee. One key ingredient of this approach
is the definition of a feature space covering more than a hundred different dimensions
for characterizing a MIP instance. In order to ensure a balanced selection with respect
to these features and, for the benchmark set, with respect to performance data, we
advocate the use of multiple instance clusterings over partitions of the feature vector.
A comparison with manually assigned model groups available from meta data of the
submissions shows the high descriptive power of the used feature space. By approaching
the selection problem as a MIP that encodes a balanced, simultaneous selection from each
such clustering, the collection and benchmark MIPs provide the flexibility to incorporate
both feature coverage and performance requirements as well as other restrictions from
the committee. Besides improving the final outcome, this formalization of the selection
criteria has served to increase the transparency of the selection process.

While the selection methodology proposed here is not intended as a general blueprint
for construction of test sets, we hope that parts of the process of constructing the MIPLIB
instance sets may apply to the curation of other test sets in the future. Certainly, many
variations and adjustments of the approach are possible. Not only the chosen constants
or heuristic clustering methods can be adapted, but also the role of objective function
and constraints may be redefined. Furthermore, the interplay between the main selection
models and the diversity preselection offers potential for variation. For example, a
different approach may directly select and fix a number of instances with maximum
diversity from each large model group for the collection and afterwards complete the
collection with instances from smaller groups and instances with no known model group
association. In light of these degrees of freedom and many ad hoc decisions that had to
be made in advance, the final result is clearly only one of many possible and justified
outcomes. However, we believe that the collection and benchmark sets presented in this
chapter are a profound attempt to provide the research community with test sets that
represent the versatility of MIP.

One of the main characteristics of the benchmark set is that it provides a snapshot
of current solver performance. Our hope is that the performance of solvers on this

95



3. MIPLIB 2017

benchmark set will serve as a sort of bellwether for progress in the field of mixed-integer
optimization as a whole in the coming years. As future work, we propose to assess the
performance representability of the benchmark set from hindsight, i.e., by comparing
speed-ups for entire model groups as well as for the selected instances. Such data will
finally allow better comparisons of different (pre-)selection models such as, e.g., the one
presented here that favors diversity to a different one that selects nearest neighbors and
maximizes representability.

Another benefit of our MIP-based selection process is the fact that the MIP
models can be used to approach questions beyond the initial creation of the test
set. One example is the following case, in which it occurred that benchmark instances
needed to be replaced as new computational data became available. Despite all the
care that was taken to exclude numerically critical instances from the benchmark
set, problematic numerical properties of the two instances neos-5075914-elvire and
neos-3754224-navua remained undetected during the selection process.18 A variant of
the benchmark selection MIP was used to compute a minimal update of the benchmark
set that exchanges the discussed instances while preserving the balance requirements.
An accordingly updated version of the benchmark set was published in June 2019.

Finally, by the time of this writing, the challenges of MIPLIB 2017 collection have
already attracted a wide audience. In fact, we have received many new solutions to
previously open instances. While some of those optimality or infeasibility proofs have
been obtained by the use of massively parallel codes such as the Ubiquity Generator
framework [Shinano, 2018; Shinano et al., 2016], other instances inspired the development
of customized cutting plane approaches, or even a rigid mathematical proof of infeasibility
without any code in the case of the instance fhnw-sq3. In total, 70 originally open
instances have already been solved.19 We are looking forward to further contributions
and many more years (and versions) of MIPLIB to come.

18Both instances are at the border between feasibility and infeasibility, but at the time of collecting
solution data no inconsistencies could be observed. For the first instance, two solvers agree on the
optimal solution value although the instance should mathematically be infeasible. The second instance
has only been declared infeasible by one solver during the selection process; we received a solution that
is feasible within tolerances half a year after the original publication of the benchmark set.

19Compare the downloadable files open-v1.test and open-v14.test
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4
Enhancing MIP Branching

Decisions Using the Variance of
Pseudo-costs

The selection of a good branching variable is crucial for small search trees in mixed-integer
programming. Most modern solvers employ a strategy guided by history information,
mainly the pseudo-costs of integer variables, which are used to estimate the objective gain.
At the beginning of the search. Such information is usually collected via an expensive
look-ahead strategy called strong branching until variables are considered reliable.

The current state-of-the-art branching rule for balancing between strong branching
and estimation, reliability branching [Achterberg et al., 2004] uses a fixed number of
branching decisions after which the variable information is considered reliable. This
approach has the disadvantage that it uses the same fixed reliability threshold for all
variables. In practice, however, it appears natural that variables that are structurally
different inside a MIP model also have different reliability requirements. Another
disadvantage of a fixed parameter is that it might not scale well with increasing problem
size.

The aim of the present chapter is to introduce different notions of reliability by
exploiting more statistical information during the branching process. Using the sample
variance of past observations, we formulate two criteria for switching between strong
branching and estimation that take into account each variable history individually. We
perform computational experiments on standard MIP test sets to evaluate the impact
of our approach.

The work for this chapter was developed independently of the work by Kadioglu,
O’Mahony, Refalo, and Sellmann [2011], who study the use of variance of past
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branching observations to derive risk-aware and risk-averse strategies for impact-based
search [Refalo, 2004] in the area of constraint programming (CP). The approach presented
here uses variations of past branching information for the decision if strong branching
should be continued on a variable or not. It extends the idea of reliability branching
by taking into account each variable individually. In the present chapter, we further
concentrate only on pseudo-costs and do not consider other branching history information
such as inference or conflict scores, see Section 2.5.4. We do not collect any information
prior to the actual search as in [Fischetti and Monaci, 2011; Kılınç Karzan et al., 2009].

This chapter is an extended version of the proceedings paper Enhancing MIP
Branching Decisions by Using the Sample Variance of Pseudo Costs [Hendel, 2015] in
the notation of this thesis. It extends the original paper by additional illustrations and
more details about the Wellford formula for computing variance.

The chapter is organized as follows: First, Section 4.1 introduces the necessary
notation and presents the reliability branching rule by Achterberg et al. [2004] in more
detail. Afterwards, we introduce new notions of reliability in Section 4.2, and present
computational results with SCIP in Section 4.3. We finish with concluding remarks
in Section 4.4. Appendix B contains the detailed outcomes for each instance of our
computational experiments.

4.1 Reliability Branching and Fixed-Number
Thresholds

Throughout this chapter, we will give definitions and explanations only for the down-
branch. The according formula and argumentation for the other direction can be derived
analogously. We give a definition of reliability branching that is more general than the
original definition by Achterberg et al. [Achterberg et al., 2004] in that it only assumes
a subdivision of the fractional variables into reliable and unreliable candidates as input.
This generalization allows for plugging in our novel notions of reliability later.

Definition 4.1 (Reliability branching). Let P be a MIP with non-empty set of
fractional variables F . Given a subdivision F = F rel ∪̇ Furl of the fractional variables
into reliable and unreliable branching candidates, we define the reliability branching
score function of j ∈ F as

ϑrel (j) :=

ϑstr (j) , if j ∈ Furl,

ϑps (j) , if j ∈ F rel.
(4.1)

Reliability branching performs strong branching on the set of unreliable candidates
Furl to determine their exact gains (2.12), but uses pseudo-cost estimates for all other
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branching candidates. It is characterized by its notion of (un-)reliability, i.e. a rule how
to split the branching candidates into a reliable and an unreliable set.

We refer to this classical notion of reliability by Achterberg et al. [2004], as fixed-
number threshold reliability:

Definition 4.2 (Fixed-number threshold reliability). Given a reliability parame-
ter η > 0, fixed-number threshold (fnt)-reliability splits the fractionals according to

Furl
fnt (η) := {j ∈ F : min{η−

j , η+
j } < η}.

We call a variable j ∈ F \ Furl
fnt (η) (fnt)-reliable.

Using the term “fixed-number”, we emphasize that (fnt)-reliability of a variable solely
depends on the number of previous branching observations. Achterberg et al. [2004]
suggested to use 8 as threshold. By the time of this writing, SCIP uses 5, based on
experimentations to yield a good average performance on a variety of MIP instances.

As briefly explained by Achterberg [2007a], in practice in SCIP, the threshold number
is dynamically adjusted at every node depending on the proportion of simplex iterations
spent on solving strong branching and the total number of iterations spent on solving
regular LP relaxations. If strong branching requires too many resources, the reliability
parameter is decreased. Assume we are in iteration k of the B&B Algorithm 2. We
denote by κbb

k the number of simplex iterations spent on solving node LP relaxations
(line 6 of Algorithm 2), and by κsb

k the number of simplex iterations spent on computing
strong branching scores (2.13) until (and including) iteration k. The reliability threshold
is computed before branching is executed and therefore based on κsb

k−1. By default, the
maximum number of allowed strong branching simplex iterations is set to

κsb-max
k := 1

2κbb
k + 100000. (4.2)

All three simplex iteration counts are used for determining the value of

αk := max
{︄

min
{︄

1,
κsb-max

k − κsb
k−1

κsb
k−1 + 1

}︄
,

1
2κbb

k − κsb
k−1

κsb
k−1 + 1

}︄
, (4.3)

which intuitively represents the relative distance between the consumed and the available
strong branching iterations. After staring at the computation of αk for a moment, we
realize that αk < 0 if and only if κsb

k−1 > κsb-max
k , i.e., if strong branching has consumed

all of its current iteration budget. It is possible that αk > 1 if strong branching spent only
little of its available budget so far, concretely less than 25 % of the node LP iterations
κbb

k . Let ηmin ≤ ηmax denote a lower and upper reliability threshold. By default, ηmin = 1
and ηmax = 5 in SCIP version 3.2, which we used in this chapter, and also in the most
recent release.
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Then, the reliability ηk at iteration k is computed before the branching decision must
be made as

ηk :=

0, if κsb
k−1 > κsb-max

k ⇔ αk < 0

ηmin + αk (ηmax − ηmin) , otherwise.
(4.4)

such that (fnt)-reliability constructs the set Furl
fnt (ηk) in iteration k of the B&B algorithm.

Despite this dynamic adjustment of ηk to keep the strong branching effort reasonable, a
single threshold is used for all variables.

In the next sections, we introduce novel notions of reliability that take into account
the individual variance of the past branching observations.

4.2 Relative-Error and Hypothesis Reliability

The drawback of (fnt)-reliability is that a fixed threshold is used to measure the reliability
of all variables of the problem equally well. Intuitively, it seems desirable to have a more
individual look at the available pseudo-cost information of every variable and to continue
strong branching on those candidates whose pseudo-costs fail to converge. In the following,
we extend the statistical model for pseudo-costs by including the sample variance, which
allows for the construction of confidence intervals and testing of hypotheses. For textbooks
that cover the statistical topics in more detail, see, e.g. [Roussas, 2014].

Definition 4.3. Let X1, . . . , Xn be independent, identically distributed samples. The
corrected sample variance about the sample mean X̄ is given by

s2
n = 1

n− 1

n∑︂
i=1

(︂
Xi − X̄

)︂2
. (4.5)

The square root of the corrected sample variance, s :=
√︂

s2
n, is called standard deviation.

The well-known formula (4.5) of the corrected sample variance is not very convenient for
incremental updates when new samples are observed, which is necessary for computing
the sample variance of pseudo-costs during the B&B search.

Lemma 4.4. The corrected sample variance can be equivalently written as

s2
n = 1

n− 1

n∑︂
i=1

X2
i −

1
n(n− 1)

(︄
n∑︂

i=1
Xi

)︄2

. (4.6)

Moreover, let X̄k := 1
k
(X1 + · · · + Xk) the partial mean up to k = 1, . . . , n (X̄0 = 0),

and let

M0 := 0 and Mn := Mn−1 +
(︂
Xn − X̄n−1

)︂ (︂
Xn − X̄n

)︂
.
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Then, for all n ∈ N
(n− 1)s2

n = Mn. (4.7)

Proof. We infer Equation (4.6) from Definition 4.3 of the corrected sample variance:

(n− 1) · s2
n =

n∑︂
i=1

(︂
Xi − X̄

)︂2

=
n∑︂

i=1

(︂
X2

i − 2XiX̄ + X̄
2)︂

=
n∑︂

i=1
X2

i − 2X̄
n∑︂

i=1
Xi + nX̄

2

=
n∑︂

i=1
X2

i − nX̄
2

=
n∑︂

i=1
X2

i −
1
n

(︄
n∑︂

i=1
Xi

)︄2

.

The second formula (4.7) can be shown using Equation (4.6) via induction on n.

The corrected sample variance is an unbiased estimate of the variance of the underlying
distribution of the Xi. Note that in principle, the right term of Equation (4.6) allows for
constant-time updates of s2

n every time a new sample is observed. However, subtraction
of two large terms like in Equation 4.6 performed in floating point arithmetic may suffer
from cancellation. We therefore prefer the second formula from Lemma 4.4, which allows
for incremental updates of the variance without the cancellation. Such incremental
updates according to Formula (4.7) are also known as Wellford’s algorithm.

With increasing n, we can expect X̄ to approach the mean of the distribution from
the law of large numbers. Under the assumption that the samples X1, . . . , Xn are drawn
from a normal distribution with unknown mean µ and variance σ2, the random variable

T := X̄ − µ

s/
√

n

computed from the empirical mean and standard deviation of X1, . . . , Xn is distributed
along a Student’s t-distribution with n − 1 degrees of freedom. This relation can be
used to construct a confidence interval I, which contains the true value of µ with a
probability of 1− α for any error rate 0 < α < 1:

I =
[︄
X̄ − tα,n−1

s√
n

, X̄ + tα,n−1
s√
n

]︄
,

denoting by tα,n−1 > 0 the α-percentile of the distribution of T . The distance of the
endpoints of I relative to its center X̄ ̸= 0,

ϵrel = tα,n−1 ·
s

√
n|X̄|

, (4.8)
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4. Enhancing MIP Branching Decisions Using the Variance of Pseudo-costs

is called the relative error of the estimation.

4.2.1 Relative-Error Reliability

Applied to pseudo-costs, we determine the relative error for the pseudo-costs associated
with each variable. Therefore, we treat an observed unit gain ς−(P ) at a node P

resulting from a down-branch on a variable j ∈ I as independent sample from a
normally distributed random variable with unknown mean µ−

j and variance (σ−
j )2. It

should be noted here that a normal distribution model for unit gains is of limited
accuracy because unit gains are always nonnegative. The collected average unit gains
Ψ−

j (cf. Equation (2.15)) represent an estimate for µ−
j . By using the corrected sample

variance, we obtain an estimate for the variance, as well.
Whenever a new unit gain for variable j ∈ F in the down-branching direction at

a node P was observed, we increase the counter η−
j by 1 and update the average unit

gain Ψ−
j . In addition, we keep track of the sum of squared unit gains. This enables us to

calculate the sample variance
(︂
s−

j

)︂2
whenever η−

j ≥ 2. Whenever a branching decision
must be made, we calculate the relative error ϵ−

j associated with the current average
unit gain Ψ−

j as

ϵ−
j :=


tα,η−

j −1 ·
s−

j√︂
η−

j Ψ−
j

, if Ψ−
j > 0

0, else.

(4.9)

Recall that an average unit gain Ψ−
j is necessarily nonnegative. Hence, we can omit the

absolute in the denominator of (4.8). Furthermore, if Ψ−
j is equal to zero, this also holds

for the sample variance
(︂
s−

j

)︂2
. We therefore set the relative error to zero in this case.

Definition 4.5 (Relative-error reliability). For ηrer > 0, relative-error (rer)-
reliability splits the fractionals according to

Furl
rer (ηrer) := {j ∈ F : max{ϵ+

j , ϵ−
j } ≥ ηrer}. (4.10)

We call a variable j ∈ F \ Furl
rer (ηrer) (rer)-reliable.

The rationale of (rer)-reliability is to continue strong branching on the subset of variables
with highly varying objective gains, whereas variables with constant gains are early
considered (rer)-reliable. In order to obtain relative errors for the branching directions,
we need at least two observations in each direction. Note that a variable, which has
already been (rer)-reliable, can become (rer)-unreliable again when the relative error
rises again above the threshold after new information becomes available. It should be
noted that in general there is no containment relation between the variable subsets
considered by reliability branching with fixed number thresholds and our approach, i.e.
neither is a strict subset of the other.
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4.2 Relative-Error and Hypothesis Reliability

Figure 4.1: We illustrate the
notions of pseudo-costs and their
variance on an actual variable.
Each point corresponds to one
(strong) branching observation,
separated into up and down
branches. For a better visual expe-
rience, the left plot uses negative
down fractionality as horizontal
coordinate. The plot shows a clear
relationship between fractional-
ity and gain. The red lines have
slopes −Ψ− and Ψ+. A point on a
line therefore corresponds to the
current pseudo-cost estimation at
a given down or up fractionality.
Additionally, we highlight the re-
gion around the pseudo-costs that
fall within one standard deviation
s−, s+. The border of this region
is calculated as f+ (︁·Ψ+ ± s+)︁ for
branching up, and analogously for
branching down.

4.2.2 Hypothesis Reliability

The disadvantage of (rer)-reliability is that it is likely to spend much strong branching
effort on variables with overall low objective gains, but high relative error. In order
to overcome this, it is possible to restrict the variables that are selected for strong
branching evaluation to only candidates with a probability to be actually better than
the best candidate jps according to pseudo-cost branching. Roughly speaking, we want
to ensure that there is little probability that f−

j µ−
j ≥ f−

jpsµ−
jps for jps ̸= j ∈ F .

Therefore, we test against the hypothesis that a fractional j ∈ F has an objective
gain at least as high as jps, i.e., f−

j µ−
j ≥ f−

jpsµ−
jps . For two variables i, j ∈ F with

fractionalities f−
i and f−

j , we use the pooled variance

S−
i,j :=

(η−
i − 1)(f−

i )2
(︂
s−

i

)︂2
+ (η−

j − 1)(f−
j )2

(︂
s−

j

)︂2

η−
i + η−

j − 2

to calculate a 2-sample t-value for i and j,

T −
i,j :=

⌜⃓⃓⎷ η−
i η−

j

η−
i + η−

j

f−
i Ψ−

i − f−
j Ψ−

j√︂
S−

i,j

.

Under the hypothesis, T −
jps,j follows a Student-t distribution with η−

jps + η−
j − 2 degrees

of freedom. If, for a given threshold 0 < α < 1, T −
jps,j exceeds t−

α,jps,j := tα,η−
jps +η−

i −2, we
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can reject the hypothesis with an error probability of at most α/2. The division by two
is justified because the hypothesis is one-sided. Conversely, if the hypothesis cannot be
safely rejected, it is safer to perform strong branching on the two candidates.

The second novel notion of reliability in the present chapter rules out fractional
variables with little probability to be better than the best pseudo-score candidate:

Definition 4.6 (Hypothesis reliability). Let jps ∈ F be the best pseudo-cost frac-
tional candidate for branching, and let 0 < α < 1 be a rejection probability. The unreliable
fractional set for hypothesis reliability is

Furl
hyp(α) :=

{︂
j ∈ F : T −

jps,j < t−
α,jps,j and T +

jps,j < t+
α,jps,j

}︂
. (4.11)

Variables j ∈ F \ Furl
hyp(α) are called (hyp)-reliable.

For practical reasons, we also include variables j with min{η−
j , η+

j } ≤ 1. It should be
noted that the best pseudo-cost candidate jps is never (hyp)-reliable because T −

jps,jps =
T +

jps,jps = 0. If no other candidate than jps is (hyp)-unreliable, this means that no other
fractional variable has an estimated objective gain nearly as good as jps. In this case, we
immediately branch on jps without strong branching. In the experiments in the following
section, we tested an error probability of α = 0.05, i.e. the error probability for ruling
out a better candidate based on the current branching history is α/2 = 2.5 %.

Note also that the variant of a t-test that we use for (hyp)-reliability is, in theory, only
applicable when the two variables can be assumed to have equal variances. An alternative
of the t-test that is more robust towards unequal variances is Welch’s t-test [Welch,
1947]. There are also some statistical tests available for the hypothesis of equal variances,
such as the F -test of equality of variances [see, e.g., Box, 1953].

4.3 Computational Results

We implemented the new reliability notions from Section 4.2 into the existing reliability
branching rule of a development version of SCIP version 3.1.0.2, which we compiled
with a gcc compiler version 4.8.2. As underlying LP-solver, we used SoPlex version 2.0.
We used SCIP with default settings except for the following changes: For using a pure
objective-based branching score function as in Section 4.1, tie-breakers such as, e.g.,
inference scores were deactivated by setting their corresponding weight to 0. Furthermore,
we set the known optimal solution values – in case they exist – minus a small threshold
10−9 as objective cutoffs, so that only a proof for the optimality/infeasibility of a problem
needed to be found. We also disabled all primal heuristics and activated depth-first
search node selection as an attempt to minimize performance variability [Danna, 2008;
Koch et al., 2011] that might be caused by other solving components than the tested
branching rules. Finally, the child node selection was changed to use solely pseudo-costs,
where SCIP with default settings uses a hybrid approach together with inference scores.
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4.3 Computational Results

The test bed for our comparison of the different approaches consists of a subset of
instances from the three publicly available libraries MIPLIB 3.0 [Bixby et al., 1998],
MIPLIB 2003 [Achterberg et al., 2006], and MIPLIB 2010 [Koch et al., 2011], from
which we omitted four instances for which an optimal objective value is not known by
the time of this writing. Since we are mainly interested in reducing the search tree size,
we further dropped all 29 instances that could be solved before or during the processing
of the root node. Our final test bed thus contains 135 MIP instances.

The computations were performed on a cluster of 32 computers, each of which runs
with a 64bit Intel Xeon X5672 CPUs at 3.20 GHz with 12 MB cache and 48 GB main
memory. The operating system was Ubuntu 14.4. Hyperthreading and Turboboost were
disabled. We ran only one job per computer in order to minimize the random noise in
the measured running time that might be caused by cache-misses if multiple processes
share common resources. Finally, all experiments were run with a time limit of 2h and a
40 GB memory limit.

The newly proposed notions of reliability from Section 4.2 are represented by four
different settings: (hyp) renders candidates (hyp)-unreliable according to the rule (4.6),
whereas (rer)-0.01, (rer)-0.05, and (rer)-0.1 use (rer)-reliability regarding relative
errors in pseudo-cost confidence intervals at three different threshold levels 1 %, 5 %, and
10 %. Note that these levels represent different levels of the relative error threshold ηrer,
whereas the confidence level 1−α is kept fixed at 95 % for both (hyp) and (rer)-reliability.
We compare them to (fnt)-reliability at a fixed threshold of 5, denoted by (fnt)-5,
which constitutes the default of SCIP at the time of this writing. In contrast to the
default settings of SCIP, we disabled the dynamic adjustment of this threshold during
the search based on the simplex iterations consumed by strong branching, which is
achieved by setting ηmin = ηmax = 5 for the computation (4.4) of ηk. Note that this
setting does not affect the temporary disablement of strong branching whenever the
strong branching iterations exceed the maximum allowed simplex iteration budget, which
may also disable the novel notions of (rer)- and (hyp)-reliability.

In this section, we only present compressed results of our experiments. For an
instance-wise outcome, please refer to Tables B.1 and B.2 in the Appendix. The first
three tables show the aggregated results regarding the solving time and the number of
explored search tree nodes for all instances and for only those which could be solved
within the time limit by all settings. We consider node results incomparable between
settings where the solution status differs and thus only show time results for all instances.
We report shifted geometric means with a shift of 10 seconds and 100 nodes, respectively.
The columns time% and nodes% show the percentage deviation from the result for the
reference setting (fnt)-5; values below 100 represent an improvement in this respect.

In Table 4.1, we compare the results over all instances from the test bed. 98 instances
could be solved by all settings within the time limit of 2h, for which the reference run
was fastest regarding the solving time, but also required the most branch-and-bound
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98 instances solved by all 135 total
settings time time% nodes nodes% time time%

(fnt)-5 81.9 100.0 3402.3 100.0 290.3 100.0
(rer)-0.01 87.0 106.2 2722.3 80.0 303.1 104.4
(rer)-0.05 84.7 103.4 2716.5 79.8 298.1 102.7
(rer)-0.1 85.6 104.5 2902.9 85.3 300.3 103.4
(hyp) 82.7 101.0 2774.0 81.5 289.4 99.7

Table 4.1: Computational results for all 135 instances.

nodes on average. For our novel notion of (rer)-reliability, an evaluation of the different
thresholds comes with a surprise: there is no significant difference between the levels
1 % and 5 % error tolerance. The highest node reduction of 20.2 % was obtained with
the setting (rer)-0.05, closely followed by (rer)-0.01, which could not reduce the
overall solving nodes further in the shifted geometric mean. Regarding the running time,
(rer)-0.05 was the fastest to finish the tests among the three (rer)-settings, yet we
observe a slight slow down of 3.4 % for the group of instances solved by all settings, and
2.7 % over all 135 instances compared to the reference run. By using (hyp)-reliability,
we obtained a node reduction of 18.5 % and an almost performance neutral result for
the running time.

The discrepancy between a reduction of the tree size at the cost of more solving time
per node is the result of a more aggressive use of strong branching by the novel notions
of reliability. The notion of (hyp)-reliability hereby appears to be more effective than
relative-error reliability for guiding strong branching effort because it focuses on resolving
cases among the top pseudo-cost score branching candidates where the estimation alone
may lead to inferior branching decisions.

Table 4.2 contains only instances for which at least one of the settings needed
more than 1000 nodes before termination. With (hyp)-reliability, we could improve the
performance of SCIP w.r.t. the reference run by 28.8 % nodes and also obtain a slight
time reduction in total, whereas the time on instances in the group containing only
solved instances is competitive with the reference run (fnt)-5. Among the (rer)-settings,
(rer)-0.05 is fastest regarding the solving time, but is still 4.1 % slower on average
than the reference setting. All three settings (rer)-0.05, (rer)-0.01, and (hyp) show
a similar decrease in the number of nodes, but at different computational efforts spent
per node.

For the sake of completeness, we also present the remaining instances, for which no
solver took more than 1000 branch-and-bound nodes before termination, in Table 4.3.
Out of the 47 instances in this group, there is only one, namely stp-3d, that could not
be solved by any of the settings. All novel notions of reliability reduce the search tree
size, although the effect is less striking than on the instances that required larger search
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52 instances solved by all 88 total
settings time time% nodes nodes% time time%

(fnt)-5 212.6 100.0 49741.5 100.0 897.9 100.0
(rer)-0.01 232.0 109.1 35322.9 71.0 947.4 105.5
(rer)-0.05 221.3 104.1 35104.9 70.6 924.0 102.9
(rer)-0.1 224.9 105.8 38227.1 76.9 932.5 103.9
(hyp) 212.9 100.1 35427.6 71.2 885.9 98.7

Table 4.2: Large Trees: Ubb > 1000 with at least one setting.

trees. Note that the node reduction obtained with (rer)-0.01 and (rer)-0.05 is now
considerably better than the reduction obtained with (hyp)-reliability.

For those 37 instances for which optimality could not be proven within the time
limit by at least one of our settings, we computed integrals of the dual gap as a function
of time. This measure, which was suggested in [Achterberg et al., 2012; Berthold, 2013],
attempts to compare the convergence of the dual gap towards zero. Table 4.4 shows
the shifted geometric mean dual integral for all settings using a shift of 1000. All novel
notions of reliability decrease the dual integral of the reference run, where the decrease
is best with (hyp) yielding a reduction of 14.6 %. A similar result is obtained with
(rer)-0.01, which outperforms other thresholds for (rer)-reliability in this respect.

4.4 Summary and Future Work

We introduced two novel notions of reliability: the (rer)-reliability based on pseudo-cost
confidence intervals, and (hyp)-reliability implementing a variant of Student’s t-test.
Our experimental results in SCIP show that these methods are promising for effectively
reducing the size of branch-and-bound-trees compared to the current state-of-the-art
fixed-number threshold, especially for large trees. Note that node reductions and the
resulting reductions of the required memory play an important role, e.g., in the context of
solver-parallelization [Koch et al., 2012] to reduce load-coordination overhead. Together

46 instances solved by all 47 total
settings time time% nodes nodes% time time%

(fnt)-5 23.8 100.0 74.1 100.0 27.8 100.0
(rer)-0.01 24.5 103.0 61.7 83.3 28.6 102.8
(rer)-0.05 24.5 103.0 62.1 83.8 28.6 102.8
(rer)-0.1 24.6 103.4 68.8 92.9 28.7 103.2
(hyp) 24.3 102.4 67.5 91.1 28.5 102.3

Table 4.3: Small trees: All solvers needed Ubb ≤ 1000 nodes.
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settings integral* integral*
%

(fnt)-5 73867.8 100.0
(rer)-0.01 66392.1 89.9
(rer)-0.05 73454.5 99.4
(rer)-0.1 72959.7 98.8
(hyp) 63101.8 85.4

Table 4.4: Shifted geom. mean dual integral for 37 time limit instances.

with the presented smaller dual integrals for instances which hit the time limit, we
consider the reliability notions useful for proving optimality faster on harder instances.

Our implementation only considers pseudo-cost information, but could be readily
applied to different history information such as, e.g., the inference history of a variable,
as well.

In the computational study presented, we collected very little history information
before using the statistical methods. Combining them with traditional fixed-number
threshold reliability might increase the power of the hypothesis and relative error
thresholds significantly.
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5
MIP Solving Phases

A typical situation for branch-and-bound is that an optimal solution is found long before
the proof of optimality is given and that a first feasible solution is found long before
the optimal solution. The idea of this chapter is to partition the solution process into
three distinct solving phases, which we name after the specific goal which should be
achieved during this phase: First, the solver tries to find a feasible solution during the
feasibility phase. During the subsequent improvement phase, a sequence of solutions
with improving objective is generated until the incumbent solution is eventually optimal.
During the remaining proof phase, the search aims at proving optimality. Two questions
must be answered to obtain an adaptive solver that dynamically tunes its behavior
w.r.t. different solving phases: How should the solver detect the transition between the
improvement and the proof phase, and how should it react on the phase transitions?

We mainly focus on the first question and present heuristic criteria for deciding
whether a given incumbent solution is already optimal. Such criteria cannot be expected
to be exact because the decision problem of proving whether a given solution is optimal
is still NP-complete in general (it is equivalent to deciding feasibility for a MIP amended
by an objective cutoff constraint). Concerning the second question, we build upon the
results by Hendel [2014] for choosing adequate parameter tunings for each phase. Our
computational results evaluate the impact of altering the solver settings at the predicted
phase transition points.

It has been suggested to use different node selection and branching rules as long as
no feasible solution has been found during a MIP solve, see [Linderoth and Savelsbergh,
1999]. In the notation that we introduce in Section 5.2, this could be seen as a 2-phase
approach, switching branching parameters at the first phase transition.

Clearly, every estimate for the final search branch-and-bound tree size (cf. Chapter 8
and the references therein) can be used to extrapolate the remaining solving time until
termination, and vice versa. Hence, previous prediction methods for the end of the
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solution process estimate the end of the third phase in the terminology of Section 5.2.
Estimated solution times or search tree sizes can be used for ranking different algorithms
for the same problem, e.g., by running several algorithms in parallel for a limited amount
of time (a so-called racing ramp-up [Shinano et al., 2012]) and afterwards continuing the
search with the algorithm that yielded the smallest tree size estimate. All methods are
based on partial information of a search tree of the problem and designed to be early
available.

The transition heuristics that we propose in Section 5.3 are different in that they
attempt to recognize the point in time when the incumbent solution is optimal, which
can happen long before the end of the solution process. Another difference is that
transition heuristics are used to adapt the solver behavior directly during the search.

This chapter is an edited copy of the article From feasibility to improvement to proof:
three phases of solving mixed-integer programs [Berthold et al., 2018] in the notation
of this thesis. It is organized as follows: In Section 5.1, we present the influence of
MIP solving components discussed in Section 2.3.3 on the primal and dual progress
of the solution process separately. We formalize the solving phases described above
in Section 5.2 and discuss computational aspects of the different phases. The main
contribution of this chapter are heuristic criteria for deciding when the solver should stop
searching for better solutions and concentrate on proving optimality. We present two
such heuristic criteria that take into account global information of the search progress in
Section 5.3. Finally, we present two computational studies to evaluate the accuracy of the
heuristic criteria and their benefits when used inside an adaptive solver in Section 5.4.

5.1 The Impact of Solving Components on the
Solution Process

The integration and execution of MIP solver components (cf. Section 2.3.3) inside of
a complete solver such as SCIP influences the overall solver performance in various
ways. As we will confirm in this section, some components mainly affect the primal
bound, while others mainly contribute to the dual bound development. As a consequence,
special settings for individual solving phases should put different emphases on each of
the components.

In order to categorize the components’ influence on the primal and dual convergence
individually, Hendel [2014] conducted an experiment where the solving components of
SCIP were deactivated one at a time or were replaced by a simple default mechanism
(e.g., branching on random variables) on 168 MIP instances from MIPLIB 3.0 [Bixby
et al., 1998], MIPLIB 2003 [Achterberg et al., 2006], and MIPLIB 2010 [Koch et al., 2011].
The result of this experiment is visualized in Figure 5.1, which shows the percentage
degradation in the primal and dual bound development compared with default solver
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Figure 5.1: Percentage degradation compared to the SCIP performance with default
settings regarding the shifted geometric mean primal and dual integral.

settings. Here, primal and dual integrals [Berthold, 2013, see also Section 2.9] are used
to measure the component’s influence on the primal and dual convergence. The results
for each instance are aggregated using a shifted geometric mean (2.23). Each presented
degradation is the percentage of the relative increase in the respective shifted geometric
mean compared to the default settings of SCIP.

Not surprisingly, primal heuristics mainly affect the primal bound. Its average
degrades by a factor of almost two when primal heuristics are deactivated, while the dual
integral becomes only 6.5% worse on average. Branching and cutting plane separation
mainly contribute to the development of the dual bound. The impact of node selection
and presolving is mixed, both bounds deteriorate substantially if presolving is deactivated
or a simple depth-first search strategy is used for node selection. Notably, Figure 5.1
shows that all components have a positive impact on both the dual and the primal
integral.

5.2 MIP Solving Phases

The main idea addressed in this chapter is a partition of the branch-and-bound solving
process into a set of phases, which we formalize as follows

Definition 5.1. Let P be a feasible MIP with optimal objective value Zopt ∈ Q, and let
γprimal () and γdual () be the primal and dual gap functions, respectively. Denoting the
point in time when the first solution is found by t∗

1, we define the three solving phases
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P1, P2, and P3 as the following time intervals:

P1 := [0, t∗
1[ ,

P2 := {t ≥ t∗
1 : γprimal (Z(t)) > 0}, and

P3 := {t ≥ t∗
1 : γprimal (Z(t)) = 0, γdual (Z∗(t)) > 0}.

Clearly, the phases are disjoint. Furthermore, if T is the total time spent by a solver
for solving P to optimality, the phases are a tripartition of the interval [0, T ]. Each of
the phases emphasizes a different goal of the solving process, so that it seems natural to
pursue these goals with different parameter settings, which are tailored to achieve the
phase objective as fast as possible.

The objective during the feasibility phase P1 consists of finding a first feasible solution;
the quality of this solution only plays a minor role. Feasible solutions are either provided
by a node’s LP relaxation solution or by primal heuristics. The first feasible solution
plays an important role for the solving process: First, it indicates the feasibility of the
model to the user. Second, the bounding procedure of the branch-and-bound algorithm
and some node presolving routines depend on a primal bound. Furthermore, several
primal heuristics require a feasible solution as starting point to search for improvements.

After an initial feasible solution was found, the search for an optimal solution
is conducted during the improvement phase P2. During the improvement phase, a
sequence of IP-feasible solutions with decreasing objective value is produced until the
solver eventually finds an optimal solution. For users of MIP solving software, this is
often the most important phase. In many practical applications, MIP models are not
required to be solved to proven optimality, reaching a small optimality gap is considered
sufficient [Berthold, 2013]. The reasons for this are threefold: there might be strict
running time limitations, the models often are too large to complete the search and the
input data itself might only be based on estimates.

The remaining time, which is called proof phase P3, is spent on proving the optimality
of the incumbent solution. Such a proof requires the full exploration of the remaining
search tree until there are no more open nodes with dual bound lower than the optimal
primal objective value.

Figure 5.2 illustrates a typical primal and dual gap function for a MIP solving
process. We draw the negative of the dual gap function to make the convergence of the
primal and dual bound more intuitive. The feasibility phase is finished at t∗

1 with the
first feasible solution. After three more solutions, an optimal solution is found at t∗

2,
such that the remainder of the solution process is dedicated to the proof of optimality.

It is possible for both the improvement phase and the proof phase to be empty. If the
first feasible solution is also an optimal one, then P2 = ∅; similarly, if the best possible
dual bound is found before an incumbent with this optimal objective value is found,
then P3 = ∅. In the special case that the MIP is a pure feasibility problem (c = 0), both
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Figure 5.2: Solving phases of a MIP solution process with phase transitions t∗
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the improvement phase and proof phase are empty. For the test set that we use for our
computational experiments in Section 5.4, only one of 161 instances is a pure feasibility
problem. Further, 11 instances have an empty improvement phase and 34 instances have
an empty or almost empty proof phase, their union being 40 instances. Hence, it applies
for a majority of 75 % of our test cases that the solving process is indeed partitioned
into three nonempty phases by Definition 5.1.

We refer to the two points in time that mark the boundaries between the phases as
phase transitions. More precisely, we call t∗

1 the first phase transition, and we define the
second phase transition as

t∗
2 := supP1 ∪ P2.

The recognition of the second phase transition t∗
2 after the improvement phase requires

knowledge about the optimality of the current incumbent prior to the termination of
the solving process. If P3 ̸= ∅, the decision problem of proving that there exists no
solution better than x̃opt for our input MIP P remains to be solved. This problem is
co-NP-complete in general (because it is equivalent to proving infeasibility of a MIP).

In the next section, we address the problem of how to heuristically estimate the
second phase transition during the solving process.

5.3 Two Phase Transition Heuristics

If P3 ̸= ∅, the detection of t∗
2 requires knowledge of the optimal solution value. In this

section, we present two heuristic criteria to estimate the second phase transition point

113



5. MIP Solving Phases

t∗
2 without knowledge of the optimal solution value. These phase transition heuristics

will be used to switch to settings for the proof phase when the criteria indicate that
the current incumbent is optimal. The phase transition heuristics based on a property
called node estimation [Bénichou et al., 1971] of all nodes in the node frontier. The node
estimation constitutes an estimate of the objective value of the best attainable solution
of a node.

More formally, let P be a (subproblem associated to a) node of the search tree. With
a slight abuse of notation, we use P to denote both a MIP subproblem as well as the
node of the search tree representing this subproblem.

Recall Definition 2.16 of pseudo-costs to estimate the branching impact of a fractional
integer variable j ∈ F on the lower bound. Apart from their use in the selection of
the best candidate for branching, pseudo-costs can also be applied to estimate the best
solution attainable from a node P .

Definition 5.2 (Node estimation [Bénichou et al., 1971]). The node estimation
for a node P with optimal LP relaxation solution x̆ is defined as

ẐP := ctx̆ +
∑︂

j∈F(P )
min

{︂
Ψj(f+

j ), Ψj(−f−
j )
}︂

,

where ctx̆ is the node LP bound.

The rationale behind Definition 5.2 is to consider the smaller of the up and down
pseudo-costs of each fractional variable j ∈ F(P ) as necessary cost of making j integer.

In the following, we will be mainly interested in node estimations of open nodes,
for which no LP relaxation has been solved so far. In order to determine an estimate
of an open node Q, we simply subtract the contribution of the branching variable and
direction that led to the creation of Q. Let Q be the child of another node P after
branching upwards on j ∈ F(P ). An initial estimate of Q can be calculated via

ẐQ = ẐP −min
{︂
Ψj(f+

j ), Ψj(−f−
j )
}︂

+ Ψj(f+
j (P )),

thereby extending Definition 5.2 to open search nodes.
The node estimation does not account for a possible interplay between variables.

This observation makes ẐP likely to overestimate the actual integer objective value Zopt
P

of the best attainable solution from the subtree rooted at P . It is, on the other hand, also
possible to underestimate Zopt

P . Another important aspect concerns a possible degeneracy
of the LP relaxation: Whenever there exist different optima to the node LP relaxation,
they might lead to different estimates. Dependencies on a concrete LP solution is a
common source for performance variability in MIP solvers, see, e.g., [Berthold et al.,
2014].
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5.3.1 The Best-Estimate Transition

The minimum node estimation among the set of open nodes V open(t) at time t ≥ 0,

Ẑ
best(t) = min{ẐQ : Q ∈ V open(t)}

is called the best-estimate [Bénichou et al., 1971]. In SCIP, the best-estimate is used as
primary criterion for the default node selection and is one possible estimate of the optimal
objective value of a given MIP, for other possible estimates, we refer to [Wojtaszek and
Chinneck, 2010]. As our first phase transition heuristic, we propose to switch to the
proof phase when the best-estimate exceeds the incumbent objective:

testim
2 := min

{︃
t ≥ t∗

1 : Z(t) ≤ Ẑ
best(t)

}︃
, (5.1)

where Z(t) is the primal bound at time t. Note that by requiring t ≥ t∗
1, we make sure

that there is indeed an incumbent solution.

5.3.2 The Rank-1 Transition

With an increasing number of explored branch-and-bound nodes, it intuitively becomes
less and less likely to encounter a solution better than the current incumbent. Yet, every
unprocessed node Q ∈ V open(t) has the potential to contain a better solution in the
subtree underneath.

Definition 5.3. Let S be the search tree after termination, and define dQ as the depth
and Zopt

Q as the (integer) optimal objective value for every node Q ∈ S (or ∞ if there is
no feasible solution for Q). We define the rank of Q as

rg(Q) :=
⃓⃓⃓
{Q′ ∈ S : dQ′ = dQ, Zopt

Q′ < Zopt
Q }

⃓⃓⃓
+ 1.

The rank rg(Q) represents the minimum position of node Q in any list that contains all
nodes at depth dQ in nondecreasing order of their optimal solution.1 The root node P0

trivially has a rank of 1, because it is the only node at depth 0. Indeed, if S were known
in advance, the rank is defined in such a way that an optimal solution can be found by
following a path of nodes of rank 1, starting at the root node. If the solving process has
not found an optimal solution yet, there exists a node of rank 1 among the open nodes
V open(t). Note, however, that there may even be nodes of rank 1 present in the node
frontier although the current incumbent is already optimal.

The second phase transition heuristic is based on Definition 5.3. As for the best-
estimate transition, we use the node estimation (cf. Definition 5.2) to circumvent the

1Such groups among open subproblems based on properties such as the depth are also called contours,
see [Morrison et al., 2016] and the references therein.
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absence of true knowledge about best solutions in the unexplored subtrees. We impose
a partial order relation ≺ on the nodes of the search tree S:

Q′ ≺ Q ⇔ Q′ was processed before Q with dQ′ = dQ, Q′ ̸= Q ∈ S.

With this partial order relation, we define the set of rank-1 nodes

Qrank-1(t) := {Q ∈ V open(t) : ẐQ ≤ inf{ẐQ′ : Q′ ∈ S, Q′ ≺ Q}} (5.2)

as the set of all open nodes with a node estimation at least as good as the best evaluated
node at the same depth. Note that Qrank-1(t) may become empty much earlier than
V open(t), i.e., prior to the termination of the search, as soon as sufficiently many nodes
with small node estimation have been processed, one at every depth of the current tree.

Using the following rank-1 transition, we assume that the current incumbent is
optimal when Qrank-1(t) becomes empty:

trank-1
2 := min{t ≥ t∗

1 : Qrank-1(t) = ∅}. (5.3)

If there is an open node Q at a depth dQ deeper than any of the processed nodes so far,
it holds that Q ∈ Qrank-1(t) since

ẐQ ≤ inf{ẐQ′ : Q′ ∈ S, Q′ ≺ Q} = inf ∅ =∞.

The main difference between the best-estimate and the rank-1 transitions is that
the rank-1 transition does not directly compare incumbent solution objectives and node
estimations. On the one hand, it is an intuitive restriction to only compare nodes of the
same depth because node estimations can be assumed to gain precision with increasing
depth. Furthermore, it has a computational benefit because our update procedure only
needs to compare newly inserted open nodes with other open nodes at the same depth.

For every depth d, we keep track of the minimum node estimate at this particular
depth so far, including feasible nodes, i.e. subproblems with feasible LP relaxation
solutions. Every time a node is branched on, its two children are inserted in an array
V open

d of open nodes at their depth d. V open
d is sorted in nondecreasing order of the node

estimations of the nodes. In order to keep the set Qrank-1 updated, we store for every
depth the best-estimate over all nodes already processed, which we update every time a
node Q ∈ Qrank-1 was selected to be explored next.
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5.4 Computational Results

In this section, we first evaluate the potential of the two proposed transitions used with
default settings. Second, we show how the use of the proposed transitions together with
phase-specific solver settings affects the solution process.

5.4.1 Accuracy of the Proposed Phase Transitions

In this section, we analyze the accuracy of the proposed phase transition heuristics
from Section 5.3. We based our implementation on SCIP 3.1.0 together with SoPlex
2.0 as LP-solver. All computations were performed on a cluster of 32 computers. Each
computer runs with a 64bit Intel Xeon X5672 CPUs at 3.20 GHz with 12 MB cache
and 48 GB main memory. The operating system was Ubuntu 14.4. A gcc compiler
was used in version 4.8.2. Hyperthreading and Turboboost were disabled. We ran only
one (single-threaded) job per computer in order to minimize the random noise in the
measured running time that might be caused by cache-misses if multiple processes share
common resources.

As test library, we use a combined library of MIPLIB 3 [Bixby et al., 1998], MIPLIB
2003 [Achterberg et al., 2006], and MIPLIB 2010 [Koch et al., 2011] after the removal of
three infeasible instances. In addition, we excluded the four instances for which, by the
time of this writing, the optimal objective value was unknown, so that it is not possible
to determine the actual phase transition t∗

2. On the remaining 161 instances we ran
SCIP with default settings and a time limit of 2h. We record the solving time in seconds
after which a transition criterion was reached for the first time. Before we start checking
the transition criteria, we require the search to explore at least 50 branch-and-bound
nodes for the node frontier to be meaningfully initialized.

It is noteworthy that the node estimations in SCIP are not updated dynamically
together with the pseudo-costs due to running-time considerations, i.e., all nodes keep
their initial estimation during the entire time they are in the node queue, although more
recent pseudo-cost information on the variables might be available.

The goal of this experiment is to compare the proposed transition points with the
actual second phase transition t∗

2. It may happen that t∗
2 > 2h, i.e., an optimal solution

is not found within the time limit, or a transition criterion is not met. Therefore, we
first consider instances for which the solver finished the improvement phase within the
time limit and at least one of the transition criteria was met.

We present Figure 5.3 to compare the true second phase transition t∗
2 and the phase

transition tcrit
2 that we recorded for the phase transition crit ∈ {rank-1, estim}. We

compare the relative difference between the two points in time by means of their quotient
(tcrit

2 + τ )/(t∗
2 + τ ) using a shift of τ = 10 seconds, where tcrit

2 is either trank-1
2 or testim

2 . As
for the shifted geometric mean (2.23), the use of the shift value τ compensates for very
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Figure 5.3: Relative deviation of the proposed transition criteria from the actual second
phase transition t∗

2 on instances where both values are smaller than 7200 seconds in our
test.

large or small quotients caused by numbers that are close to zero and hence also shifts
our attention to harder instances. Throughout this chapter, we use a shift of 10 seconds
or 100 branch-and-bound nodes. A shifted quotient larger than one for an instance means
that a phase transition heuristic correctly classifies an optimal incumbent solution. A
quotient smaller than one, however, is encountered for instances where the transition
criterion was met during the improvement phase. A bin width of 0.25 on the logarithm
of the shifted quotients is used for this histogram. The two bins around one therefore
denote the time span shortly before or after t∗

2. We do not show instances that could be
solved during the root node. Out of the remaining 147 instances, SCIP finds optimal
solutions for 117. Among those, the rank-1 and the best-estimate criterion are reached
for 91 and 93 instances, respectively. Note that both the rank-1 and the best-estimate
transitions are trivially met whenever there is no open node left in the tree, i.e., when
the search is completed.

We see in Figure 5.3 that the bars for both transitions are centered around
one, the rank-1 transition with 44 instances and the best-estimate transition with
41 instances. Both distributions slightly tend to take values smaller than 1, i.e., they
tend to underestimate the second phase transition. Except for very few outliers, both
distributions show a shifted quotient between 1

8 and 8. In 75 out of 91 cases, the rank-1
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best-estimate transition rank-1 transition
optimal not optimal ∑︁

reached 5 9 14
not reached 1 21 22∑︁ 6 30 36

optimal not optimal ∑︁
reached 4 15 19
not reached 2 15 17∑︁ 6 30 36

Table 5.1: Contingency tables that group the 36 time limit instances into four categories
according to whether the transition criterion was reached, and whether the incumbent at
termination was optimal.

transition approximates the actual phase transition by a factor of 5, the best-estimate
transition in 81 out of 93 cases.

Next, we compare the primal-dual gap and the primal gap at the time of transition.
Recall that the primal gap requires knowledge of the optimal objective value for each
instance. We consider all instances for which the transition point in time was reached
within the time limit. If a transition criterion is met during the proof phase, the primal
gap is zero by definition. The average primal-dual gap at the rank-1 transition point is
19.26, while the primal-dual gap at the best-estimate transition point averages to 16.39.
Furthermore, the average primal gap regarding the optimal objective value is 7.01 and
5.71 for the rank-1 and the best-estimate transitions, respectively. This is in line with
the previous observation that the best-estimate transition seems to occur later during
the search than the rank-1 transition on our test set. It is interesting to note that the
rank-1 transition occurs more often on instances where the primal gap is already small
but is not yet proven by the primal-dual gap. More precisely, the transition point in
time occurs on 46 out of 91 instances of our test bed when the primal gap is already
smaller than 1 %, but the primal-dual gap is still larger than 1 %. The best-estimate
transition achieves this on 38 out of 93 instances.

We now focus on instances where the solution process did not finish within our 2h
time limit. For the instance stp-3d, no incumbent solution is found within two hours, so
that neither transition criterion is met by definition. Among the remaining 36 instances
that hit the time limit with an incumbent, there are 6 for which the incumbent is already
optimal. We present in Table 5.1 two contingency tables grouped into two categories:
whether the transition criterion was reached within the time limit or not and whether
the incumbent solution at termination was already optimal. The entries on the diagonal
represent instances for which the transition gives a correct classification, whereas the
anti-diagonal gives the number of false positives and false negatives, respectively. Note
that we measure only if a criterion was met at some point during the search, not if it
was met precisely at termination. For the best-estimate transition, we see that for 5
out of 14 instances for which the transition criterion was reached, SCIP indeed finds an
optimal solution. However, when the transition criterion is not reached within the time
limit, this is in line with a suboptimal incumbent at termination in 21 out of 22 cases.
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Figure 5.4: The primal gap at termination for 36 instances that could not be solved
within the time limit.

Based on the best-estimate transition, we can classify 26 out of the 36 instances correctly.
The table for the rank-1 transition does not show a similar result. Here, instances with
suboptimal incumbent and with optimal incumbent are spread almost evenly across the
two groups for this criterion. Overall, the best-estimate transition appears to be more
conservative than the rank-1 transition. This matches our observations for the set of
instances that could be solved within the time limit.

As a second comparison, we quantify the incumbent quality at termination by the
primal gap. Figure 5.4 shows the primal gap at termination for both transition criteria.
We show two box plots per transition for the groups of instances for which the criterion
was not reached (left box) and for which it was reached (right box) within the time
limit. The number of instances in each group is shown at the top of the box plot. In
contrast to the primal gap statistics presented before, we focus on the primal gap at
termination, not on the primal gap at the time of the transition. For instances for which
the respective transition criterion was not reached, the median primal gap is 4.7 for the
best-estimate and 5.4 for the rank-1 transition. For both transition criteria, there is a
clear tendency of the right group towards zero, for which the median values are at 0.17
for best-estimate and at 0.92 for rank-1.
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5.4.2 Using Phase Transitions to Control Solver Behavior

In a separate experimental study [Hendel, 2014], promising settings for each of the three
solving phases were determined individually. In this section, we combine those phase
settings and the phase transition heuristics to a phase-based MIP solver.

For the feasibility phase, we use a two-level node-selection as follows: We apply
UCT [Sabharwal et al., 2012] for the first 31 nodes of the tree and afterwards a depth-first
search that restarts periodically from the node with the best estimation. UCT, which
has been presented for MIP in [Sabharwal et al., 2012], is a node selection heuristic
that balances between exploration and exploitation using a hybrid score between node
estimation and the number of times the node has already been visited during the search.
Every selection step follows a path of nodes with best current score, starting at the
root node. The counting of node visits leads to changes in the path selection during the
search. Furthermore, we altered the branching rule to branch exclusively on inference
information [Achterberg and Berthold, 2009]. This setting constituted the fastest setting
in a feasibility phase experiment that also found feasible solutions for all instances
within the time limit of 1 hour. During the improvement phase, we employ a setting
that uses the default settings of SCIP except for an altered node-selection rule (UCT)
inside Large Neighborhood Search heuristics.

After a transition criterion for the second phase transition is reached, we continue
the node selection of open nodes with a pure depth-first search, which is the fastest
method to traverse the remaining tree if the cutoff bound is optimal (which we assume
in this phase). We also disable all primal heuristics for the remainder of the search,
because no further solutions are necessary during the proof phase. Instead, we activate
the separation of local cutting planes for the remainder of the search, as can be achieved
with an aggressive emphasis on cutting planes in SCIP. With this setting, separation is
performed at lower bound defining nodes at every 10’th level of the tree. For a detailed
description of the methods involved and a comprehensive list of the used parameters,
we refer to [Hendel, 2014].

We compare four different versions of our phase-based solver: By default, we denote
the default settings of SCIP used throughout all three phases. The version estim uses
the phase transition heuristic best-estimate and rank-1 the rank-1 transition. Both
switch between the settings described above at the transition points t∗

1 and testim
2 or

trank-1
2 . The version oracle uses the exact phase transition point t∗

2, by receiving the
optimal solution value as input. oracle is used to estimate the potential improvement
of a phase-based solver and serves as a reference for the actual improvements of estim
and rank-1 that use heuristic predictions. For all runs, we set a time limit of two hours.
Detailed results for each tested instance can be found in Table A.1 in the appendix.

The first column of Table 5.2 shows the number of instances that were solved to
optimality. default could solve 124 instances within the time limit. All other versions
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123 instances solved by all 52 hard (max t > 200)
settings solved time timeQ p time timeQ p

default 124 90.7 1.000 – 799.0 1.000 –
estim 126 85.0 0.938 0.529 695.2 0.870 0.338
oracle 127 84.5 0.932* 0.004 665.9 0.833* < 0.001
rank-1 125 83.3 0.918* 0.002 685.0 0.857* 0.022

Table 5.2: Shifted geometric mean results for time for the 123 instances solved by all
versions and on the subset of 52 hard instances. Improvements by at least 5 % are printed
in bold. Significant improvements are indicated in bold and blue*.

solved between 1 and 3 instances more in total. The best version in this respect is
oracle, which solved 127 instances. In the following, we focus on the subset of 123
instances that were solved by all versions. We restrict ourselves to the subset of solved
instances to better compare results regarding both solving time and nodes.

For those 123 instances and a subset of 52 hard instances, the table shows the shifted
geometric mean (2.23) solving time, both absolute and relative compared to default.
An instance is considered hard if at least one solver needed more than 200 sec. We use
a shift of τ = 10 seconds. The table also shows p-values in column p obtained from a
modified two-sided Wilcoxon signed rank test that uses logarithmic shifted quotients and
filtering to quantify if a version differed significantly from the default, see Section 2.9
for more details on this test methodology. We use a significance level of 0.05 for our
experiments.

On the set of all instances, we observe improvements in the shifted geometric mean
solving time for every version compared to default. The oracle version is 6.8 % faster
than default in the shifted geometric mean. An even higher improvement is measured
for the rank-1 version, with which we achieve the highest speed-up over default of
8.2 %. These two improvements are accompanied by small p-values of 0.004 and 0.002,
whereas the improvement shown for estim is not significant according to the Wilcoxon
test.

On the hard instances, however, we observe significant improvements of up to
16.7 % with oracle, and still 14.3 % with rank-1, whereas estim improves the shifted
geometric mean time by 13.0 % but the corresponding p-value of 0.338 does not identify
this improvement as significant. The reason for this lies in the fact that the estim version
extremely improves the time on a few instances, namely acc-tight5 and lectsched-4-obj,
for which estim achieves speed-up factors of 20 and 3, respectively, as well as six more
instances with speed-ups of at least 2. However, disregarding these extreme speed-ups,
the estim version shows more slow-downs compared to oracle and rank-1, both of
which yield fewer extreme but more moderate speed-ups. The instance acc-tight5 is a
pure feasibility instance in the sense that the dual bound is already provided by the
initial LP relaxation and a feasible solution of this objective needs to be found. Thus,
the performance on this instance is greatly affected by our modifications to the settings
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123 instances solved by all 52 hard (max t > 200)
settings nodes nodesQ p nodes nodesQ p

default 2565.5 1.000 – 17179.8 1.000 –
estim 2454.6 0.957 0.209 15119.3 0.880 0.059
oracle 2377.3 0.927* < 0.001 13935.6 0.811* < 0.001
rank-1 2512.2 0.979 0.221 16577.4 0.965 0.347

Table 5.3: Shifted geometric mean results for the number of branch-and-bound nodes
nodes. Results are restricted to 123 instances for which all versions could finish the solve
within two hours, and the subset of 52 hard instances, respectively. Improvements by at
least 5 % are printed in bold. Significant improvements are indicated in bold and blue*.

of SCIP during the feasibility phase. The other phase transition based settings yield
the same speed-up for acc-tight5. Yet, an improvement of 14 % in the shifted geometric
mean with rank-1 is accompanied by a p-value of less than 3 %, which indicates that
the rank-1 criterion is the better criterion w.r.t. the solving time.

Table 5.3 shows the shifted geometric mean results for all versions regarding the
number of branch-and-bound nodes until optimality was proven. As in the previous table,
we restrict the instances for the node comparison to the subset that could be solved to
optimality by all settings within the time limit. The table further shows the results for
the 52 hard instances of this set of instances. For the calculation of the mean, a shift of
100 nodes is used. The setting oracle significantly improves the overall shifted geometric
mean of default by 7.3 % and by 18.9 % on the hard instances. For the criteria estim
and rank-1, the obtained node reductions amount to 4.3 % and 2.1 %, respectively.
In this case, however, the p-column does not indicate either of the improvements as
significant. The split into easy and hard instances attributes the observed reductions
mainly to the hard instances, for which estim shows an improvement of 12 % compared
to default. Table 5.3 indicates that the significant solving time reduction of the rank-1
transition does not stem from a systematic reduction of the overall search tree size.
Instead, the rank-1 transition mainly achieves a decreased solving time per node, which
should be mainly attributed to a better coordination of the different solver components
compared to the default settings.

Our experiments in the previous section revealed that estim transitions occur later
during the search than rank-1-transitions. This makes estim a more conservative
transition criterion. While it achieves a good performance w.r.t. overall running time,
rank-1 performs even better, in particular when taking the statistic significance of the
results into account. In the previous section, we saw that rank-1 has a tendency to
underestimate the point of phase transition. We interpret our results such that switching
settings shortly before the second phase transition, i.e. when the solver is about to find
the optimal solution, is sufficient, if not preferable, to improve performance. The fact
that only one of the two transition heuristics achieves a significant time speed-up shows
that the performance gain cannot be attributed only to the changes to the feasibility
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phase, during which all three versions that employ phase-based settings have exactly
the same behavior.

Using the rank-1 phase transition, we obtain a solving time improvement that is
similar to the improvement obtained with oracle. Comparing the results for an oracle-
based phase transition and the phase transition criteria that we introduced, we conclude
that the rank-1 transition is sufficient in practice to achieve a solving-time performance
similar to what can be obtained in principle if we could determine the phase transition
exactly.

5.5 Summary

In this chapter, we discussed the partition of a MIP solving process into three phases:
feasibility, improvement, and proof. Each of them benefits from different algorithmic
components. We introduced and empirically analyzed two criteria to predict the transition
between the improvement and the proof phase: the best-estimate transition and the
rank-1 transition.

We have shown that a phase-based version of the MIP solver SCIP, using the rank-
1 transition, improves SCIP’s mean running time by 8 % on general MIP instances,
and 14 % on hard instances, while simultaneously reducing the number of branch-
and-bound nodes. Hence, our computational experiments provide evidence that those
easy-to-evaluate criteria correlate sufficiently well with the actual, hard-to-detect phase
transition to make use of this approach in practice.
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6
Adaptive Large Neighborhood

Search

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most
expensive primal heuristics for MIP. Their computational effort makes it impractical to
apply all of them frequently within the solver. Ideally, a solver adaptively concentrates
its limited computational budget by learning which LNS heuristics work best for the MIP
problem at hand. Following this line of thought, we propose adaptive large neighborhood
search (ALNS) for MIP.

This chapter is an edited copy of the revised version of the journal article Adaptive
Large Neighborhood Search for Mixed Integer Programming [Hendel, 2018] which is
currently under review. We address in particular the question of how to select from the
set of available auxiliary problems, which are introduced in Section 6.1.

In Section 6.2, we propose a suitable reward function for LNS heuristics to learn
to discriminate between the auxiliary problems during the search. We also propose a
generic variable fixing scheme that can be used to extend the set of fixed variables
within a selected neighborhood to reach a target fixing rate. This has a particular
impact on LNS heuristics that do not fix variables by themselves and may hence be too
expensive on larger problems, such as, e.g., Local Branching [Fischetti and Lodi, 2003]
(cf. Section 6.1.2).

The framework is obliged to trade off between exploration and exploitation, because
only one auxiliary problem is selected and evaluated at a specific call. Such a selection
scenario is also referred to as multi-armed bandit problem, in which a player tries to
maximize their reward by playing one available action at a time and observing the
particular reward of this action only.
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We review three selection algorithms for the multi-armed bandit problem in
Section 6.3. Two computational experiments are presented in Section 6.4, a first one
to tune the selection process of the ALNS heuristic, and a second experiment to show
that ALNS improves the MIP performance of SCIP on a large set of publicly available
benchmark instances from the collections of MIPLIB [Achterberg et al., 2006; Bixby
et al., 1998; Koch et al., 2011] and Cor@l [Coral].

Related Work

The notion of an Adaptive Large Neighborhood Search has already been coined in the
literature, particularly in the context of Constraint Programming, where ALNS is usually
tailored to a particular application. The authors of [Laborie and Godard, 2007] were
the first to describe an adaptive LNS technique for single-mode scheduling problems,
which selects from a finite set of so-called search operators, which are a CP analogue to
the auxiliary problems for MIP (see Section 6.1). Building upon their method, ALNS
has also been applied for different types of Vehicle Routing Problems, see [Pisinger and
Ropke, 2007] for an overview. Throughout the remainder of this chapter, we will shortly
write “ALNS” to denote our proposed “ALNS for MIP”.

A different, MIP specific approach to learn how to run heuristics has been recently
proposed in [Khalil et al., 2017]. Their work uses logistic regression to predict the
probability of success for different diving heuristics. The prediction is based on
state information about the current node and the overall search. Their approach is
fundamentally different from our proposed method in that it learns one regression for
each individual diving heuristic, but does not attempt to prioritize between them.

The selection strategies presented here are truly online learners. They do not use
any information that was collected offline before the search. The only feedback that the
selection method receives is the reward of the selected action. Attempts with popular ML
technology may consider additional features of the problem instance or search statistics
to train a more informed selection method.

Focusing on the feature-independent setup of the bandit selection strategies has
several advantages over an ML approach that uses features: First, the number of LNS
executions in a MIP solver is typically small and may not suffice to collect enough
training data for a feature based ML approach, whereas our simulation in Section 6.4.2
shows that the bandit strategies already learn useful information within a “typical”
number of calls of an LNS heuristic. An alternative may be to collect the data only once
to then train the ML approach offline and apply the learned model during the search,
but this violates the “online” scope of this paper.

Finally, an ML approach may lack explainability why it prefers certain auxiliary
problems in certain situations. In contrast, especially the α-UCB bandit strategy provides
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a simple explanation, namely the UCB-score, why it prefers one auxiliary problem over
another.

The first use of bandit related ideas inside MIP solvers concerns the integration of a
node selection rule [Sabharwal et al., 2012] into CPLEX. This node selection approach
balances exploration and exploitation of the search tree. It is inspired by a successful
method for game search trees, which is related to the Upper Confidence Bounds (UCB)
selection algorithm [Bubeck and Cesa-Bianchi, 2012] explained in Section 6.3.

6.1 Large Neighborhood Search Heuristics for MIP

The class of Large Neighborhood Search (LNS) heuristics lies at the most expensive end
of the scale of general purpose primal heuristics because they solve an auxiliary problem
with branch-and-bound techniques. To this end, LNS heuristics typically restrict the
search space of an input MIP instance to a particular neighborhood of interest. The
resulting auxiliary problem (cf. Definition 6.1) is again a MIP, which is then partially
solved by a branch-and-bound algorithm under reasonable working limits, and eventual
solutions are kept for the main search process. Many different LNS techniques have been
proposed in recent years [Berthold, 2014a; Danna et al., 2005; Fischetti and Lodi, 2003;
Fischetti and Monaci, 2014; Ghosh, 2007; Rothberg, 2007]. Briefly, an LNS heuristic
solves an auxiliary MIP under strict working limits, which is derived from the original
MIP by fixing variables, adding constraints, and/or changing the objective function.

Definition 6.1 (Auxiliary problem). Let P be a MIP with n variables. For a
polyhedron N ⊆ Qn and objective coefficients caux ∈ Qn, a MIP Q defined as

min {ct
auxx | x ∈ SP ∩N} (6.1)

is called an auxiliary problem of P . The polyhedron N associated with Q is called its
neighborhood.

In other words, Q has the same number of variables (columns) as the original MIP
P and its solution set SQ is a subset of SP by construction. Definition 6.1 requires
N to be a polyhedron, i.e., it should be expressed by a finite set of inequalities. The
definition includes N = Qn. The auxiliary objective function caux can be different from
the objective function of P .

In total, SCIP features 10 LNS heuristics. However, there are only a few different
types of neighborhoods typically used. All LNS heuristics have in common that they
solve auxiliary problems around a set of reference points. One of the most common
classes of neighborhoods is derived by fixing those integer variables whose solution values
agree on a set of reference points.
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Definition 6.2 (Fixing neighborhood). Let P be a MIP with n variables and nint

integer variables. Let M ⊆ I and x∗ ∈ Qn denote a reference point. A fixing neighborhood

Nfix(M, x∗) :=
{︂
x ∈ Qn | xj = x∗

j , j ∈M
}︂

fixes the variables in M to their values in x∗.

Definition 6.3 (Matching set). For k ≥ 1, let X = {x1, . . . , xk} ⊂ Qn with xi ̸= xi′

for all i ̸= i′ ∈ {1, . . . , k}. The matching set

M= (X) :=
{︂
j ∈ I | xi

j = x1
j , i ∈ {1, . . . , k}

}︂
describes all integer variable indices whose values agree on X. We call X the set of
reference points.

Definitions 6.2 and 6.3 admit the use of reference points such as LP solutions, which
are not (integer) feasible. Note that whenever a set of reference points X contains at
least one solution x̃ ∈ SP , the auxiliary MIP defined by the fixing neighborhood of the
matching set is feasible because X ⊆ Nfix(M=(X), x̃).

The task of finding an improving solution can be easily incorporated into Defini-
tion 6.1. Assume that an incumbent solution x̃best ∈ SP and a dual bound Z∗ are already
available. For δ ∈ (0, 1), every solution x̃ ∈ SP that satisfies

ctx̃ ≤ (1− δ) · ctx̃best + δ · Z∗⏞⏟⏟⏞
< ctx̃best

< ctx̃best

is clearly an improving solution. The set of solutions that are better than x̃best by at
least δ is contained in the improvement neighborhood

Nobj(δ, x̃best) :=
{︂
x ∈ Qn | ctx ≤ (1− δ) · ctx̃best + δ · Z∗

}︂
. (6.2)

Therefore, whenever an incumbent solution is available, our auxiliary problems are
always defined over the combination N ′ of a neighborhood N with an improvement
neighborhood,

N ′ = N ∩Nobj
(︂
δ, x̃best

)︂
,

to filter out all nonimproving solutions regardless of the choice of caux. The choice of δ

is an important control parameter to weigh between the difficulty (and feasibility) of
the auxiliary problem and the desired amount of improvement.

6.1.1 Fixing Neighborhood LNS Heuristics

Combining Definitions 6.2 and 6.3 is very popular for constructing auxiliary problems.
Starting from a set of reference points X = {x1, . . . , xk}, a fixing neighborhood is
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obtained with the help of the matching set of X. Since all points in X agree on their
matching set M=(X), the same fixing neighborhood is obtained regardless of the anchor
point

Nfix
(︂
M=(X), x1

)︂
= Nfix

(︂
M=(X), xi

)︂
for all i ∈ {1, . . . , k}.

RINS [Danna et al., 2005] Relaxation induced neighborhood search (RINS) is one
of the first generally applicable LNS approaches. The idea of RINS is to fix integer
variables whose solution values agree in the solution x̆ of the LP relaxation at the current
local node, and the current incumbent solution x̃best. The neighborhood of the auxiliary
MIP of RINS is

NRINS := Nfix
(︂
M=

(︂{︂
x̆, x̃best

}︂)︂
, x̃best

)︂
.

Crossover [Rothberg, 2007] Another improvement heuristic is the Crossover
heuristic, which is inspired by the recombination of solutions within genetic algorithms.
Crossover selects k ≥ 2 already known, feasible solutions Y = {x̃1, . . . , x̃k} ⊆ SP as
reference points, which need not necessarily contain the incumbent. The crossover
neighborhood fixes

NCross := Nfix
(︂
M= (Y ) , x̃1

)︂
.

[Rothberg, 2007] suggest to use k = 2 solutions that are randomly selected from all
available solutions, using a bias towards solutions with better objective.

Mutation Furthermore, in the same article, Rothberg [2007] suggest a second LNS
heuristic called Mutation in SCIP lingo that fixes a random subset of integer variables
of the incumbent solution. For a randomly chosen subset M rand ⊆ I, the mutation
neighborhood is defined as

NMuta := Nfix
(︂
M rand, x̃best

)︂
.

Mutation is the only LNS heuristic for which the difficulty of the auxiliary problem
can be directly controled, namely by a number or percentage of integer variables that
should be fixed. In contrast, all previous neighborhoods depend on the cardinality of
their matching set.

RENS [Berthold, 2014a] Starting from an LP relaxation solution x̆, the relaxation
enforced neighborhood search (RENS) neighborhood focusses on the feasible roundings
of x̆ and can be written as

NRENS := {x ∈ Qn | ⌊x̆j⌋ ≤ xj ≤ ⌈x̆j⌉ , j ∈ I} . (6.3)

Similarly to the RINS heuristic, the aim of RENS is to construct feasible solutions that
are close to the LP relaxation solution and therefore have a near-optimal solution value.
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6.1.2 LNS Heuristics Using Constraints and Auxiliary Objec-
tive Functions

All approaches presented so far fix a set of integer variables using one or several reference
points. Local Branching [Fischetti and Lodi, 2003] is the first LNS heuristic that uses a
different neighborhood.

Local Branching [Fischetti and Lodi, 2003] Instead of fixing a set of variables
and solving for improving solution values on the remaining variables, the neighborhood
of Local Braching is restricted to a ball around the current incumbent solution in a
special metric. More formally, Let P be a MIP with B ̸= ∅ binary variables. Based on
the Manhattan metric for x ∈ Qn, the binary norm of x is defined as

∥x∥b :=
∑︂
j∈B
|xj|.1

Let x̃best ∈ SP be an incumbent solution for P , and let dmax > 0 denote a distance cutoff
parameter. The local branching neighborhood is the restriction

NLBranch :=
{︂
x ∈ Qn |

⃦⃦⃦
x− x̃best

⃦⃦⃦
b
≤ dmax

}︂
The reason for preferring the binary norm over the regular norm or the norm taking all
integer variables is practicality. The binary norm can be expressed as a linear constraint
without introducing auxiliary variables.

Proximity Search [Fischetti and Monaci, 2014] A dual version of Local
Branching has been introduced as Proximity. Using the binary norm, Proximity seeks to
minimize the binary norm

⃦⃦⃦
x− x̃best

⃦⃦⃦
b

through an auxiliary objective coefficient vector
cProxi defined as

(cProxi)j :=


0 if j /∈ B

1 if j ∈ B and x̃best
j = 0

−1 if j ∈ B and x̃best
j = 1

over the entire set of improving solutions:

NProxi := Nobj(δ, x̃best).

Zero Objective The second LNS heuristic that uses an auxiliary objective function
different from the original objective function is Zero Objective. As its name suggests, it
uses cZeroobj := 0 as auxiliary objective function. Zero Objective thereby reduces the search
for an (improving) solution to a feasibility problem. If an incumbent solution x̃best is

1Strictly speaking, ∥·∥b is a seminorm because nonzero vectors can have binary norm of 0.
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available, Zero Objective searches the set of improving solutions NZeroobj := Nobj(δ, x̃best),
and NZeroobj = Qn otherwise.

DINS [Ghosh, 2007] Distance induced neighborhood search (DINS) combines
elements of the Crossover, Local Branching, and RINS heuristics. Similarly to RINS, the
intuition is that improving solutions are located between the current incumbent solution
x̃best and the solution to the node LP relaxation x̆. With the intention of reducing their
integer distance ⃦⃦⃦

x̃best − x̆
⃦⃦⃦

i
:=
∑︂
j∈G
|x̃best

j − x̆j|,

let J := {j ∈ G | |x̃best
j − x̆j| ≥ 0.5} denote the index set of general integer variables

with a difference of at least 0.5 between the two reference points. The J-neighborhood of
DINS is

NJ := {x ∈ Qn | |xj − x̆j| ≤ |x̃best
j − x̆j|, j ∈ J}.

This neighborhood restricts lower and upper bounds of the general integer variables.
Let Y DINS ⊆ SP denote a subset of currently available solutions, containing x̃best, to the
MIP at hand. The DINS neighborhood can be written as a combination of a total of
four neighborhoods

NDINS :=NJ

∩Nfix
(︂
G \ J, x̃best

)︂
∩Nfix

(︂
B ∩M=({x̆, x̆root} ∪ Y DINS), x̃best

)︂
∩NLBranch.

The set of general integer variables outside J is fixed to the values in the incumbent
solution. Binary variables that have not changed between the root LP relaxation solution
x̆root and x̆ are fixed if they have taken the same value in all solutions in Y DINS. In our
implementation of DINS, we use between 1 ≤ |Y DINS| ≤ 5 available solutions with best
objective, depending on how many solutions are available. Finally, the search is further
restricted to a certain binary distance around the current incumbent solution through
an additional local branching neighborhood.

Remarks There is further work on LNS approaches that are not covered here. Note
that the only heuristics that do not use an incumbent solution are RENS and Zero
Objective. Fischetti and Lodi [2008] proposed an extension of Local Branching that
starts from an infeasible reference point. Such points are quickly produced by rounding or
with a few iterations of the Feasibility Pump [Fischetti and Salvagnin, 2009]. In addition
to the local branching constraint, the auxiliary problem of [Fischetti and Lodi, 2008]
is extended by additional variables to model and penalize the violation of constraints,
inspired by the phase 1 of the simplex algorithm. A recent approach called Alternating
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Criteria Search [Munguía et al., 2018] also starts from infeasible reference points, and
alternates between auxiliary problems with artificial feasibility objective and the original
objective function of the input MIP in a parallel setting. The necessary diversification is
obtained by fixing subsets of integer variables indexed by a random consecutive index set,
which is a variant of Mutation [Rothberg, 2007] discussed in Section 6.1.1. The heuristics
presented in [Gamrath et al., 2015a, 2019] formulate and solve auxiliary problems only
for the general integer variables as a final post-processing step after fixing all binary
variables based on available, global problem structures such as cliques and implications
between binary and integer variables.

6.2 Adaptive Large Neighborhood Search for MIP

The proposed Adaptive Large Neighborhood Search heuristic governs the execution of a
set Q of 8 available auxiliary problems from Section 6.1, which has been chosen as a
representative set of diverse LNS heuristics from the literature. Table 6.1 gives a quick
overview of the auxiliary problems used, as well as their individual preconditions. ALNS
is executed periodically during the main search based on a certain, parameter controlled
frequency. In addition, ALNS respects an internal budget and previous successes and may
decide to delay its execution until later. This dynamic execution schedule is explained
in detail in Section 6.2.2. Therefore, we denote only those calls to ALNS as rounds that
lead to the selection and solution process of an auxiliary problem.

In each such round t = 1, 2, . . . , ALNS basically performs the following steps.

1. Select an auxiliary problem Qt ∈ Q via a bandit selection strategy.

2. Apply generic (un-)fixing of integer variables depending on the target fixing rate
of Qt. Stop if generic fixing cannot be applied.

3. Setup and solve the auxiliary problem Qt.

4. Reward the auxiliary problem and update the bandit selection strategy based on
the outcome of Qt.

Different bandit selection strategies and their individual update procedures are
explained in Section 6.3. The solution process of the auxiliary problem uses a strict
limit on the number of branch-and-bound nodes to keep the overall computational effort
small. It may still be very expensive to solve auxiliary problems if the corresponding
neighborhood is large, especially since some neighborhoods do not fix integer variables
directly. In Section 6.2.1, a generic approach is explained for fixing additional variables
to reach any desired target fixing rate and hence reduce the complexity of the auxiliary
problem. Details on the dynamic adjustment of the target fixing rate and node limit
are given in Section 6.2.2. Finally, Section 6.2.3 introduces the scoring mechanism for
rewarding Qt.

132



6.2 Adaptive Large Neighborhood Search for MIP

Auxiliary Problem Description Preconditions

RINS Fixes matching values in incum-
bent and LP relaxation solution

Feasible LP relaxation at current
node, incumbent solution

Crossover Fixes matching values in 2 or
more randomly chosen, available
solutions

Sufficiently many solutions

Mutation Fixes random subset of variables
to values in incumbent

Incumbent solution

RENS Restricts the auxiliary problem
to the feasible roundings around
the current LP solution

Feasible LP relaxation at current
node

Local Branching Limits the maximal binary dis-
tance from the incumbent

Incumbent solution, MIP with
binary variables

Proximity Search Minimizes the binary distance
from the incumbent

Incumbent solution, MIP with
binary variables

Zero Objective Reduces search for an (improv-
ing) solution to a feasibility prob-
lem

nonzero objective function

DINS Sophisticated combination of
RINS, Crossover, and Local
Branching

Incumbent solution, feasible LP
relaxation at current node

Table 6.1: Overview of the auxiliary problems used in ALNS. See Section 6.1 for
information and references.

6.2.1 Fixing and Unfixing Variables

Many of the neighborhood definitions in Section 6.1 consist in the fixing of a subset of
integer variables to their values in a solution x̃ ∈ SP , which can be the incumbent or
an inferior solution for P at round t and depends on the selected auxiliary problem Qt.
The fixed set of Qt and its corresponding neighborhood NQt is defined as

Mfix
Qt

:= {j ∈ B ∪ G |NQt ⊆ {x ∈ Qn | xj = x̃j}} .

The size of the fixed set is denoted by nfix
Qt

:= |Mfix
Qt
|. Every auxiliary problem (action)

Q ∈ Q operated by ALNS has a target fixing rate ϕQ,t ∈ [0, 1) that changes between
rounds as explained in Section 6.2.2. It may happen that Qt does not reach its specified
target fixing rate, i.e.

nfix
Qt

< ϕQt,t · nint.

For example, the neighborhoods of Zero Objective, Proximity and Local Branching do
not fix any variables. It may also happen that ϕQt,t is exceeded, which unnecessarily
restricts the search space. ALNS treats both cases very similarly by using a generic
variable fixing prioritization to sort the set of possible (un)fixings.
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In the first case, ϕQt,t · nint − nfix
Qt

additional integer variables from Mfix
Qt

= I \Mfix
Qt

have to be selected. For two integer variables j, j′ ∈Mfix
Qt

with reference solution values
x̃j, x̃j′ , the fixing xj = x̃j is preferred over xj′ = x̃j′ , if, in decreasing order of priority,

1. xj has a smaller distance than xj′ from Mfix
Qt

in the variable constraint graph (see
below).

2. The reduced costs for fixing xj = x̃j are smaller than those for fixing xj′ = x̃j′ ,

d̃j ·
(︂
x̃j − x̆

root(j)
j

)︂
< d̃j′ ·

(︂
x̃j′ − x̆

root(j′)
j′

)︂

3. The pseudo-costs (see below) for fixing xj = x̃ are smaller than for xj′ = x̃j′ ,

Ψj(x̃j − x̆root
j ) < Ψj′(x̃j′ − x̆root

j′ ).

4. Randomly.

Variable constraint graph The idea behind the variable constraint graph is to
maintain several unfixed variables together in some constraints to increase the likelihood
that the auxiliary problem contains an improving solution. Intuitively, finding improving
solutions requires to alter several solution values per constraint. For a constraint with
only a single unfixed variable in the auxiliary problem, it is unlikely that the reference
solution value of this variable can be altered in the direction of an improving solution.

For a given MIP P , the variable constraint graph GP is a bipartite graph with one
node for each variable and constraint of P , V (GP ) = {vj | j ∈ {1, . . . , n}} ∪ {wj | j ∈
{1, . . . , m}}. Its edges E(GP ) := {(vj, wi) |Aij ̸= 0} correspond to the nonzero entries
of the matrix A. Distances in GP are breadth first distances. First, each node has a
distance of 0 to itself. Starting from a variable node vj , all variables with an edge to one
of the constraint nodes adjacent to vj have a distance of 2 from vj.

All variables which are reachable via another constraint from any of the nodes with
distance 2 have a distance of 4, and so on. Since all distances between variables in GP

are even, we divide all breadth-first distances by two.
The distance of a variable node vj from the nodes corresponding to Mfix

Qt
is the

minimum distance to any of the variable nodes in Mfix
Qt

. It is determined by queuing all
variable nodes in Mfix

Qt
into the initial queue for breadth first search.

If the original problem has block structure, the variable prioritization concentrates
additional fixings on those blocks with a nonempty intersection in Mfix

Qt
. Related ideas

are used, e.g., in presolving for detecting independent components of a MIP [Gamrath
et al., 2015b], or within the Graph-Induced Neighborhood Search (GINS) released with
SCIP 4.0 [Maher et al., 2017].
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Reduced cost score The cost based scores used as tiebreakers in steps 2 and 3 both
penalize a deviation of the potential fixing from an LP solution at the root node of the
branch-and-bound search. After the initial LP relaxation at the root of the search, most
MIP solvers solve a sequence of further LP relaxations during their cut separation loop.

The first associated penalty uses reduced costs. Recall from Section 2.2 that reduced
costs are part of every optimal simplex tableau. At the root node, reduced costs during
the LP relaxations are stored per variable, to enable root reduced-cost strengthening
(see Section 2.7.1) during the search. For each variable xj , we initialize its associated root
reduced costs to those observed in the initial optimal LP solution. At each subsequent
LP, each time we encounter higher reduced costs than the recorded reduced costs for xj ,
they are stored together with the corresponding LP solution value x̆

root(j)
j . Therefore,

the LP solution values used to compare the potential fixings of j and j′ may come from
different LP solutions. Ties in the reduced cost comparison can occur if, for example,
both variables have a corresponding score of 0, which is always the case if both variables
are basic in all LP solutions at the root node.

Reduced costs are 0 for all basic variables in the optimal simplex tableau. The LP
solution x̆

root(j)
j of each nonbasic variable xj is either ℓj or uj . Nonbasic variables at their

lower bound have a reduced cost coefficient d̃j ≥ 0 and variables at their upper bound
have d̃j ≤ 0. In both cases, the product d̃j ·

(︂
x̃j − x̆

root(j)
j

)︂
is nonnegative. It is a lower

bound on the objective deterioration by fixing xj = x̃j , hence the preference for variable
fixings with smaller reduced cost scores.

Pseudo-cost score So far, we have introduced pseudo-costs [Bénichou et al., 1971,
see also Definition 2.8] as a common aggregate of historical branching information on the
variables. Recall that the pseudo-cost score is an estimation of the potential dual bound
degradation after fixing xj = x̃j. As reference serves the final root LP solution x̆root

on which the solution process started branching. Computing Ψj(x̃j − x̆root
j ) considers

fixing xj = x̃j as a branching restriction from x̆root
j /∈ Z in the direction of x̃j, upwards

if x̃j > x̆root
j and downwards otherwise. The pseudo-cost score estimates the increase in

the dual bound after fixing j. As an example, assume that a binary variable j ∈ B has
a root LP solution value x̆root

j = 0.4 and a reference solution value of x̃j = 1. Assume
that the average dual bound increase has been Ψ−

j = 10 for branching down on xj

and Ψ+
j = 5 for branching up. The pseudo-costs for the fixing xj = x̃j are calculated

as Ψj(x̃j − x̆root
j ) = Ψ+

j · 0.6 = 3. If the solution value had been 0 instead of one, the
corresponding pseudo-cost score is Ψj(0− x̆root

j ) = −Ψ− · (−0.4) = 4 for branching down
on xj.

The pseudo-cost score summarizes the branching history of a variable. Like reduced
cost scores, pseudo-costs are always nonnegative. The pseudo-cost score Ψj(x̃j − x̆root

j ) of
a fixing is only an estimate of the impact of the fixing of xj on the objective, in contrast
to reduced cost scores. As for reduced costs, we prefer additional fixings with smaller
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pseudo-cost scores to increase the likelihood of good solutions in the remaining auxiliary
problem.

Unfixing variables Only slight details are changed if the neighborhood was too
restrictive, such that nfix

Qt
−ϕQt,t ·nint variables from Mfix

Qt
should be selected and unfixed

(relaxed). Distances are now computed in the variable constraint graph starting from
Mfix

Qt
, and variables with a small distance from Mfix

Qt
are preferably relaxed to keep

the auxiliary problem connected. Since we use the cost tiebreakers as estimate of the
objective degradation of a fixing in the auxiliary problem, variables are relaxed preferably
if they have a large reduced cost score or, in case a tie occurs, a large pseudo-cost score.
Finally, if none of the scores discriminate between two variables, the preference is
given by a random score assigned to each variable. Generic (un-)fixing within ALNS is
only applied if the target fixing rate ϕQt,t is missed by a tolerance of 10 %, i.e. only if
nfix

Qt
/∈ [(ϕQt,t − 0.1) · nint, (ϕQt,t + 0.1) · nint]. As the fixings of the RENS neighborhood

depend solely on the LP solution, it is the only auxiliary problem for which there is no
suitable integer feasible reference solution to use for generic fixings. Generic unfixings,
however, are always possible, even for RENS.

6.2.2 Dynamic Limits

Good limits on the computational budget of an LNS heuristic are essential to make it
useful inside a MIP solver. To this end, a trade-off must be made between the intensity
of the search inside the auxiliary problem and the runtime. For ALNS, the complexity of
the auxiliary problem and the budget are adapted dynamically between the individual
calls to ALNS.

All the following dynamic decisions consider the auxiliary problem Qt at the t-th
round of ALNS (t = 0, 1, . . . ) and its solution status stat (Qt) which can be one of

• inf , if Qt was infeasible,

• opt, if Qt was solved to optimality

• sol, if Qt provided an improving solution for P

• nosol, if no improving solution was found searching Qt.

Target fixing rate ϕQ,t The first dynamic adjustment of the auxiliary problem
complexity over time is described in [Rothberg, 2007], together with the introduction
of the Crossover and Mutation LNS heuristics (cf. Section 6.1), which are available in
ALNS. Rothberg [2007] suggests controlling the complexity of an auxiliary problem Qt

by specifying the amount of integer variables that should be fixed before solving the
auxiliary problem Qt. The intuition is that the difficulty of Qt decreases with increasing
fixing rate. In the notation of the present work, the target amount of fixed integer
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variables at round t is specified by a target fixing rate ϕQ,t ∈ [0, 1) for each Q ∈ Q of
ALNS.

For Q ∈ Q, let TQ(t) denote the number of times that Q has been selected, including
round t. The fixing rate is modified according to the status in round t as

ϕQ,t+1 =


ϕQ,t, if Q ̸= Qt or stat (Qt) = sol ,

max{0.1, ϕQ,t − 0.75TQ(t) · 0.2}, if stat (Qt) ∈ {inf , opt}

min{0.9, ϕQ,t + 0.75TQ(t) · 0.2} if stat (Qt) = nosol

If Qt was too easy for the solver, i.e. it could be solved to optimality or infeasibility
within a given node budget, the fixing rate for the next iteration is decreased. If no new
solution was found, the target fixing rate is increased. If a solution was found, but the
search could not be completed, the fixing rate is kept. The additive change of the fixing
rate is 0.2 initially, which is multiplied with 0.75 after every update step, exactly as
in [Rothberg, 2007]. The use of max and min ensures that the target fixing rate stays
within 10 % and 90 %. In our implementation, those two values are parametrized and
can be individually set for every auxiliary problem. Every target fixing rate is initialized
by ϕQ,1 = 0.9, which represents the most conservative value in the allowed range of the
fixing rate2, see Section 6.4 for details.

Stall node limit νlim
t The main budget limitation of ALNS is a limit on the number

of consecutive branch-and-bound nodes during which no improving solution is found,
the so-called stall node limit. The stall node limit ν lim

t+1 for the next round of ALNS is
adjusted based on the results of the auxiliary problem of round t as follows.

ν lim
t+1 =

ν lim
t , if stat (Qt) ∈ {opt, inf , sol}

min{⌊ν lim
t · 1.05⌋+ 1, 5000}, if stat (Qt) = nosol

ALNS uses an affine linear function of the branch-and-bound nodes Ubb in the main
search to limit the search effort inside auxiliary problems. Let Ubb (Qi) denote the
amount of nodes used for searching the auxiliary problem Qi at round 1 ≤ i ≤ t − 1,
and let s(t− 1) denote the total number of improving solutions found by ALNS until
round t− 1 inclusively. Concretely, the next round t of ALNS is called as soon as the
main search nodes Ubb have progressed such that

κ0 + s(t− 1) + 1
(t− 1) + 1 · κ1 · Ubb −

t−1∑︂
i=1

(100 + Ubb (Qi)) ≥ ν lim
t . (6.4)

Here, κ0 is an initial budget of ALNS and κ1 is the node budget relative to Ubb. The
initial budget κ0 allows to execute ALNS already early during the tree search when

2controled via 8 user parameters heuristics/alns/*/maxfixingrate all defaulting to 0.9.
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Ubb is small. When the search progresses and the initial budget κ0 has been spent after
a (usually small) number of ALNS rounds, the relative node budget κ1 is the main
parameter to control ALNS resources relative to the main search. In (6.4), the relative
budget is increased or decreased based on the total number of improving solutions
that ALNS contributed. With this strategy, ALNS slowly fades out if it does not find
improving solutions. The last term expresses the total resources used so far by ALNS,
with an additional 100 nodes per round to account for the setup costs of each Qi.

Recall that SCIP calls primal heuristics based on their frequency parameter 2.6. In
our experiments in Section 6.4, our ALNS implementation has its frequency set to 20,
which means that it is called at every depth 0, 20, 40 etc., i.e., roughly every 20 nodes.
However, because of the budget computation in Equation (6.4), ALNS only performs the
next round, i.e., selects and solves an auxiliary problem when, in addition, the budget
computation (6.4) allows for the next round. A similar budget computation is used
inside the standalone LNS heuristics RINS and Crossover, as well.

In contrast to the target fixing rate, the stall node limit ν lim
t is a global limit

independent of the selected auxiliary problem. This design choice has been made because
the target fixing rate is supposed to be the main driver to adjust auxiliary problem
difficulty.

6.2.3 A Reward Function for Auxiliary Problems

All the bandit selection strategies presented in Section 6.3 require the definition of a
suitable reward function. Intuitively, the reward should always be higher for auxiliary
problems that lead to improvements over the current incumbent solution and also depend
on the achieved objective quality. Furthermore, between unsuccessful auxiliary problems,
the reward should still distinguish if the solution process failed fast or if it required a lot
of computational resources. In order for some of the selection strategies in the following
Section 6.3 to work correctly, we require that a reward should be in the interval [0, 1]. A
reward of 0 is the worst possible score, i.e., the maximum penalty.

Let Qt ∈ Q denote the selected auxiliary problem in round t > 0, and let Zold :=
ctx̃best denote the incumbent value before Qt is solved, if an incumbent solution x̃best ∈ SP

is available, or Zold :=∞ otherwise. Similarly, let Znew denote the objective of the best
known solution after Qt has been solved. As before, let ν lim

t and Ubb (Qt) denote the
stall node limit and amount of nodes used by Qt, respectively.

Two reward functions are combined to reward both the presence of a new incumbent
solution and the objective improvement. The former is expressed by the solution reward

rsol(Qt, t) :=

1, if stat (Qt) ∈ {opt, sol},

0, else.
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6.2 Adaptive Large Neighborhood Search for MIP

The improvement in solution quality is measured by the closed gap reward

rgap(Qt, t) := Zold − Znew

Zold − Z∗ ,

which evaluates to 0 if no improving solution could be found, and to 1 if the new solution
has an objective that is equal to the dual bound (and hence optimal for P ). As a
convention, the closed gap reward is 1 if Q contributes the first solution to the problem.
Since most neighborhoods require a known solution as input (cf. Table 6.1), this is only
possible with RENS and Zero Objective.

Since the time measurement in some MIP solvers such as SCIP is not deterministic,
we use the number of nodes to introduce the effort ξ(t) as

ξ(t) := (1− ϕQt,t)
Ubb (Qt)

ν lim
t

. (6.5)

The effort ξ(t) serves as a deterministic approximation of runtime spent on the search
in the auxiliary problem. It has the additional property that it lies in the interval
[0, 1]. In order to compensate for different target fixing rates, ξ(t) uses a scaling by the
remaining number of free integer variables. The generic (un)fixing based on the variable
prioritization from Section 6.2.1 ensures that the fraction of fixed integer variables in
the subproblem is approximately equal to the current target fixing rate. The effort is
≥ 1 if the stall node limit was exhausted (Ubb (Qt) ≥ ν lim

t ) and no integer variables were
fixed by the neighborhood of Qt. If solving Qt fails to produce a better solution, the last
of the three individual reward functions is the failure reward

rfail(Qt, t) :=

1, if stat (Qt) ∈ {opt, sol},

1−min{ξ(t), 1}, else,

which becomes smaller depending on the effort spent in an auxiliary problem, if no
improving solution was found.

With two additional convex combination parameters λ1, λ2 ∈ [0, 1], the reward
function of ALNS combines all three rewards into

ralns(Qt, t) := λ1r
fail(Qt, t) + (1− λ1) ·

λ2r
sol(Qt, t) + (1− λ2)rgap(Qt, t)

1 + ξ(t) (6.6)

The first control parameter λ1 separates the reward between runs that were successful
and runs that failed to improve the incumbent solution. The second parameter λ2 adjusts
between the solution and the closed gap rewards. The result, which is again a reward in
the interval [0, 1], is scaled by the effort involved to reward fast auxiliary problems more.
For the remainder of this work, we propose to use values λ1 = 0.5 and λ2 = 0.8 as an
intuitive choice which reserves the lower half of the reward interval [0, 1] for unsuccessful
LNS executions, and the upper half for improvements.
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ralns(Qt, t)

+

+

rsol(Qt, t)

·λ2
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xold = xnew, ξ(Qt, t) = 0.8

xold = xnew, ξ(Qt, t) = 0

rgap(Qt, t) = 0.5, ξ(Qt, t) = 0.25

Figure 6.1: Left: Diagram of the proposed reward function. Right: Three hypothetical
outcomes and their reward on the [0, 1]-scale.

The left part of Figure 6.1 depicts the individual elements of the ALNS reward
function visually. The right part of the figure illustrates three reward examples of
hypothetical outcomes after an auxiliary problem has been solved. Starting from the
bottom, assume the measured effort (6.5) was 0.8, for example because 80 % of the
integer variables were fixed and the entire node budget was exhausted. Since no new
solution has been found (xold = xnew), the two other rewards rsol(Qt, t), rgap(Qt, t) are
both zero, which yields a reward of ralns(Qt, t) = 0.1. The middle example does not
contribute a new solution, but achieves an effort of 0 and was therefore much faster than
the first example. An effort of zero can only be attained if the auxiliary problem could
be solved within 0 nodes, i.e. during presolving. Such a case most likely occurs when
the auxiliary problem is proven infeasible because of the improvement neighborhood 6.2,
which restricts the search space to solutions that improve the primal bound by at least
0 < δ < 1. Note that this infeasibility does not mean that no solution for the original
MIP P within the improvement neighborhood exists, it only means that the targeted
objective improvement cannot be achieved by the fixings in the current auxiliary problem.
Therefore, the adaptive fixing rate will be lowered to broaden the search space for the
next round in which Qt is selected again. This outcome receives a reward of 0.5, which
is best possible for rounds of ALNS that do not contribute a new solution.

The last hypothetical outcome contributes a new incumbent solution which closes
the gap by 50 % and therefore achieves a gap reward of 0.5. Every round with a new
incumbent solution automatically achieves a solution reward of 1, which has been omitted
from the figure for a better readability. In combination with an effort of 0.25, this round
achieves a reward of 0.72.
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6.3 Selection Strategies for Multi-Armed Bandit Problems

6.3 Selection Strategies for Multi-Armed Bandit
Problems

The goal of the present work is a framework that selects among a set of auxiliary
problems in Section 6.1 such as to maximize their utility under a shared computing
budget. Such a sequential decision process from a finite set of actions (auxiliary problems)
with unknown outcome appears in the literature as Multi-Armed Bandit Problem [Bubeck
and Cesa-Bianchi, 2012].

The basic multi-armed bandit problem can be described as a game, which is played
over multiple rounds. In every round t = 1, 2, . . . , the player chooses one action Qt ∈ Q
from a finite set of available actions. In return for playing Qt, the player observes a
reward r(Qt, t) ∈ [0, 1] for the selected action. The aim for the player is to maximize their
total revenue ∑︁t r(Qt, t). Since only the reward of the selected action can be observed at
a time, every suitable algorithmic strategy must find a good balance between exploration
across all actions and exploitation of the best action seen so far.

Let TQ(t) := ∑︁t
i=1 1{Qi=Q} denote the number of times that action Q has been

selected until round t. The average reward of Q is

r̄Q(t) := 1
TQ(t)

t∑︂
i=1

1{Qi=Q}r(Q, i),

where we define r̄Q(t) = 0 as long as TQ(t) = 0. The selection strategies below ensure
that during the first rounds, all reward averages are meaningfully initialized by playing
each action once in randomized order.

Algorithm 3: ε-greedy [Sutton and Barto, 2018]
Input: Set of actions Q, parameter ε ≥ 0

1 t← 0
2 while not stopped do
3 t← t + 1
4 εt ← ε ·

√︂
|Q|
t

5 Draw et ∼ U ([0, 1]) /* drawn from uniform distribution */
6 if et ≤ εt /* Selection of next action */
7 then
8 Draw Qt ∼ U (Q)
9 else

10 Qt ← argmax
Q∈Q

r̄Q(t− 1)

11 end
12 Update r̄Qt(t) by the observed reward r(Qt, t)
13 end
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Algorithm 3 [Sutton and Barto, 2018] is a very simple, randomized selection strategy
for the multi-armed bandit problem. It uses the short notation U (X) to denote the
uniform distribution over a set X. The initial lack of reward information is compensated
by a randomized selection of the first few actions. The amount of random selections
decreases at the speed of 1√

t
and can be controlled by the input parameter ϵ. With

increasing t, it therefore becomes less and less likely to choose an action at random,
whereas the probability of greedily exploiting the best action increases.

A different, more deterministic approach [Auer et al., 2002] uses upper confidence
bounds (UCB) based on the principle of optimism at the face of uncertainty. Assume
that Q is an ordered |Q|-uple (Q1, Q2, . . . , Q|Q|). The selection strategy α-UCB selects

Qt =


argmax

Q∈Q

{︃
r̄Q(t− 1) +

√︃
α ln(1+t)
TQ(t−1)

}︃
if t > |Q|,

Qt if t ≤ |Q|.
(6.7)

With the goal to ultimately find the action Q∗ with maximum expected reward, the UCB
algorithm selects the action that maximizes the sum of the average reward observed
so far and its associated confidence bound, which depends on the number of times that
Q has been selected in proportion to the (logarithmic) overall number of rounds. The
rationale behind this is that also inferior actions become more attractive to the algorithm
after they have not been selected for a while.

The case distinction in Equation 6.7 is necessary to obtain a meaningful initialization
of all sample means and because TQ(|Q|) ≥ 1 for all Q ∈ Q is required for the confidence
bound in Equation 6.7 to be well-defined. The width of the confidence bound around
the average reward is further controlled by a parameter α ≥ 0. The special case of α = 0
yields a completely greedy exploration strategy that does not take into account the
upper confidence bound. In the first case of Equation 6.7, eventual occurring ties are
broken uniformly at random.

A visual impression of the influence of the parameter α in the α-UCB equation (6.7)
is given in Figure 6.2. Assume there are only two actions Q = (Q1, Q2) available,
both of which return a constant reward every time they are played, r(Q1, t) = µ1 and
r(Q2, t) = µ2. We assume that µ1 > µ2 such that after the two required rounds to
initialize the average reward of each available action, Q1 will be selected in round 3
because of its better average reward r̄Q1(2) = µ1. The question is after how many rounds
the weaker action Q2 is played by α-UCB for the second time, which happens when its
UCB score exceeds the UCB score of Q1. As already mentioned, for a value of α = 0,
α-UCB continues to play Q1 without considering Q2 again. For positive values of α, Q2

will be reconsidered depending on the reward difference ∆ := µ1 − µ2. We denote by
T (∆, α) the round in which Q2 will be played the second time. Figure 6.2 shows how
this function looks like for different values of ∆ between 0 and 1 at three distinct values
α ∈ {0.01, 0.1, 1}. The y-axis uses a logarithmic scale. Values of T (·, ·) that exceed 106
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Figure 6.2: Rounds until α-UCB reconsiders the weaker of two actions as a function of
the reward difference ∆ and the confidence width α.

have been removed. In general, all three curves are increasing with increasing reward
difference ∆. At the smallest α = 0.01, Q2 will be selected within the first 100 rounds
only if the reward difference ∆ is smaller than 0.2, whereas for reward differences larger
than 0.35, Q2 will not be selected within the first 1 million rounds. At a value of α = 1,
Q2 will be selected again within the first ten rounds even for ∆ = 0.99. In the LNS
setting, the situation is more complicated than in this example since we have eight
actions to select from and expect nonconstant rewards.

Algorithm 4 [Auer et al., 2003] is a third approach for the multi-armed bandit
problem. It is briefly called Exp.3, which is an abbreviation of “Exponential Weight
Algorithm for Exploration and Exploitation”. In each round t, the next action is selected
randomly from a probability distribution defined by marginal probabilities (weights)
pQ,t for each Q ∈ Q. After observing the reward r(Qt, t), the weight update is performed
in two steps. First, the cumulative reward RQt of the selected action Qt is updated in
line 7. The cumulative reward divides the observed reward by the probability to select
Qt, thereby emphasizing actions with a high reward compared to their current selection
probability. Second, the probabilities for the next iteration t + 1 are computed as a
convex combination of two probability distributions based on the choice of γ ∈ [0, 1]. In
the two extreme cases, the algorithm either draws from a uniform distribution (γ = 1)
in the next iteration, or from a distribution defined over the cumulative rewards (γ = 0),
using a softmax normalization. This normalization assigns the largest weights to actions
with high cumulative reward, while the probabilities on actions with low cumulative
reward vanish fast.
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Algorithm 4: Exp.3
Input: Set of actions Q, convex combination parameter γ ∈ [0, 1]

1 pQ,1 ← 1
|Q| , RQ ← 0 for all Q ∈ Q

2 t← 0
3 while not stopped do
4 t← t + 1
5 Draw Qt according to probability distribution pQ,t

6 Observe reward r(Qt, t)
7 RQt ← RQt + r(Qt,t)

pQ,t

8 foreach Q ∈ Q do
9 pQ,t+1 ← (1− γ) exp(RQ)∑︁

Q′ exp(RQ′ ) + γ
|Q|

10 end
11 end

Remarks Depending on the nature of the reward distribution, two main scenarios of
multi-armed bandit problems are distinguished, see, e.g., [Bubeck and Cesa-Bianchi,
2012]. In the stochastic scenario, the observable rewards r(Q, t) for every action Q ∈ Q
are independent, identically distributed (i.i.d.) random draws over time from a probability
distribution with unknown expected reward µQ ∈ [0, 1]. In the stochastic scenario, a
good strategy should play an action Q∗ with maximum expected reward µQ∗ = max

Q′∈Q
µQ′

as often as possible.
In the adversarial scenario, the player faces an opponent that chooses the rewards

with the goal to maximize the player’s regret–the discrepancy between the player’s
reward and the best possible reward. The opponent may take into account all choices
previously made by the player, but does not know the selected action at time t. After
the player and the opponent have each made their decisions, the player receives the
reward r(Qt, t) for the selected action only, while the opponent is informed about the
player’s choice Qt. It is noteworthy that in the adversarial scenario, the opponent has
an incentive to play rewards different from 0 in every round of the game because the
player’s regret is minimal in every round t where all actions have a reward of 0. For
a player in the adversarial scenario, a good strategy must necessarily be randomized
in some way because every deterministic algorithm is easily fooled by the opponent,
who can minimize the player’s total reward by assigning a reward of 0 to the player’s
deterministic next action, and 1 to all other actions.

Intuitively, the adversarial scenario seems much harder to approach than the
stochastic scenario because the latter is indifferent to choices made by the player,
and estimates of the expected rewards can be built over time. It turns out that it is
possible, even for the adversarial scenario, to create strategies that yield an asymptotically
optimal reward in their respective scenario. While the ε-greedy and α-UCB strategies
can be made asymptotically optimal for the stochastic scenario, the Exp.3 selection
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strategy and its variants are a state-of-the-art strategy for the adversarial scenario. The
reader is referred to the survey [Bubeck and Cesa-Bianchi, 2012] for more information
about and variants of the discussed selection strategies.

Both ε-greedy and α-UCB address the stochastic scenario, in which the distribution
of rewards is fixed across all rounds. This assumption is violated for the proposed reward
function (6.6) for LNS auxiliary problems because some ALNS rounds may be executed
after an optimal solution has already been found, such that no auxiliary problem can
contribute an improving solution and receive a reward of 0.5 or higher anymore. But
even after an optimal solution has been found, the proposed reward function prefers
quicker fails, preferably detected during the presolving of the auxiliary problem, over
actions that consume a lot of resources that may be invested in improving the dual
bound at this stage of the main search. Therefore, at each stage of the search, we seek to
maximize the reward of the selected actions, although the potential payoff may change
over time. An LNS auxiliary problem that was not successful at its first attempt may
become useful later during the search, if initialized from a different reference solution.

In particular α-UCB and Exp.3 try to choose inferior actions from time to time,
which is desirable in the context of MIP primal heuristics to diversify the search. The
advantage of α-UCB in this respect is its explainability. In contrast to Exp.3, α-UCB
has a deterministic explanation, the UCB score itself, why it prefers which action in
each round.

It should be noted that the Exp.3 algorithm presented here is a classical variant. The
parameter γ is necessary to explore each action sufficiently often to prove some regret
bounds. Recently, Neu [2015] introduced an Exp.3 variant based on implicit exploration
that does not require this uniform distribution controlled via γ.

6.4 Computational Results

The proposed ALNS framework has been implemented and tested as an additional
plugin on top of SCIP 5.0, using CPLEX 12.7.1 as the underlying LP solver. All 8
auxiliary problems listed in Table 6.1 and their corresponding neighborhoods have been
incorporated into ALNS. As instance set, we use the union of three MIPLIB collections
3.0, 2003, and 2010 [Achterberg et al., 2006; Bixby et al., 1998; Koch et al., 2011],
and the COR@L [Coral] instance set, totaling to 666 instances. The computational
experiments for the present work are split into two parts. The first part is an offline
simulation that uses reward information about all auxiliary problems in each call to
ALNS. This information is used to compare the performance of auxiliary problems, and
to calibrate the parameters of the bandit selection strategies from Section 6.3. Section
6.4.3 describes the results that we obtained with the ALNS framework inside of SCIP
using the readily calibrated α-UCB selection strategy. Since a lot of parameters have
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Symbol SCIP parameter(s) Section Ref. Simulation MIP

δ minimprov{low,high} 6.1 0.01 0.01
k crossover/nsols 6.1.1 2 2

dmax not parameterized 6.1.2 0.2 · nbin 0.2 · nbin

|Y DINS| dins/npoolsols 6.1.2 5 5
ϕQt,t */{min,max}fixingrate 6.2.1 {0.1, 0.3, . . . , 0.9} dynamic in [0.3, 0.9]
ν lim

1 minnodes 6.2.2 50 50
κ0 nodesofs 6.2.2 500 500
κ1 nodesquot 6.2.2 0.1 0.5
λ1 rewardbaseline 6.2.3 0.5 0.5
λ2 rewardcontrol 6.2.3 0.8 0.8
ϵ epsilon 6.3 ∈ [0, 4] –
α alpha 6.3 ∈ [0, 1] 0.0016
γ gamma 6.3 ∈ [0, 1] –
– banditalgo 6.3 {ε-greedy, UCB,Exp.3} UCB

Table 6.2: Overview of involved parameters and values for the simulation and the MIP
experiments. All SCIP parameters are preceded by heuristics/alns/. The placeholder *
must be substituted by the name of a neighborhood, e.g., rens.

been introduced in the previous sections, Table 6.2 summarizes the parameter settings
used for the simulation and the performance experiments in this section.

6.4.1 Auxiliary Problem Comparison

The first part aims at providing a fair comparison between the auxiliary problems in
the ALNS framework. Instead of choosing a single auxiliary problem, all of them are
executed one after another at each call to ALNS, and their individual rewards are
recorded. In order to ensure fairness, every found improving solution is only used to
compute the reward function. However, SCIP does not store these solutions as they
could potentially impact the neighborhoods of the subsequent auxiliary problems at
this call. All dynamic decisions from Section 6.2 are deactivated for this experiment.
The target fixing rate is kept fixed at {0.1, . . . , 0.9} in steps of 0.2, with a tolerance of
±0.1. Also, the stall node limit is kept fixed at 50 nodes. The budget computation (6.4)
skips the dynamic adjustment based on the number of solutions that ALNS found,
such that ALNS is executed more statically according to its frequency schedule as
soon as the budget computation allows another run. Recall that the additional generic
fixings/unfixings are only applied if the obtained fixing rate lies outside the tolerance
interval. The experiments have been conducted on a Linux cluster using Ubuntu 16.04,
with a time limit of 5h for each instance. All runs are single threaded.

Not all neighborhoods are applicable to all MIP instances. For example, Local
Branching and Proximity require instances with binary variables. Zero Objective requires
a nonzero objective function. For this simulation experiment, we focus on those instances
with binary variables and nonzero objective function such that all neighborhoods are
applicable. Furthermore, on an instance which meets those requirements, Crossover
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Total across instances Instances with . . . rounds

Fixing rate Rounds Success Rate > 10 > 20 > 30 > 40

0.1 9037 841 0.093 227 169 124 93
0.3 9233 975 0.106 234 172 131 92
0.5 9789 1005 0.103 237 182 140 103
0.7 9925 1196 0.121 241 189 138 97
0.9 10085 1337 0.133 246 187 142 101

Table 6.3: Number of (successful) rounds of ALNS on 494 instances.

requires at least 2 available solutions. RENS and RINS require a feasible LP relaxation
at the local node. We wait until enough solutions have been found during the main
search before ALNS is executed. Recall from Section 6.2.1 that RENS is special in that
generic fixing cannot be applied to RENS because its neighborhood relies solely on the
LP solution at the current node, but no feasible reference solution is involved. Whenever
RENS does not attain its targeted fixing rate during the simulation, RENS obtains a
reward of 0.

In total, our data set comprises 48k records over 494 instances at five tested fixing
rates. Each data record contains rewards of all eight auxiliary problems as well as
information about the round and instance where it has been recorded. Table 6.3 shows
the number of ALNS rounds for every tested fixing rate, where each round consists in
searching all eight available auxiliary problems once. The rounds range from 9037 at
a fixing rate of 0.1 to 10085 at a fixing rate of 0.9. The number of executed rounds
is different for every fixing rate because the auxiliary problems become simpler with
increasing fixing rate, such that more rounds of ALNS can be executed during the
search. The total number of rounds where at least one of the tested auxiliary problems
contributes a solution is shown in the column “Success” and the corresponding proportion
in column “Rate”. Across the tested fixing rates, the success rate ranges from 9.3% to
13.3% and increases with the fixing rate. In a round in which none of the auxiliary
problems contribute a solution, the selection process is only required to select an auxiliary
problem that fails fast, but cannot contribute to the overall search process with an
incumbent solution. Therefore, we will report all simulation results on the data set
restricted to the successful rounds shown in the column “Success”.

Furthermore, Table 6.3 also shows the numbers of instances for which more than
10, 20, 30, and 40 ALNS rounds were executed during the data collection. For example,
more than 90 instances admit at least 40 rounds of ALNS. A certain number of rounds is
necessary for the bandit selection strategies. The selection strategy α-UCB, for example,
tries every action once during the first eight rounds to initialize the average reward. This
α-UCB initialization phase is completed for more than 220 instances for all different
fixing rates as shown in the table. On average, ALNS was executed between 18.3 and
20.4 times per instance, depending on the fixing rate.
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Figure 6.3: Solution rates (left) and average rewards (right) at different fixing rates.

The left part of Figure 6.3 shows the average solution rate of each auxiliary problem at
the different tested fixing rates. The solution rate is the fraction of successful executions
of an auxiliary problem/selection strategy. In this section, we show the solution rate as
additional measure of the quality. When we compare auxiliary problems across fixing
rates, the solution rate does not depend on the fixing rate like the reward (6.6). For each
fixing rate, we compute the solution rate and average rewards on the subset of records
on which at least one of the possible auxiliary problems finds a solution, as shown in the
column “Success” of Table 6.3. At the smallest fixing rate of 0.1, RINS has the highest
solution rate of approximately 0.56, which means that RINS contributes a solution in
56 % of the 841 cases at this fixing rate in which any auxiliary problem is successfully
applied.

In Figure 6.3, we try to detect trends for individual auxiliary problems when the
fixing rate is varied. At the same time, these charts allow for comparisons between
different LNS techniques. For example, it can be observed that RINS, DINS, and Local
Branching are almost consistently the top three methods across all tested fixing rates.
All three achieve their highest solution rate at the highest tested fixing rate of 0.9,
where DINS has the highest solution rate of 0.62 across all tested techniques and fixing
rates. In contrast, the depicted solution rates of Crossover, RENS, and Mutation clearly
exhibit a decreasing trend towards higher fixing rates.

The ranking between the auxiliary problems is similar regarding the obtained average
rewards shown in the right part of Figure 6.3. As before, we restrict ourselves to the rounds
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counted as “Success” in Table 6.3. A higher average reward results from an increased
solution frequency, a better solution quality, and/or less effort to solve the corresponding
auxiliary problems. In the figure, the average rewards of most auxiliary problems clearly
increase with the fixing rate. This is partly because the reward definition (6.6) penalizes
neighborhoods of auxiliary problems with a high fixing rate less strictly. At a particular
fixing rate, the different rewards can be compared well.

RINS, Local Branching, and DINS also achieve high average rewards. The highest
increase in average reward can be observed for Proximity and Zero Objective. At a
high fixing rate of 0.9, RENS achieves the smallest average reward. The reward for
Mutation only increases up to a fixing rate of 50%. Its reward is almost constant for
all fixing rates ≥ 50%. RENS lacks a reference solution for additional, generic fixings,
which is why it can run less frequently than others. A possible explanation for the
decreasing solution rate of Crossover is the random selection of reference solutions.
Searching a narrow auxiliary problem around a reference solution far away from the
incumbent may lower its chances to find a better solution. The lower solution rates of
Mutation are remarkable because RINS and Mutation use the same reference solution,
namely the incumbent. RINS may even need additional generic fixings to reach higher
target fixing rates, whereas the Mutation scheme always fixes the targeted percentage
of integer variables. The large discrepancy in their solution rates indicates that more
informed approaches such as the LP driven neighborhoods of RINS or DINS are the
most important fixing schemes.

One may ask whether a well-performing auxiliary problem such as RINS entirely
dominates the less performant auxiliary problems such as Mutation. Figure 6.4 illustrates
the measured rewards for RINS and Mutation in a histogram, which shows the
distribution of their reward difference ralns(QRINS, t) − ralns(QMutation, t) regardless of
the fixing rate at which these rewards were recorded. For consistency, only rounds are
shown that are marked as “Success” in Table 6.3. If the reward difference is positive,
RINS achieves a higher reward than Mutation. RINS has a clear tendency to score
higher. However, also the execution of Mutation can be beneficial. Mutation reaches
a higher reward in about 30% of the cases. Analogous comparisons for other pairs of
neighborhoods yield similar results. Based on these observations, it is reasonable to
enable all available auxiliary problems by default, and to rely on the selection mechanism.

6.4.2 Simulation of the Selection Process

The data set from the previous section is now used for an offline calibration of the
three bandit selection strategies from Section 6.3. Recall that each of the three bandit
selection methods has a single parameter that can be calibrated for the use inside
the ALNS selection process. The parameter ε ≥ 0 of the ε-greedy strategy controls
how long the selection strategy selects uniformly among the auxiliary problems before
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Figure 6.4: Reward comparison of RINS and Mutation.

transitioning into a greedy selection based on the largest average reward observed. The
α ≥ 0 parameter controls the width of the confidence band around the observed average
rewards in α-UCB (6.7). Recall that a larger value of α forces α-UCB to select actions
with inferior average reward more frequently. Finally, the parameter 0 ≤ γ ≤ 1 controls
the mass of the uniform distribution in the mixed probability density from which Exp.3
makes its selection. All three α-UCB, Exp.3, and ε-greedy are calibrated on the entire
data set of 48000 rounds, i.e., including those rounds in which no auxiliary problem
contributes a solution.

Since each selection strategy involves some randomized choices, average rewards
are computed over 100 repetitions of the experiment. This simulation of the selection
routines has been implemented in the programming language R. For the calibration, we
call the R function optimize and obtain optimal values of ε = 0.4685844, α = 0.0046,
and γ = 0.07041455. Ideally, the selection performs better than a pure random selection
for instances that allow for a certain number of rounds to initialize the selection process.
Note that certain parameter choices of the Exp.3 (γ = 1) and ε-greedy bandits are
equivalent to a uniform random selection.

Figure 6.5 shows the selection quality for each bandit selection strategy in terms
of both their solution rate on the left and average reward on the right. While the
reward (6.6) is the immediate feedback that the selection strategies receive to adjust
their respective ranking of the auxiliary problems and depends in particular on the
fixing rate, the solution rate computation is not biased towards higher fixing rates. As
in the previous section, the figures in this section summarize only the subset of rounds
from the column “Success” in Table 6.3 ranging from 841 to 1337 depending on the
fixing rate. This means that the solution rate of an optimal selection strategy would
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Figure 6.5: Comparison of selection performance for different parameter choices.
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be a horizontal line with value 1.0 across all fixing rates. As a reference curve, each
of the six plots of Figure 6.5 shows the expected solution rate/reward of a completely
randomized selection strategy “random”. This reference curve is computed as the sample
average across all eight measured solution rates/rewards at each round. Therefore, it
represents the expected solution rate of a uniform random selection strategy.

The first part of the figure shows the solution rate (left) and average reward (right)
at every tested fixing rate for the ε-greedy selection strategy shown in Algorithm 3. The
best choice for ε computed by R is 0.4685844, which has the largest average reward across
all tested fixing rates. Some other manually selected choices of ε are also shown. Recall
from Algorithm 3 that at larger values of ε, the selection strategy tends to uniformly
select among the actions more frequently. In particular, as long as the quantity εt, which
decreases with the number of rounds, is larger than 1, every selection is a uniform
random selection. In the figure, the results for ε = 4 are indistinguishable from “random”
sampling considering both solution rate and average reward. The reason is the limited
number of rounds per instance/fixing rate in our data, which is at most 71. At an initial
choice of ε = 4, the quantity εt is larger than 1 for all rounds of our simulation data
such that only random sampling is applied by the ε-greedy bandit. At all smaller choices
of the ε-parameter, ε-greedy always improves upon the reference curve “random”.

In the middle row of Figure 6.5, we show solution rate and average reward of the
α-UCB bandit for different choices of the α parameter. The average reward of the α-UCB
selection strategy has been maximized for the parameter choice of α = 0.0046. With
this choice of α, α-UCB achieves the highest solution rate and average reward of all
three tested bandit strategies. Other choices of α are detrimental especially with respect
to the solution rate compared to the calibrated parameter value, but clearly achieve a
better solution rate than the reference curve “random”.

The last two plots depict the selection quality of Exp.3 at different values of the γ

parameter. Some hand-picked values {0.15, 0.45, 0.95} are compared to γ = 0.07041455,
the optimal value for γ as computed by the R function optimize, and the reference
line “random”. At all tested values of the γ-parameter, the selection quality of Exp.3
is better than purely randomized selection. Furthermore, the experiment reveals that
higher values of γ decrease the selection quality across all tested fixing rates. The choice
of γ = 0.95 shows, as expected, almost the same selection quality as a pure random
selection. Note that the average selection quality is higher for α-UCB and ε-greedy than
for Exp.3.

The improvements in solution rate and average reward of all bandit selection strategies
suggest that it is clearly beneficial to incorporate observed rewards into the selection
process. The optimal values for the different parameters can be interpreted as follows.
The optimal value for the γ-parameter is very close to a purely weight based Exp.3
selection strategy. The optimal value of the α-parameter shows a higher selection quality
than the nearby value of α = 0, a purely greedy selection. This is seconded by the optimal
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value of the ε-parameter. The “near-greedy” optimal values of all three parameters
indicate that it suffices to revisit inferior actions only if the reward difference to the
best action is small. This shows that learning from past observations clearly helps the
selection process at later stages.

Another observation is that the plots of Figure 6.5 seldomly cross, i.e. the ranking
between different parameter choices is the same for different fixing rates. This indicates
that the selection strategies can be safely combined with an adaptive fixing rate.

Finally, the learning success of the bandit selection methods is depicted in Figure 6.6,
in which we draw the solution rate as a function of the number of rounds within the ALNS
framework for each selection strategy. Each bandit selection strategy uses its optimized
parameter value. As a comparison serves the strategy “random”, which represents, as
before, the expected solution rate of a uniformly randomized selection strategy at each
round over the entire duration of the search. In order to aid the visual distinction between
the solution rates of the strategies, the figure also shows a straight line as the result of a
linear regression between round and solution rate. Throughout all rounds, the solution
rate of the reference strategy “random” stays relatively constant around 0.3, whereas the
solution rate of each bandit selection strategy shows an increasing trend. The ε-greedy
selection strategy shown uses the optimized value of ε. Its margin from the baseline
solution rate is already visible at rounds 6–8, and keeps improving. As an example, the
(arbitrary) mark of a solution rate of 0.6 is first reached after 24 rounds, and reliably
surpassed after 40 rounds to the selection routine, as can be seen by the corresponding
regression line. The solution rate of the calibrated α-UCB selection strategy reaches the
mark of 0.6 after 17 rounds for the first time, and almost consistently after 30 rounds.
The regression line of α-UCB is clearly the highest across all strategies. The price for this
selection performance is that the first 8 observations must be spread over the 8 auxiliary
problems to select from, which is why α-UCB achieves exactly average performance
at this early stage. At a later stage, α-UCB reaches a solution rate of 1.0 for the four
rightmost observations, i.e., α-UCB can reliably identify and select a well performing
auxiliary problem at this stage. Recall that these plots represent average solution rates
over 100 repetitions of the experiment. Also for Exp.3, the solution rate for the choice
of γ = 0.07041455 is better than the reference curve “random” after a small number of
rounds and has a clear tendency to increase with the number of rounds. Still, Exp.3
is clearly the weakest of the three bandit selection strategies even with an optimized
choice of its γ-parameter.

As a conclusion, all three bandit selection algorithms achieve an above average
selection performance, as desired. With an increasing initialization time, the learning
effect becomes more pronounced. α-UCB achieves the best solution rate, followed by
ε-greedy and Exp.3. Arguably, the good solution rate is an indication that the designed
reward function, which the bandits actually receive as feedback, captures the ranking
between the neighborhoods sufficiently well within the ALNS framework.
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Figure 6.6: Average solution rate as a function of the individual round.

6.4.3 MIP Performance

This section examines the impact of ALNS on MIPLIB 2017 in a real setting where
only one auxiliary problem is called at each round. The benchmark set MIPLIB 2017
consists of 240 instances in total and 150 instances that were not part of any of the four
existing sets that we used for calibration of the bandit selection strategies.

For the results in this section, we test the newest version of SCIP by the time of
this writing, SCIP 7.0.2 [Gamrath et al., 2020], in which ALNS is active by default. We
made a couple of minor modifications to the released version of the code:

• We generalize the RENS neighborhood 6.3. As mentioned in Section 6.2.1, RENS
is the only neighborhood without a reference solution for generic variable fixings.
If RENS does not reach its (tight) target fixing rate of 90 % at its first call, it will
be penalized with a reward of 0, which seemed unfair. We introduced fractionality-
based fixing for the RENS neighborhood, such that RENS continues to fix variables
to their (rounded) LP solution value in the order of least fractionality until it
reaches its target fixing rate.

• We implemented a multiple root initialization: In SCIP 7.0.2, ALNS is only called
(at most) once at the end of the root node. With the goal of initializing more than
one neighborhood early during the search, we allow for multiple calls of ALNS
during the root node processing of SCIP.
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• We use local reduced costs and pseudo-costs for generic variable fixing: Instead of
reduced costs and pseudo-costs relative to the root LP solution, we use local LP
solutions (at the nodes where ALNS is called) for generic variable fixings with the
goal to diversify the search neighborhoods.

• We modified the computational budget of ALNS: Currently, the budget computa-
tion of ALNS (and other LNS heuristics in SCIP) aims at calling the heuristic less
and less frequently if it does not find improving solutions. For ALNS, however,
the number of target nodes for the auxiliary problems are increased each time the
search of an auxiliary problem stalled without finding an improving solution, as
explained in Section 6.2.2. These two effects combined led to a very infrequent call
strategy for ALNS. In our revised implementation, we remedy this by introducing
a lower threshold on the relative number of branch-and-bound nodes that ALNS
may spend regardless of its success. In the budget computation (6.4), the ALNS
node budget relative to the number of nodes in the main search tree is computed
as s(t−1)+1

(t−1)+1 · κ1, which can converge to zero. In our revised implementation, we
use a lower threshold of 0.1 on the above factor, which is equal to the value of κ1

used for the simulation. As a result, we still use an adaptive budget allocation for
ALNS as described in (6.4), but allow at least 10 % of the main search nodes to
be additionally spent inside ALNS.

• We introduce a maximum number of calls to ALNS on the same incumbent solution,
which we set equal to the number of neighborhoods that are active on an instance. A
neighborhood is inactive if the structural information of the MIP (binary variables
and/or nonzero objective function) does not admit the neighborhood’s fixing
scheme. After ALNS has been called with the same incumbent solution (including
no solution) once for each of its active neighborhoods, it will immediately return
and wait for new input before it attempts to solve the next auxiliary problem.

The simulation in the previous section revealed that α-UCB (6.7) with a suitable
choice of its selection parameter α is the best performing bandit selection strategy
among the three tested strategies from Section 6.3. Recall that a larger α results in a
higher frequency of choosing inferior actions. Besides the good simulation performance,
α-UCB also provides the easiest explanation, namely the UCB value itself (6.7), why
an auxiliary problem has been selected.

All parameters values (and their SCIP names) for this experiment can be found in
Table 6.2. Besides the use of α-UCB as a selection strategy, generic (un-)fixing using the
variable prioritization from Section 6.2.1 is enabled, and a dynamic target fixing rate is
used. All auxiliary problems have 0.9 as initial, conservative fixing rate, which is only
reduced if the auxiliary problem was too easy or too restrictive (if proven infeasible) as
explained in Section 6.2.2. The stall node limit is dynamically adjusted as explained in
Section 6.2.2, and the budget computation (6.4) considers the number of found solutions
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by ALNS, such that the execution schedule is more dynamic than during the simulation
in the previous sections.

We compare against the setting ALNS off, which uses default settings of SCIP 7.0,
but deactivates ALNS.

The existing standalone LNS heuristics RENS, RINS, and Crossover are active
independently from ALNS also in the ALNS setting, as this combination of ALNS and
the standalone LNS heuristics represents the default settings of SCIP 7.0. Standalone
RENS is only used at the (end of the) root node of the search. Preliminary experiments
have shown that deactivating this single RENS call at the end of the root is detrimental
to performance.

ALNS using α-UCB has two places where randomized decisions are used, The first
random decision concerns the selection process during the first eight rounds of ALNS
where α-UCB tests one previously unseen action per round in a randomized initial order.
The second random decision is the use of a randomized score as last tie-breaker in the
variable fixing prioritization.

We test both settings using the default plus two nondefault initial random seeds for
SCIP to better cope with the huge performance variability that some instances may
exhibit. The experiment in this section has been conducted on a Linux cluster of 48
computing nodes equipped with Intel Xeon Gold 5122 at 3.60GHz and 96 GB. The time
limit was 1 hour for every instance and seed. In order to measure time as accurately as
possible, every job has been scheduled exclusively. As before, all jobs are single threaded.

Table 6.4 shows aggregated results for three performance measures, the solving time
to optimality in column Time and the primal integral Integral, as well as the total
number of solved instance/seed combinations. We treat every instance/seed combination
as an individual record. This table has been prepared using the Interactive Performance
Evaluation Tools, see Section 2.9.5, on the raw SCIP log file output. Individual outcomes
for every instance and setting are found in Table C.1 in the appendix. The two measures
are presented as shifted geometric mean time using a shift of 1 second and shifted
geometric mean primal integral [Berthold, 2013] with respect to the known optimal
solution values using a shift of 100, which corresponds to a gap of 100 % for 1 second.

For a better quantitative assessment, the table shows the relative performance for
ALNS off in columns TimeQ and IntegralQ. Factors larger than 1 in these columns
indicate an improvement using ALNS.

Using three random seeds, our benchmark consists of 720 records in total. Table 6.4
summarizes the performance for the entire test bed in the first row (group All) as
well as several interesting subgroups. The subgroup Diff contains all instance/seed
pairs for which the two settings have a different solution path. A change in the path
is detected by a change in the number of LP iterations of the main solution process.
On the complementary group Equal, ALNS does not alter the solving process. We call
a record solvable if it could be solved by at least one setting. Both groups drop all
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ALNS ALNS off
Group Instances Time Integral Solve TimeQ IntegralQ Solve

All 720 781 7814 340 1.01 1.16 344
Diff 195 171 1110 185 1.06 1.37 189
Equal 155 136 2468 155 0.98 0.98 155
Timeouts 370 3600 34018 0 1.00 1.14 0
[0,3600] 350 155 1589 340 1.02 1.18 344
[100,3600] 219 614 3493 209 1.05 1.20 213

Table 6.4: Performance results of ALNS compared with ALNS off. Numbers in bold font
indicate where one setting was strictly better than the other.

unsolvable records. This is particularly interesting for the results regarding runtime,
which is otherwise partially leveled out by records for which all settings time out and
hence contribute equally to the shifted geometric mean time.

As a fourth row, we also show the group Timeouts. On this group both ALNS and
ALNS off timed out, such that only the primal integral can be different between settings.

The last two rows use the standard bracket notation [x,3600] for x ∈ {0, 100}. A
bracket [x,3600] consists of all solvable records where the slower setting required at least
x seconds of solving time. The first bracket [0,3600] therefore consists of all solvable
records. The second bracket [100,3600] consists of 219 harder but still solvable instances.

We first focus on the differences regarding runtime and primal integral. Overall,
ALNS achieves a speedup of 1 % and an improvement in primal integral by 17 %.

On the 195 instances from the group Diff, ALNS shows a time improvement by 6 %
and an improvement in primal integral by 37 %. The group Equal is the only group
where ALNS off is faster than ALNS, reducing the time and primal integral by 2 %.
This is not surprising since for this group, ALNS only causes overhead, but does not
contribute to the solution process.

On the bracket groups, we see a time improvement by 2 % for all solvable instances
and 5 % for the harder bracket [100,3600]. The primal integral improvements are 18 %
and 20 %, respectively.

We see that ALNS achieves substantial integral improvements in all except the Equal
group. Overall, its overhead on this group is negligible compared to its benefits on the
larger group Diff.

However, there are still four records solved less with ALNS enabled on the four groups
All, Diff, [0,3600], and [100,3600]. The number of instances solved exclusively by ALNS
is 6, compared to 10 records solved exclusively by ALNS off. In total, the 16 records that
were exclusively solved by one of the two settings are split across 14 instances. This is
a first indication that ALNS does not introduce a systematic deterioration that could
explain the discrepancy in solved instances.
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One may think that ALNS has a significant overhead on those instances, but this is
actually never the case. There are cases such as the one of assign1-5-8, which can be
solved by ALNS off eight seconds before the time limit. However, ALNS being called 13
times only spends 0.3 seconds of runtime in this case.

We tested these 14 instances with seven more different random seeds. In this setup,
ALNS solves 3 records more than ALNS off. Therefore, we consider performance variability
as the main reason that we observe this discrepancy in solved instances. The effects of
new solutions found during the root node, for example, can trigger additional separation
rounds in SCIP, which may change the LP solution on which the first branching is
performed. Such effects cannot be completely avoided in a realistic experimental setup,
but are beyond the scope of ALNS.

We conclude that ALNS achieves the main goal of a MIP primal heuristic, namely the
improvement of the primal integral, very effectively. On the set of solvable instances, we
see a time improvement by 2 %, which is amplified to 5 % on the set of harder instances.

6.5 Summary

This chapter introduces Adaptive Large Neighborhood Search for MIP, a framework
around eight well-known LNS heuristics from the literature. It has been implemented
as a primal heuristic in SCIP and is publicly available since SCIP 5.0. The framework
combines a selection procedure, which is governed by strategies for the multi-armed bandit
problem, and the idea of generic additional variable fixings to adjust the complexity
of the auxiliary problems as needed. To rank between auxiliary problems, we propose
a reward function that combines the important aspects of solution quality and effort
into a single number. We have used a simulation experiment to calibrate each bandit
algorithm individually. Training the bandit strategies with this reward function shows
a clear trend to improve the solution rate with an increasing number of rounds. As a
byproduct of this simulation, we saw clear differences between the auxiliary problems
regarding the number of solutions they produce. Two of the auxiliary problems that were
most successful in our experiments, DINS and Local Branching, have been previously
inactive in SCIP. ALNS with an α-UCB bandit selection strategy has been activated
by default in addition to the standalone LNS heuristics RENS, RINS, and Crossover
since SCIP 5.0. Because of generic variable (un-)fixing, it represents an extension of
these powerful standalone LNS heuristics. Besides, previously disabled techniques such
as DINS, Local Branching, and Proximity are activated within ALNS for the first time
by default, thereby enriching SCIP’s default heuristic strategies. Before ALNS, it was
not clear how to best integrate five disabled LNS heuristics into the mix. One of the
key points is that all techniques within ALNS share a common computational budget,
which makes it possible to easily adjust the overall computational budget spent inside
LNS heuristics.
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This refactoring also has benefits regarding the future maintainability of the code.
A callback infrastructure defining the neighborhoods inside ALNS uses 50 % less code
than the individual LNS techniques in their standalone plugins, and allows for an easy
integration of new techniques into the ALNS heuristic framework.

We see several future perspectives for this work. Adaptive algorithm selection may also
be beneficial in other parts of the solver where the choice between similar methods largely
affects the overall performance. In the next chapter, we will present two such results
for diving heuristics, and for dynamic switching between different pricing strategies
of the dual simplex procedure to maximize the node throughput during the search.
Second, we hope that the software design of the introduced ALNS framework proves
useful as a development platform for incorporating novel LNS-related heuristic ideas
and algorithmic enhancements into SCIP more easily in the future. Finally, it would be
interesting to see how the bandit selection strategies compete against other selection
mechanisms from the ML community. Attempts with popular ML technology may
consider additional features of the problem instance or search statistics to train a more
informed selection method.
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7
Adaptivity Beyond Large

Neighborhood Search

In Chapter 6, we introduced an adaptive selection mechanism for large neighborhood
search heuristics that is inspired by selection strategies for the multi-armed bandit
problem introduced in Section 6.3. In this chapter, we transfer the developed ideas to
two further typical algorithmic components within an LP-based branch-and-bound solver.
This chapter is an edited version of the proceedings paper on Adaptive Algorithmic
Behavior for Solving Mixed Integer Programs Using Bandit Algorithms [Hendel,
Miltenberger, and Witzig, 2019], which we extended by additional formulae and
explanations.

Recall that a substantial amount of the total solving time of the branch-and-bound
algorithm is spent on LP (re-)optimizations to obtain both improving solutions and
lower bounds on the instance at hand. As explained in Section 2.2, LP relaxations during
the search are usually solved via the dual simplex algorithm, for which several pricing
methods exist. In this chapter, we consider three well-known and practically proven
methods called devex pricing [Harris, 1973], steepest edge pricing [Goldfarb and Reid,
1977], and quick start steepest edge [Forrest and Goldfarb, 1992]. The concrete choice of
a pricing method can make a substantial difference in the overall solving time (Sec. 7.2).

The largest subclass of primal heuristics in SCIP are diving heuristics (see Sec. 7.1).
In total, SCIP in version 5.0 features 12 diving heuristics. For such a number of heuristics,
it can be a tedious task to tune all their associated control parameters by hand.

For both classes, namely simplex pricing strategies and diving heuristics, it is
desirable to "learn" the best performing algorithms during the solving process. To this
end, we investigate computational benefits of adaptive algorithmic behavior, governed
by algorithms for the multi-armed bandit problem (Sec. 6.3). Like for LNS heuristics in
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Figure 7.1: Illustration of a diving heuristic in SCIP. The
top nodes labeled 1 – 5 are the main branch-and-bound
search tree, whereas the nodes d1, . . . , d4 represent nodes
explored within a diving heuristic. For both node types,
the labels represent the order in which the search nodes are
explored. Diving heuristics of SCIP explore an auxiliary
tree in a depth-first fashion by tightening variable bounds,
executing propagation and resolving the associated node
LP relaxations until an (in-)feasible leaf is reached. When
the diving heuristic finishes, the nodes d1 – d4 are discarded,
and the main search continues. The diving variable and
value selections are mainly aimed at providing feasible
solutions. Information carried over by diving heuristics
consists of variable branching information, conflict clauses
from infeasible nodes, and, of course, primal solutions.

the previous chapter, we propose suitable reward functions to measure the success of an
algorithm for each class. At the end of each section, we show the individual impact on
SCIP with SoPlex as LP solver.

7.1 Diving Heuristics

Diving heuristics are an important class of primal heuristics in modern MIP solvers.
Starting from a fractional LP solution, diving heuristics explore an auxiliary search tree
in a depth-first fashion. In order to speed up this auxiliary search, some node processing
aspects are altered compared to the main branch-and-bound search:

• LP relaxations are not resolved at every diving node, but only after a sufficient
amount of integer variable domains has changed through propagation. Most diving
heuristics in SCIP use 15 % changed integer variable domains as a threshold to
trigger another LP relaxation solve.

• Primal heuristics are disabled during diving. Only a simple rounding procedure
attempts to produce feasible solutions from each new LP relaxation solution.

• Cutting plane separation is disabled.

It may happen that the current node is detected infeasible, either by propagation
or after solving the LP relaxation. In this case, all diving heuristics perform a 1-level
backtrack, i.e., they undo the most recent branching decision that led to the infeasible
node, and continue the diving search in the sibling. In Figure 7.1, the node d3 is such
an infeasible node, after which the depicted diving heuristic continues searching d4. If
the sibling node is also infeasible the diving heuristic terminates.

The branching rules used in diving heuristics usually tend towards feasibility.
In contrast to that, branching rules of the main search process, e.g., reliability
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branching [Achterberg et al., 2004], focus on a good subdivision of the problem that
helps raising the dual bound quickly. For an overview of the diving heuristics available
in SCIP, we refer to [Berthold, 2008].

In SCIP, diving heuristics also provide useful search information. For example,
domain propagation is applied after rounding variables, to reduce variable domains or
even detect infeasibility. The latter can be analyzed by conflict analysis techniques,
e.g., [Achterberg, 2007b; Witzig et al., 2017], to derive additional global information.

7.1.1 Selection Strategy

We have extended SCIP by a new primal heuristic plugin called adaptive diving that
selects one out of nine available diving heuristics at each call.

Similarly to the budget considerations (6.4) for ALNS in the previous chapter, also
the diving heuristics of SCIP measure their effort spent, but not in terms of search
nodes, but in terms of LP iterations. Adaptive diving tries to spend its budget on the
best performing diving heuristics. The budget computation is influenced by the success
of adaptive diving in terms of found solutions, and by the amount of LP iterations it
spends relative to the LP iterations of the main branch-and-bound search.

If the budget computation allows for its execution, adaptive diving selects and
launches a diving heuristic. Each call where adaptive diving executes a diving heuristic
is called a round and denoted by t = 1, 2, . . . , as in the previous chapter.

Concretely, let κbb denote the total number of Simplex iterations spent on node
LP relaxations during the main branch-and-bound search. Let s(t− 1) and sbest(t− 1)
denote the number of (incumbent) solutions found by adaptive diving until round t− 1.
Let κad(t− 1) denote the total number of LP iterations consumed by adaptive diving.

The LP iteration budget of adaptive diving is computed relative to the LP iterations
κbb of the main search as

1500 + s(t− 1) + 10 · sbest(t− 1) + 1
t

· 0.1 · κbb − κad(t− 1). (7.1)

In (7.1), t = 1, 2, . . . denotes the next round of adaptive diving. The LP iteration budget
of adaptive diving has an initial offset of 1500 iterations. The budget is computed relative
to the LP iterations of the main search and depends on the number of solutions found
by adaptive diving, where newly found incumbent solutions are given a higher weight.
The next round t of adaptive diving is executed when (7.1) becomes positive.

At each round t, we propose a weighted sampling strategy as follows. Let A denote
the set of diving heuristics available to adaptive diving. For a diving heuristic a ∈ A
and round t = 1, 2, . . . , we denote by τback

a (t) the number of backtracks and by τ conf
a (t)

the number of conflict clauses generated. Clearly, those two numbers are different from
zero only in rounds in which a is the selected diving heuristic. Our sampling weight for
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default adaptivediving

# solved nodes time solved nodesQ timeQ

all 491 320 2550 152 327 0.938 0.958
affected 284 274 1120 46 281 0.939 0.945

[10,tilim] 245 210 2693 158 217 0.899 0.922
[100,tilim] 144 109 5821 526 116 0.904 0.909

Table 7.1: Aggregated results for adaptive diving over three random seeds. Columns:
shifted geom. mean of generated nodes (nodes, shift: 100), solving time in seconds (time,
shift: 1), and respective quotients (nodesQ and timeQ).

diving heuristic a is computed as

pa,t ∝


t−1∑︁
t′=1

τback
a (t′)

t−1∑︁
t′=1

τ conf
a (t′) + 10

+ 10−4


−1

(7.2)

The symbol ∝ reads “proportional to”, which means that we omit the normalization
constant such that the probabilities sum up to one. We use the summation term 10
in the denominator to force a more uniform weight distribution between the available
diving heuristics during the first executions of adaptive diving, thereby ensuring that all
diving heuristics are selected several times for a meaningful initialization of the score.
The second summand 10−4 ensures that the weight pa,t is never the reciprocal of zero.

In round t = 1, all selection probabilities are equal, such that pa,1 represents a
uniform distribution among the available diving heuristics. With increasing rounds
t > 1, the weights (7.2) will prefer those diving heuristics with a small backtracks to
conflict ratio. The motivation for this ratio is that a conflict clause represents useful
learned information for the main branch-and-bound search even beyond the execution
of an individual heuristic. Therefore, our weighted sampling prefers exactly those diving
heuristics that provide many useful conflicts with little effort, which we measure by the
number of backtracks performed.

7.1.2 Computational Results

In this section, we report the influence of adaptive diving on a large set of heterogeneous
MIP benchmark instances. Our experiment is based on a pre-release version of SCIP 6.0
and SoPlex 3.1.1. The experiment has been performed on a test set MMMc of 496
instances combining the benchmark sets MIPLIB 3, MIPLIB 2003, MIPLIB 2010, and
COR@L (see [Achterberg et al., 2006; Bixby et al., 1998; Koch et al., 2011] and [Coral]).
Each experiment has been conducted on a cluster with identical machines to ensure
comparable running time measurements.
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Table 7.1 compares the performance of SCIP in its standard configuration (default)
and with adaptive diving selection (adaptivediving) on the MMMc test set with
a time limit of one hour. An instance is called “solved” only if it has been solved
consistently for each of three tested random seeds. For default, we further report the
number of branch-and-bound nodes in column “nodes” and the solving time in column
“time” using shifted geometric means shifted by 100 nodes and 1 sec., respectively. For
adaptivediving, we show node and time shifted geometric means relative to default
as our baseline in columns “timeQ” and “nodesQ”, respectively. We group the instances
in different categories, which are shown in different rows of Table 7.1. The first row
shows the results for all 491 instances, including those that timed out. The second row
“affected” shows the results for instances that could be solved consistently across all
three seeds by default or adaptivediving, and where there was a different solution
path taken in at least one of the three tested seeds, measured by the number of simplex
iterations of the main search. Note that these do not account for potential additional
simplex iterations spent inside of adaptivediving or the existing diving heuristics of
SCIP. The third and fourth row of Table 7.1 restrict the affected instances further.
[10,tilim] filters out all instances that could be solved in less than 10 seconds by both
default and adaptivediving. Similarly, [100,tilim] filters out all instances that could
be solved in less than 100 seconds by both default and adaptivediving.

Using adaptivediving, SCIP could solve seven more instances consistently within
the time limit. On non-trivial instances in the group [10,tilim] where at least one
configuration needs 10 or more seconds, it achieves a speed up of almost 8 %, and a
comparable reduction in the number of branch-and-bound nodes. A detailed comparison
for all instances in MMMc can be found in Table D.1 in Appendix D.

7.2 Pricing for the Dual Simplex Algorithm

The dual simplex algorithm is one of the most important techniques for LP problems and
key for the LP-based branch-and-bound approach. Among the algorithmic choices within
the simplex algorithm, one is the determination of the direction to search for a new basic
solution, called pricing step. In this chapter, we consider three well-known and practically
proven methods called devex pricing [Harris, 1973], steepest edge pricing [Goldfarb and
Reid, 1977], and quick start steepest edge [Forrest and Goldfarb, 1992]. All methods try
to select a direction that is steepest in regard to the dual objective improvement, thereby
balancing accuracy of the decision and computational overhead per iteration. Devex
pricing requires the least work per iteration but may lead to a higher number of total
iterations. On the other hand, steepest edge computes accurate improvement measures
that often lead to a considerable smaller iteration count, and an initialization step that
can be expensive to compute, depending on the starting basis. While this is less relevant
for pure LP solving, in the branch-and-bound context many LP re-optimizations are
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performed that start from an advanced basis. Here, quick start steepest edge sacrifices
accuracy for a faster initialization. We refer to the literature for an in-depth description
of these pricing techniques.

LP relaxations solved during the root node are special. The initial LP relaxation has
to be solved from scratch without a starting basis available, which typically requires
a considerably longer effort than subsequent LP reoptimizations. During separation,
cutting planes refine the initial LP relaxation as additional rows. The corresponding
tighter LP relaxations can be resolved using the dual simplex algorithm, starting from the
optimal basis for the previous LP relaxation, which is still dual feasible. However, added
rows typically require more simplex iterations than resolves inside the branch-and-bound
tree, where a child node LP relaxation differs from its parent LP relaxation in only a
single bound change, namely the branching decision.

Because of this structural difference between separation loop LP relaxations and
LP relaxations solved inside the branch-and-bound search tree, we focus solely on LP
relaxations solved inside the branch-and-bound tree, i.e., after the root node has been
solved. Therefore, each LP relaxation inside the search tree comprises a round t = 1, 2 . . .

in bandit terminology.

7.2.1 Selection Strategies for Simplex Pricing

The set of available LP pricings (actions) consists of A := {devex,qsteep,steep}. Here,
devex denotes devex pricing due to Harris [1973], the default rule used by SoPlex,
qsteep denotes quick start steepest edge pricing introduced by Forrest and Goldfarb
[1992], and steep denotes classical steepest edge pricing [Goldfarb and Reid, 1977].

In round t = 1, 2, . . . in which a node LP relaxation needs to be reoptimized,
a selection strategy first chooses one of the available pricings at ∈ A. Using at as
pricing strategy, the LP relaxation is solved to optimality, after which we observe the
corresponding running time τat (t) of this LP relaxation solve. The goal of the selection
process is to maximize the LP throughput by carefully selecting the fastest among the
available pricing strategies. It is not sufficient to consider the number of LP iterations,
because the costs per iteration vary between the pricing strategies.

For a subset A′ ⊆ A of the available pricings, we denote by

TA′ (t) :=
t∑︂

t′=1
1{at′ ∈A′}

the total number of times that one of the pricings in A′ has been selected in rounds 1
through t, and we denote by

τ̄A′ (t) :=
t∑︂

t′=1
1{at′ ∈A′}

τat′ (t′)
TA′ (t)
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the average running time spent on the pricings in A′. The goal of the following selection
strategies is to use the above information to select a pricing that minimizes the running
time of the LP relaxations during the search.

UCB As first selection strategy, we use α-UCB (cf. Sec. 6.3). In order to apply the UCB
Formula (6.7), it is necessary that the reward always lies within the interval [0, 1].

We propose to transform the observed running time τat (t) of pricing at in round t

into the reward

rlp
at

(t) :=
(︄

1 + τat (t)
τ̄A (t)

)︄−1

. (7.3)

The actual observed runtime of the selected pricing at in round t appears in the
denominator in Formula (7.3). It is scaled by the average runtime across all actions
observed so far. First note that rlp

at
(t) ∈ [0, 1], as required. Observing a runtime that

matches exactly the average runtime observed so far yields a reward of exactly 1
2 .

Below average runtimes achieve rewards larger than 1
2 , whereas above average runtimes

achieve rewards that are smaller than 1
2 . Recall that UCB requires a parameter α that

determines the width of the confidence band. For the experiments in this section, we set
the parameter α = 2.

greedy We also test a greedy strategy that always selects the pricer with minimum
modified average runtime

τ̄σ
a (t) :=

t∑︂
t′=1

1{at′ =a}
τat′ (t′)

Ta (t) + σa

. (7.4)

The use of the shift values encourages more exploration among the available pricers at
the beginning of the search, such that the modified average runtime is meaningfully
initialized for each pricing a ∈ A. Later during the search, when Ta (t) ≫ σa, the
modified average runtime approaches the average runtime τ̄a (t).

Not all pricings are treated equally by the greedy selection strategy. By default,
SCIP uses devex pricing throughout the search. Therefore, we propose to use devex
preferably inside the greedy selection strategy as follows. We always select devex for
the first 10 rounds. After that, we simply keep using devex if it requires less than
20 LP iterations on average. Second, we assign different shift values σdevex = 100 and
σa = 50 for A \ {devex}. With this choice, a different pricing devex ̸= a ∈ A is only
used if a is substantially faster than devex. Note that greedy does not use any sort of
randomization.

weighted As a last variant (weighted), we use the modified average runtime (7.4) of
the greedy selection method as input for a weighted sampling. In each round t = 1, 2 . . . ,
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we make a randomized selection based on the sampling weights

pa,t ∝
(︂
τ̄σ

a (t) + 10−4
)︂−1

. (7.5)

Again, the symbol∝ reads “proportional to”, which means that we omit the normalization
constant such that the probabilities sum up to one.

7.2.2 Computational Results

Due to runtime considerations, we selected a subset of 105 instances from our ground set
of 496 instances. A time limit of 900 seconds was used for each solve. Note that we use
actual runtime to drive the selection strategy because SoPlex provides no deterministic
runtime measurement. Therefore, this is the only experiment in this thesis where the
solution path of the algorithm may differ even if an instance is solved twice with the
same initial conditions. We accomodate for this by repeating the solution process of
each instance at 4 different LP random seeds.

In Table 7.2, we compare the obtained results by considering the average LP through-
put (LPs per second) and running time of three fixed pricers {devex, qsteep, steep} and
the three proposed selection strategies UCB, greedy, and weighted from Section 7.2.1.

Pricer solved LPthpt LPthptQ time timeQ

devex 64 74.24 1.000 91.82 1.000
steep 65 62.66 0.844 99.41 1.083
qsteep 60 58.00 0.781 101.13 1.101

UCB 63 79.02 1.064 92.80 1.011
weighted 65 71.93 0.969 93.95 1.023
greedy 65 85.06 1.146 89.11 0.970

Table 7.2: Results for LP pricers. Columns: shifted geom. mean LP throughput (LPthpt,
shift: 1), time in seconds (time, shift: 1), and respective quotients (LPthptQ, timeQ).
105 instances, 4 LP seeds, 900 sec. time limit

Column “LPthpt” shows the shifted geometric mean LP throughput for each pricing,
for which we use a shift value of 1. We also present the LP throughput “LPthptQ”
relative to the baseline devex, which is the default of SCIP. This measure, LP throughput,
is the direct measure that our proposed selection strategies should maximize.

Among the fixed pricers, devex is clearly the one with the highest LP throughput.
The throughput can be increased by 6 % when using UCB, and even 14 % when using
greedy. In contrast, weighted does not yield an improved LP throughput.

It should be noted that even if the LP throughput of one pricing is higher than for a
different pricing, this does not necessarily mean that the solution time of the branch-
and-bound procedure is necessarily smaller, which is mainly caused by performance
variability. The faster pricing may result in a different optimal LP solution, which
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leads to an inferior branching decision and a larger search tree as a result. This can
also be observed in Table 7.2. We show in column “time” the shifted geometric mean
runtime and in column “timeQ” the relative results with devex as baseline. While the
greedy strategy even yields a 3 % time improvement, the positive result of UCB for the
LP throughput is still too marginal to make SCIP consistently solve problems faster
on average. A detailed comparison for all 105 instances can be found in Table D.2 in
Appendix D.

7.3 Summary

We have extended the adaptive control mechanisms studied in Chapter 6 to two additional
classes of algorithms within a MIP solver. For each class, we introduce a suitable reward
function to rank the different algorithms.

The adaptive LP pricing intuitively has the nature of a stochastic bandit scenario.
This intuition is confirmed by our results, in which the greedy and UCB strategy yield
a higher LP throughput than any fixed pricer.

On the contrary, for diving heuristics, it is sufficient to select successful ones more
often, which is why a weighted sampling selection strategy can be preferred. In both
cases, we obtain considerable performance improvements on a diverse set of general MIP
instances.

On the technical side, all diving heuristics of SCIP were refactored to obey a common
design, which then allowed the introduction of adaptive diving. While the work on
adaptive diving is completed, the adaptive LP pricing is still prototypical. Future work
on this requires to replace the measured solving time by a deterministic reward criterion.
For the diving heuristic, it is interesting to compare the obtained results with new
selection principles that are not based on past rewards.
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8
Estimating Search Tree Size

Users of MIP solvers still face the seemingly irremediable curse that comes with solving
NP-hard combinatorial problems: it is very hard to predict how long a solver will take
to solve an instance by any other means than to just wait for termination. Since the core
algorithm of all state-of-the-art MIP solvers is branch-and-bound, the main problem is
that of estimating the size of the B&B tree.

This chapter is an edited copy of the article Estimating the Size of Branch-And-
Bound Trees [Hendel et al., 2021] which has been accepted for publication. In the article,
we formally proof that approximating the size of the B&B tree within a factor of 2 is
impossible unless P = NP .

In this chapter, we focus on online tree size estimation, i.e., during the execution of
the algorithm. Therefore, we treat the general problem of online tree size estimation
over the entire duration of the search process. The main contributions are:
◦ a review of state-of-the-art methods which estimate search progress and B&B tree

size online;

◦ a tree size estimation method via time series forecasting, including a new representa-
tion technique which we call adaptive resolution.

◦ a new method, based on the frequency of leaf nodes in the B&B tree, which
approximates the search progress;

◦ new tree size estimation methods applying Machine Learning techniques to combine
individual methods;

◦ an efficient implementation and integration of these algorithms in SCIP. Since its
newest release [Gamrath et al., 2020], SCIP version 7 displays an estimate of the
search progress as a percentage in a new column of the output;

◦ a computational comparison of all methods.
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The experimental results show that at the start of the search, the best ML method
improves upon the best individual method in estimation accuracy by a considerable
margin and by a factor of 10 compared to a method based on the gap, the de facto
progress measure of current MIP solvers.

This chapter is structured as follows. We review existing literature on tree size
estimation in Section 8.1. Section 8.2 introduces search completion as the main label
which we try to approximate. Afterwards, two types of tree size estimate methods are
presented: the ones directly based on approximations of search completion are presented
in Section 8.3, and the ones that use time series forecasting techniques are explained in
Section 8.4. In Section 8.5, we describe the details of a simulation to calibrate several
parameters of the time series forecasting based estimators. In Section 8.6, we give some
remarks about the implementation in SCIP. In Section 8.7, we show how to combine
the tools from previous sections via Machine Learning techniques. We then perform
computational experiments to compare all discussed methods in Section 8.8.

8.1 Search Tree Exploration & Tree Size Estimation

The exponential nature of the branch-and-bound algorithm 2.3 has motivated research
on early estimates of final search attributes such as the search tree size, the total amount
of time, or the optimal objective value of the given problem. Most previous contributions
have been made in the area of tree size prediction, mostly for general search trees. An
application inside branch-and-bound is particularly challenging because the changing
primal bound results in occasional pruning of huge parts of the search tree.

Knuth [1975] suggested averaging the individual predictions of repeated random
probes down the search tree in a Monte Carlo fashion as an unbiased estimate of the
search tree size. Knuth’s model assigns probabilities to each potential branch of the
backtracking procedure that estimate the relative sizes of the child subtrees in each
branch. The method then computes an estimate of the total tree size by sampling root-
to-leaf paths subject to these probabilities. Knuth showed that even when naively using
uniform probabilities, this sampling procedure produced reasonable results, but the high
variance of the method makes it unreliable, especially when the tree is unbalanced [Kilby
et al., 2006].

An extension based on partial backtracking has been proposed by Purdom [1978].
As a generalization of Knuth’s method, Chen [1992] introduced the use of stratifiers in
order to reduce the variance of the estimate. The concept of stratifiers is also referred to
as type system [Lelis et al., 2013, 2014; Zahavi et al., 2010]. Chen’s stratified sampling
traverses a partial search tree in breadth-first order. Both Knuth and Chen discuss an
additional difficulty of branch-and-bound algorithms for tree size prediction: the absence
of knowledge about the optimal objective value of the problem at hand.
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Recently, Lelis et al. [2013, 2014] suggested several extensions to stratified search.
The first, a two-step stratified sampling, constructs a set of stratified search trees in
the manner of Chen [1992] and then simulates a depth-first search to only visit nodes
from the previously sampled trees. To better cope with a decreasing objective when new
incumbent solutions are found, Lelis et al. [2013] store additional objective information in
the form of histograms. This is inspired by the use of histograms for tree size predictions
by Burns and Ruml [2013] in the context of iterative deepening in general search trees.
The second approach by Lelis et al. [2014] is called retentive stratified sampling. It
uses auxiliary data on solution paths gathered during previous probes to model more
correct pruning behavior of the actual search algorithm. Retentive stratified sampling
produces predictions of similar quality without the exhaustive memory requirements of
the two-step stratified search [Lelis et al., 2013].

Kullmann [2009] extended Knuth’s ideas by augmenting the estimation with
additional information about the progress of the search. Provided that one has a
measure of how much progress is made by a particular decision, a quantity called the
τ -value can be derived that can be used to estimate the relative sizes of the child subtrees
of a particular search node. Kullmann studied this problem in the context of SAT, where
for example, the number of satisfied clauses can be used as a sufficient progress measure.
Kullman showed that this method could be used to derive probabilities that reduce the
variance exhibited by Knuth’s sampling method.

A similar model was studied for MIP, where a suitable progress measure on the search
tree is the dual gap change as branching decisions are made [Le Bodic and Nemhauser,
2017]. They derived a quantity that describes the asymptotic tree sizes, referred to as
the ratio φ, which is similar to Kullman’s τ -value. In [Belov et al., 2017], this model is
applied to tree size estimation for MIP, where it is shown that the use of the φ value for
deriving subtree weights roughly halves the error in the estimate in the sampled tree
size compared to using Knuth’s uniform probabilities. All the above methods tackle the
problem of offline sampling., i.e., before the actual search begins.

While these methods can to some degree be extended to the online case (see e.g.
[Belov et al., 2017]), some information is lost in the process. For instance, one way to
adapt offline sampling to online tree size prediction is to treat the leaves obtained by the
tree search procedure as if they had been obtained randomly. However, while in offline
sampling, samples are drawn independently, this does not hold when obtaining leaves
online. This phenomenon clearly materializes in the difference between offline and online
results of Belov et al. [2017]. Indeed, at any given point in the search, supposing that
samples are independent equates to supposing that the first or latest samples observed
are equally good predictors of the next samples to be observed. In other words, any
such method would ignore possible trends in the series of samples. However, we argue
that there are multiple types of trends affecting the samples obtained in the B&B. First,
since the depth of the tree grows as the search progresses, increasingly deeper leaves are
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found, although this is not a monotonic process. Second, and conversely, after a primal
solution is found which improves the primal bound, nodes can be pruned at shallower
depths than previously. A similar phenomenon occurs with strong conflicts [Achterberg,
2007b].

Other factors such as the phase-specific solving approaches from Chapter 5 contribute
to creating varying trends in the amount of resources required to reach a leaf. Hence,
in an online setting, while we cannot suppose that samples are independent, capturing
trends may mitigate this loss.

In contrast, recent work, including the present chapter, has focused on online
estimation methods. These include the Weighted Backtrack Estimator [Kilby et al.,
2006], the tree profile estimation [Cornuéjols et al., 2006] and the Sum Of Subtree
Gaps [Özaltın et al., 2011], which we use as reference methods for our computational
study. They are explained in Sections 8.1.1, 8.2, and 8.3.

Note that tree size estimates have been extensively studied for A∗, see e.g. [Thayer
et al., 2012] and references therein. In particular, this reference reviews concepts of
progress measures and velocity-based estimates for A∗.

8.1.1 Tree Profile Estimation

This section describes the tree profile estimation [Cornuéjols et al., 2006]. For the tree
profile estimation, a depth histogram of the search tree nodes (the “tree profile”) is
recorded during the search. A few key characteristics of the tree profile such as the
maximum depth are then turned into an estimation of the final tree size.

For search state Tk, let dmax
k := maxv∈V leaf

k
∪V inner

k
d(v) denote the maximal depth of

any solved node at Tk. A depth profile Dk is defined as

Dk := {|Dk,i| : i = 0, . . . , dmax
k }, where Dk,i := {v ∈ V leaf

k ∪ V inner
k : d(v) = i}.

The maximum width depth is dwidth
k := argmaxi |Dk,i| and the last full depth

dfull
k := max {i : |Dk,i| = 2i}. Following the intuition that between a (reasonably

initialized) search state Tk and TU these statistics do not differ too much, the
profile estimate [Cornuéjols et al., 2006] approximates the growth factors1

ρU,i := |DU,i|
|DU,i−1|

as follows:

ρk,i :=


2, if 1 ≤ i ≤ dfull

k ,

1 + dwidth
k −i

dwidth
k

−dfull
k

if dfull
k < i ≤ dwidth

k ,

1− i−dwidth
k

dmax
k

−dwidth
k

, if dwidth
k < i ≤ dmax

k .

1The growth factors are called γ-sequence in the original publication [Cornuéjols et al., 2006].
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The growth factors are finally turned into an estimation of the final tree size as

Û
profile := 1 +

dmax
k∑︂
i=1

i∏︂
j=1

ρk,i.

8.2 B&B Search States and Search Completion

The B&B algorithm 2 records a sequence of U + 1 search states T0, . . . , TU . We will refer
to T1, . . . , TU−1 as intermediate states and to TU as the final state. All states represent
trees that have the same root and additional information regarding the primal and dual
bounds. Between two successive search states Tk and Tk+1 at some k ∈ {0, . . . , U − 1},
the algorithm permanently removes the current node v from the set of open nodes V open

k

to either mark it as a final leaf or split it into subproblems by branching. Concretely, v

can be marked to be a final leaf if its dual bound z∗
k(v) exceeds the primal bound Zk.2

This ensures that each search state Tk represents a binary tree.
Throughout the chapter, we assume 2-way branching decisions, which are most

common in state-of-the-art MIP solvers. This ensures that each search state Tk represents
a binary tree. For k ≥ 0, this implies in particular that the relation

2 ·
(︂⃓⃓⃓

V leaf
k

⃓⃓⃓
+ |V open

k |
)︂

= |Vk|+ 1 (8.1)

holds, where we define the set of all nodes Vk := V open
k ∪ V inner

k ∪ V leaf
k .

Equation (8.1) can be shown as follows. First note that the equation trivially holds
for a tree that has the root node as the only leaf node. For trees where |Vk| > 1,
the root node is an internal node with degree 2. Since the leaves have degree 1 and
all other internal nodes have degree 3, the sum of the degrees can be written as
(
⃓⃓⃓
V leaf

k

⃓⃓⃓
+ |V open

k |) + 3(|Vk| − (
⃓⃓⃓
V leaf

k

⃓⃓⃓
+ |V open

k |)− 1) + 2. The number of edges in a tree is
always equal to |Vk| − 1. Using that twice the number of edges equals the sum of the
degrees of the nodes yields Equation (8.1).

Furthermore, since a solved node enters either V leaf
k or V inner

k , the relations
⃓⃓⃓
V leaf

k

⃓⃓⃓
+

|V inner
k | = k and therefore |Vk| − |V open

k | = k hold at each search state. Note that this
implies |VU | = U when the B&B algorithm terminates.

Definition 8.1 (Search Completion). Let T = T0, . . . , TU be a search state sequence.
For every state Tk, k ∈ [U ], in T , we define the search completion as the fraction of
solved nodes compared to the size of the final tree

Γk = k

U
=

⃓⃓⃓
V leaf

k

⃓⃓⃓
+ |V inner

k |
|VU |

. (8.2)
2In practice, SCIP does not report nodes that have been pruned as solved nodes.
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Figure 8.1: Density approximation of the difference between the relative time of the
search and the search completion Γk

In real optimization scenarios, U and thus Γk are only known after the branch-and-
bound algorithm terminated. In Sections 8.3 and 8.4 we review measures that can be
used to estimate Γk and U online.

In practice, the search completion Γk also approximates the runtime of a MIP solver
quite well. For the data set used in Sections 8.7 and 8.8, which comprises more than
16 000 search states across various MIP instances (see Section 8.7.1 for more information),
we show in Figure 8.1 the close correspondence between the relative time of the overall
search and the search completion Γk. To this end, Figure 8.1 depicts the data density
of the observed differences between the relative time, i.e., the time normalized to [0, 1],
and the search completion in our data set. A high data density at a coordinate on
the horizontal axis reflects a high number of observed records near this coordinate.
The density has a peak at zero, in which case the search completion approximates the
actual fraction of time exactly. Since deviations from zero are mostly positive, the search
completion is slightly pessimistic as it often overestimates the remaining time. This can
be explained by the fact that like most solvers, SCIP does not spend its entire time
on the tree search itself, but also spends significant time on presolving and root node
processing. In conclusion, it seems generally reasonable to use the search completion Γk

as a surrogate for the runtime.
Throughout this chapter, since estimations may over- or underestimate the actual

tree size at termination, we measure the error of a tree size estimation Û using the
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normalized ratio

E(Û , U) = max
{︄

e(Û , U), 1
e(Û , U)

}︄
, where e(Û , U) := Û

U
, (8.3)

which penalizes under- and overestimations Û of U by the same factor (see, e.g., [Kilby
et al., 2006; Özaltın et al., 2011]).

8.3 Approximations of Search Completion

Let Tk for k ∈ [U ] denote a search state during the B&B algorithm. Any approxima-
tion Γ̂k > 0 of the search completion Γk from Definition 8.1 provides a simple way to
estimate the search tree size as

Û := k

Γ̂k

, (8.4)

since k is equal to the number of solved nodes at Tk. Clearly, good approximations of
Γk can be expected to give accurate estimates of the final tree size.

In the following, we review four approximate measures of Γk and the related weighted
backtrack estimation [Kilby et al., 2006]. We start with the well-known gap.

8.3.1 Gap

Every B&B solver reports a relative gap between the primal and dual bound in one
form or another, which makes the gap the most common progress measure for B&B.

We are interested in the gap at a search state Tk, taking into account the primal
bound Zk and the dual bound Z∗

k . The gap monotonically decreases from 1 = γ(Z0, Z∗
0 )

to 0 = γ(ZU , Z∗
U). Therefore, taking 1− γ(Zk, Z∗

k) yields a monotone approximation of
Γk.

In the absence of any dedicated progress measure in the output of MIP solvers, the
gap serves as the de facto progress measure. However, as we will see in our experiments,
it provides the poorest approximation of all search progress measures defined in this
section. One shortcoming of the gap is that for infeasible MIPs, the gap is equal to 1
at all search states before TU , and assumes 0 only at the last search state. Even for
feasible MIPs, if the primal bound does not change, only improvements to the global
dual bound are reflected by the gap. For instances for which the difficulty lies in finding
an optimal solution, or towards the end of the B&B search, where the absolute gap is
small, changes in the global dual bound occur very infrequently. The Sum of Subtree
Gaps, presented in the next section, has been designed to take into account the change
of dual bound at every node, rather than only the change of the worst dual bound.
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8.3.2 Sum of Subtree Gaps (SSG)

The Sum of Subtree Gaps (SSG) has been proposed by Özaltın et al. [2011] as a better
runtime estimate than the gap. The main idea is to split the overall search tree into
a disjoint family of subtrees, and to average the gaps of the different subtrees. First,
recall from Definition 2.4 that at each search state Tk, we have a node dual bound
z∗

k(v) available for every node v ∈ Vk. Each node v also represents its own subtree
subtree(v) ⊆ Vk, which consists of v itself and all its direct and indirect descendants. If
v ∈ V leaf

k ∪ V open
k , then subtree(v) = {v}. In all other cases, v is an inner node with at

least two descendants. If v is an inner node, z∗
k(v) is equal to the smallest dual bound

across the open nodes in subtree(v), because final leaf nodes have a node dual bound of
infinity.

Consider a set of nodes V ′ ⊆ Vk with the property that for all v ̸= v′ ∈ V ′

subtree(v) ∩ subtree(v′) = ∅. In other words, v and v′ are the roots of disjoint subtrees
of Vk. Note that V open

k satisfies this property from search state Tk onwards, i.e., for all
search states k′ ≥ k. We compute

f(V ′) :=
∑︂

v∈V ′
γ(Zk, z∗

k(v))

as the (unscaled) sum of subtree gaps. Further, let

predZ(k) := min {k′ ∈ [k] : Zk′ = Zk}

denote the last iteration of B&B up to k in which the primal bound improved. The SSG
uses a special set of subtree roots V ′ ⊆ Vk to compute f , namely the

⃓⃓⃓
V open

predZ(k)

⃓⃓⃓
open

nodes V open
predZ(k) at the time at which the primal bound has improved last. For v ∈ Vk, let

subtree(v) ⊆ Vk denote the set containing v and its descendants. The SSG is defined as

γssg(Tk) := ϕk · f(V ssg
k )

over the set

V ssg
k := V open

predZ(k)

of open nodes when the incumbent changed last, with a scaling factor ϕk defined as

ϕk :=


1, if k = 0,

ϕk−1, if k > 0 and Zk = Zk−1,

ϕk−1 ·
f(V ssg

k−1)
f(V ssg

k
) if k > 0 and Zk < Zk−1.
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The scaling factor changes every time a new incumbent solution is found. Özaltın et al.
[2011] prove that due to this scaling factor the SSG γssg(Tk) is monotonically decreasing
from γssg(T0) = 1 to γssg(TU) = 0, like the gap. Therefore, an approximation of search
completion based on SSG is given by

Γ̂ssg
k = 1− γssg(Tk).

The SSG represents a generalization of the gap that takes into account the gaps of
individual subtrees, which cover the remaining open portion of the search tree. A dual
bound change in any of the involved subtrees is reflected by the SSG, but not necessarily
by the gap, because the gap only changes with the global dual bound.

One limitation of both the gap and the SSG is that changes in the dual bounds are
not reflected in absence of a primal bound. The progress measures presented in Sections
8.3.3, 8.3.4 and 8.3.5 are not based on the primal or dual bound. They can thus be used
for feasibility problems and more generally for other tree search algorithms.

8.3.3 Tree Weight

The tree weight has been first used by Kilby et al. [2006] as the denominator of the
weighted backtrack estimator (studied in Section 8.3.4). Its use as a progress measure
was proposed in [Anderson et al., 2018]. This measure assigns to each node v ∈ Vk a
weight 2−d(v), where d(v) is the depth of v. Note that every parent weight equals the
sum of the weights of its children. We call

ω(Tk) :=
∑︂

v∈V leaf
k

2−d(v)

the tree weight at state Tk.

Proposition 8.2. Let T be a nonempty sequence of U + 1 search states of a B&B tree,
and let ω : T → [0, 1] be the tree weight as above. It holds that

0 = ω(T0) ≤ · · · ≤ ω(TU−1) < ω(TU) = 1

Proof. We show inductively that for each search state

∑︂
v∈V leaf

k

2−d(v)

⏞ ⏟⏟ ⏞
= ω(Tk)

+
∑︂

v∈V open
k

2−d(v) = 1. (8.5)

At the initial search state T0, the set of leaf nodes V leaf
0 is empty and the set of open

nodes V open
0 contains the root node at depth 0 as only node. From this, it follows that

ω(T0) = 0.
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Assume that the invariant (8.5) holds for any intermediate search state Tk. When
moving to Tk+1, there are two cases. Let vk ∈ V open

k denote the node processed in
iteration k + 1 of the branch-and-bound algorithm 2. At the end of iteration k + 1, vk is
removed from the set of open nodes and enters either V leaf

k+1 or V inner
k+1 . In the first case, it

is trivial to see that the invariant (8.5) still holds, because the contribution of vk moves
from the right summand to the left. In the other where vk becomes an inner node its
two children v′, v′′ are added to the set of open nodes. We therefore have

∑︂
v∈V leaf

k+1

2−d(v) +
∑︂

v∈V open
k+1

2−d(v) =
∑︂

v∈V leaf
k

2−d(v) +
∑︂

v∈V open
k

2−d(v) − 2−d(vk) + 2−d(v′) + 2−d(v′′)

=
∑︂

v∈V leaf
k

2−d(v) +
∑︂

v∈V open
k

2−d(v) −2−d(vk) + 2 · 2−d(vk)−1⏞ ⏟⏟ ⏞
= 0

= 1,

such that the invariant also holds at search state Tk+1.
Since the final search state TU is the only search state in T at which the open nodes

are empty, the invariant (8.5) also shows that ω(TU−1) < ω(TU) and that ω(TU) = 1.

The tree weight provides a non-decreasing measure of the progress of a B&B search.
At the start of the search, V leaf

0 = ∅, thus ω(T0) = 0. After every final leaf node,
the tree weight strictly increases and the search ends at step U with a tree weight of
1. With those properties, the tree weight ω can be directly used as approximation of
search completion,

Γ̂tree weight
k := ω(Tk).

Consider the example B&B search tree depicted in Figure 8.2. The tree has 9 nodes,
which are numbered as if they have been traversed from left to right in depth-first order.
The leaf weights are w4 = w5 = 0.125 and w6 = w8 = w9 = 0.25. From step 0 to 9, the
tree weight therefore assumes the 6 distinct values ω(T0) = ω(T1) = ω(T2) = ω(T3) = 0,
ω(T4) = 0.125, ω(T5) = 0.25, ω(T6) = ω(T7) = 0.5, ω(T8) = 0.75, ω(T9) = 1.

Remarks In this chapter, we consider uniform node weights between a node and its
sibling that only depend on the depth of the node. The proof of Proposition 8.2 shows
that the tree weight is generalizable to nonuniform node weights. In fact, every weight
scheme in which the parent weight is distributed across its children in a branching step
yields a tree weight with the desired properties that can be used as approximation of
search completion. The ideal weight scheme distributes the parent weight relative to the
sizes of the respective subtrees of the children. Knuth [1975] has shown that this yields
a perfect estimation of tree size with zero variance at the first leaf node. Obviously,
equipped with knowledge of the sizes of each subtree, a perfect tree size estimation
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1

2

3

4 5

6

7

8 9

Figure 8.2: Example search state at termina-
tion (U = 9,

⃓⃓⃓
V leaf

9

⃓⃓⃓
= 5, |V open

9 | = 0). We
assume that the tree was traversed from left
to right in depth-first order. The final leaves
are V leaf

9 = {4, 5, 6, 8, 9} and internal nodes are
V inner

9 = {1, 2, 3, 7}.

is available before the search even begins. Also Belov et al. [2017] experimented with
nonuniform node weights based on the individual improvements in the dual bound of
the children. Like estimations of the subtree sizes, also dual bound improvements in the
children are not readily available during branching in general, and need to be estimated.
From an implementation point of view, a disadvantage of nonuniform node weights
is an additional memory requirement to store the individual weights. In preliminary
experiments, we did not obtain satisfying results with the methods described by Belov
et al. [2017] in our online setting, which is different from the offline sampling that they
apply. We therefore do not consider nonuniform node weights for the remainder of this
thesis.

8.3.4 Weighted Backtrack Estimator (WBE)

The Weighted Backtrack Estimator (WBE) by Kilby et al. [2006] is an online method for
binary search trees explored by depth-first search. For each probe down the tree until a
leaf node at depth d is reached, the estimate for the size of the tree considering only
this single probe is 2d+1 − 1, while the probability of reaching this particular leaf by
randomly choosing whether to go left or right at every depth is 2−d, which coincides with
the node weight and which Kilby et al. [2006] combine into a weighted mean. Therefore,
in our notation, the WBE is a projection of the current tree weight to estimate the
number of leaf nodes at completion. To this end, at search state Tk with positive tree
weight ω(Tk) > 0, the weighted backtrack estimate is computed as

Û
wbe
k := 2 ·

⃓⃓⃓
V leaf

k

⃓⃓⃓
ω(Tk) − 1. (8.6)

Note that the tree size estimation (8.6) is not equivalent to the one obtained when using
Γ̂tree weight

k = ω(Tk) within (8.4), which yields

Û
tree weight
k :=

⃓⃓⃓
V leaf

k

⃓⃓⃓
+ |V inner

k |
ω(Tk) .
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k 1 2 3 4 5 6 7 8 9⃓⃓⃓
V leaf

k

⃓⃓⃓
0 0 0 1 2 3 3 4 5

λ(Tk) −0.5 −0.25 −0.17 0.125 0.3 0.42 0.36 0.44 0.5

Table 8.1: Values of the leaf frequency for the running example in Figure 8.2.

One noticeable difference is that Û
wbe
k is only sensitive to the creation of final leaves,

not open nodes. Kilby et al. [2006] consider the case where all leaves have depth d≫ 1,
except the left child of the root node, which is a leaf. Suppose the leaf with depth 1
is visited first. After two leaf nodes, one with depth 1, the other d, WBE computes a
tree size estimate of 4

2−1+2−d − 1 ≈ 7, which can be arbitrarily far from the d + 1 nodes
already traversed to reach the leaf at depth d. Until the number of samples approaches
2d−1, the sample of depth 1 will render WBE essentially useless: for a large enough depth
d, the estimate is approximately 4|D| − 1. As pointed out in [Le Bodic and Nemhauser,
2017], the 0.5 weight of the left child encodes an initial implicit assumption that both
sides of the tree have the same size. After finding a sample at depth d on the right side
of the tree, it should become clear that the assumption was incorrect. However, this
is not taken into account by the WBE other than by the slow incorporation of other
samples with virtually insignificant individual weight.

8.3.5 Leaf Frequency

In this subsection we introduce a new progress measure called Leaf Frequency, based on
the well-known observation that due to Equation (8.1),

⃓⃓⃓
V leaf

U

⃓⃓⃓
/U ≈ 1/2, i.e., the final

leaf nodes comprise about one half of the overall tree at the end of the search. In order
to extend this to a search progress measure at intermediate search states Tk, we define
the leaf frequency as

λ(Tk) := 1
k

(︃⃓⃓⃓
V leaf

k

⃓⃓⃓
− 1

2

)︃
. (8.7)

The subtraction of 1
2 in the formula above is the necessary correction such that λ(TU ) = 1

2

at termination. More generally, by combining (8.1) and the relation |Vk| − |V open
k | = k,

we obtain

λ(Tk) = 1
k

(︃⃓⃓⃓
V leaf

k

⃓⃓⃓
− 1

2

)︃
= 1

k

(︃1
2(|Vk| − 2 |V open

k |+ 1)− 1
2

)︃
= 1

2 −
|V open

k |
2k

.

From this equation, we derive that λ(Tk) ≤ 1
2 and that λ(Tk) = 1

2 only for k = U .
Moreover, λ(Tk) ≥ −1

2 holds for all k and λ(Tk) > 0 after the first final leaf, i.e., as soon
as
⃓⃓⃓
V leaf

k

⃓⃓⃓
≥ 1.

Table 8.1 lists the leaf frequency for all U = 9 iterations of the running example
from Figure 8.2. This example shows that the leaf frequency λ(Tk) is not necessarily
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monotone in contrast to the other measures discussed in this section.
We propose to transform the leaf frequency into an approximation of search

completion via

Γ̂leaf-freq
k = 2 ·max{0, λ(Tk)}.

We prefer this transformation over its alternative λ(Tk) + 1
2 , which has the disadvantage

that it assumes a search completion of at least 50 % after the first final leaf node, which
is often too optimistic.

8.4 Estimation of Tree Size via Time Series Fore-
casting

In the previous section, we presented approximations of the search completion based on
four measures: gap, SSG, tree weight, and leaf frequency, each of which can be translated
into an estimate of the final search tree size using (8.4). In particular the tree weight and
the related WBE suffer from a typical limitation if applied to optimization problems.
When an improving solution is found, new samples will reflect it, but no mechanism
revisits the estimates provided by previous samples, despite the fact that in practice,
many nodes are pruned by bound, hence they would have been pruned at shallower
depth, yielding smaller estimates. This can be fixed if the entire tree is kept in memory
and reprocessed to compute new estimates upon improvement of the primal bound.
However, this is more memory than the solving process itself keeps, which only requires
the open parts of the tree, and would therefore create a substantial overhead to the
search.

In this section, we present a different approach which uses Double Exponential
Smoothing (DES), a time series forecasting technique, for each search progress measure.
DES was also the approach used in the original paper [Özaltın et al., 2011] that introduced
the SSG.

8.4.1 General Definition of Double Exponential Smoothing
(DES)

Given a time series (Yt)t=0,1,2,..., DES estimates the level qt of the time series, representing
a fitted value of Yt, and its trend st, which has the role of a slope. Both are computed
as weighted averages of the training data, with exponentially decaying weights on older
observations, as follows. Let 0 < α, β < 1 and denote by q0 and s0 initial level and
trend values. For t = 1, 2, 3, . . . , DES fits the level and trend component to the data
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recursively via

qt = α Yt + (1− α)(qt−1 + st−1),
st = β (qt − qt−1) + (1− β)st−1.

(8.8)

At time step t∗, the current level and trend components qt∗ and st∗ are used to compute
a forecast of h ∈ N steps into the future as

Ŷ t∗+h := qt∗ + h · st∗ . (8.9)

Note that (8.8) is a simple variant of DES [Holt, 2004], but more complex models of
DES exist [Hyndman et al., 2008].

8.4.2 Double Exponential Smoothing for Tree Size Estimation

As values Yt, we use the four measures from Section 8.3 (not their corresponding
search completion approximations), namely tree weight ω(Tk), leaf frequency λ(Tk), gap
γ(Zk, z∗

k(Vk)), and SSG γssg(Tk). As a fifth measure, we consider the number of open
nodes |V open

k |, which is strictly positive at all intermediate steps 0 < k < U and reaches
0 at k = U .

We know that, by definition of the tree weight, the search is complete when it reaches
a state TU that satisfies ω(TU ) = 1, hence we define and denote the target value of this
time series to be YU = 1. To use DES at a time series step t∗, we therefore compute (8.9)
to find the time step h∗ in the future at which the forecast Ŷ t∗+h∗ reaches YU = 1 as

h∗ := YU − qt∗

st∗
. (8.10)

We do the same for the four other time series, with target values YU = 0.5 for leaf
frequency λ(Tk), 0 for gap γ(Zk, z∗

k(Vk)) as well as SSG γssg(Tk), and 0 for open nodes
|V open

k |.
Note that for non-monotone time series (leaf frequency and open nodes), it may

happen that the trend st∗ has the “wrong” sign. Indeed, we have observed that the
open nodes time series often roughly follows unimodal behaviour, with a maximum
attained around the middle of the search. For monotone time series, st∗ may be zero if
the time series plateaus for sufficiently many consecutive observations. In either case,
the forecast cannot reach the target value, which means that DES cannot provide a
tree size estimation. For any time series for which this occurs, we do not use DES and
instead report twice the number of solved nodes at t∗ as tree size estimation. For the
open nodes time series, this corresponds to the observation that while the trend is not
decreasing, the midpoint of the search has not been reached yet.
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8.4.3 Time Series Steps and Adaptive Resolution

Parts of the process to design, implement and calibrate the methods we present
throughout the chapter require storing the time series produced during a solve. As
B&B trees can grow very large, we looked for ways to reduce the size of the input
for memory and runtime purposes. A first improvement consists in only recording
search completion measures or open nodes at search states where a new leaf node
was found. To further reduce the number of points in the time series, we introduce a
compression method that does not create a data point at every search state Tk, k ∈ [U ],
but compresses observations made at multiple consecutive states into a single data point.
While a compression of a fixed number of search states into a single data point would
be the simplest approach, the number of data points would still grow linearly, but more
importantly, it would reduce the number of data points available to make predictions at
the start of the search, where they are most needed.

Instead, we use a process which we call Adaptive Resolution. In adaptive resolution,
the number of data points is upper bounded by a parameter C, which stays constant
during the search, and instead the number of search state compressed into a single
data point increases as the tree grows. As a result, at the start of the search, every
search state provides a data point in the time series. In order to not exceed C records,
every time we reach the maximum capacity C, we compress the C records into C/2
re-processed records, thereby changing the resolution.

More formally, consider the leaf index set

Kleaf := {k ∈ [U ] :
⃓⃓⃓
V leaf

k

⃓⃓⃓
=
⃓⃓⃓
V leaf

k−1

⃓⃓⃓
+ 1} =: {k1, . . . , k|V leaf

U |}.

The leaf index set considers only half as many observations as the full index set [U ]. It
always contains the terminal step U . Restricted to the leaf index set, the tree weight time
series becomes strictly monotone, which can be an advantage for forecasting because
the trend component is always positive. Thus, we will use the leaf index set Kleaf from
now on.

DES will assign most of the weight to the most recent individual leaf nodes. However,
the information used by an estimation method at a single leaf can have a high variance.
For instance, in the case of the tree weight, the relative difference between two leaf
weights is exponential in the difference of their respective depth. We overcome this
deficiency by essentially creating batches of 2r leaves as a single time step, starting with
r = 0, and by adaptively increasing r over time, as more data becomes available. More
precisely, for r ∈ Z≥0 we denote the index set at resolution r by

Kr := {k2r , k2·2r , k3·2r , . . . , kR·2r}, where R :=
⌊︂ |V leaf

U |
2r

⌋︂
.
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For r ≥ 0, we always batch 2r leaves together into a single time series step. Time series
step t = 1, 2, . . . , R corresponds to search state Tkt·2r . At Tk, the time series has only
been recorded for all Kr ∩ [k].

The use of adaptive resolution mainly affects the estimation from DES. With an
increased resolution r ≥ 0, the meaning of a step into the future changes. At the
beginning of the search, a forecast of 10 steps corresponds to 10 leaf nodes. Later during
the search, a single forecast step can comprise many leaf nodes. For each search state
k ≥ 0 for which V leaf

k > 0, there exists a well-defined time series step t(k), corresponding
to the most recent leaf in Kr prior to (and including) k. For this time series step t(k),
we first make a prediction of the remaining number of time series steps h∗ according
to (8.10). We then take into account the current resolution to rescale t(k) + h∗ and
estimate the total tree size U at termination via

Û := 2 · 2r (t(k) + h∗)− 1, (8.11)

where the term in parentheses is an estimation of the final number of terminal nodes⃓⃓⃓
V leaf

U

⃓⃓⃓
and therefore turned into an estimate of the total tree size via (8.1).

8.5 Calibration of Double Exponential Smoothing

The quality of double exponential smoothing highly depends on the choice of the level
and trend parameters α and β in (8.8). This section describes the process used to
optimize the parameters of DES and the adaptive resolution capacity C in particular
over a large set of MIP instances using multiple snapshots for each instance. In the
experimental evaluations of Section 8.8, α, β, and C are then fixed for all instances.

A direct calibration technique for α and β could consist, for example, in a grid
search, where at every grid point we evaluate the accuracy of estimates on a set of MIP
instances. In order to avoid repeating the same MIP runs, we solve each instance once
and record the entire search, on which we can evaluate tree size estimation methods
via an offline simulation as in [Belov et al., 2017]. The simulation code is written in
R [R Core Team, 2018] using the package forecast [Hyndman et al., 2019; Hyndman
and Khandakar, 2008]. It is publicly available from https://github.com/GregorCH/
treesize-estimation.

8.5.1 Simulation Setup

As training set, we use the combination of the following four MIP benchmark
sets: MIPLIB 3 [Bixby et al., 1998], MIPLIB 2003 [Achterberg et al., 2006],
MIPLIB 2010 [Koch et al., 2011], and COR@L [Coral]. Each of these 496 instances
is solved using SCIP 6.0 [Gleixner et al., 2018] and the entire search tree is recorded
as a VBC file [Leipert, 1996]. Instances not solved to optimality within 2 hours or
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with fewer than 10 leaves are discarded, leaving 233 instances. The input data for
every tree size estimation method for all leaves is then extracted from the VBC trees,
using a customized version of the Python code https://github.com/pierre-lebodic/
bnb-mip-estimates/. Our simulation code applies adaptive resolution to this offline
data exactly as if it had been collected online. Since this calibration simulation is based
on recorded VBC trees, we have all leaf nodes of the tree available.

Tree size estimation methods need to be evaluated throughout the entire search
process, rather than at the end of the search. For each simulated tree, we record the
normalized ratio at up to 95 points during the search. Specifically, we create a point
in the time series for each moment at which ω(Tk) first exceeds {0.01, 0.02, . . . , 0.95}.
There can be fewer than 95 estimations as multiple weight levels can be first reached
with a single leaf. As an example, the number of considered records for the pigeon-10
tree is 91. At a resolution capacity C = 1024, the total number of considered records
over the trees of all 233 instances that we use below is 10 322.

To conduct the simulation, we filter the initial record set to only the required leaf
nodes that our SCIP implementation with adaptive resolution would use. Concretely, at
a chosen capacity of C = 1024, these are all first 1024 leaf nodes {k1, . . . , k1024}. After
this, the resolution changes to r = 1, such that the 512 leaf nodes {k1026, k1028, . . . , k2048}
are kept. At k2048, the resolution is increased the next time, and we only keep the
512 leaf nodes {k2052, k2056, . . . , k4096}, and so on. Next, the accumulated tree weight is
used to identify at most 95 out of all those leaf nodes at which the tree weight level
reaches another full percent. Such a leaf might be k4000, with its current resolution of
r = 2, thereby folding four leaf nodes into one time series step. For computing the single
prediction for DES parameters α, β at k4000, we collect all the 1000 records including
k4000 corresponding to the resolution r = 2, namely {k4, k8, k12, . . . , k4000}, which is
exactly the data our SCIP implementation has available at runtime.

For example, the largest tree in our data set belongs to the instance pigeon-10 and
has almost 14 million leaf nodes. Its compressed simulation data contains 7507 recorded
leaf nodes and their time series data, at a maximum resolution of r = 13. Note that this
record number depends on the selected capacity C.

8.5.2 Calibration of the Adaptive Resolution Capacity C

We dynamically change the resolution each time the current step t reaches a maximum
capacity denoted by C time series steps. Using powers of 2 for the resolution provides
an efficient way to update the time series data during the search. For each time series
we store at most C values at resolution r = 0. When we record the C’th leaf node at
search state TkC

, we drop all odd records Y1, Y3, . . . , YC−1 such that our record history
contains C/2 values and set the resolution to r = 1. With the resolution update, we
essentially change the meaning of a time series step. The previously recorded Y2 is now
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Figure 8.3: Normalized ratio at different capacities C used by adaptive resolution.

Y1, Y4 is now Y2, such that we have the compressed search history at the new resolution
readily available. From now on, we record the time series value of every 2nd leaf node
until we reach the 2C’th leaf node.

For a general resolution r ≥ 0, as long as the storage size is not exhausted (i.e.,
|Kr ∩ [k]| < C), we extend the time series at each 2rth leaf by 1 step, and the DES
level and trend values are incrementally updated using (8.8). When the storage size is
reached, we increase the current resolution by 1 and drop all odd observations. This
effectively shrinks the number of stored time series values to half the capacity C

2 . We
then recompute the DES fit for the compressed index set from scratch. At a resolution
of r = 10, each time step t = 1, 2, 3, . . . represents 28 = 256 search states.

Adjusting the resolution capacity C can lower the variance of the observations made
at leaves by adaptively batching them. While we would like to optimize C, α and
β together, this is computationally expensive. Instead, we first optimize C by a line
search. For every value of C, we use ETS [R.J. Hyndman, 2018], which considers errors,
trend, and seasonality components of a time series, hence the name ETS.3 The key
property of ETS for our simulation is that it optimizes α and β at each record to the
available training data, thereby allowing for a calibration of C independent of the DES
parameters.

We test capacities between C = 23 and C = 215, for which we compute the geometric
mean normalized ratio E of the estimation obtained by an ETS forecast for each of the
four measures tree weight, leaf frequency, open nodes, and SSG.

3We use the forecast-package of R, which features the ETS method.
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Time Series α β E E ETS

Tree Weight 0.65 0.15 3.32 3.30
Leaf Frequency 0.30 0.33 2.71 2.82
SSG 0.60 0.15 2.71 3.01
Open Nodes 0.60 0.15 2.69 2.90

Table 8.2: DES parameters that minimize the geometric mean normalized ratio E(Û , U)
for each time series on the training set.

The effect of compressing multiple observations into a single data point is illustrated
by Figure 8.3, where the effect of changing C is measured as the geometric mean
normalized ratio (8.3) Unsurprisingly, a very small capacity (e.g. 8) leads to a relatively
high error, while an arbitrarily large capacity (i.e. no compression) leads to a relatively
small error. The most interesting takeaway is that there are finite values of C for which
no accuracy is lost, and in fact DES produces slightly more accurate results.

The rightmost entry uses an infinite capacity, which corresponds to not using adaptive
resolution. At a capacity of 1024, all four measures achieve their best or second best
normalized ratio over all tested capacities. Therefore, we consider the choice of 1024 as
a good compromise between a coarse view on the entire search process and a fine view
on the local, recent behavior. Note that in particular, the obtained normalized ratios at
C = 1024 are consistently better than without adaptive resolution (C =∞).

8.5.3 Calibration of the DES Parameters α and β

For every time series, we calibrate the values of α and β that minimize the geometric
mean normalized ratio. We conduct a grid search by varying α in steps of 0.05 between
0.1 and 0.95 and β in steps of 0.05

α
between 0.1

α
and 1. Table 8.2 shows the obtained

values of α and β per time series, their corresponding geometric mean normalized ratio
E as well as the obtained normalized ratios using ETS instead (at C = 1024), which fits
the parameters α and β adaptively to the time series at hand. Note that we did not
explicitly optimize the parameters for the gap time series, for which we use the same
parameters as for the SSG.

Interestingly, the calibrated parameters from Table 8.2 result in a lower (and hence,
better) normalized ratio over the entire data set than could be obtained by ETS, despite
the additional degrees of freedom of ETS. We explain this surprising result by the fact
that ETS is too sensitive to the past behavior of the time series compared here, which
yields a larger normalized ratio if an unpredictable event such as a new incumbent
solution alters the search process significantly. The parameters from Table 8.2 may not
fit the training data as accurately, but produce more robust estimations on average.
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8.5.4 Example Instance danoint

In order to illustrate the DES based tree size estimates, we discuss their behavior for
the MIPLIB instance danoint in detail. In Figure 8.4, we visualize the discussed time
series and resulting tree size estimations. The data for the plots have been obtained
with SCIP 6.0, which we extended by the necessary functionality to record all discussed
time series and estimations; more details on the implementation are given in Section 8.6.
The time series estimations are all obtained by a DES forecast. We record all five time
series tree weight, gap, SSG, leaf frequency, and open nodes with an adaptive resolution
as explained in Section 8.4.3. We increase the resolution every time we reach C = 1024
observations. The parameters α and β have been calibrated for each of the five time
series, individually, see Appendix 8.5. Independently of adaptive resolution and to help
our later computational experiments across instances, our implementation outputs at
most 100 “estimation snapshots” per instance, namely at every leaf node at which
another percent of tree weight has been reached. We compare five tree size estimations.
The tree weight, leaf frequency, gap, SSG, and open nodes are illustrated as a function
of the number of leaf nodes with respect to the left y-axis (“Value”) of Figure 8.4.4 Note
that the number of open nodes is the only time series with values outside the interval
[0, 1]. The dashed curves illustrate how the corresponding estimations evolve with an
increasing number of leaf nodes. The estimations are obtained by first computing the
number of remaining time series steps h∗ as explained in Equation (8.10), which are then
converted into an estimation of the final tree size using Equation (8.11) to compensate
for the adaptive resolution.

Figure 8.4 depicts tree weight values that appear to increase almost linearly with
the number of leaves. The corresponding tree weight estimations start steep at the
beginning, yielding underestimations of the final tree size during the first 10 000 leaves.
After approximately 20 000 leaf nodes, the estimations stays very close to the true final
tree size of 1 million nodes, which is visualized as a black horizontal line. The tree weight
estimation is consistently closer to the actual tree size than the other estimations during
most of the search.

The values of the leaf frequency rise very steeply at the beginning of the search, but
stabilize very soon and increase at a lower pace afterwards. The steep incline yields
underestimations of the actual tree size at first. Later, it shows an overestimation of
the actual tree size that is comparable to the SSG estimation. The leaf frequency is
not monotonic in general, although it appears strictly increasing in the top part of
Figure 8.4.

The number of open nodes increases during the first half of the search and drops
during the second half until it reaches zero at termination. (We observe this roughly
unimodal behavior in most instances.) Linear forecasts such as DES cannot cope with

4For technical reasons, we show the complement 1− γ(Zk, z∗
k(Vk)) of the gap.
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Figure 8.4: Examples of the five time series and their DES estimates as a function of leaves
for instance danoint. For technical reasons, we show the complement 1− γ(Zk, z∗

k(Vk)) of
the gap.
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8. Estimating Search Tree Size

this reversing trend by themselves. As long as the number of open nodes increases, also
the corresponding trend into the future stays positive, in which case we use twice the
number of already explored nodes as estimation, as mentioned in Section 8.4.2. When
the number of open nodes starts to decrease, and hence the trend starts to become
negative, the first few forecasts overestimate the final tree size, especially at the turning
point. For the remainder of the search, the estimations converge to the true tree size.

This example shows that the proposed time series estimations on tree weight and
leaf frequency can yield quite accurate predictions early during the search.

8.6 Implementation in SCIP

With the aim to provide a unified and understandable theoretical presentation, the
B&B measures from Section 8.3 and the forecasting methods from Section 8.4 have been
introduced as functions of the B&B search state Tk. The SSG as well as the time series
methods require information from past search states, the former in form of a primal
bound updating search state, the latter because double exponential smoothing takes
into account the entire search sequence for forecasting.

Clearly, it is computationally prohibitive to explicitly save the entire search state
sequence. Furthermore, the measures and time series can be efficiently incremented
during the search and need not be recomputed from scratch. This section provides
some details about our SCIP implementation of the estimation methods. Our code is
encapsulated as an event handler plugin that reacts on node events of the main search.
It is invoked when a branching occurs in line 16 in Algorithm 2 or when a node becomes
a final leaf in line 14. We extended the node event system of SCIP in order to capture
such events even for open nodes that are pruned (e.g., because of a new primal bound).
The event handler maintains the statistics

⃓⃓⃓
V leaf

k

⃓⃓⃓
, |V inner

k |, |V open
k | for an internal model

tree that counts all internal or final leaves as solved. We hence ensure that our model
tree is in fact binary, so that our assumptions regarding the tree weight ω(TU) = 1 or
the leaf frequency measure hold at the end of the search.

Some further remarks about specific implementations of the measures and estimations:

Tree Weight, Leaf Frequency, Gap The values of all three measures tree weight
ω(Tk), leaf frequency λ(Tk) and gap γ(Zk, z∗

k(Vk)) are updated in constant time from
their values at Tk−1.

SSG The SSG [Özaltın et al., 2011] is more involved than the previous measures
because it requires efficient updates of the individual subtree dual bounds for the
different subtrees rooted at V open

predZ(k), i.e. the open nodes at the last primal bound
improvement. For each subtree, we keep a priority queue of all open nodes v ∈ V open

k

sorted by their dual bound. This allows for an efficient removal or addition of nodes with
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8.7 Learning the Search Completion

at most logarithmic effort O(log(max{|subtree(v)| : v ∈ V open
predZ(k)})). The value of the

SSG only changes if a dual bound defining node is removed from its respective subtree
after the node has been branched or pruned. The priority queues are reinitialized at
each update of the primal bound.

WBE The weighted backtrack estimation [Kilby et al., 2006] can be computed in
constant time from the value of the tree weight measure and the statistic

⃓⃓⃓
V leaf

k

⃓⃓⃓
of the

model tree.

Profile Estimation For the profile estimation [Cornuéjols et al., 2006], we incre-
mentally update the depth profile Dk in constant time by adding 1 to the entry d(v)
corresponding to the selected node v. The computation of Û

profile can be done in O(dmax
k ).

In order to save time, we store the statistics (dfull
k′ , dmax

k′ , dwidth
k′ ) at the last step k′ < k

when the estimation was computed, as well as the estimated tree size. If the statistics
have not changed between k′ and k, we report the same estimation.

8.7 Learning the Search Completion

We now show how Machine Learning models can be trained to approximate the search
completion Γk, using measures we introduced in Sections 8.3 and 8.4 as features. Unlike
the previous section, we are interested in good approximations of the search completion
Γk ∈ [0, 1], as our preliminary experiments showed that using the final tree size instead as
labels for training does not generalize as well to unseen instances. Using the approximated
search completion, a tree size estimate can then be retrieved as we have before, using (8.4).

8.7.1 Data Set

We use the MIP instance sets MIPLIB 3 [Bixby et al., 1998], MIPLIB 2003 [Achterberg
et al., 2006], MIPLIB 2010 [Koch et al., 2011], MIPLIB 2017 (benchmark version 2)
from Chapter 3, and COR@L [Coral], resulting in a set of 671 unique instances. For
the collection of the data, we use our SCIP implementation with all search completion
measures and time series forecasts enabled. Our code periodically outputs an estimation
snapshot of all methods, namely each time that the tree weight reaches another percent,
from which we obtain up to 99 estimation snapshots per instance. We consider the 276
instances which can be solved within 2 hours and require at least 100 nodes, resulting
in a data set comprising 16k estimation snapshots as data points.

In order to validate the generalization of the learners on unseen instances, we
randomly split the instances of our data set into 80 % training and 20 % test set, such
that all records for one instance are fully contained in either the training or the test set.
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Figure 8.5: A visualization of the learned regression tree. In contrast to the linear models,
this tree can only output one out of 8 distinct values as approximation of the search
completion.

8.7.2 Training

We formulate the problem to approximate the search completion based on the available
measurements as a regression task, i.e., we seek to find a good approximation

f(Xk) ∼ Γk

that maps features Xk available at any search state Tk to the actual, a posteriori
search completion Γk. To this end, we use nine features: at estimation snapshot Tk (to
which there exists a unique time series step t(k) ∈ {1, . . . , C}, where C is the adaptive
resolution capacity), we take both the measured values and the DES trends of the

• tree weight: ω(Tk), stree weight
t(k)

• SSG: γssg(Tk), sssg
t(k),

• leaf frequency: λ(Tk), sleaf-freq
t(k)

• gap: γ(Zk, z∗
k(Vk)), sgap

t(k).

As a ninth feature, we use a Boolean indicator equal to 1 if the time series of the number
of open nodes has a decreasing trend component, and 0 otherwise.

We train four different regression models on all nine features, unless indicated
otherwise, to learn the search completion:
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1. linear model: a linear regression;
2. linear monotone: a linear regression on only two of the nine features: tree weight

ω(Tk) and SSG search completion Γ̂ssg
k , which are both monotone;

3. regression tree: a single regression tree;
4. random forest: a random forest regression.

A regression tree [Breiman et al., 1983] partitions the training data recursively by
selecting a feature and a value to split such that the variance after the split is minimized.
The learned regression tree is depicted in Figure 8.5.

Random Forests [Breiman, 2001] are ensembles of regression trees. For a random forest,
a (predefined) number N of regression trees is trained on independently bootstrapped
subsets of the training data samples, which contain approx. 60 % of training data. Also,
the number of features to consider at each split is limited. These choices prevent a
random forest from overfitting. An approximation by a random forest regression is the
mean approximation of its N regression trees. We conduct the learning procedure with
the R package randomForest. This package also allows to set a limit on the number
of samples at the terminal nodes of the tree, to prevent overfitting. We train a large
random forest random forest big with N = 200 trees and a minimum terminal node
size of 25 as well as one called random forest reasonable with N = 100 trees and
a minimum node size of 75. The trained weights of the linear monotone regression on
tree weight and SSG yields a mixture of roughly 40 % tree weight and 60 % SSG. After
normalization such that the sum equals 1, the corresponding weights of 0.4 and 0.6
ensure that the search completion approximation is monotone increasing.

Remarks. We have also experimented with other regression techniques such as gradient
boosted trees [Friedman, 2001] and neural networks to approximate search completion.
Furthermore, we also tried to combine the individual tree size estimates (including
WBE and profile). In all cases, we omit the obtained results for brevity, which were
comparable, but inferior to the accuracy of the presented random forests. In conclusion,
it seems that attempting to approximate search completion instead of the actual tree
size indeed works far better, since the wide variance of tree size estimations makes fitting
a linear model, particularly regression, to the data very difficult and ineffective.

8.8 Evaluation

In this section, we evaluate the estimation quality of all the techniques discussed in this
chapter. In Section 8.8.1, we evaluate the search completion estimation techniques from
Section 8.3 and 8.7. Then, in Section 8.8.2, we put everything together and evaluate
the corresponding tree size estimations against those produced by DES in Section 8.4
and several reference methods from the literature. Lastly, Section 8.8.3 compares the
quality of the tree size estimation methods on several of the larger model groups from
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Figure 8.6: MSE between the search completion Γk and its approximations.

the MIPLIB 2017 submission pool, (see also Section 3.4), with and without individual
training on the model groups.

8.8.1 Comparison of Search Completion Estimation Methods

Figure 8.6 provides a comparison of the quality of the learned approximations from
Section 8.7 compared to the quality of the untrained measures tree weight, SSG, leaf
frequency, and gap from Section 8.3. We report the Mean Squared Error (MSE) (Γ̂−Γk)2

between the approximation and the actual value, which is the target function that the
regression procedure attempts to minimize. We report the MSE separately for the
training and test set. In parentheses, we show the ratio between the corresponding
MSE and the MSE obtained by the SSG method, chosen as a baseline as it is the best
performing method among the individual (untrained) measures of search completion. We
further categorize the data points into an early, intermediate, and late stage based on
the value of the tree weight measure ω(Tk): we call a data point early if 0 ≤ ω(Tk) ≤ 0.3,
intermediate for 0.3 < ω(Tk) ≤ 0.6, and otherwise late. The four untrained search
completion approximations based on gap Γ̂gap

k , SSG Γ̂ssg
k , tree weight Γ̂tree weight

k , and leaf
frequency Γ̂leaf-freq

k serve as comparison baselines. Figure 8.6 clearly shows that the gap
alone offers the worst individual approximation quality, especially during the early and
intermediate stages. Instead, the tree weight and SSG measures provide substantially
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closer approximations of search completion throughout all stages, with a slight advantage
for the SSG.

Moreover, Figure 8.6 demonstrates that all learned methods improve upon the
results of the best individual method SSG throughout all three stages on the test set.
The monotone linear regression, which combines the SSG and tree weight measures,
and the linear regression on all nine features improve upon the SSG by relative factors
between 15–20 % and 20–50 %, respectively. Interestingly, a single regression tree achieves
a comparable performance to a linear regression during the late stage, although the
regression tree only uses eight different labels (see Figure 8.5).

The two trained random forest models achieve the best test results by a significant
margin on the training set. On the test set, they improve upon the SSG by 30 %–64 %
in the MSE.

The reason for the better performance of the regression forests compared to linear
regression is that the feature values are only used indirectly by the forests, namely
for deciding the “bucket” into which a data point falls, but the actual value that the
regression forest assigns to an input is not computed as a weighted combination of the
input as by linear regression. This allows to better integrate a logical feature such as
the decreasing/increasing trend of the open nodes.

Among the tested methods, a random forest regression outperforms all other methods
in all respects on both the training and the test set. Regarding the linear methods, it is
surprising how well even the monotone estimation based on only tree weight and SSG
works. The next section compares the estimation performance of these learned search
completions to the individual methods from the previous sections.

8.8.2 Comparison of Tree Size Estimation Methods

We are now ready to compare the tree size estimation quality of all discussed methods.
We categorize the discussed methods into four groups based on how the estimation is
derived.
1. The first group comprises the four search progress measures from Section 8.3. We

treat (a suitable transformation of) each measure as approximation of the search
completion Γk and compute a tree size estimation using (8.4).

2. Two reference methods, the profile estimation [Cornuéjols et al., 2006] and the
WBE [Kilby et al., 2006], are treated as a separate group because they use different
approaches.

3. For the third group, all estimates are computed via DES, see Section 8.4. As explained
in Section 8.4.3, the considered time series use an adaptive resolution with maximum
capacity of C = 1024 and are indexed over the leaf index set Kleaf. For each time
series, the corresponding parameters α and β from Table 8.2 in Appendix 8.5 are
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Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation
gap 861 0.371 36.305 20.7 % 34.7 % 40.0 %
SSG 861 0.053 5.702 43.0 % 58.9 % 66.3 %
tree weight 861 0.081 4.134 30.5 % 45.5 % 61.6 %
leaf frequency 861 0.256 6.590 29.0 % 44.5 % 52.5 %

Custom Estimations
profile 861 – 79.930 19.5 % 30.3 % 35.7 %
WBE 861 – 4.686 30.4 % 46.9 % 59.1 %

Double Exponential Smoothing
open nodes 861 – 5.717 40.9 % 52.1 % 58.1 %
gap 861 – 5.686 36.6 % 50.4 % 58.5 %
SSG 861 – 4.695 39.1 % 55.4 % 62.6 %
tree weight 861 – 4.532 35.1 % 51.9 % 60.7 %
leaf frequency 861 – 4.876 42.4 % 56.9 % 61.9 %

Learned Methods
linear model 861 0.042 7.580 47.0 % 59.7 % 67.4 %
linear monotone 861 0.044 4.088 50.1 % 62.8 % 70.6 %
regression tree 861 0.049 3.447 49.6 % 62.0 % 69.9 %
random forest big 861 0.037 2.835 51.9 % 71.0 % 75.8 %
random forest reasonable 861 0.036 2.830 54.2 % 70.7 % 75.7 %

Table 8.3: Estimate comparison during the early stage (0 ≤ ω(Tk) ≤ 0.3) on test set.

used to update DES and produce estimations. For the gap time series, we use the
same parameters as for the SSG.

4. The last group comprises five learned approximations of search completion using
linear or forest regression, see Section 8.7.
For the two groups that approximate search completion, the computed approximation

is corrected via Γ̃ = max{Γ̂, 10−6}, which is necessary because the gap and SSG
approximations may still be at 0, and the linear regressions may even yield negative
approximations in rare cases. As data set, we use the same 16k estimation snapshots as
in Section 8.7.1 and the same training/test split. We use the learned predictions based
on the training set of Section 8.7 and apply them to the test set. We omit the results
for the training set, on which the learned methods from Section 8.7 already have an
advantage, and focus on the test set, which comprises a total of 3452 records.

We summarize the obtained estimation ratios on the test set records in three
Tables 8.3–8.5, where we distinguish an early, intermediate, and late stage depending
on the tree weight value. For every estimation method, we report the geometric mean
normalized ratio E (8.3) of its tree size estimation. This value is bounded from below
by 1, which would be a perfect estimation. Nine of the tested methods derive their
estimation from an approximation of the search completion. For those, we report the
MSE between the approximation and the actual search completion. As in [Özaltın et al.,
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Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation
gap 1016 0.256 11.142 41.3 % 52.4 % 60.3 %
SSG 1016 0.090 3.891 62.7 % 73.1 % 76.2 %
tree weight 1016 0.110 3.034 53.4 % 75.7 % 81.2 %
leaf frequency 1016 0.193 3.196 54.8 % 62.8 % 69.7 %

Custom Estimations
profile 1016 – 28.961 34.2 % 38.6 % 44.9 %
WBE 1016 – 3.242 57.1 % 70.5 % 78.7 %

Double Exponential Smoothing
open nodes 1016 – 3.049 59.0 % 69.9 % 74.3 %
gap 1016 – 3.634 47.7 % 64.0 % 71.2 %
SSG 1016 – 2.924 54.8 % 70.1 % 78.0 %
tree weight 1016 – 3.069 56.2 % 71.2 % 76.2 %
leaf frequency 1016 – 2.926 59.0 % 72.2 % 78.9 %

Learned Methods
linear model 1016 0.058 2.495 65.6 % 73.8 % 81.4 %
linear monotone 1016 0.077 2.678 62.5 % 75.3 % 78.3 %
regression tree 1016 0.078 2.554 60.4 % 73.5 % 78.9 %
random forest big 1016 0.051 2.273 65.2 % 79.3 % 84.4 %
random forest reasonable 1016 0.050 2.292 65.2 % 79.3 % 83.4 %

Table 8.4: Estimate comparison during the intermediate stage (0.3 < ω(Tk) ≤ 0.6) on
test set.
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Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation
gap 1575 0.183 3.835 65.1 % 76.5 % 81.4 %
SSG 1575 0.090 2.118 78.9 % 84.6 % 89.4 %
tree weight 1575 0.092 1.688 81.4 % 87.2 % 88.5 %
leaf frequency 1575 0.103 1.662 77.8 % 85.3 % 88.8 %

Custom Estimations
profile 1575 – 31.143 47.9 % 55.6 % 58.2 %
WBE 1575 – 1.714 79.6 % 86.6 % 88.4 %

Double Exponential Smoothing
open nodes 1575 – 1.637 81.0 % 86.5 % 89.0 %
gap 1575 – 2.175 70.7 % 80.0 % 84.1 %
SSG 1575 – 1.689 78.0 % 84.4 % 87.7 %
tree weight 1575 – 1.681 81.0 % 85.6 % 87.7 %
leaf frequency 1575 – 1.662 81.5 % 88.4 % 90.9 %

Learned Methods
linear model 1575 0.048 1.581 83.1 % 88.6 % 90.7 %
linear monotone 1575 0.073 1.669 80.2 % 85.3 % 89.7 %
regression tree 1575 0.047 1.511 85.0 % 89.2 % 91.2 %
random forest big 1575 0.032 1.443 86.9 % 90.9 % 92.4 %
random forest reasonable 1575 0.032 1.446 87.2 % 90.8 % 92.6 %

Table 8.5: Estimate comparison during the late stage (0.6 < ω(Tk)) on test set.

2011], we also present the percentage of data points that are ϵ-accurate, i.e., which
satisfy E(Û , U) ≤ ϵ for ϵ = 2, 3, 4.

Analysis of the Search Completion Measures. Among the search completion
approximations, the methods SSG and tree weight, which already showed to have a
better approximation quality of the actual search completion than their counterparts
gap and leaf frequency, are also better in terms of normalized ratio. Interestingly,
the tree weight estimation yields considerably better estimations than SSG despite its
worse approximation quality, as measured by the MSE.

The tree weight search completion achieves the lowest or second-lowest ratio across
all search completion methods across stages. Only during the late stage, the leaf
frequency approximation of search completion yields a better normalized ratio. The
two estimations tree weight and WBE are comparable in that they use the same measure,
namely the tree weight measure ω, from which they compute an estimated number of
nodes (tree weight) or leaves (WBE) of the final search tree. However, the tree weight
estimation yields better estimations during all stages.

Analysis of Double Exponential Smoothing Forecasts. Throughout all stages,
the measures SSG and gap yield much better estimations within a time series approach
than by projecting them as a measure of search completion. Both as search completion
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and as time series, a direct comparison between the SSG and gap estimations always
shows a favorable behavior of the SSG method. This confirms the findings by Özaltın
et al. [2011] that a time series forecasting using SSG has a substantially better tree
size estimation accuracy than the gap. The results also show that all three gap, leaf
frequency, and SSG benefit from the use of DES. In contrast, the tree weight measure
is best used as an approximation of search completion.

The custom method profile has by far the largest normalized ratio across all
stages. A closer look at the individual records reveals that the profile estimation is
the only method with serious overestimations. Note that the profile estimation does
not necessarily converge to the actual tree size at termination, unlike all other tested
methods.

The most extreme overestimation of the profile method is on instance ns1952667,
where the estimated tree size of 7 · 1044 overestimates the actual, moderate tree size of
19k nodes by 40 orders of magnitude.

The instance ns1952667 is a pure feasibility model, i.e., it has an objective function
of zero. Therefore, nodes can only be marked as final if they are proven infeasible. The
search finishes as soon as SCIP finds a feasible solution, which happens inside the B&B
tree after about 12,000 nodes.

The two measures based on the objective function, namely gap and SSG, jump from
one to zero when the search terminates. The tree weight measure is close to zero
throughout the search because the final leaf nodes are encountered rather deep in the
search tree. This also affects the WBE.

Therefore, all DES-based estimates except for leaf frequency have to use the
fallback strategy introduced in Section 8.4.2 to predict twice the number of currently
visited nodes during most of the search. Leaf frequency is the most informative measure
on this instance because it captures the regularity of terminal nodes during the tree
search.

Analysis of Learned Approximations. As one may expect, for all time series, the
estimate becomes more accurate at later stages with more data being available. As
for the learned methods, the random forests outperform all other tested methods by
a considerable margin in terms of ϵ-accuracy and E, as could be expected from their
approximation quality measured by the MSE. The large normalized ratio during the
early stage of the linear regression mostly arises from a few negative approximations
of search completion, and despite the applied correction that maps these approximations
into the allowed range. Note that the regression forest approximation is always positive,
since it is the mean value of a subset of training labels, which are themselves positive
search completions.

Despite their good performance, regression forests also have disadvantages. Their
estimation cost grows linearly with the number of trees in the forest. In contrast, the
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Set Example Instances solved Records

chromaticindex6 chromaticindex1024-7 121 105 1287
generated gen-ip002 92 81 7772
iis7 iis-glass-cov 92 69 6765
map8 map06 180 180 12240
network-flow9 g200x740 168 156 3536
opm2 opm2-z12-s8 150 92 1874

Table 8.6: Data collected on homogeneous instance sets.

costs to compute one linear (monotone) regression approximation in the nine-dimensional
feature space is negligible.5 Random Forests are therefore especially advantageous if the
estimates do not have to be computed at every node, but infrequently during the search.

In this section, we have used estimation snapshots across a variety of publicly
available MIP benchmark sets, which have been compiled to cover a broad range of MIP
applications. For instances from one specific type of application, the learning procedure
should ideally be repeated to capture the search process of the B&B algorithm on those
instances better than by our pretrained general purpose approximations.

Remarks. One important influence on the behavior of a B&B-solver is the way in
which improving solutions are found during the search. One can suspect that initializing
the solution process with an optimal solution improves the quality of the predictions
of the B&B-tree size. However, evaluating the normalized ratios as above shows that
they actually increase slightly. This happens, because fewer records in the last phase of
the search are available. If one factors this influence out, the ratios slightly decrease as
expected. We do not present detailed results, because our goal was to predict the size of
the B&B-tree for a general solution run, in which an optimal solution is not available.

8.8.3 Comparison on Homogeneous Instance Sets

In this section, we compare the estimation accuracy on six different homogeneous sets
of MIP instances. All instance sets have been obtained from the public git repository
of submissions to MIPLIB 2017.10 While the MIPLIB 2017 collection of 1065 instances
contains at most five instances from each such set, there are many more instances
available from the repository. The selection of the six sets, which are shown in Table 8.6,
has been made with respect to the following criteria:

5Also note that the monotonicity of the linear monotone regression can be slightly more pleasing
when used as a progress bar during the search, although it is less accurate on average.

6[Le Bodic and Nemhauser, 2015]
7[Pfetsch, 2008], 23 instances × 4 different random seeds.
8[Ahmadizadeh et al., 2010]
9[Ortega and Wolsey, 2003], 42 instances × 4 different random seeds.

10https://git.zib.de/miplib2017/revised-submissions-final.git
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1. sufficient number of instances,

2. solvability with SCIP during the performance evaluation for MIPLIB 2017, (see
Section 3.5.5 for details),

3. large enough trees.

A sufficient number of instances guarantees that we can obtain a meaningful separation
into training and test set. For the sets of iis [Pfetsch, 2008] and network-flow instances,
we performed runs with four (default+3) random seeds to inflate the actual instance
sets of 23 and 42 instances to 92 and 168 instance-seed combinations. As before, for each
set, we first discard instances that could not be solved. Second, we split the obtained
records into 80 % instances for training and 20 % for testing. If multiple random seeds
were used, the split ensures that the test set contains only unseen instances (and their
respective seeds). For each set, we train independent search completion approximations
on the obtained training sets.

Figure 8.7 summarizes the accuracy of all discussed methods in terms of the geometric
mean normalized ratio E for all test records per instance set. For simplicity, we report
the accuracy over the entire search process regardless of the early, intermediate, and
late stages measured by tree weight. As in the previous section, we classify the tree
size estimates into four groups. Search Completion comprises the four measures of
search completion from Section 8.3. DES comprises five estimates that are derived from
DES forecasts as explained in Section 8.4.2. All four measures of search completion also
allow a DES forecast and hence appear twice in the figure. The group Custom comprises
two further reference methods, WBE [Kilby et al., 2006] and profile [Cornuéjols et al.,
2006]. The last group Learned finally comprises five different learned search completion
methods as presented in Section 8.7. In addition, the last group is enriched by random
forest miplib, which corresponds to the random forest model random forest big
from the previous sections 8.7 and 8.8 without further training on the application-specific
data sets.

The learned random forests consistently achieve the smallest ratios among the
methods. The random forest estimates are particularly accurate on the map instances,
for which they achieve (almost) best possible ratios of 1.00 and 1.01, respectively. This
very good result is possible because the instance set of 180 instances can be further
grouped into 9 different subsets of instances. For each subset, the SCIP solution process
is identical, because there is only little variation in the input data. The random forests
can reliably recognize the similarities in the solution process and always assign the
correct search completion even on unseen instances from the test set.

It is noteworthy that the individual estimates based on forecasting or search
completion approximation vary substantially between the different sets. For instances
from the set opm2, all individual forecasts and search completion methods yield ratios
between 2.9 and 5.1, but can be effectively combined into a random forest with an
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acceptable ratio E < 2. Unsurprisingly, the random forests with application specific
training always outperform the general random forest random forest miplib, while
the latter one still achieves a superior performance to the DES forecasting estimates on
all tested instance sets, and outperforms the monotone linear regression on four and the
linear regression estimate even on five of the six tested instance sets.

8.9 Summary and Outlook

In this chapter, we discussed and compared all state-of-the-art online methods and new
methods to predict the size of the B&B tree at termination. We grouped the presented
tree size estimates into approximations of the search completion on the one side and
time series based estimates on the other side. We improved the time series forecasts by
introducing adaptive resolution.

By far the best estimation quality is achieved by combining value and trend
components of the individual time series into a learned regression forest that approximates
search completion better than any individual method and yields superior estimation
accuracy even on unseen test instances. As an additional validation, our study on six
different homogeneous instance sets showed that the performance of a random forest can
be significantly improved by training on a particular instance set. Nevertheless, using
heterogeneous general training data generalizes quite well to outperform most of the
individual estimates.

Our results provide clear evidence that accurate tree size estimation requires a
combination of several atomic measures such as tree weight and SSG to compensate for
their individual weaknesses.

An efficient implementation of these estimates is included into SCIP as of version
7.0. It manifests during the solution process as a new display column of approximate
search completion. By default, the display column shows the monotone linear regression
because its approximation is easy to explain, improves upon the accuracy of the tree
weight and SSG, and can be computed faster than its regression forest counterpart. For
an even more accurate search completion approximation, user regression forests can be
trained from SCIP log files via an external R script and input into SCIP.

The present work can be extended in various ways. Several of our methods require
that the underlying tree is a binary B&B tree, which is the default in most state-of-the-
art solvers. Measures such as the tree weight are easily generalized to nonbinary trees at
the cost of additional memory and computational effort [Belov et al., 2017].

The time series forecasting methods we used are mainly linear, investigating nonlinear
functions or more advanced forecasting techniques might be beneficial. Finally, we
hope that this work also inspires the use of the presented methods for algorithmic
improvements. One promising direction might be the use of search completion proxies
in a massively parallel solver such as UG [Shinano et al., 2012] for better load balancing.
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Figure 8.7: Geometric mean normalized ratio for six homogeneous MIP test sets.
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We investigate a first algorithmic application of tree size estimation, namely the decision
during the tree search whether it may be worthwhile restarting, in the next chapter.
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Clairvoyant Restarts

A standard technique in backtracking search consists in restarting the search at the root
node, retaining as much information about the previous tree as efficiently possible. This
is common practice in Constraint Programming (CP) and Satisfiability (SAT) solvers,
for instance. In contrast, restarts are not so commonly used in modern MIP solvers.
Instead, the entire search is often performed within a single B&B tree without restarting.
Before version 7.0, into which we integrated the work presented in this chapter, SCIP
only performed restarts at the end of or sometimes during the root node based on the
fraction of fixed integer variables.

We started this study with a simple experiment: in SCIP, we forced a restart after
1000 nodes. On a benchmark consisting of 496 MIPLIB and COR@L instances, this
strategy yielded an average 4.7% slow down. However, for the 106 (resp. 88, 72, 48)
instances where default SCIP (without the restart) required at least 50k (resp. 100k,
200k, 500k) nodes, this forced restart produced a speed-up of 7% (resp. 9, 17, 18%).
Indeed, for instances that require relatively small trees, poor decisions at the top of
the tree have a smaller impact, and thus restarts are generally not beneficial, but this
trade-off becomes interesting for instances that require large search trees. A rough early
estimate of the search tree size could be used to detect such cases.

In this chapter we will use the tree size estimates from Chapter 8 as a criterion for
deciding restarts, thereby significantly improving the overall performance of SCIP. As
a reference to the predictive nature of tree size estimation on the one hand and the
French background of one of the authors of the original conference proceedings [Anderson
et al., 2018], on which this chapter is based, on the other hand, we call this new restart
methodology clairvoyant. This chapter is a rewritten version of the original proceedings
paper in the notation of this thesis. The algorithmic description has been reworked, and
a broader computational study has been conducted using the tree-size estimates from
the previous chapter.
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The clairvoyant restart strategy is truly online: it observes the default search and
may decide to restart. If it does not, there is almost no measurable memory or time
overhead.1 Note that this is different from algorithm selection [Kilby et al., 2006; Lobjois
and Lemaitre, 1998], wherein online estimates are used to select an algorithm before
the actual search, and always incur a fixed overhead. Our new computational results on
MIPLIB 2017 in Section 9.3 show that clairvoyant restarts improve the runtime by 7 %
on affected instances, and 20 % on “hard” instances. These results, together with the
simplicity of the method, demonstrate the general potential of clairvoyant algorithms.

This chapter is organized as follows. We first discuss the potential algorithmic benefits
of restarts during the B&B search in Section 9.1. We describe our clairvoyant restart
algorithm in Section 9.2 and present computational results in Section 9.3.

9.1 Current Restart Strategies in MIP Solvers

Restart strategies of the commercial MIP solvers CPLEX, FICO Xpress, and Gurobi
are kept as trade secrets. As already mentioned, SCIP only used to restart the solution
process at the root node up to version 6.x by default.

At the root node, information obtained from the initial solution to the LP relaxation,
valid cutting planes, or improving solutions may lead to many variable domain reductions,
for example as a result of reduced-cost tightening (cf. Section 2.7.1), that could not be
detected during the initial presolving. If the percentage of fixed integer variables exceeds
a threshold (by default, 2.5 % in SCIP), this justifies a restart of the solution process.
This criterion ensures that presolvers would fix some variables after a restart, which is
expected to have a positive cascading effect on the rest of the search. Hence, restarts
were then classified as a type of presolving technique. During a restart, SCIP preserves
variable domain reductions, solutions, valid cuts, conflict clauses, and branching history
information including pseudo-costs. By default, SCIP may perform arbitrarily many
restarts at the root node. After the root node, the B&B algorithm of SCIP commits to
a single search tree, no more restarts are performed.

However, besides presolving, such restarts during the search may be beneficial for
branching strategies. The branching decisions taken at the start of the B&B search have
a significant impact on the number of nodes of the search tree. With the available
mechanisms, these decisions are quite uninformed, as strong branching is usually
performed with an iteration limit on a small subset of candidate variables, see Section 4.1.
Moreover, these candidates are sorted with respect to their hybrid score (2.18), which
predominantly uses pseudo-costs. But pseudo-costs are uninitialized at the beginning of
the (first) tree search. Therefore, better decisions at the top of the tree can be expected
after an in-tree restart, as more branching information is available then.

1In fact, this statement does not hold for all tree size estimation methods used, as we will see in this
chapter.
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As far as we are aware of, such restarts during the B&B search in MIP have only
been studied by Achterberg [2007a], again using as a criterion the number of globally
fixed variables. However, using this criterion, restarts appeared to be detrimental to
performance. The results, however, were inferior compared to the SCIP default strategy.
As Achterberg [2007a] pointed out, additional global variable fixings seem to occur
mostly at the final stage of the solution process, when the computational overhead of
rebuilding a new search tree from scratch becomes too high. The author concluded that
“in order to make good use of delayed restarts, one has to invent different criteria for
their application”. Our clairvoyant restart strategy addresses this disadvantage by using
tree size estimation instead of the number of global variable fixings.

9.2 A Clairvoyant Restart Strategy

We present our clairvoyant restart strategy in Algorithm 5 as an extension of the B&B
Algorithm 2, which it uses as subroutine to advance the search. After each iteration, it
may decide based on tree size estimation to reset the recorded search state to the root
node and construct a new search tree.

Concretely, besides a MIP P as its first and obvious input, Algorithm 5 receives
additional input parameters that control how often and when the search is reset to the
root node. The most important parameter is the limit ρ on the number of restarts. If ρ

is set to zero, we conduct a B&B search without an in-tree restart. If ρ is larger than
zero, three additional ρ-dimensional parameter vectors control the details of the restart.

At the beginning, Algorithm 5 initializes a search state sequence T . In addition,
two counters are initialized. r is initialized to one, always indicating the number of the
next restart that the search should perform. The second counter l is incremented every
time the current tree size estimation exceeds the acceptable limit. In line 6, the B&B
algorithm is called to advance the current search state sequence T by one additional
search state. Assuming that we haven’t reached the limit ρ yet, a tree size estimation Û

is computed from T .
In round r ≤ ρ of Algorithm 5, the following parameters are used for the restart

decision:

• κinit
r is an initial number of search states to wait before a restart decision.

• κlim
r is a limit on the number of consecutive large tree size estimations to trigger a

restart.

• ϕclair
r is a factor to compute the threshold for an estimated tree size to be large,

relative to the index k of the current search state.

A threshold on the estimated tree size in round r of Algorithm 5 is given as factor
ϕclair

r relative to the current iteration k. If Û exceeds k by at least ϕclair
r , the second
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counter l is increased. If l exceeds the limit κlim
r , the search state sequence T is reset to

the initial search state except that the current primal bound Zk and solution pool Sk

are not reset. In practice, cuts, conflict clauses, and branching history information such
as pseudo-costs are also preserved during a restart.

This resetting of the tree to its root state is a restart of the B&B search. From the
next iteration on, the calls of the B&B algorithm in line 6 will consecutively expand a
new search tree in round r + 1, and eventually trigger another restart, if the limit ρ has
not been reached, yet.

Algorithm 5: branch-and-bound search with clairvoyant restarts
Input: MIP P , restart parameters: limit on the number of restarts ρ ∈ N.

initialization thresholds κinit ∈ Nρ, limits κlim ∈ Nρ, factors ϕclair ∈ Rρ,
Output: Optimal objective value Zopt for P

1 k ← 0, V leaf
0 ← ∅, V inner

0 ← ∅, V open
0 ← {v0};

2 Z0 ←∞, z∗
0(v0)← −∞ S0 = ∅;

3 T ←
{︂(︂

V inner
0 , V leaf

0 , V open
0 , Z0, z∗

0 , S0
)︂}︂

; // initialize search state sequence

4 r ← 1, l ← 0 ;
5 while Zk > Z∗

k do
6 T ← branch-and-bound(T, 1) ; // perform a single B&B iteration
7 k ← k + 1;
8 if r ≤ ρ then
9 if k ≥ κinit

r then
10 Compute tree size estimation Û from T ;
11 if Û ≥ ϕclair

r · k then
12 l ← l + 1;
13 else
14 l ← 0; // reset l

15 end
16 if l ≥ κlim

r then // perform a restart
17

18 T ← {(∅, ∅, v0, Zk, z∗
0 , Sk)}; // reset search state sequence

19 k ← 0, l ← 0, r ← r + 1;
20 end
21 end
22 end
23 end
24 return Zk;

The correctness of Algorithm 5 follows immediately from the correctness of the
B&B algorithm and the fact that after at most ρ restarts, Algorithm 5 conducts an
uninterrupted restart-free B&B search. Depending on the difficulty of P and the choice
of clairvoyant parameters, the algorithm may already finish in a round prior to the final
round.
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The interested reader may wonder whether and where the aforementioned root
restarts based on integer variable fixings occur in Algorithm 5. We consider root restarts
as internal part of the root node processing at iteration k = 1 of Algorithm 2, i.e., we
allow one or even several root restarts as part of the call to the B&B algorithm in line 6.
The only search state we observe and record is the state after the final root restart and
consecutive (re-)presolve and processing of the root node, which either terminates the
search or results in the first branching.

What are the potential benefits of restarting the search at an intermediate state of
the tree? Briefly, after an in-tree restart, the B&B algorithm can use multiple sources of
valuable search information to produce a better, i.e., smaller search tree. First, just as
for root restarts, presolving may also use global variable domain reductions from the
previous search tree more intensely, e.g., during probing. Also, the current incumbent
solution and in particular its objective value Z can be used by presolving to deduce
further variable fixings.

Another very important piece of information are pseudo-costs. We have argued
already that one of the major drawbacks of pseudo-costs is that they are not available
at the beginning of the search, when the topmost, most relevant branching decisions of
the search must be decided. Even strong branching is no complete remedy here, because
in practice strong branching is often applied to only a handful of candidates near the
top of the search due to performance considerations.

After an in-tree restart, however, the B&B search has much more historical branching
information available for many variables, which can be used for a fine a priori ranking
of the fractional candidates, such that strong branching only needs to decide between a
few pre-selected candidates.

Historical branching information is not restricted to pseudo-costs, but also includes
inference information and conflict clauses learned during previous search tree(s) as
part of the hybrid score (2.18). Finally, learned information from the adaptive heuristic
strategies presented in Chapters 6 and 7 can be readily carried over during an in-tree
restart.

9.3 Computational Results

In practice, we will restrict ourselves to ρ = 1 restarts to keep the experimental
setup reasonable. The parameters κinit and κlim have the role of safeguards against
the potentially high variance of Û . First, a restart is only triggered after the condition in
line 11 is satisfied for κlim consecutive k’s. Second, no restart is performed until k ≥ κinit,
to allow for a suitable initialization of the tree size estimation. In our experiments, ϕclair

is set to {10, 25, 50}. Together with κinit = 1000, this means that we may only restart
trees with Û ≥ {10 · 1000, 25 · 1000, 50 · 1000} nodes.
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We test our clairvoyant restart strategy with six different types of tree size estimation
presented in Chapter 8: monotone turns the learned monotone approximation of search
completion into an estimation of the remaining tree size as shown in Equation (8.4).
reg forest uses the smaller of the two trained random forests from Chapter 8 (the
so-called random forest reasonable) as approximation of search completion, which
is then transformed into an estimation of tree size again according to Equation (8.4).
Recall that the conversion between an estimated search completion and an estimated
tree size is straightforward. A clairvoyant restart is performed if the estimated tree size
exceeds the current iteration k by at least a factor of ϕclair, which is equivalent to stating
an estimated search completion of at most 1

ϕclair . The largest factor ϕclair of 50 that we
use in this experiment therefore corresponds to an estimated search completion of 2 %
or less.

We test four more types of clairvoyant restarts based on different double exponential
smoothing (DES) tree size estimations using adaptive resolution as explained in Chapter 8.
Concretely, we test tree size estimations based on the gap time series with setting gap,
based on the SSG time series with setting ssg, based on the tree weight time series with
setting tree weight, and finally based on the leaf frequency time series with setting
leaf freq. Each of these four types of tree size estimations observes the corresponding
value, e.g., tree weight, and extrapolates after how many additional time series steps
the time series reaches its target value, such as 1 in the case of the tree weight.

Recall that with increasing tree size, adaptive resolution compresses several branch-
and-bound iterations into a single time step. The estimated remaining number of time
series steps is turned into a tree size estimation using Equation (8.11). We point out
that this DES tree size estimation is fundamentally different from an approximation
of search completion. For example, the tree weight may already exceed 2 % early in
the search, because some shallow nodes of the branch-and-bound search tree could be
pruned early. If afterwards, the tree weight keeps stalling for a while, the DES method
will reflect this by increasing its tree size estimation. Therefore, for all four types of
DES based estimation, a clairvoyant restart may still be performed even though the
corresponding search completion already exceeds 1

ϕclair .
The two learned search completion approximations as well as the four DES tree

size estimations are combined with three different values of ϕclair = {10, 25, 50} into 18
different settings in total. We use the newest SCIP version 7.0.2, which had just been
released by the time of this writing. Clairvoyant restarts have been enabled since SCIP
version 7.0 [Gamrath et al., 2020]. Since then, the default version of SCIP corresponds
to the setting tree weight together with ϕclair = 50.

In order to show the impact of clairvoyant restarts onto the search, we compare
the battery of candidate settings with two baseline settings: no clairvoyant disables
clairvoyant restarts by setting ρ = 0. Within this no clairvoyant setting, restarts at
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Figure 9.1: Speedup factors for different a-posteriori restart ratios U restart/Ubb.

the end of the root based on the fraction of fixed integer variables may still be performed
by SCIP.

A second baseline setting, 0-restart, disables both root and clairvoyant restarts
entirely. The setting no clairvoyant represents the default settings of SCIP prior to
version 7.0. As test set, we use the benchmark set of MIPLIB 2017 comprising 240
instances, see also 3, using the default + two nondefault random seeds, yielding a total of
720 instances. All experiments are conducted on a cluster with 48 nodes equipped with
Intel Xeon Gold 5122 at 3.60GHz and 96GB RAM. Jobs were run exclusively on a node.
The time limit was 1h. Details for each problem, seed, and setting of this experiment
can be found in Table E.1 in the Appendix.

Clairvoyant restarts are based on an estimation of the current search completion.
If a clairvoyant restart was performed at U restart nodes (search states) of Algorithm 5,
we can evaluate the actual search completion at the moment of this restart exactly by
comparing it with the total number of nodes U restart required by no clairvoyant as
U restart/Ubb.

Figure 9.1 shows the obtained speedup factors for different such a-posteriori search
completions. Concretely, we record for any combination (instance, seed, setting) for
which a clairvoyant restart occurred the number of nodes U restart after which the method
restarted. We compare U restart against the total number of B&B nodes Ubb that the
setting no clairvoyant without clairvoyant restarts consumes. We show the obtained
speedups in shifted geometric mean solving time if the search completion U restart/Ubb

falls into one of the different bins shown on the horizontal axis.
We only include instances (problem-seed combinations) for which a clairvoyant restart

was executed, for which the measured search completion falls into one of the categories,
and for which either the included case or the setting no clairvoyant finished within
the time limit. Some of the intervals match the tested options for ϕclair.

Figure 9.1 shows clear performance benefits in shifted geometric mean if a restart
was triggered at a search completion of at most 50 %. The sooner the restart happens,
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Figure 9.2: Computational results for instances where one setting requires at least 1000
seconds for solving. Each bar has the shifted geometric mean time as height, whereas its
text label shows the time relative to no clairvoyant as our baseline setting.

the larger is the speedup on average. In the leftmost category of at most 2 % search
completion before the restart, we see a time improvement of 44 %.

Note that there is a subtle bias in the evaluation of this result against the setting
no clairvoyant. Namely, in order to fall into the leftmost category, the setting no
clairvoyant must require a search tree of 50k or more nodes.

A possible explanation for the speedups is that the search algorithm may lack
sufficient information to make good branching choices at the top of the search, but can
use such information from the first search tree after the restart to build a better tree.

For this performance comparison, we conducted a total of 14400 jobs, where one job
corresponds to one of the 240× 3 (problem×seed) combinations solved with one of the
20 compared settings, including the baseline settings no clairvoyant and 0-restart.
We present a glimpse into this performance data in Figure 9.2.

As in previous chapters, we denote the combination of an input MIP and a random
seed as one instance. We give the obtained results for all 20 settings on the subset of
solvable instances for which at least one setting required 1000 seconds or more, also
denoted by [1000,tilim] in bracket notation. This subset represents the hardest, yet
solvable instances in our test bed.

For this subset, we show in Figure 9.2 the obtained time and node results per setting.
The individual numbers are aggregated by a shifted geometric mean, with a shift of 1
for time and 100 for nodes. The vertical bars correspond to the shifted geometric mean
runtime, whose scale is shown on the vertical axis on the left.
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Above each bar, we indicate the time performance relative to the baseline setting
no clairvoyant, whose particular height is extended across the figure via a dashed
horizontal line. Numbers smaller than one represent an improvement in time.

Each of the clairvoyant restart methods comes in three versions, depending on the
setting of the restart factor ϕclair ∈ {10, 25, 50}. We immediately notice that the baseline
setting is the slowest setting in this test except for one clairvoyant method reg forest,
which is 1.3 % slower.

Perhaps surprisingly, 0-restart is on par with no clairvoyant in terms of the
solving time and solving nodes. We have reported a similar observation already in
[Anderson et al., 2018] with a previous version of the clairvoyant restart code based
on SCIP 6.0. The most likely explanation is that the default restart parameters were
more efficient in a version of SCIP that predates versions 6.0 and 7.0, but have not been
re-calibrated.

The best timing results are obtained with leaf freq, which speeds up the solving
time for this subset by 12–17 %. A comparably good speedup of 15 % is obtained using
ssg in combination with a restart factor of 50.

Also reg forest achieves a speedup by more than 10 %, albeit with the opposite,
i.e., least conservative restart factor tested. The DES variants using gap and tree
weight are inferior to ssg and leaf freq. The other baseline setting in this experiment
is 0-restart, which performs neither clairvoyant restarts nor restarts at the root.

Absolute node results are shown as filled circles with respect to the vertical scale on
the right. To be absolutely fair, for the clairvoyant methods, the node results include
the first search tree before the restart was performed. As for time, the more interesting
relative comparison with no clairvoyant is indicated above each circle.

Overall, the relative node results are strikingly correlated with the observed speedups.
This is a remarkable result because all clairvoyant methods explore a search tree of
sometimes several thousand nodes prior to their restart decision. Admittedly, Figure 9.2
does not give a clear indication whether more conservative/larger restart factors are
preferable, the best choice depends on the estimation method with which it is used.

We show the number of performed tree restarts in Figure 9.3. In contrast to the
previous figure, here we summarize the number of tree restarts for all 720 tested instances.
We also include the nonclairvoyant settings no clairvoyant and 0-restart for clarity.

One surprising result is that reg forest in its most conservative setting with
ϕclair = 50 performs no tree restarts at all. The slight performance degradation that we
saw in Figure 9.2 for this setting compared with no clairvoyant therefore indicates
a nonnegligible overhead caused by the evaluation of the regression forest after each
search state.

All other settings perform a substantial number of tree restarts. As one might expect,
the number of restarts consistently decreases if ϕclair is increased. We observe that
the settings ssg and tree weight perform restarts much more often than the rest.
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Figure 9.3: Number of performed Tree Restarts for each estimation method and restart
factor ϕclair.

Furthermore, for these two settings, the choice of ϕclair has less influence on the number
of tree restarts than for other settings.

In the previously shown Figure 9.2, the clairvoyant method leaf freq emerged as
clear winner for the hard subset of instances. We focus on the results with this setting
in more detail in Table 9.1. In this table, we give the time and node results obtained
with no clairvoyant as our baseline setting, and the relative time and node results for
the competing settings 0-restart and leaf freq.

Table 9.1 shows the solving time in seconds and the number of solving nodes in
columns time and nodes. As already mentioned, if a restart was performed, nodes
is the sum of explored nodes in both search trees. For a better comparison, the two
columns timeQ and nodesQ give the relative performance compared to the baseline
setting no clairvoyant.

Furthermore, the table shows the number of solved instances in column solved, and
the total number of root restarts and clairvoyant restarts across all instances in the two
columns root and tree, respectively. It is possible that the solution process of a single
instance contributes multiple root restarts, but never more than one clairvoyant restart.

We consider in Table 9.1 five different groups of instances, each in a separate row: All
720 instances are compared in the first row. The second row “affected” summarizes the
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no clairvoyant 0-restart leaf freq (ϕclair = 10)
# solved time nodes root solved timeQ nodesQ solved timeQ nodesQ tree root

all 720 338 798 4764 175 340 1.002 1.005 344 0.972* 0.967 220 189
affected 289 122 1244 53608 175 124 1.007 1.012 128 0.936 0.923 220 189
[1000,tilim] 90 82 1950 60588 20 84 0.997 1.001 88 0.809* 0.809* 49 23
[0, 999]Ubb 166 166 43 94 84 166 1.000 1.070 166 0.998 1.000 0 84
[1000,∞]Ubb 180 172 508 34624 41 174 1.006 1.040 178 0.895* 0.887* 79 48

Table 9.1: Computational Results for the best performing clairvoyant setting leaf freq
with a restart factor ϕclair = 10. The best results in a category (solved/time/nodes) are
highlighted in bold. Results that are significant according to a Wilcoxon signed rank test
are indicated separately*.

289 instances on which a restart occurred. The third row gives the results for instances
falling into the time bracket [1000,tilim] as explained above, for which one setting must
have used 1000 seconds or more. Note that in contrast to Figure 9.2, we only use the
three displayed settings to filter the instances for this bracket, such that the 90 instances
compared in this table are now a subset of the instance bracket used for Figure 9.2.
Similarly to the brackets with respect to solving time, the last two rows filter instances
based on the size of the largest search tree. The row [0, 999]Ubbsummarizes the subset of
solvable instances for which all search trees stayed within 999 nodes, whereas the row
[1000,∞]Ubbshows results on the complementary set of solvable instances where at least
one of three settings required 1000 nodes.

We see that overall, leaf freq clearly wins in four out of the five groups with respect
to time, nodes, and number of solved instances. We highlight results that are significant
according to a Wilcoxon signed rank test at a threshold of p < 0.01. The time and node
results of the group “affected” have p-values of 0.011 and 0.025, respectively. Although
they do not meet our very conservatively chosen confidence threshold of 1 %, we consider
also the results on “affected” as “borderline significant”. Interestingly, we observe that
leaf freq has the highest number of root restarts. Of course, it performs at least as
many root restarts as no clairvoyant. The higher number of root restarts accounts for
additional restarts at the root node of the second search tree after a clairvoyant restart.
Since root restarts are triggered if a certain fraction of integer variables have been fixed
during the (first or second) root, this indicates that clairvoyant restarts sometimes help
to reduce the remaining search space further, which is one of the reasons why the second
search tree is often significantly smaller than the first.

Summarizing our findings, almost all clairvoyant restart strategies achieve a
considerable speedup compared to the previously available root restart strategy in
SCIP. The speedup is particularly high on the set of very hard instances. We saw that
almost all settings using clairvoyant restarts have a positive effect on the total tree size.
Recall that the node related columns nodes and nodesQ are based on the total number
of nodes of both branch-and-bound search trees before and after the clairvoyant restart.
The best performance has been achieved with the new leaf frequency measure that
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we introduced in Chapter 8. The most accurate tree size estimation method from the
previous chapter, reg forest, did not perform as well in our experiment. In its most
conservative setting, no restart was performed at all. On the contrary, since no restart
was performed by reg forest, we observed a measurable overhead in node processing
time compared to no clairvoyant.

9.4 Summary

In this chapter, we have introduced clairvoyant restarts for MIP, during which we reset
the branch-and-bound algorithm 2 if the remaining tree size is estimated to exceed the
current number of visited nodes by a large factor. We have formalized our clairvoyant
algorithm 5 and tested it for six different types of tree size estimation that were developed
in Chapter 8. Especially on harder instances that require a substantial number of search
tree nodes and/or a significant time to solve, we obtained substantial improvements with
our clairvoyant algorithm. We emphasize again that our clairvoyant algorithm achieves
a substantial node reduction even when both search tree sizes are added together.

As we have seen, the precision of the individual estimates plays a minor role; a rough
estimation suffices. Our most accurate tree size estimation method, namely a search
completion approximation based on random forest regression, is outperformed by the
tree size estimations based on double exponential smoothing, which are also faster to
compute.

The double exponential smoothing estimations can cope better with changing
trends observed during the tree search and are able to adapt their tree size estimation
accordingly.

An interesting future direction might be to try to smoothen the search completion
approximation from the random forest, and to apply adaptive resolution to it to reduce
the number of random forest evaluations when the search tree size increases. Another
possible improvement could consist of different settings that are applied before and after
a clairvoyant restart, similarly to the different settings used during the three solving
phases introduced in Chapter 5. For example, the strong branching effort spent before
and after a clairvoyant restart may be recalibrated such that the search tree before the
restart is traversed quicker. After the restart, the B&B algorithm may try to generate
more cutting planes at the root node if branching has proven less efficient at reducing
the gap than cuts have.

Our presented Clairvoyant Algorithm 5 already incorporates the possibility to perform
multiple restarts, which has proven beneficial in particular in CP and SAT. The number
of explored search nodes between restarts need not be constant, but could either be
geometrically increased after each restart, or restarts could be scheduled according to
the restart sequence introduced by Luby et al. [1993]. Obviously, if the search tree might
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get restarted more than once, this allows for even more options how to fine-tune the
search parameters.

A last direction for future work could be the study of partial restarts of the search,
that reset the search state sequence to a previous search state other than the root node,
at which a decision was taken that should be revised.
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Conclusion

We started this journey with the goal of turning SCIP into an intelligent solver that
adapts to the MIP instance at hand. To this end, we first introduced new notions of
reliability, namely hypothesis- and relative error reliability. Both of them take the variance
of pseudo-costs into account to dynamically modulate the required strong branching
effort at a node and improve the dual integral by up to 15 %. We introduced new
adaptive heuristic frameworks around large neighborhood search and diving heuristics
that quickly learn which of the available heuristics should be used more frequently.
Enabling these heuristic frameworks showed time improvements by up to 10 % and
primal integral improvements by up to 37 %. We also introduced an adaptive LP pricing
strategy, which improved the LP throughput by 14 %.

Furthermore, we proposed two modifications of the B&B algorithm itself. The first
modification considers the search as a sequence of three distinct solving phases. By
dynamically adapting the solver parameters to the goal of each phase, we achieved
a speed-up of up to 15 % on hard instances, which we showed to be near optimal.
The second enhancement of the B&B search is a tree-size estimation based restarting
technology called clairvoyant. Therefore, we first combined existing and newly proposed
measures of the search progress into an estimation of the final search tree size, which is
more accurate than the de-facto standard measure, the gap, by one order of magnitude.

Performance results of the clairvoyant restarts, which improve the solver run time
by 20 % on hard instances, thereby underline that this technique is a real enhancement
over the classical “one-tree-fits-it-all” B&B algorithm. We see our clairvoyant restarts
as an answer to a conjecture by Achterberg [2007a, p. 163], that “in order to make
good use of delayed restarts one has to invent new criteria for their application”. We
believe that clairvoyant restarts, in combination with the underlying tree-size estimation,
may find widespread application in MIP solver technology. Since a recent release, FICO
Xpress also performs restarts during the search. As another result of this work, the
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periodic output log of SCIP reports on the estimated search completion. This measure
is (on average) an order of magnitude more accurate for predicting termination than
the classical gap between the primal and dual bounds.

Algorithmic developments often come hand-in-hand with rather technical, infrastruc-
tural innovations under the hood of SCIP, which play a major role for its maintainability.
From now on, additional techniques introduced into the heuristic frameworks around
large neighborhood search and diving heuristics will be calibrated automatically within
their allocated global computational budget.

Besides algorithmic advancements, this thesis describes methodological contributions
reaching beyond SCIP as a solver. MIPLIB 2017 has broadened the availability of public
MIP benchmark sets. It is not only larger than its predecessors and more challenging
for today’s codes, but has also been derived in a transparent, data-driven process for
the first time in the history of the Mixed-Integer Programming Library. Additionally, it
comes in a modern design on the web. Since its release in 2018, MIPLIB 2017 has served
researchers around the globe as a platform to provide improving solutions to challenging
MIP instances from numerous different academic and real-world applications, many of
which are unsolved to the present day.

IPET, which I started as a hobby project to produce tables for my bachelor thesis,
has matured over the years into an indispensable tool for evaluating solver benchmarks.
It has also found its way into many articles and some doctoral theses. Today, IPET is
applied daily as the evaluation engine of choice on the continuous integration servers of
the SCIP group.

After reconsidering this compilation of adaptive algorithmic strategies, I see some
new aspects that could be improved. This is in parts due to the heuristic nature of the
methods and their complex interaction with and within the solver. There might always
be a better confidence level for hypothesis reliability for a specific use case, a better
initial fixing rate for the RENS neighborhood inside ALNS, or a better number of initial
nodes to wait before the first decision when to perform a clairvoyant restart. Having
re-read and compiled the different chapters of this thesis, I feel inspired to challenge
certain design choices that were made in the original work on the topic, to tweak the
methods to improve them a little more, and to further analyze the rich data sets that
were collected in the preparation of many of our methods.

The good news: This is entirely possible for me as well as you, the reader. Just
download SCIP and start to play with its source code, which contains all of the
algorithmic technology described in this thesis.

Happy SCIP’ing!
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Abstract

This thesis addresses general-purpose solution techniques for mixed-integer programs
(MIPs), a paradigm which captures formulations of countless real-world optimization
problems. Most state-of-the-art MIP solvers employ a version of the branch-and-bound
(B&B) algorithm to solve a MIP instance to proven optimality, supported by numerous
auxiliary components that contribute new solutions or improve the dual convergence.

One cannot expect that all such components are equally effective on all possible
instances from the tremendous range of MIP applications. Ideally, a solver adapts to
a given MIP instance by concentrating the available computational budget on those
components that work best. In this thesis, we develop adaptive algorithmic behavior for
several such MIP solver components solver as well as the B&B search itself.

We develop new notions of pseudo-cost reliability, namely relative-error reliability
and hypothesis reliability, by computing confidence intervals and pairwise t-tests on
branching candidates to dynamically decide if strong branching is necessary. We develop
two heuristic frameworks, adaptive large neighborhood search and adaptive diving that
learn the most effective primal heuristics inspired by selection strategies for the multi-
armed bandit problem. The presented ideas are transferred to adaptive LP pricing to
maximize LP throughout by learning the pricing strategy for the dual simplex algorithms
online during the search.

Our proposed adaptive algorithmic behavior extends beyond individual solving
components to the B&B search as a whole. To this end, we partition the B&B search into
a feasibility phase, an improvement phase, and a heuristically detected proof phase. We
improve solver performance by emphasizing different components and search strategies
in each phase. We propose new estimation techniques for the progress of the B&B search
based on forecasting and machine learning techniques. We turn this tree-size estimation
into a novel restart strategy of the B&B algorithm called clairvoyant.

As a methodological contribution, we describe the selection process of MIPLIB 2017,
which is the current state-of-the-art library for benchmarking MIP solver performance.
All of the discussed algorithmic approaches are evaluated within the MIP solver SCIP,
for which they show clear performance benefits. They are publicly available as part
of SCIP and have been adopted by state-of-the-art commercial solvers such as FICO
Xpress.





Zusammenfassung

Im Rahmen dieser Arbeit befassen wir uns mit anwendungsunabhängigen Lösetechniken
für gemischt-ganzzahlige Optimierungsprobleme (engl. mixed-integer programs (MIPs)),
ein Paradigma mit unzähligen praktischen Anwendungsbeispielen. Moderne Lösertech-
nologie basiert zumeist auf dem Branch-and-Bound-(B&B)-Algorithmus, welcher auf
algorithmische Hilfskomponenten zur schnelleren Lösungsfindung und der Konvergenz
der dualen Schranke angewiesen ist.

Die Vielfalt an Anwendungsgebieten für MIP lässt schon erwarten, dass nicht
alle B&B-Komponenten gleichermaßen erfolgreich auf allen erdenklichen MIP-
Anwendungsgebieten sind. Idealerweise passt sich ein MIP-Löser zur Laufzeit an
eine gegebene Instanz an, indem er eine bestmögliche Verteilung des zur Verfügung
stehenden Budgets auf die einzelnen Komponenten erlernt. Im Rahmen dieser Arbeit
werden neue adaptive Lernverfahren sowohl für einzelne Komponenten als auch für den
B&B-Algorithmus vorgestellt.

Die neu vorgestellten Entwicklungen in dieser Arbeit umfassen

• verallgemeinerte Pseudokostenzuverlässigkeitsbestimmungen anhand von Konfi-
denzintervallen und statistischer Tests zur dynamischen Entscheidung, ob Strong
Branching erforderlich ist,

• heuristische Frameworks Adaptive Large Neighborhood Search und Adaptive Diving
mit dem Ziel, die effektivsten Primalheuristiken im Laufe des Löseprozesses zu
erlernen,

• Adaptive LP Pricing zur Verbesserung des Knotendurchsatzes während der B&B-
Suche durch dynamische Wahl der besten Pricing-Strategie für das Simplexverfah-
ren,

• eine Einteilung des Löseprozesses in drei Phasen: eine Zulässigkeits-, eine
Verbesserungs-, und eine Beweisphase, und die Ausnutzung von Phaseninformation
zur gezielten Steuerung des B&B-Verfahrens.

• eine Abschätzung der verbleibenden Baumgröße und des Fortschritts des B&B-
Verfahrens basierend auf Forecasting-Techniken und Methoden des Maschinellen
Lernens.
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• die anschließende Ausnutzung dieser Schätzverfahren für Clairvoyant Restarts der
B&B-Suche bei einer pessimistischen Prognose.

Ein weiterer, methodischer Beitrag besteht in der detaillierten Vorstellung des
Auswahlverfahrens der MIPLIB 2017, dem derzeitigen Standardbenchmarkset zur
Evaluierung von MIP-Lösern.

Alle neu vorgestellten Algorithmen wurden im Rahmen dieser Arbeit in den
nichtkommerziellen MIP-Löser SCIP integriert und auch praktisch anhand von Re-
chenexperimenten ausgewertet. Sie sind somit als Teil von SCIP 7.0 öffentlich verfügbar,
und wurden teilweise bereits in kommerzielle Löser wie FICO Xpress integriert.
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A
Appendix A

Table A.1: Instancewise results of the experiment in Section 5.4.2. Each column except
for default denotes a run with a particular phase transition criterion. For each instance,
we present the values of the dual integral integral*, the number of branch-and-bound
nodes nodes, the achieved primal bound objective at termination, the value integral of
the primal integral, and the overall solving time time.

Settings default estim oracle rank-1

Problem

10teams integral* 58.4 61.6 60.9 60.8
nodes 1272.0 1612.0 1552.0 1612.0
objective 924.0 924.0 924.0 924.0
integral 1459.7 648.5 599.0 584.4
time 25.6 35.4 33.3 33.3

30n20b8 integral* 9555.0 8011.9 6959.1 8029.3
nodes 14.0 6.0 4.0 6.0
objective 302.0 302.0 302.0 302.0
integral 8418.0 8330.0 8317.0 8410.0
time 183.5 151.7 135.6 152.0

a1c1s1 integral* 124305.2 118916.9 118644.8 162765.1
nodes 718786.0 626920.0 640772.0 1815029.0
objective 11642.1 11701.0 11701.0 11754.2
integral 14318.3 14326.3 14270.7 25160.9
time 7200.0 7200.0 7200.0 7200.0

acc-tight5 integral* 210.0 210.0 200.0 220.0
nodes 16931.0 608.0 608.0 608.0
objective 0.0 0.0 0.0 0.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

integral 143661.0 6170.0 6160.0 6220.0
time 1436.6 61.7 61.6 62.2

aflow30a integral* 89.8 93.1 87.7 89.1
nodes 2118.0 2506.0 1852.0 1976.0
objective 1158.0 1158.0 1158.0 1158.0
integral 385.8 398.1 388.3 390.8
time 13.9 14.5 13.3 13.5

aflow40b integral* 2589.6 3114.8 2798.2 6318.6
nodes 151103.0 112411.0 69617.0 323752.0
objective 1168.0 1168.0 1168.0 1168.0
integral 1850.7 2421.6 2420.7 4094.9
time 912.9 941.0 681.0 1328.9

air03 integral* 70.2 80.2 70.2 80.1
nodes 1.0 1.0 1.0 1.0
objective 340160.0 340160.0 340160.0 340160.0
integral 81.5 88.4 82.8 84.4
time 1.0 1.1 1.0 1.1

air04 integral* 453.3 441.4 442.4 452.2
nodes 213.0 146.0 156.0 156.0
objective 56137.0 56137.0 56137.0 56137.0
integral 756.8 740.2 742.1 747.4
time 70.4 64.1 65.6 65.5

air05 integral* 166.5 189.7 209.6 189.9
nodes 181.0 309.0 299.0 365.0
objective 26374.0 26374.0 26374.0 26374.0
integral 415.9 529.4 552.5 530.7
time 37.5 39.3 39.3 39.4

app1-2 integral* 52653.8 63944.0 52923.0 52774.2
nodes 427.0 429.0 306.0 246.0
objective -41.0 -41.0 -41.0 -41.0
integral 28924.9 28904.7 28710.0 29076.8
time 1118.2 1270.6 976.2 964.7

arki001 integral* 56.9 93.7 99.8 103.4
nodes 1166439.0 915413.0 960617.0 997478.0
objective 7580813.0 7580813.0 7580813.0 7580813.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

integral 474.5 595.1 606.4 606.2
time 7200.0 7200.0 7200.0 7200.0

ash608gpia-3col integral* 2330.0 3140.0 3150.0 3160.0
nodes 10.0 27.0 27.0 27.0
integral 2330.0 3140.0 3150.0 3160.0
time 23.3 31.4 31.5 31.6

atlanta-ip integral* 55112.1 66498.4 66528.0 70865.4
nodes 14375.0 9861.0 9852.0 260171.0
objective 91.0 95.0 95.0 97.0
integral 77572.2 60360.0 60360.0 72558.8
time 7200.0 7200.0 7200.0 7200.0

bab5 integral* 7585.0 13818.2 13765.1 13844.4
nodes 25819.0 17781.0 17837.0 17728.0
objective -106205.7 -106207.2 -106207.2 -106207.2
integral 23143.2 20850.2 20707.9 20733.8
time 7200.0 7200.0 7200.0 7200.0

beasleyC3 integral* 91701.2 95215.9 95218.1 107829.5
nodes 796130.0 1106432.0 1106852.0 2065757.0
objective 761.0 759.0 759.0 832.0
integral 9542.5 6425.8 6431.9 67604.0
time 7200.0 7200.0 7200.0 7200.0

bell3a integral* 2.3 2.1 2.2 2.3
nodes 22487.0 23064.0 22579.0 23083.0
objective 878430.3 878430.3 878430.3 878430.3
integral 0.0 0.0 0.0 0.0
time 6.1 5.7 4.2 4.5

bell5 integral* 10.0 0.0 10.0 10.0
nodes 1140.0 1226.0 1218.0 1224.0
objective 8966406.5 8966406.5 8966406.5 8966406.5
integral 6.2 0.2 6.2 6.2
time 0.8 0.4 0.6 0.6

biella1 integral* 649.4 625.1 614.8 727.5
nodes 2133.0 2538.0 2436.0 14468.0
objective 3065005.8 3065005.8 3065005.8 3065005.8
integral 6224.9 3602.3 3609.6 3983.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

time 781.4 578.7 575.2 1395.4
bienst2 integral* 6024.9 6081.0 8201.8 9499.7

nodes 93988.0 93988.0 92643.0 106272.0
objective 54.6 54.6 54.6 54.6
integral 250.7 256.4 246.0 203.6
time 297.4 297.8 301.6 291.8

binkar10_1 integral* 52.8 59.4 73.4 82.9
nodes 138787.0 120843.0 119374.0 120533.0
objective 6742.2 6742.2 6742.2 6742.2
integral 66.1 61.3 64.6 69.1
time 177.2 158.3 147.8 137.2

blend2 integral* 16.5 20.9 20.9 19.0
nodes 412.0 932.0 933.0 634.0
objective 7.6 7.6 7.6 7.6
integral 40.7 41.8 41.8 41.4
time 0.9 1.4 1.4 1.2

bley_xl1 integral* 33176.4 33376.4 33076.4 33268.6
nodes 20.0 20.0 20.0 20.0
objective 190.0 190.0 190.0 190.0
integral 37128.9 37425.6 36974.8 37198.1
time 430.6 434.6 429.0 431.4

bnatt350 integral* 80.0 70.0 70.0 80.0
nodes 21343.0 14092.0 14092.0 14092.0
objective 0.0 0.0 0.0 0.0
integral 147700.0 81900.0 81894.0 82867.0
time 1477.1 819.2 818.9 828.6

cap6000 integral* 40.0 50.0 40.0 50.0
nodes 3788.0 4064.0 4080.0 4561.0
objective -2451377.0 -2451377.0 -2451377.0 -2451377.0
integral 36.6 46.2 36.4 46.2
time 2.7 3.1 2.7 2.8

core2536-691 integral* 980.3 990.5 1030.7 980.5
nodes 218.0 218.0 218.0 481.0
objective 689.0 689.0 689.0 689.0
integral 1278.3 1309.6 1355.2 1299.6
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

time 318.1 321.2 324.1 319.6
cov1075 integral* 62170.0 62169.9 90051.2 76188.9

nodes 1557428.0 1559145.0 1635309.0 1854530.0
objective 20.0 20.0 20.0 20.0
integral 250.8 243.1 242.6 239.0
time 7200.0 7200.0 6923.5 7200.0

csched010 integral* 47458.5 76490.1 63870.3 82644.7
nodes 931270.0 1049236.0 997781.0 1128300.0
objective 408.0 409.0 408.0 410.0
integral 8987.5 10338.6 9311.0 16636.5
time 7200.0 7200.0 7200.0 7200.0

danoint integral* 16556.3 15726.8 16750.4 19819.0
nodes 1050040.0 966643.0 881640.0 1089980.0
objective 65.7 65.7 65.7 65.7
integral 1010.9 291.5 294.9 2374.2
time 5078.2 4785.0 3836.3 4451.6

dcmulti integral* 1.0 0.9 0.9 0.9
nodes 322.0 316.0 306.0 261.0
objective 188182.0 188182.0 188182.0 188182.0
integral 119.5 61.0 61.0 61.0
time 1.6 1.2 1.2 1.2

dfn-gwin-UUM integral* 658.8 669.3 780.1 733.7
nodes 66936.0 61708.0 63462.0 60074.0
objective 38752.0 38752.0 38752.0 38752.0
integral 436.6 437.8 430.8 434.5
time 139.6 133.4 113.9 115.1

disctom integral* 190.0 200.0 200.0 200.0
nodes 1.0 1.0 1.0 1.0
objective -5000.0 -5000.0 -5000.0 -5000.0
integral 366.0 390.0 398.0 386.0
time 3.6 3.9 3.9 3.8

ds integral* 273079.9 274607.1 274604.6 274595.1
nodes 523.0 542.0 546.0 546.0
objective 361.0 316.6 316.6 316.6
integral 571215.7 544517.3 544297.5 544375.4
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

time 7200.0 7200.0 7200.0 7200.0
dsbmip integral* 30.0 40.0 50.0 60.0

nodes 15.0 11.0 11.0 11.0
objective -305.2 -305.2 -305.2 -305.2
integral 75.0 75.9 91.0 89.0
time 1.2 1.1 1.4 1.3

egout integral* 0.0 0.0 0.0 0.0
nodes 1.0 1.0 1.0 1.0
objective 568.1 568.1 568.1 568.1
integral 0.0 0.0 0.0 0.0
time 0.0 0.0 0.0 0.0

eil33-2 integral* 700.9 728.0 969.4 1149.3
nodes 735.0 851.0 1235.0 1339.0
objective 934.0 934.0 934.0 934.0
integral 518.0 501.3 519.8 595.2
time 52.8 57.3 78.9 96.7

eilB101 integral* 2920.5 2997.4 2971.5 2276.5
nodes 8028.0 8283.0 8357.0 6776.0
objective 1216.9 1216.9 1216.9 1216.9
integral 1262.9 1781.2 1757.0 822.5
time 436.2 477.7 474.1 323.3

enigma integral* 0.0 0.0 0.0 0.0
nodes 954.0 2759.0 2759.0 2759.0
objective 0.0 0.0 0.0 0.0
integral 50.0 68.0 60.0 78.0
time 0.5 0.6 0.6 0.7

enlight13 integral* 769.1 1386.2 10777.8 970.0
nodes 13479.0 30211.0 270890.0 23151.0
objective 71.0 71.0 71.0 71.0
integral 0.0 0.0 0.0 0.0
time 8.6 16.8 119.5 10.7

enlight14 integral* 0.0 0.0 0.0 0.0
nodes 1.0 1.0 1.0 1.0
integral 0.0 0.0 0.0 0.0
time 0.0 0.0 0.0 0.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

ex9 integral* 3820.0 3730.0 3950.0 3750.0
nodes 1.0 1.0 1.0 1.0
objective 81.0 81.0 81.0 81.0
integral 3820.0 3728.0 3950.0 3746.0
time 38.2 37.2 39.5 37.4

fast0507 integral* 1250.4 1258.6 1278.5 1287.0
nodes 1376.0 1376.0 1348.0 1862.0
objective 174.0 174.0 174.0 174.0
integral 907.7 932.2 947.8 937.1
time 576.8 574.8 574.8 615.3

fiber integral* 10.6 7.5 22.1 18.5
nodes 8.0 8.0 5.0 8.0
objective 405935.2 405935.2 405935.2 405935.2
integral 40.8 28.6 50.6 50.1
time 1.6 1.5 3.4 1.7

fixnet6 integral* 15.8 26.3 29.6 25.9
nodes 9.0 9.0 8.0 9.0
objective 3983.0 3983.0 3983.0 3983.0
integral 13.8 23.8 23.8 22.6
time 3.0 3.3 7.5 3.3

flugpl integral* 0.0 0.2 0.0 0.2
nodes 251.0 115.0 115.0 174.0
objective 1201500.0 1201500.0 1201500.0 1201500.0
integral 0.0 0.3 0.0 0.3
time 0.0 0.0 0.0 0.0

gen integral* 10.0 10.0 10.0 10.0
nodes 1.0 1.0 1.0 1.0
objective 112313.4 112313.4 112313.4 112313.4
integral 6.0 6.0 7.0 6.0
time 0.1 0.1 0.1 0.1

gesa2 integral* 10.1 10.2 10.2 10.2
nodes 2.0 2.0 2.0 2.0
objective 25779856.4 25779856.4 25779856.4 25779856.4
integral 69.8 96.2 89.4 80.8
time 0.9 1.2 1.1 1.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

gesa2-o integral* 10.3 10.4 10.4 10.4
nodes 5.0 5.0 5.0 5.0
objective 25779856.4 25779856.4 25779856.4 25779856.4
integral 23.2 23.8 23.8 25.7
time 1.2 1.3 1.2 1.6

gesa3 integral* 10.1 10.2 10.2 10.2
nodes 7.0 7.0 6.0 7.0
objective 27991042.6 27991042.6 27991042.6 27991042.6
integral 13.8 15.2 15.7 26.0
time 1.6 1.6 2.4 2.0

gesa3_o integral* 10.1 10.2 10.3 10.2
nodes 8.0 8.0 8.0 8.0
objective 27991042.6 27991042.6 27991042.6 27991042.6
integral 15.5 16.5 27.4 24.7
time 1.6 1.8 1.9 1.7

glass4 integral* 158051.6 210964.4 211095.6 240008.6
nodes 16199130.0 14938613.0 14873922.0 19924545.0
objective 1550013650.0 1575014925.0 1575014925.0 1566682704.5
integral 165720.8 178427.0 178445.2 175851.2
time 7200.0 7200.0 7200.0 7200.0

gmu-35-40 integral* 64.9 71.0 71.0 74.9
nodes 13065327.0 14149261.0 14168881.0 22385757.0
objective -2406528.8 -2406328.9 -2406328.9 -2404683.6
integral 118.5 159.7 159.5 635.5
time 7200.0 7200.0 7200.0 7200.0

gt2 integral* 0.0 0.2 0.2 0.2
nodes 1.0 1.0 1.0 1.0
objective 21166.0 21166.0 21166.0 21166.0
integral 1.0 5.9 5.9 5.9
time 0.0 0.1 0.1 0.1

harp2 integral* 56.7 48.7 48.7 1592.9
nodes 12630591.0 11703033.0 11722399.0 22409557.0
objective -73899798.0 -73899798.0 -73899798.0 -73899797.0
integral 25.4 26.3 26.5 615.4
time 3700.6 4479.6 4430.6 7200.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

iis-100-0-cov integral* 29247.4 30216.5 39767.6 45359.1
nodes 102734.0 105711.0 85533.0 89706.0
objective 29.0 29.0 29.0 29.0
integral 623.8 651.6 658.5 782.8
time 1663.9 1722.3 1305.2 1358.8

iis-bupa-cov integral* 65009.9 67794.8 104947.8 114341.6
nodes 182534.0 179812.0 172416.0 182329.0
objective 36.0 36.0 36.0 36.0
integral 1397.0 1155.4 1115.4 2337.0
time 6142.9 6512.3 5434.2 5552.2

iis-pima-cov integral* 19588.8 19722.4 19735.1 10262.7
nodes 20364.0 20278.0 20296.0 7935.0
objective 33.0 33.0 33.0 33.0
integral 4259.5 4391.8 4382.1 1156.2
time 1383.2 1388.3 1388.6 610.8

khb05250 integral* 0.1 1.1 1.1 1.1
nodes 3.0 3.0 2.0 3.0
objective 106940226.0 106940226.0 106940226.0 106940226.0
integral 2.5 3.2 3.2 3.2
time 0.5 0.6 1.0 0.6

l152lav integral* 12.9 13.5 13.8 23.7
nodes 49.0 92.0 92.0 92.0
objective 4722.0 4722.0 4722.0 4722.0
integral 91.0 57.6 62.0 68.6
time 2.5 3.0 3.2 3.3

lectsched-4-obj integral* 237.1 249.8 237.5 237.5
nodes 24222.0 8296.0 9683.0 9683.0
objective 4.0 4.0 4.0 4.0
integral 21706.8 8547.6 15065.8 15061.2
time 399.0 109.6 200.4 200.1

lseu integral* 3.5 5.4 5.5 5.0
nodes 336.0 606.0 602.0 379.0
objective 1120.0 1120.0 1120.0 1120.0
integral 2.3 8.5 8.5 8.2
time 0.6 0.8 0.9 0.8
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

m100n500k4r1 integral* 0.0 0.0 0.0 0.0
nodes 7184542.0 6987522.0 6993419.0 2046170.0
objective -24.0 -24.0 -24.0 -24.0
integral 28957.2 28896.8 28900.4 29028.8
time 7200.0 7200.0 7200.0 7200.0

macrophage integral* 146518.1 146136.8 146093.5 146068.1
nodes 1251604.0 1233931.0 1236445.0 1239753.0
objective 375.0 376.0 376.0 376.0
integral 10371.0 5015.6 5011.6 5012.4
time 7200.0 7200.0 7200.0 7200.0

manna81 integral* 30.4 10.2 30.4 10.3
nodes 1.0 1.0 1.0 1.0
objective -13164.0 -13164.0 -13164.0 -13164.0
integral 14.7 10.0 14.7 10.0
time 0.8 0.4 0.8 0.6

map18 integral* 3287.1 3879.2 3494.7 3934.9
nodes 393.0 315.0 333.0 305.0
objective -847.0 -847.0 -847.0 -847.0
integral 3828.6 4000.9 4020.4 4000.4
time 424.3 433.5 382.6 438.6

map20 integral* 2763.1 2743.1 2746.8 2707.6
nodes 299.0 299.0 319.0 315.0
objective -922.0 -922.0 -922.0 -922.0
integral 2792.9 2785.2 2770.5 2780.5
time 335.0 333.3 333.9 327.6

markshare1 integral* 720000.0 720000.0 720000.0 720000.0
nodes 73327325.0 76824489.0 75830406.0 43086938.0
objective 5.0 4.0 4.0 3.0
integral 602368.8 559538.0 559815.9 503482.0
time 7200.0 7200.0 7200.0 7200.0

markshare2 integral* 720000.0 720000.0 720000.0 720000.0
nodes 60920471.0 60781960.0 60892446.0 28720432.0
objective 13.0 12.0 12.0 13.0
integral 675988.0 661153.5 661142.1 668024.1
time 7200.1 7200.1 7200.0 7200.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

mas74 integral* 2161.4 2268.0 2805.4 3517.6
nodes 2834519.0 2767121.0 2760117.0 2594501.0
objective 11801.2 11801.2 11801.2 11801.2
integral 79.7 332.6 331.8 32.5
time 565.4 583.8 516.2 440.1

mas76 integral* 82.0 96.0 278.7 133.5
nodes 404939.0 471714.0 848147.0 436756.0
objective 40005.1 40005.1 40005.1 40005.1
integral 8.5 9.1 9.1 7.6
time 66.7 79.2 118.7 56.2

mcsched integral* 1240.3 1116.8 1103.0 1259.6
nodes 19507.0 15565.0 15471.0 14275.0
objective 211913.0 211913.0 211913.0 211913.0
integral 230.5 246.4 237.8 234.9
time 211.9 172.9 173.4 159.9

mik-250-1-100-1 integral* 744.6 738.2 944.9 1006.2
nodes 943440.0 943440.0 595707.0 683166.0
objective -66729.0 -66729.0 -66729.0 -66729.0
integral 10.2 0.2 10.2 10.2
time 365.1 362.7 236.8 278.7

mine-166-5 integral* 431.7 453.0 427.0 425.8
nodes 2045.0 2045.0 1997.0 2045.0
objective -566395707.9 -566395707.9 -566395707.9 -566395707.9
integral 1654.3 1626.2 1618.3 1608.6
time 31.0 30.7 30.7 31.0

mine-90-10 integral* 409.8 360.6 382.0 354.7
nodes 77784.0 68094.0 67313.0 57851.0
objective -784302337.6 -784302337.6 -784302337.6 -784302337.6
integral 1944.8 1813.7 1815.5 1789.9
time 256.3 228.4 232.2 199.4

misc03 integral* 42.4 38.5 35.0 41.9
nodes 139.0 123.0 137.0 170.0
objective 3360.0 3360.0 3360.0 3360.0
integral 49.0 31.5 19.1 30.8
time 1.2 1.1 1.0 1.2
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

misc06 integral* 10.0 10.0 10.0 10.0
nodes 4.0 4.0 6.0 4.0
objective 12850.9 12850.9 12850.9 12850.9
integral 6.4 5.5 5.5 5.5
time 0.7 0.5 0.8 0.5

misc07 integral* 562.5 510.5 557.1 596.4
nodes 21721.0 20003.0 15439.0 17292.0
objective 2810.0 2810.0 2810.0 2810.0
integral 63.6 34.6 52.9 34.6
time 14.4 13.1 11.2 12.3

mitre integral* 590.0 580.0 660.0 590.0
nodes 1.0 1.0 1.0 1.0
objective 115155.0 115155.0 115155.0 115155.0
integral 582.4 580.2 652.4 582.4
time 6.0 5.9 6.7 6.0

mkc integral* 1306.8 1296.7 1307.1 1340.1
nodes 2524672.0 2989875.0 2985313.0 3871184.0
objective -563.7 -563.6 -563.6 -559.6
integral 2537.0 2067.8 2080.1 5789.1
time 7200.0 7200.0 7200.0 7200.0

mod008 integral* 3.2 2.3 3.6 3.6
nodes 7.0 7.0 4.0 7.0
objective 307.0 307.0 307.0 307.0
integral 11.6 8.7 13.1 13.1
time 0.9 0.7 1.2 1.1

mod010 integral* 20.1 20.1 20.1 20.1
nodes 2.0 7.0 7.0 7.0
objective 6548.0 6548.0 6548.0 6548.0
integral 68.0 60.2 60.0 60.0
time 0.8 0.7 0.7 0.7

mod011 integral* 491.4 517.1 476.4 464.9
nodes 1229.0 1229.0 1021.0 1068.0
objective -54558535.0 -54558535.0 -54558535.0 -54558535.0
integral 1540.6 1570.5 1559.4 1571.1
time 176.8 180.3 152.0 145.8
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

modglob integral* 0.3 0.4 0.5 0.4
nodes 905.0 905.0 739.0 820.0
objective 20740508.1 20740508.1 20740508.1 20740508.1
integral 0.2 0.2 0.3 0.2
time 1.4 1.5 1.5 1.3

momentum1 integral* 66647.1 60364.6 60205.1 60150.5
nodes 44070.0 15148.0 15305.0 15331.0
objective 115610.8 160511.2 160511.2 160511.2
integral 113930.9 260453.6 260146.2 260052.7
time 7200.0 7200.0 7200.0 7200.0

momentum2 integral* 69616.4 94193.3 80807.5 94353.1
nodes 90508.0 99580.0 86526.0 74211.0
objective 12314.4 12315.1 12314.6 13813.8
integral 85974.5 83308.9 82711.0 112704.8
time 7200.0 7200.0 7200.0 7200.0

msc98-ip integral* 5430.7 5420.6 5410.6 5410.8
nodes 3391.0 18438.0 10164.0 10162.0
objective 21655010.0 22273180.0 22273180.0 22273180.0
integral 353627.0 147592.2 147355.8 147440.3
time 7200.0 7200.0 7200.0 7200.0

mspp16 integral* 61662.4 63439.4 78986.1 63230.3
nodes 51.0 57.0 47.0 57.0
objective 363.0 363.0 363.0 363.0
integral 49036.0 49190.0 49030.0 49060.0
time 2579.3 2841.5 5437.7 2838.0

mzzv11 integral* 4336.8 4216.2 4278.5 4223.1
nodes 1999.0 1999.0 1908.0 1975.0
objective -21718.0 -21718.0 -21718.0 -21718.0
integral 12450.4 12445.9 12449.1 12349.4
time 267.9 266.0 258.1 262.7

mzzv42z integral* 3052.0 3019.6 3050.0 3037.6
nodes 534.0 534.0 536.0 1012.0
objective -20540.0 -20540.0 -20540.0 -20540.0
integral 12112.4 12014.9 12018.5 11988.8
time 340.3 337.7 338.4 316.6
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

n3div36 integral* 43102.2 43060.7 45913.6 43935.3
nodes 250934.0 260655.0 372168.0 345004.0
objective 131000.0 130800.0 130800.0 130800.0
integral 5793.9 5732.8 5758.1 5974.6
time 7200.0 7200.0 7200.0 7200.0

n3seq24 integral* 7360.9 7520.3 7430.7 7420.7
nodes 393.0 392.0 393.0 393.0
objective 61600.0 61600.0 61600.0 61600.0
integral 172367.6 174014.4 173563.3 173691.5
time 7200.0 7200.0 7200.0 7200.0

n4-3 integral* 3286.1 3343.7 3975.2 5487.5
nodes 32231.0 33154.0 29104.0 44646.0
objective 8993.0 8993.0 8993.0 8993.0
integral 1409.3 1439.8 1443.4 1754.8
time 542.3 564.0 472.5 633.3

neos-1109824 integral* 1397.6 1409.5 1231.8 1462.6
nodes 21927.0 22678.0 10652.0 14781.0
objective 378.0 378.0 378.0 378.0
integral 773.5 994.5 981.8 984.9
time 156.1 154.0 103.4 123.3

neos-1337307 integral* 1127.4 2995.5 2506.2 1025.0
nodes 370421.0 553458.0 519383.0 391710.0
objective -202319.0 -202319.0 -202319.0 -202319.0
integral 8200.6 5426.7 5280.8 5281.7
time 7200.0 7200.0 7200.0 7200.0

neos-1396125 integral* 11732.0 15076.5 15160.0 27068.1
nodes 61200.0 69115.0 59721.0 70372.0
objective 3000.0 3000.0 3000.0 3000.0
integral 4047.4 5430.3 5570.4 5463.6
time 766.1 925.5 856.8 778.5

neos-1601936 integral* 1433.3 1433.3 1530.0 1423.3
nodes 6755.0 1615.0 1606.0 1615.0
objective 4.0 6.0 6.0 6.0
integral 251274.8 686858.2 688908.0 686958.2
time 7200.0 7200.0 7200.0 7200.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

neos-476283 integral* 7894.7 8034.8 8124.8 7884.8
nodes 685.0 685.0 667.0 855.0
objective 406.4 406.4 406.4 406.4
integral 9009.9 9194.0 9298.1 9030.1
time 275.9 282.0 279.6 279.8

neos-686190 integral* 1453.1 1825.5 1770.5 1757.6
nodes 7264.0 10378.0 9405.0 9445.0
objective 6730.0 6730.0 6730.0 6730.0
integral 3954.3 1825.0 1866.9 1848.6
time 93.8 118.6 110.5 109.8

neos-849702 integral* 180.0 160.0 170.0 160.0
nodes 6115.0 48917.0 48917.0 48917.0
objective 0.0 0.0 0.0 0.0
integral 17471.0 55887.0 55967.0 55999.0
time 174.7 558.8 559.6 559.9

neos-916792 integral* 3591.9 3537.8 3480.3 9305.6
nodes 106472.0 123066.0 124088.0 210792.0
objective 31.9 31.9 31.9 31.9
integral 938.9 923.6 904.0 1075.7
time 406.2 454.3 399.2 593.9

neos-934278 integral* 3221.1 3221.1 3251.0 3251.0
nodes 889.0 1133.0 992.0 1095.0
objective 275.0 271.0 271.0 271.0
integral 133833.6 333188.8 341132.6 335158.6
time 7200.0 7200.0 7200.0 7200.0

neos13 integral* 33785.0 41656.5 41652.2 42219.1
nodes 4422.0 3230.0 3230.0 3209.0
objective -95.5 -95.5 -95.5 -95.5
integral 40072.4 44630.5 44623.2 45119.0
time 1514.8 1727.5 1725.1 1738.6

neos18 integral* 509.0 538.1 567.4 545.6
nodes 6778.0 5601.0 5179.0 6249.0
objective 16.0 16.0 16.0 16.0
integral 390.2 373.1 363.1 338.7
time 32.1 29.8 31.9 31.6
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

net12 integral* 135566.4 143794.4 155271.1 198889.8
nodes 3864.0 4985.0 5016.0 4605.0
objective 214.0 214.0 214.0 214.0
integral 91859.7 31752.4 31764.8 16073.1
time 2532.6 2746.2 3018.6 3473.0

netdiversion integral* 88934.9 86721.9 86057.6 86149.9
nodes 72.0 119.0 113.0 113.0
objective 251.0 242.0 242.0 242.0
integral 358622.1 554572.7 554572.7 554572.7
time 7200.0 6630.7 6581.5 6580.6

newdano integral* 83214.8 83697.5 112165.5 153952.0
nodes 2083404.0 2083404.0 1993781.0 2002198.0
objective 65.7 65.7 65.7 65.7
integral 1835.3 1846.3 1842.6 1647.9
time 3557.7 3573.5 3704.2 3242.0

noswot integral* 825.1 837.9 814.4 805.1
nodes 829543.0 829543.0 436956.0 455271.0
objective -41.0 -41.0 -41.0 -41.0
integral 10.0 12.7 14.1 12.9
time 177.5 180.3 175.1 173.1

ns1208400 integral* 187020.0 127900.0 151980.0 106290.0
nodes 3118.0 2777.0 2785.0 2772.0
objective 2.0 2.0 2.0 2.0
integral 180863.0 26900.0 26900.0 27000.0
time 1870.2 1279.0 1519.8 1062.9

ns1688347 integral* 12504.0 6524.3 7857.2 7727.9
nodes 6667.0 2609.0 3905.0 4330.0
objective 27.0 27.0 27.0 27.0
integral 33631.8 10151.3 10354.4 10263.8
time 738.9 275.2 388.7 380.6

ns1758913 integral* 78175.5 78124.6 78053.3 79121.5
nodes 2.0 2.0 2.0 2.0
objective -236.8 -236.8 -236.8 -236.8
integral 613682.7 613682.2 613665.3 613842.1
time 7200.0 7200.0 7200.0 7200.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

ns1766074 integral* 82440.0 84260.0 84420.0 84170.0
nodes 942544.0 893992.0 893992.0 893992.0
integral 82440.0 84260.0 84420.0 84170.0
time 824.4 842.6 844.2 841.7

ns1830653 integral* 17278.1 17348.0 15647.9 18374.2
nodes 41218.0 46638.0 36114.0 46887.0
objective 20622.0 20622.0 20622.0 20622.0
integral 8839.0 7288.8 6224.8 7889.9
time 440.3 371.5 382.9 394.2

nsrand-ipx integral* 5735.0 5194.8 5216.1 5206.5
nodes 1599798.0 1763180.0 1758600.0 1730377.0
objective 51840.0 51360.0 51360.0 51360.0
integral 11873.2 5928.3 5970.0 5998.2
time 7200.0 7200.0 7200.0 7200.0

nw04 integral* 967.3 986.4 980.6 997.7
nodes 11.0 11.0 6.0 11.0
objective 16862.0 16862.0 16862.0 16862.0
integral 1144.7 1159.7 1151.2 1174.7
time 24.5 24.4 25.3 24.9

opm2-z7-s2 integral* 11760.0 11726.0 11834.2 18626.1
nodes 2092.0 2092.0 2094.0 15231.0
objective -10280.0 -10280.0 -10280.0 -10280.0
integral 8068.2 8138.1 8277.5 8477.0
time 794.6 789.9 794.6 1220.6

opt1217 integral* 2.8 5.4 7.7 5.4
nodes 1.0 1.0 1.0 1.0
objective -16.0 -16.0 -16.0 -16.0
integral 0.0 0.0 0.0 0.0
time 0.3 0.4 0.4 0.4

p0033 integral* 0.3 0.4 0.3 0.3
nodes 1.0 1.0 1.0 1.0
objective 3089.0 3089.0 3089.0 3089.0
integral 0.8 0.8 0.8 0.8
time 0.1 0.1 0.1 0.1

p0201 integral* 14.6 14.3 14.7 4.7
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 67.0 67.0 59.0 65.0
objective 7615.0 7615.0 7615.0 7615.0
integral 23.9 21.1 24.0 14.9
time 1.8 1.7 1.8 1.7

p0282 integral* 0.3 0.8 0.8 0.8
nodes 3.0 3.0 1.0 3.0
objective 258411.0 258411.0 258411.0 258411.0
integral 1.0 2.3 2.4 2.3
time 0.3 0.6 0.8 0.6

p0548 integral* 0.8 10.2 10.2 10.2
nodes 1.0 1.0 1.0 1.0
objective 8691.0 8691.0 8691.0 8691.0
integral 10.1 20.1 20.1 20.1
time 0.1 0.3 0.3 0.3

p2756 integral* 21.5 11.4 31.9 11.4
nodes 137.0 9.0 9.0 9.0
objective 3124.0 3124.0 3124.0 3124.0
integral 26.1 16.2 31.9 16.2
time 1.6 1.2 1.4 1.2

pg5_34 integral* 156.6 175.1 175.4 252.0
nodes 291242.0 291323.0 273355.0 305210.0
objective -14339.4 -14339.4 -14339.4 -14339.4
integral 163.2 183.8 183.8 190.0
time 1287.1 1338.1 1297.1 1400.7

pigeon-10 integral* 72009.0 72009.0 72009.0 72009.0
nodes 17116573.0 17457654.0 10565366.0 17502182.0
objective -9000.0 -9000.0 -9000.0 -9000.0
integral 520.0 500.0 500.0 520.0
time 7200.0 7200.0 7200.0 7200.0

pk1 integral* 3399.4 3453.3 4329.0 4349.3
nodes 284323.0 284323.0 281331.0 281341.0
objective 11.0 11.0 11.0 11.0
integral 311.4 328.9 343.5 347.9
time 64.2 65.2 53.8 55.0

pp08a integral* 5.5 3.0 5.7 3.7
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 221.0 225.0 231.0 253.0
objective 7350.0 7350.0 7350.0 7350.0
integral 27.2 15.8 29.7 22.8
time 1.3 1.1 1.4 1.3

pp08aCUTS integral* 2.8 3.4 5.5 3.2
nodes 194.0 165.0 149.0 153.0
objective 7350.0 7350.0 7350.0 7350.0
integral 19.8 30.1 32.8 22.9
time 1.1 1.4 1.4 1.3

protfold integral* 146786.0 151335.2 151308.6 151293.3
nodes 10226.0 11588.0 11587.0 11595.0
objective -23.0 -20.0 -20.0 -20.0
integral 251536.1 300859.4 300804.5 300826.7
time 7200.0 7200.0 7200.0 7200.0

pw-myciel4 integral* 110490.5 111043.5 132077.2 157876.3
nodes 712713.0 712713.0 368355.0 433819.0
objective 10.0 10.0 10.0 10.0
integral 1816.4 1887.4 1878.4 1856.1
time 3542.8 3550.0 2199.1 2629.2

qiu integral* 5951.6 6199.1 6272.9 6260.0
nodes 12604.0 12618.0 12616.0 12629.0
objective -132.9 -132.9 -132.9 -132.9
integral 2123.9 2134.9 2153.9 2083.5
time 79.9 81.6 77.8 77.2

qnet1 integral* 40.1 22.5 35.2 22.7
nodes 36.0 7.0 7.0 7.0
objective 16029.7 16029.7 16029.7 16029.7
integral 97.6 54.6 70.7 54.6
time 8.3 4.5 5.3 4.5

qnet1_o integral* 11.0 9.8 18.9 19.1
nodes 16.0 6.0 6.0 6.0
objective 16029.7 16029.7 16029.7 16029.7
integral 62.0 51.8 61.8 62.8
time 6.6 5.1 5.3 5.4

rail507 integral* 1246.6 1244.4 1230.5 1234.1
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 799.0 799.0 855.0 865.0
objective 174.0 174.0 174.0 174.0
integral 1380.5 1379.9 1372.0 1372.0
time 242.4 239.9 235.7 239.6

ran16x16 integral* 838.1 813.8 857.8 1343.3
nodes 368022.0 346094.0 265832.0 373581.0
objective 3823.0 3823.0 3823.0 3823.0
integral 69.6 105.8 106.6 162.5
time 291.3 283.9 231.0 276.4

rd-rplusc-21 integral* 719567.3 719567.3 719567.3 719567.3
nodes 77078.0 61764.0 60360.0 70998.0
objective 165935.9 166009.7 166009.7 177205.0
integral 60818.1 118211.1 120667.1 131330.8
time 7200.0 7200.0 7200.0 7200.0

reblock67 integral* 558.5 549.1 554.0 538.3
nodes 109664.0 109664.0 57072.0 105846.0
objective -34630648.4 -34630648.4 -34630648.4 -34630648.4
integral 1629.4 1701.9 1627.8 1617.9
time 253.3 251.3 172.6 246.5

rentacar integral* 114.2 104.2 118.4 124.0
nodes 4.0 4.0 4.0 4.0
objective 30356761.0 30356761.0 30356761.0 30356761.0
integral 130.0 120.0 126.0 136.0
time 2.7 2.6 3.5 2.8

rgn integral* 1.5 4.2 4.2 4.2
nodes 1.0 1.0 1.0 1.0
objective 82.2 82.2 82.2 82.2
integral 8.2 24.5 24.5 24.5
time 0.1 0.3 0.3 0.3

rmatr100-p10 integral* 1808.9 1806.0 1778.7 1757.8
nodes 851.0 851.0 909.0 909.0
objective 423.0 423.0 423.0 423.0
integral 952.9 942.9 957.4 941.8
time 135.1 135.8 131.0 130.7

rmatr100-p5 integral* 5293.7 6929.7 6131.5 6391.4
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 420.0 451.0 483.0 439.0
objective 976.0 976.0 976.0 976.0
integral 1492.9 1399.0 1392.0 1376.4
time 302.9 304.2 267.6 280.0

rmine6 integral* 665.5 387.9 395.2 385.2
nodes 2004491.0 742664.0 736822.0 738018.0
objective -457.2 -457.2 -457.2 -457.2
integral 367.9 343.8 331.7 331.4
time 6096.9 2287.9 2246.4 2263.0

rocII-4-11 integral* 12279.0 7037.1 10788.3 10042.0
nodes 40477.0 11718.0 30330.0 17308.0
objective -6.7 -6.7 -6.7 -6.7
integral 11909.9 3637.1 10136.1 7544.9
time 463.1 204.7 433.9 299.9

rococoC10-001000 integral* 5034.0 4558.5 4816.8 11986.9
nodes 203201.0 174936.0 135810.0 224776.0
objective 11460.0 11460.0 11460.0 11460.0
integral 752.7 920.8 941.2 2245.8
time 1217.3 1011.1 876.6 1274.5

roll3000 integral* 6626.7 3522.8 2892.8 19509.0
nodes 2781398.0 1063691.0 423972.0 2331855.0
objective 12899.0 12890.0 12890.0 12890.0
integral 1534.3 1083.3 1054.9 4709.2
time 7200.0 3082.7 1387.3 5522.8

rout integral* 224.3 215.0 204.9 207.2
nodes 26664.0 20646.0 18547.0 18646.0
objective 1077.6 1077.6 1077.6 1077.6
integral 162.8 190.5 184.3 190.1
time 40.1 32.2 27.9 28.2

satellites1-25 integral* 48757.5 74492.3 57389.7 68402.2
nodes 3064.0 2648.0 1588.0 2212.0
objective -5.0 -5.0 -5.0 -5.0
integral 31264.0 32148.0 32108.0 45240.0
time 660.2 995.5 765.3 913.5

set1ch integral* 2.5 4.6 5.3 4.0
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 9.0 9.0 9.0 9.0
objective 54537.8 54537.8 54537.8 54537.8
integral 13.9 16.7 21.1 13.5
time 0.7 0.8 0.9 0.7

seymour integral* 15701.9 15933.6 15928.6 15953.0
nodes 150798.0 146737.0 146590.0 146047.0
objective 423.0 424.0 424.0 424.0
integral 4737.7 2925.2 2927.8 2946.7
time 7200.0 7200.0 7200.0 7200.0

sp97ar integral* 15504.2 47703.3 48193.8 47725.6
nodes 6289.0 8065.0 8101.0 7619.0
objective 710063477.9 696853271.7 696853271.7 710898758.9
integral 60048.1 72299.2 72495.0 72262.6
time 7200.0 7200.0 7200.0 7200.0

sp98ic integral* 3463.5 3263.9 3265.7 3399.2
nodes 131473.0 137628.0 137322.0 185344.0
objective 452431468.0 450852689.3 450852689.3 450852689.3
integral 18843.6 5858.7 5856.4 5888.1
time 7200.0 7200.0 7200.0 7200.0

sp98ir integral* 236.9 224.6 220.6 204.4
nodes 8210.0 5379.0 5375.0 4630.0
objective 219676790.4 219676790.4 219676790.4 219676790.4
integral 378.2 458.9 462.1 442.6
time 106.6 86.3 81.3 69.2

stein27 integral* 27.8 30.6 33.3 19.4
nodes 3905.0 3905.0 3973.0 3607.0
objective 18.0 18.0 18.0 18.0
integral 0.0 0.0 0.0 0.0
time 1.0 1.1 1.2 0.7

stein45 integral* 207.5 225.0 268.3 283.9
nodes 47352.0 47352.0 50336.0 46693.0
objective 30.0 30.0 30.0 30.0
integral 4.5 6.6 5.1 5.4
time 12.2 13.1 11.3 10.7

stp3d integral* 248584.7 249365.6 248779.9 248389.5
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Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

nodes 1.0 1.0 1.0 1.0
integral 720000.0 720000.0 720000.0 720000.0
time 7200.0 7200.0 7200.0 7200.0

swath integral* 105447.4 96980.1 96898.0 110113.1
nodes 1231280.0 1214072.0 1220123.0 1672194.0
objective 472.6 476.1 476.1 490.6
integral 14764.9 19927.5 19873.7 34175.3
time 7200.0 7200.0 7200.0 7200.0

tanglegram1 integral* 89159.2 87762.2 87629.7 88029.6
nodes 37.0 37.0 37.0 37.0
objective 5182.0 5182.0 5182.0 5182.0
integral 15880.2 15738.7 15706.3 15784.6
time 1161.2 1138.7 1138.6 1142.8

tanglegram2 integral* 1397.2 1415.6 1377.7 1377.7
nodes 5.0 5.0 5.0 5.0
objective 443.0 443.0 443.0 443.0
integral 711.1 720.2 699.1 697.8
time 14.9 15.1 14.7 14.7

timtab1 integral* 5932.4 5559.8 7258.5 11280.7
nodes 870361.0 868207.0 896679.0 965573.0
objective 764772.0 764772.0 764772.0 764772.0
integral 385.4 412.6 380.8 356.2
time 390.1 388.1 376.2 377.6

timtab2 integral* 237001.7 326894.8 245532.2 326896.4
nodes 9144342.0 14814841.0 9027482.0 14855771.0
objective 1136721.0 1208245.0 1138052.0 1208245.0
integral 38386.2 67445.2 43432.2 67212.9
time 7200.0 7200.0 7200.0 7200.0

tr12-30 integral* 191.9 173.2 196.8 294.2
nodes 1471731.0 1186814.0 1162158.0 1306275.0
objective 130596.0 130596.0 130596.0 130596.0
integral 84.8 93.4 101.3 102.3
time 1814.6 1521.3 1505.3 1454.0

triptim1 integral* 13000.0 12800.0 12700.0 12700.0
nodes 47.0 4.0 4.0 4.0

continued on next page
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A. Appendix A

Table A.1: Instancewise results of the experiment in Section 5.4.2. integral*: dual
integral, nodes: number of branch-and-bound nodes, objective: primal bound at
termination, integral: primal integral, time: overall solving time.

Settings default estim oracle rank-1

Problem

objective 22.9 22.9 22.9 22.9
integral 195940.0 98168.0 99763.0 98172.0
time 2791.3 981.7 997.6 981.7

unitcal_7 integral* 3015.6 2979.1 3036.7 3050.8
nodes 23265.0 27125.0 19216.0 19861.0
objective 19635558.2 19635558.2 19635558.2 19635558.2
integral 8237.2 8204.4 8238.8 8257.5
time 1304.6 1469.5 1230.3 1271.4

vpm1 integral* 0.0 0.0 0.0 0.0
nodes 1.0 1.0 1.0 1.0
objective 20.0 20.0 20.0 20.0
integral 0.0 0.0 0.0 0.0
time 0.0 0.0 0.0 0.0

vpm2 integral* 8.4 6.6 10.5 9.0
nodes 294.0 218.0 224.0 206.0
objective 13.8 13.8 13.8 13.8
integral 20.5 17.5 26.2 20.5
time 1.3 1.2 1.7 1.4

vpphard integral* 720000.0 720000.0 720000.0 720000.0
nodes 7476.0 6321.0 6292.0 6321.0
objective 9.0 30.0 30.0 30.0
integral 402227.3 605195.8 605180.1 605182.1
time 7200.0 7200.0 7200.0 7200.0

zib54-UUE integral* 37084.8 49612.0 58244.4 58701.5
nodes 539744.0 706521.0 296047.0 294878.0
objective 10334015.8 10334015.8 10334015.8 10334015.8
integral 1071.3 1115.0 1110.9 2147.6
time 3829.7 5375.5 2703.8 2625.2
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B
Appendix B

This appendix contains an instance-wise outcome of our computational experiments
described in Section 4.3. For each of the five settings, we present three columns; the
measured dual integral integral*, the number of nodes nodes, and the solving time in
seconds time. Table B.1 shows the results for instances which we classified as small
tree instances, and Table B.2 contains the remaining instances, cf. Tables 4.3 and 4.2,
respectively.
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B. Appendix B

Settings (hyp) (rer)-0.01 (rer)-0.1 (rer)-0.05 (fnt)-5
integral* nodes time integral* nodes time integral* nodes time integral* nodes time integral* nodes time

Problem
30n20b8 12699.9 13 196.4 14587.7 79 221.4 13000.5 18 200.6 15786.8 120 237.6 12756.5 18 196.3
air04 1766.8 8 36.2 1842.3 8 37.6 1842.3 8 37.6 1847.3 8 37.7 1862.4 8 37.9
air05 1275.2 50 25.7 1290.3 52 25.9 1290.4 52 26.0 1275.1 52 25.6 1270.2 62 25.6
app1-2 110453.1 23 1763.5 110730.3 19 1766.7 109918.4 19 1754.8 109878.9 19 1754.2 55296.9 41 875.6
ash608gpia-3col 2010.0 7 20.1 2120.0 9 21.2 2060.0 9 20.6 2080.0 9 20.8 2000.0 7 20.0
blend2 23.4 252 0.6 24.3 117 0.7 28.8 155 0.7 23.4 205 0.6 23.4 240 0.6
dcmulti 5.5 8 1.2 5.4 14 1.0 5.5 14 1.1 5.5 14 1.1 0.3 8 0.8
fast0507 1457.3 598 140.5 4264.0 714 150.5 4570.0 722 149.6 1128.5 646 146.8 4444.4 630 147.8
fiber 7.5 4 1.2 8.0 4 1.2 1.8 4 1.0 7.2 4 1.1 4.1 4 1.0
fixnet6 14.2 18 2.1 19.7 10 2.2 15.3 10 2.2 20.1 10 2.3 11.5 10 1.9
gesa2 5.2 3 0.8 5.1 3 0.8 5.2 3 0.7 5.2 3 0.7 5.0 3 0.4
gesa2-o 5.2 2 1.0 5.2 2 1.1 5.2 2 1.0 5.3 2 1.1 5.1 2 0.9
gesa3 5.2 7 1.3 5.2 7 1.2 5.2 7 1.3 5.1 7 1.0 5.1 7 1.0
gesa3_o 10.1 7 1.3 5.1 7 1.2 5.2 7 1.3 5.1 7 1.2 0.1 7 0.9
khb05250 0.1 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5
l152lav 31.2 19 1.2 46.6 19 1.6 41.2 19 1.3 41.5 19 1.5 40.9 19 1.1
lseu 21.8 58 0.5 21.8 64 0.5 21.8 64 0.5 21.8 64 0.5 5.9 191 0.2
map18 15193.4 309 291.8 15757.4 275 302.4 15821.5 275 303.6 15777.8 275 302.7 15510.6 285 297.8
map20 12007.8 265 229.9 12518.0 307 239.4 12523.8 307 239.6 12560.5 307 240.2 12353.0 281 236.3
misc03 43.4 77 1.4 37.8 23 1.2 36.3 23 1.1 33.1 23 1.0 24.1 80 0.8
misc06 5.0 4 0.5 5.0 4 0.6 5.0 4 0.6 5.0 4 0.6 5.0 4 0.5
mod008 2.5 7 0.8 0.0 7 0.8 0.0 7 1.0 3.1 7 1.0 2.3 7 0.8
mod010 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5
mod011 327.1 671 108.8 329.4 671 109.2 326.5 671 108.6 331.6 853 110.4 333.0 855 116.3
modglob 5.1 21 0.6 5.1 19 0.5 10.1 23 0.6 10.1 25 0.6 0.1 25 0.5
mspp16 131239.4 57 2474.8 88730.3 31 1673.2 95963.6 29 1809.6 98487.9 29 1857.2 98434.8 31 1856.2
mzzv42z 5076.1 132 147.7 5117.1 96 148.4 5101.4 96 147.9 5065.3 96 147.2 5458.9 110 155.5
neos-476283 1971.2 233 73.8 1961.2 105 70.4 2006.2 175 70.1 1976.3 394 74.9 1971.2 110 70.6
neos13 876.7 6 31.2 883.0 8 31.2 860.5 8 30.8 866.8 8 30.7 897.8 8 32.1
ns1208400 33880.0 598 338.8 52850.0 860 528.5 52890.0 860 528.9 52820.0 860 528.2 49760.0 881 497.6
nw04 476.0 8 20.4 480.0 8 20.1 470.0 8 20.0 465.7 8 20.2 496.4 8 20.7
p0201 42.9 11 1.3 37.7 9 1.2 27.5 9 1.0 32.3 9 1.0 32.6 9 1.1
p0282 0.5 3 0.5 0.5 3 0.5 0.5 3 0.5 0.0 3 0.4 0.0 3 0.3
p2756 1.7 3 0.9 1.8 3 1.1 1.8 3 1.1 6.8 3 1.1 5.1 3 0.7
pp08a 32.4 53 1.2 27.4 51 1.1 32.4 51 1.2 27.4 51 1.1 21.2 161 0.7
pp08aCUTS 12.8 53 1.2 23.0 51 1.3 18.1 51 1.3 18.0 51 1.2 1.5 153 0.8
qnet1 16.7 3 2.0 16.7 3 2.0 11.9 3 2.0 17.3 3 2.2 10.2 3 2.0
qnet1_o 4.1 4 1.4 0.0 4 1.3 4.1 4 1.4 0.0 4 1.4 0.0 4 1.3
rail507 760.6 554 145.5 664.3 546 136.9 1207.0 582 144.2 704.4 586 142.6 529.0 644 147.1
rentacar 71.9 4 3.3 77.1 4 3.4 81.7 4 3.8 80.6 4 3.4 80.6 4 3.4
rmatr100-p10 6884.6 723 121.2 7004.4 793 123.3 7028.6 793 123.8 6981.6 791 122.9 6821.8 709 120.1
rmatr100-p5 14864.3 339 245.6 15234.8 367 251.7 15562.9 367 257.1 15224.8 367 251.6 14256.9 349 235.6
set1ch 0.0 3 0.8 0.0 3 0.8 3.0 3 0.8 0.0 3 0.6 0.0 3 0.6
stp3d 145498.8 17 7200.0 145872.3 14 7200.0 145433.0 14 7200.0 145579.5 14 7200.0 145433.0 14 7200.0
tanglegram1 92121.1 31 922.3 77378.6 27 774.7 77468.4 27 775.6 77108.9 27 772.0 99072.9 33 991.9
tanglegram2 783.1 3 7.9 793.1 3 8.0 783.1 3 7.9 793.1 3 8.0 793.1 3 8.0
vpm2 19.1 298 0.9 35.3 50 1.3 24.8 50 1.1 25.0 110 1.1 19.6 272 1.0

Table B.1: Instance-wise experimental outcome for instances requiring at most 1000
nodes to solve.
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Settings (hyp) (rer)-0.01 (rer)-0.1 (rer)-0.05 (fnt)-5
integral* nodes time integral* nodes time integral* nodes time integral* nodes time

dualint nodes time

Problem
a1c1s1 259882.7 1120506 7200.0 259873.5 1364025 7200.0 259879.2 1685774 7200.0 259876.3 2004990 7200.0 259863.8 2070335 7200.0
aflow30a 508.5 1720 12.6 502.7 1908 12.4 507.3 1908 12.4 511.8 1908 12.4 377.5 1246 10.1
aflow40b 20210.8 104858 596.3 29534.9 172263 856.6 31494.3 179651 893.0 9929.0 116421 647.2 16390.8 143682 536.0
arki001 105.7 1120884 7200.0 105.7 592970 7200.0 105.7 754036 7200.0 105.7 1089108 7200.0 105.7 365939 7200.0
atlanta-ip 70465.2 7972 7200.0 70460.7 10011 7200.0 70460.7 10012 7200.0 70469.4 11789 7200.0 70469.7 8529 7200.0
bab5 6707.5 133720 7200.0 6649.7 110708 7200.0 6623.3 105423 7200.0 6644.2 123080 7200.0 6632.3 96735 7200.0
beasleyC3 94243.8 2408887 7200.0 92905.6 2107529 7200.0 92907.7 1377166 7200.0 92907.5 1849676 7200.0 92907.7 2841834 7200.0
bell3a 0.0 20025 3.0 0.0 20027 3.2 1.3 20261 3.1 11.4 21353 3.2 16.3 22611 2.8
bell5 10.0 1025 0.3 10.0 956 0.3 10.0 956 0.3 10.0 956 0.3 10.0 1152 0.3
biella1 34013.5 7109 679.4 19260.3 3629 384.8 19260.3 3629 384.8 15824.9 2771 316.2 33983.5 6883 678.8
bienst2 10925.9 66579 328.4 10702.5 101007 426.9 10718.1 101007 427.7 15947.8 113088 463.4 29985.7 309529 561.7
binkar10_1 596.4 86776 149.4 645.7 107739 163.3 2009.0 106799 161.7 139.4 100593 157.2 175.9 142580 139.1
cap6000 25.0 984 1.6 25.0 738 1.6 25.0 738 2.1 25.0 738 1.7 30.0 1801 1.5
cov1075 238889.6 2029811 4343.6 276493.1 2302521 5027.3 272692.6 2343053 4958.2 239021.6 2057875 4346.0 265179.6 2274377 4821.6
csched010 66451.7 369300 5305.9 84124.4 603007 7200.0 83471.9 595757 7200.0 82408.9 580198 7200.0 84082.4 1035664 7200.0
danoint 28360.6 1587831 6349.2 26431.6 916872 5941.5 32253.7 1563067 7200.0 32305.3 1741600 7200.0 20001.8 1102583 4476.0
dfn-gwin-UUM 1896.5 46931 118.7 1183.9 56297 135.2 1045.1 54593 133.4 1336.6 51457 139.2 1333.5 68085 93.1
ds 273675.0 6949 7200.0 273443.2 8668 7200.0 273433.4 8668 7200.0 273437.3 8554 7200.0 273445.3 7413 7200.0
eil33-2 1769.4 844 34.0 1748.3 1244 38.6 1818.4 1688 40.0 1183.5 1750 36.8 1351.2 340 30.3
eilB101 15408.3 8352 296.7 3224.8 5724 237.5 3264.2 5724 238.4 12732.3 6842 266.3 12660.3 6284 265.1
enlight13 1985.2 35737 21.2 1292.9 19169 14.1 1293.3 19169 14.1 8782.4 212656 97.6 13838.2 522384 158.9
glass4 61870.2 3541756 2966.7 240005.6 6451908 7200.0 70217.8 4150120 3363.6 240005.6 7997381 7200.0 240002.3 12763342 7200.0
gmu-35-40 65.0 21704510 7200.0 65.0 19643305 7200.0 65.0 20060056 7200.0 65.0 20562455 7200.0 60.0 32198403 7200.0
harp2 6822.5 197138 136.7 504.5 243174 161.1 320.6 198128 145.5 6887.6 209303 137.9 233.9 448438 160.7
iis-100-0-cov 19380.1 71291 522.7 26112.1 63349 685.3 30456.6 68587 737.3 25113.1 68335 578.4 24816.6 76155 523.3
iis-bupa-cov 98475.4 176675 2454.5 124920.5 146447 3222.1 65723.4 151437 2874.6 56189.1 153879 2319.6 58125.2 181441 2500.9
iis-pima-cov 14787.3 7531 263.6 13231.9 5821 239.4 14110.9 6339 254.5 13808.1 6059 249.3 13735.8 5869 248.4
macrophage 294853.6 2815744 7200.0 294850.8 1594719 7200.0 294850.8 2450737 7200.0 294854.2 2734477 7200.0 294851.0 2875395 7200.0
markshare1 720000.0 91697134 7200.0 720000.0 101065996 7200.0 720000.0 101801275 7200.0 720000.0 100882365 7200.0 720000.0 102171542 7200.0
markshare2 720000.0 83206634 7200.0 720000.0 88008981 7200.0 720000.0 87343340 7200.0 720000.0 87701931 7200.0 720000.0 88721939 7200.0
mas74 4034.7 2035460 395.3 3886.4 2112420 404.3 3425.2 2476385 355.0 3287.4 2567408 338.0 3306.0 2752472 342.5
mas76 99.8 221799 35.2 143.0 381797 55.0 318.2 395730 54.8 283.6 407343 46.7 244.8 547767 51.4
mcsched 60729.2 101259 1249.8 65736.7 108207 1334.0 56338.3 95019 1160.0 6662.9 60293 826.0 26190.3 46543 603.9
mik-250-1-100-1 1897.8 1072724 434.3 5327.1 3197358 1212.0 2179.0 1076085 438.0 1632.6 1505029 379.8 5995.2 6996847 1372.3
mine-166-5 1724.8 1240 31.1 1196.3 198 22.2 1333.9 328 24.5 1351.9 328 24.8 1250.2 2038 23.1
mine-90-10 2573.4 27903 96.5 8327.5 69247 208.1 10010.1 75221 240.3 8448.2 67032 209.7 20332.3 197329 428.7
misc07 973.8 31204 24.8 1183.4 33968 27.1 1245.4 33905 27.3 1027.9 30592 24.7 1201.8 47624 26.3
mkc 5503.8 1759678 7200.0 5504.2 2780944 7200.0 5503.8 1346673 7200.0 5504.0 1750343 7200.0 5504.2 2175182 7200.0
momentum1 85138.8 224442 7200.0 85144.8 395927 7200.0 85133.0 221818 7200.0 85158.2 264131 7200.0 85140.1 519796 7200.0
momentum2 244940.0 95882 4298.6 146827.4 34806 2723.9 202627.9 218703 7200.0 116352.8 140632 5152.9 226569.4 183471 4366.0
msc98-ip 5196.4 19531 7200.0 5196.4 8595 7200.0 5186.4 88283 7200.0 5196.4 40128 7200.0 5191.4 58884 7200.0
mzzv11 10377.6 1873 332.0 9712.5 1857 319.5 9701.3 1857 318.2 9716.6 1857 318.3 10185.3 2014 324.5
n3div36 54503.3 305537 7200.0 52926.8 350961 7200.0 52929.1 346823 7200.0 54503.6 362117 7200.0 52928.9 513914 7200.0
n3seq24 4800.8 7497 7200.0 4840.6 10605 7200.0 4820.7 9713 7200.0 4825.7 9711 7200.0 4815.7 8601 7200.0
n4-3 40980.4 37963 742.5 47000.5 44277 850.6 47119.4 42763 852.8 47852.6 43169 866.2 9826.5 46719 557.0
neos-1109824 4752.2 16018 88.0 2215.8 5143 41.3 2644.7 7432 49.2 2493.4 6008 46.5 1674.8 17347 84.2
neos-1337307 2851.4 499306 7200.0 2846.1 537959 7200.0 2851.1 501053 7200.0 2856.0 499990 7200.0 2841.1 714364 7200.0
neos-1396125 165458.3 100396 4394.8 107606.3 57401 2582.8 105651.4 59324 2592.5 108259.0 57159 2594.8 37201.4 88307 836.4
neos-686190 2695.3 2190 44.4 2793.4 2400 46.0 2793.4 2400 46.0 2711.4 2263 44.6 2705.3 1865 44.5
neos-916792 124357.4 1936201 7200.0 115050.5 1637517 7200.0 115058.7 1695767 7200.0 117813.7 1944367 7200.0 117042.3 2065470 7200.0
neos18 1316.9 34892 75.9 2794.3 59418 116.6 1699.9 44814 72.4 4982.4 113871 136.1 2054.8 59329 79.2
net12 225620.4 2616 2776.5 289044.4 3642 3556.3 291354.0 3642 3584.8 188654.2 2273 2321.9 231010.4 3139 2842.7
netdiversion 59360.6 1262 7200.4 59214.5 2450 7200.6 59507.7 2440 7200.2 59409.7 2448 7200.2 59752.9 2430 7200.8
newdano 116175.7 1337377 2695.1 202838.0 2102759 4739.1 166152.1 2281511 3972.2 172475.7 2390353 3843.2 166449.7 3194194 3936.2
noswot 7283.7 759174 139.2 7744.2 541939 148.0 5264.0 349424 100.6 9245.9 937041 176.7 16508.7 1607445 315.5
ns1688347 638.9 216 11.5 666.1 227 11.9 765.2 547 13.7 587.2 132 10.6 690.6 1088 12.4
ns1766074 342820.0 741161 3428.2 339300.0 749137 3393.0 342910.0 718315 3429.1 270620.0 774224 2706.2 237360.0 848597 2373.6
ns1830653 16954.7 51131 396.1 30657.6 44597 427.5 30736.6 44597 428.6 31033.3 46837 432.7 9767.1 22244 219.9
nsrand-ipx 11004.5 4470709 7200.0 11118.5 2278695 7200.0 15952.5 3796812 6527.1 11109.1 4328054 7200.0 10543.7 3978440 6502.4
opm2-z7-s2 52472.5 1511 873.2 45429.7 1275 756.0 45772.2 1421 761.7 51655.3 1325 859.6 46319.1 1283 770.8
pg5_34 3338.5 110314 797.7 35711.3 93606 830.2 33931.0 71290 801.6 3277.9 67830 755.8 1535.8 136710 713.1
pigeon-10 72000.0 1903058 7200.0 72000.0 2340172 7200.0 72000.0 2260479 7200.0 72000.0 3267789 7200.0 72000.0 3010254 7200.0
pk1 8503.0 441505 86.6 7850.0 245985 78.5 7230.0 275029 72.3 7341.0 344029 74.6 7282.0 393967 74.0
protfold 169384.3 6724 7200.0 169388.0 3654 7200.0 169388.0 3648 7200.0 169387.9 3643 7200.0 169388.3 6014 7200.0
pw-myciel4 161437.8 504422 2868.5 432078.7 3985751 7200.0 432084.8 3052407 7200.0 432083.7 2963901 7200.0 432085.2 3293759 7200.0
qiu 6514.4 9203 75.4 5908.2 8355 70.0 5790.7 8355 68.6 5799.0 8355 68.7 4489.9 9557 48.7
ran16x16 1579.1 254683 255.4 1497.2 251567 244.4 2064.1 248711 251.3 2212.5 261833 270.0 1222.1 284383 177.9
rd-rplusc-21 719565.9 292482 7200.0 719565.9 365129 7200.0 719565.9 176050 7200.0 719565.9 181324 7200.0 719565.9 563331 7200.0
reblock67 1950.7 38170 79.3 1462.0 27716 67.3 668.6 34065 75.3 1492.4 27858 67.9 789.7 49872 75.6
rmine6 29837.3 379250 643.4 36649.5 264194 787.7 26286.3 275832 588.8 837.0 381988 662.7 28254.0 367462 608.8
rocII-4-11 139430.3 5922 2117.2 326485.0 37845 4944.7 124937.9 20613 3489.0 197450.1 44679 5502.3 219386.9 140524 6949.1
rococoC10-001000 78138.0 960714 7200.0 78138.8 646077 7200.0 78139.8 1134644 7200.0 78140.2 1009680 7200.0 78134.2 2225139 7200.0
roll3000 30539.2 1592527 7200.0 30533.5 1828356 7200.0 30538.8 1883210 7200.0 30528.4 1647039 7200.0 30528.9 2722022 7200.0
rout 527.2 33158 45.0 1253.8 24804 38.4 1232.1 24804 38.0 1438.2 28995 41.8 528.1 19618 22.0
satellites1-25 208591.3 6503 2383.9 215188.8 6168 2459.3 215468.8 6168 2462.5 215582.5 6168 2463.8 149555.0 5749 1709.2
seymour 22803.9 432465 7200.0 22813.7 266060 7200.0 22813.7 298616 7200.0 22808.7 406612 7200.0 22808.8 438631 7200.0
sp97ar 715183.0 2860 7200.0 715182.9 2859 7200.0 715183.0 2859 7200.0 715183.0 2861 7200.0 715182.9 2862 7200.1
sp98ic 643739.2 24910 7200.1 643980.9 25556 7200.1 645279.9 22326 7200.0 645193.7 21939 7200.0 642833.8 33432 7200.0
sp98ir 1717.5 3354 38.1 1550.3 2928 34.7 1560.5 2928 35.0 1591.3 2910 35.9 1661.9 2582 37.1
stein27 51.1 3215 0.8 121.4 921 1.9 115.0 933 1.8 115.0 1449 1.8 38.3 4073 0.6
stein45 646.0 37211 10.2 277.3 41231 10.8 715.7 41669 11.3 614.3 42251 9.7 430.7 49451 6.8
swath 132806.3 955499 7200.0 131192.6 1032573 7200.0 131192.7 1090076 7200.0 131195.7 1120004 7200.0 131547.9 1526206 7200.0
timtab1 10953.6 576355 331.3 18586.8 1024342 535.7 20956.3 1127633 610.5 20065.1 1044816 578.8 10270.7 826333 292.0
timtab2 323569.0 8355916 7200.0 323567.1 8320061 7200.0 323567.7 7890308 7200.0 323567.2 11934864 7200.0 323566.6 13961074 7200.0
tr12-30 661.8 1052649 1724.2 632.6 1371401 2138.7 986.9 1155493 1850.1 554.8 1461519 1985.9 437.4 1072845 1082.6
unitcal_7 3786.0 185919 7200.0 3771.3 186486 7200.0 278109.7 106121 6253.8 148395.5 58245 3666.5 205323.5 112703 4696.1
vpphard 720000.0 5160 7200.0 720000.0 29923 7200.0 720000.0 53957 7200.0 720000.0 41002 7200.0 720000.0 58045 7200.0
zib54-UUE 81108.9 243167 2975.5 90967.0 294299 3264.6 94390.5 315556 3485.8 134064.3 659977 4891.7 66689.8 347875 2336.9

Table B.2: Instance-wise experimental outcome for instances for which one setting
required more 1000 nodes.
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Table C.1: The MIP performance results from Section 6.4.3 for every instance and
random seed. The 5 columns Timeouts, Diff, and Equal, [0,3600], and [100,3600] indicate
the group membership of an instance to the respective group in Table 6.4.
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ALNS ALNS off ALNS ALNS off

30n20b8 0 ✓ ✓ ✓ 184 184 12 376 12 315
30n20b8 1 ✓ ✓ ✓ 158 156 8 110 8 008
30n20b8 2 ✓ ✓ ✓ 278 279 11 900 11 873
50v-10 0 ✓ 3 600 3 600 2 229 2 558
50v-10 1 ✓ 3 600 3 600 1 967 2 986
50v-10 2 ✓ 3 600 3 600 3 297 2 354
CMS750_4 0 ✓ ✓ ✓ 1 263 1 253 3 955 3 917
CMS750_4 1 ✓ ✓ ✓ 1 444 1 718 9 762 13 732
CMS750_4 2 ✓ ✓ ✓ 1 981 3 600 10 021 13 797
academictimetablesmall 0 ✓ 3 600 3 600 360 001 360 001
academictimetablesmall 1 ✓ 3 600 3 600 360 000 360 001
academictimetablesmall 2 ✓ 3 600 3 600 360 000 360 002
air05 0 ✓ ✓ 31 31 361 405
air05 1 ✓ ✓ 36 35 491 486
air05 2 ✓ ✓ 32 35 434 467
app1-1 0 ✓ ✓ 3 3 50 120
app1-1 1 ✓ ✓ 4 5 203 453
app1-1 2 ✓ ✓ 5 4 177 183
app1-2 0 ✓ ✓ ✓ 211 210 9 015 8 976
app1-2 1 ✓ ✓ ✓ 422 408 19 112 18 498
app1-2 2 ✓ ✓ ✓ 304 294 13 680 13 191
assign1-5-8 0 ✓ ✓ ✓ 3 235 3 231 38 36
assign1-5-8 1 ✓ ✓ ✓ 3 600 3 592 36 35
assign1-5-8 2 ✓ ✓ ✓ 2 499 2 494 43 42
atlanta-ip 0 ✓ 3 600 3 600 24 097 62 737
atlanta-ip 1 ✓ 3 600 3 600 17 899 14 976
atlanta-ip 2 ✓ 3 600 3 600 17 152 40 196
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b1c1s1 0 ✓ 3 600 3 600 10 464 10 429
b1c1s1 1 ✓ 3 600 3 600 17 583 17 595
b1c1s1 2 ✓ 3 600 3 600 14 519 14 478
bab2 0 ✓ 3 600 3 600 282 447 360 001
bab2 1 ✓ 3 600 3 600 360 000 360 001
bab2 2 ✓ 3 600 3 600 330 971 330 191
bab6 0 ✓ 3 600 3 600 345 704 341 522
bab6 1 ✓ 3 600 3 600 203 681 360 000
bab6 2 ✓ 3 600 3 600 221 004 217 729
beasleyC3 0 ✓ ✓ ✓ 87 115 856 955
beasleyC3 1 ✓ ✓ 40 48 323 447
beasleyC3 2 ✓ ✓ 48 26 400 423
binkar10_1 0 ✓ ✓ 32 24 26 30
binkar10_1 1 ✓ ✓ 28 24 24 29
binkar10_1 2 ✓ ✓ 21 29 14 22
blp-ar98 0 ✓ 3 600 3 600 10 106 10 369
blp-ar98 1 ✓ 3 600 3 600 10 668 13 355
blp-ar98 2 ✓ 3 600 3 600 10 524 10 641
blp-ic98 0 ✓ 3 600 3 600 12 249 15 958
blp-ic98 1 ✓ 3 600 3 600 11 708 11 996
blp-ic98 2 ✓ 3 600 3 600 12 525 18 275
bnatt400 0 ✓ ✓ ✓ 240 240 23 700 23 700
bnatt400 1 ✓ ✓ ✓ 185 186 15 600 15 700
bnatt400 2 ✓ ✓ ✓ 120 119 8 530 8 500
bnatt500 0 ✓ ✓ ✓ 467 467 46 705 46 713
bnatt500 1 ✓ ✓ ✓ 546 547 54 625 54 679
bnatt500 2 ✓ ✓ ✓ 613 612 61 308 61 166
bppc4-08 0 ✓ 3 600 3 600 409 218
bppc4-08 1 ✓ 3 600 3 600 223 2 793
bppc4-08 2 ✓ 3 600 3 600 205 482
brazil3 0 ✓ 3 600 3 600 343 651 343 066
brazil3 1 ✓ 3 600 3 600 332 451 331 768
brazil3 2 ✓ 3 600 3 600 345 191 344 741
buildingenergy 0 ✓ 3 600 3 600 30 338 28 532
buildingenergy 1 ✓ 3 600 3 600 14 994 29 038
buildingenergy 2 ✓ 3 600 3 600 19 091 28 818
cbs-cta 0 ✓ ✓ 7 5 710 470
cbs-cta 1 ✓ ✓ 8 41 810 4 120
cbs-cta 2 ✓ ✓ ✓ 4 1 069 350 106 900
chromaticindex1024-7 0 ✓ 3 600 3 600 53 800 53 800
chromaticindex1024-7 1 ✓ 3 600 3 600 47 000 47 100
chromaticindex1024-7 2 ✓ 3 600 3 600 52 900 53 900
chromaticindex512-7 0 ✓ ✓ ✓ 1 523 1 527 9 570 9 630
chromaticindex512-7 1 ✓ 3 600 3 600 14 300 14 300
chromaticindex512-7 2 ✓ 3 600 3 600 11 400 11 300
cmflsp50-24-8-8 0 ✓ 3 600 3 600 360 001 360 000
cmflsp50-24-8-8 1 ✓ 3 600 3 600 355 069 352 641
cmflsp50-24-8-8 2 ✓ 3 600 3 600 117 239 106 145
co-100 0 ✓ 3 600 3 600 73 648 89 623
co-100 1 ✓ 3 600 3 600 85 986 97 439
co-100 2 ✓ 3 600 3 600 58 236 194 063
cod105 0 ✓ ✓ ✓ 427 599 594 7 018
cod105 1 ✓ ✓ ✓ 440 435 6 118 5 993
cod105 2 ✓ ✓ ✓ 513 511 7 168 7 168
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comp07-2idx 0 ✓ 3 600 3 600 344 860 344 679
comp07-2idx 1 ✓ 3 600 3 600 347 753 347 761
comp07-2idx 2 ✓ 3 600 3 600 348 437 348 421
comp21-2idx 0 ✓ 3 600 3 600 234 484 237 115
comp21-2idx 1 ✓ 3 600 3 600 229 093 245 447
comp21-2idx 2 ✓ 3 600 3 600 230 310 225 994
cost266-UUE 0 ✓ ✓ ✓ 2 337 2 335 699 688
cost266-UUE 1 ✓ ✓ ✓ 3 228 3 235 582 579
cost266-UUE 2 ✓ ✓ ✓ 3 457 3 448 407 397
cryptanalysiskb128n5obj14 0 ✓ 3 600 3 600 360 001 360 001
cryptanalysiskb128n5obj14 1 ✓ 3 600 3 600 360 001 360 001
cryptanalysiskb128n5obj14 2 ✓ 3 600 3 600 360 000 360 000
cryptanalysiskb128n5obj16 0 ✓ ✓ ✓ 3 059 3 068 305 900 306 800
cryptanalysiskb128n5obj16 1 ✓ 3 600 3 600 360 000 360 001
cryptanalysiskb128n5obj16 2 ✓ 3 600 3 600 360 002 360 001
csched007 0 ✓ ✓ ✓ 1 977 2 059 4 481 13 373
csched007 1 ✓ ✓ ✓ 3 033 3 092 12 770 12 788
csched007 2 ✓ ✓ ✓ 1 364 1 361 6 449 6 469
csched008 0 ✓ ✓ ✓ 532 532 10 222 10 221
csched008 1 ✓ ✓ ✓ 623 625 777 730
csched008 2 ✓ ✓ ✓ 432 432 948 895
cvs16r128-89 0 ✓ 3 600 3 600 8 922 9 208
cvs16r128-89 1 ✓ 3 600 3 600 8 454 7 483
cvs16r128-89 2 ✓ 3 600 3 600 8 272 9 137
dano3_3 0 ✓ ✓ ✓ 112 111 1 346 1 345
dano3_3 1 ✓ ✓ ✓ 121 120 1 586 1 585
dano3_3 2 ✓ ✓ 88 87 1 639 1 638
dano3_5 0 ✓ ✓ ✓ 271 270 1 016 1 015
dano3_5 1 ✓ ✓ ✓ 341 339 1 745 1 743
dano3_5 2 ✓ ✓ ✓ 421 418 1 312 1 311
decomp2 0 ✓ ✓ 2 2 171 161
decomp2 1 ✓ ✓ 2 2 172 172
decomp2 2 ✓ ✓ 2 2 172 171
drayage-100-23 0 ✓ ✓ 8 9 482 703
drayage-100-23 1 ✓ ✓ 8 9 609 677
drayage-100-23 2 ✓ ✓ 23 8 546 636
drayage-25-23 0 ✓ 3 600 3 600 619 830
drayage-25-23 1 ✓ 3 600 3 600 620 871
drayage-25-23 2 ✓ 3 600 3 600 605 678
dws008-01 0 ✓ 3 600 3 600 60 440 59 372
dws008-01 1 ✓ 3 600 3 600 73 834 75 366
dws008-01 2 ✓ 3 600 3 600 67 431 66 464
eil33-2 0 ✓ ✓ 78 78 377 502
eil33-2 1 ✓ ✓ 73 77 376 479
eil33-2 2 ✓ ✓ 82 65 435 330
eilA101-2 0 ✓ 3 600 3 600 63 008 82 544
eilA101-2 1 ✓ 3 600 3 600 47 060 63 704
eilA101-2 2 ✓ 3 600 3 600 51 600 101 940
enlight_hard 0 ✓ ✓ 1 1 1 1
enlight_hard 1 ✓ ✓ 1 1 1 1
enlight_hard 2 ✓ ✓ 1 1 1 1
ex10 0 ✓ ✓ ✓ 119 119 11 900 11 900
ex10 1 ✓ ✓ ✓ 120 117 12 000 11 700
ex10 2 ✓ ✓ ✓ 122 122 12 200 12 200
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ex9 0 ✓ ✓ 12 12 1 160 1 160
ex9 1 ✓ ✓ 11 10 1 070 1 050
ex9 2 ✓ ✓ 12 11 1 160 1 110
exp-1-500-5-5 0 ✓ ✓ 3 3 59 86
exp-1-500-5-5 1 ✓ ✓ 2 3 47 96
exp-1-500-5-5 2 ✓ ✓ 2 3 23 83
fast0507 0 ✓ ✓ ✓ 232 215 838 603
fast0507 1 ✓ ✓ ✓ 138 133 502 482
fast0507 2 ✓ ✓ ✓ 133 122 580 468
fastxgemm-n2r6s0t2 0 ✓ ✓ ✓ 425 419 10 670 10 669
fastxgemm-n2r6s0t2 1 ✓ ✓ ✓ 469 467 3 985 3 937
fastxgemm-n2r6s0t2 2 ✓ ✓ ✓ 773 769 6 376 6 317
fhnw-binpack4-4 0 ✓ 3 600 3 600 360 000 360 000
fhnw-binpack4-4 1 ✓ 3 600 3 600 360 000 360 000
fhnw-binpack4-4 2 ✓ 3 600 3 600 360 000 360 000
fhnw-binpack4-48 0 ✓ 3 600 3 600 360 000 360 000
fhnw-binpack4-48 1 ✓ 3 600 3 600 360 000 360 000
fhnw-binpack4-48 2 ✓ 3 600 3 600 360 000 360 000
fiball 0 ✓ ✓ ✓ 295 87 1 362 985
fiball 1 ✓ ✓ ✓ 291 417 1 140 1 672
fiball 2 ✓ ✓ ✓ 84 469 922 1 893
gen-ip002 0 ✓ ✓ ✓ 1 509 1 510 26 7
gen-ip002 1 ✓ ✓ ✓ 1 542 1 465 73 8
gen-ip002 2 ✓ ✓ ✓ 1 434 1 796 30 35
gen-ip054 0 ✓ ✓ ✓ 1 452 1 180 90 14
gen-ip054 1 ✓ ✓ ✓ 894 886 22 22
gen-ip054 2 ✓ ✓ ✓ 1 694 1 735 142 167
germanrr 0 ✓ 3 600 3 600 44 124 44 334
germanrr 1 ✓ 3 600 3 600 46 993 47 096
germanrr 2 ✓ 3 600 3 600 52 644 52 441
gfd-schedulen180f7d50m30k18 0 ✓ 3 600 3 600 430 238 429 270
gfd-schedulen180f7d50m30k18 1 ✓ 3 600 3 600 363 588 361 798
gfd-schedulen180f7d50m30k18 2 ✓ 3 600 3 600 418 795 416 114
glass-sc 0 ✓ 3 600 3 600 217 215
glass-sc 1 ✓ ✓ ✓ 3 479 3 482 185 185
glass-sc 2 ✓ ✓ ✓ 3 050 3 057 432 431
glass4 0 ✓ ✓ ✓ 312 3 600 7 808 74 138
glass4 1 ✓ ✓ ✓ 946 1 079 23 762 23 800
glass4 2 ✓ ✓ ✓ 170 2 324 3 818 55 400
gmu-35-40 0 ✓ 3 600 3 600 91 102
gmu-35-40 1 ✓ 3 600 3 600 137 166
gmu-35-40 2 ✓ 3 600 3 600 90 168
gmu-35-50 0 ✓ 3 600 3 600 69 144
gmu-35-50 1 ✓ 3 600 3 600 171 243
gmu-35-50 2 ✓ 3 600 3 600 262 108
graph20-20-1rand 0 ✓ ✓ 5 5 101 99
graph20-20-1rand 1 ✓ ✓ 8 8 167 132
graph20-20-1rand 2 ✓ ✓ 7 7 207 221
graphdraw-domain 0 ✓ ✓ ✓ 1 077 1 226 523 659
graphdraw-domain 1 ✓ ✓ ✓ 1 148 1 127 635 861
graphdraw-domain 2 ✓ ✓ ✓ 1 016 1 090 364 373
h80x6320d 0 ✓ ✓ 78 74 567 3 123
h80x6320d 1 ✓ ✓ 84 82 637 2 852
h80x6320d 2 ✓ ✓ 90 66 2 253 3 424
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highschool1-aigio 0 ✓ 3 600 3 600 360 003 360 003
highschool1-aigio 1 ✓ 3 600 3 600 360 003 360 003
highschool1-aigio 2 ✓ 3 600 3 600 360 001 360 000
hypothyroid-k1 0 ✓ ✓ 21 21 2 023 2 023
hypothyroid-k1 1 ✓ ✓ 21 21 2 023 2 042
hypothyroid-k1 2 ✓ ✓ 21 21 2 043 2 043
ic97_potential 0 ✓ 3 600 3 600 213 206
ic97_potential 1 ✓ 3 600 3 600 375 451
ic97_potential 2 ✓ 3 600 3 600 231 122
icir97_tension 0 ✓ 3 600 3 600 3 585 20 256
icir97_tension 1 ✓ 3 600 3 600 1 626 12 496
icir97_tension 2 ✓ ✓ ✓ 3 578 3 526 3 947 3 851
irish-electricity 0 ✓ 3 600 3 600 36 773 37 166
irish-electricity 1 ✓ 3 600 3 600 40 079 39 436
irish-electricity 2 ✓ 3 600 3 600 342 333 342 081
irp 0 ✓ ✓ 21 16 145 147
irp 1 ✓ ✓ 22 14 142 152
irp 2 ✓ ✓ 21 15 136 149
istanbul-no-cutoff 0 ✓ ✓ ✓ 92 101 560 1 070
istanbul-no-cutoff 1 ✓ ✓ ✓ 102 96 410 1 005
istanbul-no-cutoff 2 ✓ ✓ ✓ 126 104 1 242 1 051
k1mushroom 0 ✓ ✓ ✓ 2 479 2 489 231 023 232 017
k1mushroom 1 ✓ ✓ ✓ 1 422 1 425 132 351 132 718
k1mushroom 2 ✓ ✓ ✓ 1 963 1 970 170 374 170 961
lectsched-5-obj 0 ✓ 3 600 3 600 132 909 185 007
lectsched-5-obj 1 ✓ 3 600 3 600 125 342 198 561
lectsched-5-obj 2 ✓ 3 600 3 600 140 317 177 578
leo1 0 ✓ 3 600 3 600 3 302 3 593
leo1 1 ✓ 3 600 3 600 4 251 2 857
leo1 2 ✓ 3 600 3 600 2 334 3 220
leo2 0 ✓ 3 600 3 600 17 437 18 725
leo2 1 ✓ 3 600 3 600 11 129 22 224
leo2 2 ✓ 3 600 3 600 21 104 19 901
lotsize 0 ✓ 3 600 3 600 12 577 24 315
lotsize 1 ✓ 3 600 3 600 21 497 20 157
lotsize 2 ✓ 3 600 3 600 17 744 23 690
mad 0 ✓ 3 600 3 600 138 899 114 278
mad 1 ✓ 3 600 3 600 177 439 90 935
mad 2 ✓ 3 600 3 600 197 027 100 098
map10 0 ✓ ✓ ✓ 797 937 7 548 16 072
map10 1 ✓ ✓ ✓ 996 1 267 13 383 10 820
map10 2 ✓ ✓ ✓ 845 943 6 208 11 976
map16715-04 0 ✓ ✓ ✓ 2 015 2 010 1 046 31 063
map16715-04 1 ✓ ✓ ✓ 1 939 2 079 15 963 40 514
map16715-04 2 ✓ ✓ ✓ 1 934 2 024 2 062 22 993
markshare2 0 ✓ 3 600 3 600 345 334 346 971
markshare2 1 ✓ 3 600 3 600 343 029 342 789
markshare2 2 ✓ 3 600 3 600 345 164 339 976
markshare_4_0 0 ✓ ✓ ✓ 281 279 11 054 10 980
markshare_4_0 1 ✓ ✓ ✓ 182 183 8 034 8 101
markshare_4_0 2 ✓ ✓ ✓ 290 290 8 662 8 658
mas74 0 ✓ ✓ ✓ 2 189 1 907 379 887
mas74 1 ✓ ✓ ✓ 2 250 2 061 341 818
mas74 2 ✓ ✓ ✓ 2 138 2 382 452 689
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mas76 0 ✓ ✓ ✓ 118 114 1 6
mas76 1 ✓ ✓ ✓ 104 119 1 6
mas76 2 ✓ ✓ ✓ 121 116 1 14
mc11 0 ✓ ✓ ✓ 76 278 205 373
mc11 1 ✓ ✓ ✓ 162 101 205 336
mc11 2 ✓ ✓ ✓ 133 137 245 379
mcsched 0 ✓ ✓ ✓ 288 288 165 164
mcsched 1 ✓ ✓ ✓ 285 284 134 134
mcsched 2 ✓ ✓ ✓ 233 233 153 152
mik-250-20-75-4 0 ✓ ✓ 40 38 1 1
mik-250-20-75-4 1 ✓ ✓ 33 37 10 1
mik-250-20-75-4 2 ✓ ✓ 45 51 10 1
milo-v12-6-r2-40-1 0 ✓ 3 600 3 600 574 1 067
milo-v12-6-r2-40-1 1 ✓ 3 600 3 600 497 701
milo-v12-6-r2-40-1 2 ✓ ✓ ✓ 3 600 3 354 607 591
momentum1 0 ✓ 3 600 3 600 73 371 26 359
momentum1 1 ✓ 3 600 3 600 80 357 80 444
momentum1 2 ✓ 3 600 3 600 121 320 154 950
mushroom-best 0 ✓ 3 600 3 600 23 831 22 997
mushroom-best 1 ✓ 3 600 3 600 23 327 23 237
mushroom-best 2 ✓ 3 600 3 600 26 601 26 498
mzzv11 0 ✓ ✓ ✓ 391 318 5 476 8 323
mzzv11 1 ✓ ✓ ✓ 259 435 6 406 7 062
mzzv11 2 ✓ ✓ ✓ 605 531 11 206 20 388
mzzv42z 0 ✓ ✓ ✓ 343 353 3 888 10 144
mzzv42z 1 ✓ ✓ ✓ 182 337 3 314 7 176
mzzv42z 2 ✓ ✓ ✓ 315 281 4 818 6 786
n2seq36q 0 ✓ ✓ ✓ 362 173 1 907 2 964
n2seq36q 1 ✓ ✓ ✓ 115 696 774 8 570
n2seq36q 2 ✓ ✓ ✓ 775 324 2 787 4 851
n3div36 0 ✓ 3 600 3 600 3 351 3 608
n3div36 1 ✓ 3 600 3 600 2 900 4 419
n3div36 2 ✓ 3 600 3 600 3 582 4 243
n5-3 0 ✓ ✓ 41 34 406 511
n5-3 1 ✓ ✓ 32 41 275 581
n5-3 2 ✓ ✓ 33 33 166 613
neos-1122047 0 ✓ ✓ 10 10 1 040 1 030
neos-1122047 1 ✓ ✓ 10 11 1 020 1 050
neos-1122047 2 ✓ ✓ 10 11 1 040 1 060
neos-1171448 0 ✓ ✓ 25 6 294 348
neos-1171448 1 ✓ ✓ 8 8 281 365
neos-1171448 2 ✓ ✓ 11 8 231 382
neos-1171737 0 ✓ 3 600 3 600 5 091 6 610
neos-1171737 1 ✓ 3 600 3 600 3 962 4 110
neos-1171737 2 ✓ 3 600 3 600 4 495 6 260
neos-1354092 0 ✓ 3 600 3 600 360 000 360 001
neos-1354092 1 ✓ 3 600 3 600 360 000 360 001
neos-1354092 2 ✓ 3 600 3 600 360 001 360 000
neos-1445765 0 ✓ ✓ 31 30 835 842
neos-1445765 1 ✓ ✓ 32 34 828 908
neos-1445765 2 ✓ ✓ 35 33 945 968
neos-1456979 0 ✓ 3 600 3 600 16 767 16 784
neos-1456979 1 ✓ 3 600 3 600 22 851 22 844
neos-1456979 2 ✓ 3 600 3 600 15 574 15 634
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neos-1582420 0 ✓ ✓ 33 32 2 222 2 182
neos-1582420 1 ✓ ✓ 18 17 1 535 1 505
neos-1582420 2 ✓ ✓ 22 22 627 607
neos-2075418-temuka 0 ✓ 3 600 3 600 360 002 360 003
neos-2075418-temuka 1 ✓ 3 600 3 600 360 001 360 002
neos-2075418-temuka 2 ✓ 3 600 3 600 360 002 360 001
neos-2657525-crna 0 ✓ 3 600 3 600 73 706 73 705
neos-2657525-crna 1 ✓ 3 600 3 600 292 343 203 001
neos-2657525-crna 2 ✓ 3 600 3 600 4 624 245 796
neos-2746589-doon 0 ✓ 3 600 3 600 118 555 118 450
neos-2746589-doon 1 ✓ 3 600 3 600 64 053 64 356
neos-2746589-doon 2 ✓ 3 600 3 600 37 002 37 435
neos-2978193-inde 0 ✓ 3 600 3 600 244 190
neos-2978193-inde 1 ✓ 3 600 3 600 380 176
neos-2978193-inde 2 ✓ ✓ ✓ 3 600 2 870 330 233
neos-2987310-joes 0 ✓ ✓ 18 18 1 743 1 731
neos-2987310-joes 1 ✓ ✓ 16 17 1 645 1 655
neos-2987310-joes 2 ✓ ✓ 16 16 1 606 1 576
neos-3004026-krka 0 ✓ ✓ ✓ 246 244 24 600 24 400
neos-3004026-krka 1 ✓ ✓ ✓ 630 632 63 000 63 200
neos-3004026-krka 2 ✓ ✓ ✓ 107 105 10 600 10 500
neos-3024952-loue 0 ✓ ✓ ✓ 1 155 1 193 79 022 79 032
neos-3024952-loue 1 ✓ ✓ ✓ 1 356 1 415 106 030 105 934
neos-3024952-loue 2 ✓ 3 600 3 600 360 000 360 000
neos-3046615-murg 0 ✓ 3 600 3 600 3 465 3 753
neos-3046615-murg 1 ✓ 3 600 3 600 1 026 1 970
neos-3046615-murg 2 ✓ 3 600 3 600 1 963 2 687
neos-3083819-nubu 0 ✓ ✓ 16 16 32 34
neos-3083819-nubu 1 ✓ ✓ 16 17 34 93
neos-3083819-nubu 2 ✓ ✓ 12 21 32 85
neos-3216931-puriri 0 ✓ 3 600 3 600 226 999 227 062
neos-3216931-puriri 1 ✓ 3 600 3 600 237 103 237 003
neos-3216931-puriri 2 ✓ 3 600 3 600 216 690 216 502
neos-3381206-awhea 0 ✓ ✓ 1 1 120 110
neos-3381206-awhea 1 ✓ ✓ 1 1 110 110
neos-3381206-awhea 2 ✓ ✓ 1 1 120 120
neos-3402294-bobin 0 ✓ ✓ ✓ 952 2 161 26 738 52 645
neos-3402294-bobin 1 ✓ ✓ ✓ 3 600 813 19 070 16 969
neos-3402294-bobin 2 ✓ ✓ ✓ 794 978 20 277 17 942
neos-3402454-bohle 0 ✓ 3 600 3 600 360 047 360 048
neos-3402454-bohle 1 ✓ 3 600 3 600 360 037 360 041
neos-3402454-bohle 2 ✓ 3 600 3 600 360 038 360 040
neos-3555904-turama 0 ✓ 3 600 3 600 12 300 197 878
neos-3555904-turama 1 ✓ 3 600 3 600 12 200 56 200
neos-3555904-turama 2 ✓ 3 600 3 600 160 954 159 569
neos-3627168-kasai 0 ✓ ✓ ✓ 1 287 3 600 67 74
neos-3627168-kasai 1 ✓ 3 600 3 600 63 70
neos-3627168-kasai 2 ✓ ✓ ✓ 1 106 3 600 61 160
neos-3656078-kumeu 0 ✓ 3 600 3 600 178 778 177 149
neos-3656078-kumeu 1 ✓ 3 600 3 600 263 727 264 089
neos-3656078-kumeu 2 ✓ 3 600 3 600 360 000 360 000
neos-3754480-nidda 0 ✓ 3 600 3 600 8 203 8 085
neos-3754480-nidda 1 ✓ 3 600 3 600 16 191 16 176
neos-3754480-nidda 2 ✓ 3 600 3 600 8 989 8 991
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neos-3988577-wolgan 0 ✓ 3 600 3 600 360 000 360 001
neos-3988577-wolgan 1 ✓ 3 600 3 600 360 000 360 001
neos-3988577-wolgan 2 ✓ 3 600 3 600 360 001 360 000
neos-4300652-rahue 0 ✓ 3 600 3 600 130 198 130 284
neos-4300652-rahue 1 ✓ 3 600 3 600 78 372 78 204
neos-4300652-rahue 2 ✓ 3 600 3 600 108 585 109 071
neos-4338804-snowy 0 ✓ 3 600 3 600 2 362 2 264
neos-4338804-snowy 1 ✓ 3 600 3 600 2 076 2 111
neos-4338804-snowy 2 ✓ 3 600 3 600 2 385 2 433
neos-4387871-tavua 0 ✓ 3 600 3 600 23 606 23 568
neos-4387871-tavua 1 ✓ 3 600 3 600 10 210 13 478
neos-4387871-tavua 2 ✓ 3 600 3 600 12 666 21 334
neos-4413714-turia 0 ✓ ✓ ✓ 508 431 24 212 36 437
neos-4413714-turia 1 ✓ ✓ ✓ 336 378 23 149 32 551
neos-4413714-turia 2 ✓ ✓ ✓ 617 486 25 800 41 957
neos-4532248-waihi 0 ✓ 3 600 3 600 360 001 360 006
neos-4532248-waihi 1 ✓ 3 600 3 600 360 001 360 000
neos-4532248-waihi 2 ✓ 3 600 3 600 360 000 360 000
neos-4647030-tutaki 0 ✓ 3 600 3 600 7 888 7 330
neos-4647030-tutaki 1 ✓ 3 600 3 600 4 842 7 303
neos-4647030-tutaki 2 ✓ 3 600 3 600 4 038 7 107
neos-4722843-widden 0 ✓ ✓ ✓ 761 577 9 642 8 786
neos-4722843-widden 1 ✓ ✓ ✓ 537 397 8 089 7 561
neos-4722843-widden 2 ✓ ✓ ✓ 526 505 9 390 8 907
neos-4738912-atrato 0 ✓ ✓ ✓ 726 901 275 254
neos-4738912-atrato 1 ✓ ✓ ✓ 1 887 962 391 304
neos-4738912-atrato 2 ✓ ✓ ✓ 3 600 402 318 229
neos-4763324-toguru 0 ✓ 3 600 3 600 45 078 80 709
neos-4763324-toguru 1 ✓ 3 600 3 600 38 684 68 913
neos-4763324-toguru 2 ✓ 3 600 3 600 36 719 69 509
neos-4954672-berkel 0 ✓ 3 600 3 600 3 143 2 621
neos-4954672-berkel 1 ✓ 3 600 3 600 1 942 2 710
neos-4954672-berkel 2 ✓ 3 600 3 600 2 236 2 213
neos-5049753-cuanza 0 ✓ 3 600 3 600 184 236 183 120
neos-5049753-cuanza 1 ✓ 3 600 3 600 222 857 222 090
neos-5049753-cuanza 2 ✓ 3 600 3 600 360 004 360 004
neos-5052403-cygnet 0 ✓ 3 600 3 600 34 662 48 654
neos-5052403-cygnet 1 ✓ 3 600 3 600 54 106 53 641
neos-5052403-cygnet 2 ✓ 3 600 3 600 27 012 53 888
neos-5093327-huahum 0 ✓ 3 600 3 600 28 400 32 052
neos-5093327-huahum 1 ✓ 3 600 3 600 17 650 17 547
neos-5093327-huahum 2 ✓ 3 600 3 600 27 519 20 284
neos-5104907-jarama 0 ✓ 3 600 3 600 360 001 360 003
neos-5104907-jarama 1 ✓ 3 600 3 600 360 002 360 002
neos-5104907-jarama 2 ✓ 3 600 3 600 360 001 360 004
neos-5107597-kakapo 0 ✓ 3 600 3 600 10 639 14 132
neos-5107597-kakapo 1 ✓ 3 600 3 600 17 260 17 280
neos-5107597-kakapo 2 ✓ 3 600 3 600 18 832 33 216
neos-5114902-kasavu 0 ✓ 3 600 3 600 360 007 360 006
neos-5114902-kasavu 1 ✓ 3 600 3 600 360 006 360 009
neos-5114902-kasavu 2 ✓ 3 600 3 600 360 006 360 010
neos-5188808-nattai 0 ✓ ✓ ✓ 1 409 1 407 6 332 6 203
neos-5188808-nattai 1 ✓ ✓ ✓ 1 806 1 807 9 300 9 188
neos-5188808-nattai 2 ✓ ✓ ✓ 1 515 1 496 4 460 4 283
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neos-5195221-niemur 0 ✓ ✓ ✓ 2 328 1 456 33 974 23 181
neos-5195221-niemur 1 ✓ ✓ ✓ 1 872 2 006 39 645 62 050
neos-5195221-niemur 2 ✓ ✓ ✓ 1 537 1 549 21 436 20 790
neos-631710 0 ✓ 3 600 3 600 51 421 51 611
neos-631710 1 ✓ 3 600 3 600 44 344 47 019
neos-631710 2 ✓ 3 600 3 600 41 357 41 261
neos-662469 0 ✓ 3 600 3 600 33 921 18 309
neos-662469 1 ✓ 3 600 3 600 23 802 22 445
neos-662469 2 ✓ 3 600 3 600 27 440 32 022
neos-787933 0 ✓ ✓ 2 2 188 189
neos-787933 1 ✓ ✓ 2 2 198 188
neos-787933 2 ✓ ✓ 2 2 198 188
neos-827175 0 ✓ ✓ 7 7 573 572
neos-827175 1 ✓ ✓ 8 7 612 622
neos-827175 2 ✓ ✓ 7 7 611 632
neos-848589 0 ✓ ✓ ✓ 1 749 1 975 49 799 45 991
neos-848589 1 ✓ 3 600 3 600 51 591 54 881
neos-848589 2 ✓ ✓ ✓ 995 3 600 57 005 51 537
neos-860300 0 ✓ ✓ 26 19 612 1 068
neos-860300 1 ✓ ✓ 23 19 822 1 015
neos-860300 2 ✓ ✓ 17 17 722 1 016
neos-873061 0 ✓ 3 600 3 600 31 142 38 447
neos-873061 1 ✓ 3 600 3 600 33 703 33 709
neos-873061 2 ✓ 3 600 3 600 39 633 39 966
neos-911970 0 ✓ 3 600 3 600 150 172
neos-911970 1 ✓ 3 600 3 600 135 199
neos-911970 2 ✓ 3 600 3 600 254 145
neos-933966 0 ✓ ✓ ✓ 3 578 2 206 46 641 147 564
neos-933966 1 ✓ 3 600 3 600 204 345 317 495
neos-933966 2 ✓ ✓ ✓ 3 600 3 475 160 900 69 849
neos-950242 0 ✓ ✓ ✓ 157 149 13 233 12 433
neos-950242 1 ✓ ✓ ✓ 128 709 5 447 69 160
neos-950242 2 ✓ ✓ ✓ 1 854 3 600 176 714 360 000
neos-957323 0 ✓ ✓ ✓ 56 188 2 050 2 073
neos-957323 1 ✓ ✓ ✓ 128 103 2 008 2 116
neos-957323 2 ✓ ✓ ✓ 112 409 2 027 2 235
neos-960392 0 ✓ ✓ ✓ 804 608 11 693 31 529
neos-960392 1 ✓ ✓ ✓ 729 2 121 5 064 31 295
neos-960392 2 ✓ ✓ ✓ 737 282 6 220 24 593
neos17 0 ✓ ✓ 9 10 98 91
neos17 1 ✓ ✓ 7 8 103 92
neos17 2 ✓ ✓ 9 8 100 106
neos5 0 ✓ ✓ ✓ 82 126 11 14
neos5 1 ✓ ✓ ✓ 145 142 12 18
neos5 2 ✓ ✓ ✓ 109 109 28 28
neos8 0 ✓ ✓ 7 7 721 720
neos8 1 ✓ ✓ 5 5 501 511
neos8 2 ✓ ✓ 5 5 513 503
neos859080 0 ✓ ✓ 3 3 252 250
neos859080 1 ✓ ✓ 2 2 192 197
neos859080 2 ✓ ✓ 5 5 459 453
net12 0 ✓ ✓ ✓ 367 364 5 090 5 040
net12 1 ✓ ✓ ✓ 688 685 9 232 9 198
net12 2 ✓ ✓ ✓ 653 654 3 937 3 917
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netdiversion 0 ✓ ✓ ✓ 2 351 639 61 164 48 944
netdiversion 1 ✓ ✓ ✓ 3 600 491 110 238 36 398
netdiversion 2 ✓ ✓ ✓ 3 600 977 151 795 56 997
nexp-150-20-8-5 0 ✓ ✓ ✓ 3 157 2 665 18 175 25 045
nexp-150-20-8-5 1 ✓ ✓ ✓ 3 600 1 936 35 826 25 389
nexp-150-20-8-5 2 ✓ ✓ ✓ 3 029 1 889 33 503 20 664
ns1116954 0 ✓ 3 600 3 600 360 001 360 001
ns1116954 1 ✓ 3 600 3 600 360 004 360 002
ns1116954 2 ✓ 3 600 3 600 360 001 360 001
ns1208400 0 ✓ ✓ ✓ 1 780 1 757 172 600 170 300
ns1208400 1 ✓ ✓ ✓ 3 147 3 132 312 400 311 000
ns1208400 2 ✓ ✓ ✓ 1 343 1 334 103 400 102 600
ns1644855 0 ✓ ✓ ✓ 2 758 1 615 21 222 13 352
ns1644855 1 ✓ ✓ ✓ 744 460 7 400 5 431
ns1644855 2 ✓ 3 600 3 600 26 991 27 001
ns1760995 0 ✓ 3 600 3 600 72 867 97 092
ns1760995 1 ✓ 3 600 3 600 96 779 96 858
ns1760995 2 ✓ 3 600 3 600 96 936 96 858
ns1830653 0 ✓ ✓ ✓ 107 196 2 262 3 601
ns1830653 1 ✓ ✓ ✓ 163 162 4 058 4 037
ns1830653 2 ✓ ✓ ✓ 148 148 3 771 3 783
ns1952667 0 ✓ 3 600 3 600 360 078 360 205
ns1952667 1 ✓ ✓ ✓ 1 975 1 975 197 500 197 500
ns1952667 2 ✓ ✓ ✓ 1 897 1 883 189 700 188 300
nu25-pr12 0 ✓ ✓ 6 6 31 32
nu25-pr12 1 ✓ ✓ 6 6 35 33
nu25-pr12 2 ✓ ✓ 8 6 39 31
nursesched-medium-hint03 0 ✓ 3 600 3 600 348 178 354 602
nursesched-medium-hint03 1 ✓ 3 600 3 600 354 821 349 400
nursesched-medium-hint03 2 ✓ 3 600 3 600 354 751 333 731
nursesched-sprint02 0 ✓ ✓ ✓ 126 125 8 869 8 758
nursesched-sprint02 1 ✓ ✓ 71 84 1 674 2 072
nursesched-sprint02 2 ✓ ✓ ✓ 142 140 8 531 8 824
nw04 0 ✓ ✓ 29 38 2 136 2 114
nw04 1 ✓ ✓ 52 34 2 525 2 269
nw04 2 ✓ ✓ 31 32 2 133 2 095
opm2-z10-s4 0 ✓ 3 600 3 600 48 063 48 550
opm2-z10-s4 1 ✓ 3 600 3 600 52 219 52 696
opm2-z10-s4 2 ✓ 3 600 3 600 54 255 54 650
p200x1188c 0 ✓ ✓ 1 3 1 11
p200x1188c 1 ✓ ✓ 1 3 2 14
p200x1188c 2 ✓ ✓ 1 3 1 14
peg-solitaire-a3 0 ✓ 3 600 3 600 360 001 360 000
peg-solitaire-a3 1 ✓ 3 600 3 600 360 000 360 001
peg-solitaire-a3 2 ✓ 3 600 3 600 360 000 360 001
pg 0 ✓ ✓ 20 18 220 313
pg 1 ✓ ✓ 23 14 94 527
pg 2 ✓ ✓ 25 16 276 370
pg5_34 0 ✓ ✓ ✓ 1 199 3 145 97 110
pg5_34 1 ✓ ✓ ✓ 3 113 1 261 82 128
pg5_34 2 ✓ ✓ ✓ 1 595 1 507 123 300
physiciansched3-3 0 ✓ 3 600 3 600 360 001 360 000
physiciansched3-3 1 ✓ 3 600 3 600 360 000 360 000
physiciansched3-3 2 ✓ 3 600 3 600 360 001 360 001
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physiciansched6-2 0 ✓ ✓ 73 73 6 590 6 560
physiciansched6-2 1 ✓ ✓ ✓ 868 856 54 500 54 200
physiciansched6-2 2 ✓ ✓ 66 66 6 570 6 490
piperout-08 0 ✓ ✓ 43 42 2 216 2 214
piperout-08 1 ✓ ✓ 22 22 1 744 1 733
piperout-08 2 ✓ ✓ 33 33 2 397 2 395
piperout-27 0 ✓ ✓ 34 39 2 569 2 658
piperout-27 1 ✓ ✓ 42 42 2 134 2 120
piperout-27 2 ✓ ✓ 13 13 1 020 1 020
pk1 0 ✓ ✓ ✓ 135 124 867 1 279
pk1 1 ✓ ✓ ✓ 128 130 1 117 994
pk1 2 ✓ ✓ ✓ 124 140 1 229 1 073
proteindesign121hz512p9 0 ✓ 3 600 3 600 193 597 194 133
proteindesign121hz512p9 1 ✓ 3 600 3 600 194 497 192 867
proteindesign121hz512p9 2 ✓ 3 600 3 600 193 894 193 747
proteindesign122trx11p8 0 ✓ 3 600 3 600 85 650 85 418
proteindesign122trx11p8 1 ✓ 3 600 3 600 79 342 79 305
proteindesign122trx11p8 2 ✓ 3 600 3 600 82 042 82 134
qap10 0 ✓ ✓ 43 43 1 197 1 194
qap10 1 ✓ ✓ 72 72 1 465 1 462
qap10 2 ✓ ✓ 77 77 1 471 1 465
radiationm18-12-05 0 ✓ 3 600 3 600 6 944 6 733
radiationm18-12-05 1 ✓ 3 600 3 600 10 714 39 012
radiationm18-12-05 2 ✓ 3 600 3 600 24 711 33 615
radiationm40-10-02 0 ✓ 3 600 3 600 80 508 112 017
radiationm40-10-02 1 ✓ 3 600 3 600 33 611 159 230
radiationm40-10-02 2 ✓ 3 600 3 600 152 810 101 382
rail01 0 ✓ 3 600 3 600 360 002 360 002
rail01 1 ✓ 3 600 3 600 360 002 360 002
rail01 2 ✓ 3 600 3 600 360 002 360 002
rail02 0 ✓ 3 600 3 600 360 014 360 007
rail02 1 ✓ 3 600 3 600 360 008 360 007
rail02 2 ✓ 3 600 3 600 360 004 360 005
rail507 0 ✓ ✓ ✓ 402 399 811 816
rail507 1 ✓ ✓ ✓ 209 190 777 662
rail507 2 ✓ ✓ ✓ 188 180 719 691
ran14x18-disj-8 0 ✓ ✓ ✓ 1 323 1 829 1 173 1 219
ran14x18-disj-8 1 ✓ ✓ ✓ 2 084 2 247 1 183 1 252
ran14x18-disj-8 2 ✓ ✓ ✓ 1 444 1 851 1 083 950
rd-rplusc-21 0 ✓ 3 600 3 600 360 000 360 000
rd-rplusc-21 1 ✓ 3 600 3 600 289 593 288 787
rd-rplusc-21 2 ✓ 3 600 3 600 360 000 360 000
reblock115 0 ✓ 3 600 3 600 1 506 1 986
reblock115 1 ✓ 3 600 3 600 1 593 1 491
reblock115 2 ✓ 3 600 3 600 1 519 1 645
rmatr100-p10 0 ✓ ✓ ✓ 127 144 618 365
rmatr100-p10 1 ✓ ✓ ✓ 140 143 655 694
rmatr100-p10 2 ✓ ✓ ✓ 136 140 1 066 558
rmatr200-p5 0 ✓ 3 600 3 600 8 995 25 697
rmatr200-p5 1 ✓ 3 600 3 600 17 800 45 245
rmatr200-p5 2 ✓ 3 600 3 600 4 209 31 619
rocI-4-11 0 ✓ ✓ 80 80 1 088 1 078
rocI-4-11 1 ✓ ✓ 72 72 951 953
rocI-4-11 2 ✓ ✓ 80 79 1 464 1 462
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rocII-5-11 0 ✓ 3 600 3 600 21 596 21 503
rocII-5-11 1 ✓ 3 600 3 600 26 745 26 633
rocII-5-11 2 ✓ 3 600 3 600 20 804 20 829
rococoB10-011000 0 ✓ 3 600 3 600 7 884 8 856
rococoB10-011000 1 ✓ 3 600 3 600 10 901 11 943
rococoB10-011000 2 ✓ 3 600 3 600 11 664 12 308
rococoC10-001000 0 ✓ ✓ ✓ 790 657 829 1 261
rococoC10-001000 1 ✓ ✓ ✓ 1 065 630 1 370 1 835
rococoC10-001000 2 ✓ ✓ ✓ 617 824 1 139 2 109
roi2alpha3n4 0 ✓ ✓ ✓ 1 581 1 510 11 770 13 527
roi2alpha3n4 1 ✓ ✓ ✓ 1 803 1 879 11 972 14 082
roi2alpha3n4 2 ✓ ✓ ✓ 1 700 1 707 11 817 14 576
roi5alpha10n8 0 ✓ 3 600 3 600 53 185 81 386
roi5alpha10n8 1 ✓ 3 600 3 600 55 929 55 632
roi5alpha10n8 2 ✓ 3 600 3 600 63 463 71 625
roll3000 0 ✓ ✓ 34 24 219 346
roll3000 1 ✓ ✓ 37 37 532 501
roll3000 2 ✓ ✓ 30 25 195 554
s100 0 ✓ 3 600 3 600 306 397 360 010
s100 1 ✓ 3 600 3 600 257 514 360 011
s100 2 ✓ 3 600 3 600 237 054 360 009
s250r10 0 ✓ ✓ ✓ 3 600 3 502 35 355 36 663
s250r10 1 ✓ 3 600 3 600 36 291 37 021
s250r10 2 ✓ 3 600 3 600 25 672 25 746
satellites2-40 0 ✓ 3 600 3 600 360 000 360 001
satellites2-40 1 ✓ 3 600 3 600 360 000 360 000
satellites2-40 2 ✓ 3 600 3 600 360 001 360 000
satellites2-60-fs 0 ✓ 3 600 3 600 356 975 356 964
satellites2-60-fs 1 ✓ 3 600 3 600 360 004 360 007
satellites2-60-fs 2 ✓ 3 600 3 600 281 368 284 237
savsched1 0 ✓ 3 600 3 600 324 769 324 684
savsched1 1 ✓ 3 600 3 600 324 722 324 719
savsched1 2 ✓ 3 600 3 600 324 788 324 760
sct2 0 ✓ 3 600 3 600 183 218
sct2 1 ✓ 3 600 3 600 296 146
sct2 2 ✓ 3 600 3 600 167 206
seymour 0 ✓ 3 600 3 600 476 412
seymour 1 ✓ 3 600 3 600 638 350
seymour 2 ✓ 3 600 3 600 1 051 1 095
seymour1 0 ✓ ✓ 69 69 130 128
seymour1 1 ✓ ✓ 43 43 63 62
seymour1 2 ✓ ✓ 55 55 108 107
sing326 0 ✓ 3 600 3 600 10 373 15 270
sing326 1 ✓ 3 600 3 600 8 925 13 206
sing326 2 ✓ 3 600 3 600 7 878 20 601
sing44 0 ✓ 3 600 3 600 7 103 13 870
sing44 1 ✓ 3 600 3 600 8 637 11 092
sing44 2 ✓ 3 600 3 600 5 697 11 503
snp-02-004-104 0 ✓ 3 600 3 600 8 967 8 555
snp-02-004-104 1 ✓ 3 600 3 600 8 549 8 235
snp-02-004-104 2 ✓ 3 600 3 600 9 481 9 167
sorrell3 0 ✓ 3 600 3 600 44 220 43 739
sorrell3 1 ✓ 3 600 3 600 35 833 35 764
sorrell3 2 ✓ 3 600 3 600 39 151 39 214
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sp150x300d 0 ✓ ✓ 1 1 1 1
sp150x300d 1 ✓ ✓ 1 1 1 1
sp150x300d 2 ✓ ✓ 1 1 1 1
sp97ar 0 ✓ 3 600 3 600 6 415 4 763
sp97ar 1 ✓ 3 600 3 600 5 537 7 971
sp97ar 2 ✓ 3 600 3 600 5 404 5 597
sp98ar 0 ✓ 3 600 3 600 3 071 3 640
sp98ar 1 ✓ 3 600 3 600 2 353 3 896
sp98ar 2 ✓ 3 600 3 600 2 086 4 596
splice1k1 0 ✓ 3 600 3 600 137 848 141 287
splice1k1 1 ✓ 3 600 3 600 130 192 132 520
splice1k1 2 ✓ 3 600 3 600 157 680 157 122
square41 0 ✓ 3 600 3 600 144 161 143 375
square41 1 ✓ 3 600 3 600 138 282 138 303
square41 2 ✓ 3 600 3 600 106 877 105 645
square47 0 ✓ 3 600 3 600 173 767 173 695
square47 1 ✓ 3 600 3 600 174 289 174 161
square47 2 ✓ 3 600 3 600 174 051 174 015
supportcase10 0 ✓ 3 600 3 600 220 212 220 208
supportcase10 1 ✓ 3 600 3 600 227 562 227 561
supportcase10 2 ✓ 3 600 3 600 192 246 192 251
supportcase12 0 ✓ 3 600 3 600 9 092 17 555
supportcase12 1 ✓ 3 600 3 600 7 629 19 273
supportcase12 2 ✓ 3 600 3 600 7 337 18 918
supportcase18 0 ✓ 3 600 3 600 15 019 15 027
supportcase18 1 ✓ 3 600 3 600 8 381 8 376
supportcase18 2 ✓ 3 600 3 600 15 317 19 121
supportcase19 0 ✓ 3 600 3 600 361 583 362 243
supportcase19 1 ✓ 3 600 3 600 361 208 360 928
supportcase19 2 ✓ 3 600 3 600 360 021 362 131
supportcase22 0 ✓ 3 600 3 600 360 001 360 002
supportcase22 1 ✓ 3 600 3 600 360 000 360 002
supportcase22 2 ✓ 3 600 3 600 360 002 360 001
supportcase26 0 ✓ 3 600 3 600 1 727 4 471
supportcase26 1 ✓ 3 600 3 600 1 187 1 403
supportcase26 2 ✓ 3 600 3 600 1 644 2 758
supportcase33 0 ✓ ✓ ✓ 764 761 6 902 6 874
supportcase33 1 ✓ ✓ ✓ 292 291 6 711 6 673
supportcase33 2 ✓ ✓ ✓ 315 161 6 532 6 734
supportcase40 0 ✓ ✓ ✓ 1 397 1 399 2 250 2 238
supportcase40 1 ✓ ✓ ✓ 1 565 1 560 2 436 2 411
supportcase40 2 ✓ ✓ ✓ 1 368 1 362 1 894 1 873
supportcase42 0 ✓ 3 600 3 600 5 201 5 810
supportcase42 1 ✓ 3 600 3 600 6 089 8 638
supportcase42 2 ✓ 3 600 3 600 4 734 6 058
supportcase6 0 ✓ 3 600 3 600 10 156 13 078
supportcase6 1 ✓ 3 600 3 600 9 492 10 501
supportcase6 2 ✓ 3 600 3 600 11 380 9 510
supportcase7 0 ✓ ✓ ✓ 189 143 8 596 8 232
supportcase7 1 ✓ ✓ ✓ 234 132 12 971 8 551
supportcase7 2 ✓ ✓ ✓ 151 211 8 910 10 829
swath1 0 ✓ ✓ 12 11 342 322
swath1 1 ✓ ✓ 15 12 189 175
swath1 2 ✓ ✓ 12 13 212 224
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swath3 0 ✓ ✓ ✓ 347 345 398 378
swath3 1 ✓ ✓ ✓ 191 189 374 354
swath3 2 ✓ ✓ ✓ 326 198 378 304
tbfp-network 0 ✓ ✓ ✓ 829 782 43 520 39 665
tbfp-network 1 ✓ ✓ ✓ 973 918 61 675 57 799
tbfp-network 2 ✓ ✓ ✓ 3 142 3 123 71 230 69 753
thor50dday 0 ✓ 3 600 3 600 84 462 97 852
thor50dday 1 ✓ 3 600 3 600 83 347 114 108
thor50dday 2 ✓ 3 600 3 600 71 714 71 476
timtab1 0 ✓ ✓ 77 68 546 560
timtab1 1 ✓ ✓ 59 38 409 375
timtab1 2 ✓ ✓ 59 84 592 588
tr12-30 0 ✓ ✓ ✓ 703 717 55 46
tr12-30 1 ✓ ✓ ✓ 718 951 56 65
tr12-30 2 ✓ ✓ ✓ 711 628 60 29
traininstance2 0 ✓ 3 600 3 600 41 611 42 163
traininstance2 1 ✓ 3 600 3 600 24 398 24 371
traininstance2 2 ✓ 3 600 3 600 23 514 27 709
traininstance6 0 ✓ 3 600 3 600 6 899 3 201
traininstance6 1 ✓ 3 600 3 600 559 557
traininstance6 2 ✓ 3 600 3 600 3 277 3 255
trento1 0 ✓ 3 600 3 600 48 987 32 784
trento1 1 ✓ 3 600 3 600 45 809 37 187
trento1 2 ✓ 3 600 3 600 110 905 57 946
triptim1 0 ✓ ✓ ✓ 535 536 18 206 18 306
triptim1 1 ✓ ✓ ✓ 1 844 1 829 13 737 13 537
triptim1 2 ✓ ✓ ✓ 812 812 11 106 11 206
uccase12 0 ✓ 3 600 3 600 4 098 4 324
uccase12 1 ✓ 3 600 3 600 3 673 3 924
uccase12 2 ✓ 3 600 3 600 4 247 4 526
uccase9 0 ✓ 3 600 3 600 154 540 123 159
uccase9 1 ✓ 3 600 3 600 109 948 169 550
uccase9 2 ✓ 3 600 3 600 174 864 293 936
uct-subprob 0 ✓ ✓ ✓ 2 334 2 483 1 761 2 093
uct-subprob 1 ✓ ✓ ✓ 2 054 2 471 1 442 1 716
uct-subprob 2 ✓ ✓ ✓ 1 539 2 958 1 029 1 837
unitcal_7 0 ✓ ✓ ✓ 240 239 14 031 13 831
unitcal_7 1 ✓ ✓ ✓ 261 260 10 500 10 400
unitcal_7 2 ✓ ✓ ✓ 212 211 12 023 11 923
var-smallemery-m6j6 0 ✓ 3 600 3 600 1 397 5 624
var-smallemery-m6j6 1 ✓ 3 600 3 600 1 555 1 524
var-smallemery-m6j6 2 ✓ 3 600 3 600 2 747 3 747
wachplan 0 ✓ ✓ ✓ 2 762 2 760 180 180
wachplan 1 ✓ ✓ ✓ 2 311 2 312 180 180
wachplan 2 ✓ ✓ ✓ 2 188 2 188 200 200
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Table D.1: Computational results over three random seeds on MMMc test set comparing SCIP in its default configuration (default), without
diving heuristics at all (nodiving), and extended by the new adaptive diving heuristics (adaptivediving). The table shows the absolute and relative
numbers of nodes (nodes, nodesQ) and solving time (time, timeQ). In addition, the average number of feasible solutions found by adaptivediving
is shown (nsols). The right-most column (impr.sols) indicates whether at least one improving solution was found by adaptivediving with at least
one seed (✓). Relative changes by at least 5% are highlighted in bold (improvement) or italic and red (deterioration).

default nodiving adaptivediving

Instance nodes time nodes nodesQ time timeQ nodes nodesQ time timeQ nsols impr.sols

10teams 212.7 14.0 471.8 2.22 15.9 1.14 58.1 0.27 9.2 0.66 –
22433 3.0 2.0 3.7 1.23 2.2 1.08 3.0 1.01 1.6 0.78 1.0 ✓

23588 542.7 4.2 529.6 0.98 4.2 0.99 489.2 0.90 4.2 0.99 –
30n20b8 43.7 153.6 131.9 3.02 246.2 1.60 33.3 0.76 161.5 1.05 1.0 ✓

Test3 1.9 4.2 1.9 1.00 3.9 0.93 1.3 0.69 3.5 0.84 0.3 ✓

a1c1s1 90230.8 3600.0 88560.4 0.98 3600.0 1.00 88181.4 0.98 3600.0 1.00 7.3 ✓

acc-tight5 569.2 99.4 512.9 0.90 72.7 0.73 817.3 1.44 123.7 1.24 –
aflow30a 533.1 16.1 846.5 1.59 19.5 1.21 678.2 1.27 16.8 1.04 0.7 ✓

aflow40b 20770.6 561.1 13399.8 0.65 521.8 0.93 16235.3 0.78 577.8 1.03 –
air03 2.0 2.1 2.0 1.00 2.0 0.96 2.0 1.00 1.9 0.91 1.3 ✓

air04 77.5 52.3 91.1 1.18 43.3 0.83 48.6 0.63 45.6 0.87 0.7 ✓

air05 462.1 29.8 363.8 0.79 27.2 0.91 308.2 0.67 29.2 0.98 –
aligninq 623.6 25.9 1509.8 2.42 25.9 1.00 1658.0 2.66 24.3 0.94 –
app1-2 19.8 771.0 36.6 1.85 753.4 0.98 23.6 1.19 741.1 0.96 –
arki001 632928.1 3600.0 569989.2 0.90 3600.0 1.00 538136.2 0.85 3600.0 1.00 4.0 ✓

ash608gpia-3col 3.6 28.1 7.8 2.15 26.8 0.95 3.0 0.82 27.9 0.99 –
atlanta-ip 6341.3 3600.0 5933.9 0.94 3600.0 1.00 4965.6 0.78 3600.0 1.00 –
bab5 40843.0 3600.0 28727.2 0.70 3600.0 1.00 41647.2 1.02 3600.0 1.00 1.7 ✓

bc 15073.0 989.1 16115.8 1.07 1034.9 1.05 17845.8 1.18 1086.5 1.10 0.3 ✓

bc1 2074.6 186.1 4620.7 2.23 209.4 1.12 2391.8 1.15 163.5 0.88 0.3 ✓

beasleyC3 27.4 28.6 119.6 4.37 34.9 1.22 123.5 4.51 41.9 1.46 14.7 ✓

bell3a 2470.4 0.9 1651.6 0.67 0.8 0.81 1307.7 0.53 0.6 0.68 26.0 ✓

bell5 367.0 0.5 465.5 1.27 0.5 1.00 605.8 1.65 0.5 1.05 43.3 ✓

biella1 4831.4 1027.1 2463.6 0.51 686.8 0.67 3007.6 0.62 744.5 0.72 1.0 ✓

bienst1 13512.7 115.3 11775.7 0.87 100.8 0.87 14638.0 1.08 119.5 1.04 4.7 ✓

bienst2 70278.9 569.3 53181.0 0.76 434.3 0.76 55481.9 0.79 451.8 0.79 2.0 ✓

binkar10_1 2453.0 31.5 2530.8 1.03 28.2 0.90 3255.5 1.33 40.1 1.27 1.3 ✓

blend2 1355.4 1.4 742.1 0.55 0.7 0.52 1166.8 0.86 1.2 0.87 –
bley_xl1 9.6 182.8 8.5 0.89 181.2 0.99 1.7 0.17 168.7 0.92 1.0 ✓

bnatt350 9721.7 963.2 4776.2 0.49 467.1 0.48 4615.4 0.47 542.8 0.56 –
cap6000 2021.9 3.3 2195.9 1.09 3.0 0.89 1937.3 0.96 3.2 0.96 50.7
core2536-691 164.5 196.3 149.9 0.91 137.3 0.70 83.2 0.51 130.1 0.66 0.3 ✓

cov1075 37461.2 108.7 26781.9 0.71 69.8 0.64 21022.7 0.56 71.1 0.65 8.7 ✓

csched010 227915.0 3600.0 207252.2 0.91 3600.0 1.00 204593.6 0.90 3505.2 0.97 0.3 ✓

d10200 484293.5 3600.0 612265.4 1.26 3600.0 1.00 401617.9 0.83 3600.0 1.00 0.7 ✓

d20200 61761.8 3600.0 164217.2 2.66 3600.0 1.00 73368.6 1.19 3600.0 1.00 1.7 ✓
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dano3_3 12.4 112.9 14.8 1.19 112.7 1.00 6.6 0.54 116.8 1.03 0.7 ✓

dano3_4 10.4 136.9 10.2 0.97 134.8 0.98 9.0 0.86 150.6 1.10 1.0 ✓

dano3_5 200.7 330.6 192.1 0.96 284.6 0.86 145.8 0.73 275.2 0.83 0.7 ✓

dano3mip 460.6 3600.0 1042.9 2.26 3600.0 1.00 495.6 1.08 3600.0 1.00 –
danoint 1181425.3 3558.1 1125317.4 0.95 3122.3 0.88 1113895.2 0.94 3231.1 0.91 1.7 ✓

dcmulti 86.0 2.4 55.9 0.65 2.3 0.97 99.5 1.16 2.0 0.85 1.3 ✓

dfn-gwin-UUM 22916.1 99.2 24228.9 1.06 99.8 1.01 23843.1 1.04 102.0 1.03 140.7 ✓

disctom 1.0 5.9 1.0 1.00 5.9 1.00 1.0 1.00 5.9 1.00 –
ds 594.5 3600.0 1019.6 1.72 3600.0 1.00 454.2 0.76 3600.0 1.00 58.3 ✓

dsbmip 9.6 1.6 16.8 1.76 1.6 1.02 4.8 0.51 0.9 0.56 1.3 ✓

egout 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 1.0 ✓

eil33-2 631.9 67.2 679.0 1.07 73.8 1.10 729.4 1.15 73.8 1.10 1.3 ✓

eilB101 10544.5 239.0 9813.6 0.93 218.8 0.92 17189.5 1.63 336.4 1.41 6.3 ✓

enigma 935.3 0.5 431.0 0.46 0.5 0.96 326.1 0.35 0.5 0.96 –
enlight13 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
enlight14 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
ex9 1.0 27.5 1.0 1.00 28.1 1.02 1.0 1.00 28.2 1.02 –
fast0507 1025.5 235.9 803.7 0.78 175.9 0.75 745.5 0.73 189.5 0.80 7.7 ✓

fiball 5028.8 2113.6 9336.7 1.86 3491.6 1.65 4384.4 0.87 1847.5 0.87 1.0 ✓

fiber 4.0 1.7 4.6 1.16 1.9 1.12 4.0 1.00 1.7 0.98 3.3 ✓

fixnet6 3.3 4.7 3.0 0.90 4.6 0.97 3.3 1.00 5.1 1.08 10.0 ✓

flugpl 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 1.0 ✓

gen 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
germanrr 1325.5 3600.0 2893.7 2.18 3600.0 1.00 906.8 0.68 3600.0 1.00 3.3 ✓

gesa2 1.3 0.5 1.3 1.00 0.5 1.00 1.7 1.25 0.5 1.00 1.0 ✓

gesa2-o 2.6 0.9 2.6 1.00 0.8 0.94 2.0 0.76 0.7 0.78 1.0 ✓

gesa3 8.8 3.4 6.9 0.79 3.2 0.95 5.9 0.68 3.9 1.15 1.3 ✓

gesa3_o 6.6 2.8 7.3 1.10 4.0 1.44 6.0 0.90 3.3 1.18 0.3 ✓

glass4 2077361.5 2920.8 2458448.3 1.18 3600.0 1.23 1030344.4 0.50 1401.2 0.48 6.0 ✓

gmu-35-40 1461071.3 3600.0 3247969.2 2.22 3600.0 1.00 1687277.3 1.16 3600.0 1.00 2.0 ✓

gt2 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
haprp 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
harp2 2203367.5 1079.0 2492591.7 1.13 1142.8 1.06 1644638.6 0.75 767.6 0.71 22.7 ✓

iis-100-0-cov 86589.8 532.6 88130.1 1.02 511.1 0.96 86035.9 0.99 521.9 0.98 9.0 ✓

iis-bupa-cov 174929.6 2006.0 158889.8 0.91 1725.9 0.86 160776.5 0.92 1924.5 0.96 10.3 ✓

iis-pima-cov 7264.1 311.6 6351.2 0.87 270.2 0.87 6105.1 0.84 272.3 0.87 8.3 ✓

khb05250 3.2 0.5 2.0 0.62 0.5 0.99 3.2 1.00 0.5 0.99 2.3 ✓

l152lav 32.4 2.2 35.4 1.09 2.5 1.12 56.2 1.74 3.3 1.49 0.7 ✓

lectsched-4-obj 1473.1 33.3 243.9 0.17 19.5 0.59 38.6 0.03 12.0 0.36 0.3 ✓

leo1 45925.9 3600.0 56743.9 1.24 3600.0 1.00 57568.8 1.25 3600.0 1.00 0.3 ✓

leo2 61837.4 3600.0 63021.1 1.02 3600.0 1.00 62135.3 1.00 3600.0 1.00 –
liu 828433.0 3600.0 931693.0 1.12 3600.0 1.00 665812.4 0.80 3600.0 1.00 31.3 ✓

lrn 1134.1 3600.0 1402.7 1.24 3600.0 1.00 1535.3 1.35 3600.0 1.00 3.0 ✓

lseu 58.1 0.5 95.4 1.64 0.5 1.05 82.6 1.42 0.6 1.13 0.3 ✓
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m100n500k4r1 2235185.7 3600.0 2537595.1 1.14 3600.0 1.00 2329569.4 1.04 3600.0 1.00 8.0 ✓

macrophage 9683.9 243.4 6345.3 0.66 146.3 0.60 7636.8 0.79 165.3 0.68 1.0 ✓

manna81 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
map18 266.1 261.6 271.4 1.02 222.6 0.85 256.2 0.96 332.9 1.27 0.7 ✓

map20 291.9 254.2 265.4 0.91 186.2 0.73 236.9 0.81 250.4 0.98 0.3 ✓

markshare1 19663456.6 3600.0 25464037.1 1.29 3600.0 1.00 20584380.8 1.05 3600.0 1.00 16.3 ✓

markshare2 4423023.0 3600.0 10510623.5 2.38 3600.0 1.00 4377939.3 0.99 3600.0 1.00 13.0 ✓

mas74 6338096.1 1695.5 4807477.7 0.76 1257.8 0.74 6424904.2 1.01 1644.7 0.97 2.0 ✓

mas76 215133.6 89.3 203671.4 0.95 71.9 0.81 265165.3 1.23 97.8 1.09 0.7 ✓

mcsched 9526.9 223.0 6921.6 0.73 171.3 0.77 8695.2 0.91 204.5 0.92 1.0 ✓

mik-250-1-100-1 17563.0 54.7 30966.9 1.76 82.2 1.50 23661.6 1.35 67.8 1.24 20.7
mine-166-5 1653.8 60.1 1005.9 0.61 48.6 0.81 570.9 0.34 71.3 1.19 0.7 ✓

mine-90-10 25782.5 173.9 21434.8 0.83 188.9 1.09 31446.8 1.22 201.6 1.16 2.3 ✓

misc03 31.0 0.7 17.8 0.57 0.7 0.88 25.2 0.81 0.7 0.97 0.3 ✓

misc06 3.3 0.6 3.0 0.90 0.5 0.85 3.0 0.90 0.6 0.97 6.7 ✓

misc07 8546.6 13.1 5314.6 0.62 9.7 0.73 4884.8 0.57 10.1 0.77 0.3 ✓

mitre 1.0 10.2 1.0 1.00 10.2 1.00 1.0 1.00 10.2 1.00 –
mkc 387333.6 3600.0 384365.8 0.99 3600.0 1.00 435964.5 1.13 3600.0 1.00 0.3 ✓

mkc1 28036.1 203.7 320870.5 11.45 1125.8 5.53 455465.8 16.25 1398.1 6.86 1.0 ✓

mod008 2.0 0.5 2.0 1.00 0.5 1.00 2.0 1.00 0.5 1.00 9.7
mod010 2.0 0.5 2.0 1.00 0.5 1.00 2.0 1.00 0.5 1.00 1.0 ✓

mod011 643.0 373.1 777.3 1.21 402.4 1.08 615.4 0.96 360.7 0.97 1.3 ✓

modglob 2.0 0.5 2.0 1.00 0.5 1.00 2.0 1.00 0.5 1.00 4.3 ✓

momentum1 7017.3 3600.0 11426.1 1.63 3600.0 1.00 12250.4 1.75 3600.0 1.00 –
momentum2 40632.1 3600.0 36985.8 0.91 3600.0 1.00 33270.2 0.82 3600.0 1.00 1.3 ✓

momentum3 134.8 3600.0 141.6 1.05 3600.0 1.00 77.3 0.57 3600.0 1.00 –
msc98-ip 3522.6 3600.0 3635.1 1.03 3600.0 1.00 1850.0 0.53 3600.0 1.00 0.3 ✓

mspp16 3.0 428.1 4.3 1.43 402.8 0.94 4.9 1.64 452.7 1.06 –
mzzv11 1704.6 331.3 1538.3 0.90 305.4 0.92 958.2 0.56 264.1 0.80 1.0 ✓

mzzv42z 177.3 161.4 276.4 1.56 167.8 1.04 66.8 0.38 181.0 1.12 1.0 ✓

n3div36 88449.9 3600.0 91767.9 1.04 3600.0 1.00 89341.7 1.01 3600.0 1.00 –
n3seq24 151.2 3600.0 459.2 3.04 3600.0 1.00 74.9 0.49 3600.0 1.00 –
n4-3 2835.7 178.6 2449.8 0.86 159.7 0.89 3467.0 1.22 220.1 1.23 73.0 ✓

nag 31388.4 3600.0 34045.5 1.08 3600.0 1.00 29353.0 0.94 3600.0 1.00 3.7 ✓

neos-1053234 418752.8 2172.9 922222.1 2.20 2872.2 1.32 400453.6 0.96 2070.5 0.95 –
neos-1053591 2377.9 3.8 2540.2 1.07 3.7 0.98 2128.5 0.90 3.3 0.87 1.0 ✓

neos-1056905 4956678.8 3235.8 8191129.7 1.65 3600.0 1.11 5087261.1 1.03 2688.0 0.83 3.7 ✓

neos-1058477 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-1061020 869.7 199.6 1145.4 1.32 221.1 1.11 866.2 1.00 205.0 1.03 –
neos-1062641 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-1067731 75928.2 3600.0 104378.6 1.38 3600.0 1.00 82587.7 1.09 3600.0 1.00 1.3 ✓

neos-1096528 3942.2 1766.6 2716.6 0.69 1684.0 0.95 5263.6 1.33 2148.4 1.22 0.3 ✓

neos-1109824 107.3 13.5 163.2 1.52 14.1 1.05 435.1 4.05 22.5 1.67 0.3 ✓

neos-1112782 907703.2 3600.0 867034.3 0.95 3600.0 1.00 947311.6 1.04 3600.0 1.00 –
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neos-1112787 401700.9 3600.0 423880.7 1.05 3600.0 1.00 409889.8 1.02 3600.0 1.00 –
neos-1120495 16.2 11.7 10.3 0.64 4.9 0.42 7.4 0.46 5.9 0.50 1.0 ✓

neos-1121679 19581278.4 3600.0 25447433.5 1.30 3600.0 1.00 20612095.3 1.05 3600.0 1.00 16.3 ✓

neos-1122047 1.0 6.0 1.0 1.00 6.0 1.00 1.0 1.00 6.0 1.01 –
neos-1126860 4590.7 561.7 4983.3 1.09 479.4 0.85 4643.7 1.01 561.5 1.00 1.0 ✓

neos-1140050 549.7 3600.0 407.3 0.74 3600.0 1.00 600.9 1.09 3600.0 1.00 –
neos-1151496 29.8 10.3 94.0 3.16 19.1 1.85 59.5 2.00 16.7 1.62 –
neos-1171448 15.1 19.6 79.1 5.25 52.2 2.67 1.0 0.07 13.9 0.71 0.7 ✓

neos-1171692 170.2 33.0 4526.5 26.60 2672.2 81.01 8.3 0.05 10.7 0.32 0.7 ✓

neos-1171737 1761.3 3600.0 2519.8 1.43 3600.0 1.00 2756.3 1.56 3600.0 1.00 0.3 ✓

neos-1173026 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 0.7 ✓

neos-1200887 5173.7 10.6 5985.8 1.16 10.8 1.02 3588.3 0.69 9.0 0.85 1.0 ✓

neos-1208069 1180.1 50.1 1305.2 1.11 53.3 1.06 824.9 0.70 59.0 1.18 –
neos-1208135 3058.6 291.4 3717.6 1.22 182.2 0.62 2013.0 0.66 132.8 0.46 1.0 ✓

neos-1211578 7614.2 4.4 5431.7 0.71 3.3 0.75 5667.8 0.74 3.4 0.79 1.0 ✓

neos-1215259 1029.6 39.6 911.4 0.89 36.1 0.91 1141.0 1.11 49.1 1.24 –
neos-1215891 3055.5 309.3 7638.3 2.50 533.9 1.73 2312.4 0.76 210.7 0.68 –
neos-1223462 153.5 152.1 236.6 1.54 172.2 1.13 363.3 2.37 182.4 1.20 0.3 ✓

neos-1224597 12.2 11.2 24.6 2.02 11.2 1.00 12.2 1.00 10.4 0.93 –
neos-1225589 3.0 0.5 7.3 2.44 0.5 0.97 7.9 2.64 0.5 1.02 33.7 ✓

neos-1228986 24206.5 12.4 45629.4 1.89 18.0 1.45 23074.2 0.95 11.1 0.89 1.0 ✓

neos-1281048 41.6 7.2 39.8 0.96 5.7 0.79 35.1 0.84 6.2 0.86 0.3 ✓

neos-1311124 7494756.8 3600.0 7226683.0 0.96 3600.0 1.00 7537735.7 1.01 3600.0 1.00 1.0 ✓

neos-1324574 17185.2 1457.0 43359.1 2.52 3401.8 2.33 16764.4 0.98 1226.0 0.84 –
neos-1330346 182663.5 3451.6 146965.9 0.81 3600.0 1.04 198130.5 1.08 2984.5 0.86 –
neos-1330635 1.0 0.5 1.0 1.00 0.5 1.00 1.3 1.32 0.5 1.00 0.3 ✓

neos-1337307 354039.9 3600.0 339961.0 0.96 3600.0 1.00 350512.4 0.99 3600.0 1.00 0.3 ✓

neos-1346382 6883767.2 3600.0 7740568.6 1.12 3600.0 1.00 5950992.0 0.86 3600.0 1.00 1.0 ✓

neos-1354092 213.7 3600.0 258.0 1.21 3600.0 1.00 144.5 0.68 3600.0 1.00 –
neos-1367061 1.0 25.9 1.0 1.00 26.1 1.00 1.0 1.00 26.1 1.01 –
neos-1396125 11385.0 93.1 14679.1 1.29 92.7 1.00 20326.1 1.78 119.4 1.28 0.3 ✓

neos-1407044 33.6 3600.0 41.9 1.25 3600.0 1.00 33.6 1.00 3600.0 1.00 –
neos-1413153 2.3 3.2 2.3 1.00 3.2 1.00 2.9 1.26 3.4 1.06 1.3 ✓

neos-1415183 1.7 4.5 1.7 1.00 4.5 1.00 1.7 1.00 4.8 1.08 0.7 ✓

neos-1417043 1.0 1141.4 1.0 1.00 1140.7 1.00 1.0 1.00 1135.6 0.99 –
neos-1420205 6094.2 4.0 10093.1 1.66 5.7 1.42 14549.0 2.39 8.4 2.08 0.3 ✓

neos-1420546 836.1 3600.0 1342.0 1.60 3600.0 1.00 686.0 0.82 3600.0 1.00 4.7 ✓

neos-1420790 73156.0 3600.0 93275.3 1.27 3600.0 1.00 48949.8 0.67 3600.0 1.00 7.3 ✓

neos-1423785 16498.6 3600.0 10194.9 0.62 3600.0 1.00 22543.0 1.37 3600.0 1.00 6.0 ✓

neos-1425699 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-1426662 2592408.2 3600.0 3174356.0 1.22 3600.0 1.00 3082790.9 1.19 3600.0 1.00 1.0 ✓

neos-1427181 1764466.7 1815.7 2450802.5 1.39 3600.0 1.98 958984.3 0.54 1018.7 0.56 1.0 ✓

neos-1427261 560816.0 3600.0 1597704.9 2.85 3600.0 1.00 606443.5 1.08 3600.0 1.00 2.3 ✓

neos-1429185 2500985.2 3600.0 3368842.0 1.35 3600.0 1.00 2608021.7 1.04 3600.0 1.00 1.3 ✓
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neos-1429212 1125.7 3600.0 1599.3 1.42 3600.0 1.00 966.5 0.86 3600.0 1.00 –
neos-1429461 4009112.2 3600.0 4776886.7 1.19 3600.0 1.00 4324122.2 1.08 3600.0 1.00 1.3 ✓

neos-1430701 35061.4 27.0 55174.3 1.57 33.5 1.24 43063.8 1.23 30.6 1.13 1.7 ✓

neos-1430811 261.0 3600.0 905.8 3.47 3600.0 1.00 380.5 1.46 3600.0 1.00 –
neos-1436709 2055406.2 3600.0 2410935.7 1.17 3600.0 1.00 2096401.2 1.02 3600.0 1.00 1.0 ✓

neos-1436713 356491.2 3600.0 1013352.9 2.84 3600.0 1.00 450314.8 1.26 3600.0 1.00 1.7 ✓

neos-1437164 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-1439395 322812.0 179.9 609646.7 1.89 297.7 1.66 247735.4 0.77 135.0 0.75 1.0 ✓

neos-1440225 2972.8 54.6 5014.9 1.69 83.0 1.52 1873.4 0.63 37.2 0.68 –
neos-1440447 3342.2 3.9 4243.4 1.27 4.3 1.09 3604.4 1.08 4.6 1.18 1.0 ✓

neos-1440457 1869959.8 3600.0 1930525.2 1.03 3600.0 1.00 1743319.3 0.93 3600.0 1.00 1.7 ✓

neos-1440460 3845061.5 2496.2 5447207.8 1.42 3600.0 1.44 4703501.0 1.22 3600.0 1.44 1.3 ✓

neos-1441553 1.3 1.9 1.3 1.00 1.6 0.84 1.0 0.76 1.4 0.73 0.3 ✓

neos-1442119 1631305.1 3600.0 1950306.8 1.20 3600.0 1.00 1568703.4 0.96 3600.0 1.00 1.0 ✓

neos-1442657 2337818.1 3600.0 2716061.2 1.16 3600.0 1.00 2305938.3 0.99 3600.0 1.00 1.0 ✓

neos-1445532 1244.9 3600.0 2259.8 1.81 3600.0 1.00 2323.8 1.87 3600.0 1.00 1.0 ✓

neos-1445738 8033.9 3600.0 7220.6 0.90 3600.0 1.00 9033.8 1.12 3600.0 1.00 4.3 ✓

neos-1445743 51.1 44.5 19.3 0.38 51.6 1.16 3.3 0.07 52.2 1.17 4.3 ✓

neos-1445755 36.2 45.4 67.0 1.85 49.5 1.09 156.8 4.33 43.2 0.95 5.0 ✓

neos-1445765 147.9 41.8 124.1 0.84 40.1 0.96 256.5 1.74 44.7 1.07 6.0 ✓

neos-1451294 2755.2 1154.5 4767.2 1.73 1701.7 1.47 1673.6 0.61 850.4 0.74 1.0 ✓

neos-1456979 26421.6 3600.0 19765.3 0.75 3600.0 1.00 28764.2 1.09 3600.0 1.00 1.3 ✓

neos-1460246 1564054.1 3600.0 3073044.6 1.97 3600.0 1.00 1673384.3 1.07 3600.0 1.00 –
neos-1460265 113.6 5.5 127.9 1.13 5.9 1.06 99.6 0.88 4.6 0.84 1.0 ✓

neos-1460543 4967.7 3600.0 10189.0 2.05 3600.0 1.00 5543.7 1.12 3600.0 1.00 3.0 ✓

neos-1460641 318140.4 3600.0 248512.6 0.78 3600.0 1.00 295331.9 0.93 3600.0 1.00 2.7 ✓

neos-1461051 2596.5 26.0 2541.2 0.98 25.7 0.99 2017.5 0.78 22.9 0.88 –
neos-1464762 441568.6 3600.0 427882.2 0.97 3600.0 1.00 257345.7 0.58 3600.0 1.00 1.7 ✓

neos-1467067 7214231.6 3600.0 7437876.4 1.03 3600.0 1.00 6794105.7 0.94 3600.0 1.00 1.0 ✓

neos-1467371 427774.6 3600.0 325660.7 0.76 3600.0 1.00 377995.4 0.88 3600.0 1.00 0.7 ✓

neos-1467467 70309.6 3600.0 89027.4 1.27 3600.0 1.00 38093.5 0.54 3600.0 1.00 0.3 ✓

neos-1480121 127.7 0.5 330.4 2.59 5.5 10.97 119.9 0.94 4.2 8.43 1.7 ✓

neos-1489999 27.9 2.8 26.9 0.96 2.6 0.94 38.7 1.39 3.7 1.33 0.3 ✓

neos-1516309 1.0 0.5 1.0 1.00 0.5 1.01 1.0 1.00 0.5 1.00 –
neos-1582420 860.1 44.1 486.0 0.56 30.8 0.70 215.7 0.25 29.7 0.67 0.3 ✓

neos-1593097 27619.9 3600.0 24674.4 0.89 3600.0 1.00 25109.3 0.91 3600.0 1.00 1.7 ✓

neos-1595230 34795.5 237.8 38402.7 1.10 198.6 0.83 24084.1 0.69 177.1 0.74 –
neos-1597104 17.6 227.6 5.0 0.28 180.6 0.79 11.1 0.63 212.4 0.93 –
neos-1599274 1.0 0.9 1.0 1.00 0.9 0.96 1.0 1.00 0.9 0.94 1.0 ✓

neos-1601936 2893.9 2650.5 2107.6 0.73 2859.4 1.08 962.1 0.33 1534.9 0.58 1.0 ✓

neos-1603512 13.0 2.0 13.7 1.05 1.9 0.96 8.8 0.67 1.9 0.92 –
neos-1603518 20.6 5.8 28.9 1.40 6.4 1.10 26.0 1.26 6.1 1.06 –
neos-1603965 32040.5 3600.0 46357.4 1.45 3600.0 1.00 40267.8 1.26 3600.0 1.00 1.0 ✓

neos-1605061 435.8 3600.0 428.3 0.98 3600.0 1.00 611.6 1.40 3600.0 1.00 –
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neos-1605075 1656.5 3600.0 1200.3 0.72 2733.4 0.76 1028.8 0.62 3600.0 1.00 1.7 ✓

neos-1616732 1220610.5 3191.9 1238740.1 1.01 3383.6 1.06 1233346.4 1.01 3199.1 1.00 7.3 ✓

neos-1620770 592673.2 3600.0 1065280.6 1.80 3600.0 1.00 610626.9 1.03 3600.0 1.00 –
neos-1620807 1027.9 5.0 1562.3 1.52 5.7 1.14 2123.4 2.07 7.7 1.53 –
neos-1622252 884058.2 3227.6 928864.0 1.05 2502.4 0.78 836096.5 0.95 3600.0 1.11 –
neos-430149 32846.4 30.9 33951.8 1.03 30.3 0.98 23787.7 0.72 23.6 0.76 0.3 ✓

neos-476283 419.3 140.1 500.9 1.20 138.8 0.99 638.7 1.52 156.5 1.12 1.3 ✓

neos-480878 11810.1 46.3 9748.7 0.82 34.6 0.75 8826.7 0.75 38.3 0.83 29.0 ✓

neos-494568 4.9 16.5 6.3 1.28 21.4 1.29 4.1 0.84 17.3 1.05 0.3 ✓

neos-495307 71326.2 3600.0 104866.4 1.47 3600.0 1.00 57285.4 0.80 3600.0 1.00 134.7
neos-498623 40.5 45.5 55.5 1.37 49.0 1.07 6.3 0.16 35.2 0.77 0.3 ✓

neos-501453 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-501474 2.0 0.5 2.0 1.00 0.5 1.00 2.0 1.00 0.5 1.00 –
neos-503737 24214.7 536.5 14562.5 0.60 330.4 0.62 4680.7 0.19 225.8 0.42 1.3 ✓

neos-504674 6176.5 42.6 5774.2 0.94 38.9 0.91 6190.0 1.00 44.8 1.05 1.0 ✓

neos-504815 2257.0 14.4 2934.0 1.30 18.2 1.26 2245.2 0.99 14.8 1.03 1.0 ✓

neos-506422 5285.9 48.6 3985.5 0.75 37.6 0.77 2743.3 0.52 35.3 0.72 2.0 ✓

neos-506428 265.5 3516.6 186.3 0.70 3600.0 1.02 155.2 0.58 3600.0 1.02 0.7 ✓

neos-512201 3177.8 28.3 2450.2 0.77 24.9 0.88 3421.7 1.08 29.0 1.02 1.7 ✓

neos-522351 1.0 1.2 1.0 1.00 1.3 1.02 1.0 1.00 1.2 0.99 –
neos-525149 1.0 3.3 7.8 7.85 4.4 1.35 1.0 1.00 2.6 0.80 1.0 ✓

neos-530627 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-538867 32928.4 82.0 34850.1 1.06 102.7 1.25 25291.6 0.77 64.8 0.79 1.0 ✓

neos-538916 6947.7 36.3 5593.1 0.81 27.9 0.77 7852.7 1.13 33.8 0.93 1.0 ✓

neos-544324 13.5 39.5 72.6 5.37 39.7 1.00 15.3 1.13 27.8 0.70 0.3 ✓

neos-547911 221.4 28.6 191.7 0.87 19.7 0.69 41.2 0.19 16.9 0.59 –
neos-548047 13599.1 3600.0 24630.6 1.81 3600.0 1.00 15773.8 1.16 3600.0 1.00 0.3 ✓

neos-548251 789491.1 3600.0 2042422.3 2.59 3600.0 1.00 568904.1 0.72 3600.0 1.00 1.7 ✓

neos-551991 671.0 139.5 1793.7 2.67 220.4 1.58 609.1 0.91 131.9 0.95 –
neos-555001 19.8 2.4 1.0 0.05 1.0 0.40 9.0 0.46 1.6 0.64 –
neos-555298 639.3 65.0 2261.2 3.54 77.9 1.20 134.5 0.21 42.7 0.66 1.3 ✓

neos-555343 315086.5 2328.1 276719.5 0.88 2421.1 1.04 273288.3 0.87 2198.4 0.94 1.0 ✓

neos-555424 114209.2 1065.6 374022.3 3.27 3600.0 3.38 98479.8 0.86 1043.1 0.98 1.7 ✓

neos-555694 16.9 9.0 16.2 0.96 5.1 0.57 1.7 0.10 2.4 0.26 0.7 ✓

neos-555771 24.1 6.3 6.3 0.26 2.9 0.45 5.5 0.23 3.4 0.53 1.3 ✓

neos-555884 252762.8 3600.0 359810.0 1.42 3600.0 1.00 235609.8 0.93 3600.0 1.00 1.3 ✓

neos-555927 1115513.2 3600.0 1156971.4 1.04 3600.0 1.00 1141441.7 1.02 3600.0 1.00 3.3 ✓

neos-565672 8.3 3486.6 6.0 0.72 3486.8 1.00 6.3 0.76 3522.9 1.01 1.3 ✓

neos-565815 1.0 10.2 1.0 1.00 9.5 0.93 1.0 1.00 8.4 0.82 –
neos-570431 257.1 9.7 326.3 1.27 10.5 1.08 276.7 1.08 10.4 1.08 0.3 ✓

neos-574665 4377366.4 3600.0 4252382.8 0.97 3600.0 1.00 3708991.3 0.85 3600.0 1.00 1.0 ✓

neos-578379 1.6 179.6 1.6 1.00 179.6 1.00 1.9 1.18 177.2 0.99 –
neos-582605 501081.5 3600.0 607130.3 1.21 3600.0 1.00 443537.2 0.89 3600.0 1.00 –
neos-583731 16.7 6.6 16.7 1.00 6.6 1.00 20.7 1.24 7.1 1.07 –
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neos-584146 858994.0 3600.0 966703.3 1.12 3600.0 1.00 1057800.0 1.23 3600.0 1.00 –
neos-584851 8.9 6.9 6.9 0.77 7.1 1.03 7.8 0.87 7.3 1.06 0.3 ✓

neos-584866 112403.3 3600.0 113208.1 1.01 3600.0 1.00 99188.6 0.88 3600.0 1.00 0.3 ✓

neos-585192 749.0 21.2 737.4 0.98 20.9 0.99 785.0 1.05 20.1 0.95 0.7 ✓

neos-585467 79.5 8.6 62.2 0.78 8.2 0.95 113.7 1.43 9.4 1.09 1.0 ✓

neos-593853 28543.2 71.4 12670.0 0.44 31.6 0.44 57948.9 2.03 120.1 1.68 0.7 ✓

neos-595904 2.7 16.2 3.6 1.37 15.3 0.94 3.3 1.24 17.7 1.09 0.3 ✓

neos-595905 2.6 2.8 3.0 1.13 2.9 1.03 2.0 0.76 2.6 0.91 1.0 ✓

neos-595925 27.6 11.4 252.6 9.15 16.1 1.42 27.6 1.00 12.8 1.13 0.3 ✓

neos-598183 5.0 5.9 4.0 0.80 4.8 0.82 6.0 1.21 5.7 0.97 –
neos-603073 231538.1 1099.6 81134.4 0.35 324.7 0.29 129468.2 0.56 479.2 0.44 1.3 ✓

neos-611135 74338.8 3600.0 77543.2 1.04 3600.0 1.00 89741.7 1.21 3600.0 1.00 2.0 ✓

neos-611838 713.9 19.1 670.9 0.94 15.9 0.83 668.3 0.94 18.4 0.97 4.0
neos-612125 310.9 14.1 340.3 1.09 13.4 0.95 280.4 0.90 11.0 0.78 3.7 ✓

neos-612143 702.0 17.5 726.5 1.03 15.6 0.89 602.0 0.86 17.8 1.01 3.7 ✓

neos-612162 631.0 15.0 606.0 0.96 14.9 0.99 605.5 0.96 16.1 1.07 3.7 ✓

neos-619167 65.7 3600.0 65.2 0.99 3600.0 1.00 37.9 0.58 3600.0 1.00 –
neos-631164 188430.0 3600.0 449023.0 2.38 3600.0 1.00 117213.5 0.62 3600.0 1.00 13.0 ✓

neos-631517 167948.0 3600.0 504179.0 3.00 3600.0 1.00 118475.0 0.70 3600.0 1.00 11.7 ✓

neos-631694 541659.9 3600.0 161942.9 0.30 1696.0 0.47 12411.9 0.02 629.4 0.17 0.3 ✓

neos-631709 763.3 3600.0 694.0 0.91 3600.0 1.00 369.7 0.48 3600.0 1.00 –
neos-631710 1.0 3600.0 1.0 1.00 3600.0 1.00 1.0 1.00 3600.0 1.00 –
neos-631784 177973.5 3600.0 18259.6 0.10 650.1 0.18 143580.3 0.81 2975.3 0.83 0.3 ✓

neos-632335 193.0 10.4 193.0 1.00 10.4 1.00 193.0 1.00 10.4 1.00 –
neos-633273 259.0 11.1 259.0 1.00 11.0 0.99 259.0 1.00 11.1 1.00 –
neos-655508 1.0 1.4 1.0 1.00 1.4 1.01 1.0 1.00 1.4 1.01 –
neos-662469 19081.9 3600.0 9208.4 0.48 1484.4 0.41 26618.9 1.40 3600.0 1.00 3.3 ✓

neos-686190 7938.0 107.4 4368.0 0.55 72.2 0.67 7759.5 0.98 107.6 1.00 –
neos-691058 3096.9 3600.0 3505.3 1.13 3600.0 1.00 2878.3 0.93 3600.0 1.00 1.0 ✓

neos-691073 6801.0 3600.0 7842.4 1.15 3600.0 1.00 5827.3 0.86 3600.0 1.00 0.3 ✓

neos-693347 19879.9 2418.9 14909.3 0.75 1811.6 0.75 15391.8 0.77 2426.3 1.00 0.7 ✓

neos-702280 1031.5 3600.0 1228.0 1.19 3600.0 1.00 898.9 0.87 3600.0 1.00 9.0
neos-709469 189.7 0.7 153.0 0.81 0.7 1.04 48.7 0.26 0.5 0.78 –
neos-717614 8855.5 26.6 1414.6 0.16 7.4 0.28 4045.8 0.46 17.1 0.64 0.3 ✓

neos-738098 396.1 3600.0 1052.4 2.66 3600.0 1.00 1011.9 2.55 3600.0 1.00 –
neos-775946 4.5 8.0 13.4 2.99 8.9 1.11 2.7 0.59 6.7 0.84 1.7 ✓

neos-780889 1.0 96.2 1.9 1.92 122.6 1.27 1.0 1.00 90.5 0.94 0.7 ✓

neos-785899 28.3 2.3 32.1 1.14 3.0 1.33 15.5 0.55 4.1 1.79 –
neos-785912 203.2 41.0 271.8 1.34 37.2 0.91 274.1 1.35 57.5 1.40 –
neos-785914 13.0 8.3 23.8 1.84 9.4 1.13 12.6 0.97 7.8 0.94 –
neos-787933 1.0 1.6 1.0 1.00 1.6 1.00 1.0 1.00 1.6 1.00 –
neos-791021 36.1 367.7 195.0 5.41 648.1 1.76 35.6 0.99 343.1 0.93 1.0 ✓

neos-796608 141.9 2.1 21041.2 148.30 61.8 29.40 2.7 0.02 0.5 0.24 0.7 ✓

neos-799838 1.0 32.0 3.2 3.20 47.1 1.47 1.0 1.00 33.1 1.03 0.7 ✓

cont. on next page

290



Table D.1 cont.

default nodiving adaptivediving

Instance nodes time nodes nodesQ time timeQ nodes nodesQ time timeQ nsols impr.sols

neos-801834 241.0 42.2 179.6 0.74 36.6 0.86 155.7 0.65 39.9 0.94 1.0 ✓

neos-803219 12618.8 35.7 14849.1 1.18 34.6 0.97 12244.3 0.97 33.5 0.94 1.7 ✓

neos-803220 44266.4 78.7 51057.4 1.15 80.2 1.02 42513.6 0.96 75.5 0.96 2.3 ✓

neos-806323 7280.4 32.2 6827.6 0.94 30.2 0.94 7238.3 0.99 34.2 1.06 1.0 ✓

neos-807454 1.0 2.0 1.0 1.00 2.0 0.99 1.0 1.00 2.0 0.99 –
neos-807639 2506.2 15.9 3034.8 1.21 17.4 1.10 2528.7 1.01 15.9 1.00 1.3 ✓

neos-807705 3331.6 26.8 5277.8 1.58 30.7 1.15 3326.6 1.00 27.5 1.02 3.7 ✓

neos-808072 97.2 19.3 80.9 0.83 16.2 0.84 186.3 1.92 25.7 1.33 –
neos-808214 1148.6 22.9 1546.0 1.35 24.6 1.08 795.5 0.69 18.8 0.82 –
neos-810286 132.6 75.8 50.8 0.38 64.9 0.86 81.2 0.61 60.5 0.80 –
neos-810326 823.9 39.8 513.1 0.62 28.8 0.72 1350.1 1.64 55.5 1.39 0.7 ✓

neos-820146 1505505.0 3600.0 1554994.4 1.03 3600.0 1.00 1054142.6 0.70 3600.0 1.00 –
neos-820157 1180763.2 3600.0 1343696.6 1.14 3600.0 1.00 1080849.3 0.92 3600.0 1.00 –
neos-820879 256.1 52.8 396.4 1.55 48.3 0.92 178.4 0.70 66.5 1.26 0.7 ✓

neos-824661 43.1 1298.1 212.3 4.93 1254.5 0.97 44.7 1.04 1243.0 0.96 –
neos-824695 8.5 184.3 201.8 23.85 613.8 3.33 20.4 2.42 269.8 1.46 0.7 ✓

neos-825075 4.4 1.9 3.8 0.85 1.8 0.94 1.7 0.37 1.7 0.88 0.7 ✓

neos-826224 1.0 49.0 22.4 22.45 169.9 3.46 1.0 1.00 50.1 1.02 0.7 ✓

neos-826250 7.1 137.9 13.5 1.90 127.5 0.93 1.3 0.19 80.9 0.59 0.3 ✓

neos-826650 15642.6 3600.0 18816.8 1.20 3600.0 1.00 9255.5 0.59 3600.0 1.00 0.3 ✓

neos-826694 6.5 174.5 39.3 6.07 272.9 1.56 1.0 0.15 102.5 0.59 –
neos-826812 1.0 61.7 1.0 1.00 39.8 0.65 1.0 1.00 66.8 1.08 0.3 ✓

neos-826841 82991.1 3600.0 77077.1 0.93 3600.0 1.00 71126.2 0.86 3600.0 1.00 0.7 ✓

neos-827015 292.7 1138.5 269.8 0.92 932.6 0.82 291.3 0.99 1264.9 1.11 –
neos-827175 1.0 12.1 1.0 1.00 9.1 0.75 1.0 1.00 12.3 1.01 0.7 ✓

neos-829552 453.9 530.9 277.9 0.61 268.6 0.51 364.5 0.80 422.6 0.80 0.3 ✓

neos-830439 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-831188 2682.1 282.8 2837.9 1.06 262.7 0.93 2754.9 1.03 280.2 0.99 –
neos-839838 23347.8 858.9 31126.9 1.33 1065.9 1.24 24314.9 1.04 873.0 1.02 1.3 ✓

neos-839859 3254.8 47.7 2838.9 0.87 45.0 0.94 3342.6 1.03 51.3 1.08 0.3 ✓

neos-839894 277.1 3600.0 283.8 1.02 3600.0 1.00 206.5 0.74 3600.0 1.00 –
neos-841664 18450.7 3600.0 50623.4 2.74 3600.0 1.00 18012.5 0.98 3600.0 1.00 269.3 ✓

neos-847302 154746.9 3600.0 104375.8 0.67 3600.0 1.00 195037.0 1.26 3600.0 1.00 1.7 ✓

neos-848150 25.4 12.5 41.4 1.63 13.8 1.10 65.3 2.57 13.6 1.08 –
neos-848198 616.7 3600.0 2026.1 3.29 3600.0 1.00 516.6 0.84 3600.0 1.00 184.3 ✓

neos-848589 104.3 3600.0 167.4 1.60 3600.0 1.00 101.2 0.97 3600.0 1.00 0.3 ✓

neos-848845 2587.4 155.0 12070.0 4.67 245.9 1.59 14142.9 5.47 283.7 1.83 –
neos-849702 11836.6 268.5 6239.6 0.53 160.1 0.60 6346.0 0.54 175.8 0.66 –
neos-850681 1.3 4.2 6.0 4.53 6.4 1.53 1.3 1.00 4.8 1.14 –
neos-856059 190474.5 3117.3 210304.6 1.10 3389.9 1.09 72797.4 0.38 1405.9 0.45 9.0 ✓

neos-859770 2.7 131.2 4.1 1.50 133.2 1.01 3.6 1.34 133.0 1.01 –
neos-860244 1.3 4.5 1.0 0.76 4.3 0.94 1.0 0.76 4.3 0.94 –
neos-860300 2.3 15.7 2.7 1.14 15.8 1.00 2.6 1.13 19.5 1.24 1.0 ✓

neos-862348 86.7 9.3 87.0 1.00 9.1 0.98 38.8 0.45 9.9 1.07 1.0 ✓

cont. on next page

291



D
.

A
ppendix

D

Table D.1 cont.

default nodiving adaptivediving

Instance nodes time nodes nodesQ time timeQ nodes nodesQ time timeQ nsols impr.sols

neos-863472 44960.0 48.0 38508.1 0.86 43.5 0.91 40379.5 0.90 43.8 0.91 –
neos-872648 15.9 3600.0 19.9 1.26 3600.0 1.00 14.6 0.92 3600.0 1.00 5.3 ✓

neos-873061 27.6 3600.0 36.2 1.31 3600.0 1.00 40.1 1.45 3600.0 1.00 13.0
neos-876808 207.6 3600.0 459.8 2.21 3600.0 1.00 193.1 0.93 3600.0 1.00 0.7 ✓

neos-880324 6.8 1.1 10.9 1.61 1.1 0.99 11.1 1.65 1.1 0.94 0.7 ✓

neos-881765 17.9 2.0 17.9 1.00 2.0 0.99 55.8 3.11 2.4 1.20 –
neos-885086 274.8 3600.0 315.0 1.15 3600.0 1.00 129.3 0.47 1717.3 0.48 –
neos-885524 4585.4 3018.8 7955.3 1.74 1887.3 0.62 3002.9 0.66 1640.8 0.54 0.3 ✓

neos-886822 178390.9 1976.9 116732.0 0.65 1470.8 0.74 177113.1 0.99 2174.5 1.10 0.3 ✓

neos-892255 531.0 79.9 622.0 1.17 82.9 1.04 679.7 1.28 146.7 1.83 –
neos-905856 11281.3 134.5 5478.6 0.49 83.9 0.62 9109.0 0.81 128.8 0.96 –
neos-906865 16334.8 80.2 22002.9 1.35 116.4 1.45 18494.8 1.13 96.4 1.20 0.7 ✓

neos-911880 1159496.9 1709.6 1733877.8 1.50 1959.2 1.15 2928989.1 2.53 3600.0 2.11 3.0 ✓

neos-911970 3830083.0 3600.0 635148.8 0.17 1067.4 0.30 624932.8 0.16 938.3 0.26 1.0 ✓

neos-912015 46.9 7.5 20.0 0.43 5.5 0.73 117.5 2.50 8.5 1.13 –
neos-912023 9.1 5.8 10.8 1.19 6.0 1.03 84.2 9.24 8.9 1.52 –
neos-913984 1.0 12.2 1.0 1.00 12.0 0.98 1.0 1.00 12.1 0.99 –
neos-914441 1.0 5.0 1.0 1.00 5.0 1.00 1.7 1.66 6.6 1.31 1.3 ✓

neos-916173 13027.5 102.8 15257.2 1.17 108.5 1.06 16772.0 1.29 120.0 1.17 0.3 ✓

neos-916792 140610.8 1000.5 217878.2 1.55 1565.9 1.56 146682.8 1.04 1242.5 1.24 2.7 ✓

neos-930752 864.2 3600.0 2417.9 2.80 3600.0 1.00 1327.7 1.54 3600.0 1.00 1.7 ✓

neos-931517 874.7 3600.0 1237.9 1.42 3600.0 1.00 613.4 0.70 3600.0 1.00 1.3 ✓

neos-931538 5.0 99.6 5.0 1.00 70.0 0.70 3.5 0.70 70.3 0.71 0.3 ✓

neos-932721 18.3 22.1 19.5 1.06 18.8 0.85 2.2 0.12 12.2 0.55 –
neos-932816 301.9 3600.0 673.4 2.23 3600.0 1.00 323.0 1.07 3600.0 1.00 2.0 ✓

neos-933364 17038.6 47.4 19695.6 1.16 57.4 1.21 7555.2 0.44 28.9 0.61 1.0 ✓

neos-933550 25.7 3.5 25.7 1.00 3.5 1.00 5.5 0.21 1.8 0.53 0.7 ✓

neos-933562 20014.7 3600.0 36440.8 1.82 3600.0 1.00 17020.4 0.85 3600.0 1.00 1.7 ✓

neos-933638 152.7 2862.4 477.2 3.13 3600.0 1.26 44.3 0.29 1752.6 0.61 –
neos-933815 73373.1 89.8 32194.9 0.44 51.2 0.57 38306.8 0.52 92.9 1.03 1.3 ✓

neos-933966 133.1 2105.2 1296.0 9.73 2295.3 1.09 158.7 1.19 1558.6 0.74 0.7 ✓

neos-934278 220.7 3600.0 761.7 3.45 3600.0 1.00 244.1 1.11 3600.0 1.00 1.3 ✓

neos-934441 189.7 3600.0 446.9 2.36 3600.0 1.00 239.5 1.26 3600.0 1.00 1.0 ✓

neos-934531 3.6 111.2 4.0 1.12 82.5 0.74 6.5 1.79 94.5 0.85 –
neos-935234 141.6 3600.0 285.8 2.02 3600.0 1.00 173.7 1.23 3600.0 1.00 1.3 ✓

neos-935348 76.6 3600.0 576.9 7.53 3600.0 1.00 291.6 3.81 3600.0 1.00 1.0 ✓

neos-935496 641435.5 3600.0 658733.2 1.03 3600.0 1.00 558638.0 0.87 3600.0 1.00 1.3 ✓

neos-935627 368.2 3600.0 472.8 1.28 3600.0 1.00 429.6 1.17 3600.0 1.00 0.7 ✓

neos-935674 610846.1 3600.0 661005.3 1.08 3600.0 1.00 459041.4 0.75 3600.0 1.00 1.7 ✓

neos-935769 420.5 3600.0 1824.5 4.34 3600.0 1.00 273.7 0.65 3600.0 1.00 0.7 ✓

neos-936660 511.2 3600.0 489.5 0.96 3600.0 1.00 317.0 0.62 3600.0 1.00 0.7 ✓

neos-937446 38.8 1229.1 1107.6 28.56 3600.0 2.93 81.1 2.09 2483.1 2.02 –
neos-937511 268.2 3324.2 1158.3 4.32 3600.0 1.08 158.3 0.59 2158.6 0.65 2.3 ✓

neos-937815 390.6 3600.0 1750.0 4.48 3600.0 1.00 303.9 0.78 3600.0 1.00 2.0 ✓
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neos-941262 396.1 3600.0 813.1 2.05 3600.0 1.00 195.6 0.49 3600.0 1.00 1.7 ✓

neos-941313 17.8 1731.1 18.8 1.06 1544.7 0.89 12.8 0.72 1554.0 0.90 –
neos-941698 174.4 13.2 167.0 0.96 12.9 0.98 42.9 0.25 7.3 0.55 –
neos-941717 614427.9 3600.0 598685.0 0.97 3600.0 1.00 572084.3 0.93 3600.0 1.00 2.0 ✓

neos-941782 817458.4 3600.0 694131.5 0.85 3600.0 1.00 704851.4 0.86 3600.0 1.00 1.3 ✓

neos-942323 113.0 4.9 113.0 1.00 4.9 1.00 818.2 7.24 8.3 1.69 –
neos-942830 324943.6 952.8 379201.9 1.17 1166.3 1.22 352690.1 1.08 974.1 1.02 0.3 ✓

neos-942886 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
neos-948126 298.9 3600.0 557.0 1.86 3600.0 1.00 223.7 0.75 3600.0 1.00 1.3 ✓

neos-948268 1.0 12.1 1.0 1.00 12.1 1.00 1.0 1.00 12.1 1.00 –
neos-948346 17.5 3600.0 45.7 2.60 3600.0 1.00 47.8 2.73 3600.0 1.00 0.3 ✓

neos-950242 27.9 173.9 25.5 0.91 158.0 0.91 123.6 4.43 425.6 2.45 1.0 ✓

neos-952987 1.0 3600.0 1.0 1.00 3600.0 1.00 1.0 1.00 3600.0 1.00 –
neos-953928 62.3 400.4 69.7 1.12 373.3 0.93 17.8 0.29 272.9 0.68 –
neos-954925 105.7 2173.4 570.1 5.39 3600.0 1.66 45.8 0.43 1218.4 0.56 –
neos-955215 17478.0 18.7 17898.2 1.02 20.6 1.10 14791.5 0.85 15.4 0.83 1.0 ✓

neos-955800 1250.8 45.5 1698.1 1.36 49.9 1.10 779.0 0.62 40.4 0.89 1.3 ✓

neos-956971 141.5 2392.5 450.7 3.18 3269.7 1.37 43.1 0.30 1311.3 0.55 0.3 ✓

neos-957143 129.2 2127.4 2126.6 16.46 3600.0 1.69 22.8 0.18 349.6 0.16 0.7 ✓

neos-957270 1.0 2.1 1.0 1.00 2.1 1.00 1.0 1.00 2.1 1.00 –
neos-957323 2.8 101.0 6.3 2.22 93.9 0.93 5.8 2.06 134.1 1.33 0.7 ✓

neos-957389 1.0 12.5 1.0 1.00 12.3 0.99 1.0 1.00 12.4 0.99 –
neos-960392 29.1 662.3 90.8 3.12 777.2 1.17 25.9 0.89 613.6 0.93 0.3 ✓

neos-983171 247.0 3600.0 807.1 3.27 3600.0 1.00 148.2 0.60 3600.0 1.00 –
neos-984165 343.3 3600.0 504.4 1.47 3600.0 1.00 276.6 0.81 3600.0 1.00 1.3 ✓

neos13 18381.8 380.0 187287.8 10.19 2655.1 6.99 15453.4 0.84 350.6 0.92 6.3 ✓

neos18 1300.3 18.5 1222.5 0.94 21.8 1.18 948.2 0.73 17.8 0.96 0.3 ✓

net12 2375.9 1177.0 2112.9 0.89 818.2 0.69 2130.4 0.90 749.4 0.64 0.3 ✓

netdiversion 29.2 1128.7 139.8 4.79 3091.9 2.74 12.7 0.43 1045.3 0.93 0.7 ✓

newdano 720667.7 3600.0 642235.4 0.89 3600.0 1.00 730835.1 1.01 3600.0 1.00 1.3 ✓

noswot 366545.4 90.8 916511.3 2.50 218.9 2.41 504470.5 1.38 124.7 1.37 0.3 ✓

ns1208400 857.8 256.0 932.8 1.09 288.2 1.13 1379.0 1.61 283.5 1.11 0.3 ✓

ns1688347 790.2 71.2 834.8 1.06 68.8 0.97 1134.9 1.44 70.5 0.99 0.3 ✓

ns1758913 1.3 2064.0 1.3 1.00 2051.7 0.99 1.0 0.76 1759.4 0.85 0.7 ✓

ns1766074 891795.1 564.9 892001.5 1.00 562.6 1.00 899371.1 1.01 583.0 1.03 –
ns1830653 5199.4 110.0 7136.5 1.37 134.2 1.22 5233.1 1.01 117.9 1.07 1.0 ✓

nsa 207.8 1.9 208.5 1.00 1.3 0.71 211.9 1.02 1.9 1.01 –
nsrand-ipx 54359.1 496.3 97719.9 1.80 846.3 1.71 36269.2 0.67 318.8 0.64 0.3 ✓

nug08 1.7 63.2 2.0 1.19 52.4 0.83 1.3 0.80 58.4 0.93 0.7 ✓

nw04 6.3 24.2 5.3 0.84 21.9 0.91 5.3 0.85 23.8 0.98 0.7 ✓

opm2-z7-s2 2179.1 243.8 2734.0 1.25 304.6 1.25 2343.2 1.07 233.2 0.96 1.0 ✓

opt1217 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
p0033 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
p0201 12.7 0.8 9.5 0.75 0.5 0.65 8.1 0.64 0.7 0.91 0.7 ✓
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Table D.1 cont.

default nodiving adaptivediving

Instance nodes time nodes nodesQ time timeQ nodes nodesQ time timeQ nsols impr.sols

p0282 2.3 0.5 2.3 1.00 0.5 0.99 2.3 1.00 0.5 0.94 3.3 ✓

p0548 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
p2756 13.2 3.3 11.0 0.84 2.5 0.78 5.1 0.39 3.0 0.92 1.3 ✓

p6b 323294.8 3600.0 219821.9 0.68 3600.0 1.00 304344.2 0.94 3600.0 1.00 43.0 ✓

pg 393.2 17.4 322.1 0.82 13.6 0.78 346.9 0.88 16.0 0.92 1.3 ✓

pg5_34 205199.5 2352.5 242974.3 1.18 2456.6 1.04 193454.2 0.94 2203.8 0.94 1.3 ✓

pigeon-10 4019215.8 1619.4 11611815.7 2.89 3600.0 2.22 8387118.0 2.09 3046.2 1.88 0.3 ✓

pk1 334752.2 105.4 370026.6 1.10 110.2 1.05 307638.2 0.92 99.4 0.94 2.3 ✓

pp08a 207.8 1.4 200.2 0.96 1.4 0.99 212.1 1.02 1.5 1.05 10.3 ✓

pp08aCUTS 122.2 1.8 133.7 1.09 1.9 1.09 118.3 0.97 1.9 1.04 9.0 ✓

prod1 26945.2 18.2 47322.8 1.76 27.6 1.52 43144.3 1.60 29.5 1.62 2.3 ✓

prod2 98039.7 104.4 122168.5 1.25 120.3 1.15 110835.1 1.13 111.4 1.07 9.3
protfold 5453.4 3600.0 6804.1 1.25 3600.0 1.00 4773.2 0.88 3600.0 1.00 0.3 ✓

pw-myciel4 299777.0 2220.1 162153.8 0.54 1018.3 0.46 266983.7 0.89 1849.0 0.83 1.0 ✓

qap10 5.7 152.3 3.3 0.57 87.9 0.58 1.7 0.29 119.4 0.78 0.7 ✓

qiu 2580.1 24.2 2512.8 0.97 20.9 0.86 3918.7 1.52 28.1 1.16 8.3 ✓

qnet1 15.7 3.7 9.7 0.62 3.8 1.03 2.6 0.17 1.5 0.40 5.7 ✓

qnet1_o 2.0 1.8 5.1 2.54 1.8 0.98 2.3 1.16 2.2 1.23 1.0 ✓

rail507 745.7 162.6 929.4 1.25 184.0 1.13 821.0 1.10 200.2 1.23 0.7 ✓

ramos3 16.6 3600.0 17.0 1.02 3600.0 1.00 13.0 0.78 3600.0 1.00 5.7
ran14x18.disj-8 461955.8 1440.7 426190.1 0.92 1415.7 0.98 411637.7 0.89 1294.1 0.90 108.3 ✓

ran14x18_1 421575.1 1181.0 379931.0 0.90 986.3 0.83 417531.0 0.99 1058.7 0.90 129.3
ran16x16 14207.2 77.6 9971.7 0.70 72.7 0.94 10089.0 0.71 73.4 0.94 63.7 ✓

rd-rplusc-21 258853.1 3600.0 277132.2 1.07 3600.0 1.00 222275.4 0.86 3600.0 1.00 0.7 ✓

reblock67 65100.0 258.7 47291.3 0.73 193.9 0.75 49203.0 0.76 195.4 0.76 1.3 ✓

rentacar 6.0 2.2 6.0 1.00 2.1 0.99 5.3 0.88 2.2 1.02 1.3 ✓

rgn 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 1.0 ✓

rlp1 15702666.0 3600.0 16847612.6 1.07 3600.0 1.00 17579882.1 1.12 3600.0 1.00 –
rmatr100-p10 818.4 166.4 835.2 1.02 149.1 0.90 806.9 0.99 162.3 0.97 2.3 ✓

rmatr100-p5 507.7 279.8 473.1 0.93 241.0 0.86 473.6 0.93 285.9 1.02 1.0 ✓

rmine6 94404.0 840.9 92116.0 0.98 827.8 0.98 87820.6 0.93 784.0 0.93 0.7 ✓

rococoC10-001000 61788.9 747.1 66303.8 1.07 985.3 1.32 70980.9 1.15 892.1 1.19 1.3 ✓

roll3000 2515.8 51.3 2254.4 0.90 45.5 0.89 3042.7 1.21 59.2 1.15 0.7 ✓

rout 24846.1 82.1 13458.6 0.54 58.8 0.72 18795.8 0.76 67.5 0.82 2.7 ✓

roy 1.3 0.5 1.3 1.00 0.5 1.00 1.0 0.76 0.5 1.00 0.3 ✓

satellites1-25 225.6 892.7 483.1 2.14 674.2 0.76 105.2 0.47 684.3 0.77 1.0 ✓

set1ch 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
seymour 112578.7 3600.0 95622.5 0.85 3600.0 1.00 115834.4 1.03 3600.0 1.00 17.7 ✓

seymour.disj-10 42724.0 3600.0 38954.1 0.91 3600.0 1.00 40519.8 0.95 3600.0 1.00 23.0 ✓

sp97ar 11008.0 3600.0 10240.6 0.93 3600.0 1.00 7795.1 0.71 3600.0 1.00 –
sp97ic 17051.6 3600.0 19037.2 1.12 3600.0 1.00 23161.4 1.36 3600.0 1.00 0.3 ✓

sp98ar 1627.8 3600.0 1825.6 1.12 3600.0 1.00 1596.4 0.98 3600.0 1.00 0.3 ✓

sp98ic 29695.4 3600.0 31775.9 1.07 3600.0 1.00 31181.3 1.05 3600.0 1.00 0.3 ✓

sp98ir 5204.9 77.1 4859.2 0.93 67.9 0.88 4388.9 0.84 62.9 0.82 1.0 ✓
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stein27 1273.1 0.6 984.7 0.77 0.6 0.90 1310.8 1.03 0.7 1.06 3.0
stein45 40030.3 12.7 44536.0 1.11 12.4 0.98 40029.2 1.00 12.4 0.98 3.3
stp3d 1.0 3600.0 5.9 5.92 3600.0 1.00 1.0 1.00 3600.0 1.00 –
swath 335083.3 3600.0 407024.3 1.22 3600.0 1.00 300096.1 0.90 3600.0 1.00 0.3 ✓

t1717 2003.0 3600.0 2313.9 1.16 3600.0 1.00 1277.3 0.64 3600.0 1.00 2.3 ✓

tanglegram1 34.7 400.0 60.1 1.73 490.5 1.23 42.6 1.23 452.6 1.13 –
tanglegram2 4.2 6.8 3.0 0.71 5.2 0.77 4.2 1.00 6.3 0.93 0.3 ✓

timtab1 47140.5 55.1 30422.2 0.65 42.0 0.76 49461.7 1.05 56.3 1.02 4.0 ✓

timtab2 1764544.1 3600.0 1688186.0 0.96 3600.0 1.00 1741605.1 0.99 3600.0 1.00 1.0 ✓

tr12-30 384457.8 618.9 387094.5 1.01 603.7 0.97 390286.7 1.01 655.6 1.06 2.0 ✓

triptim1 1.7 456.9 8.5 5.13 824.5 1.80 1.7 1.00 511.3 1.12 1.0 ✓

unitcal_7 81.1 280.0 185.9 2.29 285.2 1.02 69.1 0.85 262.0 0.94 1.7 ✓

vpm1 1.0 0.5 1.0 1.00 0.5 1.00 1.0 1.00 0.5 1.00 –
vpm2 249.4 1.9 240.6 0.96 1.8 0.93 239.1 0.96 2.0 1.03 1.0 ✓

vpphard 1079.3 3600.0 2446.2 2.27 3600.0 1.00 1294.4 1.20 3600.0 1.00 2.3 ✓

zib54-UUE 87933.1 1734.3 76307.0 0.87 1363.8 0.79 62251.4 0.71 1382.7 0.80 43.0 ✓

geom. 870.56 131.06 1066.52 1.23 132.64 1.01 763.29 0.88 125.22 0.96
shgeom. (100/1) 2532.32 150.82 2901.74 1.15 152.81 1.01 2375.66 0.94 144.57 0.96295
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2. We use the following abbreviations for the pricing methods
(column P): d(evex), q(steep), s(teep), g(reedy), u(UCB), w(eighted). The table shows a
total of 105 instances from the MMMc test set, which were selected from the entire list of
instances with the bash command shuf.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

a1c1s1 d 900.0 900.0 900.0 900.0 42.574 43.040 41.563 40.135
q 900.0 900.0 900.0 900.0 29.670 24.446 34.993 33.850
s 900.0 900.0 900.0 900.0 37.213 36.888 36.613 36.993
g 900.0 900.0 900.0 900.0 43.522 40.259 40.331 39.291
u 900.0 900.0 900.0 900.0 41.359 31.043 51.633 45.428
w 900.0 900.0 900.0 900.0 31.718 29.091 29.812 31.108

aflow30a d 18.6 18.5 18.6 18.6 1244.000 1203.871 1144.785 1097.647
q 21.9 30.1 30.6 25.8 753.696 525.260 587.282 578.873
s 17.9 17.8 17.9 17.9 749.794 737.652 737.652 743.673
g 17.7 18.9 19.7 18.1 1062.092 984.153 971.429 1063.514
u 22.1 22.6 19.4 19.6 1100.000 980.095 972.340 1000.546
w 19.2 18.8 19.3 19.2 967.337 902.604 988.462 988.462

app1-2 d 572.9 544.2 561.9 616.5 4.924 4.456 5.420 6.166
q 900.0 900.0 900.0 900.0 1.269 1.228 4.278 4.655
s 900.0 900.0 900.0 900.0 1.129 1.131 1.128 1.118
g 735.7 585.5 526.9 568.9 5.902 4.674 4.229 4.663
u 595.5 677.6 657.4 584.6 4.020 4.827 6.220 4.297
w 705.8 651.0 602.2 631.2 5.293 4.607 3.987 4.183

bienst2 d 443.8 544.9 518.4 494.3 194.759 181.017 169.368 175.427
q 900.0 900.0 900.0 900.0 56.873 37.016 40.996 40.979
s 757.1 783.2 769.5 768.0 117.247 107.874 96.940 95.447
g 472.5 557.4 627.0 530.3 189.471 183.868 158.378 170.847
u 489.1 619.8 576.2 475.5 171.459 172.262 162.833 165.103
w 508.0 717.4 656.4 858.1 130.264 136.877 119.819 128.774

core2536-691 d 237.8 208.3 134.8 493.0 3.357 1.312 0.434 2.729
q 238.9 644.7 152.5 222.9 5.058 4.654 5.720 5.577
s 115.8 88.8 195.2 436.7 10.571 6.546 4.075 9.569
g 110.9 351.7 128.8 172.5 5.850 6.261 7.453 5.911
u 388.7 253.3 379.8 112.0 3.427 6.705 2.127 6.726
w 474.8 148.6 447.7 148.4 3.551 5.340 2.782 8.850

csched010 d 900.0 900.0 900.0 900.0 254.254 266.977 267.753 279.667
q 900.0 900.0 900.0 900.0 177.648 206.084 200.400 188.400
s 900.0 900.0 900.0 900.0 260.993 270.149 265.517 274.868
g 900.0 900.0 900.0 900.0 271.277 287.984 246.270 297.205
u 900.0 900.0 900.0 900.0 265.855 255.365 263.803 269.094
w 900.0 900.0 900.0 900.0 247.492 245.468 247.870 239.830

d20200 d 900.0 900.0 900.0 900.0 55.414 80.737 65.443 80.534
q 900.0 900.0 900.0 900.0 24.929 81.643 22.110 23.427
s 900.0 900.0 900.0 900.0 33.338 32.400 30.440 33.428
g 900.0 900.0 900.0 900.0 74.107 67.907 28.248 50.438
u 900.0 900.0 900.0 900.0 62.490 22.219 22.000 17.345
w 900.0 900.0 900.0 900.0 21.374 69.536 23.036 23.113

dano3_3 d 575.3 641.8 600.5 529.5 0.063 0.060 0.067 0.065
q 208.6 169.7 182.0 191.5 0.396 0.265 0.422 0.401
s 109.6 108.5 95.6 116.3 1.762 1.139 2.335 1.547
g 136.0 116.2 131.7 131.9 0.771 1.109 0.924 0.842
u 145.4 113.0 126.7 137.0 0.726 1.010 1.180 1.018
w 136.7 119.8 135.8 127.6 0.855 1.130 0.870 0.875
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

dano3_5 d 804.6 629.2 694.2 866.1 0.307 0.674 0.344 0.283
q 445.9 504.2 900.0 683.1 0.782 0.781 0.814 0.765
s 239.7 213.0 273.7 256.6 4.299 3.247 2.857 4.265
g 277.7 293.7 286.0 320.1 2.686 2.488 2.632 2.229
u 337.4 327.8 305.1 277.5 2.527 2.795 2.663 2.560
w 304.5 282.8 302.1 276.4 2.329 2.699 2.782 2.751

enigma d 0.5 0.5 0.5 0.5 781.000 631.000 518.000 477.000
q 0.5 0.5 0.5 0.5 790.000 119.000 817.000 752.000
s 0.5 0.5 0.5 0.5 434.000 662.000 662.000 434.000
g 0.5 0.5 0.5 0.5 781.000 631.000 518.000 477.000
u 0.5 0.5 0.5 0.5 612.000 902.000 219.000 580.000
w 0.5 0.5 0.5 0.5 781.000 631.000 518.000 477.000

enlight14 d 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
q 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
s 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
g 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
u 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
w 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000

fast0507 d 198.3 225.6 184.6 225.6 22.817 21.862 17.956 20.936
q 243.7 168.8 168.7 160.6 28.509 30.203 29.215 32.737
s 122.6 152.4 148.7 144.7 54.444 53.600 55.053 53.027
g 123.3 103.4 94.7 122.3 51.129 51.579 50.349 46.272
u 164.5 118.6 135.5 146.7 42.083 37.173 38.802 40.951
w 201.1 125.4 215.2 136.0 28.425 35.840 29.073 33.544

gesa3 d 4.0 4.0 4.0 4.0 132.000 132.000 132.000 132.000
q 3.1 3.1 3.1 3.1 114.000 114.000 114.000 114.000
s 2.5 2.6 2.6 2.6 133.000 133.000 133.000 133.000
g 4.0 4.1 4.0 4.0 132.000 132.000 132.000 132.000
u 4.0 4.0 4.0 4.1 132.000 132.000 132.000 132.000
w 4.0 4.0 4.0 4.0 132.000 132.000 132.000 132.000

gmu-35-40 d 900.0 900.0 900.0 900.0 4957.472 5117.238 4973.098 4855.290
q 900.0 900.0 900.0 900.0 4396.990 4325.870 4692.965 4336.761
s 900.0 900.0 900.0 900.0 1792.424 1820.965 1782.291 1808.548
g 900.0 900.0 900.0 900.0 4851.232 5191.881 4967.683 4735.952
u 900.0 900.0 900.0 900.0 5234.216 4843.152 4735.445 4890.141
w 900.0 900.0 900.0 900.0 4871.580 4980.356 4803.680 4876.100

khb05250 d 0.5 0.5 0.5 0.5 43.000 43.000 43.000 43.000
q 0.5 0.5 0.5 0.5 39.000 39.000 39.000 39.000
s 0.5 0.5 0.5 0.5 35.000 35.000 35.000 35.000
g 0.5 0.5 0.5 0.5 43.000 43.000 43.000 43.000
u 0.5 0.5 0.5 0.5 43.000 43.000 43.000 43.000
w 0.5 0.5 0.5 0.5 43.000 43.000 43.000 43.000

lectsched-4-obj d 34.1 23.5 21.5 41.3 445.055 567.368 429.545 604.450
q 29.6 11.6 13.4 14.6 332.069 20.000 19.375 20.000
s 36.6 35.5 22.0 72.3 354.664 359.259 257.471 81.163
g 27.7 27.2 24.4 35.3 342.174 599.228 474.771 531.845
u 47.3 8.0 20.3 31.4 445.113 23.000 445.185 443.388
w 60.7 21.1 32.9 12.6 215.534 480.303 471.512 21.000

m100n500k4r1 d 900.0 900.0 900.0 900.0 1354.100 1476.484 1418.780 1423.688
q 900.0 900.0 900.0 900.0 1033.038 1052.989 1006.777 992.487
s 900.0 900.0 900.0 900.0 971.066 962.994 993.292 972.630
g 900.0 900.0 900.0 900.0 1415.771 1444.667 1407.778 1371.903
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

u 900.0 900.0 900.0 900.0 1439.498 1444.715 1458.356 1449.160
w 900.0 900.0 900.0 900.0 1109.017 1181.933 1129.757 1160.798

macrophage d 200.6 200.5 200.2 200.5 173.980 173.303 174.541 174.321
q 332.8 331.7 332.0 332.5 57.818 58.348 57.979 58.052
s 246.8 247.1 246.4 247.4 94.651 95.915 94.975 95.105
g 170.2 204.1 235.0 286.0 162.862 175.251 163.018 180.481
u 251.4 199.6 245.6 206.4 165.063 188.914 163.635 113.993
w 329.0 320.1 298.6 309.6 121.521 140.335 144.938 147.225

misc07 d 13.7 14.2 14.2 14.6 4479.765 4244.744 4155.145 4210.818
q 15.1 14.4 13.9 15.0 3415.000 3812.658 3702.278 3511.751
s 10.8 10.7 10.7 10.8 1678.019 1706.875 1650.151 1709.779
g 13.9 14.2 8.0 14.1 3901.351 3847.135 4240.268 4295.280
u 10.3 11.1 10.5 8.0 4095.312 3895.139 4101.901 4048.214
w 14.4 12.8 12.7 14.7 4393.036 4118.452 4478.317 3919.638

mkc d 900.0 900.0 900.0 900.0 820.557 672.545 474.280 320.387
q 900.0 900.0 900.0 900.0 513.883 235.949 415.825 505.398
s 900.0 900.0 900.0 900.0 163.630 139.575 198.332 141.679
g 900.0 900.0 900.0 900.0 368.789 812.473 494.223 256.341
u 900.0 900.0 900.0 900.0 646.885 458.266 585.384 309.882
w 900.0 900.0 900.0 900.0 383.976 415.484 456.326 348.011

mod008 d 0.5 0.5 0.5 0.5 79.000 79.000 79.000 79.000
q 0.5 0.5 0.5 0.5 61.000 61.000 61.000 61.000
s 0.5 0.5 0.5 0.5 87.000 87.000 87.000 87.000
g 0.5 0.5 0.5 0.5 79.000 79.000 79.000 79.000
u 0.5 0.5 0.5 0.5 79.000 79.000 79.000 79.000
w 0.5 0.5 0.5 0.5 79.000 79.000 79.000 79.000

mspp16 d 358.7 381.1 350.6 504.0 3.700 3.558 3.724 3.611
q 432.6 471.4 631.3 542.7 3.339 3.128 3.083 3.079
s 591.9 585.4 478.5 438.5 2.712 2.694 2.602 2.956
g 356.4 379.5 352.6 502.6 3.591 3.551 3.466 3.619
u 373.4 389.8 353.4 507.9 3.353 3.339 3.367 3.165
w 358.6 380.6 350.8 497.5 3.433 3.571 3.556 3.493

n4-3 d 262.3 181.0 198.4 186.1 70.188 73.857 75.043 67.679
q 204.1 296.3 296.4 271.8 55.096 42.721 42.514 46.260
s 258.1 256.3 264.1 281.6 62.316 62.988 63.958 65.060
g 292.3 207.6 232.7 206.9 60.031 60.679 59.695 71.321
u 198.4 165.4 201.6 217.6 68.387 70.147 65.514 60.673
w 186.6 180.6 170.6 187.1 68.040 64.525 67.900 66.602

nag d 900.0 900.0 900.0 900.0 8.997 19.244 9.468 13.188
q 900.0 900.0 900.0 900.0 20.089 30.552 20.142 22.371
s 900.0 900.0 900.0 900.0 17.787 25.765 24.584 20.800
g 900.0 900.0 900.0 900.0 9.821 27.463 24.979 28.266
u 900.0 900.0 900.0 900.0 18.922 24.049 27.673 31.339
w 900.0 900.0 900.0 900.0 12.912 20.503 22.031 18.800

neos-1109824 d 11.4 11.4 11.4 11.3 327.000 327.000 327.000 330.000
q 53.2 21.3 14.6 28.7 418.059 480.952 449.000 521.008
s 22.7 22.6 22.6 22.3 412.376 420.283 429.381 428.365
g 11.4 11.4 11.4 11.4 327.000 327.000 327.000 330.000
u 14.6 11.7 16.2 14.5 566.000 415.000 558.000 459.000
w 11.4 11.4 11.4 11.4 327.000 327.000 327.000 330.000

neos-1121679 d 900.0 900.0 900.0 900.0 40503.819 43426.849 44849.477 47961.462
q 900.0 900.0 900.0 900.0 48650.960 47732.673 43624.325 45397.926
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

s 900.0 900.0 900.0 900.0 35063.374 32543.903 35453.998 32472.430
g 900.0 900.0 900.0 900.0 40640.170 42960.902 43832.496 47500.216
u 900.0 900.0 900.0 900.0 41015.926 40756.995 48113.837 46944.355
w 900.0 900.0 900.0 900.0 41004.903 43732.617 44336.416 47854.721

neos-1200887 d 8.0 12.5 9.3 13.1 2102.030 2045.566 1935.545 1876.061
q 26.4 13.6 17.0 13.3 658.871 647.135 639.187 589.316
s 15.8 10.4 15.9 17.2 1000.460 885.678 995.398 942.756
g 7.2 11.4 13.0 11.5 2018.889 1901.286 2133.618 2024.335
u 9.3 9.6 15.8 20.1 2135.784 1847.525 2130.512 1158.499
w 9.0 14.7 14.1 21.4 1373.050 1450.797 1824.045 1246.951

neos-1208135 d 316.7 112.8 219.0 280.4 29.622 18.307 11.232 14.378
q 181.6 306.8 153.5 314.5 41.041 51.928 51.888 33.805
s 96.2 140.9 62.8 110.1 105.838 97.942 68.750 90.397
g 199.3 168.8 169.0 137.7 50.594 31.172 16.549 97.741
u 427.1 189.8 406.4 128.1 25.878 38.418 27.066 39.249
w 128.4 96.3 203.0 288.9 73.620 92.787 28.902 45.782

neos-1211578 d 5.8 5.8 5.8 5.8 10504.348 10778.947 10343.885 9511.842
q 3.5 3.5 3.5 3.6 4180.000 4570.000 4290.000 4607.000
s 4.3 3.8 2.2 2.1 4696.324 4202.439 2967.000 2967.000
g 4.6 4.5 4.6 4.6 7712.821 8355.556 8057.143 7712.821
u 5.3 5.1 4.9 5.1 8441.007 7005.442 7717.857 8954.074
w 5.2 5.3 5.6 5.1 8783.846 8494.964 8611.111 7950.694

neos-1215259 d 34.4 87.1 45.1 81.9 175.796 234.231 149.868 209.923
q 74.7 68.6 86.3 93.1 125.655 130.243 115.306 144.237
s 60.3 56.6 44.3 73.1 109.423 123.399 111.594 104.384
g 52.5 104.6 80.1 74.5 135.493 116.500 210.729 148.120
u 55.2 47.4 145.8 40.5 138.149 174.620 193.459 153.507
w 35.9 43.1 75.2 54.9 152.980 131.443 158.954 136.264

neos-1346382 d 900.0 900.0 900.0 900.0 4806.782 5129.140 5018.683 4413.842
q 900.0 900.0 900.0 900.0 2575.227 2640.614 2640.565 2236.559
s 900.0 900.0 900.0 900.0 2973.421 2813.680 2612.887 2889.603
g 900.0 900.0 900.0 900.0 4350.394 4305.212 4764.726 5081.017
u 900.0 900.0 900.0 900.0 4605.106 5281.544 4336.167 5169.299
w 900.0 900.0 900.0 900.0 4590.540 4645.492 4789.903 4696.517

neos-1354092 d 900.0 900.0 900.0 900.0 0.010 0.037 0.016 0.020
q 900.0 900.0 900.0 900.0 0.013 0.035 0.019 0.021
s 900.0 900.0 900.0 900.0 0.040 0.086 0.031 0.055
g 900.0 900.0 900.0 900.0 0.008 0.044 0.019 0.079
u 900.0 900.0 900.0 900.0 0.008 0.018 0.020 0.021
w 900.0 900.0 900.0 900.0 0.008 0.043 0.019 0.014

neos-1396125 d 81.2 112.8 156.7 111.2 479.124 287.480 114.974 313.672
q 214.9 436.5 313.3 256.6 105.252 101.866 165.177 125.753
s 213.3 385.7 232.5 133.4 125.778 130.756 212.115 189.280
g 75.1 63.3 99.8 88.2 763.894 482.770 308.508 569.730
u 84.6 58.7 189.9 211.2 405.363 530.539 164.979 102.820
w 132.0 229.8 182.2 102.1 196.664 102.792 198.023 394.209

neos-1423785 d 900.0 900.0 900.0 900.0 28.021 25.730 32.952 38.685
q 900.0 900.0 900.0 900.0 23.588 29.395 45.820 40.289
s 900.0 900.0 900.0 900.0 62.108 29.868 23.307 34.735
g 900.0 900.0 900.0 900.0 27.500 26.432 29.703 15.431
u 900.0 900.0 900.0 900.0 40.039 34.041 37.078 20.928
w 900.0 900.0 900.0 900.0 27.193 26.114 29.775 12.988

cont. on next page

299



D. Appendix D

Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

neos-1426662 d 900.0 900.0 900.0 900.0 2070.145 1777.964 1590.222 2016.281
q 900.0 900.0 900.0 900.0 833.052 598.923 728.032 859.918
s 900.0 900.0 900.0 900.0 922.483 541.844 659.671 1069.955
g 900.0 900.0 900.0 900.0 1999.173 1705.709 1733.105 1891.412
u 900.0 900.0 900.0 900.0 1803.051 1851.213 1778.505 1784.021
w 900.0 900.0 900.0 900.0 1021.541 1796.783 1495.989 1772.495

neos-1427261 d 900.0 900.0 900.0 900.0 282.888 355.196 382.616 424.627
q 900.0 900.0 900.0 900.0 291.592 284.075 203.952 394.548
s 900.0 900.0 900.0 900.0 204.745 264.489 247.766 251.151
g 900.0 900.0 900.0 900.0 399.492 270.395 346.659 304.449
u 900.0 900.0 900.0 900.0 392.847 341.320 381.315 413.005
w 900.0 900.0 900.0 900.0 198.909 304.426 264.728 247.440

neos-1437164 d 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
q 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
s 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
g 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
u 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000
w 0.5 0.5 0.5 0.5 1.000 1.000 1.000 1.000

neos-1440460 d 900.0 900.0 900.0 900.0 2355.926 2292.097 2412.208 3358.013
q 900.0 900.0 900.0 900.0 670.297 599.011 721.037 657.970
s 900.0 900.0 900.0 900.0 972.577 907.709 996.631 1051.829
g 900.0 900.0 900.0 900.0 2255.526 2423.529 2259.589 2303.630
u 900.0 900.0 900.0 900.0 2235.554 2405.995 2372.504 2244.451
w 900.0 900.0 900.0 900.0 1291.701 1949.901 2657.026 2589.547

neos-1441553 d 4.0 3.4 1.6 2.7 60.000 44.000 13.000 59.000
q 2.6 2.4 2.0 2.6 31.000 29.000 14.000 29.000
s 1.8 1.9 2.0 1.8 13.000 13.000 13.000 13.000
g 4.0 3.4 1.6 2.6 60.000 44.000 13.000 72.000
u 3.9 3.4 1.6 2.6 63.000 44.000 13.000 62.000
w 4.0 3.4 1.6 2.6 63.000 44.000 13.000 72.000

neos-1445755 d 56.8 56.3 56.3 56.3 65.466 65.053 65.745 66.595
q 51.7 51.9 52.0 51.9 61.522 61.255 59.958 60.991
s 53.7 53.5 53.5 53.4 42.534 41.654 41.778 41.778
g 56.8 56.5 57.0 56.7 65.885 65.605 66.739 65.328
u 57.2 57.0 57.1 57.4 66.883 64.509 66.309 66.167
w 57.6 57.3 56.9 57.2 65.745 66.595 66.167 65.885

neos-1451294 d 900.0 900.0 900.0 900.0 9.444 3.299 4.403 4.276
q 900.0 900.0 900.0 900.0 8.285 8.229 12.518 8.968
s 729.4 900.0 900.0 605.3 18.417 22.086 32.852 20.011
g 900.0 900.0 900.0 900.0 28.648 24.185 27.060 26.788
u 378.7 900.0 900.0 900.0 3.559 4.211 21.426 8.309
w 605.2 900.0 900.0 900.0 6.707 8.179 15.942 7.556

neos-1460543 d 900.0 900.0 900.0 900.0 2.458 2.296 2.496 1.885
q 900.0 900.0 900.0 900.0 1.679 3.202 1.613 1.535
s 900.0 900.0 900.0 900.0 2.619 2.706 2.822 2.739
g 900.0 900.0 900.0 900.0 2.046 2.100 2.413 2.074
u 900.0 900.0 900.0 900.0 1.622 6.415 4.410 3.031
w 900.0 900.0 900.0 900.0 2.904 2.514 2.097 3.049

neos-1461051 d 38.5 35.2 34.3 34.1 795.168 830.207 792.931 824.631
q 34.2 35.4 28.9 44.1 277.847 337.652 322.667 382.118
s 37.9 42.3 45.2 25.8 445.900 453.740 503.525 432.353
g 36.6 32.0 34.3 31.4 800.596 806.329 851.208 779.617
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
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time LPthpt

0 1 2 3 0 1 2 3
Instance P

u 35.8 43.4 31.5 36.8 714.570 691.525 643.075 758.913
w 40.7 42.3 38.1 38.2 573.388 571.414 605.011 607.380

neos-1467467 d 900.0 900.0 900.0 900.0 24.860 21.612 49.605 16.639
q 900.0 900.0 900.0 900.0 12.960 15.793 17.322 22.622
s 900.0 900.0 900.0 900.0 29.062 40.314 28.997 21.847
g 900.0 900.0 900.0 900.0 15.579 31.152 32.141 10.119
u 900.0 900.0 900.0 900.0 16.495 22.170 17.428 15.610
w 900.0 900.0 900.0 900.0 26.001 28.308 18.951 24.485

neos-1480121 d 13.2 3.5 1.0 24.5 739.000 9639.000 1144.000 793.000
q 1.1 1.0 7.6 17.1 1335.000 927.000 843.000 1460.000
s 10.6 11.8 13.1 1.4 956.000 728.000 1075.000 974.000
g 14.7 0.5 0.9 24.5 6666.355 536.000 900.000 814.000
u 13.8 0.5 5.5 24.7 4133.000 213.000 12433.594 1001.000
w 13.2 0.5 1.2 24.7 1628.000 731.000 1212.000 842.000

neos-1595230 d 51.5 205.3 121.8 127.9 497.929 365.620 569.562 559.069
q 900.0 900.0 118.2 300.3 261.400 157.614 122.322 88.502
s 236.7 85.0 152.4 248.9 231.259 244.870 256.489 149.807
g 60.0 90.2 157.2 88.0 522.883 458.828 658.616 529.815
u 58.3 100.4 149.6 69.5 586.770 417.855 615.374 598.584
w 73.2 123.7 252.3 113.5 341.075 272.816 445.843 361.392

neos-522351 d 1.3 1.8 1.6 1.8 34.000 42.000 38.000 33.000
q 2.2 1.3 1.8 1.5 37.000 20.000 33.000 30.000
s 2.6 2.9 3.0 1.1 34.000 42.000 40.000 19.000
g 1.3 1.7 1.6 1.7 34.000 42.000 38.000 33.000
u 1.3 1.7 1.6 1.8 34.000 42.000 38.000 33.000
w 1.3 1.8 1.6 1.8 34.000 42.000 38.000 33.000

neos-547911 d 19.5 19.4 19.3 19.4 121.069 120.312 122.611 122.222
q 27.9 26.5 26.2 22.4 150.000 158.667 155.217 159.000
s 21.4 21.4 21.4 21.3 253.333 285.000 255.224 249.635
g 22.4 17.0 25.3 19.6 274.272 297.000 256.923 354.206
u 16.6 26.3 27.3 33.0 131.000 167.495 154.651 158.728
w 18.2 18.3 18.3 18.1 221.951 233.333 220.161 220.161

neos-555298 d 75.2 58.9 54.4 56.4 304.229 324.000 153.107 159.509
q 71.6 95.4 65.6 91.9 166.346 229.055 162.951 267.759
s 494.3 310.8 349.8 665.6 57.805 45.047 37.519 37.416
g 61.5 73.2 54.2 62.1 214.159 324.876 154.857 246.178
u 63.9 59.7 63.8 59.8 205.859 225.229 212.400 272.455
w 64.8 79.5 54.6 75.6 234.194 292.203 153.977 288.330

neos-555771 d 3.1 2.3 8.1 2.7 45.000 37.000 105.000 38.000
q 12.1 3.2 4.4 3.6 99.000 30.000 44.000 54.000
s 6.6 8.3 6.3 4.8 64.000 70.000 65.000 37.000
g 3.2 2.3 9.0 2.7 45.000 37.000 88.000 38.000
u 3.3 2.3 8.5 2.7 45.000 37.000 101.000 38.000
w 3.3 2.3 7.7 2.7 45.000 37.000 86.000 38.000

neos-555884 d 900.0 900.0 900.0 900.0 57.949 111.382 72.739 60.007
q 900.0 900.0 900.0 900.0 50.697 46.992 43.646 41.174
s 900.0 900.0 900.0 900.0 50.493 39.694 44.628 53.171
g 900.0 900.0 900.0 900.0 68.451 82.694 67.083 50.593
u 900.0 900.0 900.0 900.0 52.217 77.317 88.874 51.036
w 900.0 900.0 900.0 900.0 44.021 69.394 70.947 57.822

neos-578379 d 172.8 172.5 169.4 172.0 1.000 1.000 1.000 1.000
q 172.8 172.2 172.5 172.0 1.000 1.000 1.000 1.000
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0 1 2 3 0 1 2 3
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s 172.3 172.6 172.2 169.2 1.000 1.000 1.000 1.000
g 171.5 173.2 173.7 173.4 1.000 1.000 1.000 1.000
u 172.6 172.9 172.3 172.0 1.000 1.000 1.000 1.000
w 172.3 173.6 169.5 172.2 1.000 1.000 1.000 1.000

neos-585192 d 16.3 16.4 16.3 16.3 945.665 1097.987 1028.931 1003.681
q 17.0 17.2 19.1 17.4 967.901 872.973 885.714 958.621
s 32.5 32.6 32.5 32.7 170.895 174.150 167.979 169.089
g 16.5 16.7 15.3 16.8 1009.877 1039.375 1176.271 966.860
u 15.3 17.2 15.4 18.7 1007.586 895.588 944.000 977.000
w 15.3 15.3 15.3 15.3 769.620 856.338 821.622 794.771

neos-595904 d 11.0 11.0 10.9 11.1 96.000 96.000 96.000 96.000
q 19.2 19.0 19.1 19.2 75.281 76.136 77.907 80.240
s 15.0 14.9 15.0 14.9 105.844 101.242 100.617 103.822
g 11.1 11.0 11.1 11.1 96.000 96.000 96.000 96.000
u 10.9 10.9 11.0 11.0 96.000 96.000 96.000 96.000
w 10.9 10.9 10.9 10.9 96.000 96.000 96.000 96.000

neos-595925 d 9.2 9.1 9.1 9.1 210.000 210.000 210.000 210.000
q 24.9 25.1 25.1 25.1 159.218 148.438 147.668 145.408
s 21.4 21.4 21.3 21.4 173.786 170.476 172.115 185.492
g 9.1 9.1 9.1 9.1 210.000 210.000 210.000 210.000
u 9.1 9.1 9.1 9.1 210.000 210.000 210.000 210.000
w 9.1 9.1 9.1 9.1 210.000 210.000 210.000 210.000

neos-598183 d 5.0 5.0 5.1 5.1 133.000 133.000 133.000 133.000
q 7.1 7.0 7.2 5.8 168.000 159.000 179.000 145.000
s 6.7 6.7 6.7 6.7 177.000 177.000 177.000 177.000
g 5.1 5.1 5.1 5.1 133.000 133.000 133.000 133.000
u 4.9 5.1 6.7 6.8 112.000 139.000 188.000 207.000
w 5.1 5.1 5.1 5.1 133.000 133.000 133.000 133.000

neos-603073 d 95.6 94.6 123.5 96.2 303.071 307.264 362.171 309.267
q 85.5 126.3 99.6 110.6 214.449 258.581 241.304 255.463
s 254.4 900.0 900.0 220.5 344.801 434.353 422.650 351.205
g 155.5 900.0 900.0 74.6 437.833 555.799 620.531 366.135
u 900.0 154.2 80.3 900.0 733.273 458.701 296.176 560.516
w 900.0 900.0 900.0 246.4 520.833 451.044 549.142 322.889

neos-612162 d 16.8 16.8 16.7 16.7 302.632 294.872 288.945 291.878
q 24.4 25.4 24.7 25.4 181.095 179.469 182.447 185.028
s 26.4 26.1 26.2 26.1 79.427 79.343 79.008 80.193
g 16.4 16.6 17.7 18.4 276.562 278.740 282.609 283.161
u 17.7 19.3 18.6 19.4 271.852 263.196 252.632 259.179
w 23.5 21.9 22.0 23.5 202.305 209.315 211.170 204.480

neos-631694 d 900.0 900.0 900.0 900.0 193.034 283.865 232.537 161.725
q 900.0 900.0 900.0 900.0 183.926 153.697 164.938 249.458
s 900.0 900.0 900.0 900.0 168.039 170.057 185.994 194.218
g 900.0 900.0 900.0 900.0 234.724 232.544 208.382 238.271
u 900.0 900.0 900.0 900.0 226.462 240.406 264.352 193.520
w 900.0 900.0 900.0 900.0 202.895 205.003 226.754 208.135

neos-631710 d 900.0 900.0 900.0 900.0 0.001 0.001 0.001 0.001
q 900.0 900.0 900.0 900.0 0.001 0.001 0.002 0.001
s 900.0 900.0 900.0 900.0 0.001 0.001 0.001 0.001
g 900.0 900.0 900.0 900.0 0.001 0.001 0.001 0.001
u 900.0 900.0 900.0 900.0 0.001 0.001 0.001 0.001
w 900.0 900.0 900.0 900.0 0.001 0.001 0.001 0.001
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neos-686190 d 97.2 96.8 96.7 97.2 493.897 493.897 493.432 494.675
q 83.1 96.0 143.2 125.8 403.563 435.837 404.192 428.286
s 411.7 498.0 156.3 610.9 136.759 147.133 122.868 132.091
g 75.7 86.7 84.7 89.6 509.108 505.475 522.610 489.540
u 82.2 143.5 67.8 132.2 512.571 512.401 503.409 475.985
w 109.8 100.0 92.9 92.1 463.514 413.791 459.636 461.516

neos-691073 d 900.0 900.0 900.0 900.0 3.376 3.196 1.919 3.056
q 900.0 900.0 900.0 900.0 0.123 0.118 0.141 0.113
s 900.0 900.0 900.0 900.0 0.728 0.835 0.859 0.921
g 900.0 900.0 900.0 900.0 2.343 2.857 2.049 1.601
u 900.0 900.0 900.0 900.0 3.337 4.875 2.125 2.972
w 900.0 900.0 900.0 900.0 1.478 2.365 1.502 1.388

neos-717614 d 6.4 6.5 6.4 6.5 2411.000 2411.000 2411.000 2411.000
q 8.0 8.0 8.1 8.1 1090.000 1090.000 1090.000 1090.000
s 12.4 12.4 12.4 12.2 392.929 413.830 419.784 424.364
g 40.9 41.0 41.2 47.8 2704.805 2725.759 2720.374 2730.295
u 4.3 7.2 7.2 199.6 804.000 2703.731 2308.725 2745.518
w 8.5 8.5 8.5 8.5 2252.976 2610.345 2557.432 2441.935

neos-791021 d 900.0 900.0 900.0 900.0 0.063 0.054 0.055 0.073
q 308.1 62.9 76.5 82.7 0.692 0.486 0.465 0.499
s 34.8 28.9 26.9 40.3 1.248 1.259 1.461 1.762
g 250.4 310.1 289.4 298.0 1.355 1.177 1.019 0.940
u 900.0 665.3 900.0 900.0 0.243 0.255 0.139 0.186
w 452.1 495.9 401.0 658.3 0.472 0.700 0.525 0.555

neos-803219 d 37.0 42.1 34.5 29.8 1554.326 1637.955 1596.640 1512.301
q 38.6 27.4 40.4 42.0 942.002 936.317 1041.804 1030.062
s 42.0 41.9 45.3 37.0 1019.961 1006.568 978.178 1044.681
g 36.7 42.0 34.3 29.4 1595.604 1637.955 1593.822 1533.441
u 36.5 30.3 30.9 33.5 1458.618 1472.386 1545.419 1497.676
w 37.0 42.1 34.4 29.6 1537.864 1677.905 1640.145 1602.360

neos-803220 d 81.5 76.8 72.5 79.6 2771.021 2901.084 2811.629 2740.566
q 92.6 87.7 108.9 81.4 1756.395 1764.438 1682.540 2105.215
s 103.4 97.3 98.5 98.7 1753.464 1754.584 1787.896 1716.346
g 81.9 77.7 72.7 82.6 2763.752 2898.351 2789.727 2706.704
u 77.7 75.3 76.5 97.4 2738.143 2809.409 2710.878 2702.465
w 82.0 77.1 72.9 84.2 2752.918 2843.438 2765.492 2744.632

neos-807454 d 2.1 1.9 1.8 2.3 4.000 5.000 5.000 4.000
q 3.3 3.5 3.2 2.2 4.000 4.902 5.000 4.000
s 4.7 4.2 3.4 2.4 4.000 4.000 5.000 4.000
g 2.1 1.9 1.8 2.3 4.000 5.000 5.000 4.000
u 2.1 1.9 1.8 2.3 4.000 5.000 5.000 4.000
w 2.1 1.9 1.8 2.3 4.000 5.000 5.000 4.000

neos-808072 d 22.9 18.8 22.8 18.0 93.074 62.059 97.030 80.786
q 25.5 27.4 23.4 37.1 37.225 74.960 63.287 71.250
s 36.5 32.4 39.8 31.6 60.000 54.791 65.738 55.313
g 26.3 20.8 23.0 22.0 64.378 67.246 102.148 56.500
u 20.0 30.5 29.8 21.9 86.799 94.422 66.007 76.803
w 21.4 21.0 26.3 25.8 90.411 62.784 87.634 72.080

neos-820146 d 900.0 900.0 900.0 900.0 1200.173 1340.065 1475.637 1278.118
q 900.0 900.0 900.0 900.0 479.881 412.138 338.140 430.549
s 900.0 900.0 900.0 900.0 524.444 531.321 509.587 546.731
g 900.0 900.0 900.0 900.0 1375.069 1347.657 1483.491 1517.417
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

u 900.0 900.0 900.0 900.0 1175.832 1316.960 1314.416 1282.637
w 900.0 900.0 900.0 900.0 905.074 814.951 889.472 885.397

neos-825075 d 1.2 1.4 1.4 1.9 14.000 19.000 33.000 30.000
q 2.3 2.0 1.4 1.8 22.000 32.000 10.000 33.000
s 1.5 1.5 1.8 2.1 20.000 18.000 26.000 46.000
g 1.2 1.4 1.4 1.9 14.000 19.000 30.000 30.000
u 1.4 1.4 1.4 1.9 14.000 28.000 29.000 30.000
w 1.2 1.4 1.5 1.9 14.000 19.000 38.000 30.000

neos-826650 d 900.0 900.0 900.0 900.0 1.410 2.381 1.282 1.624
q 900.0 900.0 900.0 900.0 4.532 7.315 4.930 9.240
s 900.0 900.0 900.0 900.0 18.415 23.573 19.578 15.642
g 900.0 900.0 900.0 900.0 19.221 21.803 20.262 20.733
u 900.0 900.0 900.0 900.0 0.687 0.762 2.770 1.676
w 900.0 900.0 900.0 900.0 4.557 4.262 4.093 2.082

neos-827015 d 900.0 900.0 900.0 900.0 0.832 0.457 0.632 0.634
q 900.0 900.0 900.0 900.0 2.000 1.864 1.914 2.067
s 900.0 900.0 900.0 900.0 3.060 2.532 2.922 2.532
g 731.0 741.7 802.5 900.0 1.920 1.698 1.643 0.527
u 676.9 900.0 900.0 900.0 2.073 2.284 1.701 1.793
w 900.0 900.0 900.0 900.0 1.868 2.001 1.147 1.754

neos-848150 d 11.4 14.8 14.1 12.2 47.000 169.600 165.000 57.000
q 16.4 18.3 21.1 17.8 33.884 38.168 66.190 84.293
s 18.0 21.1 25.3 17.6 75.000 82.301 132.618 55.000
g 12.6 16.7 17.0 12.4 48.000 124.378 199.398 50.000
u 15.8 15.5 16.0 15.1 147.799 39.344 51.000 116.260
w 15.2 16.1 14.7 15.1 84.158 71.569 49.505 37.000

neos-850681 d 2.8 2.6 3.1 2.4 10.000 15.686 10.606 16.000
q 3.4 2.6 11.5 2.6 22.000 15.000 35.000 18.000
s 17.7 30.5 2.4 9.7 33.858 43.605 16.000 31.000
g 2.8 2.6 3.2 2.4 9.677 15.686 10.448 16.000
u 2.8 2.6 3.2 2.4 9.917 15.842 10.294 16.000
w 2.8 2.6 3.1 2.4 10.000 16.000 10.294 16.000

neos-880324 d 0.7 1.4 0.8 1.2 127.000 174.000 129.000 169.000
q 1.0 0.9 1.0 1.2 160.000 132.000 125.000 175.000
s 1.4 1.4 1.4 1.7 166.000 176.000 173.000 185.000
g 0.6 1.4 0.8 1.2 127.000 174.000 129.000 169.000
u 0.7 1.4 0.8 1.3 135.000 188.000 129.000 193.000
w 0.7 1.4 0.8 1.2 127.000 174.000 129.000 169.000

neos-885086 d 900.0 139.2 900.0 900.0 0.059 2.444 0.094 0.065
q 900.0 900.0 900.0 696.2 0.205 0.027 0.047 1.480
s 900.0 900.0 900.0 900.0 0.336 0.369 0.423 0.373
g 900.0 900.0 900.0 900.0 0.183 2.210 0.162 0.205
u 900.0 138.7 900.0 900.0 0.082 2.459 0.081 0.080
w 900.0 900.0 900.0 900.0 0.130 0.156 0.260 0.122

neos-892255 d 74.3 170.4 79.6 77.6 22.350 7.585 21.216 22.399
q 127.1 418.9 138.2 193.8 16.333 5.851 10.332 12.536
s 44.6 43.0 64.9 40.1 50.414 43.019 38.648 56.081
g 62.5 280.3 57.8 84.2 34.596 8.507 34.235 28.529
u 117.1 167.2 133.2 900.0 15.552 12.495 11.608 13.577
w 70.5 226.9 136.8 128.0 30.003 7.681 13.821 16.324

neos-905856 d 175.7 10.8 632.1 310.2 205.616 68.000 162.907 183.593
q 900.0 535.5 64.9 189.7 71.534 68.995 79.381 134.994
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

s 303.6 392.5 559.0 117.0 133.597 234.365 158.411 165.356
g 186.8 57.5 402.5 264.3 189.721 165.786 222.647 217.985
u 244.8 20.2 88.5 73.3 220.540 166.165 188.405 116.952
w 192.4 66.8 182.9 541.5 175.281 152.415 150.450 138.977

neos-912015 d 11.4 9.0 7.1 13.9 309.155 190.000 123.000 371.134
q 8.3 15.3 16.7 12.3 36.000 160.252 158.537 216.575
s 12.2 8.0 12.8 9.3 159.000 84.000 168.000 145.000
g 9.3 9.6 6.0 5.1 290.000 327.000 76.000 33.000
u 11.4 11.3 10.1 6.6 348.503 342.017 267.647 54.000
w 12.1 5.2 11.5 9.5 233.158 43.000 192.623 97.000

neos-912023 d 4.7 9.7 7.3 6.9 23.000 236.000 77.000 99.000
q 10.4 7.7 6.8 10.3 77.000 31.000 22.000 22.000
s 6.2 14.9 7.1 5.7 23.000 53.000 25.000 20.000
g 5.2 10.7 8.1 10.1 23.000 397.030 116.000 220.000
u 4.8 9.9 10.7 6.3 23.000 117.000 244.000 32.000
w 5.1 11.7 8.9 7.5 23.000 206.618 111.000 71.000

neos-930752 d 900.0 900.0 900.0 900.0 0.042 0.063 0.069 0.054
q 900.0 900.0 900.0 900.0 1.080 1.414 1.170 1.654
s 900.0 900.0 900.0 900.0 3.447 3.614 3.859 4.244
g 900.0 900.0 900.0 900.0 1.613 2.375 2.045 1.800
u 900.0 900.0 900.0 900.0 0.210 0.256 0.161 0.135
w 900.0 900.0 900.0 900.0 0.721 0.319 0.153 0.358

neos-931517 d 900.0 900.0 900.0 900.0 0.666 0.754 0.834 0.883
q 900.0 900.0 900.0 900.0 0.450 0.661 0.528 0.523
s 900.0 900.0 900.0 900.0 1.542 1.590 1.389 1.609
g 900.0 900.0 900.0 900.0 0.811 0.660 1.065 0.904
u 900.0 900.0 900.0 900.0 0.827 0.615 0.906 0.937
w 900.0 900.0 900.0 900.0 1.248 0.731 1.037 1.060

neos-933364 d 38.1 34.6 24.4 30.4 2134.055 1269.845 985.203 1128.291
q 52.1 48.0 185.5 37.7 1156.879 915.906 1652.640 1330.435
s 58.9 48.2 37.9 41.0 599.461 600.460 457.606 507.455
g 20.5 28.2 29.2 39.3 1287.197 1069.605 1686.247 1300.957
u 34.0 113.7 31.6 35.2 1416.495 1936.163 1096.829 1136.715
w 24.2 34.9 41.0 26.4 791.304 1119.696 1139.925 1024.032

neos-933815 d 564.3 27.0 35.6 33.2 3447.969 2260.145 2139.712 1808.087
q 62.9 900.0 75.9 77.5 2474.940 2623.024 2807.937 2634.489
s 47.1 65.0 33.8 35.6 720.135 851.177 634.921 731.229
g 470.3 36.4 56.4 41.7 2813.633 2666.760 3165.503 2752.853
u 428.5 39.5 31.9 18.7 2749.309 2146.325 2755.150 1332.865
w 608.7 25.6 48.4 30.9 3054.541 2133.871 3046.770 1969.260

neos-935496 d 900.0 900.0 900.0 900.0 370.102 319.893 287.201 391.776
q 900.0 900.0 900.0 900.0 110.251 136.301 231.008 214.681
s 900.0 900.0 900.0 900.0 182.856 137.957 165.705 175.276
g 900.0 900.0 900.0 900.0 370.773 158.636 156.460 305.160
u 900.0 900.0 900.0 900.0 278.231 302.628 227.144 292.852
w 900.0 900.0 900.0 900.0 293.130 185.492 222.155 203.056

neos-935674 d 900.0 900.0 900.0 900.0 243.108 261.205 226.507 308.857
q 900.0 900.0 900.0 900.0 227.703 142.471 152.902 161.751
s 900.0 900.0 900.0 900.0 143.850 153.672 155.693 147.455
g 900.0 900.0 900.0 900.0 334.405 382.729 308.491 286.157
u 900.0 900.0 900.0 900.0 331.086 345.513 236.860 270.209
w 900.0 900.0 900.0 900.0 183.610 229.557 239.872 156.314
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

neos-937815 d 900.0 900.0 900.0 900.0 0.019 0.014 0.016 0.017
q 900.0 900.0 900.0 900.0 0.276 0.296 0.268 0.205
s 900.0 900.0 900.0 900.0 0.310 0.551 0.399 0.432
g 900.0 900.0 900.0 900.0 0.231 0.144 0.279 0.135
u 900.0 900.0 900.0 900.0 0.059 0.188 0.095 0.125
w 900.0 900.0 900.0 900.0 0.218 0.099 0.145 0.106

neos-948126 d 900.0 900.0 900.0 900.0 0.017 0.016 0.015 0.015
q 900.0 900.0 900.0 900.0 0.227 0.194 0.204 0.134
s 900.0 900.0 900.0 900.0 0.460 0.613 0.453 0.478
g 900.0 900.0 900.0 900.0 0.171 0.093 0.120 0.153
u 900.0 900.0 900.0 900.0 0.072 0.079 0.082 0.070
w 900.0 900.0 900.0 900.0 0.167 0.109 0.101 0.115

neos-948268 d 9.4 11.2 14.6 8.2 0.208 0.292 0.196 0.204
q 10.3 9.7 13.2 16.2 0.212 0.292 0.195 0.204
s 16.8 11.5 188.1 14.1 0.211 0.289 3.166 0.203
g 9.4 12.6 14.7 8.2 0.210 0.292 0.194 0.204
u 9.4 12.6 14.6 8.2 0.210 0.289 0.194 0.205
w 9.4 12.6 14.7 8.2 0.210 0.289 0.194 0.206

neos-956971 d 900.0 900.0 900.0 900.0 0.008 0.008 0.008 0.008
q 856.3 900.0 900.0 900.0 0.161 0.194 0.119 0.350
s 900.0 900.0 900.0 900.0 1.241 0.790 0.775 0.958
g 900.0 900.0 900.0 900.0 0.150 0.113 0.118 0.187
u 900.0 900.0 900.0 900.0 0.028 0.087 0.056 0.083
w 900.0 900.0 900.0 900.0 0.064 0.081 0.079 0.089

neos-960392 d 900.0 900.0 900.0 900.0 0.008 0.008 0.010 0.012
q 900.0 900.0 780.3 900.0 0.177 0.266 0.213 0.247
s 645.5 436.8 505.8 415.9 1.279 1.467 1.609 1.648
g 900.0 900.0 900.0 900.0 0.053 0.098 0.078 0.092
u 900.0 900.0 900.0 900.0 0.070 0.136 0.109 0.098
w 900.0 900.0 900.0 900.0 0.052 0.093 0.082 0.067

neos13 d 222.9 223.6 223.8 222.9 497.091 489.964 502.574 492.169
q 731.4 896.3 499.4 401.3 296.185 313.900 398.259 368.434
s 514.8 510.6 508.9 510.2 396.987 399.495 399.944 403.401
g 215.1 138.0 147.4 136.9 511.487 399.098 428.857 354.859
u 296.0 259.0 447.1 190.1 508.402 475.102 506.231 358.667
w 797.7 799.9 803.2 796.6 423.524 420.887 424.123 426.081

newdano d 900.0 900.0 900.0 900.0 208.515 190.594 209.000 198.997
q 900.0 900.0 900.0 900.0 40.456 40.865 40.965 36.666
s 900.0 900.0 900.0 900.0 98.065 112.632 108.475 101.520
g 900.0 900.0 900.0 900.0 183.198 185.652 205.476 185.849
u 900.0 900.0 900.0 900.0 184.251 199.377 201.902 188.435
w 900.0 900.0 900.0 900.0 127.921 128.197 129.864 119.249

nw04 d 26.5 26.6 26.5 26.5 157.000 157.000 157.000 157.000
q 41.3 32.1 34.5 33.5 155.618 108.148 114.024 107.463
s 24.7 24.8 24.8 24.7 91.000 91.000 91.000 91.000
g 26.6 26.6 26.6 26.6 157.000 157.000 157.000 157.000
u 26.6 26.6 26.6 26.6 157.000 157.000 157.000 157.000
w 26.6 26.6 26.7 26.6 157.000 157.000 157.000 157.000

opt1217 d 0.5 0.5 0.5 0.5 17.000 24.000 21.000 24.000
q 0.5 0.5 0.5 0.5 19.000 27.000 22.000 22.000
s 0.5 0.5 0.5 0.5 17.000 22.000 28.000 21.000
g 0.5 0.5 0.5 0.5 17.000 24.000 21.000 24.000
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

u 0.5 0.5 0.5 0.5 17.000 24.000 21.000 24.000
w 0.5 0.5 0.5 0.5 17.000 24.000 21.000 24.000

p0548 d 0.5 0.5 0.5 0.5 33.000 33.000 33.000 33.000
q 0.5 0.5 0.5 0.5 35.000 35.000 35.000 35.000
s 0.5 0.5 0.5 0.5 37.000 37.000 37.000 37.000
g 0.5 0.5 0.5 0.5 33.000 33.000 33.000 33.000
u 0.5 0.5 0.5 0.5 33.000 33.000 33.000 33.000
w 0.5 0.5 0.5 0.5 33.000 33.000 33.000 33.000

prod1 d 17.1 17.1 17.4 16.8 7156.893 6928.694 7037.421 7220.705
q 21.2 21.4 20.5 21.2 5728.772 5847.674 6457.744 5580.614
s 22.4 22.3 22.2 22.1 3748.904 3819.333 3761.978 3676.364
g 17.4 17.8 17.6 17.9 6890.989 7079.148 7561.538 6167.129
u 17.2 20.1 78.6 51.0 6227.021 6585.849 6304.552 6875.552
w 20.5 19.5 19.4 22.4 6991.248 6764.394 7258.812 6526.979

pw-myciel4 d 900.0 900.0 900.0 900.0 364.061 296.295 299.537 342.828
q 900.0 900.0 900.0 900.0 53.698 70.231 49.005 43.480
s 900.0 900.0 900.0 900.0 130.578 140.226 149.225 117.235
g 900.0 900.0 900.0 900.0 318.923 283.605 310.498 302.086
u 900.0 900.0 900.0 900.0 282.694 284.017 350.265 299.743
w 900.0 900.0 900.0 900.0 150.701 172.503 168.401 177.257

rentacar d 2.1 2.0 2.1 2.1 30.000 30.000 30.000 30.000
q 1.9 1.9 1.9 1.9 32.000 32.000 32.000 32.000
s 2.3 2.2 2.3 2.3 36.000 36.000 36.000 36.000
g 2.1 2.1 2.0 2.0 30.000 30.000 30.000 30.000
u 2.1 2.1 2.1 2.0 30.000 30.000 30.000 30.000
w 2.1 2.0 2.1 2.1 30.000 30.000 30.000 30.000

rmine6 d 900.0 900.0 900.0 900.0 849.114 851.783 845.140 853.474
q 900.0 900.0 676.7 800.6 538.530 488.593 524.223 462.907
s 900.0 900.0 900.0 900.0 550.833 530.828 521.660 547.573
g 900.0 624.3 638.0 699.7 864.276 853.545 888.432 822.056
u 900.0 882.0 842.8 824.7 841.542 1058.416 805.381 1043.327
w 900.0 781.8 900.0 900.0 838.428 873.857 837.505 835.683

rocII-4-11 d 900.0 900.0 900.0 900.0 5.727 4.691 5.741 5.395
q 252.3 400.2 270.3 490.9 126.487 155.780 96.193 160.837
s 440.6 580.3 594.6 486.4 78.775 98.828 89.099 73.541
g 257.0 356.0 449.2 308.6 88.776 100.577 139.253 112.417
u 372.1 450.6 473.8 482.5 74.244 79.528 60.015 84.076
w 562.2 611.2 588.8 523.7 42.750 29.076 35.833 37.218

set1ch d 0.5 0.5 0.5 0.5 40.000 40.000 40.000 40.000
q 0.5 0.5 0.5 0.5 48.000 48.000 48.000 48.000
s 0.8 0.8 0.8 0.8 61.000 61.000 61.000 61.000
g 0.5 0.5 0.5 0.5 40.000 40.000 40.000 40.000
u 0.5 0.5 0.5 0.5 40.000 40.000 40.000 40.000
w 0.5 0.5 0.5 0.5 40.000 40.000 40.000 40.000

seymour d 900.0 900.0 900.0 900.0 59.325 58.978 58.642 58.706
q 900.0 900.0 900.0 900.0 14.105 16.102 15.807 18.239
s 900.0 900.0 900.0 900.0 32.711 36.036 34.927 37.059
g 900.0 900.0 900.0 900.0 68.142 75.937 73.866 71.422
u 900.0 900.0 900.0 900.0 73.217 64.057 68.747 60.797
w 900.0 900.0 900.0 900.0 44.729 46.316 39.723 42.675

sp98ic d 900.0 900.0 900.0 900.0 20.548 9.994 16.045 15.640
q 900.0 900.0 900.0 900.0 18.022 18.858 26.186 19.626
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Table D.2: LP pricing results for every tested instance, seed, and pricing method from
the experiment in Section 7.2.

time LPthpt

0 1 2 3 0 1 2 3
Instance P

s 900.0 900.0 900.0 900.0 21.944 15.384 20.594 31.573
g 900.0 900.0 900.0 900.0 31.252 16.221 15.990 17.611
u 900.0 900.0 900.0 900.0 21.864 22.544 18.539 9.492
w 900.0 900.0 900.0 900.0 23.056 35.577 21.249 17.683

zib54-UUE d 900.0 900.0 900.0 900.0 149.497 165.691 145.079 164.242
q 900.0 900.0 900.0 900.0 42.534 44.434 47.953 51.686
s 900.0 900.0 900.0 900.0 32.047 32.128 30.296 30.923
g 900.0 900.0 900.0 900.0 168.520 147.731 160.828 159.268
u 900.0 900.0 900.0 900.0 156.626 154.171 152.450 164.215
w 900.0 900.0 900.0 900.0 100.997 96.114 93.141 104.656
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Appendix E

Table E.1: The MIP performance results from Section 9.3 for every instance, tree size
estimation, clairvoyant factor ϕclair, and random seed. The columns root and tree show
the number of root and clairvoyant restarts performed, respectively.

mip settings ϕclair root tree time nodes

0 1 2 0 1 2 0 1 2 0 1 2

30n20b8 monotone 10 – – – 1 – – 207.5 158.2 273.9 3981 4292 3752
monotone 25 – – – – – – 169.3 157.6 276.3 4383 4292 3752
monotone 50 – – – – – – 169.1 157.9 273.5 4383 4292 3752
reg forest 10 – – – 1 – – 182.7 159.9 275.8 6124 4292 3752
reg forest 25 – – – – – – 172.2 160.4 277.0 4383 4292 3752
reg forest 50 – – – – – – 172.0 161.0 277.6 4383 4292 3752
gap 10 – – 2 1 – 1 200.5 158.7 313.8 3319 4292 2492
gap 25 – – 1 1 – 1 175.2 158.0 307.4 3404 4292 2722
gap 50 – – – 1 – – 188.1 157.7 273.9 3573 4292 3752
leaf freq 10 – – – – – – 170.8 158.6 273.2 4383 4292 3752
leaf freq 25 – – – – – – 169.3 158.4 275.1 4383 4292 3752
leaf freq 50 – – – – – – 169.5 158.1 272.5 4383 4292 3752
ssg 10 – – 3 1 1 1 252.2 166.4 299.8 4112 2207 2249
ssg 25 – – – 1 1 1 261.7 254.3 275.9 5552 3046 3076
ssg 50 – – – 1 1 – 172.4 185.8 273.4 4078 2428 3752
tree weight 10 – – – 1 1 1 281.9 178.1 262.2 3589 1662 2194
tree weight 25 – 2 – 1 1 1 187.5 183.9 262.1 4182 3071 2194
tree weight 50 – – – 1 – 1 186.4 157.7 262.1 3650 4292 2194
no clairvoyant – – – – – – – 170.3 157.3 271.8 4383 4292 3752
0-restart – – – – – – – 168.2 157.6 274.3 4383 4292 3752

50v-10 monotone 10 – – – 1 – 1 t t t 451967 429935 325266
monotone 25 – – – – – 1 t t t 426182 431462 321602
monotone 50 – – – – – – t t t 426499 433326 493906
reg forest 10 – – – 1 1 1 t t t 505907 576227 321705
reg forest 25 – – – – – – t t t 425582 429524 490488
reg forest 50 – – – – – – t t t 426597 429177 491404
gap 10 – – – 1 1 1 t t t 356642 404015 357225
gap 25 – – – – – – t t t 426513 431438 498129
gap 50 – – – – – – t t t 426309 432266 491914
leaf freq 10 – – – 1 1 1 t t t 417830 424628 398021
leaf freq 25 – – – 1 1 1 t t t 408895 427806 454371
leaf freq 50 – – – 1 1 1 t t t 406823 450230 407009
ssg 10 – – – 1 1 1 t t t 462614 484195 396411
ssg 25 – – – 1 1 1 t t t 366108 485447 418361
ssg 50 – – – 1 1 1 t t t 440067 485831 392359
tree weight 10 – – – 1 1 1 t t t 456994 551393 341917
tree weight 25 – – – 1 1 1 t t t 481526 527202 389125
tree weight 50 – – – 1 1 1 t t t 528411 445929 458289
no clairvoyant – – – – – – – t t t 426245 431252 493149
0-restart – – – – – – – t t t 426182 432263 494217
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Table E.1 cont.

mip settings ϕclair root tree time nodes

0 1 2 0 1 2 0 1 2 0 1 2

CMS750_4 monotone 10 – – – 1 1 1 387.9 1634.8 1963.3 7035 32262 47928
monotone 25 – – – 1 1 1 388.8 1636.7 1962.4 7035 32262 47928
monotone 50 – – – 1 1 1 390.2 1635.3 1966.5 7035 32262 47928
reg forest 10 – – – 1 1 1 389.5 837.5 t 7035 15815 88116
reg forest 25 – – – – – – 817.0 1374.2 1114.8 12149 42840 18755
reg forest 50 – – – – – – 815.9 1380.0 1104.3 12149 42840 18755
gap 10 – – – – – 1 812.1 1375.8 2252.0 12149 42840 60395
gap 25 – – – – – – 812.1 1368.6 1112.7 12149 42840 18755
gap 50 – – – – – – 811.9 1367.4 1115.4 12149 42840 18755
leaf freq 10 – – – 1 1 1 1047.5 1924.2 1963.9 28702 70772 47928
leaf freq 25 – – – 1 1 1 1047.2 1388.0 1965.2 28702 41447 47928
leaf freq 50 – – – 1 – 1 1047.8 1365.1 1971.0 28702 42840 47928
ssg 10 – – – 1 1 1 841.7 1087.2 617.1 11811 24711 19228
ssg 25 – – – 1 1 1 842.7 1112.6 1092.2 11281 32939 30894
ssg 50 – – – 1 1 1 841.4 1437.2 1081.7 12724 47488 12694
tree weight 10 – – – 1 1 1 389.8 1639.8 t 7035 32262 99920
tree weight 25 – – – 1 1 1 630.1 1636.0 t 5836 32262 99747
tree weight 50 – – – 1 1 1 1238.9 1637.3 t 27084 32262 99754
no clairvoyant – – – – – – – 813.9 1354.3 1109.2 12149 42840 18755
0-restart – – – – – – – 808.5 1368.9 1110.8 12149 42840 18755

academic.small monotone 10 – – – – – – t t t 1457 654 732
monotone 25 – – – – – – t t t 1460 654 734
monotone 50 – – – – – – t t t 1455 650 733
reg forest 10 – – – – – – t t t 1457 649 733
reg forest 25 – – – – – – t t t 1458 651 732
reg forest 50 – – – – – – t t t 1458 652 734
gap 10 – – – – – – t t t 1458 654 730
gap 25 – – – – – – t t t 1457 654 732
gap 50 – – – – – – t t t 1459 652 732
leaf freq 10 – – – – – – t t t 1455 651 732
leaf freq 25 – – – – – – t t t 1457 651 733
leaf freq 50 – – – – – – t t t 1459 650 733
ssg 10 – – – – – – t t t 1457 652 732
ssg 25 – – – – – – t t t 1459 654 732
ssg 50 – – – – – – t t t 1459 656 733
tree weight 10 – – – – – – t t t 1458 654 732
tree weight 25 – – – – – – t t t 1457 651 732
tree weight 50 – – – – – – t t t 1457 654 733
no clairvoyant – – – – – – – t t t 1457 654 733
0-restart – – – – – – – t t t 1457 654 730

air05 monotone 10 – – – – – – 28.0 35.9 36.0 155 410 473
monotone 25 – – – – – – 28.4 36.0 36.1 155 410 473
monotone 50 – – – – – – 28.1 35.8 36.0 155 410 473
reg forest 10 – – – – – – 28.0 36.2 36.3 155 410 473
reg forest 25 – – – – – – 28.3 36.0 36.2 155 410 473
reg forest 50 – – – – – – 28.1 36.2 36.1 155 410 473
gap 10 – – – – – – 29.7 35.9 35.9 155 410 473
gap 25 – – – – – – 28.1 35.9 36.0 155 410 473
gap 50 – – – – – – 28.1 35.8 35.8 155 410 473
leaf freq 10 – – – – – – 28.1 35.7 36.4 155 410 473
leaf freq 25 – – – – – – 28.1 35.9 36.2 155 410 473
leaf freq 50 – – – – – – 28.2 35.8 36.2 155 410 473
ssg 10 – – – – – – 28.2 36.0 35.8 155 410 473
ssg 25 – – – – – – 28.1 35.8 35.9 155 410 473
ssg 50 – – – – – – 28.2 36.0 35.7 155 410 473
tree weight 10 – – – – – – 28.1 35.8 36.0 155 410 473
tree weight 25 – – – – – – 28.2 36.0 36.1 155 410 473
tree weight 50 – – – – – – 28.1 35.9 36.3 155 410 473
no clairvoyant – – – – – – – 28.1 35.9 35.7 155 410 473
0-restart – – – – – – – 28.0 35.8 35.8 155 410 473

app1-1 monotone 10 – – 1 – – – 3.0 4.7 4.7 20 1 2
monotone 25 – – 1 – – – 2.9 4.7 4.6 20 1 2
monotone 50 – – 1 – – – 3.0 4.8 4.7 20 1 2
reg forest 10 – – 1 – – – 3.1 5.0 4.8 20 1 2
reg forest 25 – – 1 – – – 3.0 4.9 4.8 20 1 2
reg forest 50 – – 1 – – – 3.1 4.9 4.8 20 1 2
gap 10 – – 1 – – – 2.9 4.7 4.8 20 1 2
gap 25 – – 1 – – – 2.9 4.8 4.7 20 1 2
gap 50 – – 1 – – – 2.9 4.7 4.7 20 1 2
leaf freq 10 – – 1 – – – 2.9 4.8 4.7 20 1 2
leaf freq 25 – – 1 – – – 2.9 4.7 4.8 20 1 2
leaf freq 50 – – 1 – – – 2.9 4.8 4.7 20 1 2
ssg 10 – – 1 – – – 3.0 4.7 4.7 20 1 2
ssg 25 – – 1 – – – 3.0 4.7 4.7 20 1 2
ssg 50 – – 1 – – – 2.9 4.8 4.7 20 1 2
tree weight 10 – – 1 – – – 2.9 4.7 4.8 20 1 2
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tree weight 25 – – 1 – – – 3.0 4.8 4.7 20 1 2
tree weight 50 – – 1 – – – 3.0 4.7 4.7 20 1 2
no clairvoyant – – – 1 – – – 3.0 4.8 4.7 20 1 2
0-restart – – – – – – – 2.9 4.8 4.0 20 1 27

app1-2 monotone 10 1 1 – – – – 213.0 414.9 262.6 863 7515 3263
monotone 25 1 1 – – – – 211.7 418.9 263.6 863 7515 3263
monotone 50 1 1 – – – – 213.3 421.1 262.7 863 7515 3263
reg forest 10 1 1 – – – – 212.7 423.5 264.5 863 7515 3263
reg forest 25 1 1 – – – – 213.7 416.1 264.9 863 7515 3263
reg forest 50 1 1 – – – – 213.2 421.0 264.0 863 7515 3263
gap 10 1 1 – – 1 1 227.3 1176.0 302.1 863 4271 3334
gap 25 1 1 – – 1 1 211.4 618.3 301.5 863 16625 3334
gap 50 1 1 – – 1 – 211.9 1058.0 265.9 863 25803 3263
leaf freq 10 1 1 – – – – 214.6 419.7 263.1 863 7515 3263
leaf freq 25 1 1 – – – – 215.7 417.6 262.9 863 7515 3263
leaf freq 50 1 1 – – – – 213.1 419.3 264.1 863 7515 3263
ssg 10 1 1 – – 1 1 211.9 933.4 1077.4 863 20464 23901
ssg 25 1 1 – – 1 1 212.6 263.6 373.0 863 2801 3966
ssg 50 1 1 – – 1 1 212.4 619.8 299.9 863 16625 3334
tree weight 10 1 1 – – 1 – 209.2 503.9 263.5 863 15904 3263
tree weight 25 1 1 – – – – 212.3 421.2 267.1 863 7515 3263
tree weight 50 1 1 – – – – 217.4 417.5 262.2 863 7515 3263
no clairvoyant – 1 1 – – – – 211.7 416.2 258.6 863 7515 3263
0-restart – – – – – – – 217.8 482.8 262.4 1701 8335 3263

assign1-5-8 monotone 10 – – – – – – 3241.8 3333.9 2513.2 5093402 5316926 3911052
monotone 25 – – – – – – 3262.7 3336.5 2501.9 5093402 5316926 3911052
monotone 50 – – – – – – 3247.4 3315.2 2512.2 5093402 5316926 3911052
reg forest 10 – – – – – – 3257.9 3341.9 2518.7 5093402 5316926 3911052
reg forest 25 – – – – – – 3238.1 3325.2 2509.8 5093402 5316926 3911052
reg forest 50 – – – – – – 3244.2 3341.4 2509.3 5093402 5316926 3911052
gap 10 – – – – – – 3227.6 3326.9 2494.5 5093402 5316926 3911052
gap 25 – – – – – – 3251.4 3320.5 2515.8 5093402 5316926 3911052
gap 50 – – – – – – 3252.2 3322.4 2499.1 5093402 5316926 3911052
leaf freq 10 – – – – – – 3246.7 3350.7 2501.6 5093402 5316926 3911052
leaf freq 25 – – – – – – 3244.2 3311.2 2516.2 5093402 5316926 3911052
leaf freq 50 – – – – – – 3271.0 3311.9 2504.4 5093402 5316926 3911052
ssg 10 – – – – – – 3244.1 3324.4 2499.8 5093402 5316926 3911052
ssg 25 – – – – – – 3242.6 3329.2 2500.5 5093402 5316926 3911052
ssg 50 – – – – – – 3228.5 3320.9 2506.9 5093402 5316926 3911052
tree weight 10 – – – – – – 3264.6 3362.8 2510.2 5093402 5316926 3911052
tree weight 25 – – – – – – 3261.9 3329.5 2498.8 5093402 5316926 3911052
tree weight 50 – – – – – – 3249.0 3334.1 2506.6 5093402 5316926 3911052
no clairvoyant – – – – – – – 3234.3 3324.4 2499.7 5093402 5316926 3911052
0-restart – – – – – – – 3268.5 3321.4 2506.0 5093402 5316926 3911052

atlanta-ip monotone 10 – – – – – – t t t 4435 5946 9026
monotone 25 – – – – – – t t t 4433 5948 9018
monotone 50 – – – – – – t t t 4440 5914 8894
reg forest 10 – – – 1 1 1 t t t 6298 7398 7608
reg forest 25 – – – – – – t t t 4438 5934 9022
reg forest 50 – – – – – – t t t 4437 5941 8995
gap 10 – – – 1 1 1 t t t 6475 6289 5932
gap 25 – – – 1 1 1 t t t 4000 5405 7769
gap 50 – – – – – – t t t 4443 5957 9042
leaf freq 10 – – – – – – t t t 4440 6003 9022
leaf freq 25 – – – – – – t t t 4435 5934 9017
leaf freq 50 – – – – – – t t t 4444 5941 9025
ssg 10 – – – 1 1 1 t t t 5627 6494 8393
ssg 25 – – – 1 1 1 t t t 7478 6188 8089
ssg 50 – – – 1 1 1 t t t 7834 6653 9637
tree weight 10 – – – 1 1 1 t t t 6824 8022 7349
tree weight 25 – – – 1 1 1 t t t 9019 7343 6353
tree weight 50 – – – 1 1 1 t t t 7362 6436 6323
no clairvoyant – – – – – – – t t t 4433 5937 9145
0-restart – – – – – – – t t t 4442 5916 9132

b1c1s1 monotone 10 – – – 1 1 1 t t t 22223 26727 22602
monotone 25 – – – 1 1 1 t t t 22084 26682 22295
monotone 50 – – – – 1 – t t t 27362 26703 23496
reg forest 10 – – – 1 1 1 t t t 18788 26798 22324
reg forest 25 – – – – 1 1 t t t 27348 22142 22558
reg forest 50 – – – – – – t t t 27339 29811 23561
gap 10 – – – 1 1 1 t t t 22709 22820 25582
gap 25 – – – 1 1 1 t t t 33204 22966 24559
gap 50 – – – 1 1 1 t t t 27319 23821 20264
leaf freq 10 – – – 1 1 1 t t t 24169 20165 19238
leaf freq 25 – – – 1 1 1 t t t 25442 27602 19463
leaf freq 50 – – – – – 1 t t t 27361 29825 19663
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ssg 10 – – – 1 1 1 t t t 29578 28133 18169
ssg 25 – – – 1 1 1 t t t 25461 28158 18053
ssg 50 – – – 1 1 1 t t t 33038 28912 20831
tree weight 10 – – – 1 1 1 t t t 23771 20750 22325
tree weight 25 – – – 1 1 1 t t t 23856 20754 22403
tree weight 50 – – – 1 1 1 t t t 23842 20844 22625
no clairvoyant – – – – – – – t t t 27365 29903 23495
0-restart – – – – – – – t t t 27348 29915 23463

bab2 monotone 10 – – – – – – t t t 386 689 579
monotone 25 – – – – – – t t t 379 629 584
monotone 50 – – – – – – t t t 379 674 584
reg forest 10 – – – – – – t t t 388 681 584
reg forest 25 – – – – – – t t t 379 639 584
reg forest 50 – – – – – – t t t 362 656 585
gap 10 – – – – – – t t t 379 678 579
gap 25 – – – – – – t t t 379 673 584
gap 50 – – – – – – t t t 382 731 584
leaf freq 10 – – – – – – t t t 395 637 584
leaf freq 25 – – – – – – t t t 357 668 579
leaf freq 50 – – – – – – t t t 372 694 579
ssg 10 – – – – – – t t t 379 665 590
ssg 25 – – – – – – t t t 348 621 585
ssg 50 – – – – – – t t t 385 681 590
tree weight 10 – – – – – – t t t 393 606 584
tree weight 25 – – – – – – t t t 388 674 585
tree weight 50 – – – – – – t t t 385 699 584
no clairvoyant – – – – – – – t t t 385 694 584
0-restart – – – – – – – t t t 368 720 578

bab6 monotone 10 – – – 1 – 1 t t t 665 687 1464
monotone 25 – – – – – 1 t t t 653 687 1463
monotone 50 – – – 1 – 1 t t t 665 687 1484
reg forest 10 – – – – – 1 t t t 701 687 1516
reg forest 25 – – – – – – t t t 616 687 1960
reg forest 50 – – – – – – t t t 712 687 1909
gap 10 – – – – – – t t t 729 687 1902
gap 25 – – – – – – t t t 707 687 1858
gap 50 – – – – – – t t t 724 687 1981
leaf freq 10 – – – – – – t t t 692 687 1933
leaf freq 25 – – – – – – t t t 674 687 1910
leaf freq 50 – – – – – – t t t 742 687 1960
ssg 10 – – – – – 1 t t t 724 687 1484
ssg 25 – – – – – 1 t t t 729 687 1355
ssg 50 – – – – – 1 t t t 674 687 1629
tree weight 10 – – – – – – t t t 692 687 1964
tree weight 25 – – – – – – t t t 692 687 1951
tree weight 50 – – – – – – t t t 722 687 1984
no clairvoyant – – – – – – – t t t 722 687 1901
0-restart – – – – – – – t t t 666 687 1883

beasleyC3 monotone 10 – – 1 – – – 69.0 43.7 25.7 913 126 2
monotone 25 – – 1 – – – 69.1 43.8 25.7 913 126 2
monotone 50 – – 1 – – – 69.1 43.7 25.7 913 126 2
reg forest 10 – – 1 – – – 69.5 43.9 25.9 913 126 2
reg forest 25 – – 1 – – – 69.4 44.0 25.9 913 126 2
reg forest 50 – – 1 – – – 69.4 43.9 25.8 913 126 2
gap 10 – – 1 – – – 68.9 43.7 25.8 913 126 2
gap 25 – – 1 – – – 69.1 43.8 25.7 913 126 2
gap 50 – – 1 – – – 69.0 43.8 25.7 913 126 2
leaf freq 10 – – 1 – – – 68.7 44.1 25.6 913 126 2
leaf freq 25 – – 1 – – – 69.2 43.7 25.7 913 126 2
leaf freq 50 – – 1 – – – 69.0 43.6 25.8 913 126 2
ssg 10 – – 1 – – – 68.9 43.6 25.8 913 126 2
ssg 25 – – 1 – – – 68.9 43.7 25.7 913 126 2
ssg 50 – – 1 – – – 69.3 43.8 25.7 913 126 2
tree weight 10 – – 1 – – – 68.8 43.7 25.7 913 126 2
tree weight 25 – – 1 – – – 68.9 43.7 25.8 913 126 2
tree weight 50 – – 1 – – – 68.9 43.8 25.7 913 126 2
no clairvoyant – – – 1 – – – 69.4 43.7 25.7 913 126 2
0-restart – – – – – – – 69.2 43.5 38.9 913 126 33

binkar10_1 monotone 10 1 1 1 – – – 24.7 23.4 28.7 2294 2055 2103
monotone 25 1 1 1 – – – 24.7 23.5 28.8 2294 2055 2103
monotone 50 1 1 1 – – – 24.8 23.3 28.9 2294 2055 2103
reg forest 10 1 1 1 – – – 25.2 23.7 29.2 2294 2055 2103
reg forest 25 1 1 1 – – – 25.3 23.7 29.2 2294 2055 2103
reg forest 50 1 1 1 – – – 25.2 23.6 29.2 2294 2055 2103
gap 10 1 1 1 – – – 24.9 23.2 28.7 2294 2055 2103
gap 25 1 1 1 – – – 24.7 23.4 28.7 2294 2055 2103
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gap 50 1 1 1 – – – 24.8 23.3 28.8 2294 2055 2103
leaf freq 10 1 1 1 – – – 24.7 23.4 28.8 2294 2055 2103
leaf freq 25 1 1 1 – – – 24.8 23.4 28.9 2294 2055 2103
leaf freq 50 1 1 1 – – – 24.6 23.5 28.7 2294 2055 2103
ssg 10 1 1 1 1 – – 34.8 23.4 28.8 2947 2055 2103
ssg 25 1 1 1 – – – 24.8 23.2 28.7 2294 2055 2103
ssg 50 1 1 1 – – – 24.8 23.4 28.8 2294 2055 2103
tree weight 10 1 1 1 1 – – 35.4 23.4 28.7 2819 2055 2103
tree weight 25 1 1 1 1 – – 38.7 23.4 28.8 3233 2055 2103
tree weight 50 1 1 1 – – – 24.8 23.3 28.7 2294 2055 2103
no clairvoyant – 1 1 1 – – – 25.1 23.4 28.8 2294 2055 2103
0-restart – – – – – – – 24.5 31.3 24.2 2320 4051 2323

blp-ar98 monotone 10 – – – 1 1 1 t t t 112163 122729 115961
monotone 25 – – – 1 1 1 t t t 112652 121046 117893
monotone 50 – – – 1 1 1 t t t 111923 121564 117667
reg forest 10 – – – 1 1 1 t t t 112374 121385 117227
reg forest 25 – – – – – – t t t 98922 91100 85821
reg forest 50 – – – – – – t t t 98923 90979 85907
gap 10 1 – – 1 1 1 t t t 112629 102034 99296
gap 25 – – – – – 1 t t t 99142 91460 102458
gap 50 – – – – – – t t t 99322 91074 86025
leaf freq 10 1 1 1 1 1 1 t t t 127561 102344 105345
leaf freq 25 1 – – 1 – – t t t 126328 91225 85169
leaf freq 50 2 – – 1 – – t t t 95827 91110 86372
ssg 10 – – – 1 1 1 t t t 100309 115970 107326
ssg 25 – – – 1 1 1 t t t 98913 116292 99171
ssg 50 – – – 1 1 1 t t t 98043 116758 127309
tree weight 10 – – – 1 1 1 t t t 100898 122208 118448
tree weight 25 – – – 1 1 1 t t t 100302 122268 118012
tree weight 50 – – – 1 1 1 t t t 99401 122554 117716
no clairvoyant – – – – – – – t t t 98526 91360 84948
0-restart – – – – – – – t t t 98928 90985 86532

blp-ic98 monotone 10 – – – 1 1 1 t t t 120644 132001 112486
monotone 25 – – – 1 1 1 t t t 120057 131986 112330
monotone 50 – – – 1 – 1 t t t 120288 132996 112617
reg forest 10 – – – 1 1 1 t t t 119956 132177 112259
reg forest 25 – – – 1 1 1 t t t 121778 131895 111997
reg forest 50 – – – – – – t t t 112511 133405 112930
gap 10 – – – 1 1 1 t t t 117304 133047 112183
gap 25 – – – 1 1 1 t t t 131561 130518 104037
gap 50 – – – 1 1 1 t t t 138085 115529 107380
leaf freq 10 – – – 1 1 1 t t t 120975 124979 106670
leaf freq 25 – – – 1 1 1 t t t 114351 122650 107579
leaf freq 50 – – – 1 1 – t t t 115190 135827 114694
ssg 10 – – – 1 1 1 t t t 119654 128602 111594
ssg 25 – – – 1 1 1 t t t 120020 129916 112458
ssg 50 – – – 1 1 1 t t t 120009 129272 112634
tree weight 10 – – – 1 1 1 t t t 116766 115001 110456
tree weight 25 – – – 1 1 1 t t t 120095 114602 110001
tree weight 50 – – – 1 1 1 t t t 119253 128061 118654
no clairvoyant – – – – – – – t t t 112467 132875 114043
0-restart – – – – – – – t t t 112357 133928 114395

bnatt400 monotone 10 – – – 1 1 1 214.9 131.6 121.0 6146 5554 4964
monotone 25 – – – 1 – 1 214.3 188.4 120.1 6146 8456 4964
monotone 50 – – – 1 – 1 215.7 188.4 120.0 6146 8456 4964
reg forest 10 – – – – – – 235.4 191.5 189.3 8043 8456 6609
reg forest 25 – – – – – – 237.0 192.9 189.3 8043 8456 6609
reg forest 50 – – – – – – 235.0 192.1 189.8 8043 8456 6609
gap 10 – – – – – – 237.3 188.2 185.8 8043 8456 6609
gap 25 – – – – – – 231.5 188.4 185.8 8043 8456 6609
gap 50 – – – – – – 232.0 187.7 185.7 8043 8456 6609
leaf freq 10 – – – – – – 231.6 188.0 187.0 8043 8456 6609
leaf freq 25 – – – – – – 231.5 188.5 186.2 8043 8456 6609
leaf freq 50 – – – – – – 232.0 188.9 185.9 8043 8456 6609
ssg 10 – – – 1 – 1 203.1 187.5 216.7 5979 8456 7269
ssg 25 – – – 1 – 1 176.6 188.0 257.0 5792 8456 7926
ssg 50 – – – 1 – – 186.7 189.2 185.1 5532 8456 6609
tree weight 10 – – – 1 1 1 298.7 132.2 120.0 9151 5554 4964
tree weight 25 – – – 1 1 1 161.3 150.1 120.2 5027 6621 4964
tree weight 50 – – – 1 1 1 239.0 184.8 119.9 8492 7822 4964
no clairvoyant – – – – – – – 235.2 188.3 185.7 8043 8456 6609
0-restart – – – – – – – 231.3 188.3 186.2 8043 8456 6609

bnatt500 monotone 10 – 1 1 1 1 1 670.6 541.3 739.0 23532 20339 24395
monotone 25 – 1 1 1 1 1 669.3 540.7 738.6 23532 20339 24395
monotone 50 – 1 1 1 – – 669.4 554.2 551.1 23532 20244 20619
reg forest 10 – 1 1 – – 1 721.2 556.5 560.4 34107 20244 22172
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reg forest 25 – 1 1 – – – 721.8 557.7 552.4 34107 20244 20619
reg forest 50 – 1 1 – – – 720.2 557.4 556.4 34107 20244 20619
gap 10 – 1 1 – – – 718.0 552.2 551.4 34107 20244 20619
gap 25 – 1 1 – – – 716.3 552.9 551.4 34107 20244 20619
gap 50 – 1 1 – – – 714.6 553.5 552.1 34107 20244 20619
leaf freq 10 – 1 1 1 – – 811.2 556.3 550.6 30050 20244 20619
leaf freq 25 – 1 1 – – – 718.1 551.4 551.9 34107 20244 20619
leaf freq 50 – 1 1 – – – 716.2 553.0 549.9 34107 20244 20619
ssg 10 – 1 1 – – – 716.9 553.8 552.1 34107 20244 20619
ssg 25 – 1 1 – – – 717.8 552.5 552.2 34107 20244 20619
ssg 50 – 1 1 – – – 719.5 554.6 550.2 34107 20244 20619
tree weight 10 – 1 1 1 1 1 671.0 542.4 529.7 23532 20339 19411
tree weight 25 – 1 1 1 1 1 667.2 542.0 561.9 23532 20339 23038
tree weight 50 – 1 1 1 1 1 463.4 545.0 608.2 22580 21816 20880
no clairvoyant – – 1 1 – – – 720.5 552.9 550.4 34107 20244 20619
0-restart – – – – – – – 716.3 656.7 608.7 34107 28284 24155

bppc4-08 monotone 10 – – – 1 1 – t t t 398086 341168 301078
monotone 25 – – – – – – t t t 377442 370825 301208
monotone 50 – – – – – – t t t 378546 369249 302769
reg forest 10 – – – 1 1 1 t t t 397637 339903 316719
reg forest 25 – – – – – – t t t 376104 370183 302496
reg forest 50 – – – – – – t t t 376743 369124 303782
gap 10 – – – – 1 – t t t 378400 366348 303931
gap 25 – – – – 1 – t t t 377676 365556 304791
gap 50 – – – – – – t t t 378687 369450 302493
leaf freq 10 – – – 1 1 1 t t t 315328 275417 335818
leaf freq 25 – – – – 1 – t t t 377363 299192 303747
leaf freq 50 – – – – 1 – t t t 378499 324482 303212
ssg 10 – – – 1 1 1 t t t 335896 336777 340571
ssg 25 – – – 1 1 1 t t t 264885 327314 325853
ssg 50 – – – 1 1 1 t t t 313334 365732 338442
tree weight 10 – – – 1 1 1 t t t 307475 385488 357071
tree weight 25 – – – 1 1 1 t t t 319008 281127 325542
tree weight 50 – – – 1 1 1 t t t 306703 340332 339522
no clairvoyant – – – – – – – t t t 377836 371475 303059
0-restart – – – – – – – t t t 378379 369284 300576

brazil3 monotone 10 – – – – – – t t t 1303 568 1328
monotone 25 – – – – – – t t t 1297 997 1326
monotone 50 – – – – – – t t t 1286 994 1443
reg forest 10 – – – – – – t t t 1398 1119 1147
reg forest 25 – – – – – – t t t 1394 1119 1147
reg forest 50 – – – – – – t t t 1404 1122 1150
gap 10 – – – – – – t t t 1404 1122 1145
gap 25 – – – – – – t t t 1410 1122 1146
gap 50 – – – – – – t t t 1412 1122 1147
leaf freq 10 – – – – – – t t t 1407 1122 1140
leaf freq 25 – – – – – – t t t 1417 1122 1145
leaf freq 50 – – – – – – t t t 1410 1122 1138
ssg 10 – – – – – – t t t 1396 1122 1151
ssg 25 – – – – – – t t t 1410 1120 1138
ssg 50 – – – – – – t t t 1410 1123 1145
tree weight 10 – – – – – – t t t 1417 1122 1141
tree weight 25 – – – – – – t t t 1413 1123 1146
tree weight 50 – – – – – – t t t 1410 1120 1146
no clairvoyant – – – – – – – t t t 1404 1120 1143
0-restart – – – – – – – t t t 1410 1122 1150

buildingenergy monotone 10 – – – – – – t t t 23 1 1
monotone 25 – – – – – – t t t 22 1 1
monotone 50 – – – – – – t t t 23 1 1
reg forest 10 – – – – – – t t t 23 1 1
reg forest 25 – – – – – – t t t 22 1 1
reg forest 50 – – – – – – t t t 23 1 1
gap 10 – – – – – – t t t 22 1 1
gap 25 – – – – – – t t t 22 1 1
gap 50 – – – – – – t t t 23 1 1
leaf freq 10 – – – – – – t t t 22 1 1
leaf freq 25 – – – – – – t t t 24 1 1
leaf freq 50 – – – – – – t t t 23 1 1
ssg 10 – – – – – – t t t 23 1 1
ssg 25 – – – – – – t t t 22 1 1
ssg 50 – – – – – – t t t 23 1 1
tree weight 10 – – – – – – t t t 23 1 1
tree weight 25 – – – – – – t t t 23 1 1
tree weight 50 – – – – – – t t t 22 1 1
no clairvoyant – – – – – – – t t t 22 1 1
0-restart – – – – – – – t t t 23 1 1
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cbs-cta monotone 10 – – – – – – 4.6 40.7 551.1 1 1 41
monotone 25 – – – – – – 4.5 40.6 553.1 1 1 41
monotone 50 – – – – – – 4.6 40.7 547.1 1 1 41
reg forest 10 – – – – – – 4.6 40.7 553.1 1 1 41
reg forest 25 – – – – – – 4.7 40.8 551.8 1 1 41
reg forest 50 – – – – – – 4.6 40.7 552.7 1 1 41
gap 10 – – – – – – 4.6 40.7 551.4 1 1 41
gap 25 – – – – – – 4.6 40.6 552.3 1 1 41
gap 50 – – – – – – 4.6 40.6 553.8 1 1 41
leaf freq 10 – – – – – – 4.6 40.6 553.5 1 1 41
leaf freq 25 – – – – – – 4.6 40.6 551.1 1 1 41
leaf freq 50 – – – – – – 4.6 40.7 552.5 1 1 41
ssg 10 – – – – – – 4.6 40.7 552.9 1 1 41
ssg 25 – – – – – – 4.6 40.6 553.1 1 1 41
ssg 50 – – – – – – 4.7 40.6 552.2 1 1 41
tree weight 10 – – – – – – 4.6 40.7 552.6 1 1 41
tree weight 25 – – – – – – 4.6 40.6 552.7 1 1 41
tree weight 50 – – – – – – 4.5 40.7 551.3 1 1 41
no clairvoyant – – – – – – – 4.6 40.5 547.7 1 1 41
0-restart – – – – – – – 4.6 40.6 552.4 1 1 41

chromatic.1024-7 monotone 10 – – – – – – t t t 171 229 306
monotone 25 – – – – – – t t t 171 229 325
monotone 50 – – – – – – t t t 150 229 321
reg forest 10 – – – – – – t t t 171 229 321
reg forest 25 – – – – – – t t t 167 214 328
reg forest 50 – – – – – – t t t 171 229 332
gap 10 – – – – – – t t t 152 229 321
gap 25 – – – – – – t t t 171 229 321
gap 50 – – – – – – t t t 152 229 311
leaf freq 10 – – – – – – t t t 164 229 332
leaf freq 25 – – – – – – t t t 166 229 331
leaf freq 50 – – – – – – t t t 150 229 312
ssg 10 – – – – – – t t t 171 229 325
ssg 25 – – – – – – t t t 157 229 321
ssg 50 – – – – – – t t t 162 229 321
tree weight 10 – – – – – – t t t 157 229 322
tree weight 25 – – – – – – t t t 171 229 325
tree weight 50 – – – – – – t t t 164 229 321
no clairvoyant – – – – – – – t t t 171 229 306
0-restart – – – – – – – t t t 161 229 317

chromatic.512-7 monotone 10 – – – – – – 1450.7 3491.5 t 3781 26980 19230
monotone 25 – – – – – – 1451.3 3484.7 t 3781 26980 19226
monotone 50 – – – – – – 1450.3 3492.1 t 3781 26980 19256
reg forest 10 – – – – – – 1451.9 3485.0 t 3781 26980 19230
reg forest 25 – – – – – – 1448.8 3504.5 t 3781 26980 19230
reg forest 50 – – – – – – 1449.7 3483.6 t 3781 26980 19237
gap 10 – – – – – – 1469.8 3489.5 t 3781 26980 19141
gap 25 – – – – – – 1458.2 3490.8 t 3781 26980 19230
gap 50 – – – – – – 1453.3 3490.0 t 3781 26980 19011
leaf freq 10 – – – – – – 1451.0 3485.3 t 3781 26980 19216
leaf freq 25 – – – – – – 1459.5 3506.9 t 3781 26980 19229
leaf freq 50 – – – – – – 1456.6 3494.6 t 3781 26980 19229
ssg 10 – – – – – – 1456.1 3483.7 t 3781 26980 19236
ssg 25 – – – – – – 1456.2 3485.8 t 3781 26980 19230
ssg 50 – – – – – – 1451.6 3484.6 t 3781 26980 19230
tree weight 10 – – – – – – 1455.4 3494.9 t 3781 26980 19230
tree weight 25 – – – – – – 1456.2 3446.5 t 3781 26980 19292
tree weight 50 – – – – – – 1437.8 3480.6 t 3781 26980 19342
no clairvoyant – – – – – – – 1437.8 3506.2 t 3781 26980 19229
0-restart – – – – – – – 1448.0 3467.2 t 3781 26980 19079

cmflsp50-24-8-8 monotone 10 – – – 1 1 1 t t t 25818 28007 27289
monotone 25 – – – – 1 1 t t t 26994 28329 27327
monotone 50 – – – – 1 1 t t t 26950 27976 27411
reg forest 10 – – – 1 1 1 t t t 24368 28132 27329
reg forest 25 – – – – 1 – t t t 27162 22051 24383
reg forest 50 – – – – – – t t t 27188 23981 24381
gap 10 – – – 1 1 1 t t t 22752 18917 24938
gap 25 – – – 1 1 1 t t t 22620 10205 29392
gap 50 – – – 1 1 1 t t t 20898 21006 29031
leaf freq 10 – – – 1 1 1 t t t 24503 22370 32183
leaf freq 25 – – – – 1 – t t t 27007 22404 24211
leaf freq 50 – – – – – – t t t 27011 23888 24357
ssg 10 – – – 1 1 1 t t t 29009 24396 27364
ssg 25 – – – 1 1 1 t t t 25869 24176 27404
ssg 50 – – – 1 1 1 t t t 22774 24244 22461
tree weight 10 – – – 1 1 1 t t t 22889 28178 27509
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tree weight 25 – – – 1 1 1 t t t 21875 28405 27622
tree weight 50 – – – 1 1 1 t t t 27534 27973 27524
no clairvoyant – – – – – – – t t t 27005 24007 24386
0-restart – – – – – – – t t t 27010 23993 24385

co-100 monotone 10 – – – – – – t t t 1475 2585 183
monotone 25 – – – – – – t t t 1482 2674 182
monotone 50 – – – – – – t t t 1482 2596 181
reg forest 10 – – – – – – t t t 1482 2585 181
reg forest 25 – – – – – – t t t 1446 2631 182
reg forest 50 – – – – – – t t t 1475 2579 167
gap 10 – – – – – – t t t 1482 2624 182
gap 25 – – – – – – t t t 1482 2619 182
gap 50 – – – – – – t t t 1482 2624 182
leaf freq 10 – – – – – – t t t 1482 2480 182
leaf freq 25 – – – – – – t t t 1482 2683 181
leaf freq 50 – – – – – – t t t 1475 2673 182
ssg 10 – – – – – – t t t 1482 2686 182
ssg 25 – – – – – – t t t 1467 2616 200
ssg 50 – – – – – – t t t 1461 2585 181
tree weight 10 – – – – 1 – t t t 1482 1706 181
tree weight 25 – – – – 1 – t t t 1482 1687 181
tree weight 50 – – – – 1 – t t t 1467 1257 181
no clairvoyant – – – – – – – t t t 1461 2586 181
0-restart – – – – – – – t t t 1482 2631 181

cod105 monotone 10 – – – – – – 615.4 447.0 523.0 795 355 429
monotone 25 – – – – – – 609.8 444.1 526.8 795 355 429
monotone 50 – – – – – – 608.5 441.7 524.0 795 355 429
reg forest 10 – – – – – – 615.6 442.5 524.3 795 355 429
reg forest 25 – – – – – – 609.9 444.3 525.0 795 355 429
reg forest 50 – – – – – – 608.7 444.6 523.1 795 355 429
gap 10 – – – – – – 611.7 445.2 523.3 795 355 429
gap 25 – – – – – – 609.0 443.4 522.8 795 355 429
gap 50 – – – – – – 610.6 444.1 523.5 795 355 429
leaf freq 10 – – – – – – 609.7 444.1 522.7 795 355 429
leaf freq 25 – – – – – – 613.5 443.9 526.4 795 355 429
leaf freq 50 – – – – – – 608.9 450.7 523.6 795 355 429
ssg 10 – – – – – – 610.6 448.3 524.9 795 355 429
ssg 25 – – – – – – 608.2 446.4 524.0 795 355 429
ssg 50 – – – – – – 613.8 449.3 520.1 795 355 429
tree weight 10 – – – – – – 605.0 444.0 524.2 795 355 429
tree weight 25 – – – – – – 609.2 444.6 523.5 795 355 429
tree weight 50 – – – – – – 611.4 445.1 524.5 795 355 429
no clairvoyant – – – – – – – 609.0 444.4 534.5 795 355 429
0-restart – – – – – – – 612.7 443.8 524.8 795 355 429

comp07-2idx monotone 10 – – – 1 – – t t t 927 687 343
monotone 25 – – – 1 – – t t t 927 730 343
monotone 50 – – – 1 – – t t t 926 720 340
reg forest 10 – – – – – – t t t 1030 719 340
reg forest 25 – – – – – – t t t 1032 720 340
reg forest 50 – – – – – – t t t 1030 717 341
gap 10 – – – – – – t t t 1030 728 336
gap 25 – – – – – – t t t 1029 738 340
gap 50 – – – – – – t t t 1031 691 347
leaf freq 10 – – – – – – t t t 1032 704 346
leaf freq 25 – – – – – – t t t 1029 717 346
leaf freq 50 – – – – – – t t t 1030 737 340
ssg 10 – – – – – – t t t 1029 738 343
ssg 25 – – – – – – t t t 1029 753 343
ssg 50 – – – – – – t t t 1030 735 343
tree weight 10 – – – – – – t t t 1032 695 345
tree weight 25 – – – – – – t t t 1031 728 343
tree weight 50 – – – – – – t t t 1030 737 346
no clairvoyant – – – – – – – t t t 1030 754 343
0-restart – – – – – – – t t t 1039 735 340

comp21-2idx monotone 10 – – – 1 1 1 t t t 2530 2989 2259
monotone 25 – – – 1 1 1 t t t 2506 2993 2260
monotone 50 – – – 1 1 1 t t t 2530 2940 2256
reg forest 10 – – – 1 1 1 t t t 3062 1685 3730
reg forest 25 – – – – – – t t t 3379 4734 2343
reg forest 50 – – – – – – t t t 3393 4737 2340
gap 10 – – – 1 1 1 t t t 2643 2494 2891
gap 25 – – – 1 1 1 t t t 1748 1804 2887
gap 50 – – – 1 1 1 t t t 3544 3218 2889
leaf freq 10 – – – – – – t t t 3380 4735 2345
leaf freq 25 – – – – – – t t t 3382 4735 2343
leaf freq 50 – – – – – – t t t 3391 4733 2349

cont. on next page . . .

316



Table E.1 cont.

mip settings ϕclair root tree time nodes

0 1 2 0 1 2 0 1 2 0 1 2

ssg 10 – – – 1 1 1 t t t 4005 2988 2498
ssg 25 – – – 1 1 1 t t t 3992 2920 2489
ssg 50 – – – 1 1 1 t t t 4000 2063 2482
tree weight 10 – – – – – – t t t 3375 4739 2334
tree weight 25 – – – – – – t t t 3381 4734 2339
tree weight 50 – – – – – – t t t 3387 4747 2343
no clairvoyant – – – – – – – t t t 3382 4734 2347
0-restart – – – – – – – t t t 3391 4735 2348

cost266-UUE monotone 10 – – – 1 1 1 3123.6 2286.9 2948.2 224838 164378 183209
monotone 25 – – – 1 – – 3129.5 t 3534.3 224838 289806 255070
monotone 50 – – – – – – 3419.8 t 3553.1 244413 288455 255070
reg forest 10 – – – 1 1 1 3134.1 2307.6 t 224838 164378 257109
reg forest 25 – – – 1 1 – 3131.2 3578.3 3573.5 224838 306236 255070
reg forest 50 – – – – – – 3438.4 t 3555.6 244413 287261 255070
gap 10 – – – 1 1 1 3310.4 t t 240574 282927 251654
gap 25 – – – 1 1 1 2722.6 2812.4 3515.7 191547 220365 269137
gap 50 – – – – – – 3409.6 t 3546.6 244413 289469 255070
leaf freq 10 – – – 1 1 1 3122.5 3400.6 3261.7 229137 256065 236816
leaf freq 25 – – – 1 1 1 3464.7 3103.8 3310.8 270883 241489 248575
leaf freq 50 – – – 1 1 1 3363.2 3227.6 t 225752 242847 280190
ssg 10 – – – 1 1 1 2892.4 2911.1 2542.0 187388 214682 178272
ssg 25 – – – 1 1 1 3001.5 2810.9 3286.9 190716 239858 234394
ssg 50 – – – 1 1 1 3268.7 3194.7 3051.0 234188 260329 211906
tree weight 10 – – – 1 1 1 2690.7 2303.8 3303.3 183069 164378 248916
tree weight 25 – – – 1 1 1 2816.6 3129.1 3133.6 214702 221473 226814
tree weight 50 – – – 1 1 1 2358.2 3283.4 3480.6 178535 259271 275448
no clairvoyant – – – – – – – 3422.2 t 3557.1 244413 288665 255070
0-restart – – – – – – – 3402.3 t 3537.0 244413 290241 255070

cryptanalysis.14 monotone 10 – – – – – – t t t 47 53 34
monotone 25 – – – – – – t t t 47 53 34
monotone 50 – – – – – – t t t 47 53 35
reg forest 10 – – – – – – t t t 47 53 33
reg forest 25 – – – – – – t t t 47 53 35
reg forest 50 – – – – – – t t t 47 53 34
gap 10 – – – – – – t t t 47 53 33
gap 25 – – – – – – t t t 47 53 34
gap 50 – – – – – – t t t 47 53 34
leaf freq 10 – – – – – – t t t 47 53 34
leaf freq 25 – – – – – – t t t 47 53 34
leaf freq 50 – – – – – – t t t 47 53 34
ssg 10 – – – – – – t t t 47 53 33
ssg 25 – – – – – – t t t 47 53 34
ssg 50 – – – – – – t t t 47 53 34
tree weight 10 – – – – – – t t t 47 57 34
tree weight 25 – – – – – – t t t 47 58 34
tree weight 50 – – – – – – t t t 47 53 34
no clairvoyant – – – – – – – t t t 48 53 34
0-restart – – – – – – – t t t 47 53 34

cryptanalysis.16 monotone 10 – – – – – – 3035.7 t t 77 41 38
monotone 25 – – – – – – 3041.2 t t 77 41 38
monotone 50 – – – – – – 3053.5 t t 77 41 38
reg forest 10 – – – – – – 3037.0 t t 77 42 38
reg forest 25 – – – – – – 3042.2 t t 77 42 38
reg forest 50 – – – – – – 3026.5 t t 77 41 38
gap 10 – – – – – – 3047.7 t t 77 41 38
gap 25 – – – – – – 3036.4 t t 77 41 38
gap 50 – – – – – – 3034.8 t t 77 41 38
leaf freq 10 – – – – – – 3039.3 t t 77 41 38
leaf freq 25 – – – – – – 3033.8 t t 77 41 38
leaf freq 50 – – – – – – 3029.9 t t 77 41 38
ssg 10 – – – – – – 3022.9 t t 77 41 38
ssg 25 – – – – – – 3042.8 t t 77 41 38
ssg 50 – – – – – – 3033.7 t t 77 41 38
tree weight 10 – – – – – – 3026.3 t t 77 41 38
tree weight 25 – – – – – – 3044.9 t t 77 41 38
tree weight 50 – – – – – – 3028.4 t t 77 41 38
no clairvoyant – – – – – – – 3027.4 t t 77 42 38
0-restart – – – – – – – 3027.4 t t 77 41 38

csched007 monotone 10 – – – 1 1 1 2194.8 2201.5 1538.4 182694 182009 124123
monotone 25 – – – – 1 1 2507.9 2199.7 1541.9 198097 182009 124123
monotone 50 – – – – 1 1 2502.2 2195.6 1540.4 198097 182009 124123
reg forest 10 – – – 1 1 1 2203.8 2205.5 1120.2 182694 182009 78854
reg forest 25 – – – 1 1 – 2204.6 3411.8 1667.1 182694 266205 134735
reg forest 50 – – – – – – 2522.3 3471.5 1666.6 198097 282058 134735
gap 10 – – – 1 1 1 1736.9 2188.7 1696.4 127247 167164 123238
gap 25 – – – 1 1 1 1948.2 3143.4 1711.8 125234 226331 124355
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gap 50 – – – 1 1 1 2627.6 2536.6 1175.1 176304 174127 86791
leaf freq 10 – – – 1 1 1 1548.7 2641.1 1356.1 104081 191284 99795
leaf freq 25 – – – 1 1 1 1844.8 2267.2 1575.1 130181 164909 109900
leaf freq 50 – – – 1 1 – 1886.2 2852.5 1668.7 138764 225052 134735
ssg 10 – – – 1 1 1 1481.8 2688.3 1346.3 85846 204199 90561
ssg 25 – – – 1 1 1 1578.7 2689.1 1352.1 109792 204199 90561
ssg 50 – – – 1 1 1 1460.0 2696.0 1351.3 111912 204199 90561
tree weight 10 – – – 1 1 1 1293.7 2195.0 1236.0 81846 182009 90235
tree weight 25 – – – 1 1 1 1583.8 2192.4 1124.0 93920 182009 84978
tree weight 50 – – – 1 1 1 1375.1 3136.9 1370.0 89036 230824 111805
no clairvoyant – – – – – – – 2504.0 3462.8 1658.7 198097 282058 134735
0-restart – – – – – – – 2489.5 3459.2 1667.9 198097 282058 134735

csched008 monotone 10 – – – 1 – 1 965.7 1061.4 446.3 81204 99564 39272
monotone 25 – – – 1 – 1 968.6 1061.6 446.5 81204 99564 39272
monotone 50 – – – – – – 1461.8 1060.6 681.5 143604 99564 67391
reg forest 10 – – – 1 – 1 982.2 1075.5 451.3 81204 99564 39272
reg forest 25 – – – – – 1 1473.0 1075.8 522.9 143604 99564 39751
reg forest 50 – – – – – – 1474.5 1078.6 688.1 143604 99564 67391
gap 10 – – – 1 1 1 689.8 1019.0 645.9 62404 98797 44404
gap 25 – – – – 1 – 1459.0 1020.5 680.3 143604 98797 67391
gap 50 – – – – – – 1461.1 1063.8 680.2 143604 99564 67391
leaf freq 10 – – – 1 1 1 582.6 580.6 676.2 41815 49352 44156
leaf freq 25 – – – 1 1 – 776.7 759.8 681.4 62578 46439 67391
leaf freq 50 – – – – 1 – 1455.3 761.4 680.4 143604 46439 67391
ssg 10 – – – 1 1 1 967.5 1017.7 745.0 81204 98797 50450
ssg 25 – – – 1 1 1 966.4 1014.9 712.5 81204 98797 47877
ssg 50 – – – 1 1 1 968.8 1016.9 710.6 81204 98797 47877
tree weight 10 – – – 1 1 1 578.4 525.0 370.9 51232 45984 26983
tree weight 25 – – – 1 1 1 578.5 450.0 528.7 47080 37443 40368
tree weight 50 – – – 1 1 1 538.1 631.5 840.5 41972 54949 105419
no clairvoyant – – – – – – – 1475.5 1064.0 681.3 143604 99564 67391
0-restart – – – – – – – 1458.4 1063.1 680.7 143604 99564 67391

cvs16r128-89 monotone 10 – – – – – – t t t 19211 17524 28463
monotone 25 – – – – – – t t t 19194 17503 28580
monotone 50 – – – – – – t t t 19178 17502 28803
reg forest 10 – – – – – – t t t 19192 17504 28840
reg forest 25 – – – – – – t t t 19192 17455 28587
reg forest 50 – – – – – – t t t 19092 17522 28573
gap 10 – – – – – – t t t 19203 17504 28524
gap 25 – – – – – – t t t 19192 17609 28572
gap 50 – – – – – – t t t 19200 17503 28620
leaf freq 10 – – – – – – t t t 19150 17501 28638
leaf freq 25 – – – – – – t t t 19191 17620 28714
leaf freq 50 – – – – – – t t t 19298 17512 28673
ssg 10 – – – – – – t t t 19199 17471 28603
ssg 25 – – – – – – t t t 19213 17500 28680
ssg 50 – – – – – – t t t 19211 17512 28844
tree weight 10 – – – – – – t t t 19132 17492 28636
tree weight 25 – – – – – – t t t 19192 17524 28574
tree weight 50 – – – – – – t t t 19203 17512 28535
no clairvoyant – – – – – – – t t t 19192 17460 28454
0-restart – – – – – – – t t t 19213 17486 28554

dano3_3 monotone 10 – – – – – – 112.9 121.3 87.9 27 17 18
monotone 25 – – – – – – 112.6 121.5 88.3 27 17 18
monotone 50 – – – – – – 112.8 120.7 88.4 27 17 18
reg forest 10 – – – – – – 112.8 121.7 88.7 27 17 18
reg forest 25 – – – – – – 113.0 121.7 88.6 27 17 18
reg forest 50 – – – – – – 112.9 121.5 88.8 27 17 18
gap 10 – – – – – – 112.7 121.3 88.3 27 17 18
gap 25 – – – – – – 113.0 121.5 88.4 27 17 18
gap 50 – – – – – – 112.9 121.4 88.5 27 17 18
leaf freq 10 – – – – – – 112.2 121.5 87.8 27 17 18
leaf freq 25 – – – – – – 113.1 121.4 88.2 27 17 18
leaf freq 50 – – – – – – 112.8 121.4 88.3 27 17 18
ssg 10 – – – – – – 112.3 121.4 88.4 27 17 18
ssg 25 – – – – – – 112.8 121.7 88.4 27 17 18
ssg 50 – – – – – – 112.2 121.4 88.5 27 17 18
tree weight 10 – – – – – – 112.7 121.3 87.9 27 17 18
tree weight 25 – – – – – – 112.7 121.4 88.8 27 17 18
tree weight 50 – – – – – – 113.1 121.2 88.3 27 17 18
no clairvoyant – – – – – – – 112.7 121.5 88.3 27 17 18
0-restart – – – – – – – 112.7 121.2 88.4 27 17 18

dano3_5 monotone 10 – – – – – – 274.2 344.1 422.7 199 273 243
monotone 25 – – – – – – 273.4 342.2 420.7 199 273 243
monotone 50 – – – – – – 273.9 345.0 422.7 199 273 243
reg forest 10 – – – – – – 273.8 343.6 423.9 199 273 243
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reg forest 25 – – – – – – 273.4 343.8 422.5 199 273 243
reg forest 50 – – – – – – 273.2 343.5 422.7 199 273 243
gap 10 – – – – – – 271.9 343.7 423.2 199 273 243
gap 25 – – – – – – 273.2 343.7 423.1 199 273 243
gap 50 – – – – – – 273.1 343.8 423.8 199 273 243
leaf freq 10 – – – – – – 273.5 343.9 420.6 199 273 243
leaf freq 25 – – – – – – 273.7 343.5 422.4 199 273 243
leaf freq 50 – – – – – – 273.3 345.4 420.3 199 273 243
ssg 10 – – – – – – 273.3 343.3 423.5 199 273 243
ssg 25 – – – – – – 273.2 343.4 423.5 199 273 243
ssg 50 – – – – – – 273.1 343.1 422.8 199 273 243
tree weight 10 – – – – – – 273.4 343.7 422.2 199 273 243
tree weight 25 – – – – – – 273.2 342.8 422.0 199 273 243
tree weight 50 – – – – – – 275.3 343.6 422.6 199 273 243
no clairvoyant – – – – – – – 273.2 344.7 422.3 199 273 243
0-restart – – – – – – – 273.4 343.5 426.1 199 273 243

decomp2 monotone 10 – – – – – – 2.0 2.0 1.9 1 1 1
monotone 25 – – – – – – 2.0 1.9 1.9 1 1 1
monotone 50 – – – – – – 1.9 1.9 1.9 1 1 1
reg forest 10 – – – – – – 1.9 2.1 1.9 1 1 1
reg forest 25 – – – – – – 1.9 2.0 2.0 1 1 1
reg forest 50 – – – – – – 2.0 2.0 2.0 1 1 1
gap 10 – – – – – – 1.9 2.0 1.9 1 1 1
gap 25 – – – – – – 1.9 2.0 1.9 1 1 1
gap 50 – – – – – – 1.9 2.0 1.9 1 1 1
leaf freq 10 – – – – – – 2.0 2.0 1.9 1 1 1
leaf freq 25 – – – – – – 1.9 2.0 1.9 1 1 1
leaf freq 50 – – – – – – 1.9 2.0 1.9 1 1 1
ssg 10 – – – – – – 2.0 2.0 1.9 1 1 1
ssg 25 – – – – – – 1.9 2.0 1.9 1 1 1
ssg 50 – – – – – – 2.0 2.0 1.9 1 1 1
tree weight 10 – – – – – – 2.0 2.0 1.9 1 1 1
tree weight 25 – – – – – – 1.9 2.0 2.0 1 1 1
tree weight 50 – – – – – – 1.9 2.0 2.0 1 1 1
no clairvoyant – – – – – – – 2.0 2.0 1.9 1 1 1
0-restart – – – – – – – 2.0 1.9 1.9 1 1 1

drayage-100-23 monotone 10 – – – – – – 9.6 14.4 8.8 13 508 27
monotone 25 – – – – – – 9.7 14.4 8.9 13 508 27
monotone 50 – – – – – – 9.7 14.3 8.9 13 508 27
reg forest 10 – – – – – – 9.8 15.0 9.0 13 508 27
reg forest 25 – – – – – – 9.8 14.9 9.1 13 508 27
reg forest 50 – – – – – – 9.8 15.0 9.2 13 508 27
gap 10 – – – – – – 9.6 14.5 8.9 13 508 27
gap 25 – – – – – – 9.7 14.3 8.9 13 508 27
gap 50 – – – – – – 9.7 14.4 8.9 13 508 27
leaf freq 10 – – – – – – 9.7 14.4 8.9 13 508 27
leaf freq 25 – – – – – – 9.7 14.5 8.9 13 508 27
leaf freq 50 – – – – – – 9.7 14.4 8.9 13 508 27
ssg 10 – – – – – – 9.7 14.5 8.8 13 508 27
ssg 25 – – – – – – 9.7 14.5 8.8 13 508 27
ssg 50 – – – – – – 9.7 14.5 8.9 13 508 27
tree weight 10 – – – – – – 9.7 14.4 8.8 13 508 27
tree weight 25 – – – – – – 9.7 14.5 8.9 13 508 27
tree weight 50 – – – – – – 9.7 14.4 8.8 13 508 27
no clairvoyant – – – – – – – 9.8 14.4 8.9 13 508 27
0-restart – – – – – – – 9.6 14.3 8.9 13 508 27

drayage-25-23 monotone 10 – – – – – – t t t 356760 489746 360735
monotone 25 – – – – – – t t t 358448 492928 359715
monotone 50 – – – – – – t t t 357767 496083 360014
reg forest 10 – – – – – – t t t 358091 489208 358140
reg forest 25 – – – – – – t t t 357894 486820 357322
reg forest 50 – – – – – – t t t 357030 491564 356535
gap 10 – – – – – – t t t 357323 490720 359559
gap 25 – – – – – – t t t 356838 491564 360053
gap 50 – – – – – – t t t 357856 490993 358733
leaf freq 10 – – – – – – t t t 356377 490037 359952
leaf freq 25 – – – – – – t t t 357068 492117 359329
leaf freq 50 – – – – – – t t t 357501 492572 359237
ssg 10 – – – – – – t t t 357394 491908 362185
ssg 25 – – – – – – t t t 357281 493263 359137
ssg 50 – – – – – – t t t 356617 491536 361150
tree weight 10 – – – – – – t t t 357107 492184 360468
tree weight 25 – – – – – – t t t 357251 492089 357715
tree weight 50 – – – – – – t t t 358099 493480 360790
no clairvoyant – – – – – – – t t t 358117 494358 360149
0-restart – – – – – – – t t t 357689 494513 360647
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dws008-01 monotone 10 – – – 1 1 1 t t t 172779 176613 222024
monotone 25 – – – 1 1 1 t t t 175577 177095 218209
monotone 50 – – – – 1 – t t t 175652 178070 194687
reg forest 10 – – – 1 1 1 t t t 172845 177298 219945
reg forest 25 – – – – 1 – t t t 175118 207596 189843
reg forest 50 – – – – – – t t t 175484 170798 192555
gap 10 – – – 1 1 1 t t t 215677 199495 244919
gap 25 – – – 1 1 1 t t t 215403 203269 226631
gap 50 – – – 1 1 1 t t t 234687 212591 227559
leaf freq 10 – – – 1 1 1 t t t 203489 224568 204431
leaf freq 25 – – – 1 1 1 t t t 202644 226071 175181
leaf freq 50 – – – 1 1 1 t t t 196163 202570 174473
ssg 10 – – – 1 1 1 t t t 227643 184768 206177
ssg 25 – – – 1 1 1 t t t 250750 184846 211580
ssg 50 – – – 1 1 1 t t t 198221 165607 209594
tree weight 10 – – – 1 1 1 t t t 188885 175099 217672
tree weight 25 – – – 1 1 1 t t t 190877 206125 192873
tree weight 50 – – – 1 1 1 t t t 221414 188358 220965
no clairvoyant – – – – – – – t t t 175011 172152 195273
0-restart – – – – – – – t t t 176384 173322 196056

eil33-2 monotone 10 – – – – – – 78.0 77.5 65.7 683 679 521
monotone 25 – – – – – – 78.4 77.3 65.5 683 679 521
monotone 50 – – – – – – 78.0 77.6 65.7 683 679 521
reg forest 10 – – – – – – 78.5 77.6 66.0 683 679 521
reg forest 25 – – – – – – 78.3 77.3 65.4 683 679 521
reg forest 50 – – – – – – 78.8 77.9 66.1 683 679 521
gap 10 – – – – – – 78.2 77.6 65.7 683 679 521
gap 25 – – – – – – 77.8 77.0 66.5 683 679 521
gap 50 – – – – – – 78.3 77.6 65.6 683 679 521
leaf freq 10 – – – – – – 78.2 77.6 65.5 683 679 521
leaf freq 25 – – – – – – 78.2 77.4 65.0 683 679 521
leaf freq 50 – – – – – – 77.9 77.5 66.2 683 679 521
ssg 10 – – – – – – 77.5 77.4 65.7 683 679 521
ssg 25 – – – – – – 77.8 77.8 65.8 683 679 521
ssg 50 – – – – – – 77.9 77.4 66.2 683 679 521
tree weight 10 – – – – – – 77.8 77.5 65.6 683 679 521
tree weight 25 – – – – – – 77.9 77.6 66.1 683 679 521
tree weight 50 – – – – – – 77.7 77.7 65.7 683 679 521
no clairvoyant – – – – – – – 78.3 77.4 65.7 683 679 521
0-restart – – – – – – – 77.8 77.3 66.0 683 679 521

eilA101-2 monotone 10 – – – – – – t t t 3626 3500 2956
monotone 25 – – – – – – t t t 3641 3489 3180
monotone 50 – – – – – – t t t 3626 3505 3191
reg forest 10 – – – – 1 – t t t 3639 2934 3085
reg forest 25 – – – – – – t t t 3627 3428 2959
reg forest 50 – – – – – – t t t 3720 3459 3179
gap 10 – – – 1 1 1 t t t 2716 3444 2273
gap 25 – – – – – 1 t t t 3639 3505 3160
gap 50 – – – – – – t t t 3639 3428 3191
leaf freq 10 – – – – – – t t t 3639 3469 3128
leaf freq 25 – – – – – – t t t 3662 3522 3094
leaf freq 50 – – – – – – t t t 3561 3502 3004
ssg 10 – – – – – – t t t 3639 3519 3178
ssg 25 – – – – – – t t t 3545 3504 3170
ssg 50 – – – – – – t t t 3679 3565 3234
tree weight 10 – – – 1 – 1 t t t 2804 3649 3135
tree weight 25 – – – 1 – 1 t t t 2854 3501 3135
tree weight 50 – – – 1 – 1 t t t 2719 3521 3153
no clairvoyant – – – – – – – t t t 3749 3531 3114
0-restart – – – – – – – t t t 3721 3576 3177

enlight_hard monotone 10 – – – – – – 0.5 0.5 0.5 1 1 1
monotone 25 – – – – – – 0.5 0.5 0.5 1 1 1
monotone 50 – – – – – – 0.5 0.5 0.5 1 1 1
reg forest 10 – – – – – – 0.5 0.5 0.5 1 1 1
reg forest 25 – – – – – – 0.5 0.5 0.5 1 1 1
reg forest 50 – – – – – – 0.5 0.5 0.5 1 1 1
gap 10 – – – – – – 0.5 0.5 0.5 1 1 1
gap 25 – – – – – – 0.5 0.5 0.5 1 1 1
gap 50 – – – – – – 0.5 0.5 0.5 1 1 1
leaf freq 10 – – – – – – 0.5 0.5 0.5 1 1 1
leaf freq 25 – – – – – – 0.5 0.5 0.5 1 1 1
leaf freq 50 – – – – – – 0.5 0.5 0.5 1 1 1
ssg 10 – – – – – – 0.5 0.5 0.5 1 1 1
ssg 25 – – – – – – 0.5 0.5 0.5 1 1 1
ssg 50 – – – – – – 0.5 0.5 0.5 1 1 1
tree weight 10 – – – – – – 0.5 0.5 0.5 1 1 1
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tree weight 25 – – – – – – 0.5 0.5 0.5 1 1 1
tree weight 50 – – – – – – 0.5 0.5 0.5 1 1 1
no clairvoyant – – – – – – – 0.5 0.5 0.5 1 1 1
0-restart – – – – – – – 0.5 0.5 0.5 1 1 1

ex10 monotone 10 – – – – – – 119.7 120.6 128.1 1 1 1
monotone 25 – – – – – – 119.8 119.5 121.4 1 1 1
monotone 50 – – – – – – 119.4 119.6 120.4 1 1 1
reg forest 10 – – – – – – 118.0 120.3 120.7 1 1 1
reg forest 25 – – – – – – 120.3 119.5 122.1 1 1 1
reg forest 50 – – – – – – 119.5 119.2 120.3 1 1 1
gap 10 – – – – – – 118.2 119.6 122.2 1 1 1
gap 25 – – – – – – 119.4 120.2 122.5 1 1 1
gap 50 – – – – – – 119.2 119.2 121.3 1 1 1
leaf freq 10 – – – – – – 119.9 119.2 120.6 1 1 1
leaf freq 25 – – – – – – 120.6 119.5 120.0 1 1 1
leaf freq 50 – – – – – – 119.1 119.9 121.1 1 1 1
ssg 10 – – – – – – 117.2 119.5 120.8 1 1 1
ssg 25 – – – – – – 119.3 119.1 121.2 1 1 1
ssg 50 – – – – – – 120.0 118.8 121.6 1 1 1
tree weight 10 – – – – – – 120.1 119.9 122.1 1 1 1
tree weight 25 – – – – – – 119.9 119.2 121.4 1 1 1
tree weight 50 – – – – – – 119.0 119.3 121.0 1 1 1
no clairvoyant – – – – – – – 119.8 118.4 121.5 1 1 1
0-restart – – – – – – – 119.4 118.5 122.5 1 1 1

ex9 monotone 10 – – – – – – 11.6 10.8 11.3 1 1 1
monotone 25 – – – – – – 11.6 10.8 11.3 1 1 1
monotone 50 – – – – – – 11.8 10.8 11.4 1 1 1
reg forest 10 – – – – – – 11.6 10.7 11.4 1 1 1
reg forest 25 – – – – – – 11.5 10.9 11.2 1 1 1
reg forest 50 – – – – – – 11.8 10.7 11.4 1 1 1
gap 10 – – – – – – 11.6 10.9 11.3 1 1 1
gap 25 – – – – – – 11.8 10.7 11.3 1 1 1
gap 50 – – – – – – 11.7 10.7 11.3 1 1 1
leaf freq 10 – – – – – – 11.7 10.8 11.3 1 1 1
leaf freq 25 – – – – – – 11.5 10.9 11.3 1 1 1
leaf freq 50 – – – – – – 11.7 10.8 11.3 1 1 1
ssg 10 – – – – – – 11.5 10.6 11.2 1 1 1
ssg 25 – – – – – – 11.5 10.9 11.5 1 1 1
ssg 50 – – – – – – 11.7 10.8 11.2 1 1 1
tree weight 10 – – – – – – 11.6 10.7 11.3 1 1 1
tree weight 25 – – – – – – 11.2 10.9 11.3 1 1 1
tree weight 50 – – – – – – 11.7 10.8 11.3 1 1 1
no clairvoyant – – – – – – – 11.7 10.5 11.3 1 1 1
0-restart – – – – – – – 11.5 10.9 11.4 1 1 1

exp-1-500-5-5 monotone 10 – – – – – – 2.9 2.9 2.7 1 1 1
monotone 25 – – – – – – 2.8 2.9 2.7 1 1 1
monotone 50 – – – – – – 2.8 2.9 2.7 1 1 1
reg forest 10 – – – – – – 2.9 2.9 2.8 1 1 1
reg forest 25 – – – – – – 2.9 2.9 2.8 1 1 1
reg forest 50 – – – – – – 3.0 3.0 2.8 1 1 1
gap 10 – – – – – – 2.8 2.9 2.7 1 1 1
gap 25 – – – – – – 2.8 2.9 2.7 1 1 1
gap 50 – – – – – – 2.8 2.9 2.7 1 1 1
leaf freq 10 – – – – – – 2.8 2.9 2.6 1 1 1
leaf freq 25 – – – – – – 2.8 2.9 2.7 1 1 1
leaf freq 50 – – – – – – 2.8 2.9 2.7 1 1 1
ssg 10 – – – – – – 2.8 2.9 2.7 1 1 1
ssg 25 – – – – – – 2.8 2.9 2.7 1 1 1
ssg 50 – – – – – – 2.8 2.9 2.7 1 1 1
tree weight 10 – – – – – – 2.8 2.9 2.7 1 1 1
tree weight 25 – – – – – – 2.8 2.9 2.7 1 1 1
tree weight 50 – – – – – – 2.9 2.9 2.7 1 1 1
no clairvoyant – – – – – – – 2.9 2.9 2.7 1 1 1
0-restart – – – – – – – 2.8 2.9 2.7 1 1 1

fast0507 monotone 10 – – – – – – 217.6 135.2 123.8 830 602 496
monotone 25 – – – – – – 218.8 135.8 123.3 830 602 496
monotone 50 – – – – – – 218.2 135.4 123.2 830 602 496
reg forest 10 – – – – – – 217.3 136.3 124.5 830 602 496
reg forest 25 – – – – – – 217.8 136.2 123.5 830 602 496
reg forest 50 – – – – – – 218.9 135.8 124.0 830 602 496
gap 10 – – – – – – 217.7 136.4 123.8 830 602 496
gap 25 – – – – – – 218.8 135.8 123.9 830 602 496
gap 50 – – – – – – 217.4 135.8 123.8 830 602 496
leaf freq 10 – – – – – – 217.3 135.5 123.5 830 602 496
leaf freq 25 – – – – – – 218.1 135.8 123.9 830 602 496
leaf freq 50 – – – – – – 217.5 136.3 124.2 830 602 496
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ssg 10 – – – – – – 217.2 135.1 123.9 830 602 496
ssg 25 – – – – – – 217.2 137.0 123.5 830 602 496
ssg 50 – – – – – – 218.8 135.8 123.5 830 602 496
tree weight 10 – – – – – – 216.7 135.3 122.4 830 602 496
tree weight 25 – – – – – – 215.7 135.8 123.9 830 602 496
tree weight 50 – – – – – – 218.5 135.7 124.1 830 602 496
no clairvoyant – – – – – – – 217.3 136.0 123.8 830 602 496
0-restart – – – – – – – 216.7 135.8 123.5 830 602 496

fastxgemm-n2. monotone 10 – – – – – – 420.7 469.0 767.2 62903 84400 143836
monotone 25 – – – – – – 421.4 467.1 768.1 62903 84400 143836
monotone 50 – – – – – – 420.2 466.8 767.0 62903 84400 143836
reg forest 10 – – – – – – 421.4 467.6 770.3 62903 84400 143836
reg forest 25 – – – – – – 419.0 469.0 770.2 62903 84400 143836
reg forest 50 – – – – – – 420.6 470.3 769.0 62903 84400 143836
gap 10 – – – – – – 420.4 466.8 768.1 62903 84400 143836
gap 25 – – – – – – 420.2 468.1 767.8 62903 84400 143836
gap 50 – – – – – – 420.6 468.1 765.9 62903 84400 143836
leaf freq 10 – – – – – – 420.5 466.8 767.7 62903 84400 143836
leaf freq 25 – – – – – – 420.6 464.9 768.3 62903 84400 143836
leaf freq 50 – – – – – – 419.1 468.2 767.5 62903 84400 143836
ssg 10 – – – – – – 420.4 466.1 769.3 62903 84400 143836
ssg 25 – – – – – – 421.8 467.2 770.5 62903 84400 143836
ssg 50 – – – – – – 420.5 468.0 766.0 62903 84400 143836
tree weight 10 – – – – – – 419.7 466.6 768.6 62903 84400 143836
tree weight 25 – – – – – – 420.4 467.1 767.0 62903 84400 143836
tree weight 50 – – – – – – 418.4 466.4 766.5 62903 84400 143836
no clairvoyant – – – – – – – 420.0 467.2 767.4 62903 84400 143836
0-restart – – – – – – – 420.2 467.9 768.2 62903 84400 143836

fhnw-binpack4-4 monotone 10 – – – – – – t t t 6243623 6282879 5406245
monotone 25 – – – – – – t t t 6250478 6262326 5409306
monotone 50 – – – – – – t t t 6254291 6268018 5404104
reg forest 10 – – – – – – t t t 6258309 6283028 5404104
reg forest 25 – – – – – – t t t 6252032 6251808 5392934
reg forest 50 – – – – – – t t t 6237981 6277601 5418045
gap 10 – – – – – – t t t 6252311 6270369 5411184
gap 25 – – – – – – t t t 6246810 6253860 5412706
gap 50 – – – – – – t t t 6241007 6255068 5407221
leaf freq 10 – – – – – – t t t 6224769 6285341 5399459
leaf freq 25 – – – – – – t t t 6220939 6258647 5440275
leaf freq 50 – – – – – – t t t 6246172 6267470 5437873
ssg 10 – – – – – – t t t 6232747 6279769 5401995
ssg 25 – – – – – – t t t 6256504 6282249 5419058
ssg 50 – – – – – – t t t 6296999 6267178 5412121
tree weight 10 – – – – – – t t t 6250931 6279698 5407618
tree weight 25 – – – – – – t t t 6287091 6266622 5412121
tree weight 50 – – – – – – t t t 6234525 6250111 5399607
no clairvoyant – – – – – – – t t t 6253073 6277037 5412418
0-restart – – – – – – – t t t 6234074 6294595 5392178

fhnw-binpack4-48 monotone 10 – – – 1 1 1 t t t 2275616 2277178 2445216
monotone 25 – – – 1 1 1 t t t 2284956 2277559 2476865
monotone 50 – – – 1 1 1 t t t 2269827 2274133 2453101
reg forest 10 – – – – – – t t t 2689876 2602183 2027941
reg forest 25 – – – – – – t t t 2701143 2593989 2048715
reg forest 50 – – – – – – t t t 2697389 2609735 2029807
gap 10 – – – – – – t t t 2737061 2639298 2046253
gap 25 – – – – – – t t t 2723300 2648962 2037415
gap 50 – – – – – – t t t 2723990 2640850 2055948
leaf freq 10 – – – 1 1 1 t t t 2655323 2493667 2302298
leaf freq 25 – – – – – – t t t 2716315 2636914 2053971
leaf freq 50 – – – – – – t t t 2733288 2632067 2050114
ssg 10 – – – – – – t t t 2719646 2640365 2056165
ssg 25 – – – – – – t t t 2735828 2628089 2053840
ssg 50 – – – – – – t t t 2725127 2642433 2057528
tree weight 10 – – – – – – t t t 2724742 2630352 2051490
tree weight 25 – – – – – – t t t 2716274 2643142 2055141
tree weight 50 – – – – – – t t t 2722098 2648329 2063627
no clairvoyant – – – – – – – t t t 2721765 2638444 2058448
0-restart – – – – – – – t t t 2728994 2642014 2056416

fiball monotone 10 – – – 1 1 1 217.7 429.8 486.0 3764 10841 13373
monotone 25 – – – 1 1 – 217.5 430.9 385.3 3764 10841 10437
monotone 50 – – – 1 1 – 218.0 432.0 384.8 3764 10841 10437
reg forest 10 – – – 1 1 1 215.5 434.7 485.0 3764 10841 13373
reg forest 25 – – – – – – 190.2 498.4 387.3 3605 16051 10437
reg forest 50 – – – – – – 190.2 497.4 385.9 3605 16051 10437
gap 10 – – – – – – 187.0 495.9 385.4 3605 16051 10437
gap 25 – – – – – – 190.3 494.3 381.6 3605 16051 10437
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gap 50 – – – – – – 189.4 493.3 383.1 3605 16051 10437
leaf freq 10 – – – 1 1 1 312.1 470.1 468.2 8225 11896 11726
leaf freq 25 – – – – 1 – 190.7 473.1 383.7 3605 11896 10437
leaf freq 50 – – – – – – 189.0 495.0 382.3 3605 16051 10437
ssg 10 – – – 1 1 1 218.1 431.6 482.9 3764 10841 13373
ssg 25 – – – 1 1 1 217.3 289.7 483.2 3764 4377 13373
ssg 50 – – – 1 1 1 216.7 388.5 481.6 3764 7408 13373
tree weight 10 – – – 1 1 1 217.1 434.1 478.8 3764 10841 13373
tree weight 25 – – – 1 1 1 217.0 400.4 479.8 3764 11040 13373
tree weight 50 – – – 1 1 1 216.8 404.5 483.7 3764 8193 13373
no clairvoyant – – – – – – – 190.3 495.7 383.6 3605 16051 10437
0-restart – – – – – – – 189.4 494.2 381.0 3605 16051 10437

gen-ip002 monotone 10 – – – 1 1 1 1494.4 1477.5 1428.5 5304760 5110974 5117244
monotone 25 – – – 1 1 1 1496.6 1471.3 1438.8 5304760 5110974 5117244
monotone 50 – – – 1 1 1 1504.5 1472.5 1438.0 5304760 5110974 5117244
reg forest 10 – – – 1 1 1 1507.1 1499.8 1441.5 5304760 5110974 5117244
reg forest 25 – – – – – – 1854.6 1897.9 1666.1 6014978 5957779 5489120
reg forest 50 – – – – – – 1851.4 1910.5 1668.9 6014978 5957779 5489120
gap 10 – – – – – – 1682.8 1753.3 1509.0 6014978 5957779 5489120
gap 25 – – – – – – 1691.0 1744.5 1515.7 6014978 5957779 5489120
gap 50 – – – – – – 1682.1 1746.0 1519.0 6014978 5957779 5489120
leaf freq 10 – – – 1 1 1 1536.4 1390.1 1550.4 5197947 4907681 5522119
leaf freq 25 – – – 1 1 1 1328.3 1382.9 1450.5 4620335 4907681 5165450
leaf freq 50 – – – 1 1 1 1466.7 1412.3 1584.8 4958468 4943804 5224880
ssg 10 – – – 1 1 1 1328.1 1510.5 1426.7 4599760 5310018 5107698
ssg 25 – – – 1 1 1 1344.9 1363.7 1425.8 4826759 4916885 5086373
ssg 50 – – – 1 1 1 1478.5 1359.5 1346.8 5083939 4890126 4826386
tree weight 10 – – – 1 1 1 1491.1 1468.2 1607.9 5304760 5110974 5718642
tree weight 25 – – – 1 1 1 1500.8 1473.3 1400.5 5304760 5110974 5071121
tree weight 50 – – – 1 1 1 1490.3 1470.6 1342.3 5304760 5110974 4875727
no clairvoyant – – – – – – – 1699.4 1748.6 1513.1 6014978 5957779 5489120
0-restart – – – – – – – 1692.4 1740.8 1516.1 6014978 5957779 5489120

gen-ip054 monotone 10 – – – 1 1 1 1396.1 892.2 1766.3 5558155 3517217 7000324
monotone 25 – – – 1 1 1 1408.2 894.8 1765.5 5558155 3517217 7000324
monotone 50 – – – 1 1 1 1410.6 892.5 1762.3 5558155 3517217 7000324
reg forest 10 – – – 1 1 1 1401.5 1096.9 1773.8 5558155 4393243 7000324
reg forest 25 – – – 1 1 – 1437.0 1105.5 2520.6 4505940 3403496 8978468
reg forest 50 – – – – – – t 1432.6 2536.5 12572935 5140274 8978468
gap 10 – – – 1 – 1 1411.5 1297.7 1782.6 5558155 5140274 7000324
gap 25 – – – 1 – 1 1397.1 1295.1 1758.4 5558155 5140274 7000324
gap 50 – – – 1 – 1 1401.5 1299.3 1764.7 5558155 5140274 7000324
leaf freq 10 – – – 1 1 1 1404.6 840.0 1760.4 5558155 3394610 7000324
leaf freq 25 – – – 1 1 1 1400.1 1243.9 1753.8 5558155 4612063 7000324
leaf freq 50 – – – 1 1 1 1393.3 1734.5 1755.0 5558155 5184114 7000324
ssg 10 – – – 1 1 1 1405.2 1212.9 1758.6 5558155 4726000 7000324
ssg 25 – – – 1 1 1 1405.4 737.6 1768.4 5558155 3001275 7000324
ssg 50 – – – 1 1 1 1402.2 888.9 1772.7 5558155 3589939 7000324
tree weight 10 – – – 1 1 1 1392.6 892.6 1755.2 5558155 3517217 7000324
tree weight 25 – – – 1 1 1 1407.5 893.8 1771.0 5558155 3517217 7000324
tree weight 50 – – – 1 1 1 1411.6 896.3 1777.6 5558155 3517217 7000324
no clairvoyant – – – – – – – 3529.5 1297.4 2298.9 13474791 5140274 8978468
0-restart – – – – – – – 3516.5 1294.9 2312.1 13474791 5140274 8978468

germanrr monotone 10 – – – 1 – 1 t t t 1207 1024 1175
monotone 25 – – – 1 – 1 t t t 1225 1024 1175
monotone 50 – – – 1 – 1 t t t 1226 1028 1175
reg forest 10 – – – – – 1 t t t 1263 1024 1182
reg forest 25 – – – – – – t t t 1263 1024 1173
reg forest 50 – – – – – – t t t 1257 1025 1173
gap 10 – – – – – – t t t 1270 1024 1173
gap 25 – – – – – – t t t 1273 1027 1168
gap 50 – – – – – – t t t 1271 1028 1170
leaf freq 10 – – – – – – t t t 1271 1024 1178
leaf freq 25 – – – – – – t t t 1268 1024 1182
leaf freq 50 – – – – – – t t t 1270 1024 1174
ssg 10 – – – – – – t t t 1270 1024 1170
ssg 25 – – – – – – t t t 1270 1024 1170
ssg 50 – – – – – – t t t 1270 1024 1168
tree weight 10 – – – 1 – – t t t 1219 1033 1173
tree weight 25 – – – 1 – – t t t 1230 1024 1170
tree weight 50 – – – 1 – – t t t 1207 1027 1175
no clairvoyant – – – – – – – t t t 1272 1026 1175
0-restart – – – – – – – t t t 1273 1024 1170

gfd-schedulen18. monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
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reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

glass-sc monotone 10 – – – – – – t t 3047.7 288128 273760 248382
monotone 25 – – – – – – t t 3041.9 286305 272083 248382
monotone 50 – – – – – – t t 3039.3 289391 272781 248382
reg forest 10 – – – 1 1 1 t 3393.1 3104.2 284307 270103 247228
reg forest 25 – – – – – – t t 3073.7 288518 271749 248382
reg forest 50 – – – – – – t t 3062.9 285932 271281 248382
gap 10 – – – 1 1 1 t t 3124.3 275001 277210 242297
gap 25 – – – 1 1 1 t t 3143.8 267619 263188 241542
gap 50 – – – – – – t t 3055.0 287388 271282 248382
leaf freq 10 – – – 1 1 1 t t 3501.5 287831 272986 260031
leaf freq 25 – – – 1 1 1 t t 3570.0 260897 236325 261887
leaf freq 50 – – – – 1 1 t t t 288971 232554 258519
ssg 10 – – – 1 1 1 t t 3122.1 281445 273745 247228
ssg 25 – – – 1 1 1 t t 3135.7 278260 273067 243863
ssg 50 – – – 1 1 1 t t 3346.8 286169 266784 251918
tree weight 10 – – – 1 1 1 t t 3209.7 288151 284136 257764
tree weight 25 – – – 1 1 1 t t 3201.4 286487 284012 257764
tree weight 50 – – – 1 1 1 t t 3192.9 289234 284711 257764
no clairvoyant – – – – – – – t t 3038.6 288879 273109 248382
0-restart – – – – – – – t t 3048.6 287351 272891 248382

glass4 monotone 10 – – – 1 1 1 1507.6 881.0 298.0 1667231 1052626 319641
monotone 25 – – – 1 1 1 1506.4 885.9 298.6 1667231 1052626 319641
monotone 50 – – – 1 1 – 1494.8 884.8 1471.9 1667231 1052626 1238074
reg forest 10 – – – 1 1 1 1499.1 896.4 303.4 1667231 1052626 319641
reg forest 25 – – – 1 – 1 209.3 1044.8 2865.0 238260 860747 1910450
reg forest 50 – – – – – – t 1050.5 1529.1 2891512 860747 1238074
gap 10 – – – 1 1 1 812.9 470.4 298.2 663718 473085 319641
gap 25 – – – 1 1 1 552.1 142.8 950.1 702057 135695 996884
gap 50 – – – 1 1 1 327.6 97.2 761.8 324833 102699 675509
leaf freq 10 – – – 1 1 1 201.6 125.9 99.8 207587 134142 77448
leaf freq 25 – – – 1 1 1 178.7 126.4 99.6 178408 121287 77448
leaf freq 50 – – – 1 1 1 159.6 127.0 154.0 143914 121287 138448
ssg 10 – – – 1 1 1 2049.9 150.5 299.0 2560444 140046 319641
ssg 25 – – – 1 1 1 2048.3 150.2 296.7 2560444 140046 319641
ssg 50 – – – 1 1 1 2041.3 150.0 298.1 2560444 140046 319641
tree weight 10 – – – 1 1 1 1510.0 327.8 1429.7 1667231 326944 1348284
tree weight 25 – – – 1 1 1 562.9 328.9 960.0 548156 326944 996884
tree weight 50 – – – 1 1 1 326.3 327.3 764.7 324833 326944 675509
no clairvoyant – – – – – – – t 994.5 1463.8 2987288 860747 1238074
0-restart – – – – – – – t 1003.5 1462.7 3017781 860747 1238074

gmu-35-40 monotone 10 1 1 2 1 1 1 t t t 2721498 1441413 2215662
monotone 25 1 1 2 1 1 1 t t t 2723798 1440608 2218096
monotone 50 1 1 2 1 1 1 t t t 2719677 1442039 2218801
reg forest 10 1 1 2 – 1 1 t t t 1161669 1442156 2216517
reg forest 25 1 1 2 – – – t t t 1155232 1913242 1896168
reg forest 50 1 1 2 – – – t t t 1160395 1906566 1898175
gap 10 1 1 2 – – – t t t 1170500 1942751 1917879
gap 25 1 1 2 – – – t t t 1169802 1935687 1921600
gap 50 1 1 2 – – – t t t 1170360 1928665 1926627
leaf freq 10 1 1 2 1 1 1 t t t 1498975 2239871 2230463
leaf freq 25 1 1 2 1 1 1 t t t 1905388 1516544 2231113
leaf freq 50 1 1 2 1 1 1 t t t 1917687 1125229 2217542
ssg 10 1 1 2 1 1 1 t t t 2722781 1400190 2221456
ssg 25 1 1 2 1 1 1 t t t 2720419 1406276 2226743
ssg 50 1 1 2 1 1 1 t t t 2723355 1407947 2220843
tree weight 10 1 1 2 1 1 1 t t t 2150378 1515108 2178451
tree weight 25 1 1 2 1 1 1 t t t 1899417 1517369 2187844
tree weight 50 1 1 2 1 1 1 t t t 2444465 1517588 2178199
no clairvoyant – 1 1 2 – – – t t t 1169900 1938453 1927386
0-restart – – – – – – – t t t 957490 1591349 1603377
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gmu-35-50 monotone 10 1 1 1 1 1 1 t t t 1250153 897585 734239
monotone 25 1 1 1 1 1 1 t t t 1250075 901716 734225
monotone 50 1 1 1 1 1 1 t t t 1250282 902948 737249
reg forest 10 1 1 1 1 – – t t t 831983 857478 1049171
reg forest 25 1 1 1 – – – t t t 1153134 858289 1049592
reg forest 50 1 1 1 – – – t t t 1151038 857927 1050412
gap 10 1 1 1 – – – t t t 1159330 865427 1059243
gap 25 1 1 1 – – – t t t 1161319 865427 1061784
gap 50 1 1 1 – – – t t t 1167679 867292 1061366
leaf freq 10 1 1 1 1 1 1 t t t 791438 1137797 757751
leaf freq 25 1 1 1 1 1 1 t t t 726430 926581 894221
leaf freq 50 1 1 1 1 1 1 t t t 725524 856948 966145
ssg 10 1 1 1 1 1 1 t t t 791756 1044159 810440
ssg 25 1 1 1 1 1 1 t t t 1036353 951270 1792751
ssg 50 1 1 1 1 1 1 t t t 806040 823965 927843
tree weight 10 1 1 1 1 1 1 t t t 1246957 900756 735057
tree weight 25 1 1 1 1 1 1 t t t 1247152 900756 732692
tree weight 50 1 1 1 1 1 1 t t t 1255570 901167 733334
no clairvoyant – 1 1 1 – – – t t t 1162516 864560 1057550
0-restart – – – – – – – t t t 838559 737428 959637

graph20-20-1rand monotone 10 – – – – – – 5.2 7.8 7.2 151 285 302
monotone 25 – – – – – – 5.2 7.8 7.2 151 285 302
monotone 50 – – – – – – 5.1 7.8 7.3 151 285 302
reg forest 10 – – – – – – 5.6 8.3 8.3 151 285 302
reg forest 25 – – – – – – 5.6 8.3 8.3 151 285 302
reg forest 50 – – – – – – 5.7 8.3 8.3 151 285 302
gap 10 – – – – – – 5.1 7.8 7.2 151 285 302
gap 25 – – – – – – 5.2 7.8 7.3 151 285 302
gap 50 – – – – – – 5.2 7.8 7.3 151 285 302
leaf freq 10 – – – – – – 5.1 7.8 7.2 151 285 302
leaf freq 25 – – – – – – 5.1 7.7 7.2 151 285 302
leaf freq 50 – – – – – – 5.2 7.8 7.2 151 285 302
ssg 10 – – – – – – 5.1 7.8 7.2 151 285 302
ssg 25 – – – – – – 5.1 7.8 7.3 151 285 302
ssg 50 – – – – – – 5.2 7.8 7.2 151 285 302
tree weight 10 – – – – – – 5.1 7.8 7.2 151 285 302
tree weight 25 – – – – – – 5.2 7.8 7.2 151 285 302
tree weight 50 – – – – – – 5.2 7.8 7.2 151 285 302
no clairvoyant – – – – – – – 5.5 7.9 7.3 151 285 302
0-restart – – – – – – – 5.1 7.8 7.2 151 285 302

graphdraw-domain monotone 10 – – – 1 1 1 1229.3 1092.2 550.9 2102031 1827774 873534
monotone 25 – – – 1 1 1 1226.8 1090.0 551.5 2102031 1827774 873534
monotone 50 – – – – 1 1 1528.3 1094.3 551.1 2769061 1827774 873534
reg forest 10 – – – 1 1 1 1234.8 1108.7 503.9 2102031 1827774 872345
reg forest 25 – – – 1 1 1 593.2 892.2 860.4 926303 1471964 1415795
reg forest 50 – – – – – – 1612.1 1581.7 1145.7 2769061 2573912 1964436
gap 10 – – – 1 1 1 1175.5 886.0 696.0 2091516 1577020 1125620
gap 25 – – – 1 1 1 1297.3 877.5 693.0 2088290 1625324 1125620
gap 50 – – – 1 1 1 1353.0 962.2 692.7 2390835 1513548 1125620
leaf freq 10 – – – 1 1 1 460.2 440.8 473.2 784144 719696 746408
leaf freq 25 – – – 1 1 1 683.2 536.3 450.9 1059764 831793 717122
leaf freq 50 – – – 1 1 1 679.1 618.8 644.3 1059764 1055329 1059793
ssg 10 – – – 1 1 1 1488.6 929.5 553.4 2685161 1487875 884593
ssg 25 – – – 1 1 1 967.6 535.6 553.1 1651330 862815 884593
ssg 50 – – – 1 1 1 1494.7 485.3 514.1 2516238 894820 917842
tree weight 10 – – – 1 1 1 1221.1 1099.4 550.6 2102031 1827774 873534
tree weight 25 – – – 1 1 1 1225.4 1093.7 552.0 2102031 1827774 873534
tree weight 50 – – – 1 1 1 1223.3 1095.7 1093.6 2102031 1827774 1811145
no clairvoyant – – – – – – – 1520.9 1489.5 1072.2 2769061 2573912 1964436
0-restart – – – – – – – 1516.7 1483.8 1070.2 2769061 2573912 1964436

h80x6320d monotone 10 3 4 3 – – – 75.2 83.2 67.1 4 7 8
monotone 25 3 4 3 – – – 75.3 83.5 67.3 4 7 8
monotone 50 3 4 3 – – – 75.2 83.4 67.2 4 7 8
reg forest 10 3 4 3 – – – 75.5 82.4 67.2 4 7 8
reg forest 25 3 4 3 – – – 75.8 83.3 66.8 4 7 8
reg forest 50 3 4 3 – – – 75.6 83.2 67.0 4 7 8
gap 10 3 4 3 – – – 75.4 83.6 67.2 4 7 8
gap 25 3 4 3 – – – 75.2 83.1 67.4 4 7 8
gap 50 3 4 3 – – – 75.0 83.2 67.4 4 7 8
leaf freq 10 3 4 3 – – – 75.2 83.3 67.3 4 7 8
leaf freq 25 3 4 3 – – – 75.2 83.2 67.6 4 7 8
leaf freq 50 3 4 3 – – – 75.5 83.0 67.1 4 7 8
ssg 10 3 4 3 – – – 75.3 83.2 67.3 4 7 8
ssg 25 3 4 3 – – – 75.1 83.3 67.1 4 7 8
ssg 50 3 4 3 – – – 75.5 83.2 67.1 4 7 8
tree weight 10 3 4 3 – – – 75.5 83.5 67.4 4 7 8
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tree weight 25 3 4 3 – – – 75.1 82.8 66.5 4 7 8
tree weight 50 3 4 3 – – – 75.1 83.0 67.5 4 7 8
no clairvoyant – 3 4 3 – – – 75.9 82.8 67.2 4 7 8
0-restart – – – – – – – 72.2 57.7 72.7 3 5 7

highschool1. monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

hypothyroid-k1 monotone 10 – – – – – – 20.7 20.7 20.7 1 1 1
monotone 25 – – – – – – 20.8 20.9 20.9 1 1 1
monotone 50 – – – – – – 20.6 20.6 20.8 1 1 1
reg forest 10 – – – – – – 20.5 20.6 20.5 1 1 1
reg forest 25 – – – – – – 20.8 20.8 20.5 1 1 1
reg forest 50 – – – – – – 20.9 20.8 20.7 1 1 1
gap 10 – – – – – – 20.8 20.9 20.8 1 1 1
gap 25 – – – – – – 20.8 20.9 20.8 1 1 1
gap 50 – – – – – – 20.9 20.7 20.8 1 1 1
leaf freq 10 – – – – – – 20.9 20.5 20.7 1 1 1
leaf freq 25 – – – – – – 20.7 20.6 20.8 1 1 1
leaf freq 50 – – – – – – 20.7 20.7 20.8 1 1 1
ssg 10 – – – – – – 20.6 20.8 20.8 1 1 1
ssg 25 – – – – – – 20.9 20.5 20.6 1 1 1
ssg 50 – – – – – – 20.8 20.7 20.7 1 1 1
tree weight 10 – – – – – – 20.8 21.0 20.7 1 1 1
tree weight 25 – – – – – – 20.7 20.7 20.7 1 1 1
tree weight 50 – – – – – – 20.6 20.8 20.6 1 1 1
no clairvoyant – – – – – – – 20.7 20.8 20.9 1 1 1
0-restart – – – – – – – 20.4 20.6 20.7 1 1 1

ic97_potential monotone 10 – – – 1 1 1 t t t 3433303 3171182 3225410
monotone 25 – – – 1 1 1 t t t 3422070 3165613 3221872
monotone 50 – – – – 1 1 t t t 3319278 3156003 3213291
reg forest 10 – – – 1 1 1 t t t 3435162 3147873 3203878
reg forest 25 – – – 1 1 – t t t 3010700 3112526 3183985
reg forest 50 – – – – – – t t t 3243809 3182798 3151051
gap 10 – – – 1 1 1 t t t 2906905 3119903 3082395
gap 25 – – – 1 1 – t t t 3299785 3203349 3249793
gap 50 – – – – – – t t t 3325908 3271050 3249743
leaf freq 10 – – – 1 1 1 t t t 3157832 3466159 3076816
leaf freq 25 – – – 1 1 1 t t t 3345313 3406697 3098132
leaf freq 50 – – – 1 1 1 t t t 3190775 3341568 2851216
ssg 10 – – – 1 1 1 t t t 3428555 3774863 3217438
ssg 25 – – – 1 1 1 t t t 2882502 3450109 2738989
ssg 50 – – – 1 1 1 t t t 3048618 3692789 3056003
tree weight 10 – – – 1 1 1 t t t 2837304 3221074 3217733
tree weight 25 – – – 1 1 1 t t t 2847808 3537254 2955166
tree weight 50 – – – 1 1 1 t t t 2838411 3552497 2783410
no clairvoyant – – – – – – – t t t 3313862 3270992 3231918
0-restart – – – – – – – t t t 3309497 3282448 3234427

icir97_tension monotone 10 – – – – – – t t 3514.7 1730050 1852104 1294688
monotone 25 – – – – – – t t 3515.6 1734836 1848164 1294688
monotone 50 – – – – – – t t 3522.2 1733754 1860154 1294688
reg forest 10 – – – – – – t t 3530.5 1716081 1859688 1294688
reg forest 25 – – – – – – t t 3519.6 1718566 1850338 1294688
reg forest 50 – – – – – – t t 3524.9 1724272 1845381 1294688
gap 10 – – – – – – t t 3512.3 1730639 1841019 1294688
gap 25 – – – – – – t t 3520.6 1728609 1852978 1294688
gap 50 – – – – – – t t 3530.2 1724527 1852650 1294688
leaf freq 10 – – – – – – t t 3512.9 1741791 1856435 1294688
leaf freq 25 – – – – – – t t 3523.5 1734683 1857681 1294688
leaf freq 50 – – – – – – t t 3525.6 1733223 1856681 1294688
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ssg 10 – – – – – – t t 3525.4 1737921 1858978 1294688
ssg 25 – – – – – – t t 3519.6 1723635 1851830 1294688
ssg 50 – – – – – – t t 3531.5 1725015 1858622 1294688
tree weight 10 – – – – – – t t 3526.1 1732857 1849446 1294688
tree weight 25 – – – – – – t t 3531.2 1725711 1855054 1294688
tree weight 50 – – – – – – t t 3519.6 1734572 1850605 1294688
no clairvoyant – – – – – – – t t 3512.8 1730655 1854105 1294688
0-restart – – – – – – – t t 3523.9 1745951 1857676 1294688

irish-elec. monotone 10 – – – – – – t t t 2185 1971 1801
monotone 25 – – – – – – t t t 2185 1965 1801
monotone 50 – – – – – – t t t 2185 1971 1797
reg forest 10 – – – – – – t t t 2185 1969 1805
reg forest 25 – – – – – – t t t 2181 1971 1788
reg forest 50 – – – – – – t t t 2181 1964 1805
gap 10 – – – – – – t t t 2185 1971 1813
gap 25 – – – – – – t t t 2185 1965 1801
gap 50 – – – – – – t t t 2182 1958 1814
leaf freq 10 – – – – – – t t t 2185 1971 1801
leaf freq 25 – – – – – – t t t 2197 1971 1792
leaf freq 50 – – – – – – t t t 2175 1964 1797
ssg 10 – – – – – – t t t 2181 1976 1801
ssg 25 – – – – – – t t t 2185 1965 1809
ssg 50 – – – – – – t t t 2185 1964 1814
tree weight 10 – – – – – – t t t 2182 1971 1797
tree weight 25 – – – – – – t t t 2181 1971 1801
tree weight 50 – – – – – – t t t 2188 1971 1801
no clairvoyant – – – – – – – t t t 2181 1969 1801
0-restart – – – – – – – t t t 2191 1971 1787

irp monotone 10 6 5 7 – – – 16.4 14.7 15.5 7 6 8
monotone 25 6 5 7 – – – 16.5 14.6 15.4 7 6 8
monotone 50 6 5 7 – – – 16.3 14.6 15.4 7 6 8
reg forest 10 6 5 7 – – – 16.5 14.9 15.7 7 6 8
reg forest 25 6 5 7 – – – 16.6 15.0 15.7 7 6 8
reg forest 50 6 5 7 – – – 16.7 14.9 15.7 7 6 8
gap 10 6 5 7 – – – 16.3 14.7 15.5 7 6 8
gap 25 6 5 7 – – – 16.4 14.7 15.3 7 6 8
gap 50 6 5 7 – – – 16.4 14.6 15.5 7 6 8
leaf freq 10 6 5 7 – – – 16.4 14.7 15.5 7 6 8
leaf freq 25 6 5 7 – – – 16.5 14.6 15.3 7 6 8
leaf freq 50 6 5 7 – – – 16.3 14.7 15.4 7 6 8
ssg 10 6 5 7 – – – 16.3 14.7 15.4 7 6 8
ssg 25 6 5 7 – – – 16.3 14.6 15.5 7 6 8
ssg 50 6 5 7 – – – 16.4 14.6 15.4 7 6 8
tree weight 10 6 5 7 – – – 16.3 14.7 15.4 7 6 8
tree weight 25 6 5 7 – – – 16.4 14.7 15.4 7 6 8
tree weight 50 6 5 7 – – – 16.3 14.7 15.4 7 6 8
no clairvoyant – 6 5 7 – – – 16.6 14.7 15.4 7 6 8
0-restart – – – – – – – 10.7 13.0 11.8 3 5 3

istanbul. monotone 10 – – – – – – 100.2 95.3 103.2 271 271 321
monotone 25 – – – – – – 100.5 95.7 103.6 271 271 321
monotone 50 – – – – – – 100.0 95.3 103.3 271 271 321
reg forest 10 – – – – – – 99.9 95.6 103.9 271 271 321
reg forest 25 – – – – – – 100.2 95.6 103.4 271 271 321
reg forest 50 – – – – – – 100.4 95.2 103.5 271 271 321
gap 10 – – – – – – 100.3 95.6 103.2 271 271 321
gap 25 – – – – – – 100.2 95.2 103.3 271 271 321
gap 50 – – – – – – 100.2 95.2 103.4 271 271 321
leaf freq 10 – – – – – – 100.1 95.3 104.1 271 271 321
leaf freq 25 – – – – – – 100.4 95.5 103.2 271 271 321
leaf freq 50 – – – – – – 100.0 95.3 103.6 271 271 321
ssg 10 – – – – – – 99.4 95.0 103.6 271 271 321
ssg 25 – – – – – – 100.4 94.8 103.3 271 271 321
ssg 50 – – – – – – 100.2 95.3 103.2 271 271 321
tree weight 10 – – – – – – 100.5 95.0 103.3 271 271 321
tree weight 25 – – – – – – 100.5 95.2 103.4 271 271 321
tree weight 50 – – – – – – 100.1 95.0 103.3 271 271 321
no clairvoyant – – – – – – – 100.4 95.6 103.4 271 271 321
0-restart – – – – – – – 99.8 94.8 103.6 271 271 321

k1mushroom monotone 10 – – – – – – 2505.9 1426.8 1907.6 10 1 21
monotone 25 – – – – – – 2548.2 1439.7 1980.1 10 1 21
monotone 50 – – – – – – 2492.4 1431.7 1962.5 10 1 21
reg forest 10 – – – – – – 2489.1 1400.8 1955.0 10 1 21
reg forest 25 – – – – – – 2496.8 1424.7 1977.2 10 1 21
reg forest 50 – – – – – – 2525.4 1436.7 1968.7 10 1 21
gap 10 – – – – – – 2500.1 1418.8 1968.6 10 1 21
gap 25 – – – – – – 2497.8 1430.8 1973.5 10 1 21
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gap 50 – – – – – – 2520.3 1428.5 1965.3 10 1 21
leaf freq 10 – – – – – – 2536.9 1425.8 1965.6 10 1 21
leaf freq 25 – – – – – – 2526.0 1426.6 1947.1 10 1 21
leaf freq 50 – – – – – – 2503.9 1434.8 1942.1 10 1 21
ssg 10 – – – – – – 2497.1 1432.1 1958.9 10 1 21
ssg 25 – – – – – – 2491.6 1419.0 1986.5 10 1 21
ssg 50 – – – – – – 2488.5 1421.8 1964.5 10 1 21
tree weight 10 – – – – – – 2492.9 1418.2 1969.6 10 1 21
tree weight 25 – – – – – – 2456.7 1410.6 1961.8 10 1 21
tree weight 50 – – – – – – 2490.9 1410.3 1954.6 10 1 21
no clairvoyant – – – – – – – 2480.2 1405.2 1945.6 10 1 21
0-restart – – – – – – – 2483.8 1416.6 1954.7 10 1 21

lectsched-5-obj monotone 10 – – – 1 1 1 t t t 39771 76746 300609
monotone 25 – – – – 1 1 t t t 285807 76754 300490
monotone 50 – – – – 1 1 t t t 285712 76765 300048
reg forest 10 – – – 1 1 1 t t t 86905 76696 298541
reg forest 25 – – – – – 1 t t t 280972 149247 120627
reg forest 50 – – – – – – t t t 282406 149240 274749
gap 10 – – – 1 1 1 t t t 139303 73622 172579
gap 25 – – – 1 1 1 t t t 333098 208621 206955
gap 50 – – – 1 1 1 t t t 85575 134127 68390
leaf freq 10 – – – 1 1 1 t t t 60297 198676 133806
leaf freq 25 – – – 1 1 1 t t t 282934 196792 92449
leaf freq 50 – – – 1 – 1 t t t 284882 150001 92523
ssg 10 – – – 1 1 1 t t t 312853 268068 73524
ssg 25 – – – 1 1 1 t t t 271000 48481 313992
ssg 50 – – – 1 1 1 t t t 272106 147351 143869
tree weight 10 – – – 1 1 1 t t t 255024 76916 300072
tree weight 25 – – – 1 1 1 t t t 310370 76718 124486
tree weight 50 – – – 1 1 1 t t t 175005 76744 73639
no clairvoyant – – – – – – – t t t 285853 149620 275766
0-restart – – – – – – – t t t 285050 149866 277078

leo1 monotone 10 – – – 1 1 1 t t t 99721 92105 117094
monotone 25 – – – 1 1 1 t t t 102001 91633 116014
monotone 50 – – – – 1 1 t t t 110160 92108 116762
reg forest 10 – – – 1 1 1 t t t 102044 91992 116341
reg forest 25 – – – – 1 – t t t 108586 92546 93432
reg forest 50 – – – – – – t t t 109488 85821 94424
gap 10 – – – 1 1 1 t t t 103333 90368 103731
gap 25 – – – – – 1 t t t 109708 86163 91037
gap 50 – – – – – – t t t 108983 86226 95052
leaf freq 10 – – – 1 1 1 t t t 105037 92047 91141
leaf freq 25 – – – 1 1 1 t t t 104058 92289 90023
leaf freq 50 – – – 1 1 1 t t t 104678 92616 81915
ssg 10 – – – 1 1 1 t t t 90587 94192 92771
ssg 25 – – – 1 1 1 t t t 96936 98999 92650
ssg 50 – – – 1 1 1 t t t 109322 85983 91840
tree weight 10 – – – 1 1 1 t t t 100713 103478 116828
tree weight 25 – – – 1 1 1 t t t 101094 94766 116981
tree weight 50 – – – 1 1 1 t t t 101278 95593 116927
no clairvoyant – – – – – – – t t t 108205 86685 95058
0-restart – – – – – – – t t t 109478 85935 95145

leo2 monotone 10 – – – – – – t t t 47596 40599 50827
monotone 25 – – – – – – t t t 47582 40678 50967
monotone 50 – – – – – – t t t 47882 40627 50718
reg forest 10 – – – 1 – 1 t t t 41794 40616 52440
reg forest 25 – – – – – – t t t 47440 40634 50618
reg forest 50 – – – – – – t t t 47238 40182 50957
gap 10 – – – 1 1 1 t t t 41884 41737 56545
gap 25 – – – 1 1 1 t t t 48736 47009 41813
gap 50 – – – 1 1 – t t t 41567 33907 50908
leaf freq 10 – – – 1 1 1 t t t 44182 42744 39916
leaf freq 25 – – – 1 – 1 t t t 36719 40626 36191
leaf freq 50 – – – 1 – 1 t t t 45109 40622 42137
ssg 10 – – – 1 1 1 t t t 42331 32922 44435
ssg 25 – – – 1 1 1 t t t 45791 37997 44450
ssg 50 – – – 1 1 1 t t t 43098 33333 46399
tree weight 10 – – – 1 1 1 t t t 42860 56943 54843
tree weight 25 – – – 1 1 1 t t t 27350 43983 65928
tree weight 50 – – – 1 1 1 t t t 44231 44071 37812
no clairvoyant – – – – – – – t t t 47959 40662 51176
0-restart – – – – – – – t t t 47764 40371 50908

lotsize monotone 10 – – – 1 1 1 t t t 13241 16364 13619
monotone 25 – – – 1 1 1 t t t 13132 16563 13616
monotone 50 – – – 1 – 1 t t t 13133 12241 13604
reg forest 10 – – – 1 1 1 t t t 12694 20264 13604
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reg forest 25 – – – – – – t t t 7341 12235 4533
reg forest 50 – – – – – – t t t 7330 12358 4533
gap 10 – – – – – – t t t 7270 12203 4533
gap 25 – – – – – – t t t 7333 12204 4533
gap 50 – – – – – – t t t 7331 12208 4577
leaf freq 10 – – – – – – t t t 7331 12204 4533
leaf freq 25 – – – – – – t t t 7349 12204 4533
leaf freq 50 – – – – – – t t t 7331 12241 4533
ssg 10 – – – 1 1 1 t t t 13133 16852 15091
ssg 25 – – – 1 1 1 t t t 13133 17383 11870
ssg 50 – – – 1 1 1 t t t 12534 15199 10907
tree weight 10 – – – 1 1 1 t t t 17244 15439 13389
tree weight 25 – – – 1 1 1 t t t 13851 14088 8580
tree weight 50 – – – 1 1 1 t t t 15440 11930 9787
no clairvoyant – – – – – – – t t t 7331 12241 4533
0-restart – – – – – – – t t t 7318 12241 4533

mad monotone 10 – – – – – 1 t t t 5855351 5372200 6354635
monotone 25 – – – – – – t t t 5850435 5389974 6890397
monotone 50 – – – – – – t t t 5876364 5413243 6856670
reg forest 10 – – – – – 1 t t t 5652013 5261473 6319175
reg forest 25 – – – – – – t t t 5631086 5253804 6661820
reg forest 50 – – – – – – t t t 5601545 5255630 6693340
gap 10 – – – – – – t t t 5869589 5389029 6885701
gap 25 – – – – – – t t t 5895738 5389850 6871377
gap 50 – – – – – – t t t 5836420 5391137 6875583
leaf freq 10 – – – 1 1 1 t t t 5794830 6309336 5317825
leaf freq 25 – – – 1 1 1 t t t 5308072 5721650 4862852
leaf freq 50 – – – 1 1 1 t t t 5634478 5383560 6867526
ssg 10 – – – 1 1 1 t t t 5265061 6862870 5796151
ssg 25 – – – 1 1 1 t t t 5241567 6186980 5343308
ssg 50 – – – 1 1 1 t t t 5253554 5746715 6272448
tree weight 10 – – – 1 1 1 t t t 6638454 6123531 5690773
tree weight 25 – – – 1 1 1 t t t 6430624 5768319 6291416
tree weight 50 – – – 1 1 1 t t t 5655595 5583973 5646004
no clairvoyant – – – – – – – t t t 5868011 5390909 6869889
0-restart – – – – – – – t t t 5865739 5353510 6876047

map10 monotone 10 – – – – – – 1025.0 979.8 860.5 1982 1395 1252
monotone 25 – – – – – – 1034.5 980.4 856.8 1982 1395 1252
monotone 50 – – – – – – 1025.5 983.0 866.4 1982 1395 1252
reg forest 10 – – – – – – 1035.5 985.7 861.8 1982 1395 1252
reg forest 25 – – – – – – 1033.4 982.8 862.8 1982 1395 1252
reg forest 50 – – – – – – 1031.3 982.3 858.7 1982 1395 1252
gap 10 – – – – – – 1035.4 980.3 869.5 1982 1395 1252
gap 25 – – – – – – 1028.3 981.1 865.2 1982 1395 1252
gap 50 – – – – – – 1036.7 980.8 863.3 1982 1395 1252
leaf freq 10 – – – – – – 1034.2 980.1 864.1 1982 1395 1252
leaf freq 25 – – – – – – 1035.5 987.4 866.5 1982 1395 1252
leaf freq 50 – – – – – – 1027.1 983.3 861.9 1982 1395 1252
ssg 10 – – – – 1 – 1035.5 1147.8 861.7 1982 1612 1252
ssg 25 – – – – – – 1029.6 977.7 864.2 1982 1395 1252
ssg 50 – – – – – – 1034.3 984.7 865.7 1982 1395 1252
tree weight 10 – – – 1 1 – 1228.3 1223.0 864.3 2036 1998 1252
tree weight 25 – – – – 1 – 1035.6 1252.1 866.5 1982 2037 1252
tree weight 50 – – – – 1 – 1031.1 1234.1 864.5 1982 1891 1252
no clairvoyant – – – – – – – 1036.7 977.7 867.5 1982 1395 1252
0-restart – – – – – – – 1026.6 984.3 865.0 1982 1395 1252

map16715-04 monotone 10 – – – – – – 2002.9 1964.2 1758.0 2115 2089 2141
monotone 25 – – – – – – 2008.8 1982.4 1761.1 2115 2089 2141
monotone 50 – – – – – – 1998.0 1983.6 1756.9 2115 2089 2141
reg forest 10 – – – – – – 2009.9 1979.7 1764.3 2115 2089 2141
reg forest 25 – – – – – – 2005.6 1992.5 1759.4 2115 2089 2141
reg forest 50 – – – – – – 1981.5 1983.8 1757.9 2115 2089 2141
gap 10 – – – – 1 1 2008.4 2745.3 2971.1 2115 2801 3485
gap 25 – – – – – – 1995.9 1981.4 1756.6 2115 2089 2141
gap 50 – – – – – – 2002.0 1971.3 1756.4 2115 2089 2141
leaf freq 10 – – – – – – 2003.9 1993.6 1757.4 2115 2089 2141
leaf freq 25 – – – – – – 1998.3 1979.8 1762.5 2115 2089 2141
leaf freq 50 – – – – – – 2002.3 1988.8 1755.2 2115 2089 2141
ssg 10 – – – 1 – – 2777.3 1967.4 1763.0 3042 2089 2141
ssg 25 – – – – – – 2008.0 1979.9 1757.8 2115 2089 2141
ssg 50 – – – – – – 2003.0 1967.9 1758.7 2115 2089 2141
tree weight 10 – – – 1 – – 2786.8 1985.6 1757.9 3042 2089 2141
tree weight 25 – – – – – – 2010.4 1978.4 1755.7 2115 2089 2141
tree weight 50 – – – – – – 2009.6 1991.3 1756.2 2115 2089 2141
no clairvoyant – – – – – – – 2006.9 1976.4 1763.5 2115 2089 2141
0-restart – – – – – – – 1997.1 1983.4 1742.0 2115 2089 2141
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markshare2 monotone 10 – – – 1 1 1 t t t 4812871 3183250 3030315
monotone 25 – – – 1 1 1 t t t 4841606 3169273 3019755
monotone 50 – – – 1 1 1 t t t 4829938 3176029 3035726
reg forest 10 – – – 1 1 1 t t t 3147569 3160234 3105893
reg forest 25 – – – – – – t t t 3071355 3594063 4018434
reg forest 50 – – – – – – t t t 3051796 3600138 4028837
gap 10 – – – – – – t t t 3092755 3649264 4101685
gap 25 – – – – – – t t t 3080841 3656012 4103957
gap 50 – – – – – – t t t 3099210 3665073 4110502
leaf freq 10 – – – 1 1 1 t t t 3070811 2892404 3880313
leaf freq 25 – – – 1 1 1 t t t 3940351 2892811 3129753
leaf freq 50 – – – 1 1 1 t t t 4693981 2888700 4115417
ssg 10 – – – 1 1 1 t t t 3564154 3968314 4854122
ssg 25 – – – 1 1 1 t t t 5117359 3328678 3660932
ssg 50 – – – 1 1 1 t t t 6139660 5382820 3028015
tree weight 10 – – – – – – t t t 3093222 3666607 4103957
tree weight 25 – – – – – – t t t 3093222 3666607 4099346
tree weight 50 – – – – – – t t t 3075000 3640981 4099346
no clairvoyant – – – – – – – t t t 3074199 3662683 4104598
0-restart – – – – – – – t t t 3096563 3652423 4069088

markshare_4_0 monotone 10 – – – 1 1 1 281.3 99.5 232.9 2082015 764166 1777139
monotone 25 – – – 1 1 1 281.4 100.6 234.4 2082015 764166 1777139
monotone 50 – – – 1 1 1 282.4 100.3 234.6 2082015 764166 1777139
reg forest 10 – – – 1 1 1 286.2 104.3 239.9 2082015 764166 1777139
reg forest 25 – – – – – – 191.5 267.6 297.5 1391562 1914160 2051707
reg forest 50 – – – – – – 192.6 267.4 298.6 1391562 1914160 2051707
gap 10 – – – – – – 179.4 248.2 276.8 1391562 1914160 2051707
gap 25 – – – – – – 179.3 247.7 277.2 1391562 1914160 2051707
gap 50 – – – – – – 177.9 248.3 277.4 1391562 1914160 2051707
leaf freq 10 – – – 1 1 1 210.6 266.6 287.6 1563826 2023996 2155323
leaf freq 25 – – – 1 1 1 158.2 199.8 271.1 1231148 1561801 1992936
leaf freq 50 – – – – – – 179.1 249.2 277.4 1391562 1914160 2051707
ssg 10 – – – 1 1 1 192.2 260.2 234.5 1451327 1936031 1777139
ssg 25 – – – 1 1 1 231.4 276.3 233.4 1750594 2116381 1777139
ssg 50 – – – 1 1 1 204.2 276.4 235.8 1551382 2116381 1777139
tree weight 10 – – – 1 1 1 280.7 183.9 290.6 2082015 1371575 2155323
tree weight 25 – – – 1 1 1 279.5 181.7 289.8 2082015 1371575 2155323
tree weight 50 – – – 1 1 1 281.1 184.7 289.8 2082015 1371575 2155323
no clairvoyant – – – – – – – 184.4 247.3 276.1 1391562 1914160 2051707
0-restart – – – – – – – 178.7 247.3 275.2 1391562 1914160 2051707

mas74 monotone 10 2 2 1 1 1 1 2333.8 2139.5 2396.3 6291932 5578706 6415730
monotone 25 2 2 1 1 1 1 2320.5 2125.2 2392.1 6291932 5578706 6415730
monotone 50 2 2 1 – – 1 1643.9 2007.9 2398.6 3587962 4508789 6415730
reg forest 10 2 2 1 1 1 1 2352.6 2145.8 2395.0 6291932 5578706 6415730
reg forest 25 2 2 1 – 1 1 1791.9 1586.0 1487.1 3587962 4526646 4260336
reg forest 50 2 2 1 – – – 1801.5 2185.2 1848.9 3587962 4508789 3915677
gap 10 2 2 1 1 1 1 1642.9 1399.6 2395.3 4456148 4373226 6415730
gap 25 2 2 1 1 – 1 1631.5 1996.8 2401.9 4288968 4508789 6415730
gap 50 2 2 1 – – 1 1637.3 1996.3 2388.7 3587962 4508789 6415730
leaf freq 10 2 2 1 1 1 1 1574.0 2203.6 2390.7 4527560 5991172 6415730
leaf freq 25 2 2 1 1 1 1 1518.2 2225.8 2388.4 4294913 6015777 6415730
leaf freq 50 2 2 1 1 1 1 1611.5 1537.8 2392.3 4281561 4576852 6415730
ssg 10 2 2 1 1 1 1 1677.0 2114.2 2390.6 4502548 5726547 6415730
ssg 25 2 2 1 1 1 1 1571.5 1675.7 2387.5 4508839 4608643 6415730
ssg 50 2 2 1 1 1 1 1930.5 1659.1 2392.8 5328134 4810878 6415730
tree weight 10 2 2 1 1 1 1 2319.0 2131.5 2407.1 6291932 5578706 6415730
tree weight 25 2 2 1 1 1 1 1734.4 2183.3 2386.6 4855547 5896010 6415730
tree weight 50 2 2 1 1 1 1 1922.7 2078.1 2394.1 5021762 5633840 6415730
no clairvoyant – 2 2 1 – – – 1648.7 1996.7 1687.6 3587962 4508789 3915677
0-restart – – – – – – – 1380.9 1356.4 1335.8 3571847 3488848 3467284

mas76 monotone 10 2 1 2 – 1 1 108.0 136.2 117.3 246169 336245 251311
monotone 25 2 1 2 – – 1 108.6 129.1 116.4 246169 276468 251311
monotone 50 2 1 2 – – – 108.6 129.2 116.3 246169 276468 185206
reg forest 10 2 1 2 1 1 1 116.3 137.5 119.2 267099 336245 251311
reg forest 25 2 1 2 – – – 118.3 139.8 123.8 246169 276468 185206
reg forest 50 2 1 2 – – – 118.4 139.3 124.2 246169 276468 185206
gap 10 2 1 2 1 1 1 133.4 143.3 174.3 313950 370229 438236
gap 25 2 1 2 – – – 108.6 128.7 116.0 246169 276468 185206
gap 50 2 1 2 – – – 108.3 127.7 116.0 246169 276468 185206
leaf freq 10 2 1 2 1 1 1 124.6 140.6 140.9 269438 344289 330907
leaf freq 25 2 1 2 – – 1 108.6 129.4 174.9 246169 276468 436908
leaf freq 50 2 1 2 – – 1 107.5 128.7 175.1 246169 276468 436908
ssg 10 2 1 2 1 1 1 125.3 122.6 125.3 299339 291965 249513
ssg 25 2 1 2 1 1 1 128.5 116.4 131.6 327843 239234 256384
ssg 50 2 1 2 1 1 1 121.3 136.6 145.2 278898 295220 311787
tree weight 10 2 1 2 1 1 1 111.0 133.9 126.2 253247 302620 245653
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tree weight 25 2 1 2 1 1 1 132.7 157.6 106.7 307170 398181 200995
tree weight 50 2 1 2 1 1 – 115.8 119.4 115.5 243128 250619 185206
no clairvoyant – 2 1 2 – – – 110.0 129.0 115.2 246169 276468 185206
0-restart – – – – – – – 174.7 205.5 157.3 379920 463778 322187

mc11 monotone 10 – 1 – – – 1 278.5 101.1 140.6 6768 1332 2956
monotone 25 – 1 – – – 1 278.3 101.4 140.8 6768 1332 2956
monotone 50 – 1 – – – – 278.4 101.3 317.1 6768 1332 10120
reg forest 10 – 1 – – – 1 280.3 102.0 110.9 6768 1332 1792
reg forest 25 – 1 – – – – 279.3 101.8 318.2 6768 1332 10120
reg forest 50 – 1 – – – – 280.1 101.9 318.2 6768 1332 10120
gap 10 – 1 – – – – 279.5 100.8 316.5 6768 1332 10120
gap 25 – 1 – – – – 277.8 101.1 316.2 6768 1332 10120
gap 50 – 1 – – – – 279.1 101.3 318.4 6768 1332 10120
leaf freq 10 – 1 – – – – 279.3 101.2 316.4 6768 1332 10120
leaf freq 25 – 1 – – – – 278.9 101.1 316.2 6768 1332 10120
leaf freq 50 – 1 – – – – 278.5 101.2 315.5 6768 1332 10120
ssg 10 – 1 – 1 – 1 122.8 101.2 110.3 1508 1332 1743
ssg 25 – 1 – 1 – 1 127.2 101.4 178.5 1668 1332 3389
ssg 50 – 1 – 1 – 1 152.9 101.3 182.1 2312 1332 3648
tree weight 10 – 1 – 1 – 1 141.7 101.4 140.6 1964 1332 2956
tree weight 25 – 1 – 1 – 1 155.6 101.1 141.2 2305 1332 2956
tree weight 50 – 1 – – – 1 278.4 101.5 137.6 6768 1332 1869
no clairvoyant – – 1 – – – – 279.6 101.1 316.4 6768 1332 10120
0-restart – – – – – – – 278.5 482.0 318.2 6768 20145 10120

mcsched monotone 10 – – – – – – 264.0 286.0 230.6 14546 13237 9529
monotone 25 – – – – – – 263.7 285.0 230.7 14546 13237 9529
monotone 50 – – – – – – 263.2 286.1 231.6 14546 13237 9529
reg forest 10 – – – – – – 265.0 286.9 231.6 14546 13237 9529
reg forest 25 – – – – – – 265.4 287.3 232.2 14546 13237 9529
reg forest 50 – – – – – – 266.3 287.1 231.9 14546 13237 9529
gap 10 – – – 1 1 1 220.5 250.8 253.0 10013 9926 9659
gap 25 – – – 1 1 1 224.2 258.2 256.6 10352 10217 8696
gap 50 – – – – – – 264.4 286.0 231.0 14546 13237 9529
leaf freq 10 – – – – – – 263.9 285.4 230.8 14546 13237 9529
leaf freq 25 – – – – – – 264.0 286.2 231.9 14546 13237 9529
leaf freq 50 – – – – – – 264.1 285.7 230.7 14546 13237 9529
ssg 10 – – – 1 1 1 286.3 324.3 210.1 11459 14856 7056
ssg 25 – – – 1 1 1 243.2 249.4 212.0 11270 10012 7824
ssg 50 – – – 1 1 1 239.6 258.4 244.3 11325 11376 9452
tree weight 10 – – – 1 1 1 289.0 323.6 229.3 15984 14856 8410
tree weight 25 – – – 1 1 1 288.5 324.3 233.7 15984 14856 8808
tree weight 50 – – – 1 1 1 287.9 283.6 233.2 15984 10840 8808
no clairvoyant – – – – – – – 264.5 284.4 230.7 14546 13237 9529
0-restart – – – – – – – 263.4 285.3 230.7 14546 13237 9529

mik-250-20-75-4 monotone 10 1 1 1 – – – 33.0 31.5 54.2 16251 14375 23230
monotone 25 1 1 1 – – – 33.0 31.4 54.3 16251 14375 23230
monotone 50 1 1 1 – – – 33.1 31.4 54.2 16251 14375 23230
reg forest 10 1 1 1 – – 1 34.4 32.7 56.9 16251 14375 19018
reg forest 25 1 1 1 – – – 34.7 32.5 55.7 16251 14375 23230
reg forest 50 1 1 1 – – – 34.7 32.6 55.8 16251 14375 23230
gap 10 1 1 1 – 1 – 33.0 43.4 54.2 16251 19099 23230
gap 25 1 1 1 – – – 33.1 31.4 54.2 16251 14375 23230
gap 50 1 1 1 – – – 33.0 31.4 54.2 16251 14375 23230
leaf freq 10 1 1 1 – – – 32.9 31.5 54.2 16251 14375 23230
leaf freq 25 1 1 1 – – – 32.9 31.2 54.1 16251 14375 23230
leaf freq 50 1 1 1 – – – 33.0 31.2 54.4 16251 14375 23230
ssg 10 1 1 1 – 1 1 33.1 41.1 52.2 16251 15736 19193
ssg 25 1 1 1 – 1 1 33.0 47.2 39.5 16251 16157 12562
ssg 50 1 1 1 – 1 1 33.1 40.3 56.9 16251 12832 18715
tree weight 10 1 1 1 1 1 1 33.6 53.6 41.5 12227 18942 12877
tree weight 25 1 1 1 1 1 1 40.5 31.9 51.9 15993 11791 16767
tree weight 50 1 1 1 1 1 1 37.9 37.3 50.2 15465 14597 14343
no clairvoyant – 1 1 1 – – – 34.0 31.4 54.0 16251 14375 23230
0-restart – – – – – – – 49.8 31.0 30.2 24894 19780 16100

milo-v12. monotone 10 – – – – – – t t t 114845 289080 220466
monotone 25 – – – – – – t t t 114689 288408 220273
monotone 50 – – – – – – t t t 115169 288136 220533
reg forest 10 – – – – – – t t t 115349 287442 221118
reg forest 25 – – – – – – t t t 114640 288388 220792
reg forest 50 – – – – – – t t t 115359 288928 219401
gap 10 – – – – – – t t t 115085 288840 219666
gap 25 – – – – – – t t t 115645 288699 221659
gap 50 – – – – – – t t t 115496 288303 221080
leaf freq 10 – – – – – – t t t 115045 290093 221023
leaf freq 25 – – – – – – t t t 115251 289080 220774
leaf freq 50 – – – – – – t t t 114758 289551 220618
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ssg 10 – – – – – – t t t 114495 288894 220573
ssg 25 – – – – – – t t t 114898 289022 220948
ssg 50 – – – – – – t t t 115078 289243 220452
tree weight 10 – – – – – – t t t 115112 288107 220771
tree weight 25 – – – – – – t t t 115474 289243 221255
tree weight 50 – – – – – – t t t 114621 288529 220808
no clairvoyant – – – – – – – t t t 114410 288501 220452
0-restart – – – – – – – t t t 115093 288378 220664

momentum1 monotone 10 – – – 1 1 1 t t t 11635 4340 18272
monotone 25 – – – 1 – 1 t t t 11638 2143 18292
monotone 50 – – – 1 – – t t t 11640 2130 4770
reg forest 10 – – – 1 1 1 t t t 11660 4345 18266
reg forest 25 – – – 1 1 1 t t t 21886 8149 18260
reg forest 50 – – – – – – t t t 32768 2143 4770
gap 10 – – – 1 1 1 t t t 17074 3118 7156
gap 25 – – – 1 1 1 t t t 11378 2319 8872
gap 50 – – – 1 1 – t t t 21533 1882 4774
leaf freq 10 – – – 1 1 1 t t t 24929 6205 7426
leaf freq 25 – – – 1 – 1 t t t 22201 2127 7540
leaf freq 50 – – – – – – t t t 32566 2143 4779
ssg 10 – – – 1 1 1 t t t 4551 4347 10012
ssg 25 – – – 1 1 1 t t t 30627 3846 9418
ssg 50 – – – 1 1 1 t t t 24579 3425 9976
tree weight 10 – – – 1 1 1 t t t 23305 4347 8608
tree weight 25 – – – 1 1 1 t t t 23273 4347 21086
tree weight 50 – – – 1 1 1 t t t 23274 4347 6785
no clairvoyant – – – – – – – t t t 32858 2149 4781
0-restart – – – – – – – t t t 32809 2152 4781

mushroom-best monotone 10 – – – 1 1 1 t 3421.0 t 154134 226092 165666
monotone 25 – – – 1 1 1 t 3430.2 t 151849 226092 164891
monotone 50 – – – 1 1 – t 3417.4 t 153033 226092 39650
reg forest 10 – – – 1 1 1 t t t 113207 195597 163771
reg forest 25 – – – 1 1 – t t t 116217 152011 39693
reg forest 50 – – – – – – t t t 36407 38193 39655
gap 10 – – – 1 1 1 t t t 136929 203775 144578
gap 25 – – – 1 1 1 t t t 122240 169219 135538
gap 50 – – – 1 1 1 t t t 116750 217572 123674
leaf freq 10 – – – 1 1 1 t t t 143930 87754 129824
leaf freq 25 – – – – 1 – t t t 36487 78203 39966
leaf freq 50 – – – – 1 – t t t 36741 44318 39765
ssg 10 – – – 1 1 1 t 3032.3 t 126952 174275 143403
ssg 25 – – – 1 1 1 t t t 116597 152849 146483
ssg 50 – – – 1 1 1 t t t 118752 166450 98186
tree weight 10 – – – 1 1 1 t 3436.0 t 153396 226092 157465
tree weight 25 – – – 1 1 1 t 3417.6 t 109303 226092 114201
tree weight 50 – – – 1 1 1 t 3435.1 t 132681 226092 135982
no clairvoyant – – – – – – – t t t 36456 38233 39933
0-restart – – – – – – – t t t 36490 38195 39777

mzzv11 monotone 10 – – – – – – 323.5 312.0 530.1 1904 2505 3777
monotone 25 – – – – – – 324.2 311.0 535.5 1904 2505 3777
monotone 50 – – – – – – 322.9 311.0 530.9 1904 2505 3777
reg forest 10 – – – – – – 324.2 312.3 531.4 1904 2505 3777
reg forest 25 – – – – – – 323.1 312.2 531.5 1904 2505 3777
reg forest 50 – – – – – – 322.9 312.0 528.6 1904 2505 3777
gap 10 – – – – – – 320.6 311.6 529.5 1904 2505 3777
gap 25 – – – – – – 323.7 312.8 529.8 1904 2505 3777
gap 50 – – – – – – 323.1 308.6 530.2 1904 2505 3777
leaf freq 10 – – – – – – 324.9 312.5 529.8 1904 2505 3777
leaf freq 25 – – – – – – 323.4 311.6 531.0 1904 2505 3777
leaf freq 50 – – – – – – 322.5 311.2 530.7 1904 2505 3777
ssg 10 7 6 1 1 1 1 446.7 351.9 480.6 1333 1247 2231
ssg 25 7 – 1 1 – 1 447.9 311.0 576.7 1333 2505 3121
ssg 50 7 – 3 1 – 1 446.9 311.0 609.2 1333 2505 2227
tree weight 10 – 6 – – 1 1 323.0 364.1 516.8 1904 1030 3100
tree weight 25 – 6 3 – 1 1 323.3 364.9 627.9 1904 1030 2421
tree weight 50 – 5 – – 1 – 323.4 362.8 533.7 1904 1688 3777
no clairvoyant – – – – – – – 324.5 311.1 531.4 1904 2505 3777
0-restart – – – – – – – 322.5 310.2 531.6 1904 2505 3777

mzzv42z monotone 10 – – – – – – 185.7 329.2 250.8 987 547 900
monotone 25 – – – – – – 186.2 329.0 249.1 987 547 900
monotone 50 – – – – – – 186.2 329.4 250.6 987 547 900
reg forest 10 – – – – – – 186.8 329.6 250.6 987 547 900
reg forest 25 – – – – – – 186.3 327.8 250.9 987 547 900
reg forest 50 – – – – – – 186.9 329.0 251.0 987 547 900
gap 10 – – – – – – 186.8 329.0 251.2 987 547 900
gap 25 – – – – – – 186.9 328.1 251.4 987 547 900
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gap 50 – – – – – – 186.2 329.1 250.8 987 547 900
leaf freq 10 – – – – – – 186.4 329.7 250.7 987 547 900
leaf freq 25 – – – – – – 186.2 328.4 250.7 987 547 900
leaf freq 50 – – – – – – 184.9 328.6 250.9 987 547 900
ssg 10 – – – – – – 186.2 328.3 250.9 987 547 900
ssg 25 – – – – – – 186.4 329.0 250.5 987 547 900
ssg 50 – – – – – – 186.3 328.7 251.4 987 547 900
tree weight 10 3 – – 1 – – 238.1 329.2 250.8 931 547 900
tree weight 25 3 – – 1 – – 237.5 328.3 251.5 931 547 900
tree weight 50 3 – – 1 – – 238.7 328.1 251.7 931 547 900
no clairvoyant – – – – – – – 186.5 329.2 250.6 987 547 900
0-restart – – – – – – – 185.8 328.2 250.5 987 547 900

n2seq36q monotone 10 – 1 1 1 1 1 701.1 1272.7 373.9 3314 7694 1364
monotone 25 – 1 – 1 1 – 698.5 1271.6 284.4 3314 7694 1836
monotone 50 – 1 – 1 1 – 700.3 1271.5 283.2 3314 7694 1836
reg forest 10 – 1 – 1 1 – 698.6 1272.4 285.3 3314 7694 1836
reg forest 25 – 1 – – – – 494.2 752.2 284.7 2900 4707 1836
reg forest 50 – 1 – – – – 495.4 751.7 284.5 2900 4707 1836
gap 10 – 1 – – – – 491.8 748.2 283.9 2900 4707 1836
gap 25 – 1 – – – – 491.7 749.7 284.4 2900 4707 1836
gap 50 – 1 – – – – 494.9 749.2 284.1 2900 4707 1836
leaf freq 10 – 1 – – – – 494.4 750.9 284.0 2900 4707 1836
leaf freq 25 – 1 – – – – 495.6 747.8 284.2 2900 4707 1836
leaf freq 50 – 1 – – – – 490.5 748.3 283.9 2900 4707 1836
ssg 10 – 1 – 1 1 1 545.1 835.4 344.7 3163 3213 3005
ssg 25 – 1 – 1 1 – 543.6 835.1 283.6 3163 3213 1836
ssg 50 – 1 – 1 1 – 544.8 1161.8 284.1 3163 7440 1836
tree weight 10 1 1 – 1 1 – 583.7 835.0 284.7 3082 3213 1836
tree weight 25 1 1 – 1 1 – 629.0 836.7 283.6 2327 3213 1836
tree weight 50 2 1 – 1 1 – 906.1 834.8 282.6 9259 3213 1836
no clairvoyant – – 1 – – – – 493.5 747.5 283.5 2900 4707 1836
0-restart – – – – – – – 493.1 262.5 286.5 2900 1647 1836

n3div36 monotone 10 1 1 1 – 1 – t t t 85942 98022 76979
monotone 25 1 1 1 – – – t t t 86879 78531 76615
monotone 50 1 1 1 – – – t t t 86279 78290 76204
reg forest 10 1 1 1 1 1 – t t t 116570 96212 76257
reg forest 25 1 1 1 – – – t t t 86384 78278 75829
reg forest 50 1 1 1 – – – t t t 86733 79212 75931
gap 10 1 1 1 1 1 1 t t t 110881 96831 101895
gap 25 1 1 1 1 1 1 t t t 102947 99895 94720
gap 50 1 1 1 – – – t t t 85742 78570 76214
leaf freq 10 1 1 1 1 1 1 t t t 97494 102035 94176
leaf freq 25 1 1 1 1 1 1 t t t 95873 93915 88224
leaf freq 50 1 1 1 1 1 1 t t t 77581 84593 76942
ssg 10 1 1 1 1 1 1 t t t 117770 95641 100508
ssg 25 1 1 1 1 1 1 t t t 119354 97065 99270
ssg 50 1 1 1 1 1 1 t t t 115029 98245 93856
tree weight 10 1 1 1 1 1 1 t t t 115842 97767 97137
tree weight 25 1 1 1 1 1 1 t t t 111021 98120 96067
tree weight 50 1 1 1 1 1 1 t t t 114055 99599 98087
no clairvoyant – 1 1 1 – – – t t t 85904 78267 76091
0-restart – – – – – – – t t t 67112 64264 63996

n5-3 monotone 10 – – – – – – 34.3 43.4 33.6 1032 1492 786
monotone 25 – – – – – – 34.3 43.3 33.3 1032 1492 786
monotone 50 – – – – – – 34.4 43.6 33.3 1032 1492 786
reg forest 10 – – – – – – 34.9 44.0 33.9 1032 1492 786
reg forest 25 – – – – – – 35.0 44.2 33.6 1032 1492 786
reg forest 50 – – – – – – 34.8 44.0 34.1 1032 1492 786
gap 10 – – – – – – 34.3 43.4 33.4 1032 1492 786
gap 25 – – – – – – 34.2 43.6 33.3 1032 1492 786
gap 50 – – – – – – 34.4 43.4 33.4 1032 1492 786
leaf freq 10 – – – – – – 34.3 43.3 33.4 1032 1492 786
leaf freq 25 – – – – – – 34.3 43.4 33.2 1032 1492 786
leaf freq 50 – – – – – – 34.5 43.4 33.2 1032 1492 786
ssg 10 – – – – – – 34.3 43.5 33.2 1032 1492 786
ssg 25 – – – – – – 34.3 43.4 33.6 1032 1492 786
ssg 50 – – – – – – 34.4 43.4 33.4 1032 1492 786
tree weight 10 – – – – – – 34.1 43.2 33.2 1032 1492 786
tree weight 25 – – – – – – 34.3 43.3 33.3 1032 1492 786
tree weight 50 – – – – – – 34.3 43.4 33.3 1032 1492 786
no clairvoyant – – – – – – – 34.8 43.4 33.4 1032 1492 786
0-restart – – – – – – – 34.2 43.5 33.4 1032 1492 786

neos-1122047 monotone 10 – – – – – – 10.2 10.4 10.3 1 1 1
monotone 25 – – – – – – 10.3 10.3 10.1 1 1 1
monotone 50 – – – – – – 10.4 10.4 10.6 1 1 1
reg forest 10 – – – – – – 10.4 10.4 10.3 1 1 1
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reg forest 25 – – – – – – 10.4 10.5 10.3 1 1 1
reg forest 50 – – – – – – 10.3 10.2 10.3 1 1 1
gap 10 – – – – – – 10.5 10.2 10.6 1 1 1
gap 25 – – – – – – 10.5 10.2 10.3 1 1 1
gap 50 – – – – – – 10.2 10.4 10.3 1 1 1
leaf freq 10 – – – – – – 10.2 10.3 10.4 1 1 1
leaf freq 25 – – – – – – 10.3 10.3 10.2 1 1 1
leaf freq 50 – – – – – – 10.6 10.3 10.4 1 1 1
ssg 10 – – – – – – 10.4 10.4 10.4 1 1 1
ssg 25 – – – – – – 10.4 10.6 10.4 1 1 1
ssg 50 – – – – – – 10.3 10.4 10.2 1 1 1
tree weight 10 – – – – – – 10.4 10.2 10.2 1 1 1
tree weight 25 – – – – – – 10.4 10.3 9.8 1 1 1
tree weight 50 – – – – – – 10.4 10.2 10.1 1 1 1
no clairvoyant – – – – – – – 10.7 10.1 10.3 1 1 1
0-restart – – – – – – – 10.3 10.2 10.1 1 1 1

neos-1171448 monotone 10 – – – – – – 6.1 8.3 8.0 1 1 1
monotone 25 – – – – – – 6.1 8.4 7.8 1 1 1
monotone 50 – – – – – – 6.1 8.4 7.9 1 1 1
reg forest 10 – – – – – – 6.2 8.4 8.0 1 1 1
reg forest 25 – – – – – – 6.1 8.4 8.0 1 1 1
reg forest 50 – – – – – – 6.2 8.3 8.0 1 1 1
gap 10 – – – – – – 6.2 8.3 7.9 1 1 1
gap 25 – – – – – – 6.0 8.3 7.9 1 1 1
gap 50 – – – – – – 6.1 8.3 7.9 1 1 1
leaf freq 10 – – – – – – 6.1 8.2 7.9 1 1 1
leaf freq 25 – – – – – – 6.2 8.2 7.9 1 1 1
leaf freq 50 – – – – – – 6.1 8.3 7.9 1 1 1
ssg 10 – – – – – – 6.2 8.3 7.8 1 1 1
ssg 25 – – – – – – 6.1 8.3 7.9 1 1 1
ssg 50 – – – – – – 6.2 8.3 7.8 1 1 1
tree weight 10 – – – – – – 6.1 8.3 7.8 1 1 1
tree weight 25 – – – – – – 6.1 8.3 7.9 1 1 1
tree weight 50 – – – – – – 6.1 8.2 7.9 1 1 1
no clairvoyant – – – – – – – 6.2 8.3 7.9 1 1 1
0-restart – – – – – – – 6.1 8.2 7.9 1 1 1

neos-1171737 monotone 10 – – – – – – t t t 2471 2386 1687
monotone 25 – – – – – – t t t 2471 2394 1705
monotone 50 – – – – – – t t t 2476 2376 1686
reg forest 10 – – – – – – t t t 2471 2382 1685
reg forest 25 – – – – – – t t t 2477 2397 1686
reg forest 50 – – – – – – t t t 2471 2390 1683
gap 10 – – – – – – t t t 2474 2382 1685
gap 25 – – – – – – t t t 2468 2387 1685
gap 50 – – – – – – t t t 2471 2382 1680
leaf freq 10 – – – – – – t t t 2471 2387 1686
leaf freq 25 – – – – – – t t t 2476 2382 1686
leaf freq 50 – – – – – – t t t 2476 2385 1685
ssg 10 – – – – – – t t t 2467 2386 1692
ssg 25 – – – – – – t t t 2471 2388 1685
ssg 50 – – – – – – t t t 2471 2389 1685
tree weight 10 – – – – – – t t t 2492 2386 1687
tree weight 25 – – – – – – t t t 2472 2377 1689
tree weight 50 – – – – – – t t t 2471 2382 1685
no clairvoyant – – – – – – – t t t 2471 2388 1689
0-restart – – – – – – – t t t 2479 2386 1686

neos-1354092 monotone 10 – – – – – – t t t 79 179 122
monotone 25 – – – – – – t t t 79 179 122
monotone 50 – – – – – – t t t 79 179 122
reg forest 10 – – – – – – t t t 79 179 122
reg forest 25 – – – – – – t t t 79 179 122
reg forest 50 – – – – – – t t t 79 179 122
gap 10 – – – – – – t t t 79 179 122
gap 25 – – – – – – t t t 79 179 122
gap 50 – – – – – – t t t 79 179 122
leaf freq 10 – – – – – – t t t 79 179 122
leaf freq 25 – – – – – – t t t 79 179 122
leaf freq 50 – – – – – – t t t 79 179 122
ssg 10 – – – – – – t t t 79 179 122
ssg 25 – – – – – – t t t 79 179 122
ssg 50 – – – – – – t t t 79 179 122
tree weight 10 – – – – – – t t t 79 179 122
tree weight 25 – – – – – – t t t 79 179 122
tree weight 50 – – – – – – t t t 79 179 122
no clairvoyant – – – – – – – t t t 79 179 122
0-restart – – – – – – – t t t 79 179 122
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neos-1445765 monotone 10 – – – – – – 30.9 36.2 34.6 117 151 107
monotone 25 – – – – – – 31.2 36.0 34.5 117 151 107
monotone 50 – – – – – – 30.9 35.8 34.3 117 151 107
reg forest 10 – – – – – – 31.0 36.1 34.5 117 151 107
reg forest 25 – – – – – – 31.0 36.3 34.6 117 151 107
reg forest 50 – – – – – – 30.9 36.1 34.9 117 151 107
gap 10 – – – – – – 30.8 36.0 34.6 117 151 107
gap 25 – – – – – – 31.0 35.8 34.3 117 151 107
gap 50 – – – – – – 31.0 36.1 34.4 117 151 107
leaf freq 10 – – – – – – 30.9 36.0 34.4 117 151 107
leaf freq 25 – – – – – – 30.9 35.9 34.5 117 151 107
leaf freq 50 – – – – – – 30.8 36.0 34.2 117 151 107
ssg 10 – – – – – – 31.0 36.0 34.8 117 151 107
ssg 25 – – – – – – 30.7 35.9 34.4 117 151 107
ssg 50 – – – – – – 30.9 36.0 34.4 117 151 107
tree weight 10 – – – – – – 30.8 36.0 34.5 117 151 107
tree weight 25 – – – – – – 31.0 36.0 34.4 117 151 107
tree weight 50 – – – – – – 30.9 35.9 34.6 117 151 107
no clairvoyant – – – – – – – 31.1 36.1 34.3 117 151 107
0-restart – – – – – – – 30.8 35.8 34.4 117 151 107

neos-1456979 monotone 10 – – – 1 1 1 t t t 14654 17149 11370
monotone 25 – – – 1 1 – t t t 14891 17129 11878
monotone 50 – – – – – – t t t 16052 19372 11932
reg forest 10 – – – 1 1 1 t t t 14652 17094 11508
reg forest 25 – – – 1 1 1 t t t 14189 17633 11443
reg forest 50 – – – – – – t t t 16070 19245 11877
gap 10 – – – 1 1 1 t t t 13969 24790 10172
gap 25 – – – 1 1 – t t t 12691 24786 11982
gap 50 – – – 1 1 – t t t 13663 18601 11877
leaf freq 10 – – – 1 1 – t t t 13077 19543 11889
leaf freq 25 – – – – – – t t t 16057 19398 11976
leaf freq 50 – – – – – – t t t 16094 19318 11972
ssg 10 – – – 1 1 1 t t t 17234 17038 10420
ssg 25 – – – 1 1 1 t t t 17478 17009 10380
ssg 50 – – – 1 1 1 2787.5 t t 41174 17093 10405
tree weight 10 – – – 1 1 1 t t t 14531 19796 13688
tree weight 25 – – – 1 1 1 t t t 18552 20105 12253
tree weight 50 – – – 1 1 1 t t t 16790 19809 9639
no clairvoyant – – – – – – – t t t 16116 19423 11876
0-restart – – – – – – – t t t 16126 19358 11769

neos-1582420 monotone 10 – – 1 – – – 33.9 17.5 21.8 436 77 61
monotone 25 – – 1 – – – 34.0 17.6 21.9 436 77 61
monotone 50 – – 1 – – – 34.0 17.5 21.9 436 77 61
reg forest 10 – – 1 – – – 34.3 17.7 22.0 436 77 61
reg forest 25 – – 1 – – – 34.3 17.7 22.1 436 77 61
reg forest 50 – – 1 – – – 34.3 17.7 22.1 436 77 61
gap 10 – – 1 – – – 34.0 17.5 22.0 436 77 61
gap 25 – – 1 – – – 33.9 17.5 22.1 436 77 61
gap 50 – – 1 – – – 33.8 17.5 21.9 436 77 61
leaf freq 10 – – 1 – – – 34.0 17.5 21.8 436 77 61
leaf freq 25 – – 1 – – – 33.8 17.6 21.9 436 77 61
leaf freq 50 – – 1 – – – 34.0 17.6 21.9 436 77 61
ssg 10 – – 1 – – – 34.0 17.5 21.9 436 77 61
ssg 25 – – 1 – – – 33.9 17.5 21.9 436 77 61
ssg 50 – – 1 – – – 34.0 17.4 21.8 436 77 61
tree weight 10 – – 1 – – – 33.8 17.5 21.9 436 77 61
tree weight 25 – – 1 – – – 33.9 17.5 22.0 436 77 61
tree weight 50 – – 1 – – – 33.9 17.7 21.9 436 77 61
no clairvoyant – – – 1 – – – 34.5 17.5 21.9 436 77 61
0-restart – – – – – – – 33.8 17.5 20.4 436 77 87

neos-.-temuka monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
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tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-.-crna monotone 10 – – – 1 1 1 t t t 1764394 3428097 1141288
monotone 25 – – – 1 1 1 t t t 1765898 3428730 1137588
monotone 50 – – – 1 1 1 t t t 1752129 3434123 1139974
reg forest 10 – – – 1 1 1 t t t 1748731 2648223 2400033
reg forest 25 – – – – – – t t t 2397863 913926 1606853
reg forest 50 – – – – – – t t t 2396324 912981 1603796
gap 10 – – – – – – t t t 2414477 935365 1634555
gap 25 – – – – – – t t t 2429722 930132 1628793
gap 50 – – – – – – t t t 2425709 928592 1636464
leaf freq 10 – – – 1 1 1 t t t 2961886 3008592 2393439
leaf freq 25 – – – 1 1 1 t t t 4025633 3376019 4013418
leaf freq 50 – – – 1 1 1 t t t 4026599 2980911 3165709
ssg 10 – – – 1 1 1 t t t 2019598 3528786 2806427
ssg 25 – – – 1 1 1 t t t 2263545 3431312 2612018
ssg 50 – – – 1 1 1 t t t 1151669 2280886 3649233
tree weight 10 – – – 1 1 1 t t t 2089698 2986524 1905703
tree weight 25 – – – 1 1 1 t t t 2088337 4078582 1907660
tree weight 50 – – – 1 1 1 t t t 2091630 2714061 982177
no clairvoyant – – – – – – – t t t 2413861 928297 1636537
0-restart – – – – – – – t t t 2426843 927255 1638732

neos-.-doon monotone 10 – – 1 – – – t t t 23943 4928 49645
monotone 25 – – 1 – – – t t t 24246 4928 49881
monotone 50 – – 1 – – – t t t 24339 4944 49647
reg forest 10 – – 1 – – – t t t 24235 4926 49401
reg forest 25 – – 1 – – – t t t 23978 4937 49669
reg forest 50 – – 1 – – – t t t 24214 4942 50055
gap 10 – – 1 – – – t t t 24223 4944 49645
gap 25 – – 1 – – – t t t 24198 4919 49808
gap 50 – – 1 – – – t t t 24251 4928 49645
leaf freq 10 – – 1 – – – t t t 24200 4936 49655
leaf freq 25 – – 1 – – – t t t 24530 4918 49394
leaf freq 50 – – 1 – – – t t t 24272 4929 49326
ssg 10 – – 1 – – – t t t 24231 4928 49330
ssg 25 – – 1 – – – t t t 23965 4936 49716
ssg 50 – – 1 – – – t t t 23965 4928 49680
tree weight 10 – – 1 – – – t t t 24229 4928 49645
tree weight 25 – – 1 – – – t t t 24201 4935 49598
tree weight 50 – – 1 – – – t t t 23961 4919 50085
no clairvoyant – – – 1 – – – t t t 23991 4936 49661
0-restart – – – – – – – t t t 24023 4936 31326

neos-.-inde monotone 10 1 1 – 1 – – t t 3001.6 240430 234757 223895
monotone 25 1 1 – 1 – – t t 2991.1 240480 235010 223895
monotone 50 1 1 – 1 – – t t 3006.7 240030 235196 223895
reg forest 10 1 1 – 1 – – t t 2992.3 239867 232995 223895
reg forest 25 1 1 – – – – t t 3006.0 262976 232114 223895
reg forest 50 1 1 – – – – t t 3003.6 261829 233763 223895
gap 10 1 1 – – – – t t 3001.0 261504 234879 223895
gap 25 1 1 – – – – t t 3002.7 264066 234424 223895
gap 50 1 1 – – – – t t 3009.1 263073 235611 223895
leaf freq 10 1 1 – 1 1 – t t 2982.3 208765 196963 223895
leaf freq 25 1 1 – 1 1 – t t 2994.9 227732 205306 223895
leaf freq 50 1 1 – 1 1 – t t 2998.7 236713 205965 223895
ssg 10 1 1 – 1 1 – t t 3002.4 247998 173848 223895
ssg 25 1 1 – 1 1 – t t 2999.3 256642 201188 223895
ssg 50 1 1 – 1 1 – t t 3008.2 255799 210409 223895
tree weight 10 1 1 – 1 1 – t t 3009.3 252019 293358 223895
tree weight 25 1 1 – 1 1 – t t 3003.7 245510 236403 223895
tree weight 50 1 1 – 1 1 – t t 2980.2 266145 257670 223895
no clairvoyant – 1 1 – – – – t t 3004.2 264358 236540 223895
0-restart – – – – – – – t 1848.8 3007.0 279140 104553 223895

neos-.-joes monotone 10 – – – – – – 18.1 16.4 15.9 1 1 1
monotone 25 – – – – – – 18.1 16.4 16.0 1 1 1
monotone 50 – – – – – – 18.1 16.4 15.8 1 1 1
reg forest 10 – – – – – – 18.2 16.4 16.2 1 1 1
reg forest 25 – – – – – – 18.3 17.1 16.1 1 1 1
reg forest 50 – – – – – – 17.9 16.5 16.1 1 1 1
gap 10 – – – – – – 18.1 16.4 16.0 1 1 1
gap 25 – – – – – – 18.2 16.4 15.8 1 1 1
gap 50 – – – – – – 18.1 16.3 16.0 1 1 1
leaf freq 10 – – – – – – 18.2 16.3 16.0 1 1 1
leaf freq 25 – – – – – – 18.1 16.4 15.9 1 1 1
leaf freq 50 – – – – – – 18.2 16.4 16.0 1 1 1
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ssg 10 – – – – – – 18.1 16.4 16.1 1 1 1
ssg 25 – – – – – – 18.2 16.4 15.8 1 1 1
ssg 50 – – – – – – 18.1 16.4 15.9 1 1 1
tree weight 10 – – – – – – 18.1 16.5 16.0 1 1 1
tree weight 25 – – – – – – 18.1 16.3 15.8 1 1 1
tree weight 50 – – – – – – 18.1 16.3 16.0 1 1 1
no clairvoyant – – – – – – – 18.1 16.4 16.0 1 1 1
0-restart – – – – – – – 18.0 16.2 15.9 1 1 1

neos-.-krka monotone 10 – – – 1 1 1 237.3 112.4 106.4 6552 4696 4990
monotone 25 – – – 1 1 1 238.2 111.9 105.5 6552 4696 4990
monotone 50 – – – 1 1 1 239.4 112.8 105.1 6552 4696 4990
reg forest 10 – – – 1 1 1 238.5 112.6 105.1 6552 4696 4990
reg forest 25 – – – – – – 71.0 632.1 220.8 4893 44465 12084
reg forest 50 – – – – – – 70.9 627.2 221.5 4893 44465 12084
gap 10 – – – 1 – 1 238.1 623.5 105.5 6552 44465 4990
gap 25 – – – 1 – 1 237.9 626.1 104.8 6552 44465 4990
gap 50 – – – 1 – 1 238.4 620.5 104.9 6552 44465 4990
leaf freq 10 – – – 1 1 1 239.0 513.9 105.7 6552 21251 4990
leaf freq 25 – – – 1 1 1 238.7 730.0 105.6 6552 44487 4990
leaf freq 50 – – – 1 – 1 238.9 623.5 105.3 6552 44465 4990
ssg 10 – – – 1 1 1 238.8 305.3 105.6 6552 12556 4990
ssg 25 – – – 1 1 1 237.9 1157.0 105.0 6552 160879 4990
ssg 50 – – – 1 1 1 237.9 677.0 104.3 6552 28673 4990
tree weight 10 – – – 1 – 1 235.2 621.1 105.1 6552 44465 4990
tree weight 25 – – – 1 – 1 237.8 622.9 104.8 6552 44465 4990
tree weight 50 – – – 1 – 1 237.2 621.6 104.9 6552 44465 4990
no clairvoyant – – – – – – – 70.7 621.9 221.1 4893 44465 12084
0-restart – – – – – – – 69.8 619.0 220.6 4893 44465 12084

neos-.-loue monotone 10 – – – 1 1 1 1196.2 1414.8 t 62701 83579 220156
monotone 25 – – – 1 1 1 1185.2 1418.2 t 62701 83579 219649
monotone 50 – – – 1 1 1 1194.2 1419.4 t 62701 83579 219744
reg forest 10 – – – 1 1 1 1196.2 1424.8 t 62701 83579 220190
reg forest 25 – – – – – – t 3255.7 t 314794 228746 355747
reg forest 50 – – – – – – t 3258.7 t 316069 228746 355695
gap 10 – – – 1 1 1 1195.9 1416.2 t 62701 83579 219400
gap 25 – – – 1 1 1 1195.6 1425.6 t 62701 83579 220166
gap 50 – – – 1 1 1 1197.1 1404.5 t 62701 83579 220014
leaf freq 10 – – – 1 1 1 1194.6 1424.0 t 62701 83579 219157
leaf freq 25 – – – 1 1 1 1185.1 1413.2 t 62701 83579 219626
leaf freq 50 – – – 1 1 1 1198.8 1414.6 t 62701 83579 217695
ssg 10 – – – 1 1 1 1196.0 1420.0 t 62701 83579 220228
ssg 25 – – – 1 1 1 1198.1 1414.7 t 62701 83579 219664
ssg 50 – – – 1 1 1 1194.3 1422.4 t 62701 83579 220516
tree weight 10 – – – 1 1 1 1192.8 1421.9 t 62701 83579 219337
tree weight 25 – – – 1 1 1 1197.2 1422.3 t 62701 83579 219629
tree weight 50 – – – 1 1 1 1196.4 1421.7 t 62701 83579 219873
no clairvoyant – – – – – – – t 3252.1 t 314174 228746 361702
0-restart – – – – – – – t 3218.1 t 317801 228746 361003

neos-.-murg monotone 10 – – – 1 1 1 t t t 4264891 3396342 3853846
monotone 25 – – – 1 1 1 t t t 4263454 3408427 3827582
monotone 50 – – – 1 1 1 t t t 4281216 3406507 3842307
reg forest 10 – – – 1 1 1 t t t 3865009 3395778 3775878
reg forest 25 – – – 1 1 1 t t t 3787612 3973859 4077428
reg forest 50 – – – – – – t t t 3692402 3918051 3638220
gap 10 – – – 1 1 1 t t t 3400886 4227465 4199577
gap 25 – – – 1 1 1 t t t 4049956 3854966 3645339
gap 50 – – – 1 1 1 t t t 4553089 4214825 3998798
leaf freq 10 – – – 1 1 1 t t t 3722465 3928991 3815978
leaf freq 25 – – – 1 1 1 t t t 3709729 4140723 4139126
leaf freq 50 – – – 1 1 1 t t t 3706251 4101766 3922475
ssg 10 – – – 1 1 1 t t t 3720854 3901715 4191758
ssg 25 – – – 1 1 1 t t t 4457707 4289354 4116587
ssg 50 – – – 1 1 1 t t t 3876557 4062996 3823897
tree weight 10 – – – 1 1 1 t t t 3596910 3738533 3888858
tree weight 25 – – – 1 1 1 t t t 4127635 4397799 3434185
tree weight 50 – – – 1 1 1 t t t 4104728 3534590 3719614
no clairvoyant – – – – – – – t t t 3788238 4069349 3772605
0-restart – – – – – – – t t t 3812977 4066288 3748342

neos-.-nubu monotone 10 1 – 2 1 – 1 21.4 15.4 19.5 3106 1771 2168
monotone 25 – – 2 – – 1 15.2 15.5 19.5 1865 1771 2168
monotone 50 – – – – – – 15.1 15.6 54.8 1865 1771 11285
reg forest 10 – – – – – – 15.8 16.0 56.6 1865 1771 11285
reg forest 25 – – – – – – 15.8 16.0 56.6 1865 1771 11285
reg forest 50 – – – – – – 15.8 16.0 56.6 1865 1771 11285
gap 10 – – – – – – 15.1 15.5 54.8 1865 1771 11285
gap 25 – – – – – – 15.3 15.6 54.7 1865 1771 11285
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gap 50 – – – – – – 15.1 15.5 54.9 1865 1771 11285
leaf freq 10 – – – – – – 15.2 15.5 55.0 1865 1771 11285
leaf freq 25 – – – – – – 15.2 15.6 55.0 1865 1771 11285
leaf freq 50 – – – – – – 15.2 15.5 54.9 1865 1771 11285
ssg 10 1 – 2 1 – 1 21.4 15.6 19.3 3107 1771 2168
ssg 25 3 – 2 1 – 1 17.9 15.5 26.0 1422 1771 4499
ssg 50 – – 1 – – 1 15.2 15.5 17.8 1865 1771 1772
tree weight 10 1 – 2 1 – 1 21.2 15.5 18.1 3106 1771 1822
tree weight 25 1 – 2 1 – 1 21.3 15.4 20.3 3106 1771 2525
tree weight 50 3 – 3 1 – 1 17.9 15.5 43.7 1422 1771 7079
no clairvoyant – – – – – – – 15.7 15.6 54.7 1865 1771 11285
0-restart – – – – – – – 15.2 15.4 54.6 1865 1771 11285

neos-.-puriri monotone 10 – – – 1 1 1 t t t 1637 2177 1854
monotone 25 – – – 1 1 1 t t t 1637 2162 1859
monotone 50 – – – 1 – – t t t 1637 2035 2011
reg forest 10 – – – 1 1 1 t t t 1626 2163 1865
reg forest 25 – – – 1 1 1 t t t 1712 1910 1675
reg forest 50 – – – – – – t t t 2155 2058 2050
gap 10 – – – 1 1 1 t t t 1522 1631 1718
gap 25 – – – 1 1 1 t t t 1522 1622 1765
gap 50 – – – 1 – 1 t t t 1784 2079 1874
leaf freq 10 – – – – – – t t t 2147 2054 2015
leaf freq 25 – – – – – – t t t 2155 2062 2011
leaf freq 50 – – – – – – t t t 2148 2058 2017
ssg 10 – – – 1 1 1 t t t 1637 1624 1840
ssg 25 – – – 1 1 1 t t t 1776 1622 1952
ssg 50 – – – 1 1 1 t t t 1898 1623 1996
tree weight 10 – – – 1 1 1 t t t 1636 2107 1864
tree weight 25 – – – 1 1 1 t t t 1637 1900 1828
tree weight 50 – – – 1 1 1 t t t 1786 1909 1849
no clairvoyant – – – – – – – t t t 2157 2057 2018
0-restart – – – – – – – t t t 2148 2084 2013

neos-.-awhea monotone 10 – – – – – – 1.1 1.1 1.1 1 1 1
monotone 25 – – – – – – 1.1 1.1 1.1 1 1 1
monotone 50 – – – – – – 1.1 1.1 1.1 1 1 1
reg forest 10 – – – – – – 1.2 1.1 1.2 1 1 1
reg forest 25 – – – – – – 1.2 1.1 1.2 1 1 1
reg forest 50 – – – – – – 1.2 1.1 1.2 1 1 1
gap 10 – – – – – – 1.1 1.1 1.1 1 1 1
gap 25 – – – – – – 1.1 1.1 1.1 1 1 1
gap 50 – – – – – – 1.1 1.1 1.1 1 1 1
leaf freq 10 – – – – – – 1.1 1.1 1.1 1 1 1
leaf freq 25 – – – – – – 1.1 1.1 1.1 1 1 1
leaf freq 50 – – – – – – 1.1 1.1 1.1 1 1 1
ssg 10 – – – – – – 1.1 1.1 1.1 1 1 1
ssg 25 – – – – – – 1.1 1.1 1.1 1 1 1
ssg 50 – – – – – – 1.1 1.1 1.1 1 1 1
tree weight 10 – – – – – – 1.1 1.1 1.1 1 1 1
tree weight 25 – – – – – – 1.1 1.1 1.1 1 1 1
tree weight 50 – – – – – – 1.1 1.1 1.1 1 1 1
no clairvoyant – – – – – – – 1.2 1.1 1.1 1 1 1
0-restart – – – – – – – 1.1 1.1 1.1 1 1 1

neos-.-bobin monotone 10 – – – 1 1 1 2551.8 3455.3 2582.2 12596 23911 14310
monotone 25 – – – – – 1 1186.3 895.8 2575.1 4938 4848 14310
monotone 50 – – – – – – 1182.0 896.6 887.9 4938 4848 6257
reg forest 10 – – – – – 1 1186.8 898.1 2593.3 4938 4848 14310
reg forest 25 – – – – – – 1189.8 895.8 888.6 4938 4848 6257
reg forest 50 – – – – – – 1183.3 899.5 888.9 4938 4848 6257
gap 10 – – – – – – 1177.7 896.8 891.6 4938 4848 6257
gap 25 – – – – – – 1172.4 894.4 887.1 4938 4848 6257
gap 50 – – – – – – 1172.7 895.1 891.8 4938 4848 6257
leaf freq 10 – – – – – – 1180.0 897.7 886.0 4938 4848 6257
leaf freq 25 – – – – – – 1184.0 902.5 885.5 4938 4848 6257
leaf freq 50 – – – – – – 1180.1 895.4 893.4 4938 4848 6257
ssg 10 – – – 1 1 1 1707.8 t 2554.4 5577 26141 14310
ssg 25 – – – 1 1 1 2336.7 t 2573.9 11055 35659 14310
ssg 50 – – – – – 1 1178.1 906.2 3011.8 4938 4848 16089
tree weight 10 – – – 1 1 1 t 2752.7 2221.3 79326 11448 17076
tree weight 25 – – – 1 1 1 t 2761.3 t 79107 11448 43581
tree weight 50 – – – 1 1 1 t 2745.0 t 79342 11448 47689
no clairvoyant – – – – – – – 1185.3 895.8 890.9 4938 4848 6257
0-restart – – – – – – – 1182.8 899.1 890.5 4938 4848 6257

neos-.-bohle monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
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reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-.-turama monotone 10 – – – – – – t t t 72 1073 10
monotone 25 – – – – – – t t t 72 1073 10
monotone 50 – – – – – – t t t 74 1073 10
reg forest 10 – – – – – – t t t 72 1072 10
reg forest 25 – – – – – – t t t 71 1073 10
reg forest 50 – – – – – – t t t 72 1073 10
gap 10 – – – – – – t t t 75 1073 10
gap 25 – – – – – – t t t 71 1073 10
gap 50 – – – – – – t t t 72 1076 10
leaf freq 10 – – – – – – t t t 72 1073 10
leaf freq 25 – – – – – – t t t 72 1073 10
leaf freq 50 – – – – – – t t t 72 1073 10
ssg 10 – – – – – – t t t 71 1073 10
ssg 25 – – – – – – t t t 72 1073 10
ssg 50 – – – – – – t t t 71 1073 10
tree weight 10 – – – – – – t t t 74 1073 10
tree weight 25 – – – – – – t t t 71 1071 10
tree weight 50 – – – – – – t t t 72 1073 10
no clairvoyant – – – – – – – t t t 72 1072 10
0-restart – – – – – – – t t t 74 1073 10

neos-.-kasai monotone 10 – – – – – – t t t 2168241 1621393 2321593
monotone 25 – – – – – – t t t 2154283 1611565 2329633
monotone 50 – – – – – – t t t 2158281 1621491 2335202
reg forest 10 – – – – – – t t t 2147237 1613121 2315975
reg forest 25 – – – – – – t t t 2148252 1618551 2328994
reg forest 50 – – – – – – t t t 2153470 1617020 2320795
gap 10 – – – – – – t t t 2150824 1622098 2308819
gap 25 – – – – – – t t t 2166200 1623893 2319081
gap 50 – – – – – – t t t 2152493 1615315 2329171
leaf freq 10 – – – – – – t t t 2156610 1622330 2330401
leaf freq 25 – – – – – – t t t 2148501 1619410 2330937
leaf freq 50 – – – – – – t t t 2174963 1622551 2329722
ssg 10 – – – – – – t t t 2154892 1619552 2327766
ssg 25 – – – – – – t t t 2161322 1619761 2328740
ssg 50 – – – – – – t t t 2156605 1622826 2334793
tree weight 10 – – – – – – t t t 2155294 1621260 2321227
tree weight 25 – – – – – – t t t 2145471 1619190 2334662
tree weight 50 – – – – – – t t t 2161041 1621173 2325326
no clairvoyant – – – – – – – t t t 2148745 1620862 2323783
0-restart – – – – – – – t t t 2157682 1620139 2332963

neos-.-kumeu monotone 10 – – – – – – t t t 68 40 1
monotone 25 – – – – – – t t t 68 40 1
monotone 50 – – – – – – t t t 67 40 1
reg forest 10 – – – – – – t t t 68 40 1
reg forest 25 – – – – – – t t t 69 40 1
reg forest 50 – – – – – – t t t 68 40 1
gap 10 – – – – – – t t t 69 40 1
gap 25 – – – – – – t t t 68 40 1
gap 50 – – – – – – t t t 67 39 1
leaf freq 10 – – – – – – t t t 68 39 1
leaf freq 25 – – – – – – t t t 68 39 1
leaf freq 50 – – – – – – t t t 68 39 1
ssg 10 – – – – – – t t t 68 40 1
ssg 25 – – – – – – t t t 68 43 1
ssg 50 – – – – – – t t t 68 40 1
tree weight 10 – – – – – – t t t 67 43 1
tree weight 25 – – – – – – t t t 68 40 1
tree weight 50 – – – – – – t t t 68 40 1
no clairvoyant – – – – – – – t t t 68 40 1
0-restart – – – – – – – t t t 68 40 1
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neos-.-nidda monotone 10 – – – 1 1 1 t t t 7350460 8055303 8006770
monotone 25 – – – 1 1 1 t t t 7325497 8134786 8000601
monotone 50 – – – 1 1 – t t t 7335271 8068909 8465995
reg forest 10 – – – 1 1 1 t t t 7389396 8363124 8157817
reg forest 25 – – – – – – t t t 7152712 7491463 7816851
reg forest 50 – – – – – – t t t 7229017 7491903 7806345
gap 10 – – – – – – t t t 7677894 8016603 8331077
gap 25 – – – – – – t t t 7685585 8043071 8412625
gap 50 – – – – – – t t t 7685156 7996311 8371675
leaf freq 10 – – – 1 1 1 t t t 7735673 8496604 8835359
leaf freq 25 – – – 1 1 1 t t t 7616538 8753882 8178000
leaf freq 50 – – – 1 1 1 t t t 7571923 8747486 7952207
ssg 10 – – – 1 1 1 t t t 7143552 7973159 8032514
ssg 25 – – – 1 1 1 t t t 7124035 7597790 8156112
ssg 50 – – – 1 1 1 t t t 7085588 7617103 8144908
tree weight 10 – – – 1 1 1 t t t 7603982 8059060 8328594
tree weight 25 – – – 1 1 1 t t t 7545734 8094328 8337399
tree weight 50 – – – 1 1 1 t t t 7532719 8233678 8350748
no clairvoyant – – – – – – – t t t 7664833 8043420 8458031
0-restart – – – – – – – t t t 7769814 8001812 8485887

neos-.-wolgan monotone 10 – – – 1 – 1 t t t 1232 151 1194
monotone 25 – – – – – 1 t t t 15656 151 1190
monotone 50 – – – – – 1 t t t 15661 151 1190
reg forest 10 – – – 1 – 1 t t t 1230 150 1194
reg forest 25 – – – – – – t t t 15662 153 2963
reg forest 50 – – – – – – t t t 15661 150 2982
gap 10 – – – – – – t t t 15654 151 2978
gap 25 – – – – – – t t t 15673 151 2959
gap 50 – – – – – – t t t 15661 150 3031
leaf freq 10 – – – – – – t t t 15662 151 3013
leaf freq 25 – – – – – – t t t 15662 151 3032
leaf freq 50 – – – – – – t t t 15661 150 2957
ssg 10 – – – – – 1 t t t 15656 151 1194
ssg 25 – – – – – 1 t t t 15654 151 1198
ssg 50 – – – – – 1 t t t 15661 150 1158
tree weight 10 – – – 1 – 1 t t t 15585 151 1194
tree weight 25 – – – 1 – 1 t t t 15585 151 1190
tree weight 50 – – – 1 – 1 t t t 15585 151 1194
no clairvoyant – – – – – – – t t t 15662 151 2957
0-restart – – – – – – – t t t 15661 151 2979

neos-.-rahue monotone 10 – – – 1 1 1 t t t 1516 1359 1516
monotone 25 – – – 1 – – t t t 1515 1871 1889
monotone 50 – – – – – – t t t 1969 1866 1882
reg forest 10 – – – 1 1 1 t t t 1687 1360 1623
reg forest 25 – – – 1 – 1 t t t 1770 1875 1686
reg forest 50 – – – – – – t t t 1935 1902 1886
gap 10 – – – 1 1 1 t t t 1598 1359 1671
gap 25 – – – 1 1 1 t t t 1586 1762 1695
gap 50 – – – 1 1 – t t t 1627 1767 1886
leaf freq 10 – – – – – – t t t 1963 1862 1881
leaf freq 25 – – – – – – t t t 1965 1871 1886
leaf freq 50 – – – – – – t t t 1971 1889 1881
ssg 10 – – – 1 1 – t t t 1609 1486 1884
ssg 25 – – – 1 – – t t t 1505 1868 1873
ssg 50 – – – 1 – – t t t 1639 1871 1873
tree weight 10 – – – 1 1 1 t t t 1583 1366 1516
tree weight 25 – – – 1 1 1 t t t 1663 1360 1516
tree weight 50 – – – 1 1 1 t t t 1756 1640 1766
no clairvoyant – – – – – – – t t t 1966 1867 1889
0-restart – – – – – – – t t t 1965 1874 1880

neos-.-snowy monotone 10 – – – 1 1 1 t t t 4496858 2779691 2675417
monotone 25 – – – 1 1 1 t t t 4498092 2779586 2651255
monotone 50 – – – 1 1 1 t t t 4503691 2782259 2653818
reg forest 10 – – – 1 – 1 t t t 2563209 2752310 2643951
reg forest 25 – – – 1 – 1 t t t 2778455 2723657 2741638
reg forest 50 – – – – – – t t t 2921407 2725321 2697615
gap 10 – – – 1 1 1 t t t 2754077 2734617 2693242
gap 25 – – – 1 1 1 t t t 2604790 2740522 2687097
gap 50 – – – 1 1 1 t t t 2642076 2745932 2418428
leaf freq 10 – – – 1 1 1 t t t 3013192 2801394 2632909
leaf freq 25 – – – 1 1 1 t t t 2841349 2791322 2731582
leaf freq 50 – – – 1 1 1 t t t 3028161 2819390 3090440
ssg 10 – – – 1 1 1 t t t 2743076 2957005 2874432
ssg 25 – – – 1 1 1 t t t 2907915 2953891 2921768
ssg 50 – – – 1 1 1 t t t 3132795 2960073 2817325
tree weight 10 – – – 1 1 1 t t t 2598289 2638365 2614214
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tree weight 25 – – – 1 1 1 t t t 2608120 2635310 2625329
tree weight 50 – – – 1 1 1 t t t 2615846 2638697 2626046
no clairvoyant – – – – – – – t t t 2991115 2777817 2755180
0-restart – – – – – – – t t t 2989726 2765393 2791112

neos-.-tavua monotone 10 – – – 1 – 1 t t t 8992 8938 12428
monotone 25 – – – – – 1 t t t 10708 8927 12456
monotone 50 – – – – – – t t t 10650 8935 9348
reg forest 10 – – – 1 1 1 t t t 8977 7741 7701
reg forest 25 – – – – – 1 t t t 10692 8901 7677
reg forest 50 – – – – – – t t t 10679 8932 9143
gap 10 – – – 1 1 1 t t t 10290 8197 9576
gap 25 – – – 1 – 1 t t t 9442 9057 7855
gap 50 – – – – – – t t t 10730 8950 9271
leaf freq 10 – – – 1 1 1 t t t 10310 9997 12129
leaf freq 25 – – – 1 – – t t t 10279 9052 9262
leaf freq 50 – – – – – – t t t 10985 8957 9203
ssg 10 – – – 1 1 1 t t t 10425 8098 11285
ssg 25 – – – 1 – 1 t t t 9329 8907 15877
ssg 50 – – – – – – t t t 10784 8922 9267
tree weight 10 – – – 1 1 1 t t t 10655 9007 12439
tree weight 25 – – – 1 1 1 t t t 10796 9006 11752
tree weight 50 – – – 1 1 1 t t t 13284 7567 9663
no clairvoyant – – – – – – – t t t 10574 8877 9262
0-restart – – – – – – – t t t 10786 8925 9275

neos-.-turia monotone 10 3 2 2 – – – 433.3 382.6 491.1 4 3 3
monotone 25 3 2 2 – – – 439.2 378.9 489.4 4 3 3
monotone 50 3 2 2 – – – 441.5 379.5 499.2 4 3 3
reg forest 10 3 2 2 – – – 441.0 381.0 497.7 4 3 3
reg forest 25 3 2 2 – – – 436.2 383.4 503.4 4 3 3
reg forest 50 3 2 2 – – – 432.7 379.6 491.8 4 3 3
gap 10 3 2 2 – – – 445.0 395.9 487.2 4 3 3
gap 25 3 2 2 – – – 436.2 381.9 487.6 4 3 3
gap 50 3 2 2 – – – 434.3 380.1 487.7 4 3 3
leaf freq 10 3 2 2 – – – 440.8 380.3 485.8 4 3 3
leaf freq 25 3 2 2 – – – 433.4 381.1 489.6 4 3 3
leaf freq 50 3 2 2 – – – 443.1 381.3 489.7 4 3 3
ssg 10 3 2 2 – – – 449.8 389.0 486.3 4 3 3
ssg 25 3 2 2 – – – 434.2 380.1 488.0 4 3 3
ssg 50 3 2 2 – – – 436.1 380.3 491.9 4 3 3
tree weight 10 3 2 2 – – – 435.6 390.5 486.7 4 3 3
tree weight 25 3 2 2 – – – 432.8 381.1 487.1 4 3 3
tree weight 50 3 2 2 – – – 432.9 378.9 485.5 4 3 3
no clairvoyant – 3 2 2 – – – 433.9 377.9 488.8 4 3 3
0-restart – – – – – – – 859.5 991.6 714.2 972 1159 452

neos-.-waihi monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-.-tutaki monotone 10 2 2 2 – – – t t t 1953 2757 2699
monotone 25 2 2 2 – – – t t t 1953 2741 2748
monotone 50 2 2 2 – – – t t t 1953 2741 2674
reg forest 10 2 2 2 – – – t t t 1937 2741 2739
reg forest 25 2 2 2 – – – t t t 1926 2741 2712
reg forest 50 2 2 2 – – – t t t 1953 2760 2748
gap 10 2 2 2 – – – t t t 1946 2741 2705
gap 25 2 2 2 – – – t t t 1953 2781 2748
gap 50 2 2 2 – – – t t t 1953 2741 2748
leaf freq 10 2 2 2 – – – t t t 1905 2753 2748
leaf freq 25 2 2 2 – – – t t t 1953 2760 2748
leaf freq 50 2 2 2 – – – t t t 1918 2741 2748
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ssg 10 2 2 2 – – – t t t 1953 2753 2745
ssg 25 2 2 2 – – – t t t 1953 2717 2748
ssg 50 2 2 2 – – – t t t 1936 2773 2816
tree weight 10 2 2 2 – – – t t t 1953 2741 2688
tree weight 25 2 2 2 – – – t t t 1953 2735 2748
tree weight 50 2 2 2 – – – t t t 1953 2741 2748
no clairvoyant – 2 2 2 – – – t t t 1953 2732 2744
0-restart – – – – – – – t t t 8227 8191 10523

neos-.-widden monotone 10 – – – – – – 422.0 397.1 510.6 1211 1878 1013
monotone 25 – – – – – – 422.1 396.3 510.0 1211 1878 1013
monotone 50 – – – – – – 418.2 396.2 509.5 1211 1878 1013
reg forest 10 – – – – – – 422.9 395.9 515.9 1211 1878 1013
reg forest 25 – – – – – – 421.4 397.2 511.0 1211 1878 1013
reg forest 50 – – – – – – 419.6 399.1 514.7 1211 1878 1013
gap 10 – – – – – – 422.2 400.8 510.4 1211 1878 1013
gap 25 – – – – – – 421.2 398.9 510.3 1211 1878 1013
gap 50 – – – – – – 422.8 397.3 514.9 1211 1878 1013
leaf freq 10 – – – – – – 415.6 399.3 512.0 1211 1878 1013
leaf freq 25 – – – – – – 418.8 396.7 510.9 1211 1878 1013
leaf freq 50 – – – – – – 421.2 396.6 510.9 1211 1878 1013
ssg 10 – – – – – – 421.1 396.6 508.0 1211 1878 1013
ssg 25 – – – – – – 422.7 397.1 511.8 1211 1878 1013
ssg 50 – – – – – – 421.4 395.6 510.3 1211 1878 1013
tree weight 10 – – – – – – 421.8 397.7 515.4 1211 1878 1013
tree weight 25 – – – – – – 421.6 398.3 510.7 1211 1878 1013
tree weight 50 – – – – – – 424.3 395.4 511.2 1211 1878 1013
no clairvoyant – – – – – – – 423.4 399.8 510.0 1211 1878 1013
0-restart – – – – – – – 418.2 399.1 520.4 1211 1878 1013

neos-.-atrato monotone 10 – – – – 1 – 754.9 1299.4 694.5 74499 167590 79322
monotone 25 – – – – – – 757.1 631.5 707.7 74499 59085 79322
monotone 50 – – – – – – 755.6 632.4 698.4 74499 59085 79322
reg forest 10 1 – – 1 1 – 718.9 1322.4 707.5 77111 167590 79322
reg forest 25 – – – – – – 769.2 641.3 711.7 74499 59085 79322
reg forest 50 – – – – – – 762.8 640.1 710.8 74499 59085 79322
gap 10 – – – – – – 758.0 634.4 700.2 74499 59085 79322
gap 25 – – – – – – 760.6 631.7 704.5 74499 59085 79322
gap 50 – – – – – – 756.4 629.8 700.1 74499 59085 79322
leaf freq 10 1 – 1 1 1 1 752.4 861.1 400.2 98980 118538 31408
leaf freq 25 2 1 1 1 1 1 554.3 3518.6 403.9 58928 390011 31408
leaf freq 50 1 1 2 1 1 1 605.5 3514.0 520.6 57273 390011 45227
ssg 10 – – – 1 1 1 804.4 504.4 255.4 88927 47567 19240
ssg 25 – 1 – 1 1 1 409.4 491.2 263.2 45834 46792 23582
ssg 50 1 1 – 1 1 1 844.8 604.7 387.7 110006 65292 37479
tree weight 10 – – 1 1 1 1 461.6 650.6 488.4 45724 72981 45735
tree weight 25 – – 1 1 1 1 461.4 950.8 365.8 45724 110250 36533
tree weight 50 – – 1 1 1 1 462.1 1277.7 335.6 45724 149039 32583
no clairvoyant – – – – – – – 764.2 628.7 700.7 74499 59085 79322
0-restart – – – – – – – 758.4 631.6 700.0 74499 59085 79322

neos-.-toguru monotone 10 – – – 1 – – t t t 7194 6470 5268
monotone 25 – – – – – – t t t 4864 6497 5213
monotone 50 – – – – – – t t t 4732 6477 5194
reg forest 10 – – – 1 – – t t t 6131 6477 5184
reg forest 25 – – – – – – t t t 4727 6489 5234
reg forest 50 – – – – – – t t t 4842 6497 5177
gap 10 – – – 1 1 1 t t t 3657 8535 4158
gap 25 – – – 1 1 1 t t t 4362 8203 2960
gap 50 – – – – 1 – t t t 4727 5604 5272
leaf freq 10 – – – – – – t t t 4756 6489 5194
leaf freq 25 – – – – – – t t t 4727 6445 5240
leaf freq 50 – – – – – – t t t 4727 6470 5156
ssg 10 – – – 1 1 1 t t t 6853 3754 922
ssg 25 – – – 1 1 1 t t t 5838 3885 1701
ssg 50 – – – 1 1 1 t t t 6122 3943 2580
tree weight 10 – – – 1 1 – t t t 5899 8003 5234
tree weight 25 – – – 1 – – t t t 4755 6530 5249
tree weight 50 – – – 1 – – t t t 7119 6501 5280
no clairvoyant – – – – – – – t t t 4811 6522 5300
0-restart – – – – – – – t t t 4835 6497 5155

neos-.-berkel monotone 10 – – – – – – t t t 534123 526887 377443
monotone 25 – – – – – – t t t 535924 525639 375294
monotone 50 – – – – – – t t t 537601 526971 376760
reg forest 10 – – – – – – t t t 535591 525736 376582
reg forest 25 – – – – – – t t t 535031 525227 375652
reg forest 50 – – – – – – t t t 532953 524730 374768
gap 10 – – – – – – t t t 536140 524998 374263
gap 25 – – – – – – t t t 538639 527235 374919
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gap 50 – – – – – – t t t 538303 526622 376877
leaf freq 10 – – – – – – t t t 535942 526478 377397
leaf freq 25 – – – – – – t t t 536104 526275 377018
leaf freq 50 – – – – – – t t t 537383 525961 374948
ssg 10 – – – – – – t t t 536064 527988 375709
ssg 25 – – – – – – t t t 536257 525550 375664
ssg 50 – – – – – – t t t 536868 526760 375453
tree weight 10 – – – – – – t t t 537202 528282 377296
tree weight 25 – – – – – – t t t 538539 524608 375848
tree weight 50 – – – – – – t t t 536689 525509 375218
no clairvoyant – – – – – – – t t t 534352 526828 376220
0-restart – – – – – – – t t t 535412 526474 375921

neos-.-cuanza monotone 10 – – – – – – t t t 6 7 7
monotone 25 – – – – – – t t t 6 7 7
monotone 50 – – – – – – t t t 6 7 7
reg forest 10 – – – – – – t t t 6 7 7
reg forest 25 – – – – – – t t t 6 7 7
reg forest 50 – – – – – – t t t 6 7 7
gap 10 – – – – – – t t t 6 7 7
gap 25 – – – – – – t t t 6 7 7
gap 50 – – – – – – t t t 6 7 7
leaf freq 10 – – – – – – t t t 6 7 7
leaf freq 25 – – – – – – t t t 6 7 7
leaf freq 50 – – – – – – t t t 6 7 7
ssg 10 – – – – – – t t t 6 7 7
ssg 25 – – – – – – t t t 6 7 7
ssg 50 – – – – – – t t t 6 7 7
tree weight 10 – – – – – – t t t 6 7 7
tree weight 25 – – – – – – t t t 6 7 7
tree weight 50 – – – – – – t t t 6 7 7
no clairvoyant – – – – – – – t t t 6 7 7
0-restart – – – – – – – t t t 6 7 7

neos-.-cygnet monotone 10 – – – – – – t t t 58 46 45
monotone 25 – – – – – – t t t 58 46 44
monotone 50 – – – – – – t t t 58 46 45
reg forest 10 – – – – – – t t t 58 45 45
reg forest 25 – – – – – – t t t 58 46 46
reg forest 50 – – – – – – t t t 58 46 45
gap 10 – – – – – – t t t 58 45 46
gap 25 – – – – – – t t t 58 46 45
gap 50 – – – – – – t t t 58 48 44
leaf freq 10 – – – – – – t t t 58 46 45
leaf freq 25 – – – – – – t t t 58 46 44
leaf freq 50 – – – – – – t t t 58 46 45
ssg 10 – – – – – – t t t 58 46 44
ssg 25 – – – – – – t t t 58 45 44
ssg 50 – – – – – – t t t 58 46 45
tree weight 10 – – – – – – t t t 58 45 44
tree weight 25 – – – – – – t t t 58 46 45
tree weight 50 – – – – – – t t t 58 46 45
no clairvoyant – – – – – – – t t t 58 46 45
0-restart – – – – – – – t t t 58 46 45

neos-.-huahum monotone 10 – – – 1 – 1 t t t 18292 22272 16912
monotone 25 – – – – – – t t t 20235 22272 21572
monotone 50 – – – – – – t t t 20251 22273 21292
reg forest 10 – – – 1 1 1 t t t 18316 23842 16952
reg forest 25 – – – – – – t t t 20471 22271 21311
reg forest 50 – – – – – – t t t 20133 22108 21233
gap 10 – – – 1 1 1 t t t 17790 22973 16856
gap 25 – – – 1 1 1 t t t 16969 21342 19952
gap 50 – – – 1 1 1 t t t 17457 19924 16962
leaf freq 10 – – – 1 1 1 t t t 17600 18408 16863
leaf freq 25 – – – – 1 1 t t t 20160 22129 17579
leaf freq 50 – – – – – – t t t 20061 22245 21251
ssg 10 – – – 1 1 1 t t t 17021 21441 17267
ssg 25 – – – 1 1 1 t t t 17369 21651 22743
ssg 50 – – – 1 1 1 t t t 18117 21028 18084
tree weight 10 – – – 1 1 1 t t t 18379 22937 21053
tree weight 25 – – – 1 1 1 t t t 18375 22992 20936
tree weight 50 – – – 1 1 1 t t t 18532 23017 21042
no clairvoyant – – – – – – – t t t 20396 22242 21217
0-restart – – – – – – – t t t 20101 22053 21424

neos-.-jarama monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
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reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-.-kakapo monotone 10 – – – 1 1 1 t t t 837053 817287 862695
monotone 25 – – – – – 1 t t t 858562 851304 845844
monotone 50 – – – – – – t t t 862131 838772 820490
reg forest 10 – – – 1 1 1 t t t 864384 812459 862257
reg forest 25 – – – – – 1 t t t 856195 830700 909029
reg forest 50 – – – – – – t t t 849452 830814 820467
gap 10 – – – 1 1 1 t t t 835998 815546 900470
gap 25 – – – 1 1 1 t t t 851420 810964 834960
gap 50 – – – 1 1 1 t t t 847036 813097 801290
leaf freq 10 – – – 1 1 1 t t t 991712 925514 930624
leaf freq 25 – – – 1 1 1 t t t 994030 969967 886205
leaf freq 50 – – – 1 1 1 t t t 882086 993420 942384
ssg 10 – – – 1 1 1 t t t 929497 1107849 862166
ssg 25 – – – 1 1 1 t t t 976368 1104258 864841
ssg 50 – – – 1 1 1 t t t 924940 1397872 874707
tree weight 10 – – – 1 1 1 t t t 875611 783922 1505372
tree weight 25 – – – 1 1 1 t t t 876644 779440 1544891
tree weight 50 – – – 1 1 1 t t t 842798 783725 1524859
no clairvoyant – – – – – – – t t t 862999 839897 820258
0-restart – – – – – – – t t t 865812 839021 818032

neos-.-kasavu monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-.-nattai monotone 10 – – – – – 1 1371.3 2412.0 1712.1 12547 28132 10732
monotone 25 – – – – – – 1361.0 2419.7 1442.3 12547 28132 12159
monotone 50 – – – – – – 1358.0 2413.4 1446.9 12547 28132 12159
reg forest 10 – – – 1 1 1 1640.4 1754.5 1705.9 10737 16229 10732
reg forest 25 – – – – – – 1369.1 2420.7 1442.6 12547 28132 12159
reg forest 50 – – – – – – 1363.1 2408.3 1442.1 12547 28132 12159
gap 10 – – – 1 1 1 1876.4 2731.5 1955.4 13835 19871 13473
gap 25 – – – 1 1 1 2087.6 2713.1 2074.8 14304 19687 13636
gap 50 – – – 1 1 1 2237.1 2622.1 2077.5 14909 19918 13506
leaf freq 10 – – – – 1 – 1362.7 3267.1 1445.7 12547 29548 12159
leaf freq 25 – – – – – – 1369.0 2387.9 1438.8 12547 28132 12159
leaf freq 50 – – – – – – 1364.1 2413.9 1433.2 12547 28132 12159
ssg 10 – – – 1 1 1 1605.9 2284.5 2082.0 11545 20463 14367
ssg 25 – – – 1 1 1 1799.5 2248.8 2131.5 13281 19236 13810
ssg 50 – – – 1 1 1 2043.0 2148.0 2106.1 15675 19640 13858
tree weight 10 – – – 1 1 1 1230.1 2539.7 1710.6 10225 25681 10732
tree weight 25 – – – 1 1 1 1224.8 2539.7 1607.3 10225 25681 10830
tree weight 50 – – – 1 1 – 1344.1 2553.3 1446.9 11208 25681 12159
no clairvoyant – – – – – – – 1360.8 2399.2 1447.1 12547 28132 12159
0-restart – – – – – – – 1365.4 2403.5 1447.5 12547 28132 12159
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neos-.-niemur monotone 10 – – – 1 1 1 1948.4 1947.3 3493.7 87512 79553 174039
monotone 25 – – – – 1 1 2916.3 1955.5 3499.6 187896 79553 174039
monotone 50 – – – – – 1 2953.6 2319.0 3484.5 187896 144421 174039
reg forest 10 – – – – – – 2967.8 2332.5 2989.5 187896 144421 143497
reg forest 25 – – – – – – 2957.4 2333.5 2985.9 187896 144421 143497
reg forest 50 – – – – – – 2958.4 2338.8 2977.3 187896 144421 143497
gap 10 – – – 1 1 1 2147.8 2149.0 2973.4 148783 105271 101242
gap 25 – – – 1 1 1 1759.8 2139.6 2535.7 92346 105271 79412
gap 50 – – – 1 1 1 1419.2 2137.0 2176.9 56205 105271 63130
leaf freq 10 – – – 1 1 1 1886.3 2121.7 3019.3 72362 93506 97134
leaf freq 25 – – – 1 – 1 1743.8 2322.9 3244.6 66021 144421 182875
leaf freq 50 – – – – – – 2941.9 2337.4 2966.3 187896 144421 143497
ssg 10 – – – 1 1 1 1631.7 2303.4 1499.1 65522 99147 83353
ssg 25 – – – 1 1 1 1623.1 2244.8 2837.2 65522 102676 138780
ssg 50 – – – 1 1 1 1510.5 2526.8 2840.4 53810 121002 138780
tree weight 10 – – – 1 1 1 2336.2 1892.6 1522.9 131242 95199 59280
tree weight 25 – – – 1 1 1 1422.7 1892.3 1536.9 58860 95199 59280
tree weight 50 – – – 1 1 1 1407.5 1958.2 1521.2 48102 87693 59280
no clairvoyant – – – – – – – 2942.2 2320.5 2967.0 187896 144421 143497
0-restart – – – – – – – 2944.2 2323.3 2965.9 187896 144421 143497

neos-631710 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

neos-662469 monotone 10 – – – 1 1 1 t t t 28757 25768 24735
monotone 25 – – – 1 1 1 t t t 28904 25629 24735
monotone 50 – – – 1 1 1 t t t 28904 25822 24735
reg forest 10 – – – – 1 1 t t t 12493 25689 24735
reg forest 25 – – – – – – t t t 12532 16225 21233
reg forest 50 – – – – – – t t t 12610 16088 21295
gap 10 – – – – 1 1 t t t 12610 25688 24735
gap 25 – – – – 1 1 t t t 12505 25736 24735
gap 50 – – – – 1 1 t t t 12572 25662 24735
leaf freq 10 – – – – 1 1 t t t 12490 25698 24735
leaf freq 25 – – – – 1 1 t t t 12520 25768 24735
leaf freq 50 – – – – 1 1 t t t 12468 25787 24735
ssg 10 – – – 1 1 1 t t t 28756 25744 24735
ssg 25 – – – 1 1 1 t t t 30354 25647 24735
ssg 50 – – – 1 1 1 t t t 30078 25750 24735
tree weight 10 – – – 1 1 1 t t t 11891 25825 24735
tree weight 25 – – – 1 1 1 t t t 23173 25810 24735
tree weight 50 – – – 1 1 1 t t t 31567 25821 24735
no clairvoyant – – – – – – – t t t 12520 16208 21740
0-restart – – – – – – – t t t 12520 16268 21412

neos-787933 monotone 10 – – – – – – 1.9 1.9 1.9 1 1 1
monotone 25 – – – – – – 2.0 2.0 1.9 1 1 1
monotone 50 – – – – – – 1.9 1.9 1.9 1 1 1
reg forest 10 – – – – – – 2.0 1.9 1.9 1 1 1
reg forest 25 – – – – – – 1.9 1.9 1.9 1 1 1
reg forest 50 – – – – – – 2.0 2.0 1.9 1 1 1
gap 10 – – – – – – 1.9 2.0 1.9 1 1 1
gap 25 – – – – – – 1.9 1.9 1.9 1 1 1
gap 50 – – – – – – 1.9 1.9 1.9 1 1 1
leaf freq 10 – – – – – – 1.9 1.9 1.9 1 1 1
leaf freq 25 – – – – – – 1.9 1.9 1.9 1 1 1
leaf freq 50 – – – – – – 1.9 1.9 1.9 1 1 1
ssg 10 – – – – – – 1.9 1.9 1.9 1 1 1
ssg 25 – – – – – – 1.9 1.9 1.9 1 1 1
ssg 50 – – – – – – 1.9 1.9 1.9 1 1 1
tree weight 10 – – – – – – 1.9 1.9 1.9 1 1 1
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tree weight 25 – – – – – – 1.9 1.9 1.9 1 1 1
tree weight 50 – – – – – – 1.9 1.9 1.9 1 1 1
no clairvoyant – – – – – – – 1.9 1.9 1.9 1 1 1
0-restart – – – – – – – 1.9 1.9 1.9 1 1 1

neos-827175 monotone 10 – – – – – – 7.3 7.4 7.3 1 1 1
monotone 25 – – – – – – 7.3 7.4 7.3 1 1 1
monotone 50 – – – – – – 7.3 7.4 7.3 1 1 1
reg forest 10 – – – – – – 7.4 7.4 7.4 1 1 1
reg forest 25 – – – – – – 7.4 7.4 7.3 1 1 1
reg forest 50 – – – – – – 7.4 7.3 7.3 1 1 1
gap 10 – – – – – – 7.4 7.3 7.3 1 1 1
gap 25 – – – – – – 7.4 7.3 7.2 1 1 1
gap 50 – – – – – – 7.4 7.3 7.2 1 1 1
leaf freq 10 – – – – – – 7.3 7.3 7.3 1 1 1
leaf freq 25 – – – – – – 7.5 7.3 7.4 1 1 1
leaf freq 50 – – – – – – 7.4 7.3 7.4 1 1 1
ssg 10 – – – – – – 7.4 7.3 7.2 1 1 1
ssg 25 – – – – – – 7.4 7.3 7.3 1 1 1
ssg 50 – – – – – – 7.4 7.4 7.4 1 1 1
tree weight 10 – – – – – – 7.4 7.3 7.3 1 1 1
tree weight 25 – – – – – – 7.3 7.3 7.2 1 1 1
tree weight 50 – – – – – – 7.3 7.3 7.3 1 1 1
no clairvoyant – – – – – – – 7.5 7.3 7.3 1 1 1
0-restart – – – – – – – 7.3 7.4 7.3 1 1 1

neos-848589 monotone 10 – – – – – – 2111.5 t t 70 145 133
monotone 25 – – – – – – 2114.6 t t 70 144 133
monotone 50 – – – – – – 2127.7 t t 70 150 133
reg forest 10 – – – – – – 2103.7 t t 70 145 133
reg forest 25 – – – – – – 2132.6 t t 70 146 133
reg forest 50 – – – – – – 2132.3 t t 70 144 133
gap 10 – – – – – – 2131.2 t t 70 145 133
gap 25 – – – – – – 2119.8 t t 70 146 133
gap 50 – – – – – – 2117.8 t t 70 145 133
leaf freq 10 – – – – – – 2132.8 t t 70 145 133
leaf freq 25 – – – – – – 2109.3 t t 70 145 133
leaf freq 50 – – – – – – 2136.6 t t 70 144 133
ssg 10 – – – – – – 2123.1 t t 70 145 133
ssg 25 – – – – – – 2140.2 t t 70 145 133
ssg 50 – – – – – – 2117.9 t t 70 145 133
tree weight 10 – – – – – – 2131.3 t t 70 145 133
tree weight 25 – – – – – – 2126.5 t t 70 150 133
tree weight 50 – – – – – – 2121.9 t t 70 145 133
no clairvoyant – – – – – – – 2113.9 t t 70 145 133
0-restart – – – – – – – 2124.1 t t 70 144 133

neos-860300 monotone 10 1 1 1 – – – 19.6 19.5 16.9 2 2 2
monotone 25 1 1 1 – – – 19.7 19.3 16.9 2 2 2
monotone 50 1 1 1 – – – 19.7 19.3 16.9 2 2 2
reg forest 10 1 1 1 – – – 19.7 19.5 17.1 2 2 2
reg forest 25 1 1 1 – – – 19.9 19.3 16.9 2 2 2
reg forest 50 1 1 1 – – – 19.7 19.6 16.9 2 2 2
gap 10 1 1 1 – – – 19.7 19.4 16.6 2 2 2
gap 25 1 1 1 – – – 19.5 19.5 16.8 2 2 2
gap 50 1 1 1 – – – 19.6 19.2 16.8 2 2 2
leaf freq 10 1 1 1 – – – 19.7 19.2 16.8 2 2 2
leaf freq 25 1 1 1 – – – 19.9 19.5 16.9 2 2 2
leaf freq 50 1 1 1 – – – 19.6 19.3 17.0 2 2 2
ssg 10 1 1 1 – – – 19.5 19.6 17.0 2 2 2
ssg 25 1 1 1 – – – 19.6 19.2 16.8 2 2 2
ssg 50 1 1 1 – – – 19.7 19.5 16.8 2 2 2
tree weight 10 1 1 1 – – – 19.6 19.3 16.8 2 2 2
tree weight 25 1 1 1 – – – 19.6 19.5 16.9 2 2 2
tree weight 50 1 1 1 – – – 19.7 19.3 16.8 2 2 2
no clairvoyant – 1 1 1 – – – 19.6 19.1 16.9 2 2 2
0-restart – – – – – – – 17.0 15.7 15.6 1 1 1

neos-873061 monotone 10 1 1 1 – – – t t t 2 2 2
monotone 25 1 1 1 – – – t t t 2 2 2
monotone 50 1 1 1 – – – t t t 2 2 2
reg forest 10 1 1 1 – – – t t t 2 2 2
reg forest 25 1 1 1 – – – t t t 2 2 2
reg forest 50 1 1 1 – – – t t t 2 2 2
gap 10 1 1 1 – – – t t t 2 2 2
gap 25 1 1 1 – – – t t t 2 2 2
gap 50 1 1 1 – – – t t t 2 2 2
leaf freq 10 1 1 1 – – – t t t 2 2 2
leaf freq 25 1 1 1 – – – t t t 2 2 2
leaf freq 50 1 1 1 – – – t t t 2 2 2
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ssg 10 1 1 1 – – – t t t 2 2 2
ssg 25 1 1 1 – – – t t t 2 2 2
ssg 50 1 1 1 – – – t t t 2 2 2
tree weight 10 1 1 1 – – – t t t 2 2 2
tree weight 25 1 1 1 – – – t t t 2 2 2
tree weight 50 1 1 1 – – – t t t 2 2 2
no clairvoyant – 1 1 1 – – – t t t 2 2 2
0-restart – – – – – – – t t t 5 63 2

neos-911970 monotone 10 1 1 2 – – 1 t t t 5498861 550179 5188077
monotone 25 1 1 2 – – 1 t t t 5513981 550164 5185413
monotone 50 1 1 1 – – – t t t 5519600 550169 5090979
reg forest 10 1 1 2 – – 1 t t t 5358537 550146 5165139
reg forest 25 1 1 1 – – – t t t 5346057 550157 4961827
reg forest 50 1 1 1 – – – t t t 5378107 550159 4982958
gap 10 1 1 1 – 1 – t t t 5521586 2001571 5119722
gap 25 1 1 1 – – – t t t 5513188 550163 5124296
gap 50 1 1 1 – – – t t t 5518630 550161 5178187
leaf freq 10 4 1 2 1 1 1 408.4 1869.4 t 271968 1548790 5450851
leaf freq 25 3 1 2 1 1 1 t 1950.0 437.2 2621052 1359537 412500
leaf freq 50 2 1 2 1 – 1 t t t 5807794 550142 4234660
ssg 10 1 1 2 1 1 1 t t t 5624978 830054 5045872
ssg 25 2 1 2 1 1 1 t 2256.8 t 3620152 199307 3897312
ssg 50 1 1 2 1 1 1 t 139.3 t 4754471 38958 4594140
tree weight 10 1 1 1 1 1 1 t t t 5171893 568052 4922071
tree weight 25 3 1 2 1 1 1 t t t 3011830 361186 2756209
tree weight 50 1 1 1 – 1 1 t t t 5501323 2939473 687074
no clairvoyant – 1 1 1 – – – t t t 5510641 550158 5102108
0-restart – – – – – – – t t t 575063 2690636 3610813

neos-933966 monotone 10 – – – – – – 2253.0 t 3498.6 279 528 438
monotone 25 – – – – – – 2247.2 t 3500.3 279 526 438
monotone 50 – – – – – – 2253.0 t 3508.1 279 528 438
reg forest 10 – – – – – – 2240.8 t 3507.6 269 527 438
reg forest 25 – – – – – – 2236.1 t 3473.0 269 527 438
reg forest 50 – – – – – – 2226.0 t 3500.0 269 527 438
gap 10 – – – – – – 2231.2 t 3483.9 269 524 438
gap 25 – – – – – – 2225.4 t 3501.0 269 527 438
gap 50 – – – – – – 2229.7 t 3487.7 269 527 438
leaf freq 10 – – – – – – 2227.9 t 3500.3 269 527 438
leaf freq 25 – – – – – – 2213.0 t 3512.3 269 527 438
leaf freq 50 – – – – – – 2225.6 t 3501.3 269 527 438
ssg 10 – – – – – – 2224.5 t 3493.2 269 528 438
ssg 25 – – – – – – 2238.0 t 3494.9 269 528 438
ssg 50 – – – – – – 2232.6 t 3497.0 269 528 438
tree weight 10 – – – – – – 2231.0 t 3501.0 269 527 438
tree weight 25 – – – – – – 2228.7 t 3507.4 269 528 438
tree weight 50 – – – – – – 2226.8 t 3481.2 269 528 438
no clairvoyant – – – – – – – 2214.2 t 3493.7 269 527 438
0-restart – – – – – – – 2229.4 t 3492.5 269 527 438

neos-950242 monotone 10 – – – – – – 153.3 315.4 t 94 224 4648
monotone 25 – – – – – – 153.1 317.1 t 94 224 4648
monotone 50 – – – – – – 153.0 318.5 t 94 224 4672
reg forest 10 – – – – – – 152.1 319.1 t 94 224 4677
reg forest 25 – – – – – – 153.2 317.8 t 94 224 4636
reg forest 50 – – – – – – 153.0 317.2 t 94 224 4639
gap 10 – – – – – – 153.0 319.2 t 94 224 4690
gap 25 – – – – – – 153.2 317.2 t 94 224 4701
gap 50 – – – – – – 153.2 318.4 t 94 224 4688
leaf freq 10 – – – – – – 152.6 317.1 t 94 224 4673
leaf freq 25 – – – – – – 153.1 319.4 t 94 224 4693
leaf freq 50 – – – – – – 153.3 316.1 t 94 224 4648
ssg 10 – – – – – – 153.4 319.4 t 94 224 4677
ssg 25 – – – – – – 152.9 316.9 t 94 224 4677
ssg 50 – – – – – – 153.6 316.7 t 94 224 4636
tree weight 10 – – – – – – 153.3 316.6 t 94 224 4643
tree weight 25 – – – – – – 152.8 317.8 t 94 224 4656
tree weight 50 – – – – – – 152.7 316.8 t 94 224 4691
no clairvoyant – – – – – – – 153.2 314.1 t 94 224 4672
0-restart – – – – – – – 153.6 316.7 t 94 224 4675

neos-957323 monotone 10 – – – – – – 193.6 105.7 421.9 48 7 144
monotone 25 – – – – – – 194.9 106.6 419.7 48 7 144
monotone 50 – – – – – – 194.2 106.3 418.8 48 7 144
reg forest 10 – – – – – – 194.4 106.7 421.6 48 7 144
reg forest 25 – – – – – – 194.6 105.4 422.0 48 7 144
reg forest 50 – – – – – – 195.0 106.4 422.5 48 7 144
gap 10 – – – – – – 195.3 106.4 419.0 48 7 144
gap 25 – – – – – – 194.0 105.9 421.1 48 7 144
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gap 50 – – – – – – 195.3 106.3 420.9 48 7 144
leaf freq 10 – – – – – – 193.8 105.9 422.4 48 7 144
leaf freq 25 – – – – – – 194.5 106.4 420.1 48 7 144
leaf freq 50 – – – – – – 194.1 105.6 421.2 48 7 144
ssg 10 – – – – – – 193.9 105.7 421.0 48 7 144
ssg 25 – – – – – – 194.8 106.4 421.5 48 7 144
ssg 50 – – – – – – 195.1 106.3 423.3 48 7 144
tree weight 10 – – – – – – 194.5 106.3 421.0 48 7 144
tree weight 25 – – – – – – 192.8 106.7 420.1 48 7 144
tree weight 50 – – – – – – 192.8 106.1 419.8 48 7 144
no clairvoyant – – – – – – – 195.4 105.8 421.4 48 7 144
0-restart – – – – – – – 194.2 106.3 420.8 48 7 144

neos-960392 monotone 10 – – – – – – 623.8 1770.8 289.8 18 176 1
monotone 25 – – – – – – 618.5 1766.8 291.0 18 176 1
monotone 50 – – – – – – 619.3 1764.2 289.2 18 176 1
reg forest 10 – – – – – – 621.5 1768.6 291.0 18 176 1
reg forest 25 – – – – – – 623.6 1773.5 288.8 18 176 1
reg forest 50 – – – – – – 622.8 1780.8 289.4 18 176 1
gap 10 – – – – – – 620.3 1763.6 288.8 18 176 1
gap 25 – – – – – – 622.0 1761.9 289.5 18 176 1
gap 50 – – – – – – 623.5 1773.3 291.4 18 176 1
leaf freq 10 – – – – – – 621.6 1769.2 290.2 18 176 1
leaf freq 25 – – – – – – 620.3 1760.5 289.7 18 176 1
leaf freq 50 – – – – – – 622.1 1762.1 289.6 18 176 1
ssg 10 – – – – – – 622.8 1762.8 289.3 18 176 1
ssg 25 – – – – – – 621.7 1752.3 289.1 18 176 1
ssg 50 – – – – – – 621.8 1764.7 289.2 18 176 1
tree weight 10 – – – – – – 622.9 1774.2 289.9 18 176 1
tree weight 25 – – – – – – 621.5 1768.1 289.6 18 176 1
tree weight 50 – – – – – – 621.2 1771.5 289.6 18 176 1
no clairvoyant – – – – – – – 620.3 1776.7 289.5 18 176 1
0-restart – – – – – – – 622.6 1763.4 290.9 18 176 1

neos17 monotone 10 – – – – – – 13.4 7.3 8.2 8971 3490 4150
monotone 25 – – – – – – 13.5 7.4 8.4 8971 3490 4150
monotone 50 – – – – – – 13.5 7.4 8.3 8971 3490 4150
reg forest 10 – – – – – – 14.5 8.0 9.1 8971 3490 4150
reg forest 25 – – – – – – 14.3 8.1 9.1 8971 3490 4150
reg forest 50 – – – – – – 14.4 8.0 9.2 8971 3490 4150
gap 10 – – – – – – 13.4 7.4 8.2 8971 3490 4150
gap 25 – – – – – – 13.4 7.4 8.3 8971 3490 4150
gap 50 – – – – – – 13.4 7.3 8.4 8971 3490 4150
leaf freq 10 – – – – – – 13.4 7.3 8.4 8971 3490 4150
leaf freq 25 – – – – – – 13.3 7.4 8.3 8971 3490 4150
leaf freq 50 – – – – – – 13.4 7.4 8.2 8971 3490 4150
ssg 10 – – – – – – 13.4 7.4 8.3 8971 3490 4150
ssg 25 – – – – – – 13.5 7.4 8.4 8971 3490 4150
ssg 50 – – – – – – 13.4 7.2 8.4 8971 3490 4150
tree weight 10 – – – – – – 13.3 7.4 8.3 8971 3490 4150
tree weight 25 – – – – – – 13.3 7.4 8.3 8971 3490 4150
tree weight 50 – – – – – – 13.4 7.3 8.3 8971 3490 4150
no clairvoyant – – – – – – – 14.2 7.4 8.3 8971 3490 4150
0-restart – – – – – – – 13.2 7.4 8.4 8971 3490 4150

neos5 monotone 10 – – – – – – 181.7 119.4 185.0 428990 284757 430282
monotone 25 – – – – – – 183.9 120.0 185.8 428990 284757 430282
monotone 50 – – – – – – 183.0 119.8 185.1 428990 284757 430282
reg forest 10 – – – – – – 187.2 122.9 188.4 428990 284757 430282
reg forest 25 – – – – – – 185.1 123.0 188.3 428990 284757 430282
reg forest 50 – – – – – – 186.0 123.0 189.4 428990 284757 430282
gap 10 – – – – – – 182.0 120.4 183.6 428990 284757 430282
gap 25 – – – – – – 181.8 120.3 185.0 428990 284757 430282
gap 50 – – – – – – 182.5 120.1 184.3 428990 284757 430282
leaf freq 10 – – – – – – 183.1 120.5 185.3 428990 284757 430282
leaf freq 25 – – – – – – 183.0 119.7 186.2 428990 284757 430282
leaf freq 50 – – – – – – 181.8 120.4 185.2 428990 284757 430282
ssg 10 – – – – – – 183.0 120.0 184.7 428990 284757 430282
ssg 25 – – – – – – 182.6 119.7 184.4 428990 284757 430282
ssg 50 – – – – – – 182.8 119.8 184.9 428990 284757 430282
tree weight 10 – – – – – – 182.3 120.4 184.8 428990 284757 430282
tree weight 25 – – – – – – 182.9 120.0 184.9 428990 284757 430282
tree weight 50 – – – – – – 182.5 120.0 185.2 428990 284757 430282
no clairvoyant – – – – – – – 184.5 119.6 185.1 428990 284757 430282
0-restart – – – – – – – 183.2 120.6 185.0 428990 284757 430282

neos8 monotone 10 – – – – – – 7.4 5.2 5.4 1 1 1
monotone 25 – – – – – – 7.3 5.2 5.5 1 1 1
monotone 50 – – – – – – 7.3 5.2 5.4 1 1 1
reg forest 10 – – – – – – 7.3 5.2 5.4 1 1 1
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reg forest 25 – – – – – – 7.4 5.2 5.3 1 1 1
reg forest 50 – – – – – – 7.4 5.2 5.5 1 1 1
gap 10 – – – – – – 7.2 5.2 5.4 1 1 1
gap 25 – – – – – – 7.3 5.2 5.4 1 1 1
gap 50 – – – – – – 7.3 5.2 5.5 1 1 1
leaf freq 10 – – – – – – 7.4 5.2 5.4 1 1 1
leaf freq 25 – – – – – – 7.4 5.2 5.5 1 1 1
leaf freq 50 – – – – – – 7.5 5.2 5.4 1 1 1
ssg 10 – – – – – – 7.5 5.2 5.4 1 1 1
ssg 25 – – – – – – 7.4 5.2 5.4 1 1 1
ssg 50 – – – – – – 7.3 5.2 5.3 1 1 1
tree weight 10 – – – – – – 7.3 5.1 5.4 1 1 1
tree weight 25 – – – – – – 7.3 5.1 5.3 1 1 1
tree weight 50 – – – – – – 7.3 5.2 5.4 1 1 1
no clairvoyant – – – – – – – 7.3 5.2 5.3 1 1 1
0-restart – – – – – – – 7.1 5.2 5.3 1 1 1

neos859080 monotone 10 1 – – 1 – 1 2.2 2.0 4.3 1046 703 2059
monotone 25 1 – – 1 – 1 2.2 2.0 4.3 1046 703 2059
monotone 50 1 – – 1 – 1 2.2 1.9 4.3 1046 703 2059
reg forest 10 1 – – 1 – 1 5.3 3.8 8.0 1208 703 2059
reg forest 25 – – – – – – 5.7 3.7 10.1 1551 703 6773
reg forest 50 – – – – – – 5.6 3.7 10.1 1551 703 6773
gap 10 – – – – – – 2.5 2.1 6.5 1551 703 6773
gap 25 – – – – – – 2.4 1.9 6.2 1551 703 6773
gap 50 – – – – – – 2.6 1.9 6.3 1551 703 6773
leaf freq 10 – – 1 – – 1 2.5 2.0 4.6 1551 703 2846
leaf freq 25 – – – – – 1 2.6 2.0 4.7 1551 703 3274
leaf freq 50 – – – – – – 2.5 1.9 6.4 1551 703 6773
ssg 10 – – – – – – 2.5 2.0 6.3 1551 703 6773
ssg 25 – – – – – – 2.5 2.0 6.4 1551 703 6773
ssg 50 – – – – – – 2.6 2.0 6.4 1551 703 6773
tree weight 10 – – – – – 1 2.5 1.9 4.3 1551 703 2059
tree weight 25 – – – – – 1 2.6 2.0 4.3 1551 703 2059
tree weight 50 – – – – – 1 2.5 1.9 4.6 1551 703 1806
no clairvoyant – – – – – – – 5.6 1.9 6.4 1551 703 6773
0-restart – – – – – – – 2.5 2.0 6.4 1551 703 6773

net12 monotone 10 – – – – – – 365.9 688.2 659.0 1615 1779 2393
monotone 25 – – – – – – 364.6 688.8 657.5 1615 1779 2393
monotone 50 – – – – – – 365.3 689.9 662.2 1615 1779 2393
reg forest 10 – – – – – – 365.5 690.5 658.7 1615 1779 2393
reg forest 25 – – – – – – 365.3 688.9 659.4 1615 1779 2393
reg forest 50 – – – – – – 367.4 684.4 657.9 1615 1779 2393
gap 10 – – – – 1 1 365.9 583.9 411.4 1615 1653 1985
gap 25 – – – – – 1 365.6 690.3 364.8 1615 1779 1765
gap 50 – – – – – – 366.1 688.6 656.9 1615 1779 2393
leaf freq 10 – – – – – – 362.9 687.8 657.6 1615 1779 2393
leaf freq 25 – – – – – – 365.9 689.9 655.6 1615 1779 2393
leaf freq 50 – – – – – – 365.0 690.8 656.6 1615 1779 2393
ssg 10 – – – 1 – – 442.3 686.8 656.6 1962 1779 2393
ssg 25 – – – – – – 364.5 688.5 657.3 1615 1779 2393
ssg 50 – – – – – – 365.1 689.9 660.0 1615 1779 2393
tree weight 10 – – – – – 1 365.6 684.4 504.4 1615 1779 2134
tree weight 25 – – – – – – 362.3 690.3 655.8 1615 1779 2393
tree weight 50 – – – – – – 365.6 689.4 657.5 1615 1779 2393
no clairvoyant – – – – – – – 365.6 689.4 656.4 1615 1779 2393
0-restart – – – – – – – 367.1 693.2 657.3 1615 1779 2393

netdiversion monotone 10 – – – – – – 639.0 493.1 978.6 23 5 37
monotone 25 – – – – – – 641.2 497.6 973.8 23 5 37
monotone 50 – – – – – – 632.2 496.1 975.1 23 5 37
reg forest 10 – – – – – – 637.8 498.3 983.1 23 5 37
reg forest 25 – – – – – – 638.0 491.0 973.0 23 5 37
reg forest 50 – – – – – – 639.3 497.0 974.0 23 5 37
gap 10 – – – – – – 644.5 497.3 977.5 23 5 37
gap 25 – – – – – – 639.4 496.1 980.5 23 5 37
gap 50 – – – – – – 644.8 497.4 969.8 23 5 37
leaf freq 10 – – – – – – 638.3 494.8 975.9 23 5 37
leaf freq 25 – – – – – – 641.3 499.8 979.6 23 5 37
leaf freq 50 – – – – – – 638.6 497.2 976.7 23 5 37
ssg 10 – – – – – – 634.7 496.8 976.3 23 5 37
ssg 25 – – – – – – 643.3 495.7 974.6 23 5 37
ssg 50 – – – – – – 638.8 496.9 978.7 23 5 37
tree weight 10 – – – – – – 637.5 496.6 976.2 23 5 37
tree weight 25 – – – – – – 640.1 493.8 973.1 23 5 37
tree weight 50 – – – – – – 646.1 500.2 973.5 23 5 37
no clairvoyant – – – – – – – 642.4 496.0 981.1 23 5 37
0-restart – – – – – – – 642.0 487.8 977.3 23 5 37
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nexp-150-20-8-5 monotone 10 – 1 – – – – 2661.0 596.2 t 3605 2 4656
monotone 25 – 1 – – – – 2690.5 599.1 t 3605 2 4677
monotone 50 – 1 – – – – 2695.0 599.9 t 3605 2 4708
reg forest 10 – 1 6 – – 1 2663.6 600.0 1942.3 3605 2 1118
reg forest 25 – 1 – – – – 2676.0 602.0 t 3605 2 4656
reg forest 50 – 1 – – – – 2678.6 599.9 t 3605 2 4681
gap 10 – 1 – – – – 2688.1 600.5 t 3605 2 4688
gap 25 – 1 – – – – 2680.6 597.7 t 3605 2 4714
gap 50 – 1 – – – – 2683.0 599.9 t 3605 2 4668
leaf freq 10 – 1 – – – – 2674.3 598.8 t 3605 2 4654
leaf freq 25 – 1 – – – – 2685.1 602.6 t 3605 2 4674
leaf freq 50 – 1 – – – – 2688.7 600.3 t 3605 2 4714
ssg 10 – 1 6 1 – 1 2200.3 597.1 1930.4 2133 2 1118
ssg 25 – 1 6 1 – 1 2594.5 599.8 1934.2 3178 2 1118
ssg 50 – 1 – 1 – 1 2692.7 598.8 1920.5 3484 2 988
tree weight 10 – 1 3 1 – 1 2280.7 599.5 2016.0 2393 2 1052
tree weight 25 – 1 – 1 – 1 2689.8 599.7 2266.7 3497 2 1299
tree weight 50 – 1 – – – 1 2662.1 599.4 2268.2 3605 2 1339
no clairvoyant – – 1 – – – – 2681.2 596.2 t 3605 2 4684
0-restart – – – – – – – 2699.8 3036.8 t 3605 3158 4593

ns1116954 monotone 10 – – – – – – t t t 6 1 7
monotone 25 – – – – – – t t t 6 1 7
monotone 50 – – – – – – t t t 6 1 7
reg forest 10 – – – – – – t t t 6 1 5
reg forest 25 – – – – – – t t t 6 1 7
reg forest 50 – – – – – – t t t 6 1 7
gap 10 – – – – – – t t t 6 1 7
gap 25 – – – – – – t t t 6 1 7
gap 50 – – – – – – t t t 6 1 7
leaf freq 10 – – – – – – t t t 6 1 7
leaf freq 25 – – – – – – t t t 6 1 7
leaf freq 50 – – – – – – t t t 6 1 7
ssg 10 – – – – – – t t t 6 1 7
ssg 25 – – – – – – t t t 6 1 7
ssg 50 – – – – – – t t t 6 1 7
tree weight 10 – – – – – – t t t 6 1 7
tree weight 25 – – – – – – t t t 6 1 7
tree weight 50 – – – – – – t t t 6 1 7
no clairvoyant – – – – – – – t t t 6 1 7
0-restart – – – – – – – t t t 6 1 7

ns1208400 monotone 10 – – – – – – 1819.2 3204.3 1373.9 6826 12565 4139
monotone 25 – – – – – – 1822.9 3209.7 1374.0 6826 12565 4139
monotone 50 – – – – – – 1818.2 3215.7 1377.3 6826 12565 4139
reg forest 10 – – – – – – 1824.7 3211.8 1372.7 6826 12565 4139
reg forest 25 – – – – – – 1822.9 3208.4 1373.2 6826 12565 4139
reg forest 50 – – – – – – 1827.1 3230.4 1373.9 6826 12565 4139
gap 10 – – – – – – 1821.6 3217.6 1373.4 6826 12565 4139
gap 25 – – – – – – 1825.3 3214.3 1372.5 6826 12565 4139
gap 50 – – – – – – 1820.7 3218.4 1370.8 6826 12565 4139
leaf freq 10 – – – – – – 1820.6 3224.0 1371.0 6826 12565 4139
leaf freq 25 – – – – – – 1818.1 3223.9 1371.2 6826 12565 4139
leaf freq 50 – – – – – – 1825.7 3217.6 1369.0 6826 12565 4139
ssg 10 – – – – – – 1823.9 3225.6 1377.1 6826 12565 4139
ssg 25 – – – – – – 1817.0 3224.2 1377.6 6826 12565 4139
ssg 50 – – – – – – 1821.1 3225.7 1370.2 6826 12565 4139
tree weight 10 – – – – – – 1821.8 3219.9 1367.0 6826 12565 4139
tree weight 25 – – – – – – 1817.0 3220.2 1370.7 6826 12565 4139
tree weight 50 – – – – – – 1818.1 3217.5 1374.0 6826 12565 4139
no clairvoyant – – – – – – – 1825.3 3212.4 1370.0 6826 12565 4139
0-restart – – – – – – – 1823.5 3213.9 1369.2 6826 12565 4139

ns1644855 monotone 10 – – – – – – t 464.8 t 44 1 23
monotone 25 – – – – – – t 463.9 t 44 1 24
monotone 50 – – – – – – t 470.9 t 44 1 23
reg forest 10 – – – – – – t 463.7 t 44 1 23
reg forest 25 – – – – – – t 459.6 t 44 1 24
reg forest 50 – – – – – – t 455.8 t 44 1 23
gap 10 – – – – – – t 458.2 t 44 1 24
gap 25 – – – – – – t 463.2 t 44 1 24
gap 50 – – – – – – t 457.9 t 44 1 24
leaf freq 10 – – – – – – t 460.8 t 44 1 24
leaf freq 25 – – – – – – t 465.4 t 44 1 24
leaf freq 50 – – – – – – t 464.0 t 44 1 23
ssg 10 – – – – – – t 457.7 t 44 1 24
ssg 25 – – – – – – t 462.1 t 44 1 24
ssg 50 – – – – – – t 461.7 t 44 1 24
tree weight 10 – – – – – – t 465.1 t 44 1 24
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tree weight 25 – – – – – – t 463.6 t 44 1 24
tree weight 50 – – – – – – t 460.9 t 44 1 23
no clairvoyant – – – – – – – t 458.6 t 44 1 23
0-restart – – – – – – – t 460.4 t 44 1 24

ns1760995 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

ns1830653 monotone 10 – – – – – – 112.7 163.4 126.6 4993 7194 7298
monotone 25 – – – – – – 113.2 163.8 126.4 4993 7194 7298
monotone 50 – – – – – – 112.7 164.6 126.0 4993 7194 7298
reg forest 10 – – – 1 1 – 213.0 200.1 128.6 9889 10553 7298
reg forest 25 – – – – – – 113.2 164.6 127.8 4993 7194 7298
reg forest 50 – – – – – – 112.9 164.1 127.5 4993 7194 7298
gap 10 – – – 1 1 1 137.4 155.8 141.1 5130 8279 6863
gap 25 – – – 1 1 1 141.6 172.3 148.9 5121 6354 6725
gap 50 – 1 – – 1 1 113.1 197.2 151.9 4993 8588 6089
leaf freq 10 – – – – – – 113.1 163.7 126.7 4993 7194 7298
leaf freq 25 – – – – – – 112.5 163.4 126.5 4993 7194 7298
leaf freq 50 – – – – – – 112.9 163.2 126.7 4993 7194 7298
ssg 10 – – – – 1 1 112.5 170.4 129.7 4993 8064 5235
ssg 25 – – – – 1 1 112.7 161.4 142.3 4993 6954 5955
ssg 50 – – – – – 1 112.7 163.4 160.8 4993 7194 7861
tree weight 10 – – – 1 1 1 140.6 162.2 123.8 5478 9030 5287
tree weight 25 – – – 1 1 1 136.1 170.5 150.2 5358 7663 6947
tree weight 50 – – – – 1 1 112.9 166.1 150.2 4993 7773 7943
no clairvoyant – – – – – – – 112.7 163.7 126.1 4993 7194 7298
0-restart – – – – – – – 112.5 163.3 126.9 4993 7194 7298

ns1952667 monotone 10 – – – 1 1 1 641.2 754.8 t 7960 6499 12123
monotone 25 – – – 1 1 1 655.4 754.6 t 7960 6499 11998
monotone 50 – – – 1 1 1 654.8 754.0 t 7960 6499 12123
reg forest 10 – – – 1 1 1 655.3 498.0 t 7960 4484 12111
reg forest 25 – – – – – – t 2008.1 1935.6 11840 7003 16039
reg forest 50 – – – – – – t 1997.9 1940.5 11832 7003 16039
gap 10 – – – – – – t 2003.4 1931.5 11787 7003 16039
gap 25 – – – – – – t 2008.0 1936.5 11840 7003 16039
gap 50 – – – – – – t 2008.7 1942.2 11755 7003 16039
leaf freq 10 – – – – – 1 t 1994.0 3402.9 11859 7003 24117
leaf freq 25 – – – – – – t 1992.7 1930.4 11844 7003 16039
leaf freq 50 – – – – – – t 1919.7 1881.8 11791 7003 16039
ssg 10 – – – – 1 – t 1063.1 1938.6 11787 5610 16039
ssg 25 – – – – 1 – t t 1924.7 11791 38108 16039
ssg 50 – – – – 1 – t 461.5 1937.9 11842 3347 16039
tree weight 10 – – – – – – t 1972.1 1941.9 11809 7003 16039
tree weight 25 – – – – – – t 1995.9 1935.5 11859 7003 16039
tree weight 50 – – – – – – t 1995.6 1932.3 11777 7003 16039
no clairvoyant – – – – – – – t 1994.6 1938.6 11842 7003 16039
0-restart – – – – – – – t 1999.7 1935.5 11821 7003 16039

nu25-pr12 monotone 10 – – 2 – – – 5.8 5.6 6.2 86 92 107
monotone 25 – – 2 – – – 5.8 5.6 6.2 86 92 107
monotone 50 – – 2 – – – 5.8 5.6 6.2 86 92 107
reg forest 10 – – 2 – – – 5.9 5.7 6.3 86 92 107
reg forest 25 – – 2 – – – 5.9 5.7 6.5 86 92 107
reg forest 50 – – 2 – – – 5.9 5.7 6.4 86 92 107
gap 10 – – 2 – – – 5.8 5.6 6.2 86 92 107
gap 25 – – 2 – – – 5.8 5.6 6.2 86 92 107
gap 50 – – 2 – – – 5.8 5.6 6.2 86 92 107
leaf freq 10 – – 2 – – – 5.8 5.6 6.3 86 92 107
leaf freq 25 – – 2 – – – 5.8 5.6 6.2 86 92 107
leaf freq 50 – – 2 – – – 5.7 5.6 6.3 86 92 107
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ssg 10 – – 2 – – – 5.8 5.5 6.3 86 92 107
ssg 25 – – 2 – – – 5.8 5.6 6.2 86 92 107
ssg 50 – – 2 – – – 5.8 5.6 6.2 86 92 107
tree weight 10 – – 2 – – – 5.8 5.6 6.2 86 92 107
tree weight 25 – – 2 – – – 5.8 5.6 6.2 86 92 107
tree weight 50 – – 2 – – – 5.8 5.6 6.2 86 92 107
no clairvoyant – – – 2 – – – 5.9 5.6 6.3 86 92 107
0-restart – – – – – – – 5.7 5.6 3.7 86 92 50

nursesched-m. monotone 10 – – – – – – t t t 562 708 487
monotone 25 – – – – – – t t t 548 712 479
monotone 50 – – – – – – t t t 553 717 490
reg forest 10 – – – – – – t t t 567 708 493
reg forest 25 – – – – – – t t t 567 708 473
reg forest 50 – – – – – – t t t 567 708 481
gap 10 – – – – – – t t t 553 710 475
gap 25 – – – – – – t t t 567 708 481
gap 50 – – – – – – t t t 539 692 476
leaf freq 10 – – – – – – t t t 567 708 462
leaf freq 25 – – – – – – t t t 567 712 480
leaf freq 50 – – – – – – t t t 583 696 487
ssg 10 – – – – – – t t t 584 708 473
ssg 25 – – – – – – t t t 517 708 483
ssg 50 – – – – – – t t t 594 708 480
tree weight 10 – – – – – – t t t 603 712 480
tree weight 25 – – – – – – t t t 553 708 473
tree weight 50 – – – – – – t t t 589 708 487
no clairvoyant – – – – – – – t t t 596 708 480
0-restart – – – – – – – t t t 609 717 487

nursesched-s. monotone 10 – 1 – – – – 108.3 85.2 103.5 272 303 204
monotone 25 – 1 – – – – 108.2 85.3 103.7 272 303 204
monotone 50 – 1 – – – – 107.5 85.4 103.7 272 303 204
reg forest 10 – 1 – – – – 108.2 85.2 104.0 272 303 204
reg forest 25 – 1 – – – – 108.1 85.2 104.0 272 303 204
reg forest 50 – 1 – – – – 108.0 85.3 104.1 272 303 204
gap 10 – 1 – – – – 108.4 85.4 103.8 272 303 204
gap 25 – 1 – – – – 108.1 85.1 103.8 272 303 204
gap 50 – 1 – – – – 108.6 84.9 103.5 272 303 204
leaf freq 10 – 1 – – – – 108.4 84.8 103.3 272 303 204
leaf freq 25 – 1 – – – – 108.4 85.5 103.5 272 303 204
leaf freq 50 – 1 – – – – 108.6 85.1 104.0 272 303 204
ssg 10 – 1 – – – – 107.3 85.2 104.2 272 303 204
ssg 25 – 1 – – – – 108.2 85.1 103.7 272 303 204
ssg 50 – 1 – – – – 108.2 85.1 103.8 272 303 204
tree weight 10 – 1 – – – – 108.1 86.0 103.7 272 303 204
tree weight 25 – 1 – – – – 108.3 85.4 103.7 272 303 204
tree weight 50 – 1 – – – – 108.5 85.3 104.0 272 303 204
no clairvoyant – – 1 – – – – 108.4 84.3 104.7 272 303 204
0-restart – – – – – – – 109.1 75.2 103.8 272 63 204

nw04 monotone 10 – 5 7 – – – 37.1 33.3 31.6 11 6 8
monotone 25 – 5 7 – – – 36.9 33.2 31.3 11 6 8
monotone 50 – 5 7 – – – 37.1 33.2 31.5 11 6 8
reg forest 10 – 5 7 – – – 37.1 33.5 31.8 11 6 8
reg forest 25 – 5 7 – – – 37.1 33.5 31.6 11 6 8
reg forest 50 – 5 7 – – – 37.0 33.4 31.7 11 6 8
gap 10 – 5 7 – – – 36.6 33.2 31.2 11 6 8
gap 25 – 5 7 – – – 37.1 33.4 31.4 11 6 8
gap 50 – 5 7 – – – 36.7 33.3 31.5 11 6 8
leaf freq 10 – 5 7 – – – 37.0 33.2 31.2 11 6 8
leaf freq 25 – 5 7 – – – 36.9 33.2 31.5 11 6 8
leaf freq 50 – 5 7 – – – 36.6 33.1 31.3 11 6 8
ssg 10 – 5 7 – – – 36.6 33.2 31.3 11 6 8
ssg 25 – 5 7 – – – 36.8 33.1 31.5 11 6 8
ssg 50 – 5 7 – – – 36.6 33.1 31.5 11 6 8
tree weight 10 – 5 7 – – – 37.0 33.2 31.5 11 6 8
tree weight 25 – 5 7 – – – 36.9 33.3 31.2 11 6 8
tree weight 50 – 5 7 – – – 36.9 33.2 31.2 11 6 8
no clairvoyant – – 5 7 – – – 37.2 33.1 31.3 11 6 8
0-restart – – – – – – – 50.7 33.9 34.0 1 1 1

opm2-z10-s4 monotone 10 – – – – – – t t t 752 388 446
monotone 25 – – – – – – t t t 754 389 446
monotone 50 – – – – – – t t t 754 389 448
reg forest 10 – – – – – – t t t 754 389 446
reg forest 25 – – – – – – t t t 752 388 446
reg forest 50 – – – – – – t t t 754 388 446
gap 10 – – – – – – t t t 752 388 446
gap 25 – – – – – – t t t 754 388 446

cont. on next page . . .

352



Table E.1 cont.

mip settings ϕclair root tree time nodes

0 1 2 0 1 2 0 1 2 0 1 2

gap 50 – – – – – – t t t 754 389 446
leaf freq 10 – – – – – – t t t 752 388 446
leaf freq 25 – – – – – – t t t 754 389 446
leaf freq 50 – – – – – – t t t 754 388 446
ssg 10 – – – – – – t t t 751 388 446
ssg 25 – – – – – – t t t 751 389 446
ssg 50 – – – – – – t t t 754 388 446
tree weight 10 – – – – – – t t t 754 389 447
tree weight 25 – – – – – – t t t 754 387 446
tree weight 50 – – – – – – t t t 754 388 446
no clairvoyant – – – – – – – t t t 754 388 446
0-restart – – – – – – – t t t 754 388 443

p200x1188c monotone 10 – – – – – – 2.7 2.7 2.7 1 1 1
monotone 25 – – – – – – 2.7 2.8 2.8 1 1 1
monotone 50 – – – – – – 2.7 2.8 2.8 1 1 1
reg forest 10 – – – – – – 2.8 2.8 2.8 1 1 1
reg forest 25 – – – – – – 2.8 2.8 2.8 1 1 1
reg forest 50 – – – – – – 2.8 2.8 2.8 1 1 1
gap 10 – – – – – – 2.8 2.8 2.8 1 1 1
gap 25 – – – – – – 2.8 2.8 2.8 1 1 1
gap 50 – – – – – – 2.7 2.8 2.8 1 1 1
leaf freq 10 – – – – – – 2.8 2.8 2.8 1 1 1
leaf freq 25 – – – – – – 2.8 2.8 2.8 1 1 1
leaf freq 50 – – – – – – 2.7 2.8 2.8 1 1 1
ssg 10 – – – – – – 2.7 2.7 2.8 1 1 1
ssg 25 – – – – – – 2.8 2.8 2.8 1 1 1
ssg 50 – – – – – – 2.7 2.7 2.8 1 1 1
tree weight 10 – – – – – – 2.7 2.7 2.8 1 1 1
tree weight 25 – – – – – – 2.8 2.8 2.7 1 1 1
tree weight 50 – – – – – – 2.8 2.7 2.8 1 1 1
no clairvoyant – – – – – – – 2.8 2.7 2.7 1 1 1
0-restart – – – – – – – 2.8 2.8 2.8 1 1 1

peg-solitaire-a3 monotone 10 – – – 1 1 1 t t t 1925 1987 1831
monotone 25 – – – 1 1 1 t t t 1952 1954 1828
monotone 50 – – – 1 1 1 t t t 1935 1961 1844
reg forest 10 – – – – – – t t t 2048 1901 1750
reg forest 25 – – – – – – t t t 2048 1897 1749
reg forest 50 – – – – – – t t t 2049 1909 1747
gap 10 – – – – – – t t t 2052 1900 1749
gap 25 – – – – – – t t t 2049 1902 1748
gap 50 – – – – – – t t t 2053 1906 1750
leaf freq 10 – – – – – – t t t 2049 1903 1757
leaf freq 25 – – – – – – t t t 2049 1898 1750
leaf freq 50 – – – – – – t t t 2049 1903 1754
ssg 10 – – – – – – t t t 2053 1901 1750
ssg 25 – – – – – – t t t 2049 1901 1749
ssg 50 – – – – – – t t t 2050 1907 1748
tree weight 10 – – – 1 – 1 t t t 1688 1890 1781
tree weight 25 – – – 1 – 1 t t t 1692 1901 1780
tree weight 50 – – – 1 – 1 t t t 1705 1901 1777
no clairvoyant – – – – – – – t t t 2041 1904 1749
0-restart – – – – – – – t t t 2049 1901 1746

pg monotone 10 1 1 1 – – – 18.4 14.6 16.4 655 141 607
monotone 25 1 1 1 – – – 18.4 14.6 16.5 655 141 607
monotone 50 1 1 1 – – – 18.4 14.7 16.6 655 141 607
reg forest 10 1 1 1 – – – 18.6 14.8 16.8 655 141 607
reg forest 25 1 1 1 – – – 18.6 14.8 16.7 655 141 607
reg forest 50 1 1 1 – – – 18.6 14.8 16.8 655 141 607
gap 10 1 1 1 – – – 18.4 14.7 16.4 655 141 607
gap 25 1 1 1 – – – 18.4 14.7 16.4 655 141 607
gap 50 1 1 1 – – – 18.4 14.7 16.4 655 141 607
leaf freq 10 1 1 1 – – – 18.4 14.6 16.4 655 141 607
leaf freq 25 1 1 1 – – – 18.4 14.7 16.4 655 141 607
leaf freq 50 1 1 1 – – – 18.4 14.7 16.5 655 141 607
ssg 10 1 1 1 – – – 18.4 14.7 16.4 655 141 607
ssg 25 1 1 1 – – – 18.4 14.7 16.6 655 141 607
ssg 50 1 1 1 – – – 18.3 14.7 16.5 655 141 607
tree weight 10 1 1 1 – – – 18.5 14.6 16.4 655 141 607
tree weight 25 1 1 1 – – – 18.4 14.7 16.5 655 141 607
tree weight 50 1 1 1 – – – 18.4 14.7 16.4 655 141 607
no clairvoyant – 1 1 1 – – – 18.6 14.6 16.5 655 141 607
0-restart – – – – – – – 16.3 13.8 19.3 547 142 623

pg5_34 monotone 10 1 1 1 1 – 1 3172.7 1445.5 1540.8 196994 241832 263584
monotone 25 1 1 1 1 – – 3175.7 1450.9 t 196994 241832 215322
monotone 50 1 1 1 – – – t 1447.5 t 197764 241832 215293
reg forest 10 1 1 1 1 1 1 3188.7 1263.3 1556.5 196994 189870 263584
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reg forest 25 1 1 1 – – – t 1456.7 t 197625 241832 215285
reg forest 50 1 1 1 – – – t 1457.4 t 197640 241832 215280
gap 10 1 1 1 – – – t 1443.9 t 197709 241832 215351
gap 25 1 1 1 – – – t 1445.9 t 197682 241832 215398
gap 50 1 1 1 – – – t 1448.0 t 197709 241832 215378
leaf freq 10 1 1 1 1 1 1 t 1726.7 1300.2 207236 276644 216502
leaf freq 25 1 1 1 1 1 1 2834.8 1439.5 1220.0 197256 218451 185540
leaf freq 50 1 1 1 1 – 1 1686.4 1445.6 1080.7 222085 241832 169295
ssg 10 1 1 1 1 1 1 2515.1 1263.5 1661.2 204747 189870 248093
ssg 25 1 1 1 1 1 1 3271.3 1204.6 1439.3 198455 214799 232211
ssg 50 1 1 1 1 1 1 1735.9 1527.3 1466.7 198421 254894 221332
tree weight 10 1 1 1 1 1 1 3173.0 1263.0 1421.4 196994 189870 216173
tree weight 25 1 1 1 1 1 1 3171.6 1180.9 1229.9 196994 196218 189916
tree weight 50 1 1 1 1 1 1 3162.1 1279.6 1530.2 217639 212468 229739
no clairvoyant – 1 1 1 – – – t 1432.7 t 197620 241832 215357
0-restart – – – – – – – 1451.8 2268.6 1310.3 250620 169636 200618

p.sched3-3 monotone 10 – – – – – – t t t 115 78 40
monotone 25 – – – – – – t t t 112 78 40
monotone 50 – – – – – – t t t 115 78 39
reg forest 10 – – – – – – t t t 115 78 40
reg forest 25 – – – – – – t t t 115 78 40
reg forest 50 – – – – – – t t t 115 78 40
gap 10 – – – – – – t t t 115 78 40
gap 25 – – – – – – t t t 114 78 40
gap 50 – – – – – – t t t 115 78 40
leaf freq 10 – – – – – – t t t 115 78 40
leaf freq 25 – – – – – – t t t 115 78 40
leaf freq 50 – – – – – – t t t 115 78 40
ssg 10 – – – – – – t t t 114 78 40
ssg 25 – – – – – – t t t 115 78 40
ssg 50 – – – – – – t t t 117 78 40
tree weight 10 – – – – – – t t t 115 78 40
tree weight 25 – – – – – – t t t 113 78 40
tree weight 50 – – – – – – t t t 114 78 40
no clairvoyant – – – – – – – t t t 114 78 40
0-restart – – – – – – – t t t 112 78 39

p.sched6-2 monotone 10 1 – – – – – 74.4 865.0 65.9 2 2528 1
monotone 25 1 – – – – – 74.2 871.4 65.4 2 2528 1
monotone 50 1 – – – – – 74.1 864.5 66.1 2 2528 1
reg forest 10 1 – – – – – 74.2 868.2 66.3 2 2528 1
reg forest 25 1 – – – – – 74.3 861.4 66.4 2 2528 1
reg forest 50 1 – – – – – 74.5 863.3 66.0 2 2528 1
gap 10 1 – – – – – 74.2 869.8 66.4 2 2528 1
gap 25 1 – – – – – 73.8 863.6 65.8 2 2528 1
gap 50 1 – – – – – 74.3 864.0 66.1 2 2528 1
leaf freq 10 1 – – – – – 74.0 860.8 65.9 2 2528 1
leaf freq 25 1 – – – – – 74.1 865.3 66.0 2 2528 1
leaf freq 50 1 – – – – – 73.3 867.3 66.0 2 2528 1
ssg 10 1 – – – 1 – 74.2 695.3 65.9 2 1333 1
ssg 25 1 – – – – – 74.3 862.8 66.2 2 2528 1
ssg 50 1 – – – – – 73.8 868.5 66.0 2 2528 1
tree weight 10 1 – – – 1 – 74.3 677.1 66.2 2 1172 1
tree weight 25 1 – – – – – 74.2 868.0 66.0 2 2528 1
tree weight 50 1 – – – – – 74.2 863.6 65.4 2 2528 1
no clairvoyant – 1 – – – – – 74.1 865.2 66.2 2 2528 1
0-restart – – – – – – – 115.2 863.9 66.3 53 2528 1

piperout-08 monotone 10 – – – – – – 42.9 22.0 34.1 1257 220 228
monotone 25 – – – – – – 43.3 22.1 33.3 1257 220 228
monotone 50 – – – – – – 43.3 22.2 33.8 1257 220 228
reg forest 10 – – – – – – 44.3 22.6 34.8 1257 220 228
reg forest 25 – – – – – – 44.2 22.8 34.7 1257 220 228
reg forest 50 – – – – – – 44.6 22.5 34.7 1257 220 228
gap 10 1 – – 1 – – 62.9 22.0 33.6 1197 220 228
gap 25 1 – – 1 – – 62.8 21.7 33.8 1197 220 228
gap 50 – – – – – – 43.2 22.0 34.1 1257 220 228
leaf freq 10 – – – – – – 43.2 21.9 34.1 1257 220 228
leaf freq 25 – – – – – – 43.0 22.0 34.0 1257 220 228
leaf freq 50 – – – – – – 43.3 22.2 33.8 1257 220 228
ssg 10 – – – – – – 42.6 22.1 33.6 1257 220 228
ssg 25 – – – – – – 43.2 22.0 33.8 1257 220 228
ssg 50 – – – – – – 43.1 22.0 33.7 1257 220 228
tree weight 10 1 – – 1 – – 62.1 22.2 33.8 1197 220 228
tree weight 25 – – – – – – 43.2 22.0 33.9 1257 220 228
tree weight 50 – – – – – – 43.2 22.0 33.8 1257 220 228
no clairvoyant – – – – – – – 44.3 22.2 34.1 1257 220 228
0-restart – – – – – – – 43.1 22.0 33.8 1257 220 228
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piperout-27 monotone 10 – 1 1 – – – 35.9 43.2 13.5 64 77 2
monotone 25 – 1 1 – – – 35.7 43.0 13.2 64 77 2
monotone 50 – 1 1 – – – 35.8 43.5 13.4 64 77 2
reg forest 10 – 1 1 – – – 36.2 43.7 13.9 64 77 2
reg forest 25 – 1 1 – – – 36.1 43.4 14.0 64 77 2
reg forest 50 – 1 1 – – – 36.4 43.5 13.8 64 77 2
gap 10 – 1 1 – – – 35.7 43.0 13.4 64 77 2
gap 25 – 1 1 – – – 36.1 42.6 13.6 64 77 2
gap 50 – 1 1 – – – 36.0 43.3 13.6 64 77 2
leaf freq 10 – 1 1 – – – 35.7 43.0 13.4 64 77 2
leaf freq 25 – 1 1 – – – 35.9 43.1 13.4 64 77 2
leaf freq 50 – 1 1 – – – 35.7 43.2 13.4 64 77 2
ssg 10 – 1 1 – – – 35.9 42.8 13.4 64 77 2
ssg 25 – 1 1 – – – 35.7 43.0 13.5 64 77 2
ssg 50 – 1 1 – – – 36.0 43.4 13.5 64 77 2
tree weight 10 – 1 1 – – – 35.7 43.2 13.5 64 77 2
tree weight 25 – 1 1 – – – 35.7 43.1 13.5 64 77 2
tree weight 50 – 1 1 – – – 35.6 43.0 13.5 64 77 2
no clairvoyant – – 1 1 – – – 36.1 42.9 13.6 64 77 2
0-restart – – – – – – – 35.6 23.9 14.0 64 23 8

pk1 monotone 10 – – – 1 1 1 118.1 131.2 122.6 301271 341496 323572
monotone 25 – – – 1 1 1 117.3 130.1 122.2 301271 341496 323572
monotone 50 – – – – – 1 146.3 148.3 122.6 345884 339401 323572
reg forest 10 – – – 1 1 1 121.2 133.0 125.4 301271 341496 323572
reg forest 25 – – – 1 1 1 127.7 125.5 142.8 308886 299317 349304
reg forest 50 – – – – – – 161.5 164.1 178.3 345884 339401 395948
gap 10 – – – 1 1 1 121.2 121.9 119.6 305818 310020 306624
gap 25 – – – 1 – 1 143.1 148.1 128.4 370429 339401 330723
gap 50 – – – 1 – – 129.8 147.9 162.9 332294 339401 395948
leaf freq 10 – – – 1 1 1 130.0 117.4 134.0 304900 302324 331171
leaf freq 25 – – – 1 1 1 129.4 128.1 131.2 304900 321168 308403
leaf freq 50 – – – 1 1 1 123.9 138.0 138.3 308415 339893 338146
ssg 10 – – – 1 1 1 132.9 124.9 124.5 336044 301691 316284
ssg 25 – – – 1 1 1 133.9 122.6 125.2 336898 306037 316284
ssg 50 – – – 1 – – 137.2 148.0 161.6 336129 339401 395948
tree weight 10 – – – 1 1 1 124.4 130.5 121.3 309731 341496 310695
tree weight 25 – – – 1 1 1 126.4 130.7 128.8 309731 341496 348275
tree weight 50 – – – 1 1 1 125.0 130.8 142.2 309731 341496 371134
no clairvoyant – – – – – – – 148.3 147.1 161.8 345884 339401 395948
0-restart – – – – – – – 146.9 146.8 160.2 345884 339401 395948

prot.121hz512p9 monotone 10 – – – – – – t t t 12827 24772 15473
monotone 25 – – – – – – t t t 12978 24141 15672
monotone 50 – – – – – – t t t 12903 24723 15326
reg forest 10 – – – – – – t t t 12912 24520 15421
reg forest 25 – – – – – – t t t 12579 24251 15363
reg forest 50 – – – – – – t t t 12957 24597 15392
gap 10 – – – 1 1 1 t t t 5656 12474 5753
gap 25 – – – – 1 – t t t 12788 17462 15525
gap 50 – – – – – – t t t 12801 24960 15478
leaf freq 10 – – – 1 1 1 t t t 12115 18916 10839
leaf freq 25 – – – – – – t t t 13046 24132 15423
leaf freq 50 – – – – – – t t t 12808 24152 15293
ssg 10 – – – 1 1 1 t t t 2713 1082 1528
ssg 25 – – – 1 1 1 t t t 2713 1082 1528
ssg 50 – – – 1 1 1 t t t 2713 1082 1528
tree weight 10 – – – 1 – 1 t t t 2734 24132 3980
tree weight 25 – – – 1 – 1 t t t 3416 24624 14126
tree weight 50 – – – – – 1 t t t 12859 24710 14136
no clairvoyant – – – – – – – t t t 12970 24987 15593
0-restart – – – – – – – t t t 12849 24766 15352

prot.122trx11p8 monotone 10 – – – – – – t t t 23204 32043 33316
monotone 25 – – – – – – t t t 23305 32334 33606
monotone 50 – – – – – – t t t 23346 32315 33621
reg forest 10 – – – – – – t t t 23262 32368 33346
reg forest 25 – – – – – – t t t 23763 32041 33814
reg forest 50 – – – – – – t t t 23095 32242 33814
gap 10 – – – 1 1 1 t t t 19075 17914 17864
gap 25 – – – – – – t t t 23095 32170 33405
gap 50 – – – – – – t t t 23152 32273 33785
leaf freq 10 – – – 1 1 1 t t t 12077 9286 22961
leaf freq 25 – – – 1 – – t t t 18830 32231 33264
leaf freq 50 – – – – – – t t t 23248 32112 33604
ssg 10 – – – 1 1 1 t t t 2886 15768 1503
ssg 25 – – – 1 1 1 t t t 2905 15761 21170
ssg 50 – – – 1 1 1 t t t 5286 2317 20978
tree weight 10 – – – 1 1 1 t t t 5646 6028 8678
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tree weight 25 – – – 1 1 1 t t t 9016 6028 8729
tree weight 50 – – – 1 1 1 t t t 4632 6028 8706
no clairvoyant – – – – – – – t t t 23260 32331 33649
0-restart – – – – – – – t t t 23244 32595 33540

qap10 monotone 10 1 – – – – – 43.7 73.3 78.2 1 2 2
monotone 25 1 – – – – – 43.8 73.2 78.2 1 2 2
monotone 50 1 – – – – – 43.7 73.2 77.8 1 2 2
reg forest 10 1 – – – – – 43.8 73.3 78.5 1 2 2
reg forest 25 1 – – – – – 43.9 73.3 78.4 1 2 2
reg forest 50 1 – – – – – 43.8 73.1 78.3 1 2 2
gap 10 1 – – – – – 43.6 73.2 78.3 1 2 2
gap 25 1 – – – – – 43.5 72.8 78.2 1 2 2
gap 50 1 – – – – – 43.7 73.2 78.4 1 2 2
leaf freq 10 1 – – – – – 43.7 73.2 78.5 1 2 2
leaf freq 25 1 – – – – – 43.6 73.3 78.3 1 2 2
leaf freq 50 1 – – – – – 43.6 73.3 78.2 1 2 2
ssg 10 1 – – – – – 43.8 73.7 78.3 1 2 2
ssg 25 1 – – – – – 43.5 73.2 78.3 1 2 2
ssg 50 1 – – – – – 43.7 73.3 78.2 1 2 2
tree weight 10 1 – – – – – 43.7 73.2 78.3 1 2 2
tree weight 25 1 – – – – – 43.6 73.1 78.3 1 2 2
tree weight 50 1 – – – – – 43.7 73.1 78.3 1 2 2
no clairvoyant – 1 – – – – – 43.8 73.4 78.3 1 2 2
0-restart – – – – – – – 52.5 73.4 78.7 1 2 2

rad.m18-12-05 monotone 10 – – – 1 1 1 t t t 458330 345840 425910
monotone 25 – – – 1 1 1 t t t 456752 345013 428401
monotone 50 – – – 1 1 1 t t t 457737 345642 424044
reg forest 10 – – – 1 1 1 t t t 513787 344202 425624
reg forest 25 – – – – – – t t t 486274 555509 383711
reg forest 50 – – – – – – t t t 487857 557207 381772
gap 10 – – – 1 1 1 t t t 422424 638102 425600
gap 25 – – – 1 1 1 t t t 577147 636252 426321
gap 50 – – – 1 1 1 t t t 437836 636733 426527
leaf freq 10 – – – 1 1 1 t t t 526818 783571 425786
leaf freq 25 – – – 1 1 1 t t t 523804 581069 425415
leaf freq 50 – – – 1 1 1 t t t 512100 462632 425420
ssg 10 – – – 1 1 1 t t t 513425 681518 425499
ssg 25 – – – 1 1 1 t t t 510421 681434 426871
ssg 50 – – – 1 1 1 t t t 480678 681985 426990
tree weight 10 – – – 1 1 1 t t t 458152 635462 426195
tree weight 25 – – – 1 1 1 t t t 458724 637120 426300
tree weight 50 – – – 1 1 1 t t t 457412 635882 426891
no clairvoyant – – – – – – – t t t 489205 566302 383479
0-restart – – – – – – – t t t 491282 566876 384993

rad.m40-10-02 monotone 10 – – – 1 1 1 t t t 60139 61855 86771
monotone 25 – – – 1 1 1 t t t 60726 62091 86405
monotone 50 – – – 1 1 1 t t t 60982 61563 86077
reg forest 10 – – – 1 1 1 t t t 81062 61798 86405
reg forest 25 – – – 1 – 1 t t t 61480 57189 86484
reg forest 50 – – – – – – t t t 74629 57722 67427
gap 10 – – – 1 1 1 t t t 67078 50351 29167
gap 25 – – – 1 1 1 t t t 50841 50416 89649
gap 50 – – – 1 1 1 t t t 77092 50473 81957
leaf freq 10 – – – 1 1 1 t t t 83741 62652 57307
leaf freq 25 – – – 1 1 1 t t t 84484 56537 68294
leaf freq 50 – – – – 1 1 t t t 76164 52699 68429
ssg 10 – – – 1 1 1 t t t 54924 98634 92978
ssg 25 – – – 1 1 1 t t t 54841 98492 86189
ssg 50 – – – 1 1 1 t t t 54684 58672 89577
tree weight 10 – – – 1 1 1 t t t 80079 62125 53426
tree weight 25 – – – 1 1 1 t t t 68479 61820 60990
tree weight 50 – – – 1 1 1 t t t 73307 61731 51460
no clairvoyant – – – – – – – t t t 74861 56703 67954
0-restart – – – – – – – t t t 74026 58636 68133

rail01 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
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ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

rail02 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

rail507 monotone 10 – – – – – – 249.4 201.2 190.0 990 856 856
monotone 25 – – – – – – 247.8 201.6 191.9 990 856 856
monotone 50 – – – – – – 250.4 202.5 191.9 990 856 856
reg forest 10 – – – – – – 251.0 202.3 190.3 990 856 856
reg forest 25 – – – – – – 248.7 203.0 191.6 990 856 856
reg forest 50 – – – – – – 249.3 203.8 190.5 990 856 856
gap 10 – – – – – – 249.2 200.2 189.9 990 856 856
gap 25 – – – – – – 248.7 201.4 191.1 990 856 856
gap 50 – – – – – – 251.2 202.2 190.4 990 856 856
leaf freq 10 – – – – – – 250.1 202.1 191.3 990 856 856
leaf freq 25 – – – – – – 248.3 202.8 191.7 990 856 856
leaf freq 50 – – – – – – 249.6 202.8 193.1 990 856 856
ssg 10 – – – – – – 250.6 201.1 190.1 990 856 856
ssg 25 – – – – – – 251.2 202.6 191.5 990 856 856
ssg 50 – – – – – – 250.1 202.5 191.2 990 856 856
tree weight 10 – – – – – – 248.6 202.0 190.2 990 856 856
tree weight 25 – – – – – – 249.1 201.8 191.4 990 856 856
tree weight 50 – – – – – – 248.8 201.2 191.2 990 856 856
no clairvoyant – – – – – – – 249.9 201.4 189.9 990 856 856
0-restart – – – – – – – 249.4 201.3 190.4 990 856 856

ran14x18-disj-8 monotone 10 – – – 1 1 1 1665.5 2478.0 1922.9 319747 555824 364603
monotone 25 – – – 1 1 1 1665.3 2473.8 1921.5 319747 555824 364603
monotone 50 – – – – – 1 2501.3 3088.3 1916.2 393538 535859 364603
reg forest 10 – – – 1 1 1 1667.9 2476.2 1919.3 319747 555824 364603
reg forest 25 – – – 1 1 1 1463.0 1787.6 1638.2 347564 328489 362276
reg forest 50 – – – – – – 2520.9 3121.8 2146.9 393538 535859 569911
gap 10 – – – 1 1 1 1705.2 2012.6 1650.9 320096 470806 327943
gap 25 – – – – 1 1 2506.8 1928.9 1713.3 393538 452141 383500
gap 50 – – – – – – 2497.5 3088.7 2113.9 393538 535859 569911
leaf freq 10 – – – 1 1 1 1746.2 1750.7 1761.4 354662 403484 354029
leaf freq 25 – – – 1 1 1 2357.0 1631.5 1661.2 482726 361937 311648
leaf freq 50 – – – 1 1 1 2348.9 1975.6 1657.9 482726 429218 311648
ssg 10 – – – 1 1 1 1860.7 2215.0 1466.4 382365 359725 302741
ssg 25 – – – 1 1 1 2086.1 1467.0 2115.9 505312 282049 401257
ssg 50 – – – 1 1 1 2233.4 1766.2 1409.7 383814 362703 309121
tree weight 10 – – – 1 1 1 1660.4 2295.3 1913.6 319747 473775 364603
tree weight 25 – – – 1 1 1 1662.4 2303.9 1916.2 319747 473775 364603
tree weight 50 – – – 1 1 1 1840.5 2254.8 1920.5 443604 420432 364603
no clairvoyant – – – – – – – 2500.5 3091.9 2116.1 393538 535859 569911
0-restart – – – – – – – 2495.6 3086.6 2115.9 393538 535859 569911

rd-rplusc-21 monotone 10 – – – – – – t t t 315525 181500 371633
monotone 25 – – – – – – t t t 311945 181602 371827
monotone 50 – – – – – – t t t 311649 180309 372714
reg forest 10 – – – – – – t t t 310162 179139 371269
reg forest 25 – – – – – – t t t 311460 181514 371065
reg forest 50 – – – – – – t t t 313086 180352 369439
gap 10 – – – – – – t t t 317711 181610 372086
gap 25 – – – – – – t t t 314377 181584 368617
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gap 50 – – – – – – t t t 313268 181685 372410
leaf freq 10 – – – 1 – 1 t t t 444255 182865 339159
leaf freq 25 – – – – – – t t t 312741 181014 368416
leaf freq 50 – – – – – – t t t 313571 181663 372491
ssg 10 – – – – – – t t t 314409 181628 371729
ssg 25 – – – – – – t t t 311765 180314 372513
ssg 50 – – – – – – t t t 314311 181610 371553
tree weight 10 – – – 1 1 1 t t t 312775 527410 556128
tree weight 25 – – – 1 1 1 t t t 229755 509832 344993
tree weight 50 – – – 1 1 1 t t t 313387 492812 414183
no clairvoyant – – – – – – – t t t 310138 181526 369197
0-restart – – – – – – – t t t 315653 181510 371757

reblock115 monotone 10 – – – – – – t t t 533833 494204 490784
monotone 25 – – – – – – t t t 533672 494430 490101
monotone 50 – – – – – – t t t 535409 494056 490646
reg forest 10 – – – 1 – – t t t 416195 492273 489508
reg forest 25 – – – 1 – – t t t 574858 491875 488948
reg forest 50 – – – – – – t t t 531496 491329 489005
gap 10 – – – 1 – 1 t t t 489991 494471 458829
gap 25 – – – – – – t t t 531853 494931 491971
gap 50 – – – – – – t t t 533383 493791 491003
leaf freq 10 – – – 1 1 1 t t t 446398 443247 453771
leaf freq 25 – – – 1 1 1 t t t 446927 467232 428173
leaf freq 50 – – – 1 1 1 t t t 495462 474352 427441
ssg 10 – – – 1 1 1 t t t 416924 490503 588718
ssg 25 – – – 1 1 1 t t t 415903 601013 539553
ssg 50 – – – 1 1 1 t t t 416208 498435 623486
tree weight 10 – – – 1 1 1 t t t 537695 478144 509164
tree weight 25 – – – 1 1 1 t t t 546557 493330 475815
tree weight 50 – – – 1 1 1 t t t 488127 399629 590383
no clairvoyant – – – – – – – t t t 532121 494893 492795
0-restart – – – – – – – t t t 533383 493992 490923

rmatr100-p10 monotone 10 – – – – – – 147.8 146.0 142.6 796 828 737
monotone 25 – – – – – – 147.3 145.7 142.9 796 828 737
monotone 50 – – – – – – 147.9 146.1 142.6 796 828 737
reg forest 10 – – – – – – 147.5 146.0 143.0 796 828 737
reg forest 25 – – – – – – 147.2 145.8 142.5 796 828 737
reg forest 50 – – – – – – 147.4 145.9 142.4 796 828 737
gap 10 – – – – – – 147.1 146.2 142.7 796 828 737
gap 25 – – – – – – 147.7 145.6 142.6 796 828 737
gap 50 – – – – – – 146.4 145.4 142.7 796 828 737
leaf freq 10 – – – – – – 147.4 145.7 142.6 796 828 737
leaf freq 25 – – – – – – 146.4 145.9 142.8 796 828 737
leaf freq 50 – – – – – – 147.1 146.0 142.5 796 828 737
ssg 10 – – – – – – 147.6 146.0 142.7 796 828 737
ssg 25 – – – – – – 147.4 145.8 143.2 796 828 737
ssg 50 – – – – – – 148.2 145.7 143.0 796 828 737
tree weight 10 – – – – – – 147.3 145.8 142.7 796 828 737
tree weight 25 – – – – – – 147.1 145.6 142.9 796 828 737
tree weight 50 – – – – – – 147.2 145.8 142.4 796 828 737
no clairvoyant – – – – – – – 147.4 145.5 142.6 796 828 737
0-restart – – – – – – – 147.8 145.2 141.6 796 828 737

rmatr200-p5 monotone 10 – – – – – – t t t 93 34 102
monotone 25 – – – – – – t t t 94 34 100
monotone 50 – – – – – – t t t 92 34 102
reg forest 10 – – – – – – t t t 91 33 101
reg forest 25 – – – – – – t t t 94 33 101
reg forest 50 – – – – – – t t t 92 34 101
gap 10 – – – – – – t t t 93 36 101
gap 25 – – – – – – t t t 94 34 101
gap 50 – – – – – – t t t 94 34 101
leaf freq 10 – – – – – – t t t 91 34 101
leaf freq 25 – – – – – – t t t 93 33 101
leaf freq 50 – – – – – – t t t 92 33 99
ssg 10 – – – – – – t t t 91 34 101
ssg 25 – – – – – – t t t 92 34 101
ssg 50 – – – – – – t t t 93 34 101
tree weight 10 – – – – – – t t t 91 33 101
tree weight 25 – – – – – – t t t 91 34 101
tree weight 50 – – – – – – t t t 93 34 101
no clairvoyant – – – – – – – t t t 91 34 102
0-restart – – – – – – – t t t 93 34 102

rocI-4-11 monotone 10 – – – – – – 53.6 53.9 52.4 13437 13378 13128
monotone 25 – – – – – – 53.8 53.8 52.5 13437 13378 13128
monotone 50 – – – – – – 53.7 53.8 52.5 13437 13378 13128
reg forest 10 – – – – – – 54.8 55.1 53.5 13437 13378 13128
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reg forest 25 – – – – – – 54.7 54.7 53.6 13437 13378 13128
reg forest 50 – – – – – – 54.7 54.9 53.3 13437 13378 13128
gap 10 – – – 1 1 1 82.4 97.5 75.9 15787 20352 15835
gap 25 – – – 1 1 1 63.6 97.5 84.6 12682 20352 14965
gap 50 – – – 1 1 1 82.0 97.1 72.9 16545 20352 15293
leaf freq 10 – – – – – – 53.6 53.6 52.4 13437 13378 13128
leaf freq 25 – – – – – – 53.5 53.8 52.8 13437 13378 13128
leaf freq 50 – – – – – – 53.6 53.8 52.5 13437 13378 13128
ssg 10 – – – 1 1 1 78.5 103.3 68.8 15622 17480 12694
ssg 25 – – – 1 1 1 81.6 82.8 72.1 12517 15040 15864
ssg 50 – – – 1 1 1 84.8 80.9 80.3 17482 16543 17790
tree weight 10 – – – 1 1 1 83.0 67.1 81.3 12569 14561 13751
tree weight 25 – – – 1 1 1 77.4 83.4 82.8 14898 16122 13851
tree weight 50 – – – 1 1 1 80.3 72.1 79.4 17027 13521 14534
no clairvoyant – – – – – – – 54.4 53.8 52.5 13437 13378 13128
0-restart – – – – – – – 53.6 53.8 52.1 13437 13378 13128

rocII-5-11 monotone 10 – – – – – – t t t 200835 139861 245574
monotone 25 – – – – – – t t t 199838 140690 246301
monotone 50 – – – – – – t t t 198405 140916 246106
reg forest 10 – – – 1 1 1 t t t 127228 168342 219781
reg forest 25 – – – – – – t t t 199995 140017 244612
reg forest 50 – – – – – – t t t 199286 138531 247654
gap 10 – – – 1 1 1 t t t 279559 300508 192786
gap 25 – – – 1 1 1 t t t 279522 302165 193523
gap 50 – – – 1 1 1 t t t 280857 303407 191393
leaf freq 10 – – – 1 1 1 t t t 95006 77995 86419
leaf freq 25 – – – 1 1 1 t t t 97224 95076 84996
leaf freq 50 – – – 1 1 1 t t t 166806 88851 86739
ssg 10 – – – 1 1 1 t t t 167563 303829 160144
ssg 25 – – – 1 1 1 t t t 159668 118745 165723
ssg 50 – – – 1 1 1 t t t 189378 150034 158820
tree weight 10 – – – 1 1 1 t t t 128499 234954 279448
tree weight 25 – – – 1 1 1 t t t 97968 168731 93663
tree weight 50 – – – 1 1 1 t t t 187399 194612 114907
no clairvoyant – – – – – – – t t t 199675 140518 243303
0-restart – – – – – – – t t t 199591 141613 251940

rococoB10-011000 monotone 10 – – – 1 1 1 t t t 75365 70343 61792
monotone 25 – – – – 1 – t t t 63029 70425 61164
monotone 50 – – – – – – t t t 62875 85967 60912
reg forest 10 – – – 1 1 – t t t 75874 66005 60902
reg forest 25 – – – – – – t t t 62832 85884 60806
reg forest 50 – – – – – – t t t 62804 85795 60862
gap 10 – – – 1 1 1 t t t 70533 75537 95833
gap 25 – – – 1 1 1 t t t 65282 70225 61999
gap 50 – – – 1 1 1 t t t 66018 75381 59909
leaf freq 10 – – – 1 1 1 t t t 53739 68983 57629
leaf freq 25 – – – 1 1 1 t t t 54668 68365 53403
leaf freq 50 – – – – – – t t t 62616 85888 61374
ssg 10 – – – 1 1 1 t t t 66346 70506 78543
ssg 25 – – – 1 1 1 t t t 53753 71029 66792
ssg 50 – – – 1 1 1 t t t 59318 68121 66037
tree weight 10 – – – 1 1 1 t t t 57210 77480 72023
tree weight 25 – – – 1 1 1 t t t 57209 77714 71903
tree weight 50 – – – 1 1 1 t t t 57172 77401 71487
no clairvoyant – – – – – – – t t t 62752 86202 60916
0-restart – – – – – – – t t t 62894 86132 61069

rococoC10-001000 monotone 10 – – – 1 1 1 1654.2 2228.1 521.1 118327 144244 38823
monotone 25 – – – – – 1 597.2 715.4 520.8 32105 47263 38823
monotone 50 – – – – – – 598.2 713.8 661.8 32105 47263 51034
reg forest 10 – – – 1 1 1 768.0 2088.3 523.6 56678 122598 38823
reg forest 25 – – – – – 1 601.5 715.8 539.7 32105 47263 38461
reg forest 50 – – – – – – 601.2 716.2 665.9 32105 47263 51034
gap 10 – – – 1 1 1 1202.0 2317.4 520.5 91279 175214 38823
gap 25 – – – 1 1 1 736.5 1539.2 493.4 57321 109343 37453
gap 50 – – – – – 1 596.6 716.6 536.3 32105 47263 36576
leaf freq 10 – – – 1 1 1 1176.2 667.2 693.1 73521 43796 48908
leaf freq 25 – – – – 1 1 596.2 1192.0 694.8 32105 82409 48908
leaf freq 50 – – – – – – 599.1 714.9 661.5 32105 47263 51034
ssg 10 – – – 1 1 1 452.3 2208.2 520.2 26307 135021 38823
ssg 25 – – – 1 1 1 492.0 t 519.9 25082 225966 38823
ssg 50 – – – 1 1 1 564.0 699.0 493.9 32226 41554 37453
tree weight 10 – – – 1 1 1 1207.8 2230.7 1329.0 91279 144244 107746
tree weight 25 – – – 1 1 1 737.0 2229.6 1001.8 57321 144244 71939
tree weight 50 – – – 1 1 1 1076.3 643.2 835.9 55950 39934 53039
no clairvoyant – – – – – – – 600.5 715.7 659.4 32105 47263 51034
0-restart – – – – – – – 596.9 713.6 661.7 32105 47263 51034
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roi2alpha3n4 monotone 10 – – – – – – 1290.1 1394.2 1081.7 13728 14224 9771
monotone 25 – – – – – – 1312.0 1410.8 1082.1 13728 14224 9771
monotone 50 – – – – – – 1312.4 1406.4 1078.8 13728 14224 9771
reg forest 10 – – – – – – 1313.0 1390.7 1092.3 13728 14224 9771
reg forest 25 – – – – – – 1315.5 1396.5 1076.8 13728 14224 9771
reg forest 50 – – – – – – 1304.2 1393.6 1088.4 13728 14224 9771
gap 10 – – – 1 1 1 1495.2 1526.8 1624.0 14234 16055 16250
gap 25 – – – 1 1 1 1648.9 1479.2 1597.7 16791 14209 13953
gap 50 – – – 1 1 – 1783.9 1905.5 1073.8 17031 19396 9771
leaf freq 10 – – – – – – 1318.5 1380.6 1088.5 13728 14224 9771
leaf freq 25 – – – – – – 1307.8 1394.3 1072.5 13728 14224 9771
leaf freq 50 – – – – – – 1299.5 1401.8 1083.9 13728 14224 9771
ssg 10 – – – 1 1 1 1623.2 1738.8 1342.6 17508 19907 13454
ssg 25 – – – 1 1 1 1421.0 1709.6 1324.6 13070 19907 12518
ssg 50 – – – 1 1 1 1547.6 1596.2 1332.1 14235 14747 12899
tree weight 10 – – – 1 1 1 1532.9 1709.9 1393.5 15589 19565 12697
tree weight 25 – – – 1 1 1 1494.9 1702.5 1582.8 14992 19932 13669
tree weight 50 – – – 1 1 1 1513.3 1878.5 1536.4 14531 19739 11910
no clairvoyant – – – – – – – 1316.2 1391.2 1084.2 13728 14224 9771
0-restart – – – – – – – 1307.5 1391.8 1089.4 13728 14224 9771

roi5alpha10n8 monotone 10 – – – 1 1 1 t t t 2255 3345 1324
monotone 25 – – – 1 – – t t t 2220 4757 2951
monotone 50 – – – – – – t t t 2254 4757 2883
reg forest 10 – – – 1 1 1 t t t 2237 3303 1326
reg forest 25 – – – 1 1 1 t t t 1916 4046 1325
reg forest 50 – – – – – – t t t 2273 4757 2839
gap 10 – – – 1 1 1 t t t 2174 3337 1916
gap 25 – – – 1 1 – t t t 2074 2177 2902
gap 50 – – – 1 1 – t t t 2006 1548 2894
leaf freq 10 – – – – – – t t t 2254 4757 2894
leaf freq 25 – – – – – – t t t 2254 4757 2940
leaf freq 50 – – – – – – t t t 2242 4757 2936
ssg 10 – – – 1 1 1 t t t 1710 2733 2120
ssg 25 – – – 1 1 1 t t t 1620 2701 1575
ssg 50 – – – 1 1 1 t t t 1687 3737 1623
tree weight 10 – – – 1 1 1 t t t 1939 3359 1323
tree weight 25 – – – 1 1 1 t t t 1935 3440 1334
tree weight 50 – – – 1 1 1 t t t 1915 3229 2307
no clairvoyant – – – – – – – t t t 2258 4757 2953
0-restart – – – – – – – t t t 2254 4757 2916

roll3000 monotone 10 – – – – – – 24.1 37.4 29.3 789 1221 1391
monotone 25 – – – – – – 24.1 37.4 29.2 789 1221 1391
monotone 50 – – – – – – 24.1 37.3 29.2 789 1221 1391
reg forest 10 – – – – – – 24.4 37.7 29.7 789 1221 1391
reg forest 25 – – – – – – 24.4 37.9 29.7 789 1221 1391
reg forest 50 – – – – – – 24.4 37.6 29.9 789 1221 1391
gap 10 – – – – – – 24.0 37.3 29.3 789 1221 1391
gap 25 – – – – – – 24.1 37.2 29.2 789 1221 1391
gap 50 – – – – – – 24.0 37.4 29.3 789 1221 1391
leaf freq 10 – – – – – – 24.0 37.2 29.2 789 1221 1391
leaf freq 25 – – – – – – 23.9 37.4 29.3 789 1221 1391
leaf freq 50 – – – – – – 23.9 37.3 29.3 789 1221 1391
ssg 10 – – – – 1 – 24.0 44.6 29.3 789 1324 1391
ssg 25 – – – – 1 – 24.1 44.6 29.4 789 1324 1391
ssg 50 – – – – 1 – 24.1 44.7 29.3 789 1324 1391
tree weight 10 – – – – – – 24.0 37.3 29.3 789 1221 1391
tree weight 25 – – – – – – 23.9 37.3 29.3 789 1221 1391
tree weight 50 – – – – – – 24.0 37.3 30.7 789 1221 1391
no clairvoyant – – – – – – – 24.4 37.2 29.1 789 1221 1391
0-restart – – – – – – – 24.0 37.4 29.3 789 1221 1391

s100 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
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tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

s250r10 monotone 10 6 5 5 – – – 2805.2 t t 21678 36775 43256
monotone 25 6 5 5 – – – 2825.9 t t 21678 37041 43225
monotone 50 6 5 5 – – – 2823.5 t t 21678 37377 42834
reg forest 10 6 5 5 – – – 2843.0 t t 21678 36660 43887
reg forest 25 6 5 5 – – – 2852.9 t t 21678 36420 43406
reg forest 50 6 5 5 – – – 2845.0 t t 21678 37089 43443
gap 10 6 5 5 – – – 2837.2 t t 21678 36735 43463
gap 25 6 5 5 – – – 2829.7 t t 21678 37959 43390
gap 50 6 5 5 – – – 2822.8 t t 21678 36153 43178
leaf freq 10 6 5 5 – – – 2824.2 t t 21678 37310 43231
leaf freq 25 6 5 5 – – – 2829.9 t t 21678 36844 43296
leaf freq 50 6 5 5 – – – 2825.1 t t 21678 36234 42974
ssg 10 6 5 5 – – – 2819.6 t t 21678 37031 43031
ssg 25 6 5 5 – – – 2823.4 t t 21678 37081 43275
ssg 50 6 5 5 – – – 2820.8 t t 21678 37446 43467
tree weight 10 6 5 5 – – – 2829.6 t t 21678 37337 42877
tree weight 25 6 5 5 – – – 2826.8 t t 21678 36556 43247
tree weight 50 6 5 5 – – – 2826.7 t t 21678 37922 43366
no clairvoyant – 6 5 5 – – – 2824.9 t t 21678 36556 43312
0-restart – – – – – – – t t t 3347 2474 2212

satellites2-40 monotone 10 1 1 – – – – t t t 2 2 1
monotone 25 1 1 – – – – t t t 2 2 1
monotone 50 1 1 – – – – t t t 2 2 1
reg forest 10 1 1 – – – – t t t 2 2 1
reg forest 25 1 1 – – – – t t t 2 2 1
reg forest 50 1 1 – – – – t t t 2 2 1
gap 10 1 1 – – – – t t t 2 2 1
gap 25 1 1 – – – – t t t 2 2 1
gap 50 1 1 – – – – t t t 2 2 1
leaf freq 10 1 1 – – – – t t t 2 2 1
leaf freq 25 1 1 – – – – t t t 2 2 1
leaf freq 50 1 1 – – – – t t t 2 2 1
ssg 10 1 1 – – – – t t t 2 2 1
ssg 25 1 1 – – – – t t t 2 2 1
ssg 50 1 1 – – – – t t t 2 2 1
tree weight 10 1 1 – – – – t t t 2 2 1
tree weight 25 1 1 – – – – t t t 2 2 1
tree weight 50 1 1 – – – – t t t 2 2 1
no clairvoyant – 1 1 – – – – t t t 2 2 1
0-restart – – – – – – – t t t 2 8 1

sat.-60-fs monotone 10 – – – – – – t t t 20 1 29
monotone 25 – – – – – – t t t 20 1 29
monotone 50 – – – – – – t t t 20 1 29
reg forest 10 – – – – – – t t t 20 1 29
reg forest 25 – – – – – – t t t 20 1 29
reg forest 50 – – – – – – t t t 20 1 29
gap 10 – – – – – – t t t 20 1 29
gap 25 – – – – – – t t t 20 1 29
gap 50 – – – – – – t t t 20 1 29
leaf freq 10 – – – – – – t t t 20 1 29
leaf freq 25 – – – – – – t t t 20 1 29
leaf freq 50 – – – – – – t t t 20 1 29
ssg 10 – – – – – – t t t 20 1 29
ssg 25 – – – – – – t t t 20 1 29
ssg 50 – – – – – – t t t 20 1 29
tree weight 10 – – – – – – t t t 20 1 29
tree weight 25 – – – – – – t t t 20 1 29
tree weight 50 – – – – – – t t t 20 1 29
no clairvoyant – – – – – – – t t t 20 1 29
0-restart – – – – – – – t t t 20 1 29

savsched1 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
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ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

sct2 monotone 10 – – – – – – t t t 409908 353185 385078
monotone 25 – – – – – – t t t 410378 352697 384186
monotone 50 – – – – – – t t t 409442 353181 381795
reg forest 10 – – – – – – t t t 409594 352217 383684
reg forest 25 – – – – – – t t t 408918 353015 382637
reg forest 50 – – – – – – t t t 410135 352070 382596
gap 10 – – – – – – t t t 409939 352725 383585
gap 25 – – – – – – t t t 409567 353113 382907
gap 50 – – – – – – t t t 408915 353335 383712
leaf freq 10 – – – – – – t t t 409815 353250 383403
leaf freq 25 – – – – – – t t t 410358 353335 383596
leaf freq 50 – – – – – – t t t 409848 353217 383864
ssg 10 – – – – – – t t t 409687 353191 383318
ssg 25 – – – – – – t t t 409267 352929 383239
ssg 50 – – – – – – t t t 409913 353048 385555
tree weight 10 – – – – – – t t t 409865 353217 383766
tree weight 25 – – – – – – t t t 411078 352997 383973
tree weight 50 – – – – – – t t t 410161 353258 384234
no clairvoyant – – – – – – – t t t 409391 353347 382551
0-restart – – – – – – – t t t 410273 353191 381850

seymour monotone 10 – – – 1 1 1 t t t 107832 107616 108113
monotone 25 – – – 1 – 1 t t t 108431 117022 108641
monotone 50 – – – 1 – – t t t 108573 116911 102026
reg forest 10 – – – – – – t t t 109680 117299 101793
reg forest 25 – – – – – – t t t 110112 116768 101436
reg forest 50 – – – – – – t t t 109838 116433 101483
gap 10 – – – 1 1 1 t t t 119018 111531 114418
gap 25 – – – – – – t t t 110481 117461 102132
gap 50 – – – – – – t t t 110112 116592 101705
leaf freq 10 – – – 1 1 1 t t t 113561 108779 100870
leaf freq 25 – – – 1 1 1 t t t 97420 108083 95779
leaf freq 50 – – – 1 1 1 t t t 108498 111138 98698
ssg 10 – – – 1 1 1 t t t 108248 95691 110216
ssg 25 – – – 1 1 1 t t t 108333 95893 110095
ssg 50 – – – 1 1 1 t t t 104085 92856 108458
tree weight 10 – – – 1 1 1 t t t 90496 94086 108457
tree weight 25 – – – 1 1 1 t t t 93765 93211 116384
tree weight 50 – – – 1 1 1 t t t 104281 116620 113607
no clairvoyant – – – – – – – t t t 110315 117038 102025
0-restart – – – – – – – t t t 110103 116816 101808

seymour1 monotone 10 – – – – – – 71.0 44.0 55.9 1564 912 1192
monotone 25 – – – – – – 70.6 44.0 55.8 1564 912 1192
monotone 50 – – – – – – 70.8 43.9 55.9 1564 912 1192
reg forest 10 – – – – – – 71.2 44.5 56.2 1564 912 1192
reg forest 25 – – – – – – 71.2 44.4 56.1 1564 912 1192
reg forest 50 – – – – – – 71.2 44.4 56.3 1564 912 1192
gap 10 – – – – – – 70.9 44.1 55.8 1564 912 1192
gap 25 – – – – – – 70.7 44.1 55.8 1564 912 1192
gap 50 – – – – – – 70.6 44.0 56.1 1564 912 1192
leaf freq 10 – – – – – – 70.8 44.1 55.9 1564 912 1192
leaf freq 25 – – – – – – 70.7 44.1 55.8 1564 912 1192
leaf freq 50 – – – – – – 70.8 44.0 55.9 1564 912 1192
ssg 10 – – – – – – 70.8 44.3 55.9 1564 912 1192
ssg 25 – – – – – – 70.7 44.0 55.9 1564 912 1192
ssg 50 – – – – – – 70.4 44.2 55.9 1564 912 1192
tree weight 10 – – – – – – 70.8 44.0 55.9 1564 912 1192
tree weight 25 – – – – – – 70.8 44.1 56.0 1564 912 1192
tree weight 50 – – – – – – 70.7 44.0 55.8 1564 912 1192
no clairvoyant – – – – – – – 71.3 44.0 55.7 1564 912 1192
0-restart – – – – – – – 70.7 44.0 55.9 1564 912 1192

sing326 monotone 10 – – – 1 1 1 t t t 1145 918 1507
monotone 25 – – – 1 1 1 t t t 1183 918 1531
monotone 50 – – – 1 1 – t t t 1159 918 1659
reg forest 10 – – – 1 – 1 t t t 1494 1243 1470
reg forest 25 – – – – – – t t t 2216 1243 1659
reg forest 50 – – – – – – t t t 2217 1242 1659
gap 10 – – – – – – t t t 2212 1224 1659
gap 25 – – – – – – t t t 2216 1207 1659
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gap 50 – – – – – – t t t 2216 1242 1656
leaf freq 10 – – – – – – t t t 2206 1242 1670
leaf freq 25 – – – – – – t t t 2216 1204 1665
leaf freq 50 – – – – – – t t t 2215 1204 1654
ssg 10 – – – 1 1 1 t t t 1637 1101 1470
ssg 25 – – – 1 1 1 t t t 1498 1131 1272
ssg 50 – – – 1 – 1 t t t 1486 1249 1420
tree weight 10 – – – 1 – – t t t 1502 1242 1659
tree weight 25 – – – 1 – – t t t 1894 1242 1680
tree weight 50 – – – 1 – – t t t 1904 1242 1659
no clairvoyant – – – – – – – t t t 2231 1241 1699
0-restart – – – – – – – t t t 2216 1172 1659

sing44 monotone 10 – 1 – – – 1 t t t 615 1369 1103
monotone 25 – 1 – – – – t t t 606 1369 1401
monotone 50 – 1 – – – – t t t 626 1369 1423
reg forest 10 – 1 – – – – t t t 626 1369 1465
reg forest 25 – 1 – – – – t t t 633 1365 1405
reg forest 50 – 1 – – – – t t t 626 1369 1424
gap 10 – 1 – – – – t t t 606 1369 1421
gap 25 – 1 – – – – t t t 614 1369 1424
gap 50 – 1 – – – – t t t 615 1365 1405
leaf freq 10 – 1 – – – – t t t 615 1367 1424
leaf freq 25 – 1 – – – – t t t 617 1369 1424
leaf freq 50 – 1 – – – – t t t 626 1369 1402
ssg 10 – 1 – – 1 1 t t t 634 1156 1078
ssg 25 – 1 – – 1 1 t t t 607 1307 1139
ssg 50 – 1 – – – – t t t 630 1367 1421
tree weight 10 – 1 – – 1 1 t t t 610 1156 1228
tree weight 25 – 1 – – – 1 t t t 642 1369 1070
tree weight 50 – 1 – – – 1 t t t 630 1369 1100
no clairvoyant – – 1 – – – – t t t 615 1369 1424
0-restart – – – – – – – t t t 606 1498 1463

snp-02-004-104 monotone 10 – – – – – – t t t 8070 6964 6031
monotone 25 – – – – – – t t t 8070 7122 6031
monotone 50 – – – – – – t t t 8070 6964 6031
reg forest 10 – – – – – – t t t 8070 6964 6031
reg forest 25 – – – – – – t t t 8070 6964 6031
reg forest 50 – – – – – – t t t 8070 6964 6031
gap 10 – – – – – – t t t 8070 6964 6031
gap 25 – – – – – – t t t 8070 6964 6031
gap 50 – – – – – – t t t 8070 6964 6031
leaf freq 10 – – – – 1 1 t t t 8070 8041 5391
leaf freq 25 – – – – – – t t t 8070 6964 6031
leaf freq 50 – – – – – – t t t 8070 6964 6031
ssg 10 – – – – 1 1 t t t 8070 8146 7649
ssg 25 – – – – 1 – t t t 8070 7455 6031
ssg 50 – – – – – – t t t 8070 6964 6031
tree weight 10 – – – 1 1 1 t t t 10438 8537 7317
tree weight 25 – – – 1 1 1 t t t 10558 8537 7317
tree weight 50 – – – 1 1 1 t t t 10508 8537 7317
no clairvoyant – – – – – – – t t t 8070 6964 6031
0-restart – – – – – – – t t t 8070 6964 6031

sorrell3 monotone 10 – – – – – – t t t 4219 3572 3626
monotone 25 – – – – – – t t t 4200 3573 3541
monotone 50 – – – – – – t t t 4171 3585 3561
reg forest 10 – – – – – – t t t 4236 3585 3561
reg forest 25 – – – – – – t t t 4149 3612 3508
reg forest 50 – – – – – – t t t 4059 3646 3514
gap 10 – – – – – – t t t 4142 3525 3514
gap 25 – – – – – – t t t 4172 3557 3528
gap 50 – – – – – – t t t 4202 3529 3634
leaf freq 10 – – – – – – t t t 4145 3572 3538
leaf freq 25 – – – – – – t t t 4145 3585 3540
leaf freq 50 – – – – – – t t t 4151 3506 3558
ssg 10 – – – – – – t t t 4171 3500 3514
ssg 25 – – – – – – t t t 4232 3586 3518
ssg 50 – – – – – – t t t 4266 3586 3597
tree weight 10 – – – – – – t t t 4239 3552 3528
tree weight 25 – – – – – – t t t 4271 3624 3572
tree weight 50 – – – – – – t t t 4241 3633 3528
no clairvoyant – – – – – – – t t t 4200 3506 3540
0-restart – – – – – – – t t t 4173 3585 3616

sp150x300d monotone 10 – – – – – – 0.6 1.2 0.7 244 714 258
monotone 25 – – – – – – 0.6 1.2 0.7 244 714 258
monotone 50 – – – – – – 0.6 1.2 0.7 244 714 258
reg forest 10 – – – – – – 0.8 1.4 0.8 244 714 258
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reg forest 25 – – – – – – 0.8 1.4 0.9 244 714 258
reg forest 50 – – – – – – 0.8 1.4 0.8 244 714 258
gap 10 – – – – – – 0.6 1.2 0.7 244 714 258
gap 25 – – – – – – 0.5 1.2 0.7 244 714 258
gap 50 – – – – – – 0.6 1.2 0.7 244 714 258
leaf freq 10 – – – – – – 0.6 1.2 0.7 244 714 258
leaf freq 25 – – – – – – 0.6 1.2 0.7 244 714 258
leaf freq 50 – – – – – – 0.6 1.1 0.7 244 714 258
ssg 10 – – – – – – 0.6 1.2 0.7 244 714 258
ssg 25 – – – – – – 0.6 1.2 0.7 244 714 258
ssg 50 – – – – – – 0.6 1.2 0.7 244 714 258
tree weight 10 – – – – – – 0.6 1.2 0.6 244 714 258
tree weight 25 – – – – – – 0.6 1.2 0.7 244 714 258
tree weight 50 – – – – – – 0.6 1.2 0.7 244 714 258
no clairvoyant – – – – – – – 0.7 1.2 0.6 244 714 258
0-restart – – – – – – – 0.6 1.2 0.7 244 714 258

sp97ar monotone 10 – – – 1 1 1 t t t 47257 50127 46675
monotone 25 – – – 1 1 1 t t t 47548 50110 46529
monotone 50 – – – 1 1 1 t t t 47261 50133 46586
reg forest 10 – – – 1 1 1 t t t 47244 50011 46561
reg forest 25 – – – – – – t t t 37493 38777 53849
reg forest 50 – – – – – – t t t 37549 38767 53378
gap 10 1 – – 1 1 1 t t t 36736 39384 46723
gap 25 – – – – – 1 t t t 37682 38842 46537
gap 50 – – – – – 1 t t t 37549 38438 46586
leaf freq 10 – – – 1 1 1 t t t 38701 34124 46909
leaf freq 25 – 1 – – 1 1 t t t 37304 37236 46809
leaf freq 50 – – – – 1 1 t t t 37571 37080 46536
ssg 10 – – – 1 1 1 t t t 32387 43440 46748
ssg 25 – – – 1 1 1 t t t 44656 37147 46723
ssg 50 – – – 1 1 1 t t t 41828 37547 46737
tree weight 10 – – – 1 1 1 t t t 47312 50436 46784
tree weight 25 – – – 1 1 1 t t t 47013 37724 46957
tree weight 50 – – – 1 1 1 t t t 46982 37865 46793
no clairvoyant – – – – – – – t t t 37822 38754 53884
0-restart – – – – – – – t t t 37669 38721 54080

sp98ar monotone 10 – – – 1 1 1 t t t 59727 48748 72315
monotone 25 – – – 1 1 1 t t t 60059 48802 72267
monotone 50 – – – 1 1 1 t t t 59441 48871 72272
reg forest 10 – – – 1 1 1 t t t 59946 58284 62736
reg forest 25 – – – – – – t t t 55256 63311 60557
reg forest 50 – – – – – – t t t 55051 63117 60344
gap 10 – – – – – 1 t t t 55597 62845 70411
gap 25 – – – – – – t t t 55625 63321 60363
gap 50 – – – – – – t t t 55609 63481 60069
leaf freq 10 1 1 – 1 1 1 t t t 75218 72895 62778
leaf freq 25 1 1 1 1 1 1 t t t 58359 68077 55524
leaf freq 50 – 1 – – 1 – t t t 55669 67355 60428
ssg 10 – – – 1 1 1 t t t 59882 59095 63637
ssg 25 – – – 1 1 1 t t t 59841 70422 67348
ssg 50 – – – 1 1 1 t t t 59990 65561 67164
tree weight 10 – – – 1 1 1 t t t 59995 61312 72250
tree weight 25 – – – 1 1 1 t t t 59972 63016 74152
tree weight 50 – – – 1 1 1 t t t 59978 64745 67649
no clairvoyant – – – – – – – t t t 55117 63020 60292
0-restart – – – – – – – t t t 55508 63070 60451

splice1k1 monotone 10 – – – – – – t t t 126 129 134
monotone 25 – – – – – – t t t 126 129 134
monotone 50 – – – – – – t t t 126 129 134
reg forest 10 – – – – – – t t t 126 129 134
reg forest 25 – – – – – – t t t 126 129 134
reg forest 50 – – – – – – t t t 126 129 134
gap 10 – – – – – – t t t 126 129 134
gap 25 – – – – – – t t t 126 129 134
gap 50 – – – – – – t t t 126 129 134
leaf freq 10 – – – – – – t t t 126 123 134
leaf freq 25 – – – – – – t t t 126 129 135
leaf freq 50 – – – – – – t t t 126 129 134
ssg 10 – – – – – – t t t 126 129 134
ssg 25 – – – – – – t t t 126 129 134
ssg 50 – – – – – – t t t 126 129 134
tree weight 10 – – – – – – t t t 126 129 134
tree weight 25 – – – – – – t t t 126 129 134
tree weight 50 – – – – – – t t t 126 129 134
no clairvoyant – – – – – – – t t t 126 129 134
0-restart – – – – – – – t t t 126 128 134
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square41 monotone 10 – – – – – – t t t 14 15 16
monotone 25 – – – – – – t t t 14 13 16
monotone 50 – – – – – – t t t 14 15 16
reg forest 10 – – – – – – t t t 14 13 16
reg forest 25 – – – – – – t t t 14 15 16
reg forest 50 – – – – – – t t t 15 13 16
gap 10 – – – – – – t t t 15 15 16
gap 25 – – – – – – t t t 14 15 16
gap 50 – – – – – – t t t 15 15 16
leaf freq 10 – – – – – – t t t 15 13 16
leaf freq 25 – – – – – – t t t 15 15 16
leaf freq 50 – – – – – – t t t 14 15 16
ssg 10 – – – – – – t t t 15 15 16
ssg 25 – – – – – – t t t 14 13 16
ssg 50 – – – – – – t t t 15 15 16
tree weight 10 – – – – – – t t t 15 13 16
tree weight 25 – – – – – – t t t 14 17 16
tree weight 50 – – – – – – t t t 14 15 16
no clairvoyant – – – – – – – t t t 14 15 16
0-restart – – – – – – – t t t 14 15 16

square47 monotone 10 – – – – – – t t t 5 5 4
monotone 25 – – – – – – t t t 5 5 4
monotone 50 – – – – – – t t t 5 5 4
reg forest 10 – – – – – – t t t 5 5 4
reg forest 25 – – – – – – t t t 5 5 4
reg forest 50 – – – – – – t t t 5 4 4
gap 10 – – – – – – t t t 5 5 4
gap 25 – – – – – – t t t 5 4 4
gap 50 – – – – – – t t t 5 5 4
leaf freq 10 – – – – – – t t t 5 5 4
leaf freq 25 – – – – – – t t t 5 5 4
leaf freq 50 – – – – – – t t t 5 5 4
ssg 10 – – – – – – t t t 5 5 4
ssg 25 – – – – – – t t t 5 5 4
ssg 50 – – – – – – t t t 5 5 4
tree weight 10 – – – – – – t t t 5 4 4
tree weight 25 – – – – – – t t t 5 5 4
tree weight 50 – – – – – – t t t 5 4 4
no clairvoyant – – – – – – – t t t 5 5 4
0-restart – – – – – – – t t t 5 5 4

supportcase10 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

supportcase12 monotone 10 – – – – – 1 t t t 910 881 1064
monotone 25 – – – – – 1 t t t 911 879 1064
monotone 50 – – – – – 1 t t t 906 879 1064
reg forest 10 – – – – – 1 t t t 911 882 1065
reg forest 25 – – – – – – t t t 911 877 1364
reg forest 50 – – – – – – t t t 911 881 1367
gap 10 – – – – – – t t t 913 879 1370
gap 25 – – – – – – t t t 911 876 1370
gap 50 – – – – – – t t t 910 879 1369
leaf freq 10 – – – – – – t t t 912 877 1368
leaf freq 25 – – – – – – t t t 914 881 1369
leaf freq 50 – – – – – – t t t 909 881 1369
ssg 10 – – – – – 1 t t t 907 881 1104
ssg 25 – – – – – 1 t t t 911 886 1101
ssg 50 – – – – – 1 t t t 911 882 1101
tree weight 10 – – – – – – t t t 911 883 1369
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tree weight 25 – – – – – – t t t 913 874 1369
tree weight 50 – – – – – – t t t 920 878 1368
no clairvoyant – – – – – – – t t t 911 879 1369
0-restart – – – – – – – t t t 913 883 1368

supportcase18 monotone 10 – – – 1 – 1 t t t 42861 202406 85804
monotone 25 – – – 1 – 1 t t t 42861 204878 85787
monotone 50 – – – – – 1 t t t 147821 202827 85805
reg forest 10 – – – 1 – 1 t t t 42875 202076 85527
reg forest 25 – – – – – 1 t t t 147577 202843 57435
reg forest 50 – – – – – – t t t 147179 202057 99976
gap 10 – – – 1 1 1 t t t 71093 137774 115174
gap 25 – – – – 1 – t t t 147770 138103 100207
gap 50 – – – – 1 – t t t 147910 137822 100016
leaf freq 10 – – – 1 1 1 t t t 147863 133534 125193
leaf freq 25 – – – 1 1 1 t t t 67014 133123 125358
leaf freq 50 – – – – 1 1 t t t 147580 133443 55560
ssg 10 – – – 1 – 1 t t t 42857 203842 114260
ssg 25 – – – 1 – 1 t t t 42861 204313 150738
ssg 50 – – – 1 – 1 t t t 42857 202539 96439
tree weight 10 – – – 1 1 1 t t t 133340 195285 142392
tree weight 25 – – – 1 1 1 t t t 62963 121191 83416
tree weight 50 – – – 1 1 1 t t t 126458 121298 55687
no clairvoyant – – – – – – – t t t 147414 203165 100204
0-restart – – – – – – – t t t 147823 204083 100255

supportcase19 monotone 10 – – – – – – t t t 1 1 1
monotone 25 – – – – – – t t t 1 1 1
monotone 50 – – – – – – t t t 1 1 1
reg forest 10 – – – – – – t t t 1 1 1
reg forest 25 – – – – – – t t t 1 1 1
reg forest 50 – – – – – – t t t 1 1 1
gap 10 – – – – – – t t t 1 1 1
gap 25 – – – – – – t t t 1 1 1
gap 50 – – – – – – t t t 1 1 1
leaf freq 10 – – – – – – t t t 1 1 1
leaf freq 25 – – – – – – t t t 1 1 1
leaf freq 50 – – – – – – t t t 1 1 1
ssg 10 – – – – – – t t t 1 1 1
ssg 25 – – – – – – t t t 1 1 1
ssg 50 – – – – – – t t t 1 1 1
tree weight 10 – – – – – – t t t 1 1 1
tree weight 25 – – – – – – t t t 1 1 1
tree weight 50 – – – – – – t t t 1 1 1
no clairvoyant – – – – – – – t t t 1 1 1
0-restart – – – – – – – t t t 1 1 1

supportcase22 monotone 10 – – – – – – t t t 20 3 2
monotone 25 – – – – – – t t t 20 3 2
monotone 50 – – – – – – t t t 20 3 2
reg forest 10 – – – – – – t t t 20 3 2
reg forest 25 – – – – – – t t t 20 3 2
reg forest 50 – – – – – – t t t 20 3 2
gap 10 – – – – – – t t t 20 3 2
gap 25 – – – – – – t t t 20 3 2
gap 50 – – – – – – t t t 20 3 2
leaf freq 10 – – – – – – t t t 20 3 2
leaf freq 25 – – – – – – t t t 20 3 2
leaf freq 50 – – – – – – t t t 20 3 2
ssg 10 – – – – – – t t t 20 3 2
ssg 25 – – – – – – t t t 20 3 2
ssg 50 – – – – – – t t t 20 3 2
tree weight 10 – – – – – – t t t 20 3 2
tree weight 25 – – – – – – t t t 20 3 2
tree weight 50 – – – – – – t t t 20 3 2
no clairvoyant – – – – – – – t t t 20 3 2
0-restart – – – – – – – t t t 20 3 2

supportcase26 monotone 10 1 1 1 1 1 1 t t t 3517290 3411645 3771093
monotone 25 1 1 1 – 1 – t t t 3910297 3394819 3752831
monotone 50 1 1 1 – – – t t t 3915560 3142271 3757370
reg forest 10 1 1 1 1 1 1 t t t 3507598 3404709 3789070
reg forest 25 1 1 1 1 1 1 t t t 3530427 3405908 3780989
reg forest 50 1 1 1 – – – t t t 3764566 3050424 3619929
gap 10 1 1 1 1 1 1 t t t 3762922 3618087 3741318
gap 25 1 1 1 1 1 1 t t t 3783434 3631301 3723588
gap 50 1 1 1 1 1 1 t t t 3282791 3659905 3713179
leaf freq 10 1 1 1 1 1 1 t t t 3208046 3672842 3512339
leaf freq 25 1 1 1 1 1 1 t t t 3565060 2805478 3213717
leaf freq 50 1 1 1 1 1 1 t t t 3338547 3132113 3212803
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ssg 10 1 1 1 1 1 1 t t t 3797975 3410005 3810031
ssg 25 1 1 1 1 1 1 t t t 3613185 3405182 3822511
ssg 50 1 1 1 1 1 1 t t t 3788192 3571718 3710767
tree weight 10 1 1 1 1 1 1 t t t 4030249 3416329 3787981
tree weight 25 1 1 1 1 1 1 t t t 3474124 3375227 3880693
tree weight 50 1 1 1 1 1 1 t t t 3486353 3469622 3903871
no clairvoyant – 1 1 1 – – – t t t 3911501 3132386 3745811
0-restart – – – – – – – t t t 4103253 4590357 4458099

supportcase33 monotone 10 – 1 1 – – – 3167.7 225.0 195.7 55354 8625 5203
monotone 25 – 1 1 – – – 3203.2 225.2 196.8 55354 8625 5203
monotone 50 – 1 1 – – – 3208.6 225.5 196.7 55354 8625 5203
reg forest 10 – 1 1 1 – – 2923.0 227.4 198.0 43560 8625 5203
reg forest 25 – 1 1 – – – 3223.1 226.5 197.9 55354 8625 5203
reg forest 50 – 1 1 – – – 3194.0 227.3 197.8 55354 8625 5203
gap 10 – 1 1 1 1 1 1767.4 317.0 174.8 43191 11671 3715
gap 25 – 1 1 1 – – 1277.5 224.3 196.8 30544 8625 5203
gap 50 – 1 1 1 – – 1941.9 224.8 196.6 30816 8625 5203
leaf freq 10 – 1 1 1 – – 2049.0 224.4 197.0 33531 8625 5203
leaf freq 25 – 1 1 1 – – 2843.8 225.4 195.5 51897 8625 5203
leaf freq 50 – 1 1 – – – 3198.9 225.3 196.2 55354 8625 5203
ssg 10 – 1 1 1 1 1 1176.0 252.3 192.8 22535 8447 3944
ssg 25 – 1 1 1 1 1 1072.3 317.8 185.8 30211 10737 4584
ssg 50 – 1 1 1 1 1 1018.0 311.2 211.8 28924 11117 5454
tree weight 10 – 1 1 1 1 1 945.4 227.9 183.7 34850 5832 3647
tree weight 25 – 1 1 1 1 1 1147.8 234.6 183.9 17999 6596 4236
tree weight 50 – 1 1 1 1 1 769.9 294.8 163.6 17991 10315 3980
no clairvoyant – – 1 1 – – – 3203.7 224.1 196.0 55354 8625 5203
0-restart – – – – – – – 3183.7 345.3 259.6 55354 10792 5670

supportcase40 monotone 10 – – – – – – 1175.2 1300.0 1060.2 12438 14026 9931
monotone 25 – – – – – – 1179.2 1308.0 1058.2 12438 14026 9931
monotone 50 – – – – – – 1179.8 1294.9 1057.3 12438 14026 9931
reg forest 10 – – – – – – 1183.0 1289.8 1062.4 12438 14026 9931
reg forest 25 – – – – – – 1182.1 1298.8 1059.4 12438 14026 9931
reg forest 50 – – – – – – 1180.1 1301.1 1059.1 12438 14026 9931
gap 10 – – – 1 1 1 1607.5 1710.1 1262.4 17103 19951 10414
gap 25 – – – – – 1 1179.0 1299.2 1266.1 12438 14026 10414
gap 50 – – – – – – 1173.3 1297.0 1059.0 12438 14026 9931
leaf freq 10 – – – – – – 1178.5 1301.3 1061.5 12438 14026 9931
leaf freq 25 – – – – – – 1180.7 1294.0 1060.3 12438 14026 9931
leaf freq 50 – – – – – – 1179.2 1304.5 1062.2 12438 14026 9931
ssg 10 – – – 1 1 1 1287.2 1393.6 1351.6 13582 13573 12725
ssg 25 – – – 1 1 1 1013.1 1419.2 1354.6 8265 13045 12725
ssg 50 – – – 1 1 1 1324.3 1428.2 1350.7 14271 13017 12725
tree weight 10 – – – 1 1 1 1461.6 1300.0 1296.7 15442 11414 12037
tree weight 25 – – – 1 1 1 1408.4 1495.1 1362.5 14813 14441 12429
tree weight 50 – – – 1 1 1 1400.8 1578.2 1367.4 15742 16158 12009
no clairvoyant – – – – – – – 1181.2 1298.9 1060.6 12438 14026 9931
0-restart – – – – – – – 1177.7 1294.8 1061.3 12438 14026 9931

supportcase42 monotone 10 1 1 1 1 1 1 t t t 146221 226492 168494
monotone 25 1 1 1 1 1 1 t t t 147056 226489 168012
monotone 50 1 1 1 1 1 1 t t t 151499 224007 168063
reg forest 10 1 1 1 1 1 1 t t t 146759 225373 168357
reg forest 25 1 1 1 – – – t t t 169891 144936 122122
reg forest 50 1 1 1 – – – t t t 170552 146162 121807
gap 10 1 1 1 – 1 1 t t t 172404 225931 166923
gap 25 1 1 1 – 1 1 t t t 172284 226168 168761
gap 50 1 1 1 – 1 1 t t t 171170 225477 167982
leaf freq 10 1 1 1 1 1 1 t t t 143238 226157 168386
leaf freq 25 1 1 1 1 1 1 t t t 135843 225467 167816
leaf freq 50 1 1 1 1 1 1 t t t 127460 226482 168302
ssg 10 1 1 1 1 1 1 t t t 169212 224876 168516
ssg 25 1 1 1 1 1 1 t t t 155426 226111 168004
ssg 50 1 1 1 1 1 1 t t t 150829 226083 169227
tree weight 10 1 1 1 1 1 1 t t t 140652 224830 167766
tree weight 25 1 1 1 1 1 1 t t t 141726 224855 168527
tree weight 50 1 1 1 1 1 1 t t t 141659 225508 168473
no clairvoyant – 1 1 1 – – – t t t 172409 147001 122233
0-restart – – – – – – – t t t 79714 89795 81680

supportcase6 monotone 10 – 1 1 – – – t t t 3760 7313 5509
monotone 25 – 1 1 – – – t t t 3842 7295 5489
monotone 50 – 1 1 – – – t t t 4039 7212 5512
reg forest 10 – 1 1 – – – t t t 4082 7222 5530
reg forest 25 – 1 1 – – – t t t 4017 7388 5558
reg forest 50 – 1 1 – – – t t t 3825 7409 5529
gap 10 – 1 1 – 1 – t t t 3813 6807 5531
gap 25 – 1 1 – – – t t t 3850 7410 5460
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gap 50 – 1 1 – – – t t t 3872 7249 5469
leaf freq 10 – 1 1 – – – t t t 3957 7358 5475
leaf freq 25 – 1 1 – – – t t t 3852 7345 5466
leaf freq 50 – 1 1 – – – t t t 3913 7345 5509
ssg 10 1 1 1 1 1 1 t t t 4914 6598 6906
ssg 25 – 1 1 – 1 1 t t t 3787 5919 7449
ssg 50 – 1 1 – 1 1 t t t 3914 6222 5033
tree weight 10 – 1 1 – 1 1 t t t 3914 6832 5340
tree weight 25 – 1 1 – 1 1 t t t 4088 6366 5293
tree weight 50 – 1 1 – 1 1 t t t 4023 6499 5352
no clairvoyant – – 1 1 – – – t t t 3634 7288 5531
0-restart – – – – – – – t t t 3723 4534 4124

supportcase7 monotone 10 – – – – – – 146.7 134.7 217.4 33 9 58
monotone 25 – – – – – – 146.9 135.1 217.1 33 9 58
monotone 50 – – – – – – 146.9 134.4 216.8 33 9 58
reg forest 10 – – – – – – 147.2 134.8 217.0 33 9 58
reg forest 25 – – – – – – 147.2 134.9 217.9 33 9 58
reg forest 50 – – – – – – 147.3 135.2 217.2 33 9 58
gap 10 – – – – – – 146.9 134.6 215.8 33 9 58
gap 25 – – – – – – 146.9 134.6 214.8 33 9 58
gap 50 – – – – – – 146.9 134.5 216.9 33 9 58
leaf freq 10 – – – – – – 146.7 135.3 216.7 33 9 58
leaf freq 25 – – – – – – 147.2 134.9 216.7 33 9 58
leaf freq 50 – – – – – – 147.9 135.4 216.7 33 9 58
ssg 10 – – – – – – 147.6 135.1 217.8 33 9 58
ssg 25 – – – – – – 146.8 133.8 216.8 33 9 58
ssg 50 – – – – – – 146.6 135.8 216.8 33 9 58
tree weight 10 – – – – – – 147.8 135.4 216.5 33 9 58
tree weight 25 – – – – – – 146.3 134.7 217.1 33 9 58
tree weight 50 – – – – – – 146.5 135.1 217.1 33 9 58
no clairvoyant – – – – – – – 147.0 134.8 216.7 33 9 58
0-restart – – – – – – – 145.3 135.4 217.3 33 9 58

swath1 monotone 10 1 1 1 – – – 11.4 12.7 13.1 256 330 368
monotone 25 1 1 1 – – – 11.5 12.6 13.1 256 330 368
monotone 50 1 1 1 – – – 11.4 12.5 13.1 256 330 368
reg forest 10 1 1 1 – – – 11.6 12.8 13.3 256 330 368
reg forest 25 1 1 1 – – – 11.6 12.9 13.5 256 330 368
reg forest 50 1 1 1 – – – 11.6 12.9 13.3 256 330 368
gap 10 1 1 1 – – – 11.5 12.7 13.0 256 330 368
gap 25 1 1 1 – – – 11.5 12.6 12.9 256 330 368
gap 50 1 1 1 – – – 11.3 12.6 12.9 256 330 368
leaf freq 10 1 1 1 – – – 11.4 12.7 13.1 256 330 368
leaf freq 25 1 1 1 – – – 11.5 12.6 13.2 256 330 368
leaf freq 50 1 1 1 – – – 11.4 12.7 13.1 256 330 368
ssg 10 1 1 1 – – – 11.4 12.7 13.2 256 330 368
ssg 25 1 1 1 – – – 11.4 12.6 13.1 256 330 368
ssg 50 1 1 1 – – – 11.4 12.6 13.1 256 330 368
tree weight 10 1 1 1 – – – 11.4 12.7 13.0 256 330 368
tree weight 25 1 1 1 – – – 11.4 12.7 13.1 256 330 368
tree weight 50 1 1 1 – – – 11.4 12.6 13.1 256 330 368
no clairvoyant – 1 1 1 – – – 11.5 12.7 13.4 256 330 368
0-restart – – – – – – – 13.0 14.6 13.0 271 279 241

swath3 monotone 10 1 1 – – – – 510.8 285.3 426.9 77119 54933 63346
monotone 25 1 1 – – – – 512.7 285.4 426.1 77119 54933 63346
monotone 50 1 1 – – – – 512.9 285.3 429.4 77119 54933 63346
reg forest 10 1 1 – – 1 – 520.1 243.7 429.5 77119 45580 63346
reg forest 25 1 1 – – – – 515.9 290.7 431.4 77119 54933 63346
reg forest 50 1 1 – – – – 516.8 289.5 429.4 77119 54933 63346
gap 10 2 1 – 1 1 1 299.9 185.8 175.8 50731 31645 24739
gap 25 2 1 – 1 1 1 218.6 274.0 257.7 28247 51467 45290
gap 50 2 1 – 1 1 1 179.8 231.2 186.1 18302 42955 29578
leaf freq 10 2 1 – 1 1 1 277.8 249.9 288.0 41251 40939 40108
leaf freq 25 2 1 1 1 1 1 318.7 212.0 302.7 39435 31681 42244
leaf freq 50 1 1 – – – – 513.1 285.7 425.4 77119 54933 63346
ssg 10 2 1 1 1 1 1 187.9 252.6 256.8 27250 48785 38622
ssg 25 2 1 – 1 1 1 92.9 504.6 218.1 8194 105107 36711
ssg 50 2 1 1 1 1 1 207.7 303.7 312.1 31503 55829 44942
tree weight 10 2 1 1 1 1 1 193.4 500.0 321.9 26415 101203 54189
tree weight 25 2 1 1 1 1 1 281.4 184.1 160.2 50772 30348 18472
tree weight 50 2 1 1 1 1 1 348.1 242.4 201.8 56187 45036 27106
no clairvoyant – 1 1 – – – – 512.1 285.1 426.3 77119 54933 63346
0-restart – – – – – – – 387.6 192.3 426.0 58894 28724 63346

tbfp-network monotone 10 – – – – – – 799.2 946.9 3391.2 65 213 1983
monotone 25 – – – – – – 800.0 951.1 3381.0 65 213 1983
monotone 50 – – – – – – 798.5 950.8 3376.6 65 213 1983
reg forest 10 – – – – – – 799.9 955.0 3390.8 65 213 1983
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reg forest 25 – – – – – – 799.2 952.5 3393.1 65 213 1983
reg forest 50 – – – – – – 801.2 951.6 3360.9 65 213 1983
gap 10 – – – – – – 798.9 951.5 3378.1 65 213 1983
gap 25 – – – – – – 800.3 946.7 3385.2 65 213 1983
gap 50 – – – – – – 795.3 948.9 3384.5 65 213 1983
leaf freq 10 – – – – – – 796.8 950.9 3382.5 65 213 1983
leaf freq 25 – – – – – – 800.2 946.9 3380.1 65 213 1983
leaf freq 50 – – – – – – 804.4 955.5 3377.6 65 213 1983
ssg 10 – – 2 – – 1 801.8 949.4 t 65 213 1979
ssg 25 – – 2 – – 1 800.0 950.2 t 65 213 1976
ssg 50 – – 2 – – 1 797.4 953.5 t 65 213 1968
tree weight 10 – – – – – – 799.7 951.7 3374.7 65 213 1983
tree weight 25 – – – – – – 797.1 949.9 3376.2 65 213 1983
tree weight 50 – – – – – – 801.9 947.4 3376.0 65 213 1983
no clairvoyant – – – – – – – 798.0 948.9 3471.2 65 213 1983
0-restart – – – – – – – 803.0 949.4 3384.0 65 213 1983

thor50dday monotone 10 1 – – – – – t t t 2 1 1
monotone 25 1 – – – – – t t t 2 1 1
monotone 50 1 – – – – – t t t 2 1 1
reg forest 10 1 – – – – – t t t 2 1 1
reg forest 25 1 – – – – – t t t 2 1 1
reg forest 50 1 – – – – – t t t 2 1 1
gap 10 1 – – – – – t t t 2 1 1
gap 25 1 – – – – – t t t 2 1 1
gap 50 1 – – – – – t t t 2 1 1
leaf freq 10 1 – – – – – t t t 2 1 1
leaf freq 25 1 – – – – – t t t 2 1 1
leaf freq 50 1 – – – – – t t t 2 1 1
ssg 10 1 – – – – – t t t 2 1 1
ssg 25 1 – – – – – t t t 2 1 1
ssg 50 1 – – – – – t t t 2 1 1
tree weight 10 1 – – – – – t t t 2 1 1
tree weight 25 1 – – – – – t t t 2 1 1
tree weight 50 1 – – – – – t t t 2 1 1
no clairvoyant – 1 – – – – – t t t 2 1 1
0-restart – – – – – – – t t t 3 1 1

timtab1 monotone 10 – – – – 1 – 54.9 59.9 63.6 39949 39680 57229
monotone 25 – – – – – – 55.1 41.5 63.7 39949 31062 57229
monotone 50 – – – – – – 54.9 41.3 63.8 39949 31062 57229
reg forest 10 – – – 1 1 1 60.8 71.4 62.6 42269 48832 51707
reg forest 25 – – – – 1 1 57.8 55.3 62.3 39949 37753 51707
reg forest 50 – – – – – – 57.4 44.0 67.5 39949 31062 57229
gap 10 – – – 1 1 1 61.5 70.3 76.3 40509 48832 47180
gap 25 – – – 1 1 1 62.6 70.2 74.6 39751 40257 45932
gap 50 – – – 1 1 – 58.1 54.7 63.6 39327 40642 57229
leaf freq 10 – – – 1 – 1 81.4 41.5 81.5 46010 31062 56692
leaf freq 25 – – – – – 1 54.9 41.4 77.1 39949 31062 54878
leaf freq 50 – – – – – 1 55.4 41.5 69.1 39949 31062 46526
ssg 10 – – – 1 1 1 53.8 47.1 74.7 33154 32811 45882
ssg 25 – – – 1 1 1 67.6 46.8 66.7 46482 29193 41136
ssg 50 – – – 1 1 1 52.0 68.6 85.5 33508 50541 53398
tree weight 10 – – – 1 1 1 68.9 68.7 89.2 36280 42237 56083
tree weight 25 – – – 1 1 1 51.8 80.7 69.7 38183 42022 44167
tree weight 50 – – – 1 1 1 68.8 73.1 81.4 54697 33874 57307
no clairvoyant – – – – – – – 56.0 41.3 63.8 39949 31062 57229
0-restart – – – – – – – 54.8 41.5 63.8 39949 31062 57229

tr12-30 monotone 10 – – – 1 1 1 738.7 926.6 656.1 404011 533994 343212
monotone 25 – – – 1 1 1 739.0 924.6 656.4 404011 533994 343212
monotone 50 – – – – 1 1 631.9 927.5 657.5 301862 533994 343212
reg forest 10 – – – 1 1 1 743.2 932.1 659.2 404011 533994 343212
reg forest 25 – – – – – – 645.0 1067.6 718.1 301862 629526 361096
reg forest 50 – – – – – – 645.4 1075.2 719.5 301862 629526 361096
gap 10 – – – – – – 633.7 1048.9 699.9 301862 629526 361096
gap 25 – – – – – – 634.0 1046.7 703.9 301862 629526 361096
gap 50 – – – – – – 632.1 1052.7 703.8 301862 629526 361096
leaf freq 10 – – – 1 1 1 694.9 963.2 652.3 367376 493795 323371
leaf freq 25 – – – 1 1 1 729.4 799.7 738.9 354449 405802 354051
leaf freq 50 – – – 1 1 1 766.9 800.0 666.2 383229 405802 314678
ssg 10 – – – 1 1 1 740.1 928.3 655.5 404011 533994 343212
ssg 25 – – – 1 1 1 739.4 990.9 659.4 404011 562046 343212
ssg 50 – – – 1 1 1 740.9 1022.9 655.4 404011 531029 343212
tree weight 10 – – – 1 1 1 853.2 1025.9 769.4 470435 571017 375522
tree weight 25 – – – 1 1 1 684.5 959.2 685.7 346737 509057 345059
tree weight 50 – – – 1 1 1 721.3 958.1 633.1 372347 519611 298443
no clairvoyant – – – – – – – 636.1 1048.7 704.6 301862 629526 361096
0-restart – – – – – – – 632.1 1050.4 705.8 301862 629526 361096
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traininstance2 monotone 10 – – – – – 1 t t t 209213 303924 319546
monotone 25 – – – – – 1 t t t 209865 303191 322730
monotone 50 – – – – – – t t t 210035 301778 192908
reg forest 10 – – – 1 1 1 t t t 315568 242763 316176
reg forest 25 – – – – – – t t t 208437 301260 188821
reg forest 50 – – – – – – t t t 208925 302999 188746
gap 10 – – – – – 1 t t t 209038 301261 236756
gap 25 – – – – – 1 t t t 208851 302938 236744
gap 50 – – – – – 1 t t t 209909 303333 233443
leaf freq 10 – – – 1 1 1 t t t 270731 248179 240512
leaf freq 25 – – – 1 1 1 t t t 337513 211034 266796
leaf freq 50 – – – 1 1 1 t t t 261120 186195 181039
ssg 10 – – – 1 1 1 t t t 272045 181456 376391
ssg 25 – – – 1 1 1 t t t 272478 215210 482595
ssg 50 – – – 1 1 1 t t t 225847 304707 369221
tree weight 10 – – – 1 1 1 t t t 308137 242899 313082
tree weight 25 – – – 1 1 1 t t t 308098 227499 195711
tree weight 50 – – – 1 1 1 t t t 297711 173748 332634
no clairvoyant – – – – – – – t t t 209110 303241 192114
0-restart – – – – – – – t t t 210600 303199 192659

traininstance6 monotone 10 – – – – – – t t t 612082 519206 818057
monotone 25 – – – – – – t t t 612628 520766 819641
monotone 50 – – – – – – t t t 612908 527201 815943
reg forest 10 – – – – – – t t t 615572 515710 809645
reg forest 25 – – – – – – t t t 611436 515251 811275
reg forest 50 – – – – – – t t t 607078 517118 812841
gap 10 – – – 1 1 1 t t t 526787 506207 810239
gap 25 – – – 1 1 1 t t t 528270 506646 838584
gap 50 – – – 1 1 1 t t t 457119 504932 751127
leaf freq 10 – – – 1 1 1 t t t 581547 538376 499344
leaf freq 25 – – – 1 1 1 t t t 514150 515962 763128
leaf freq 50 – – – 1 – 1 t t t 507204 522666 855500
ssg 10 – – – 1 1 1 t t t 729706 760112 749456
ssg 25 – – – 1 1 1 t t t 572545 706194 1000778
ssg 50 – – – 1 1 1 t t t 507549 543561 690190
tree weight 10 – – – 1 1 1 t t t 597493 1101522 659611
tree weight 25 – – – 1 1 1 t t t 599705 1103126 712760
tree weight 50 – – – 1 1 1 t t t 597174 1100712 519543
no clairvoyant – – – – – – – t t t 612678 519020 816841
0-restart – – – – – – – t t t 613451 515006 815690

trento1 monotone 10 – – – 1 1 1 t t t 15857 17055 14789
monotone 25 – – – 1 1 1 t t t 15755 17417 14788
monotone 50 – – – 1 1 1 t t t 16207 17416 14925
reg forest 10 – – – 1 1 1 t t t 16044 17393 17259
reg forest 25 – – – 1 – – t t t 16406 16809 19704
reg forest 50 – – – – – – t t t 27935 16825 19651
gap 10 – – – 1 1 1 t t t 18553 14339 17506
gap 25 – – – – 1 – t t t 27931 15015 19935
gap 50 – – – – 1 – t t t 27930 17714 19741
leaf freq 10 1 – – 1 1 – t t t 30388 13544 19659
leaf freq 25 – – – – – – t t t 28224 16831 19744
leaf freq 50 – – – – – – t t t 27995 16626 19659
ssg 10 – – – 1 1 1 t t t 15960 9579 17311
ssg 25 – – – 1 1 1 t t t 15948 9606 17339
ssg 50 – – – 1 1 1 t t t 15425 13109 17314
tree weight 10 – – – 1 1 1 t t t 20382 16695 16574
tree weight 25 – – – 1 1 1 t t t 13245 16926 16397
tree weight 50 – – – 1 1 1 t t t 19707 23786 11386
no clairvoyant – – – – – – – t t t 27845 16808 19741
0-restart – – – – – – – t t t 27927 16826 19882

triptim1 monotone 10 2 1 1 – – – 531.3 1866.6 335.2 3 22 2
monotone 25 2 1 1 – – – 535.8 1864.2 334.9 3 22 2
monotone 50 2 1 1 – – – 536.0 1866.9 334.6 3 22 2
reg forest 10 2 1 1 – – – 533.3 1868.3 334.6 3 22 2
reg forest 25 2 1 1 – – – 535.9 1868.4 335.1 3 22 2
reg forest 50 2 1 1 – – – 532.6 1875.1 336.4 3 22 2
gap 10 2 1 1 – – – 533.7 1852.3 336.5 3 22 2
gap 25 2 1 1 – – – 537.1 1869.5 330.8 3 22 2
gap 50 2 1 1 – – – 533.5 1874.5 334.6 3 22 2
leaf freq 10 2 1 1 – – – 536.4 1868.9 335.9 3 22 2
leaf freq 25 2 1 1 – – – 537.7 1872.8 334.8 3 22 2
leaf freq 50 2 1 1 – – – 538.8 1860.2 336.9 3 22 2
ssg 10 2 1 1 – – – 537.1 1867.2 335.1 3 22 2
ssg 25 2 1 1 – – – 536.2 1869.2 335.4 3 22 2
ssg 50 2 1 1 – – – 536.2 1882.8 337.9 3 22 2
tree weight 10 2 1 1 – – – 533.6 1862.6 336.1 3 22 2
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tree weight 25 2 1 1 – – – 534.4 1876.4 334.8 3 22 2
tree weight 50 2 1 1 – – – 533.8 1868.6 336.5 3 22 2
no clairvoyant – 2 1 1 – – – 537.1 1870.9 331.4 3 22 2
0-restart – – – – – – – 402.7 849.4 1770.8 1 9 85

uccase12 monotone 10 1 1 1 – – – t t t 33487 37633 37084
monotone 25 1 1 1 – – – t t t 34219 37527 37098
monotone 50 1 1 1 – – – t t t 33593 37786 37422
reg forest 10 1 1 1 – – – t t t 33336 37883 37019
reg forest 25 1 1 1 – – – t t t 33661 37555 37203
reg forest 50 1 1 1 – – – t t t 33593 38175 37042
gap 10 1 1 1 – – – t t t 33673 37839 36905
gap 25 1 1 1 – – – t t t 33541 37743 36770
gap 50 1 1 1 – – – t t t 33716 38178 37084
leaf freq 10 1 1 1 – – – t t t 33317 37853 37084
leaf freq 25 1 1 1 – – – t t t 33863 37791 36993
leaf freq 50 1 1 1 – – – t t t 33595 37669 36965
ssg 10 1 1 1 – – – t t t 33519 37636 37084
ssg 25 1 1 1 – – – t t t 33516 37909 36729
ssg 50 1 1 1 – – – t t t 33593 38084 37150
tree weight 10 1 1 1 – – – t t t 33506 38132 37203
tree weight 25 1 1 1 – – – t t t 33826 37826 37148
tree weight 50 1 1 1 – – – t t t 33489 37899 37203
no clairvoyant – 1 1 1 – – – t t t 33355 37978 36852
0-restart – – – – – – – t t t 20281 17261 18411

uccase9 monotone 10 – – – – – – t t t 485 1667 1087
monotone 25 – – – – – – t t t 470 1655 1087
monotone 50 – – – – – – t t t 470 1663 1087
reg forest 10 – – – – – – t t t 482 1654 1120
reg forest 25 – – – – – – t t t 482 1660 1087
reg forest 50 – – – – – – t t t 485 1660 1087
gap 10 – – – – – – t t t 480 1658 1090
gap 25 – – – – – – t t t 466 1652 1087
gap 50 – – – – – – t t t 485 1660 1087
leaf freq 10 – – – – – – t t t 485 1663 1077
leaf freq 25 – – – – – – t t t 474 1652 1087
leaf freq 50 – – – – – – t t t 466 1643 1087
ssg 10 – – – – – – t t t 470 1655 1087
ssg 25 – – – – – – t t t 485 1650 1090
ssg 50 – – – – – – t t t 485 1665 1087
tree weight 10 – – – – – – t t t 475 1641 1087
tree weight 25 – – – – – – t t t 485 1665 1087
tree weight 50 – – – – – – t t t 485 1665 1123
no clairvoyant – – – – – – – t t t 485 1665 1087
0-restart – – – – – – – t t t 470 1663 1120

uct-subprob monotone 10 – – – – – – 1650.5 1574.7 1153.2 59352 49996 34274
monotone 25 – – – – – – 1658.0 1578.4 1144.9 59352 49996 34274
monotone 50 – – – – – – 1656.0 1576.8 1149.0 59352 49996 34274
reg forest 10 – – – 1 1 1 1730.0 1740.7 1120.3 61018 62470 35175
reg forest 25 – – – – – – 1655.1 1588.3 1151.0 59352 49996 34274
reg forest 50 – – – – – – 1658.7 1581.2 1154.5 59352 49996 34274
gap 10 – – – 1 1 1 1766.4 2268.8 1544.6 61011 76763 41131
gap 25 – – – 1 1 1 2249.0 1884.6 1459.9 70785 61147 39398
gap 50 – – – – – – 1661.1 1574.1 1147.0 59352 49996 34274
leaf freq 10 – – – 1 1 1 2095.0 1974.0 1652.1 67670 61267 42791
leaf freq 25 – – – 1 1 – 2109.2 2384.0 1147.7 67670 79957 34274
leaf freq 50 – – – – – – 1648.8 1574.9 1143.9 59352 49996 34274
ssg 10 – – – 1 1 1 2618.2 1757.9 1131.9 97700 63432 34056
ssg 25 – – – 1 1 1 2634.5 1638.7 1713.3 97700 51106 59847
ssg 50 – – – 1 1 1 1834.1 2310.1 1300.8 58248 77734 35952
tree weight 10 – – – 1 1 1 2198.3 2209.4 1089.5 74201 85874 32083
tree weight 25 – – – 1 1 1 1668.3 1274.7 1072.6 59439 41621 28377
tree weight 50 – – – 1 1 1 1891.9 1822.1 1117.3 66627 59593 32591
no clairvoyant – – – – – – – 1648.7 1580.1 1155.6 59352 49996 34274
0-restart – – – – – – – 1655.1 1567.4 1153.6 59352 49996 34274

unitcal_7 monotone 10 5 6 5 – – – 224.8 249.2 199.9 16 9 6
monotone 25 5 6 5 – – – 225.2 249.1 200.7 16 9 6
monotone 50 5 6 5 – – – 224.5 248.3 200.8 16 9 6
reg forest 10 5 6 5 – – – 226.2 249.9 200.6 16 9 6
reg forest 25 5 6 5 – – – 225.8 250.1 200.7 16 9 6
reg forest 50 5 6 5 – – – 225.4 248.6 200.7 16 9 6
gap 10 5 6 5 – – – 225.7 248.6 200.0 16 9 6
gap 25 5 6 5 – – – 225.1 248.3 200.1 16 9 6
gap 50 5 6 5 – – – 225.7 248.7 199.0 16 9 6
leaf freq 10 5 6 5 – – – 225.0 249.2 199.5 16 9 6
leaf freq 25 5 6 5 – – – 225.7 249.4 200.5 16 9 6
leaf freq 50 5 6 5 – – – 225.7 249.1 199.7 16 9 6
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ssg 10 5 6 5 – – – 225.6 248.9 201.8 16 9 6
ssg 25 5 6 5 – – – 225.6 249.0 201.1 16 9 6
ssg 50 5 6 5 – – – 224.2 248.5 201.0 16 9 6
tree weight 10 5 6 5 – – – 225.7 248.8 200.2 16 9 6
tree weight 25 5 6 5 – – – 225.2 248.5 200.4 16 9 6
tree weight 50 5 6 5 – – – 225.2 249.8 200.5 16 9 6
no clairvoyant – 5 6 5 – – – 226.1 248.2 199.8 16 9 6
0-restart – – – – – – – 267.9 239.8 198.2 143 145 172

var-.-m6j6 monotone 10 1 1 1 1 – – t t t 260853 241264 245898
monotone 25 1 1 1 – – – t t t 262641 240492 245522
monotone 50 1 1 1 – – – t t t 261522 240584 244762
reg forest 10 1 1 1 1 1 1 t t t 259877 245806 235551
reg forest 25 1 1 1 – – – t t t 259926 239588 243915
reg forest 50 1 1 1 – – – t t t 260449 238037 243312
gap 10 1 1 1 1 – 1 t t t 264754 241363 229632
gap 25 1 1 1 – – – t t t 261195 240896 245927
gap 50 1 1 1 – – – t t t 262217 240712 245423
leaf freq 10 1 1 1 1 1 1 t t t 198189 231823 225644
leaf freq 25 1 1 1 1 1 1 t t t 35412 220766 219677
leaf freq 50 1 1 1 1 1 1 t t t 94932 83471 221107
ssg 10 1 1 1 1 1 1 t t t 151946 237598 241972
ssg 25 1 1 1 1 1 1 t t t 174878 251171 231325
ssg 50 1 1 1 1 1 1 t t t 152019 220259 226251
tree weight 10 1 1 1 1 1 1 t t t 243046 232755 244314
tree weight 25 1 1 1 1 1 1 t t t 227102 231695 220068
tree weight 50 1 1 1 1 1 1 t t t 214684 232434 256259
no clairvoyant – 1 1 1 – – – t t t 261975 241971 245564
0-restart – – – – – – – t t t 130787 141630 148556

wachplan monotone 10 – – – – – – 2793.2 2338.4 2218.2 208422 162732 165428
monotone 25 – – – – – – 2802.9 2332.1 2216.9 208422 162732 165428
monotone 50 – – – – – – 2791.5 2340.3 2217.0 208422 162732 165428
reg forest 10 – – – – – – 2806.9 2360.7 2237.7 208422 162732 165428
reg forest 25 – – – – – – 2806.8 2351.0 2244.0 208422 162732 165428
reg forest 50 – – – – – – 2809.6 2356.1 2240.8 208422 162732 165428
gap 10 – – – – – – 2786.1 2330.6 2222.4 208422 162732 165428
gap 25 – – – – – – 2791.6 2335.0 2209.7 208422 162732 165428
gap 50 – – – – – – 2794.9 2335.0 2218.0 208422 162732 165428
leaf freq 10 – – – – – – 2792.2 2334.7 2213.4 208422 162732 165428
leaf freq 25 – – – – – – 2785.7 2341.4 2226.6 208422 162732 165428
leaf freq 50 – – – – – – 2785.3 2334.1 2214.2 208422 162732 165428
ssg 10 – – – – – – 2790.0 2333.9 2213.0 208422 162732 165428
ssg 25 – – – – – – 2788.0 2346.1 2215.2 208422 162732 165428
ssg 50 – – – – – – 2792.8 2336.1 2210.9 208422 162732 165428
tree weight 10 – – – – – – 2788.5 2336.6 2217.1 208422 162732 165428
tree weight 25 – – – – – – 2794.9 2331.8 2221.2 208422 162732 165428
tree weight 50 – – – – – – 2797.5 2330.5 2214.5 208422 162732 165428
no clairvoyant – – – – – – – 2812.9 2331.7 2217.6 208422 162732 165428
0-restart – – – – – – – 2783.1 2343.1 2223.4 208422 162732 165428
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