Skip to main content
Log in

Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

There have been significant interests in recent years for incorporating dynamic bonds into polymer materials for achieving multiple functionalities, such as self-healing, recycling, stimuli-responsiveness, and so on. Nevertheless, the impact of dynamic bonds on the polymer dynamics is actually less explored. In this study, we investigate a self-healing solid-liquid elastomer (SLE), which is a dual-crosslinked network made by coupling a permanently crosslinked polydimethylsiloxane (PDMS) network with polyborosiloxane (PBS) via abundant dynamic boron/oxygen dative bonds. Proton double-quantum (DQ) NMR reveals that the crosslinking degree is reduced while the structural heterogeneity of network is enhanced with increasing PBS content, i.e., increasing the content of dynamic boron/oxygen dative bonds. Rheological experiments clearly reveal two chain relaxation modes in the SLE samples with a characteristic relaxation time of around 2.1 s and 11.8 s, corresponding to the relaxation of coupled PBS and PDMS chains, respectively. The master curves obtained from variable-temperature frequency-dependent rheological experiments also reveal enhanced heterogeneity of chain relaxation with increasing PBS content. Finally, the impact of boron/oxygen dative bonds on the Rouse dynamics is further revealed by fast-field-cycling (FFC) NMR experiments, where the spin-lattice relaxation rate (R1) of all SLE samples follows the same power law of R1 (ω) ∝ ω−0.33. Nevertheless, the incorporation of PBS did slightly increase the energy barrier of Rouse dynamics. Our study well demonstrates a combined use of rheology and solid-state NMR spectroscopy can provide piercing insights into the interplay of crosslinking structures and dynamics of polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  2. Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019, 58, 9682–9695.

    Article  CAS  Google Scholar 

  3. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10, 14–27.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 2021, 121, 1716–1745.

    Article  CAS  PubMed  Google Scholar 

  5. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.

    Article  CAS  Google Scholar 

  7. Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65.

    Article  PubMed  Google Scholar 

  8. Li, J.; Viveros, J. A.; Wrue, M. H.; Anthamatten, M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 2007, 19, 2851–2855.

    Article  CAS  Google Scholar 

  9. Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55, 11421–11425.

    Article  CAS  Google Scholar 

  10. Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired high-performance and recyclable cross-linked polymers. Adv. Mater. 2013, 25, 4912–4917.

    Article  CAS  PubMed  Google Scholar 

  11. Sun, H.; Kabb, C. P.; Dai, Y.; Hill, M. R.; Ghiviriga, I.; Bapat, A. P.; Sumerlin, B. S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017, 9, 817–823.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, H. T.; Jin, B. Q.; Wang, H.; Wu, W. Q.; Cao, Z. X.; Yuan, Z. Y.; Huang, Y.; Li, W. H.; Huang, G. S.; Liao, L. S.; Wu, J. R. A robust self-healing polyurethane elastomer enabled by tuning the molecular mobility and phase morphology through disulfide bonds. Chinese J. Polym. Sci. 2021, 39, 1299–1309.

    Article  CAS  Google Scholar 

  13. Li, M.; Zhang, R.; Li, X.; Wu, Q.; Chen, T.; Sun, P. High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: The molecular design, microstructures, and macroscopic properties. Polymer 2018, 148, 127–137.

    Article  CAS  Google Scholar 

  14. Zhang, C.; Yang, Z.; Duong, N. T.; Li, X.; Nishiyama, Y.; Wu, Q.; Zhang, R.; Sun, P. Using dynamic bonds to enhance the mechanical performance: from microscopic molecular interactions to macroscopic properties. Macromolecules 2019, 52, 5014–5025.

    Article  CAS  Google Scholar 

  15. Tan, C. S. Y.; Agmon, G.; Liu, J.; Hoogland, D.; Janeček, E. R.; Appel, E. A.; Scherman, O. A. Distinguishing relaxation dynamics in transiently crosslinked polymeric networks. Polym. Chem. 2017, 8, 5336–5343.

    Article  CAS  Google Scholar 

  16. Chen, L.; Zhang, L.; Griffin, P. J.; Rowan, S. J. Impact of dynamic bond concentration on the viscoelastic and mechanical properties of dynamic poly(alkylurea-co-urethane) networks. Macro. Chem. Phys. 2020, 221, 1900440.

    Article  CAS  Google Scholar 

  17. Rossow, T.; Habicht, A.; Seiffert, S. Relaxation and dynamics in transient polymer model networks. Macromolecules 2014, 47, 6473–6482.

    Article  CAS  Google Scholar 

  18. Chen, Q.; Huang, C.; Weiss, R.; Colby, R. H. Viscoelasticity of reversible gelation for ionomers. Macromolecules 2015, 48, 1221–1230.

    Article  CAS  Google Scholar 

  19. Zhuge, F.; Hawke, L. G.; Fustin, C. A.; Gohy, J. F.; Van Ruymbeke, E. Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers. J. Rheol. 2017, 61, 1245–1262.

    Article  CAS  Google Scholar 

  20. Jiang, N.; Zhang, H.; Tang, P.; Yang, Y. Linear viscoelasticity of associative polymers: sticky rouse model and the role of bridges. Macromolecules 2020, 53, 3438–3451.

    Article  CAS  Google Scholar 

  21. Porath, L. E.; Evans, C. M. Importance of broad temperature windows and multiple rheological approaches for probing viscoelasticity and entropic elasticity in vitrimers. Macromolecules 2021, 54, 4782–4791.

    Article  CAS  Google Scholar 

  22. Ricarte, R. G.; Tournilhac, F.; Cloître, M.; Leibler, L. Linear viscoelasticity and flow of self-assembled vitrimers: the case of a polyethylene/dioxaborolane system. Macromolecules 2020, 53, 1852–1866.

    Article  CAS  Google Scholar 

  23. Snijkers, F.; Pasquino, R.; Maffezzoli, A. Curing and viscoelasticity of vitrimers. Soft Matter 2017, 13, 258–268.

    Article  CAS  Google Scholar 

  24. Cao, X. Z.; Forest, M. G. Rheological tuning of entangled polymer networks by transient cross-links. J. Phys. Chem. B 2019, 123, 974–982.

    Article  CAS  PubMed  Google Scholar 

  25. Perego, A.; Khabaz, F. Effect of bond exchange rate on dynamics and mechanics of vitrimers. J. Polym. Sci. 2021, 59, 2590–2602.

    Article  CAS  Google Scholar 

  26. Ricarte, R. G.; Shanbhag, S. Unentangled vitrimer melts: interplay between chain relaxation and cross-link exchange controls linear rheology. Macromolecules 2021, 54, 3304–3320.

    Article  CAS  Google Scholar 

  27. Lewis, C. L.; Stewart, K.; Anthamatten, M. The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers. Macromolecules 2014, 47, 729–740.

    Article  CAS  Google Scholar 

  28. Yan, T.; Schröter, K.; Herbst, F.; Binder, W. H.; Thurn-Albrecht, T. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 2016, 6, 1–8.

    CAS  Google Scholar 

  29. Yan, T.; Schröter, K.; Herbst, F.; Binder, W. H.; Thurn-Albrecht, T. What controls the structure and the linear and nonlinear rheological properties of dense, dynamic supramolecular polymer networks. Macromolecules 2017, 50, 2973–2985.

    Article  CAS  Google Scholar 

  30. Wu, S.; Yang, H.; Xu, W. S.; Chen, Q. Thermodynamics and reaction kinetics of symmetric vitrimers based on dioxaborolane metathesis. Macromolecules 2021, 54, 6799–6809.

    Article  CAS  Google Scholar 

  31. Wu, S.; Yang, H.; Huang, S.; Chen, Q. Relationship between reaction kinetics and chain dynamics of vitrimers based on dioxaborolane metathesis. Macromolecules 2020, 53, 1180–1190.

    Article  CAS  Google Scholar 

  32. Foster, E. M.; Lensmeyer, E. E.; Zhang, B.; Chakma, P.; Flum, J. A.; Via, J. J.; Sparks, J. L.; Konkolewicz, D. Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network. ACS Macro Lett. 2017, 495–499.

  33. Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.

    Article  CAS  PubMed  Google Scholar 

  34. Nair, K. P.; Breedveld, V.; Weck, M. Multiresponsive reversible polymer networks based on hydrogen bonding and metal coordination. Macromolecules 2011, 44, 3346–3357.

    Article  CAS  Google Scholar 

  35. Wilson, A.; Gasparini, G.; Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev. 2014, 43, 1948–1962.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, H.; Ghiassinejad, S.; van Ruymbeke, E.; Fustin, C. A. Tunable interpenetrating polymer network hydrogels based on dynamic covalent bonds and metal-ligand bonds. Macromolecules 2020, 53, 6956–6967.

    Article  CAS  Google Scholar 

  37. Yang, Z.; Wang, F.; Zhang, C.; Li, J.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired self-healing polyurethanes with multiple stimulus responsiveness. Polym. Chem. 2019, 10, 3362–3370.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Yu, H.; Yang, H.; Hao, X.; Tang, Q.; Zhang, X. An injectable interpenetrating polymer network hydrogel with tunable mechanical properties and self-healing abilities. Macromol. Chem. Phys. 2017, 218, 1700348.

    Article  Google Scholar 

  39. Peng, W. L.; You, Y.; Xie, P.; Rong, M. Z.; Zhang, M. Q. Adaptable interlocking macromolecular networks with homogeneous architecture made from immiscible single networks. Macromolecules 2020, 53, 584–593.

    Article  CAS  Google Scholar 

  40. Zhang, R.; Zhang, C.; Yang, Z.; Wu, Q.; Sun, P.; Wang, X. Hierarchical dynamics in a transient polymer network cross-linked by orthogonal dynamic bonds. Macromolecules 2020, 53, 5937–5949.

    Article  CAS  Google Scholar 

  41. Grande, A. M.; Bijleveld, J.; Garcia, S.; van Der Zwaag, S. A combined fracture mechanical-rheological study to separate the contributions of hydrogen bonds and disulphide linkages to the healing of poly(urea-urethane) networks. Polymer 2016, 96, 26–34.

    Article  CAS  Google Scholar 

  42. D’Elia, E.; Barg, S.; Ni, N.; Rocha, V. G.; Saiz, E. self-healing graphene-based composites with sensing capabilities. Adv. Mater. 2015, 27, 4788–4794.

    Article  PubMed  Google Scholar 

  43. Wu, Q.; Xiong, H.; Peng, Y.; Yang, Y.; Kang, J.; Huang, G.; Ren, X.; Wu, J. A highly stretchable and self-healing “solid-liquid” elastomer with strain-rate sensing capability. ACS Appl. Mater. Interfaces 2019, 11, 19534–19540.

    Article  CAS  PubMed  Google Scholar 

  44. Baum, J.; Pines, A. NMR studies of clustering in solids. J. Am. Chem. Soc. 1986, 108, 7447–7454.

    Article  CAS  PubMed  Google Scholar 

  45. Saalwächter, K.; Ziegler, P.; Spyckerelle, O.; Haidar, B.; Vidal, A.; Sommer, J. U. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: evidence for a linear mixing law in bimodal systems. J. Chem. Phys. 2003, 119, 3468–3482.

    Article  Google Scholar 

  46. Anoardo, E.; Galli, G.; Ferrante, G. Fast-field-cycling NMR: applications and instrumentation. Appl. Magn. Reson. 2001, 20, 365–404.

    Article  CAS  Google Scholar 

  47. Kimmich, R. Field-cycling NMR relaxometry: instrumentation, model theories and applications. Royal Society of Chemistry, Copyright, 2018.

  48. Seiffert, S.; Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 2012, 41, 909–930.

    Article  CAS  PubMed  Google Scholar 

  49. Cross, R. Elastic and viscous properties of Silly Putty. American J. Phys. 2012, 80, 870–875.

    Article  CAS  Google Scholar 

  50. Rubinstein, M.; Colby, R. H. Polymer physics. Oxford University Press, New York: 2003.

    Google Scholar 

  51. Mark, J. E. Physical properties of polymers handbook. Springer: 2007.

  52. Kimmich, R.; Fatkullin, N. Polymer Chain Dynamics and NMR In NMR • 3D Analysis • Photopolymerization, Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp.1–113.

    Google Scholar 

  53. Kimmich, R.; Anoardo, E. Field-cycling NMR relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320.

    Article  CAS  Google Scholar 

  54. Bloembergen, N.; Purcell, E. M.; Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 1948, 73, 679–712.

    Article  CAS  Google Scholar 

  55. Kruk, D.; Herrmann, A.; Rössler, E. A. Field-cycling NMR relaxometry of viscous liquids and polymers. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 63, 33–64.

    Article  CAS  PubMed  Google Scholar 

  56. Fatkullin, N.; Kimmich, R.; Weber, H. W. Spin-lattice relaxation of polymers: the memory-function formalism. Phys. Rev. E 1993, 47, 4600–4603.

    Article  CAS  Google Scholar 

  57. Schweizer, K. S. Microscopic theory of the dynamics of polymeric liquids: general formulation of a mode-mode-coupling approach. J. Chem. Phys. 1989, 91, 5802–5821.

    Article  CAS  Google Scholar 

  58. Kariyo, S.; Stapf, S. Influence of cross-link density and deformation on the NMR relaxation dispersion of natural rubber. Macromolecules 2002, 35, 9253–9255.

    Article  CAS  Google Scholar 

  59. Weber, H. W.; Kimmich, R. Anomalous segment diffusion in polymers and NMR relaxation spectroscopy. Macromolecules 1993, 26, 2597–2606.

    Article  CAS  Google Scholar 

  60. Martini, F.; Carignani, E.; Nardelli, F.; Rossi, E.; Borsacchi, S.; Cettolin, M.; Susanna, A.; Geppi, M.; Calucci, L. Glassy and polymer dynamics of elastomers by 1H Field-Cycling NMR relaxometry: effects of cross-linking. Macromolecules 2020, 53, 10028–10039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hofmann, M.; Herrmann, A.; Ok, S.; Franz, C.; Kruk, D.; Saalwächter, K.; Steinhart, M.; Rössler, E. A. Polymer dynamics of polybutadiene in nanoscopic confinement as revealed by field cycling 1H NMR. Macromolecules 2011, 44, 4017–4021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RZ acknowledges the financial supports by the R&D program of Guangzhou (No. 202102020941), the National Natural Science Foundation of China (Nos. 21973031 and 22173046), and the Natural Science Foundation of Guangdong Province, China (No. 2019A1515011140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Rong Wu, Xiao-Liang Wang or Rong-Chun Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Peng, WS., Wu, Q. et al. Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers. Chin J Polym Sci 40, 1297–1306 (2022). https://doi.org/10.1007/s10118-022-2742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2742-0

Keywords

Navigation