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Dynamic wetting of component surfaces can be investigated by finite element phase field simulations. Often these models
use a double-well potential or the van der Waals equation to define the local part of the free energy density at a point of
the computational domain. In order to give the present model a stronger physical background the molecular dynamics based
perturbed Lennard-Jones truncated and shifted (PeTS) equation of state is used instead. This results in phase field liquid-vapor
interfaces that agree with the physical density gradient between the two phases. In order to investigate dynamic scenarios, the
phase field description is coupled to the compressible Navier-Stokes equations. This coupling requires a constitutive equation
that complies with the surface tension of the liquid-vapor interface resulting from the PeTS equation of state and is comparable
to the so-called Korteweg tensor.
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1 Phase Field Model

The Phase Field (PF) model used in this work couples the Navier-Stokes equations with the static PF model described in [1].
The coupling is done via the capillary stress tensor described by Korteweg in 1901, see e.g. [2]. Therefore, the model can
be classified as a Navier-Stokes-Korteweg model. A central component of Navier-Stokes-Korteweg models is the equation
of state that formulates the free energy density of the bulk phases as well as the transition zone between them. Instead of
applying the commonly used van der Waals equation of state, the present model utilizes the PeTS equation of state [3] which
provides an accurate energy density formulation for the Lennard-Jones truncated and shifted fluid.

For a domain B that is bounded by ∂B the mass and momentum balances

ρ̇+ ρdiv~v = 0 in B , and (1)

ρ~̇v = divσ + ρ~g in B , (2)

are solved for particle density ρ(~x, t) and velocity ~v(~x, t). Position in space and time and gravitational acceleration are denoted
by ~x, t and ~g. The material time derivative is denote by ˙(·) = d(·)

dt . The boundary conditions read

~v = ~0 on ∂B , (3)

κ∇ρ · ~n+
γsl − γsv
ρ′ − ρ′′

(
30ϕ4 − 60ϕ3 + 30ϕ2

)
= 0 on ∂B ∩ ∂Bs , and (4)

∇ρ · ~n = 0 on ∂B\∂Bs . (5)

The outer normal to the boundary and the part of ∂B that is given by a solid surface are given by ~n and ∂Bs. With ϕ = ρ−ρ′′

ρ′−ρ′′ ,
where ρ′ and ρ′′ are the liquid and vapor bulk densities, (4) ensures a specified contact angle Θ for a droplet that is in contact
with ∂Bs, see also [4, 5]. The solid-liquid and solid-vapor surface tensions are denoted by γsl and γsv. The temperature T is
assumed to be constant (T = const.). The stress tensor σ reads

σ = 2η

[
∇s~v − 1

3
tr (∇s~v)1

]
+
(
ρa+

κ

2
|∇ρ|2 − ρµ

)
1−κ∇ρ⊗∇ρ , with µ =

∂ (ρa)

∂ρ
−div(κ∇ρ) , (6)

and ∇s(·) = 1
2 (∇(·)+(∇(·))T), trace tr, dyadic product ⊗, and viscosity η. The free energy per particle a = a(ρ, T ) is taken

from the PeTS equation of state [3] and the constant κ is set to κ = 2.7334 [1]. The Lennard-Jones dimensions are used for all
physical quantities. They are nondimensionalized by using the convention σLJ = εLJ = MLJ = 1 for the size parameter, the
energy parameter, and the mass per particle. Second derivatives in the weak form of the momentum balance (2) are avoided
by using the chemical potential µ as an additional degree of freedom. For the finite element implementation, ~v is discretized
with quadratic shape functions and ρ as well as µ with bi-linear shape functions (Q2P1). The backward Euler method is used
for the time discretization.
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2 of 2 Section 7: Coupled problems

Fig. 1: Temporal evolution of droplet impact on structured component surface. Top: Θ = 90◦. Bottom: Θ = 150◦. The figures show
snapshots of the density distribution for different times t. The droplet sinks into the structure for Θ = 90◦ and bounces off for Θ = 150◦.

2 Numerical Examples

In order to demonstrate the capability of the model to simulate dynamic wetting scenarios this section presents simulations
of the impact of a droplet onto a structured component surface. A droplet is initialized with a radius of rini = 5 with
its center hini = 12.5 above the bottom of the structured surface. The initial velocity in the entire computational domain
is ~vini = ~0 and the gravitational acceleration is ~g =

[
0 −0.01

]T
. The temperature is set to T = 0.7, at which the surface

tension between the liquid and the vapor phase is γlv = 0.581 [1]. The viscosity is η = 0.01. Two different combinations
of γsv and γsl are considered. The first combination γsv−γsl = 0.000 leads to a theoretical contact angle of Θ = 90◦ (Young’s
equation Θ = arccos(γsv−γsl

γlv
)). The second combination γsv−γsl = −0.503 leads to a theoretical contact angle of Θ = 150◦.

Snapshots of the temporal evolution of the droplet for the two combinations of of γsv and γsl are shown in Fig. 1. The top row
of figures shows the simulation with a theoretical contact angle of Θ = 90◦ and the bottom row of figures the simulation with
a theoretical contact angle of Θ = 150◦. The left most column of figures shows the droplet shortly before the impact. At this
stage the results of the two simulations are identical. Once the droplet is in contact with the structured surface the temporal
evolution of the two simulations differs. For Θ = 90◦ the droplet sinks into the structure and fills the grooves with liquid.
For Θ = 150◦ the droplet does not sink into the structure. Instead, it bounces of and does not fill the grooves. A more detailed
investigation of the second setup can help the development of self-cleaning surfaces. Future enhancements of the model will
include a viscosity correlation that is based on molecular dynamics data.
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