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Abstract
The three pencils of K3 surfaces of minimal discriminant whose general element
covers at least one Enriques surface are Kondō’s pencils I and II, and the Apéry–
Fermi pencil. We enumerate and investigate all Enriques surfaces covered by
their general elements.
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1 INTRODUCTION

Any complex Enriques surface is doubly covered by a K3 surface. On the other hand, a K3 surface 𝑋 can cover infinitely
many Enriques surfaces. The set Enr(𝑋) of isomorphism classes of Enriques surfaces doubly covered by 𝑋, though, is
always finite by a result of Ohashi [20]. We call its cardinality |Enr(𝑋)| the Enriques number of the K3 surface 𝑋. The
Enriques number |Enr(𝑋)| only depends on the transcendental lattice of 𝑋. Shimada and the second named author [23]
described a procedure to determine |Enr(𝑋)| and applied it to K3 surfaces of maximal Picard rank 20.
A K3 surface 𝑋 of Picard rank 19 can be seen as the generic element of a pencil of K3 surfaces. Its transcendental lattice

𝑇𝑋 is an even lattice of signature (2, 1). By a result of Brandhorst, Sonel and the second named author [3], the surface 𝑋
covers an Enriques surface only if 4 divides det

(
𝑇𝑋

)
, but this condition is not sufficient. In this paper we analyze in detail

what happens when ||det(𝑇𝑋)|| is small, more precisely
||det(𝑇𝑋)|| < 16. (1.1)

Henceforth, let 𝑋 be a K3 surface of Picard rank 19 with transcendental lattice 𝑇𝑋 . In the case 𝑇𝑋 ≅ 𝐔⊕ [2𝑛], 𝑛 ≥ 1,
it was already noted by Hulek and Schütt [8] that Enr(𝑋) ≠ ∅ if and only if 𝑛 is even. Indeed, we prove in Theorem 2.4
under assumption (1.1) that Enr(𝑋) ≠ ∅ if and only if

𝑇𝑋 ≅ 𝐔⊕ [4], 𝐔 ⊕ [8] or𝐔⊕ [12].

The main reason for bound (1.1) is to keep computations feasible. In particular the enumeration of jacobian elliptic
fibrations on K3 surfaces with 𝑇𝑋 ≅ 𝐔⊕ [16] already becomes quite hard. Moreover, the pencil of K3 surfaces with 𝑇𝑋 ≅

𝐔(2) ⊕ [4] is not of the form𝐔⊕ [2𝑛], but it still holds Enr(𝑋) ≠ ∅, as its generic element is a Kummer surface [11].
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Quite interestingly, the first two pencils already feature prominently in Kondō’s classification of Enriques surfaces with
finite automorphism group [13], which we briefly recall. There are seven families of such Enriques surfaces, numbered
I to VII. Families I and II are 1-dimensional, while families III to VII are 0-dimensional. The K3 surfaces covering the
generic Enriques surface of type I and II have transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [4] and 𝑇𝑋 ≅ 𝐔⊕ [8], respectively.
The third pencil with 𝑇𝑋 ≅ 𝐔⊕ [12] has also been extensively studied, because of its arithmetical properties and

its appearance in several seemingly unrelated physical contexts (see [6, 21]). Following Bertin and Lecacheux [2], who
classified the elliptic fibrations on its generic element (Table 3), we call it the Apéry–Fermi pencil.
The aim of this paper is to enumerate and investigate the Enriques surfaces covered by these three pencils. More

precisely, for each𝑚 ∈ { 1, 2, 3 } we consider a K3 surface 𝑋 with 𝑇𝑋 ≅ 𝐔⊕ [4𝑚] and do the following:

∙ we compute the Enriques number |Enr(𝑋)|;
∙ we classify all jacobian elliptic fibrations on 𝑋 using the extension of the Kneser–Nishiyama method explained in [7];
∙ we relate the special elliptic pencils on the Enriques quotients to the elliptic fibrations on 𝑋.

We summarize here our findings.
Fix 𝑚 ∈ ℤ, 𝑚 ≥ 1, and let 𝜔 be the number of prime divisors of 2𝑚 and 𝑋 a K3 surface with 𝑇𝑋 ≅ 𝐔⊕ [4𝑚], 𝑚 ≥ 1.

Among the Enriques quotients of𝑋 there are 2𝜔−1 which we call of Barth–Peters type (Theorem 2.7). Such quotients admit
a cohomologically trivial involution (see [15, 16]) and their presence is explained by the fact that our pencils are subfamilies
of the 2-dimensional Barth–Peters family, a fact already noted by Hulek and Schütt [8, 9].
It turns out that if 𝑚 = 1, then 𝑋 covers only one Enriques surface 𝑌 (Theorem 3.1). Therefore, the Enriques surface

𝑌 is of Barth–Peters type and, moreover, coincides with Kondō’s quotient, so it has finite automorphism group. The list
of the 9 elliptic fibrations on 𝑋 appears in other papers by Scattone [22], Dolgachev [4] and Elkies and Schütt [5], and we
confirm it here (Table 1).
If 𝑚 = 2, then 𝑋 covers two Enriques surfaces 𝑌′, 𝑌′′, of which only one, say 𝑌′, is of Barth–Peters type. We show

that the other surface 𝑌′′ is Kondō’s quotient with finite automorphism group. We include the classification of elliptic
fibrations on 𝑋 up to automorphisms (Table 2). One subtlety arises in this case: two of the 17 elliptic fibrations on 𝑋 (No.
12 and 13 in Table 2) have the sameMordell–Weil group and two singular fibers of type I∗4 . Nonetheless, the two fibrations
are not equivalent under the action of Aut(𝑋), as they have different frames. We determine which one is the pullback of
a special elliptic pencil on 𝑌′ and which one is the pullback of a special elliptic pencil on 𝑌′′ (Theorem 3.6).
Finally, if 𝑚 = 3, then 𝑋 covers three Enriques surfaces 𝑌′, 𝑌′′, 𝑌′′′, of which two, say 𝑌′ and 𝑌′′ are of Barth–Peters

type (Theorem 3.8). Applying a construction by Hulek and Schütt [8, §3] and using a particular configuration of curves on
𝑋 found by Peters and Stienstra, we determine a simple description of an explicit Enriques involution for 𝑌′′′. In this way
we find a configuration of smooth rational curves on 𝑌′′′ whose dual graph is the union of a tetrahedron and a complete
graph of degree 6 (Theorem 3.9).

2 PRELIMINARY RESULTS

In this section, after explaining our conventions on lattices in §2.1, we collect results regarding K3 surfaces with transcen-
dental lattice 𝑇𝑋 ≅ 𝐔⊕ [2𝑚], 𝑚 ∈ ℤ, especially regarding their jacobian elliptic fibrations in §2.2. In §2.3 we recall the
enumeration formula for Enriques quotients contained in [23] and we prove the lemma that motivates the whole paper.
Finally, in §2.4 we introduce the notion of Enriques quotient of Barth–Peters type.

2.1 Lattices

In this paper, a lattice of rank 𝑟 is a finitely generated free ℤ-module 𝐿 ≅ ℤ𝑟 endowed with an integral symmetric bilin-
ear form 𝐿 × 𝐿 → ℤ denoted (𝑣, 𝑤) ↦ 𝑣 ⋅ 𝑤. The signature of 𝐿 is the signature of the induced real symmetric form on
𝐿 ⊗ ℝ. We say that 𝐿 is even if 𝑣2 ∶= 𝑣 ⋅ 𝑣 ∈ 2ℤ for every 𝑣 ∈ 𝐿. The dual 𝐿∨ ∶= hom(𝐿,ℤ) of 𝐿 can be identified with
{ 𝑤 ∈ 𝐿 ⊗ℚ ∣ 𝑤 ⋅ 𝑣 ∈ ℤ for all 𝑣 ∈ 𝐿}. The discriminant group of 𝐿 is defined as

𝐿♯ ∶= 𝐿∨∕𝐿,
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which is a finite abelian group. We denote by 𝓁
(
𝐿♯
)
its length, i.e., the minimal number of generators. For a prime number

𝑝 we denote by 𝓁𝑝
(
𝐿♯
)
its 𝑝-length, i.e., the minimal number of generators of its 𝑝-part.

If 𝐿 is an even lattice, then 𝐿♯ acquires naturally the structure of a finite quadratic form 𝐿♯ → ℚ∕2ℤ. There is a natural
homomorphism O(𝐿) → O

(
𝐿♯
)
denoted 𝛾 ↦ 𝛾♯.

We write 𝐔 for the indefinite unimodular even lattice of rank 2, and 𝐀𝑛,𝐃𝑛, 𝐄𝑛 for the negative definite ADE lattices.
The notation [𝑚], with 𝑚 ∈ ℤ, denotes the lattice of rank 1 generated by a vector of square 𝑚. We adopt Miranda–
Morrison’s notation [14] for the elementary finite quadratic forms 𝐮𝑘, 𝐯𝑘,𝐰𝜀

𝑝,𝑘
. We recall that 𝐮𝑘 (resp. 𝐯𝑘) is generated by

two elements of order 2𝑘, both of square 0 ∈ ℚ∕2ℤ (resp. 1 ∈ ℚ∕2ℤ), such that their product is equal to 1∕2𝑘 ∈ ℚ∕ℤ. The
forms𝐰𝜀

2,𝑘
, with 𝜀 ∈ { 1, 3, 5, 7 }, are generated by one element of order 2𝑘 and square 𝜀∕2𝑘 ∈ ℚ∕2ℤ. For an odd prime 𝑝

the forms𝐰𝜀
𝑝,𝑘
, with 𝜀 ∈ {±1 }, are generated by one element of order 𝑝𝑘 and square 𝑎∕𝑝𝑘 ∈ ℚ∕2ℤ, where 𝑎 is a square

modulo 𝑝 if and only if 𝜀 = 1.
The genus of a lattice 𝐿 is defined as the set of isomorphism classes of lattices𝑀 with sign(𝐿) = sign(𝑀) and 𝐿♯ ≅ 𝑀♯.

A genus is always a finite set (see [12, Satz 21.3]).
An embedding of lattices 𝜄 ∶ 𝑀 ↪ 𝐿 is called primitive if 𝐿∕𝜄(𝑀) is a free group. We denote by 𝜄(𝑀)⟂ ⊂ 𝐿 the orthogonal

complement of𝑀 inside 𝐿. We quickly summarize Nikulin’s theory of primitive embeddings [17].
By [17, Prop. 1.5.1] a primitive embedding of even lattices𝑀 ↪ 𝐿 is given by a subgroup𝐻 ⊂ 𝑀♯ and an isometry

𝛾 ∶ 𝐻 → 𝐻′ ∶= 𝛾(𝐻) ⊂
(
𝜄(𝑀)⟂(−1)

)♯
.

If Γ denotes the graph of 𝛾 in𝑀♯ ⊕
(
𝜄(𝑀)⟂(−1)

)♯
, the following identification between finite quadratic forms holds

(
the

finite quadratic form on the right side being induced by the one on𝑀♯ ⊕
(
𝜄(𝑀)⟂(−1)

)♯)
:

𝐿♯ ≅ Γ⟂∕Γ. (2.1)

In this paper we call𝐻, 𝛾 resp. Γ the gluing subgroup, gluing isometry resp. gluing graph of𝑀 ↪ 𝐿.
Equivalently by [17, Prop. 1.15.1], assuming that 𝐿 is unique in its genus, a primitive embedding 𝑀 ↪ 𝐿 is given by a

subgroup 𝐾 ⊂ 𝐿♯ and an isometry

𝜉 ∶ 𝐾 → 𝐾′ ∶= 𝜉(𝐾) ⊂ 𝑀(−1)♯.

If Ξ denotes the graph of 𝜉 in 𝐿♯ ⊕𝑀(−1)♯, the following identification between finite quadratic forms holds (the finite
quadratic form on the right side being induced by the one on 𝐿♯ ⊕𝑀(−1)♯):

(
𝜄(𝑀)⟂

)♯
≅ Ξ⟂∕Ξ. (2.2)

In this paper we call 𝐾, 𝜉 resp. Ξ the embedding subgroup, embedding isometry resp. embedding graph of𝑀 ↪ 𝐿.

2.2 Elliptic fibrations

Given aK3 surface𝑋, we denote𝑇𝑋 its transcendental lattice, 𝑆𝑋 its Néron–Severi lattice, and𝑋 the set of jacobian elliptic
fibrations on 𝑋. The frame genus of 𝑋 is defined as the genus𝑋 of negative definite lattices𝑊 with rk(𝑊) = rk

(
𝑆𝑋

)
− 2

and 𝑊♯ ≅ 𝑆
♯
𝑋 . The lattices in 𝑋 are called frames. The classes of a fiber and a section of a jacobian elliptic fibration

induces a primitive embedding 𝜄 ∶ 𝐔 ↪ 𝑆𝑋 . As explained in [7], there is a well-defined function

f r𝑋 ∶ 𝑋∕Aut(𝑋) → 𝑋

which sends each jacobian fibration to the isomorphism class of 𝜄(𝐔)⟂ ⊂ 𝑆𝑋 .
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Lemma 2.1. If 𝑋 is a K3 surface with transcendental lattice𝑇𝑋 ≅ 𝐔⊕ [2𝑛], 𝑛 ≥ 1, then on𝑋 there are exactly 2𝜔−1 jacobian
elliptic fibrations with frame𝑊 ∶= 𝐄2

8 ⊕ [−2𝑛] up to automorphisms, where 𝜔 is the number of prime divisors of 2𝑛.

Proof. Essentially by [7, Thm. 2.8] we want to prove that

|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O(𝑊)

||| = 2𝜔−1.

If 𝑛 = 1, then O
(
𝑇
♯
𝑋

)
= { id } and we conclude immediately.

Suppose that 𝑛 ≥ 2. Since 𝓁
(
𝑇
♯
𝑋

)
= 1, the discriminant form 𝑇

♯
𝑋 is the direct sum of forms𝐰𝜀

𝑝,𝑘
. It holds

O(𝑞 ⊕ 𝑞′) ≅ O(𝑞) × O(𝑞′)

if 𝑞 and 𝑞′ are finite quadratic forms with |𝑞| and |𝑞′| coprime, and |||O
(
𝐰𝜀

𝑝,𝑘

)||| = 2 if 𝑝 is odd or 𝑝 = 2 and 𝑘 ≥ 2. Hence,

O
(
𝑇
♯
𝑋

)
is a 2-elementary group of length 𝜔. In particular,

|||O
(
𝑇
♯
𝑋

)||| = 2𝜔,

As rk
(
𝑇𝑋

)
is odd, it holds O♯

h

(
𝑇𝑋

)
= {±id } (see for instance [10, Cor. 3.3.5]). Note, moreover, that id ≠ −id in 𝑇

♯
𝑋 . The

orthogonal group of 𝑊 is the direct sum of O
(
𝐄2
8

)
, which has trivial action on the discriminant group because 𝐄8 is

unimodular, and O([−2𝑛]) = {±id }. Therefore, it also holds O♯(𝑊) = {±id }, so we have

|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O♯(𝑊)

||| = |||O
(
𝑇
♯
𝑋

)
∕{±id }

||| = |||O
(
𝑇
♯
𝑋

)|||∕|{ ±id }| = 2𝜔−1. □

TheMordell–Weil group, i.e., the group of sections of a jacobian elliptic fibration, is naturally endowed with a rational
symmetric bilinear form denoted by (𝑃, 𝑄) ↦ ⟨𝑃,𝑄⟩ ∈ ℚ, called theMordell–Weil lattice. The height of a section is defined
as ht(𝑃) ∶= ⟨𝑃, 𝑃⟩. For a clear exposition of this topic we refer to Shioda’s original paper [24].
Remark 2.2. Consider one of the elliptic fibrations 𝜋 ∶ 𝑋 → ℙ1 as in Theorem 2.1 and for simplicity assume that 𝑛 ≥ 2.
Since𝑊root ≅ 𝐄2

8, the fibration 𝜋 has two singular fibers of Kodaira type II∗. As already remarked by Hulek and Schütt
[8, §4.2.2], starting from the fibration 𝜋 we can construct an involution on𝑋 which turns out to be an Enriques involution
if 𝑛 is even.We repeat here their construction directly on the lattice 𝑆𝑋 ≅ 𝐔⊕ 𝐄2

8 ⊕ [−2𝑛]. In the following computations
we let O

(
𝑆𝑋

)
act on 𝑆𝑋 from the right, so the composition of two isometries in O

(
𝑆𝑋

)
corresponds to the product of their

associated matrices in reversed order.
Let 𝑠1, … , 𝑠19 be a system of generators of 𝑆𝑋 such that the corresponding Gram matrix is the standard one. Then, 𝑆♯𝑋 is

generated by 𝑠19∕(2𝑛). In these coordinates, consider the vectors

𝐹 ∶= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

𝑂 ∶= (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

𝑃 ∶= (𝑛 − 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Note that 𝐹2 = 0, 𝑂2 = 𝑃2 = −2, 𝐹 ⋅ 𝑂 = 𝐹 ⋅ 𝑃 = 1, 𝑃 ⋅ 𝑂 = 𝑛 − 2.
We can suppose that 𝑠3, … , 𝑠18, generating the two copies of 𝐄8, correspond to the components of the singular fibers

which do not intersect 𝑂, 𝐹 to the class of a fiber, 𝑂 to a section which we take as origin and 𝑃 to a section of height
(cf. [24, Eq. (8.19)])

ht(𝑃) = ⟨𝑃, 𝑃⟩ = 2𝜒
(
𝑋

)
+ 2𝑃 ⋅ 𝑂 = 2 ⋅ 2 + 2 ⋅ (𝑛 − 2) = 2𝑛.
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Let 𝑄 ∶= ⊟𝑃 be the inverse section of 𝑃. Then ht(𝑄) = ht(𝑃) = 2𝑛, hence 𝑄 ⋅ 𝑂 = 𝑛 − 2. It follows from⟨𝑃,𝑄⟩ = −⟨𝑃, 𝑃⟩ that (cf. [24, Eq. (8.18)])
𝑃 ⋅ 𝑄 = 𝜒

(
𝑋

)
+ 𝑃 ⋅ 𝑂 + 𝑄 ⋅ 𝑂 − ⟨𝑃,𝑄⟩ = 2 + (𝑛 − 2) + (𝑛 − 2) + 2𝑛 = 4𝑛 − 2.

Recalling moreover that 𝐹 ⋅ 𝑄 = 1 and 𝑄 ⋅ 𝑄 = −2, we see that in our basis we can write

𝑄 = (𝑛 − 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1).

Let 𝑡𝑃 ∈ O
(
𝑆𝑋

)
be the pullback of the automorphism induced by the translation by 𝑃. We have 𝑡𝑃(𝑄) = 𝑂, 𝑡𝑃(𝑂) = 𝑃,

𝑡𝑃(𝐹) = 𝐹 and 𝑡𝑃 acts trivially on the other components of the fibers of type II
∗. Therefore, 𝜏𝑃 is given by the following

matrix:

𝑡𝑃 =

⎛⎜⎜⎜⎜⎝

1

𝑛 1 1

𝐼16
2𝑛 1

⎞⎟⎟⎟⎟⎠
.

Let now 𝚤 ∈ O
(
𝑆𝑋

)
be the isometry given by

𝚤 =

⎛⎜⎜⎜⎜⎝

𝐼2
𝐼8

𝐼8
−1

⎞⎟⎟⎟⎟⎠
.

Note that 𝚤 swaps the two fibers of type II∗ and that 𝚤(𝐹) = 𝐹, 𝚤(𝑃) = 𝑄 and 𝚤(𝑄) = 𝑃. Constructing an ample divisor as in
[7, Prop. 2.7], it is easy to see that 𝚤 preserves the ample cone. Moreover, 𝚤♯ = −id ∈ 𝑆

♯
𝑋 . Therefore, by the Torelli theorem

𝚤 is the pullback of a non-symplectic involution (whose quotient is a rational surface).
Consider 𝜀 ∶= 𝚤◦𝑡𝑃, whose matrix is then given by

𝜀 =

⎛⎜⎜⎜⎜⎜⎝

1

𝑛 1 −1

𝐼8
𝐼8

2𝑛 −1

⎞⎟⎟⎟⎟⎟⎠
.

A computation shows that for even 𝑛, the invariant lattice of 𝜀 is isometric to 𝐄8(2) ⊕ 𝐔(2), hence it corresponds to an
Enriques involution by Nikulin’s classification [18, Thm. 4.2.2]. The coinvariant lattice is isometric to 𝐄8(2) ⊕ [−2𝑛].

2.3 Enriques numbers

Let𝑋 be aK3 surfacewithNéron–Severi lattice 𝑆𝑋 and transcendental lattice𝑇𝑋 .We recall briefly the formula for |Enr(𝑋)|
proved in [23]. We define

𝐌 ∶= 𝐔(2) ⊕ 𝐄8(2).

By Nikulin’s classification [18], if 𝜀 ∈ O
(
𝑆𝑋

)
is the pullback of an Enriques involution, then the invariant sublattice

𝑆𝜀𝑋 ∶=
{
𝑥 ∈ 𝑆𝑋 ∣ 𝜀(𝑥) = 𝑥

}
is isomorphic to 𝐌. We denote by

(
𝑆𝑋

)
𝜀
∶=

(
𝑆𝜀𝑋

)⟂
the coinvariant lattice, whose isometry

class depends on the involution 𝜀.
Given a primitive embedding 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 , we put

O
(
𝑆𝑋, 𝜄

)
∶=

{
𝜑 ∈ O

(
𝑆𝑋

) |𝜑(𝜄(𝐌)) = 𝜄(𝐌)
}
.
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The Hodge structure onH2(𝑋,ℤ) induces a Hodge structure on 𝑇𝑋 . We writeOh

(
𝑇𝑋

)
for the group of Hodge isometries of

𝑇𝑋 . We fix an anti-isometry 𝑇
♯
𝑋 ≅ 𝑆

♯
𝑋 (cf. [17, Prop. 1.6.1]), so that we can identifyO

(
𝑇
♯
𝑋

)
≅ O

(
𝑆
♯
𝑋

)
. We denote the images

of Oh

(
𝑇𝑋

)
and O

(
𝑆𝑋, 𝜄

)
under the natural morphisms O

(
𝑇𝑋

)
→ O

(
𝑇
♯
𝑋

)
and O

(
𝑆𝑋

)
→ O

(
𝑆
♯
𝑋

)
by O♯

h

(
𝑇𝑋

)
and O♯(𝑆𝑋, 𝜄),

respectively.

Theorem 2.3 [23, Thm. 3.1.9]. For any K3 surface 𝑋 it holds

|Enr(𝑋)| = ∑|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O♯(𝑆𝑋, 𝜄)|||,

where the sum runs over all primitive embeddings 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 up to the action of O
(
𝑆𝑋

)
such that there exists no 𝑣 ∈ 𝜄(𝐌)⟂

with 𝑣2 = −2.

The main topic of the present paper are K3 surfaces of Picard rank 19 covering an Enriques surface. For computational
reasons, we restrict ourselves to K3 surfaces whose transcendental lattice has discriminant ||det(𝑇𝑋)|| < 16. By the next
lemma, we have three cases to consider.

Lemma 2.4. Let 𝑋 be a K3 surface of Picard rank 19 and transcendental lattice 𝑇𝑋 and suppose that ||det(𝑇𝑋)|| < 16. Then,
Enr(𝑋) ≠ ∅ if and only if 𝑇𝑋 ≅ 𝐔⊕ [4𝑚] with𝑚 ∈ {1, 2, 3}.

Proof. If 𝑇𝑋 ≅ 𝐔⊕ [4𝑚],𝑚 ≥ 1, then 𝑋 covers an Enriques surface by [8, Proposition 4.2].
Conversely, suppose that Enr(𝑋) ≠ ∅. By [3, Thm. 1.1] the lattice 𝑇𝑋 has a Gram matrix of the form

⎛⎜⎜⎝
2𝑎11 𝑎12 𝑎13
𝑎12 4𝑎22 2𝑎23
𝑎13 2𝑎23 4𝑎33,

⎞⎟⎟⎠ , 𝑎𝑖𝑗 ∈ ℤ.

Therefore, det
(
𝑇𝑋

)
is divisible by 4. Now, the discriminant group 𝑇

♯
𝑋 is a finite quadratic form on an abelian group of

order ||det(𝑇𝑋)|| and of signature 2 − 1 = 1, because 𝑇𝑋 has signature (2, 1). We classify such finite quadratic forms 𝑞
using Miranda and Morrison’s normal form [14]. For each 𝑞 in the list we find a lattice 𝑇 such that 𝑇♯ ≅ 𝑞, obtaining the
following table.

det(𝑇) −4 −8 −8 −8 −12 −12

𝑇♯ 𝐰1
2,2 𝐮1 ⊕𝐰1

2,1 𝐰1
2,3 𝐰5

2,3 𝐰3
2,2 ⊕ 𝐰1

3,1 𝐰7
2,2 ⊕ 𝐰−1

3,1

𝑇 𝐔⊕ [4] 𝐔(2) ⊕ [2] 𝐔 ⊕ [8]
⎛⎜⎜⎝
2 −1 0

−1 2 −1

0 −1 −2

⎞⎟⎟⎠ 𝐔⊕ [12]
⎛⎜⎜⎝
2 −1 0

−1 −2 −1

0 −1 2

⎞⎟⎟⎠
In all cases except the second one, 𝑇 is unique by [17, Thm. 1.14.2]. In the case 𝑇 = 𝐔(2) ⊕ [2], 𝑇 is unique because

𝑇 = 𝑇′(2), with 𝑇′ a unimodular indefinite lattice.
If 𝑇𝑋 ≅ 𝑇 is such that 𝑇♯ ≅ 𝐰5

2,3 or 𝑇
♯ ≅ 𝐰7

2,2 ⊕𝐰−1
3,1 , then Enr(𝑋) = ∅ because of [3, Prop. 3.9] (in the notation of [3],

the two forms do not satisfy condition C(1)). The case 𝑇𝑋 ≅ 𝐔(2) ⊕ [2] is excluded because of [3, Thm. 1.1] (the lattice is
an “exceptional lattice”).
Therefore, the only cases left are 𝑇𝑋 ≅ 𝑇 ∈ {𝐔⊕ [4],𝐔 ⊕ [8],𝐔 ⊕ [12] }. □

2.4 Enriques quotients of Barth–Peters type

Let now𝑋 be a K3 surface with 𝑇𝑋 ≅ 𝐔⊕ [4𝑚],𝑚 ≥ 1. A primitive embedding 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 depends in general on several
data (cf. §2.1 and [17, Prop. 1.15.1]), but in this case one only has to consider the orthogonal complement of the image, thanks
to the next lemma.
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Lemma 2.5. Let 𝑋 be a K3 surface with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [4𝑚],𝑚 ≥ 1. If 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 is a primitive embed-
ding, then 𝜄(𝐌)⟂ ≅ 𝑁(2), where 𝑁 is a lattice in the genus of 𝐄8 ⊕ [−2𝑚]. Conversely, for each such lattice 𝑁 there exists
exactly one primitive embedding 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 with 𝜄(𝐌)⟂ ≅ 𝑁(2) up to the action of O

(
𝑆𝑋

)
.

Proof. The Neron–Séveri lattice 𝑆𝑋 is isomorphic to𝐔⊕𝐄2
8 ⊕ [−4𝑚]. Consider a primitive embedding 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 with

embedding subgroup 𝐾 ⊂ 𝑆
♯
𝑋 and embedding graph Ξ (see §2.1).

Since𝐌♯ ≅ 5𝐮1 is 2-elementary and 𝑆
♯
𝑋 has length 1, it holds either |𝐾| = 1 or |𝐾| = 2. The first case, though, is impos-

sible, as otherwise
(
𝜄(𝐌)⟂

)♯
would have length 11 > rk

(
𝜄(𝐌)⟂

)
. Therefore, it must be |𝐾| = 2, so there is only one choice

for the subgroup 𝐾 ⊂ 𝑆
♯
𝑋 , which is generated by an element of order 2 and square 0 ∈ ℚ∕2ℤ.

Moreover, when taking Ξ⟂∕Ξ in the identification (2.2) one copy of 𝐮1 gets killed. Hence, it holds

(
𝜄(𝐌)⟂

)♯
≅ 4𝐮1 ⊕ [−4𝑚]♯,

and in particular 𝓁2
((
𝜄(𝐌)⟂

)♯)
= 9 = rk

(
𝜄(𝐌)⟂

)
. Therefore (see for instance [3, Lemma 3.10]), it holds 𝜄(𝐌)⟂ ≅ 𝑁(2),

with 𝑁 an even lattice. The genus of 𝑁(2) determines the genus of 𝑁, so we see that 𝑁 is in the genus of 𝐄8 ⊕ [−2𝑚].
The converse holds by [17, Prop. 1.15.1], because 𝑆𝑋 is unique in its genus,𝐾 is uniquely determined andO(𝐌) → O

(
𝐌♯

)
is surjective (see for instance [1, p. 388]). □

Note that a lattice 𝑁′ ≅ 𝑁(2), with 𝑁 an even lattice, does not contain vectors of square −2. Therefore, Theorem 2.5
essentially says that the terms in the sum of Theorem 2.3 are in one-to-one correspondence with the lattices in the genus
of 𝐄8 ⊕ [−2𝑚]. In particular, one of them corresponds to 𝐄8 ⊕ [−2𝑚] itself, which we presently consider more in detail.
Barth–Peters introduced a 2-dimensional family of K3 surfaces, whose general element 𝔛 has transcendental lattice

𝑇𝔛 ≅ 𝐔⊕𝐔(2) and Néron–Severi lattice 𝑆𝔛 ≅ 𝐔(2) ⊕ 𝐄2
8. Ohashi [20, Remark 4.9(2)] proved that |Enr(𝔛)| = 1. The

coinvariant lattice of an Enriques involution on 𝔛 is isomorphic to 𝐄8(2).
In the situation of Theorem 2.5, if 𝐄8(2) embeds into

(
𝑆𝑋

)
𝜀
≅ 𝜄(𝐌)⟂, then 𝜄(𝐌)⟂ ≅ 𝐄8(2) ⊕ [−4𝑚]. This motivates the

following definition.

Definition 2.6. We say that an Enriques involution 𝜀 ∈ Aut(𝑋) on 𝑋 is of Barth–Peters type if
(
𝑆𝑋

)
𝜀
≅ 𝐄8(2) ⊕ [−4𝑚].

The corresponding Enriques quotient is also called of Barth–Peters type.

The following lemma provides the number of Enriques quotients of Barth–Peters type up to isomorphisms.

Lemma 2.7. If 𝑋 is a K3 surface with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [4𝑚], 𝑚 ≥ 1, and 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 is a primitive
embedding with 𝜄(𝐌)⟂ ≅ 𝐄8(2) ⊕ [−4𝑚], then it holds

|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O♯(𝑆𝑋, 𝜄)||| = 2𝜔−1,

where 𝜔 is the number of prime divisors of 2𝑚.

Proof. As in the proof of Theorem 2.1, it holds |||O
(
𝑇
♯
𝑋

)||| = 2𝜔. As rk
(
𝑇𝑋

)
is odd, it holdsO♯

h

(
𝑇𝑋

)
= {±id } (see for instance

[10, Cor. 3.3.5]). Note, moreover, that id ≠ −id in 𝑇♯
𝑋 .

We now want to determine O♯
h

(
𝑆𝑋, 𝜄

)
using the identification (2.1). Let 𝑠 ∈ 𝐄8(2) ⊕ [−4𝑚] be the generator of the copy

of [−4𝑚], 𝐻 be the gluing subgroup, 𝛾 ∶ 𝐻 → 𝐻′ be the gluing isometry, and Γ the gluing graph of 𝜄 (see §2.1). By the
identification (2.1), it holds |𝐻| = |𝐻′| = 29. Therefore, 𝑆♯𝑋 ≅ Γ⟂∕Γ is generated by an element of the form (𝛼, 𝑠∕4𝑚), with
𝛼 ∈ 𝐌♯.
Recall now that O(𝐌) → O

(
𝐌♯

)
is surjective (see [1, p. 388]) and that an isometry of a definite lattice preserves its

decomposition in irreducible lattices up to order (see for instance [12, Satz 27.2]), so

O
(
𝐄8(2) ⊕ [−4𝑚]

)
≅ O

(
𝐄8(2)

)
× O

(
[−4𝑚]

)
.
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These facts imply that the group Oh

(
𝑆𝑋, 𝜄

)
can only act as ±id on (𝛼, 𝑠∕4𝑚), i.e., O♯

h

(
𝑆𝑋, 𝜄

)
= {±id }. Therefore, we have

|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O♯(𝑆𝑋, 𝜄)||| = |||O

(
𝑇
♯
𝑋

)
∕{±id }

||| = |||O
(
𝑇
♯
𝑋

)|||∕|{ ±id }| = 2𝜔−1.
□

Remark 2.8. Recall that any elliptic pencil on an Enriques surface has exactly two multiple fibers 2𝐹, 2𝐹′. The divisors 𝐹
and 𝐹′ are called half-pencils (necessarily of type I𝑚 for some𝑚 ≥ 0). An elliptic pencil on an Enriques surface is said to
be special if it has a 2-section which is a smooth rational curve.
As noted by Kondō [13, Lem. 2.6], the pullback of a special elliptic pencil induces a jacobian elliptic fibration 𝜋 on the

K3 surface 𝑋. Such pullbacks satisfy the following condition: if the fibration 𝜋 has exactly 𝑛𝑖 fibres type of type J𝑖 (for
𝑖 = 1, … , 𝑟), where J𝑖, J𝑗 are pairwise distinct Kodaira types if 𝑖 ≠ 𝑗, then at most two coefficients 𝑛𝑖 can be odd; moreover,
if 𝑛𝑖 is odd, then J𝑖 = I2𝑚 for some𝑚 ≥ 0.
The last sentence comes from the fact that one of the fibers of type J𝑖 is necessarily the pullback of a half-pencil.

Remark 2.9. Let 𝑛 = 2𝑚 be an even integer and consider one of the 2𝜔−1 elliptic fibrations with two fibers of type II∗ given
in Theorem 2.1. By the construction of Theorem 2.2, we obtain one of the 2𝜔−1 Enriques quotients 𝑌 of Barth–Peters type
of Theorem 2.7. In the notation of Theorem 2.2, the vector

𝑅 ∶= (𝑚 + 1, 2, −4, −5, −7, −10, −8, −6, −4, −2, −2, −3, −4, −6, −5, −4, −3, −2, 1)

has square−2, satisfies 𝑅 ⋅ 𝐹 = 2 and has intersection number 1with 𝑒3 and 𝑒18. Therefore, it represents a smooth rational
curve. Moreover, 𝑅 ⋅ 𝜀(𝑅) = 0.
Thus, the surface 𝑌 contains ten smooth rational curves which are the images of 𝑅 and of the components of the fibers

of type II∗. They form the following dual graph, where the white vertex represents the image of 𝑅, which is a 4-section of
the highlighted elliptic pencil.

This graph appears in [13, Thm. 1.7(i)] and is related to the fact that𝑌 has a cohomologically trivial automorphism (such
automorphisms were studied by Mukai and Namikawa [15, 16]).
On the above graph we can recognize three more special elliptic pencils up to symmetries (dashed lines indicates half-

pencils):

In our case we retrieve the jacobian elliptic fibrations on 𝑋 with respectively two fibres of type I∗4 , two fibres of type III
∗,

and one fibre of type I16 (hence the corresponding root lattices𝑊root of the frame contain the sublattices 𝐃2
8, 𝐄

2
7 and 𝐀15,

respectively).

3 THE THREE PENCILS

This section is divided into three subsections, in which we study K3 surface 𝑋 with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [4]

(§3.1),𝑇𝑋 ≅ 𝐔⊕ [8] (§3.2), and𝑇𝑋 ≅ 𝐔⊕ [12] (§3.3). In each casewe determine |Enr(𝑋)| and ||𝑋∕Aut(𝑋)||, thenwe focus
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TABLE 1 Lattices in the frame genus𝑋 of a K3 surface 𝑋 with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [4]

𝑾 𝑵𝐫𝐨𝐨𝐭 𝑾𝐫𝐨𝐨𝐭 𝑾∕𝑾𝐫𝐨𝐨𝐭 |𝚫(𝑾)| |𝐎(𝑾)| |
|𝐟 𝐫

−𝟏
𝑿 (𝑾)|| Rmk.

𝑊1 𝐃16𝐄8 𝐃9𝐄8 0 384 129448569470976000 1 –
𝑊2 𝐃24 𝐃17 0 544 46620662575398912000 1 –
𝑊3 𝐃10𝐄

2
7 𝐀3𝐄

2
7 ℤ∕2ℤ 264 809053559193600 1 2.9

𝑊4 𝐃2
12 𝐃5𝐃12 ℤ∕2ℤ 304 3767021862912000 1 –

𝑊5 𝐀11𝐃7𝐄6 𝐀11𝐄6 ℤ∕3ℤ 204 49662885888000 1 –
𝑊6 𝐀15𝐃9 𝐀2

1𝐀15 ℤ∕4ℤ 244 334764638208000 1 2.9
𝑊7 𝐄3

8 𝐄2
8 ℤ 480 1941728542064640000 1 2.9

𝑊8 𝐃3
8 𝐃2

8 ℤ ⊕ (ℤ∕2ℤ) 224 106542032486400 1 2.9
𝑊9 𝐃16𝐄8 𝐃16 ℤ ⊕ (ℤ∕2ℤ) 480 1371195958099968000 1 –

on their Enriques quotients, especially those not of Barth–Peters type (because those of Barth–Peters type were already
considered in §2.4).
Moreover, we show that all jacobian elliptic fibrations satisfying the condition in Theorem 2.8 are indeed pullbacks of

elliptic pencils on some Enriques quotient.

3.1 Kondō’s pencil I

Let 𝑋 be a K3 surface with transcendental lattice

𝑇𝑋 ≅ 𝐔⊕ [4].

Theorem 3.1. It holds |Enr(𝑋)| = 1.

Proof. The lattice 𝐄8 ⊕ [−2] is unique in its genus by the mass formula. By Theorem 2.5, the sum in Theorem 2.3 has only
one term, which is equal to 1 by Theorem 2.7. □

Therefore, the surface 𝑋 admits only one Enriques quotient 𝑋 → 𝑌. Necessarily, the Barth–Peters quotient of
Theorem 2.7 coincides with Kondō’s quotient [13] (in particular, 𝑌 has a finite automorphism group). Indeed, the graph
of nodal curves contained in 𝑌, which is pictured in [13, Fig. 1.4], contains the Barth–Peters graph as a subgraph. This
Enriques quotient was also studied by Hulek and Schütt [8, §4.6].
For the sake of completeness, we enumerate all jacobian elliptic fibrations on 𝑋 up to automorphisms (the same list is

contained in an unpublished paper by Elkies and Schütt [5]).

Proposition 3.2. The frame genus𝑋 contains exactly 9 isomorphism classes, listed in Table 1, whose Gram matrices are
contained in the arXiv ancillary file genus_Kondo_I.sage. Moreover, it holds

||𝑋∕Aut(𝑋)|| = 9.

Proof. It holds ||𝑋∕Aut(𝑋)|| = ||𝑋
|| by [7, Cor. 2.10]. In order to determine𝑋 , we apply the Kneser–Nishiyama method

with 𝑇0 = 𝐃7. The list is complete because the mass formula holds:

9∑
𝑖=1

1||O(𝑊𝑖

)|| =
642332179

18881368343036559360000
= mass

(
𝑋

)
. □

3.2 Kondō’s pencil II

Let 𝑋 be a K3 surface with transcendental lattice

𝑇𝑋 ≅ 𝐔⊕ [8].
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Theorem 3.3. It holds |Enr(𝑋)| = 2.

Proof. There is only one more lattice in the genus of 𝐄8 ⊕ [−4], namely 𝐃9, as the mass formula shows. By Theorem 2.5
the sum in Theorem 2.3 has two terms, both equal to 1 as it holds O♯

h

(
𝑇𝑋

)
= O

(
𝑇
♯
𝑋

)
. □

By Theorem 2.7, one of the two Enriques quotient, say 𝑋 → 𝑌′, is of Barth–Peters type. The corresponding coinvariant
lattice is isometric to 𝐄8(2) ⊕ [−8] and contains 240 vectors of square −4.
By Kondō’s classification, the surface𝑋 admits an Enriques quotient𝑋 → 𝑌′′ with finite automorphism group. Kondō’s

quotient 𝑌′′ was also studied by Hulek and Schütt [8, §4.7 and §4.8]. We argue that 𝑌′ is not isomorphic to 𝑌′′.
Geometrically, this follows from the fact that𝑌′′ contains exactly 12 smooth rational curveswhose dual graph is pictured

on [13, p. 207, Fig. 2.4]. This dual graph does not contain the graph pictured in Theorem 2.9 as a subgraph.
Algebraically, we can distinguish the two quotients in the following way.

1. The surface 𝑋 contains 24 smooth rational curves 𝐹+
1 , 𝐹

−
1 , … , 𝐹+

12, 𝐹
−
12, which intersect as in [13, p. 207, Fig. 2.3] and

generate the Néron–Severi lattice 𝑆𝑋 .
2. Kondō’s Enriques involution exchanges 𝐹+

𝑖
with 𝐹−

𝑖
, 𝑖 = 1, … , 12.

3. Computing explicitly the coinvariant lattice of Kondō’s Enriques involution in 𝑆𝑋 , we see that it contains 144 vectors
of square −4, so it must be isomorphic to 𝐃9(2). In particular, Kondō’s quotient is not of Barth–Peters type.

We now enumerate all jacobian elliptic fibrations on 𝑋 up to automorphisms.

Proposition 3.4. The frame genus𝑋 contains exactly 17 isomorphism classes, listed in Table 1, whose Gram matrices are
contained in the arXiv ancillary file genus_Kondo_II.sage. Moreover, it holds

||𝑋∕Aut(𝑋)|| = 17.

Proof. It holds ||𝑋∕Aut(𝑋)|| = ||𝑋
|| by [7, Cor. 2.10]. In order to determine𝑋 , we apply the Kneser–Nishiyama method

with 𝑇0 = 𝐀7. Note that there are two different primitive embeddings𝐀7 ↪ 𝐃8 (cf. [19, Lem. 4.2]), leading to two distinct
frames𝑊 with𝑊root ↪ 𝐃3

8, namely𝑊11 and𝑊12 (cf. Theorem 3.6). The list is complete because themass formula holds:

17∑
𝑖=1

1||O(𝑊𝑖

)|| =
642332179

73755345089986560000
= mass

(
𝑋

)
.

□

Remark 3.5. The surface 𝑌′′ contains 12 curves on whose dual graph one can recognize the following elliptic pencils
(dashed lines indicate half-pencils):

The first three pencils are special pencils and correspond to the elliptic fibrations on 𝑋 with frames 𝑊1, 𝑊11 (see
Theorem 3.6) and𝑊16, respectively.
The fourth pencil is not special: the highlighted curves on 𝑌′′ form a half-pencil and the white vertices represent

4-sections. Indeed, the pullback on 𝑋 correspond to an elliptic fibration with a fiber of type I18, namely

𝐹+
1 + 𝐹−

4 + 𝐹−
3 + 𝐹−

5 + 𝐹−
6 + 𝐹−

7 + 𝐹−
9 + 𝐹−

10 + 𝐹−
11 + 𝐹−

1 + 𝐹+
4 + 𝐹+

3 + 𝐹+
5 + 𝐹+

6 + 𝐹+
7 + 𝐹+

9 + 𝐹+
10 + 𝐹+

11.

This fibration is not jacobian, as it does not appear in Table 2.

Remark 3.6. The two frames 𝑊11 and 𝑊12 are not isometric, but they can be distinguished neither by the pair(
𝑊root,𝑊∕𝑊root

)
nor by their number of automorphisms |O(𝑊)|.
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TABLE 2 Lattices in the frame genus𝑋 of a K3 surface 𝑋 with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [8]

𝑾 𝑵𝐫𝐨𝐨𝐭 𝑾𝐫𝐨𝐨𝐭 𝑾∕𝑾𝐫𝐨𝐨𝐭 |𝚫(𝑾)| |𝐎(𝑾)| |
|𝐟 𝐫

−𝟏
𝑿 (𝑾)|| Rmk.

𝑊1 𝐀2
7𝐃

2
5 𝐀7𝐃

2
5 ℤ∕4ℤ 136 594542592000 1 3.5

𝑊2 𝐀11𝐃7𝐄6 𝐀3𝐃7𝐄6 ℤ 168 802632499200 1 –
𝑊3 𝐀2

12 𝐀12𝐀4 ℤ 176 1494484992000 1 –
𝑊4 𝐀15𝐃9 𝐀7𝐃9 ℤ 200 7491236659200 1 –
𝑊5 𝐀17𝐄7 𝐀9𝐄7 ℤ 216 21069103104000 1 –
𝑊6 𝐀24 𝐀16 ℤ 272 711374856192000 1 –
𝑊7 𝐃16𝐄8 𝐃8𝐄8 ℤ 342 7191587192832000 1 –
𝑊8 𝐃24 𝐃16 ℤ 480 1371195958099968000 1 –
𝑊9 𝐄3

8 𝐄2
8 ℤ 480 1941728542064640000 1 2.9

𝑊10 𝐀2
9𝐃6 𝐀1𝐀9𝐃6 ℤ ⊕ (ℤ∕2ℤ) 152 334430208000 1 –

𝑊11 𝐃3
8 𝐃2

8 ℤ ⊕ (ℤ∕2ℤ) 224 106542032486400 1 3.5, 3.6
𝑊12 𝐃3

8 𝐃2
8 ℤ ⊕ (ℤ∕2ℤ) 224 106542032486400 1 2.9, 3.6

𝑊13 𝐃10𝐄
2
7 𝐀2

1𝐄
2
7 ℤ ⊕ (ℤ∕2ℤ) 256 134842259865600 1 2.9

𝑊14 𝐃2
12 𝐃12𝐃4 ℤ ⊕ (ℤ∕2ℤ) 288 376702186291200 1 –

𝑊15 𝐃16𝐄8 𝐃16 ℤ ⊕ (ℤ∕2ℤ) 480 1371195958099968000 1 –
𝑊16 𝐀3

8 𝐀2
8 ℤ ⊕ (ℤ∕3ℤ) 144 526727577600 1 3.5

𝑊17 𝐀15𝐃9 𝐀15 ℤ2 ⊕ (ℤ∕2ℤ) 240 83691159552000 1 2.9

Using the command is_globally_equivalent_to of the Sage class QuadraticForm, we can check that the frame𝑊11

corresponds to the fibration with fiber

𝐹 = 𝐹+
6 + 𝐹−

8 + 2𝐹+
5 + 2𝐹+

3 + 2𝐹+
2 + 2𝐹+

1 + 2𝐹+
11 + 𝐹+

10 + 𝐹+
12

= 𝐹−
6 + 𝐹+

8 + 2𝐹−
5 + 2𝐹−

3 + 2𝐹−
2 + 2𝐹−

1 + 2𝐹−
11 + 𝐹−

10 + 𝐹−
12,

which is the pullback of the second special pencil on 𝑌′′ listed in Theorem 3.5.
On the other hand, with the same command we can check that the frame𝑊12 corresponds to the fibration with fiber

𝐹+
2 + 𝐹+

5 + 2𝐹+
3 + 2𝐹+

4 + 2𝐹−
1 + 2𝐹−

2 + 2𝐹−
3 + 𝐹−

4 + 𝐹−
5 ,

which is then the pullback of a special pencil on 𝑌′ (cf. Theorem 2.9).

3.3 Apéry–Fermi pencil

Let 𝑋 be a K3 surface with transcendental lattice

𝑇𝑋 ≅ 𝐔⊕ [12].

The classification of the jacobian elliptic fibrations on 𝑋 was carried out by Bertin and Lecacheux [2] and then refined
in [7]. For the reader’s convenience we reproduce in Table 3 the same table as [7, Table 7].

Theorem 3.7. It holds |Enr(𝑋)| = 3.

Proof. The genus of 𝐄8 ⊕ [−6] contains two lattices, namely 𝐀2 ⊕ 𝐄7 and 𝐄8 ⊕ [−6] itself, as the mass formula shows.
Thus, by Theorem 2.5, the sum in Theorem 2.3 consists of two terms, one of which is equal to 2 by Theorem 2.7.
Fix a primitive embedding 𝜄 ∶ 𝐌 ↪ 𝑆𝑋 with 𝜄(𝐌)⟂ ≅ 𝐀2(2) ⊕ 𝐄7(2). Note that it holds

𝑆
♯
𝑋 ≅ 𝐰5

2,2 ⊕𝐰−1
3,1, 𝐀2(2)

♯ ≅ 𝐯1 ⊕𝐰−1
3,1, 𝐄7(2)

♯ = 3𝐮1 ⊕𝐰1
2,2.
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TABLE 3 Lattices in the frame genus𝑋 of a K3 surface 𝑋 with transcendental lattice 𝑇𝑋 ≅ 𝐔⊕ [12], numbered according to Bertin
and Lecacheux (cf. [2, Tables 2 and 3])

𝑾 𝑵𝐫𝐨𝐨𝐭 𝑾𝐫𝐨𝐨𝐭 𝑾∕𝑾𝐫𝐨𝐨𝐭 |𝚫(𝑾)| |𝐎(𝑾)| |
|𝐟 𝐫

−𝟏
𝑿 (𝑾)|| Rmk.

𝑊3 𝐃16𝐄8 𝐃11𝐄6 0 292 8475799191552000 1 –
𝑊1 𝐄3

8 𝐀3𝐄6𝐄8 0 324 3467372396544000 1 –
𝑊7 𝐃10𝐄

2
7 𝐀5𝐃5𝐄7 ℤ∕2ℤ 196 16052649984000 1 –

𝑊20 𝐀11𝐃7𝐄6 𝐀2
1𝐀

2
2𝐀11 ℤ∕6ℤ 148 551809843200 1 3.9

𝑊27 𝐀2
7𝐃

2
5 𝐀4𝐀7𝐃5 ℤ 116 18579456000 2 –

𝑊21 𝐀11𝐃7𝐄6 𝐀2
1𝐀8𝐄6 ℤ 148 300987187200 1 –

𝑊18 𝐀15𝐃9 𝐀12𝐃4 ℤ 180 4782351974400 1 –
𝑊13 𝐃2

12 𝐃9𝐃7 ℤ 228 119859786547200 1 –
𝑊5 𝐃16𝐄8 𝐀3𝐃13 ℤ 324 2448564210892800 1 –
𝑊6 𝐃16𝐄8 𝐃8𝐄8 ℤ 352 14383174385664000 1 –
𝑊2 𝐄3

8 𝐄2
8 ℤ 480 1941728542064640000 2 2.9

𝑊12 𝐃24 𝐃16 ℤ 480 2742391916199936000 1 –
𝑊15 𝐃3

8 𝐀3𝐃5𝐃8 ℤ ⊕ (ℤ∕2ℤ) 164 951268147200 1 –
𝑊8 𝐃10𝐄

2
7 𝐀1𝐀5𝐃10 ℤ ⊕ (ℤ∕2ℤ) 212 10701766656000 1 –

𝑊16 𝐃3
8 𝐃2

8 ℤ ⊕ (ℤ∕2ℤ) 224 106542032486400 2 2.9
𝑊9 𝐃10𝐄

2
7 𝐀2

1𝐄
2
7 ℤ ⊕ (ℤ∕2ℤ) 256 269684519731200 1 2.9

𝑊14 𝐃2
12 𝐃4𝐃12 ℤ ⊕ (ℤ∕2ℤ) 288 753404372582400 1 –

𝑊4 𝐃16𝐄8 𝐃16 ℤ ⊕ (ℤ∕2ℤ) 480 1371195958099968000 2 –
𝑊19 𝐄4

6 𝐀2
2𝐄

2
6 ℤ ⊕ (ℤ∕3ℤ) 156 773967052800 1 3.9

𝑊26 𝐀2
7𝐃

2
5 𝐀2

1𝐀
2
7 ℤ ⊕ (ℤ∕4ℤ) 116 52022476800 1 3.9

𝑊25 𝐀2
9𝐃6 𝐀6𝐀9 ℤ2 132 73156608000 1 –

𝑊22 𝐀11𝐃7𝐄6 𝐀8𝐃7 ℤ2 156 234101145600 2 –
𝑊10 𝐃10𝐄

2
7 𝐀1𝐃7𝐄7 ℤ2 212 7491236659200 1 –

𝑊11 𝐀17𝐄7 𝐀1𝐀14 ℤ2 212 10461394944000 1 –
𝑊24 𝐃4

6 𝐀3𝐃
2
6 ℤ2 ⊕ (ℤ∕2ℤ) 132 101921587200 1 3.9

𝑊23 𝐀11𝐃7𝐄6 𝐀11𝐃4 ℤ2 ⊕ (ℤ∕2ℤ) 156 367873228800 1 –
𝑊17 𝐀15𝐃9 𝐀15 ℤ2 ⊕ (ℤ∕2ℤ) 240 167382319104000 1 2.9

Let𝐻 ⊂ 𝐌♯ be the gluing subgroup (see §2.1). By the identification (2.1) we have |𝐻| = 29. Thus, the image

𝐻′ ∶= 𝛾(𝐻) ⊂
(
𝜄(𝐌)⟂(−1)

)♯
of the gluing isometry is the sum of the copy of 𝐯1 in 𝐀2(2) and the whole group 𝐄7(2)

♯ (with inverted sign).
Consider the isometry 𝛼 ∈ O

(
𝜄(𝐌)⟂

)
defined as −id on the copy of 𝐀2(2) and as id on the copy of 𝐄7(2). Since the

natural homomorphism O(𝐌) → O
(
𝐌♯

)
is surjective, 𝛼 extends to an isometry 𝛼̃ ∈ O

(
𝑆𝑋, 𝜄

)
by [17, Cor. 1.5.2].

By construction of 𝛼 and by the above description of the gluing isometry 𝛾, the element 𝛼̃♯ acts as −id on the 3-part of
𝑆
♯
𝑋 and as id on the 2-part of 𝑆

♯
𝑋 . In particular, O

♯(𝑆𝑋, 𝜄) contains at least three different elements, namely id, −id and 𝛼̃♯.
On the other hand, O

(
𝑇
♯
𝑋

)
contains exactly four elements, as it is generated by multiplication by −1 and by 5. Therefore,

we have O♯(𝑆𝑋, 𝜄) = O
(
𝑇
♯
𝑋

)
, which implies

|||O♯
h

(
𝑇𝑋

)
∖O

(
𝑇
♯
𝑋

)
∕O♯(𝑆𝑋, 𝜄)||| = 1.

In total we get |Enr(𝑋)| = 3. □



FESTI and VENIANI 13

Let 𝑌′, 𝑌′′, 𝑌′′′ be the three Enriques quotients of 𝑋 up to automorphisms. We can suppose that 𝑌′, 𝑌′′ are of Barth–
Peters type (see §2.4). Here we are interested in studying 𝑌 ∶= 𝑌′′′.
Peters and Stienstra [21] showed that 𝑋 contains 20 + 12 smooth rational curves, called 𝐿-lines and𝑀-lines, forming a

particular configuration, which we call the Peters–Stientra cube. The dual graph of the 𝐿-lines is pictured in [21, Fig. 1].
We do not reproduce it here, but we follow the same notation. The intersection numbers of the𝑀-lines are described in
[21, Lem. 1].
In order to make a connection with the construction of Theorem 2.2, we first look for a fibration with two fibers of type

II∗ or, equivalently, with frame𝑊2 in Table 3. We can suppose

𝐹 = 2𝐿++0 + 3𝑀2−+ + 4𝐿+++ + 6𝐿+0+ + 5𝐿+−+ + 4𝐿0−+ + 3𝑀1−− + 2𝐿0+− + 𝐿−+−

= 2𝐿−−0 + 3𝑀1++ + 4𝐿−−− + 6𝐿0−− + 5𝐿+−− + 4𝐿+0− + 3𝑀2+− + 2𝐿−0+ + 𝐿−++,

as pictured below in the Peters–Stienstra cube (note that𝑀1++ and𝑀2+− and the other𝑀-lines are not displayed):

In the coordinate system of Theorem 2.2, up to substituting 𝑃 with 𝑄, we can suppose that

𝐿−+0 = 𝑂,

𝐿++0 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

𝐿−−0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

𝐿++− = (4, 4, −6, −8, −11, −16, −13, −10, −7, −4, −6, −9, −12, −18, −15, −12, −8, −4, 1).

The coordinates of all other 𝐿-lines and𝑀-lines are determined by these choices.
In order to construct the Enriques involution corresponding to𝑌, we now consider a fibrationwith frame𝑊19 in Table 3.

As (𝑊19)root ≅ 𝐀2
2𝐄

2
6, the fibration has two fibers of type I3 (or IV) and two fibers of type IV

∗.
As pictured below in the Peters–Stienstra cube (omitting the𝑀-lines) we choose

𝐹19 ∶= 𝐿+−+ + 𝐿++− + 2𝐿+0+ + 2𝐿++0 + 3𝐿+++ + 2𝐿0++ + 𝐿−++ = 𝑀3+− +𝑀1+− +𝑀2+−

= 𝐿+−− + 𝐿−+− + 2𝐿0−− + 2𝐿−0− + 3𝐿−−− + 2𝐿−−0 + 𝐿−−+ = 𝑀3−− +𝑀1−− +𝑀2−−.

Moreover, we choose 𝑂19 ∶= 𝐿+−0 as origin. Then, 𝑃19 ∶= 𝐿0+− and 𝑄19 ∶= 𝐿−0+ become the two 3-torsion sections,
because it holds ⟨𝑃19, 𝑃19⟩ = ⟨𝑄19, 𝑄19⟩ = 0, whereas 𝑅19 ∶= 𝐿−+0 becomes a section of infinite order. From [24, Eq. (8.12)
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and Table (8.16)] it follows

⟨𝑅19, 𝑅19⟩ = 2𝜒 + 2𝐿−+0 ⋅ 𝐿+−0 −
∑

𝑐𝑜𝑛𝑡𝑟𝑣
(
𝑅19

)
= 2 ⋅ 2 + 2 ⋅ 0 − 2 ⋅

4

3
=

4

3
.

Theorem3.8. There is anEnriques involution 𝜀 ∈ Aut(𝑋)which acts on the𝐿-lines by exchanging all subscripts “+”with “−”
and on the𝑀-lines by exchanging𝑀𝑘+𝛽 with𝑀𝑘−𝛽 , for all 𝑘 ∈ { 1, 2, 3 }, 𝛽 ∈ {+,− }. Moreover, 𝜀 is not of Barth–Peters type.

Proof. Let 𝑆19 ∶= ⊟𝑅19 be the section given by the inverse of 𝑅19 in the Mordell–Weil group. Then we clearly have⟨𝑆19, 𝑆19⟩ = ⟨𝑅19, 𝑅19⟩ and ⟨𝑆19, 𝑅19⟩ = −⟨𝑅19, 𝑅19⟩. From these equalities, using [24, Theorem 8.6] we obtain𝑂19 ⋅ 𝑆19 = 0

and 𝑅19 ⋅ 𝑆19 = 2. These intersection numbers explicitly determine 𝑆19 in the coordinate system of Theorem 2.2:

𝑆19 = (19, 17, −27, −42, −54, −81, −66, −51, −34, −17, −27, −42, −54, −81, −66, −51, −34, −17, 4) .

We are then able to compute the translation by 𝑅19, denoted by 𝑡, and involution 𝚤 as in Hulek and Schütt’s con-
struction [8, §3]. Explicit computations show that the invariant lattice of 𝜀 ∶= 𝑡◦𝚤 is isomorphic to 𝐌, so that 𝜀 is the
pullback of an Enriques involution. We can verify directly that 𝜀 acts on the 𝐿-lines and 𝑀-lines as described in the
statement of the theorem. By Theorem 2.5 and the proof of Theorem 3.7, we know that the coinvariant lattice

(
𝑆𝑋

)
𝜀
is

isomorphic to either 𝐀2(2) ⊕ 𝐄7(2) or 𝐄8(2) ⊕ [−12]. An explicit computation shows that
(
𝑆𝑋

)
𝜀
contains 132 vectors of

square −4, so it is necessarily isomorphic to 𝐀2(2) ⊕ 𝐄7(2), i.e., 𝜀 is not of Barth–Peters type. We refer to the ancillary file
calc.Apery_Fermi.sage for the actual computations in Sage. □

Remark 3.9. Thanks to the description of the Enriques involution in Theorem 3.8, it is immediate to see that the images
of the 𝐿-lines in 𝑌 form a tetrahedron, while the images of the𝑀-lines form a complete graph with six vertices in which
three pairs of curves intersect doubly. The tetrahedron and the complete graph are connected in the following way, where
double intersections are marked with a double edge.

The following pencils (we omit here the images of the𝑀-lines) are special pencils on 𝑌 whose pullbacks correspond to
the elliptic fibrations on 𝑋 with frames𝑊19,𝑊20,𝑊24 and𝑊26, respectively.
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