Skip to main content
Log in

Substitution of V5+ in BiVO4 with Ni2+ and the Improved Photocatalytic Degradation of Crystal Violet Under White LED Light Irradiation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effects of the substitution of V5+ with Ni2+ at the corresponding sites in BiVO4 on the crystal structures, optical properties, and photocatalytic efficiency of BiVO4 was investigated. Ni2+ cations doped at the V5+ sites in BiVO4 was confirmed by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, ultraviolet–visible diffuse reflectance spectra, and photoluminescence spectra. Ni-doped BiVO4 exhibited excellent degradation of crystal violet (CV) compared with the bare BiVO4. For optimal Ni2+ doping of 5%, the degradation rate of CV, which reached about 95% within 180 min of LED light irradiation, was obtained. Ni doping can introduce advantageous defect states that significantly increase the separation and diffusion efficiency of the photo-induced charge carriers, thereby boosting the photocatalytic activity of crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Athawale A, Bokare A, Singh H et al (2020) Synthesis of Ag2O coated TiO2 nanoparticles by sonochemically activated methods for enhanced photocatalytic activities. Top Catal. https://doi.org/10.1007/s11244-020-01374-0

    Article  Google Scholar 

  2. Moharana A, Kumar A, Thakur A, Vo D-VN, Sharma A, Kumar D (2021) Role of nanostructured metal oxides in photocatalysis: An overview. In: Nanostructured photocatalysts (pp. 145–167). Elsevier. https://doi.org/10.1016/B978-0-12-823007-7.00010-9

  3. Tan HL, Amal R, Ng YH (2017) Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A 5:16498–16521. https://doi.org/10.1039/C7TA04441K

    Article  CAS  Google Scholar 

  4. Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A 555:47–74. https://doi.org/10.1016/J.APCATA.2018.02.010

    Article  CAS  Google Scholar 

  5. Sleight AW, Chen HY, Ferretti A, Cox DE (1979) Crystal growth and structure of BiVO4. Mater Res Bull 14:1571–1581. https://doi.org/10.1016/0025-5408(72)90227-9

    Article  CAS  Google Scholar 

  6. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 Powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467. https://doi.org/10.1021/JA992541Y

    Article  CAS  Google Scholar 

  7. Kalanoor BS, Seo H, Kalanur SS (2021) Multiple ion doping in BiVO4 as an effective strategy of enhancing photoelectrochemical water splitting: a review. Mater Sci Energy Techn 4:317–328. https://doi.org/10.1016/J.MSET.2021.08.010

    Article  CAS  Google Scholar 

  8. Jiang Z, Liu Y, Jing T et al (2016) Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. J Phys Chem C 120:2058–2063. https://doi.org/10.1021/acs.jpcc.5b10856

    Article  CAS  Google Scholar 

  9. Abbood HA, Alabdie A, Al-Hawash A et al (2020) Fabrication of double-sided comb-like F/Ce co-doped BiVO4 micro/nanostructures for enhanced photocatalytic degradation and water oxidation. J Nanopart Res 22:1–13. https://doi.org/10.1007/s11051-020-04792-z

    Article  CAS  Google Scholar 

  10. Nguyen TD, Bui QTP, Le TB et al (2019) Co2+ substituted for Bi3+ in BiVO4 and its enhanced photocatalytic activity under visible LED light irradiation. RSC Adv 9:23526–23534. https://doi.org/10.1039/c9ra04188e

    Article  CAS  Google Scholar 

  11. Zhou D, Pang L-X, Guo J et al (2014) Influence of Ce substitution for Bi in BiVO4 and the impact on the phase evolution and microwave dielectric properties. Inorg Chem 53:1048–1055. https://doi.org/10.1021/IC402525W

    Article  CAS  Google Scholar 

  12. He B, Li Z, Zhao D et al (2018) Fabrication of porous cu-doped bivo4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Appl Nano Mater 1:2589–2599. https://doi.org/10.1021/acsanm.8b00281

    Article  CAS  Google Scholar 

  13. Regmi C, Kshetri YK, Kim TH et al (2017) Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Appl Surf Sci 413:253–265. https://doi.org/10.1016/j.apsusc.2017.04.056

    Article  CAS  Google Scholar 

  14. Kong D, Qi J, Liu D et al (2019) Ni-Doped BiVO4 with V4+ species and oxygen vacancies for efficient photoelectrochemical water splitting. Trans Tianjin Univ 25(4):340–347. https://doi.org/10.1007/S12209-019-00202-1

    Article  CAS  Google Scholar 

  15. Pham MQ, Ngo TM, Nguyen VH et al (2020) Facile solvothermal synthesis of highly active monoclinic scheelite BiVO4 for photocatalytic degradation of methylene blue under white LED light irradiation. Arab J Chem 13:8388–8394. https://doi.org/10.1016/j.arabjc.2020.05.029

    Article  CAS  Google Scholar 

  16. Nguyen TD, Cao VD, Nong LX et al (2019) High photocatalytic performance of Pd/PdO-supported BiVO 4 nanoparticles for rhodamine B degradation under visible LED light irradiation. ChemistrySelect 4:6048–6054. https://doi.org/10.1002/slct.201901295

    Article  CAS  Google Scholar 

  17. Nguyen VH, Bui QTP, Vo DVN et al (2019) Effective photocatalytic activity of sulfate-modified BiVO4 for the decomposition of methylene blue under LED visible light. Materials. https://doi.org/10.3390/ma12172681

    Article  Google Scholar 

  18. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  19. Frost RL, Henry DA, Weier ML, Martens W (2006) Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4) 3-bearing minerals: namibite, pottsite and schumacherite. J Raman Spectrosc. https://doi.org/10.1002/jrs.1499

    Article  Google Scholar 

  20. Malashchonak MV, Streltsov EA, Kuliomin DA et al (2017) Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2017.08.053

    Article  Google Scholar 

  21. Li G, Bai Y, Zhang WF (2012) Difference in valence band top of BiVO 4 with different crystal structure. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2012.08.023

    Article  Google Scholar 

  22. Nguyen DT, Hong SS (2017) The effect of solvent on the synthesis of BiVO4 using solvothermal method and their photocatalytic activity under visible light irradiation. Top Catal 60:782–788. https://doi.org/10.1007/s11244-017-0770-8

    Article  CAS  Google Scholar 

  23. Gao X, Wang Z, Fu F, Li W (2015) Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method. Mater Sci Semicond Process 35:197–206. https://doi.org/10.1016/J.MSSP.2015.03.012

    Article  CAS  Google Scholar 

  24. Zhou B, Zhao X, Liu H et al (2011) Synthesis of visible-light sensitive M-BiVO4 (M = Ag Co, and Ni) for the photocatalytic degradation of organic pollutants. Sep Purif Technol 77:275–282. https://doi.org/10.1016/J.SEPPUR.2010.12.017

    Article  CAS  Google Scholar 

  25. Pankove JI, Kiewit DA (1972) Optical processes in semiconductors. J Electrochem Soc. https://doi.org/10.1149/1.2404256

    Article  Google Scholar 

  26. Jiang H-Y, Liu J, Cheng K et al (2013) Enhanced visible light photocatalysis of Bi2O3 upon fluorination. J Phys Chem C. https://doi.org/10.1021/jp406834d

    Article  CAS  Google Scholar 

  27. Wu J, Gao H, Yao S et al (2015) Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Sep Purif Technol 147:179–185. https://doi.org/10.1016/J.SEPPUR.2015.04.022

    Article  CAS  Google Scholar 

  28. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628. https://doi.org/10.1021/CM0103390

    Article  CAS  Google Scholar 

  29. Ben Liao YH, Wang JX, Lin JS et al (2011) Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catal Today 174:148–159. https://doi.org/10.1016/J.CATTOD.2011.03.048

    Article  Google Scholar 

  30. Chen L, Yin SF, Huang R et al (2012) Hollow peanut-like m -BiVO 4: facile synthesis and solar-light-induced photocatalytic property. CrystEngComm 14:4217–4222. https://doi.org/10.1039/C2CE06684J

    Article  CAS  Google Scholar 

  31. Nong LX, Nguyen VH, Bach LG et al (2019) Crystal violet degradation over BiVO4 photocatalyst under visible light irradiation. Chem Eng Commun 208:530–538. https://doi.org/10.1080/00986445.2019.1674823

    Article  CAS  Google Scholar 

  32. Wu Q, Yang H, Zhu H, Gao Z (2019) Construction of CNCs-TiO2 heterojunctions with enhanced photocatalytic activity for crystal violet removal. Optik 179:195–206. https://doi.org/10.1016/J.IJLEO.2018.10.153

    Article  CAS  Google Scholar 

  33. Ullah S, Fayeza KAA et al (2020) Enhanced photoactivity of BiVO4/Ag/Ag2O Z-scheme photocatalyst for efficient environmental remediation under natural sunlight and low-cost LED illumination. Colloids Surf A 600:124946. https://doi.org/10.1016/J.COLSURFA.2020.124946

    Article  CAS  Google Scholar 

  34. Sajid MM, Khan SB, Javed Y et al (2020) Facile synthesis of Se/BiVO4 heterojunction composite and evaluation of synergetic reaction mechanism for efficient photocatalytic staining of organic dye pollutants in wastewater under visible light. J Mater Sci 31(22):19599–19612. https://doi.org/10.1007/S10854-020-04487-0

    Article  Google Scholar 

  35. Sajid MM, Shad NA, Afzal AM et al (2020) Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl Phy A 126(4):1–12. https://doi.org/10.1007/S00339-020-03484-8

    Article  Google Scholar 

  36. Ben SK, Gupta S, Raj KK, Chandra V (2021) Synthesis of g-C3N4, Zn3(PO4)2 and g-C3N4/Zn3(PO4)2 composites for application in photodegradation of crystal violet dye under solar light. ChemistrySelect 6:7002–7011. https://doi.org/10.1002/SLCT.202101718

    Article  CAS  Google Scholar 

  37. Saeed M, Haq AU, Muneer M et al (2021) Helianthus annuus assisted green synthesis of Co3O4 and Ag-Co3O4 and evaluation of their catalytic activities toward photodegradation of crystal violet dye. Environ Prog Sustain Energy 40:e13591. https://doi.org/10.1002/EP.13591

    Article  CAS  Google Scholar 

  38. Sanakousar MF, Vidyasagar CC, Jiménez-Pérez VM et al (2021) Efficient photocatalytic degradation of crystal violet dye and electrochemical performance of modified MWCNTs/Cd-ZnO nanoparticles with quantum chemical calculations. J Hazard Mater Adv. https://doi.org/10.1016/j.hazadv.2021.100004

    Article  Google Scholar 

  39. Jasrotia R, Prakash J, Kumar G et al (2022) Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere 294:133706. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133706

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by Graduate University of Science and Technology under Grant No. GUST.STS.ĐT2020-KHVL11.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Giang Bach or Trinh Duy Nguyen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, V.T., Dao, BT.T., Nguyen, HT.T. et al. Substitution of V5+ in BiVO4 with Ni2+ and the Improved Photocatalytic Degradation of Crystal Violet Under White LED Light Irradiation. Top Catal 66, 2–11 (2023). https://doi.org/10.1007/s11244-022-01615-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01615-4

Keywords

Navigation