
Nested Parallelism and Control Flow in Big Data
Analytics Systems

vorgelegt von
M. Sc.

Gábor Etele Gévay
ORCID: 0000-0001-6915-644X

an der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Klaus-Robert Müller
Gutachter: Prof. Dr. Volker Markl
Gutachter: Prof. Dr. Torsten Grust
Gutachter: Prof. Dr. Matthias Boehm

Tag der wissenschaftlichen Aussprache: 13. Mai 2022

Berlin 2022

2

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Dr. Volker Markl. He provided a
great work environment and always supported me, at some point believeing in my research ideas
more than I did.

Alexander Alexandrov created the Emma system, which provided the context for both of
my main research topics. He pointed my attention to static single assignment form, which is
an essential ingredient in my work on control flow. He also introduced me to the flattening
technique, which forms the basis of my work on nested parallelism.

Jorge-Arnulfo Quiané-Ruiz helped a lot in presenting my research in the form of papers that
actually get accepted. When he started guiding me, my PhD took a sharp turn for the better.

I am thankful to many other people who helped me in various ways during my PhD. Tilmann
Rabl and Sebastian Breß advised me when writing the early versions of the Mitos paper. Juan
Soto helped in the writing process of the control flow survey paper. Loránd Madai-Tahy helped
in the implementation of Mitos’ compilation. Georgi Krastev helped mainly through his work on
Emma. Ádám Kunos gave me advice about mathematics terminology in the proof sketches for
Matryoshka’s completeness and correctness. We had a fruitful collaboration with Muhammad
Imran on two Datalog papers (not part of this thesis). I had fun discussions with Gábor Hermann
on some stream processing research ideas, which unfortunately did not make it into a paper. Eleni
Tzirita Zacharatou suggested the system name Mitos, which brought really good luck.

I had exceptionally good programming teachers in primary school and high school: Ferenc
Beke and Zsolt Fodor. I am grateful to them, as they undoubtedly played a big role in my love
for computer science.

Last but not least, I would like to thank my family and friends. My father sparked my
interest in science when I was little, and my grandfather bought my first computer.

3

4

Declaration of Authorship

I, Gábor E. Gévay, declare that this thesis, titled “Nested Parallelism and Control Flow in Big
Data Analytics Systems”, and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Berlin, May 17, 2022 .

5

6

Abstract

Over the last 15 years, numerous distributed dataflow systems appeared for large-scale data
analytics, such as Apache Flink and Apache Spark. Users of such systems write data analysis
programs in a (more or less) high-level API, while the systems take care of the low-level details of
executing the programs in a scalable way on a cluster of machines. The systems’ APIs consist of
distributed collection types (or distributed matrix, graph, etc. types), and corresponding parallel
operations.

Distributed dataflow systems work well for simple programs, which are straightforward to
express by just a few of the system-provided parallel operations. However, modern data analytics
often demands the composition of larger programs, where 1) parallel operations are surrounded by
control flow statements (e.g., in iterative algorithms, such as PageRank or K-means clustering),
and/or 2) parallel operations are nested into each other. In such cases, an unpleasant trade-off
appears: we lose either performance or ease-of-use: If users compose these complex programs in
a straightforward way, they run into performance issues. Expert users might be able to solve the
performance issues, albeit at the cost of a significant effort of delving into low-level execution
details.

In this thesis, we solve this trade-off for the case of control flow statements as follows: Our
system allows users to express control flow with easy-to-use, standard, imperative control flow
constructs, and it compiles the program into a single dataflow job. Having a single job eliminates
the job launch overhead from iteration steps, and enables several loop optimizations. We compile
through an intermediate representation based on static single assignment form, which allows us
to handle all the standard imperative control flow statements in a uniform way. A run-time
component of our system coordinates the distributed execution of control flow statements, using
a novel coordination algorithm, which leverages our intermediate representation to handle any
imperative control flow.

Furthermore, for handling nested parallel operations, we propose a compilation technique
that flattens a nested program, i.e., creates an equivalent flat program where there is no nesting
of parallel operations. The flattened program can then be executed on a standard distributed
dataflow system. Our main design goal was to enable users to nest any data analysis program
inside a parallel operation without changes, i.e., to not introduce significant restrictions on how
the system’s API can be used at inner nesting levels. An important example is that, contrary to
previous systems that perform flattening, we can even handle programs where there is an iterative
algorithm at inner nesting levels. We also show three optimizations, which solve performance
problems that arise when applying the flattening technique in the context of distributed dataflow
systems.

7

8

Zusammenfassung
In den letzten 15 Jahren sind zahlreiche verteilte Datenflusssysteme für die groß angelegte Daten-
analyse entstanden, wie Apache Flink und Spark. Die Benutzer solcher Systeme schreiben Date-
nanalyseprogramme in einer (mehr oder weniger) hochrangigen API, und die Systeme kümmern
sich um die Low-Level-Details der Ausführung der Programme in einer skalierbaren Weise auf
einem Cluster von Maschinen. Die APIs der Systeme bestehen aus verteilten Sammlungstypen
(oder verteilten Matrix-, Graphen- usw. Typen) und dazugehörigen parallelen Operationen.

Verteilte Datenflusssysteme eignen sich gut für einfache Programme, die sich leicht durch
einige wenige der vom System angebotenen parallelen Operationen ausdrücken lassen. Die mod-
erne Datenanalyse erfordert jedoch häufig die Komposition größerer Programme, in denen 1) par-
allele Operationen von Kontrollflussanweisungen umgeben sind (z.B. in iterativen Algorithmen
wie PageRank oder K-means-Clustering), und/oder 2) parallele Operationen ineinander ver-
schachtelt sind. In solchen Fällen kommt es zu einem unangenehmen Trade-off: Wir verlieren
entweder Leistung oder Benutzerfreundlichkeit: Wenn Benutzer diese komplexen Programme
auf einfache Art und Weise komponieren, stoßen sie auf Leistungsprobleme. Erfahrene Benutzer
können die Leistungsprobleme lösen, wenn auch um den Preis, dass sie sich mit den Details der
Ausführung auf niedriger Ebene befassen müssen.

In dieser Arbeit lösen wir diesen Trade-off für den Fall von Kontrollflussanweisungen wie folgt:
Unser System ermöglicht es den Benutzern, den Kontrollfluss mit einfach verwendbaren, stan-
dardmäßigen, imperativen Kontrollflusskonstrukten auszudrücken, und es kompiliert das Pro-
gramm in einen einzelnen Datenflussjob. Dieser Einzelne Job eliminiert den Job-Start-Overhead
von Iterationsschritten und ermöglicht verschiedene Schleifenoptimierungen. Wir kompilieren
über eine Zwischenrepräsentation, die auf der Static-Single-Assignment-Darstellung basiert, und
es uns ermöglicht alle standardmäßigen imperativen Kontrollflussanweisungen auf eine Weise
zu behandeln. Eine Laufzeitkomponente unseres Systems koordiniert die verteilte Ausführung
des Kontrollflusses mit Hilfe eines neuartigen Koordinationsalgorithmus, der unsere Zwischen-
repräsentation nutzt, um beliebigen imperativen Kontrollfluss zu verarbeiten.

Darüber hinaus schlagen wir für den Umgang mit verschachtelten parallelen Operationen
eine Kompilierungstechnik vor, die ein verschachteltes Programm abflacht, d.h. ein äquivalentes
flaches Programm erzeugt, in dem es keine Verschachtelung von parallelen Operationen gibt.
Das abflachte Programm kann dann auf einem standardmäßigen verteilten Datenflusssystem
ausgeführt werden. Unser Hauptziel bei der Entwicklung war es, den Benutzern die Möglichkeit
zu geben, jedes beliebige Datenanalyseprogramm ohne Änderungen innerhalb einer parallelen
Operation zu verschachteln, d.h. keine wesentlichen Einschränkungen bei der Verwendung der
API des Systems auf den inneren Verschachtelungsebenen einzuführen. Ein wichtiges Beispiel ist,
dass wir sogar Programme mit einem iterativen Algorithmus auf inneren Verschachtelungsebenen
handhaben können, im Gegensatz zu früheren Systemen mit Abflachung. Wir zeigen auch drei
Optimierungen, die Leistungsprobleme lösen, die bei der Anwendung der Abflachungstechnik im
Kontext von verteilten Datenflusssystemen auftreten.

9

10

Contents

1 Introduction 15
1.1 Control Flow in Distributed Dataflow Systems . 16
1.2 Nested Parallelism in Distributed Dataflow Systems 18
1.3 Publications and Other Contributions . 20
1.4 Structure of the Thesis . 21

2 Background and Terminology 23
2.1 Iteration vs. Iteration Step . 23
2.2 Distributed Dataflow Systems . 23
2.3 Domain-Specific Language Design Approaches . 24
2.4 Compiler Concepts . 25

2.4.1 Control Flow Analysis . 25
2.4.2 Static Single Assignment Form . 26

3 Efficient and Easy-To-Use Control Flow in Dataflow Systems 27
3.1 Running Example and Motivation . 27
3.2 Mitos Overview . 29
3.3 Building Dataflows from Imperative Control Flow 31

3.3.1 Simplifying an Imperative Program . 31
3.3.2 Intermediate Representation for General Control Flow 32
3.3.3 Translating an Imperative Program to a Single Dataflow Job 33

3.4 Control Flow Coordination . 33
3.4.1 Challenges for the Runtime . 35
3.4.2 Coordination Based on Bag Identifiers . 36

3.4.2.1 Bag Identifiers with Execution Paths 37
3.4.2.2 Choosing Output Bags . 37
3.4.2.3 Choosing Input Bags . 38
3.4.2.4 Choosing Conditional Outputs 38

3.4.3 Bag Operator Host . 39
3.4.4 Fault Tolerance . 40
3.4.5 Integration with the Underlying Dataflow System 40
3.4.6 External Side Effects . 41

3.5 Optimizations . 41
3.5.1 Loop-Invariant Hoisting . 41
3.5.2 Incremental Loops . 42
3.5.3 Speculative Execution Opportunity . 43

11

12 CONTENTS

3.6 Evaluation . 43
3.6.1 Setup . 44
3.6.2 Strong Scaling . 44

3.6.2.1 Visit Count . 44
3.6.2.2 PageRank . 45

3.6.3 Ease-of-Use vs. Performance in Flink . 46
3.6.4 Scalability With Respect to Input Size . 46
3.6.5 Iteration Step Overhead . 47
3.6.6 Optimizations . 49

3.6.6.1 Loop-Invariant Hoisting . 49
3.6.6.2 Loop Pipelining . 50
3.6.6.3 Incremental Loops . 51

3.6.7 Fault Tolerance . 52

4 Nested Parallelism in Dataflow Systems 53
4.1 Motivating Examples . 53

4.1.1 Bounce Rate . 53
4.1.2 Partitioned Graph Analytics . 54
4.1.3 Hyperparameter Optimization . 55
4.1.4 Matrices as Nested Collections . 56
4.1.5 Other Examples . 56
4.1.6 Desiderata . 56

4.2 Matryoshka Overview . 57
4.3 Flattening . 59

4.3.1 Two-Phase Flattening . 59
4.3.1.1 Parsing Phase . 59
4.3.1.2 Lowering Phase . 60

4.3.2 Lifting UDFs . 60
4.3.3 InnerScalar . 61
4.3.4 InnerBag . 62
4.3.5 NestedBag . 64
4.3.6 Lifting non-Map UDFs . 65

4.4 Dealing with Closures . 65
4.4.1 Unlifted User-Defined Function (UDF) Case 65
4.4.2 Lifted UDF Case . 66

4.5 Control Flow at Inner Nesting Levels . 66
4.5.1 Control Flow as Higher-Order Functions 66
4.5.2 Lifting Loops . 67
4.5.3 Lifting If Statements . 69
4.5.4 Implementation . 70

4.6 Optimizations . 70
4.6.1 Partition Counts of InnerScalars . 71
4.6.2 Joins between InnerBags and InnerScalars 71
4.6.3 Half-lifted MapWithClosure . 71

4.7 Completeness and Correctness . 72
4.8 Evaluation . 74

CONTENTS 13

4.8.1 Setup . 74
4.8.2 Weak Scaling . 75
4.8.3 Scaling Out . 76
4.8.4 Performance Without Control Flow – Comparison with DIQL 77
4.8.5 Comparison with SystemDS’ Parallel For Loop 78
4.8.6 Data Skew . 81
4.8.7 Optimizations . 82

4.8.7.1 InnerBag-InnerScalar Joins . 82
4.8.7.2 Half-lifted MapWithClosure . 83

4.8.8 Larger Datasets . 83

5 Related Work 85
5.1 Control Flow Handling in Dataflow Systems . 85

5.1.1 An Overview of the Programming Models 86
5.1.1.1 Datalog . 86
5.1.1.2 SQL . 87
5.1.1.3 Functional Control Flow APIs 88
5.1.1.4 Imperative Control Flow . 88

5.1.2 Key Design Choices . 89
5.1.2.1 Control Flow Execution Approach 89
5.1.2.2 Expressivity of Loop APIs . 90
5.1.2.3 Fault Tolerance . 95

5.1.3 Programming Models . 98
5.1.3.1 SQL and Datalog . 98
5.1.3.2 Iterative MapReduce . 100
5.1.3.3 Functional Control Flow APIs 101
5.1.3.4 Imperative Control Flow in Dataflow Systems 104
5.1.3.5 CIEL . 110
5.1.3.6 Specialized Models . 110
5.1.3.7 Iterations in Streaming . 112

5.1.4 Optimizations . 113
5.1.4.1 Reducing Dataflow Job Launch Overhead 113
5.1.4.2 Loop-Invariant Datasets . 114
5.1.4.3 Asynchronous Loops . 115
5.1.4.4 Loop Pipelining . 116
5.1.4.5 Incremental Loops . 116
5.1.4.6 Exploiting Locality Properties of Array Data 117

5.2 Nested Parallelism . 117

6 Conclusion 121
6.1 Mitos . 121
6.2 Matryoshka . 121
6.3 Survey of Control Flow Handling in Dataflow Systems 122
6.4 Future Research . 122

6.4.1 Speculative Execution in Mitos . 122
6.4.2 Unifying Mitos and Matryoshka into a Single System 122

14 CONTENTS

6.4.3 Nested Parallelism in Stream Processing 123

Chapter 1

Introduction

The success of distributed dataflow systems depends on both their performance (efficiency, scal-
ability) and ease-of-use. However, there is often a tension between these requirements: when
designing a system, we often have to place restrictions on how a user is allowed to write her
programs if she expects good performance. For example, executing an iterative algorithm is
more efficient in a single dataflow job, rather than launching a series of dataflow jobs, one for
each iteration step [1, 65, 72, 132]. To be able to incorporate a loop into a single dataflow job,
many systems offer functional loop APIs [8, 47, 65, 132, 154, 186]. These APIs are harder to use
than the standard, imperative control flow constructs, but if users want good performance then
they have no choice but to learn and use the functional loop APIs.

Another example for the tradeoff between user effort and performance is the handling of
nested collection operations. Distributed dataflow systems offer parallel collection operations
that cannot be nested, e.g., a map cannot be inside a map. Therefore, if a user has a task where
nesting appears, she has two main choices:

(1) parallelize only one level : implement only one level using the system’s parallel operations,
and use non-parallel operations at the other level, or

(2) flatten the program manually : transform the program into an equivalent program that has
no nesting of either collections or collection operations.

(1) is relatively easy to do, but the program will probably run into performance issues (or out-
of-memory crashes), since a significant part of the program is not parallelized. (2) avoids the
performance issues, but it can be much harder, especially when the inner nesting level involves
control flow, such as an iterative algorithm. If the inner level is calling a library (e.g., a graph-
or machine learning library), then this makes it even harder to flatten the program manually.
In such a case, the user who is calling the library will not have the necessary expertise on the
library’s internals to perform the flattening. Conversely, the library’s implementor will not have
the necessary context, as she does not see the calling code.

The vision of this PhD work was a system where the above trade-offs are solved: Without
compromising on performance, the user can freely nest parallel collections and parallel opera-
tions, and can write easy-to-use imperative control flow constructs anywhere, even inside parallel
operations. We tackled this challenge by separating the efficient control flow handling from the
nested parallelism, and addressing them individually in two separate systems. The thesis’ main
contributions are

15

16 CHAPTER 1. INTRODUCTION

Ex
ec

ut
io

n
tim

e
(s

)

0

1250

2500

3750

5000

24 machines

Spark Flink

~11x

while day <= 365 do
… // Loop body
end while

Imperative Control Flow

easy-to-use

iterate(
 initialDay, initialCounts,
 (day, yesterdayCounts) => {
 … // Loop body function
 })

Functional Control Flow

hard-to-use

1

Figure 1.1: Imperative vs. functional control flow.

(1) compiling imperative control flow to efficient dataflows (Mitos system, Chapter 3);

(2) compiling nested-parallel programs to flat-parallel programs, which can then be executed
on a standard dataflow engine (Matryoshka system, Chapter 4);

(3) a comprehensive survey on control flow in distributed dataflow systems (Section 5.1).

In the rest of the Introduction, we will present an overview of these topics.

1.1 Control Flow in Distributed Dataflow Systems

Modern data analytics heavily relies on control flow statements. For example, many graph
analysis tasks are iterative, such as PageRank [140] or computing connected components by label
propagation [98]. Other data science pipelines are also often composed of iterative programs [182].
K-means clustering [182] and gradient descent [195] are just two of the most commonly occurring
iterative tasks. Additionally, control flow is just getting more complex: An iterative machine
learning training task can be inside another loop for hyperparameter optimization or k-fold cross-
validation; a nested loop can also appear inside a single algorithm, such as the coloring algorithm
for computing strongly connected components [137]; algorithms may contain if statements inside
loops, such as in simulated annealing [104].

However, despite that control flow statements are at the core of modern data analytics, sup-
porting control flow efficiently and effectively is still a weakness of dataflow systems: They either
suffer from poor performance or are hard to use. On the one hand, in some systems, such as
Apache Spark, users express loops inside the driver program, using the standard, imperative
control flow constructs. Although this imperative approach is easy to use, it launches a new
dataflow job for every iteration step, which hurts performance because of a high inherent job
launch overhead. On the other hand, some other systems, such as Apache Flink, provide native
control flow support [65], i.e., users can include loops in their (cyclic) dataflow jobs. This removes
the job launch overhead, which is present in Spark, resulting in much better performance. How-
ever, this high performance comes at a price: Users have to express loops by calling higher-order
functions, which are harder to use than the imperative control flow of Spark.

1.1. CONTROL FLOW IN DISTRIBUTED DATAFLOW SYSTEMS 17

To better illustrate this problem, we ran an experiment to evaluate Spark and Flink, using a
program that computes the visit counts from a year of page visit logs. This program has a loop
that reads a different file at each iteration step and compares the visit counts with the previous
day1. Figure 1.1 shows the results of this experiment. We observe that Spark is more than an
order of magnitude slower than Flink because it does not support native loops. Spark launches
a new dataflow job for every iteration step, incurring a high overhead. However, on the other
side, Flink is harder to use than Spark. In Flink users call the iterate higher-order function
and give the loop body as an argument (see the functional control flow box in Figure 1.1). The
loop body is a function that builds the dataflow job fragment representing the actual loop body
operations. This API is hard for non-expert users, such as data scientists2. In contrast, users
prefer the imperative control flow present in Spark, similar to, e.g., Python, R, or Matlab (see
the imperative control flow box in Figure 1.1).

Ideally, the system should allow users to express control flow using simple imperative control
flow statements, while matching the performance of native control flow. In other words, we
want a system that marries the ease-of-use of Spark with the high efficiency of Flink. The
research community has paid attention to this problem and recently proposed a number of
solutions [11, 92, 125]. For example, Emma [9, 11, 12] can translate imperative control flow to
Flink’s native loops, but only when there is a single while-loop without any other control flow
statement in its body. This makes it not suitable for many tasks in modern data analytics,
such as hyper-parameter optimization, simulated annealing, and strongly connected components
[137]. AutoGraph [125] and Janus [92] compile imperative control flow to TensorFlow’s native
loops [186]. However, they do not support general data analytics other than machine learning.

Supporting general imperative control flow (e.g., iterative tasks) without sacrificing perfor-
mance is challenging for two main reasons. First, normally a dataflow job is built from just the
method calls (e.g., map, join) that the user program makes to the system. However, to build a
complete cyclic dataflow job from imperative control flow, the system also needs to inspect other
parts of the user code, such as the control flow statements: It also has to insert special nodes and
edges into the dataflow job for such parts of the code. More specifically, the system needs to add
a) back-edges for loops to pass data between iteration steps inside the dataflow job, b) condition
nodes that determine control flow (e.g., loop exit conditions), c) nodes that handle control flow
merge points (e.g., when a variable is assigned in two different if-branches, and then later used
after the if statement), d) nodes for scalar variables (scalar variables are originally handled by
the driver program, but now we need to bring them into the dataflow job).

Second, to fully take advantage of the entire program being in a single dataflow job, we want
to support loop pipelining, i.e., overlapping subsequent executions of a loop body. This means
that we cannot simply insert a full synchronization barrier between iteration steps, and just reset
all operators at the barrier. Instead, we need to deal with different operators (and their different
physical instances) processing different iteration steps at the same time.

We present Mitos3, a system where control flow support matches Spark’s ease-of-use, and
that significantly outperforms both Spark and Flink. Specifically, it outperforms Spark because
of native loops, and it outperforms Flink’s native loops because of loop pipelining. Mitos uses

1We provide the details of this experiment in Section 3.6 and provide the code for both the imperative and
functional control flow APIs in Listing 3.1.

2A simple search on stackoverflow.com for the terms Flink iterate or TensorFlow while_loop shows that a large
number of users are indeed confused by such a functional control flow API.

3The name comes from Greek mythology: Mitos is the thread that Ariadne gave to Theseus to help him get
out of the labyrinth.

https://stackoverflow.com/search?q=flink+iterate
https://stackoverflow.com/search?q=TensorFlow+while_loop

18 CHAPTER 1. INTRODUCTION

compile-time metaprogramming to parse an imperative user program into an intermediate rep-
resentation (IR) that abstracts away specific control flow constructs. This IR facilitates the
building of a single (cyclic) dataflow job from any program with imperative control flow. At
run time, Mitos coordinates the distributed execution of control flow statements using a novel
coordination algorithm that leverages our IR to handle any general imperative control flow. In
summary, we make three major contributions:

1. We present a compilation approach based on metaprogramming to build a single dataflow
job of a distributed dataflow system from a program with general imperative control flow
statements. Specifically, we leverage Scala macros [37] to inspect and rewrite the user
program’s abstract syntax tree such that the system can produce a single dataflow job.
By this, we can bring the power of native control flow to data scientists, who like to use
high-level languages that have imperative control flow statements. (Section 3.3)

2. We devise a mechanism that coordinates and communicates the control flow decisions be-
tween machines in a non-intrusive manner. In particular, our coordination mechanism
enables two core optimizations that speed up the dataflow job execution: loop pipelining,
i.e., overlapping iteration steps, and loop-invariant hoisting, i.e., reusing loop-invariant
(static) datasets during subsequent iteration steps. As a result, our system not only sup-
ports any control flow statement but also outperforms dataflow systems with native control
flow support. (Section 3.4)

3. We experimentally evaluate Mitos using real tasks (Visit Count and PageRank) and mi-
crobenchmarks. We mainly compare its performance to Flink (as a system supporting
native control flow) and Spark (as a system providing ease-of-use). Our results show that
Mitos is more than one order of magnitude faster than Spark, and, surprisingly, it is also
up to 10.5× faster than Flink (the system with native control flow support). (Section 3.6)

1.2 Nested Parallelism in Distributed Dataflow Systems

The success of distributed dataflow engines, such as Spark [188,189] and Flink [10,41], is largely
due to abstracting a dataset as an immutable, distributed collection. They process these datasets
via a well-defined set of parallel operators that provide scalability and ease-of-use.

Yet, these systems do not support nested parallelism, i.e., launching a parallel operation
from the inside of another parallel operation. For instance, the UDF of a map operator cannot
invoke further parallel operations, such as another map operator. We now explain three cases
when nested parallelism occurs. First, there can be natural nesting in the data itself. For
example, a nested collection might arise when treating a matrix as a vector of vectors [26] or
when processing a set of graph partitions, which are themselves collections of graph vertices
and edges. Second, even without nested data, a task can also be expressed by nested parallel
operations. For instance, a task can perform linear algebra operations on one level [25] and
hyperparameter optimization on a second, outer level [26, 171]. Third, skew in a grouping key
can also raise the requirement of nested parallelism. Due to skew, there can be some large groups
and also a large number of small groups. We, thus, require scalability in both the group sizes
and the number of groups, i.e., on the level of processing an individual group and on the outer
level of processing all groups.

1.2. NESTED PARALLELISM IN DISTRIBUTED DATAFLOW SYSTEMS 19

Ru
nt

im
e

(s
)

1
10

100
1000

10000

Number of inner computations (centroid configurations)
1 2 4 8 16 32 64 128 256 512

Outer-parallel Inner-parallel Ideal

performance loss

1

Figure 1.2: K-means run times.

As by design distributed dataflow engines do not support the nesting of parallel operations,
users typically employ workarounds that parallelize on one level only. Specifically, they parallelize
the task either (i) at the level of the outer collection and sequentially process an inner collection
(outer-parallel) or (ii) the other way around (inner-parallel). For example, outer-parallel can use
a Spark Resilient Distributed Dataset (RDD) at the outer level and an array at the inner level.
An example of inner-parallel would be to use a list to sequentially try a set of hyperparameter
values at the outer level and perform a machine learning model training for each value using
Flink DataSets. Many existing systems which support nesting of operations in their languages,
actually employ one of these two workarounds when executing programs [11,26,100,136]. Some
systems [66, 67, 84, 176] natively support nested parallelism, but they do not support iterative
computations at inner nesting levels, which is a typical requirement in modern data analysis
tasks, such as K-means [182] clustering or PageRank [140].

Unfortunately, choosing between the outer- and inner-parallel workarounds for the task at
hand is far from easy. As an example, consider K-means clustering on Spark, which does not
support nested parallelism. We ran K-means with a varying number of initial configurations,
i.e., different sets of initial centroid values. At the same time, we also vary the computation
size for each initial configuration opposite to the number of initial configurations. Therefore, we
would expect the run time to be constant. Figure 1.2 shows the results of this experiment, with
the ideal performance considered to be running on just a single initial configuration. We observe
that inner-parallel (i.e., parallelizing one K-means run) is up to two orders of magnitude faster
than outer-parallel (i.e., running non-parallel K-means instances in parallel with each other)
for less than 64 initial configurations. This is because outer-parallel does not expose enough
parallelization opportunities to utilize all the available CPU cores. The number of parallel
workers is capped by the number of initial configurations. We also observe that, for more than
64 configurations, outer-parallel is up to one order of magnitude faster than inner-parallel: the
latter has a high job launch overhead because each K-means run launches new Spark jobs.

Considering these results, one might think about devising an optimizer [26] to choose between
the workarounds. However, both workarounds are far from the ideal performance (the blue line
in Figure 1.2), with a performance gap (the gray area) of up to 6×. Note that this performance
gap would increase along with the number of levels of parallel operations. For instance, adding
hyperparameter optimization to choose a good value for K leads to three levels of parallelism,
significantly increasing the performance gap.

We want to handle nested parallelism in a way that we are always as close as possible to the
ideal case. However, devising such an approach is challenging for several reasons. First, we would

20 CHAPTER 1. INTRODUCTION

like to keep existing parallel dataflow engines intact to rely on their existing code-base maturity
and user base. Second, we have to avoid launching new jobs per inner collection to prevent high
job launch overheads. This implies that a large number of inner-collections must be processed
within the same job, but existing parallel dataflow engines do not support this feature. Third,
we have to maintain a parallelized execution on each of the inner-collections so that we expose
enough parallelism to make use of all the CPU cores. Thus, we have to capture the parallelism
of both levels inside the same dataflow job. This is not trivial because current dataflow engines
provide only flat-parallel operations. Fourth, iterative tasks raise the need for scalability in the
total number of iteration steps across all inner computations.

We propose Matryoshka, a system for nested parallelism that tackles all the above chal-
lenges in an efficient manner, even when the task involves control flow statements (e.g., loops).
Specifically, we make the following major contributions:

1. We devise a novel two-phase flattening process (Section 4.3) that translates a nested-parallel
program into a highly efficient flat program, which can run on an existing dataflow engine
(which is unmodified Spark in our implementation). Our two-phase flattening process
comes with a set of nesting primitives that allow us to select the best physical operator
implementations at run time. We then present techniques to deal with closures in UDFs
(Section 4.4).

2. We show how to flatten programs even in the presence of control flow statements (e.g., the
loop in PageRank) at inner nesting levels. This is necessary for true compositionality:
Users should be able to take a program that involves control flow and place it inside a
larger program at an inner nesting level. (Section 4.5)

3. We show how to leverage the program structure highlighted by our nesting primitives.
Especially, we present three optimization techniques to produce a highly efficient flattened
program. (Section 4.6)

4. We experimentally validate our system using five common data analytics tasks and compare
it to DIQL [67], SystemDS’s parallel loops [24,26], as well as the outer- and inner-parallel
workarounds on Spark for its lack of nested-parallelism support. The results show that
Matryoshka is up to two orders of magnitude faster and scales better than the baselines.
(Section 4.8)

1.3 Publications and Other Contributions

Most of the material in this thesis is based on the following publications. Mitos (Chapter 3) was
published at ICDE 2021 [72], with a best paper award and an ACM SIGMOD Research Highlight
Award. Matryoshka (Chapter 4) was published at SIGMOD 2021 [71]. The part of the related
work chapter concerning control flow handling (Section 5.1) is based on a survey paper in ACM
Computing Surveys [73].

During my PhD, I contributed to some other publications, which are not part of this thesis.
Cog [87] compiles from Datalog to Flink’s delta iterations. Subsequently, we extended Cog with
aggregations, asynchronous iterations, and streaming [88]. I also contributed to a book chapter
on large-scale data stream processing systems [40].

Additionally, I made some open-source contributions to Emma4 and Apache Flink5. A part
4https://github.com/emmalanguage/emma/graphs/contributors
5https://github.com/apache/flink/graphs/contributors

https://github.com/emmalanguage/emma/graphs/contributors
https://github.com/apache/flink/graphs/contributors

1.4. STRUCTURE OF THE THESIS 21

of my contributions to Emma is Mitos.

1.4 Structure of the Thesis

Chapter 2 provides some background knowledge and terminology, which we rely on later. Chap-
ters 3 and 4 present Mitos and Matryoshka. Chapter 5 discusses related work, and Chapter 6
concludes.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Terminology

This section reviews some background knowledge and terminology, which we rely on throughout
the thesis.

2.1 Iteration vs. Iteration Step

A loop (or iteration) is the repeated execution of a block of programming instructions. Such a
block is called loop body. We will use the term iteration step to mean a single execution of a loop
body. Note that in other works it is also common practice to use iteration for both loops and
iteration steps. However, we we will avoid this usage to prevent ambiguity.

2.2 Distributed Dataflow Systems

Distributed Dataflow Systems (DDSs) have become a standard technology in the last 15 years.
These systems model distributed computation by dataflow jobs, which are directed graphs, where
nodes represent computation and edges represent data flowing between nodes. A logical dataflow
graph is executed in parallel by creating many physical tasks from each logical node and dis-
tributing these on a compute cluster.

Typically, DDSs run on shared-nothing clusters, with a single machine designated as the
main node and several machines designated as worker nodes [156]. The main node coordinates
distributed program execution, whereas the workers perform the actual processing. Driver pro-
grams (also known as clients) run on a single machine (which can also coincide with the main
node). Drivers submit dataflow jobs (or just jobs, for short) to the system via the main node.
These jobs describe the distributed programs that the system should execute. For example, in
MapReduce, jobs include map- and reduce functions as well as input- and output paths. Note
that driver programs can submit multiple jobs to a system. For example, the simplest approach
to implement an iterative algorithm is to manage the loop in the driver program and submit
separate jobs for each iteration step.

Modern DDS typically have collection-based APIs [187], where each dataflow node is rep-
resented by an object of a special collection type1, such as RDDs [188] in Spark. Users build
dataflow jobs by creating these (immutable) distributed collections. Distributed collections are
created via one of three means:

1Mathematically, these are multisets or bags, which are unordered collections of elements, allowing duplicates.

23

24 CHAPTER 2. BACKGROUND AND TERMINOLOGY

• read input data from external systems, such as the Hadoop Distributed File System
(HDFS) [164],

• convert a collection from the host language (e.g., a standard array) to the system’s dis-
tributed collection type,

• transform an existing distributed collection (e.g., by calling map, which takes a so-called
User-Defined Function (UDF), applies the function to all elements of a collection, and
returns all of the results as a new distributed collection).

The above are lazy operations, i.e., they do not perform their actual work immediately, but
just add nodes and edges to a dataflow job. Once a special operation called an action is invoked,
the dataflow job is executed. Example actions include aggregating a collection into a single value,
writing a collection to an external system (such as HDFS), and fetching a collection into the
driver program as a non-distributed, standard collection, such as a Java list.

There are two main approaches to implement loops. In one approach, a loop is implemented
as separate dataflow jobs in each iteration step. In this case, a driver program calls an action
(e.g., performing an aggregation as part of evaluating the termination condition) at each step.
In the second approach, which we call in-graph loops, the focus is on incorporating the loop (and
other control flow) into the dataflow job itself. In this case, an action is not called for each step,
but rather only once for the entire loop.

Note that implementing a loop as separate dataflow jobs does not require built-in loop support
from the system. This means that we can use this as a workaround to implement loops when
using almost any system. However, without support from the system, performance is often
suboptimal due to missed optimization opportunities and job launch overhead at each step.

2.3 Domain-Specific Language Design Approaches

Domain-Specific Languages (DSLs) are specially designed languages for a particular use. SQL
is a well-known example of a DSL that was created specifically for data processing.

We distinguish between external DSLs and embedded DSLs. External (a.k.a. standalone)
DSLs are independent of a general-purpose programming language. Examples include SQL,
Hive, and SystemDS’ DML language [24, 25, 74]. In contrast, embedded (a.k.a. internal) DSLs
are built on top of a host programming language. Examples include LINQ embedded in C#, or
Flink’s and Spark’s APIs embedded in Java, Scala, and Python. Embedded DSLs can be further
subdivided into type-based and metaprogramming-based embedded DSLs. Next, we discuss each
of these categories of DSLs.

External DSLs have their own syntax, compiler, and possibly other tools, such as a debugger.
Their main advantage is that they offer greater flexibility in the language design, since they are
not restricted by a given host language. However, they have several drawbacks. One, they impose
a considerable effort on language designers, since they have to implement every tool related to
the language. Two, users need to expend more time to learn the syntax. Third, interoperability
with existing code in a general-purpose programming language is more difficult to achieve.

Type-based embedded DSLs (sometimes called library-based embedding) consist of types cre-
ated by the language designer in a host language. Examples of such DSLs include the RDD
API of Spark and the DataSet API of Flink, where the DSL is a Java or Scala API expressed
as classes and methods. Unfortunately, type-based embeddings constrain systems in that they

2.4. COMPILER CONCEPTS 25

are only aware of those parts of a program that are expressed as classes (types) and method
calls. For example, Spark is unaware of loops and other control flow statements because these
are expressed using built-in language features of the host language, such as Java or Scala while
loops. Consequently, Spark is unable to compile an iterative program to an in-graph loop, which
yields lower performance. Language virtualization [43,52,128,151] solves this problem by chang-
ing built-in language constructs (e.g., loops) to be overloadable, i.e., allow the DSL designer to
give them a special meaning. This allows the DSL designer to stage [152,153] a loop, i.e., make
the looping construct build a representation of the loop instead of executing it immediately, and
thus allowing the system to optimize the execution by, e.g., making it an in-graph loop.

Metaprogramming-based embedded DSLs (also called quotation-based DSLs) rely on source
code analysis and transformations [11,126,134,173]. In contrast to the simple type-based embed-
dings of Spark or Flink, a metaprogramming-based DSL can examine any part of the program,
including control flow constructs. Consequently, systems are able to compile programs to in-
graph loops or otherwise optimize programs by taking control flow into account (e.g., via cache
call insertion [11]). Note that metaprogramming-based DSLs often include similar types as
type-based embeddings, and therefore they typically operate also at the type level.

In Mitos and Matryoshka, we rely on Emma’s metaprogramming infrastructure [9], which is
based on Scala macros [37]. The user wraps the entire program in a call to Emma’s parallelize
macro, which transforms the program in order to execute it on a distributed dataflow system.
Emma’s API has a scalable collection type, which we will refer to as bag. When the parallelize
macro is not called on the program, bags have a simple default implementation, which is single-
threaded and runs on the local machine. When the parallelize macro is called, it changes bags
to be implemented by the backend dataflow system’s distributed collection type, such as RDD
in Spark. The user can temporarily remove the parallelize macro call when working with small
data for debugging purposes.

2.4 Compiler Concepts

In this section we briefly discuss some compiler concepts that we rely on later.

2.4.1 Control Flow Analysis

A basic block [6] is a maximal continuous sequence of instructions which always execute one after
the other. This means that the execution can only enter a basic block at its beginning and only
leave it at its end. For example, the body of a while-loop is a basic block if there are no other
control flow instructions inside.

The control flow graph [6] of a program is a graph whose nodes correspond to the basic blocks
of the program, and whose edges show the possible control flow paths. Specifically, let u and v
be two nodes, with corresponding basic blocks U and V . A directed edge goes from u to v, if
control flow can directly go from U to V . For example, in case of an if statement, edges go from
the node of the basic block before the if statement to the nodes of the basic blocks of the then-
and else-branches.

A control flow merge point [6] is a basic block whose corresponding node in the control flow
graph has an in-degree of at least two. For example, the basic block after the two branches of
an if statement is a merge point, because at this point the different possible paths merge.

26 CHAPTER 2. BACKGROUND AND TERMINOLOGY

a = 0
b = a+ 1
a = 5
c = a+ 1

a1 = 0
b1 = a1+1
a2 = 5
c1 = a2+1

(a) No control flow.

a = 0
if ... then
a = a+1

else
a = a+2

end if
b = a+ 5

a1 = 0
if ... then
a2 = a1 + 1

else
a3 = a1 + 2

end if
a4 = Φ(a2, a3)
b1 = a4 + 5

(b) Program with an if statement.

i = 1
do
i = i+ 1

while i < 100
a = i

i1 = 1
do
i2 = Φ(i1, i3)
i3 = i2 + 1

while i3 < 100
a1 = i3

(c) Program with a loop.

Listing 2.1: Three examples of transforming a program to SSA.

2.4.2 Static Single Assignment Form

Static Single Assignment form (SSA) is a widely used intermediate representation in compil-
ers [148]. The basic defining characteristic of SSA is that there is a one-to-one correspondence
between variables and assignment statements. An important consequence of this is referential
transparency : every variable reference refers to a value that was written to the variable at its
unique assignment statement. In contrast, when a program is not in SSA, the value of a variable
reference depends on its context:

1. It can depend on the position of the variable reference. Specifically, which of the assignment
statements to the variable precede the reference in the program text.

2. Which of the preceding assignments was executed at run-time may depend on how the
control flow proceeded.

When there is no control flow in the program, only the first issue can arise. In this case, we
can transform to SSA, and thus eliminate the problem by (a) changing the variable names on
the left-hand sides of assignment statements so that each of them assigns to unique variables,
and (b) changing the variable references appropriately, so that they reference the variable of the
most recent assignment. We can see an example of this in Listing 2.1a, where the variable a is
split into a1 and a2.

However, if there is control flow in the program, then the second issue can also occur. In this
case, after performing the change of variable names on the left-hand sides of assignments, we
cannot change the references in the above-described way. This is because variable references at
control flow merge points can refer to the value assigned in either one of the possible control flow
paths. SSA resolves this problem by introducing a new variable at a merge point, and using a
so-called Φ-function to assign a value to this new variable. The only purpose of these Φ-functions
is to disambiguate these references, i.e., to choose one of their inputs based on how the control
flow actually proceeded. We can see an example in Listing 2.1b. Note that Emma has static
typing (because of building on Scala), which means that the different inputs of a Φ-function
always have the same static type.

Note that even though there is exactly one assignment statement for each variable, variables
inside a loop are assigned multiple times during the program execution. We can see an example
of how SSA handles loops in Listing 2.1c.

Chapter 3

Efficient and Easy-To-Use Control Flow
in Dataflow Systems

Control flow is vital in many data analysis programs. However, current dataflow systems either
provide functional APIs, which are hard to use, or launch separate dataflow jobs for each it-
eration step, which incurs performance problems. In this chapter, we discuss how our system,
Mitos, compiles programs with imperative control flow constructs into a single dataflow job, thus
achieving both ease-of-use and high performance.

3.1 Running Example and Motivation

We now show an example to illustrate the problems of current dataflow systems when faced with
imperative control flow. Consider a program that computes the visit counts for each page per
day in a year of page visit logs. Assume that the log of each day is read from a separate file and
that each log entry is a page ID, which means that someone has visited the page.
1: for day = 1 .. 365 do
2: visits = readFile(“PageVisitLog_” + day) // page IDs
3: counts = visits.map(x => (x,1)).reduceByKey(_ + _)
4: counts.writeFile(“Counts_” + day)
5: end for

We cannot express this simple program in Flink’s native loops, because Flink does not support
reading and writing files inside native loops. On the other hand, implementing a loop in the
driver program instead of native loops would cause each iteration step to launch a new dataflow
job, which has an inherent high overhead1 (see Spark in Figure 1.1). Note that this simple
task could be solved without using a loop at all by reading all the files into a single distributed
collection, and then processing all days at the same time. However, we will build a more complex
example in the next paragraphs, where this approach would become tedious.

1Note that a new job is not launched if there is no action inside the loop body. However, actions are needed
in most iterative algorithms to compute a loop exit condition from the current state of the algorithm. Moreover,
Spark’s job launch overhead is mostly the task launch overhead, which will still be present at each iteration step
even without actions (see Section 3.6.5).

27

28 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

Now imagine that instead of just writing out the visit counts for each day separately, we want
to compare the visit counts of consecutive days. For this, we replace Line 4 with the following
comparison between the counts of the current and the previous days2:
4: if day != 1 then
5: diffs =
6: (counts join yesterdayCounts)
7: .map((id,today,yesterday) => abs(today - yesterday))
8: diffs.sum.writeFile(“diff” + day)
9: end if

10: yesterdayCounts = counts
If it is not the first day, we join the current counts with the previous day’s counts (Line 6). We
then compute pairwise differences (Line 7), sum up the differences (Line 8), and write the sum to
a file. At the end, we save the current counts so that we can use them the next day (Line 10). We
can see that it is natural to use an if statement inside the loop. On top of that, we could replace
the computation of visit counts (Line 3) with a more complex computation that itself involves
a loop, such as PageRank [140]. This would result in having nested loops. Unfortunately, Flink
does not provide native support for either nested loops or if statements inside loops. On the
other side, Spark does not have native support for any control flow at all.

Yet, this program can become even more complex. Imagine we are interested only in a certain
page type. As the logs do not contain information about the page type (each log line is just a
page ID), we have to read a dataset containing the types of all pages before the loop. Inside the
loop, we then add the line below before Line 3, which performs a join between the visits and
page type datasets, and filters based on page type:
3: visits = (visits join pageTypes).filter(p => p.type=...)

It is worth noting that the pageTypes dataset does not change between iteration steps, i.e., it is
loop-invariant. This clearly opens an opportunity for optimization: Even though the join method
is called inside the loop, we can build the hash table of the join only once before the loop and
probe it at every iteration step. This is straightforward to implement if the loop is a native loop
of the system, since in this case all iteration steps are in a single dataflow job, which enables the
join operator to keep the hash table throughout the entire loop. Nevertheless, we cannot express
this program using Flink’s native loops because of the aforementioned issues.

Listing 3.1 compares functional control flow APIs and Mitos’ imperative API through the
above example program. For the functional version, we show an idealized version of Flink’s
API: we extend it with 1) file I/O inside loops, 2) if statements, 3) support for multiple loop
variables, and 4) a Scalar type for wrapping non-bag values to make them part of the dataflow
job. However, even all these extensions cannot hide the inconvenience of the functional API, as
we can see in the listing.

Note that in a functional control flow API, somewhat counter-intuitively, a user function for
a loop body is always executed exactly once, as it only builds a dataflow job instead of doing
the actual work. This invites mistakes: when writing such a loop body function, users have to

2The astute reader might notice that even this example could be solved without a loop, by using SQL window
functions or self joins. However, for non-expert users, those approaches are feasible only if the computation for
an individual day is quite simple, e.g., it can be performed as a grouped aggregation. This is not the case if, for
example, we need to perform a PageRank on each day. (Expert users might still be able to make the loop-less
approach work by lifting the by-day computation, see Section 4.3.2. Alternatively, Matryoshka would also help
in implementing the loop-less approach.)

3.2. MITOS OVERVIEW 29

1: pageTypes = readFile(“pageTypes”)
2: yesterdayCounts = null
3: day = 1
4: while day ≤ 365 do
5: // Read all page-visits for this day
6: visits = readFile(“pageVisitLog” + day) // pageIDs
7: // Want to examine only pages of a certain type, so
8: // we get the page types from a large lookup table:
9: visits = visits.join(pageTypes).filter(p=>p.type=...)

10: // Count how many times each page was visited:
11: counts = visits.map(x=>(x,1)).reduceByKey(_+_)
12: // Compare to previous day (but skip the first day)
13: if day != 1 then
14: diffs =
15: (counts join yesterdayCounts)
16: .map((id,today,yesterd)=>abs(today-yesterd))
17: diffs.reduce(_ + _).writeFile(“diff” + day)
18: end if
19: yesterdayCounts = counts
20: day = day + 1
21: end while

(a) Imperative control flow (Mitos).

1: pageTypes = readFile(“pageTypes”)
2: initialCounts = EmptyBag
3: initialDay = Scalar(1) // Manually wrap non-bag value
4: whileLoop(// Higher-order function call
5: // First two arguments are the initial values of the loop vars:
6: initialDay, initialCounts,
7: // Third arg is the func building the dataflow for the body:
8: (day, yesterdayCounts) => {
9: fileName = day.map(d => “pageVisitLog” + d)

10: visits = readFile(fileName)
11: visits = visits.join(pageTypes).filter(p => p.type = ...)
12: counts = visits.map(x => (x,1)).reduceByKey(_ + _)
13: if(// Higher-order function call
14: // First arg is the func building the dataflow for the cond:
15: () => day.map(d => d != 1),
16: // 2nd arg is the func building the datafl for then-branch:
17: () => (counts join yesterdayCounts)
18: .map((id,today,yesterday) => abs(today - yesterday))
19: .reduce(_ + _).writeFile(“diff” + day)
20:)
21: day = day.map(d => d + 1)
22: exitCond = day.map(d => d ≤ 365)
23: // next values of the loop vars and exit cond:
24: return (day, counts, exitCond)
25: }
26:)

(b) Functional control flow.

Listing 3.1: A comparison of control flow APIs through the Visit Count example program.

pay attention to not accidentally write code that would directly (in the driver program) do work
that is intended for every iteration step. Instead, code in loop body functions should build a
representation of the work into the dataflow job. An example for this issue are non-bag variables,
such as a loop counter or a learning rate. Manipulating such variables would normally happen
in the driver program in systems such as Spark. However, in functional control flow APIs, the
user has to pay attention to wrap these variables in system-provided types so that the system
can incorporate them in the dataflow job. Mitos performs this wrapping automatically during
its compilation, as explained in Section 3.3.1.

Note that loops are at the core of machine learning training algorithms and hyperparameter
search. This makes Mitos an important piece in modern analytics, such as the ones targeted by
Agora [174].

3.2 Mitos Overview

We present Mitos, a system that compiles a data analysis program with imperative control flow
statements into a single dataflow job for distributed execution on a dataflow system. The main
goal of Mitos is to bring ease-of-use to users while achieving high efficiency for their programs.
Overall, users write their programs using imperative control flow. The system, in turn, parses an

30 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

imperative program into an intermediate representation, from which it builds a single3 (cyclic)
dataflow job. At run time, the system coordinates the distributed execution of control flow
statements among workers in the underlying dataflow system. Below, we describe these steps in
more detail.

Figure 3.1 illustrates the general architecture of Mitos. A user provides a data analysis
program in a high-level language with imperative control flow support. We use the Emma
language [9, 11, 12] because of its metaprogramming infrastructure and because it is similar to
the languages of typical dataflow systems, such as Flink and Spark: The user expresses a data
analysis program in Scala using a scalable collection type, which we call bag henceforth.

Given an imperative program, Mitos first simplifies it to make each assignment statement
have only a single bag operation (e.g., a map). It then parses this simplified imperative program
to an Intermediate Representation (IR). From there, it creates a dataflow job of a distributed
dataflow system (Section 3.3). Recall that running many dataflow jobs sequentially significantly
deteriorates the execution time of a program as illustrated in Figure 1.1 (the Spark case). Thus,
it is crucial to generate as few dataflow jobs as possible: Mitos creates a single job for the entire
program. This eliminates the overhead of scheduling and launching new tasks at every step of a
loop, and it enables certain optimizations, such as loop pipelining.

Next, the system sends the job for execution to the underlying dataflow system. Then, Mitos
coordinates the distributed execution of control flow statements via two components: the Control
Flow Manager and the Bag Operator Host (Section 3.4). The control flow manager communicates
control flow decisions among the worker machines. (This does not involve the driver program.
Since we compile the entire program to a single dataflow job, control is not returned to the
driver program at every step of a loop.) The bag operator host bridges the gap between Mitos’
and the underlying dataflow system’s operators. While Mitos’ operators take input bags and
compute output bags, the underlying dataflow system’s operators do not know about bags. The
bag operator host provides an interface for implementing Mitos’ operators at the level of bags
instead of directly with the dataflow system’s operator interface. Note that our control flow
coordination enables loop pipelining, i.e., overlapping different iteration steps.
Generality for Backends. Although we use Flink as our target dataflow system, Mitos could
be implemented with other distributed dataflow systems as backends. It only requires a dataflow
system that allows for arbitrary stateful computations in the dataflow vertices, and supports
arbitrary cycles in the dataflow graph. Examples of systems that support cycles are Flink,
Naiad [132], Dandelion [154], and TensorFlow. (Spark does not support cyclic dataflow jobs,
and therefore it could not be the backend of Mitos.) Note that, for Mitos’ loop pipelining to
have a significant effect, the system should support pipelining, i.e., starting an operator execution
already when just a part of its input data has arrived.
Generality for Languages. Although we use the Emma language [9, 11, 12] for Mitos, one
could use other high-level data analytics languages that have imperative control flow support.
Importantly, the language should provide the system with means to get information about the
imperative control flow statements. In the case of Emma, this is achieved by compile-time
metaprogramming. Specifically, we use Scala macros [37]. Julia [18] and Python [127] also
have the required metaprogramming capabilities. Alternatively, SystemML [25] could also be
integrated with Mitos. SystemML’s language is an external [11] domain-specific language, and
thereby SystemML’s compiler can naturally inspect the control flow.

3Mitos builds a single dataflow job even if the program is composed of multiple functions. This is facilitated
by Emma’s compiler infrastructure, which inlines function calls before Mitos performs its compilation. We do not
support recursive functions.

3.3. BUILDING DATAFLOWS FROM IMPERATIVE CONTROL FLOW 31

MITOS

High-level language
Program with
Imperative Control Flow

Preparator

Intermediate Representation

Parser Translator

Mitos
Control Flow

Manager

Dataflow
Worker 1

. . .

Dataflow System

Dataflow Job
Bag Operator Host

Mitos
Control Flow

Manager

Dataflow
Worker 2

Dataflow
Worker N

Simplified
Imperative Program

Dataflow Building (Section 3.3)
Control Flow Coordination (Section 3.4)

Mitos
Control Flow

Manager

Figure 3.1: Mitos architecture.

3.3 Building Dataflows from Imperative Control Flow

Our goal is to produce a single dataflow job from a user’s imperative program that has arbitrary
imperative control flow constructs. For this, we need to inspect control flow statements and add
extra edges. For example, in iterative algorithms, there is typically a dataflow node near the
end of the loop body whose output has to be fed into the next iteration step. A more specific
example is passing the current PageRanks from one step to the next. Additionally, we need to
include non-bag variables into our dataflow jobs.

We leverage compile-time metaprogramming to overcome the above-mentioned challenges and
hence create a dataflow job containing all the operations of an imperative program. Specifically,
we leverage Scala macros [37] to inspect and rewrite the user program’s abstract syntax tree. In
more detail, we first simplify the imperative program (Section 3.3.1), and then parse it into an
intermediate representation (Section 3.3.2). Both of these facilitate the translation of the user’s
program into a single dataflow job (Section 3.3.3).

3.3.1 Simplifying an Imperative Program

As a first step, we split those assignment statements that have more than one operation on
their right-hand side. For example, we split b = a.map(...).filter(...) into two assignments:

32 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

tmp = a.map(...); b = tmp.filter(...). For instance, Lines 8 & 9 in Figure 3.2a are the splitted
version of Line 3 in Section 3.1.

Next, we take care of non-bag variables, e.g., an Integer loop counter or a Double learning
rate. We wrap all these variables into one-element bags (singleton bags). This normalization
step simplifies later dataflow-building by ensuring that it needs to deal with only bag operations
instead of introducing special cases for non-bag variables. More specifically, we perform the
following transformations: any operation that creates a non-bag value is substituted with an
equivalent operation that puts the same value inside a one-element bag (e.g., creating a constant,
such as a = 1 becomes a = newBag(1)); a unary function f that acts on a non-bag value is
substituted with a map operator, whose UDF is f (e.g., b = −a is substituted by b = a.map(x =>
−x)); a binary function that acts on two non-bag values is substituted by a cross product and
a map. The cross product creates a one-element bag that contains a pair with the elements of
the two input bags. The map operates on this pair and has f as its UDF (e.g., c = a + b is
substituted by c = (a cross b).map(_ + _)). Note that we can apply further simplifications in
some cases. For example, b = a+ 1 can be transformed into b = a.map(x => x+ 1) instead of
tmp = newBag(1); b = a.cross(tmp).map((x, y) => x+ y).

3.3.2 Intermediate Representation for General Control Flow

To handle all imperative control flow statements uniformly, Mitos transforms the program into
an IR that is based on SSA [148]. As part of this transformation, Mitos introduces a different
variable for each assignment statement: if a variable in the original program had more than one
assignment statement, we rename the left-hand sides of all these assignments to unique names.
At the same time, we update all references to these variables with the new names. However, this
updating step is not directly possible if there are different control flow paths that assign different
values to a variable. In this case, the different assignments in the different control flow paths are
renamed to different names and hence there is no single name to change a reference into. For
example:
1: if ... then
2: a = ...
3: else
4: a = ...
5: end if
6: b = a.map(...)

Note that after we change the left-hand sides of the assignments in Line 2 and 4 to different
names, we cannot simply change the variable reference in Line 6 to just one of them at compile
time. Therefore, we have to choose the value to refer to at run time, based on the actual control
flow path that the program execution takes. SSA solves this problem by introducing Φ-functions,
which make this run-time choice explicit (Line 6):
1: if ... then
2: a1 = ...
3: else
4: a2 = ...
5: end if
6: a3 = Φ(a1,a2)
7: b = a3.map(...)

3.4. CONTROL FLOW COORDINATION 33

We explain how Mitos tracks the control flow and thus how Φ-functions choose between their
inputs at run time in Section 3.4.

By relying on SSA, we abstract away from specific control flow constructs, and thus handle all
control flow uniformly: Control flow constructs are translated into basic blocks and conditional
jumps at the end of basic blocks. For instance, an execution path can be specified as a sequence
of basic blocks.

3.3.3 Translating an Imperative Program to a Single Dataflow Job

After simplifying an imperative program and putting it into our intermediate representation,
the final step to build a dataflow job is now simple: We create a single dataflow node from each
assignment statement and a single dataflow edge from each variable reference. For example, from
c = a join b, we create a join node, whose two input edges come from the nodes of the a and b
variables. Currently, each bag operator has at most one output bag4.

To better illustrate this final translation step, we use our Visit Count running example
program (Section 3.1). Figure 3.2a shows the program’s intermediate representation, with the
basic blocks as dotted rectangles, and Figure 3.2b shows the corresponding Mitos dataflow. Note
that the join with the page types is not included for simplicity.

Scalars. As explained in Section 3.3.1, we wrap non-bag variables in one-element bags. We
show the extra code for this in italic in Figure 3.2a. The corresponding nodes in Figure 3.2b
have thin borders.

Φ-functions. We also create the nodes with the black background from assignments whose
right-hand sides are Φ-functions (Lines 4–5). Unlike other nodes, the origins of their inputs
depend on the execution path that the program has taken so far: In the first iteration step, they
get their values from outside the loop (Lines 1 & 2), but then from the previous iteration step
(Lines 18 & 19). This choice is represented by Φ-functions of the SSA form.

Conditions. The blue node corresponds to the ifCond variable (Line 10), and the brown node
to the loop exit condition (Line 20). These condition nodes determine the control flow path.
Edges with corresponding colors are conditional edges. A condition node determines whether a
conditional edge with the same color transmits data in a certain iteration step, as we explain in
the following section.

3.4 Control Flow Coordination

Once a job is submitted for execution in an underlying dataflow system, Mitos has to coordinate
the distributed execution of control flow statements. It communicates control flow decisions
between worker machines, gives appropriate input bags to operators for processing, and handles
conditional edges. We achieve these via two components: the control flow manager and the bag
operator host. The control flow manager communicates control flow decisions among machines.
Thus, there is one instance per machine. Next, each operator is wrapped inside a bag operator
host, which performs the coordination logic from the operators’ side. This way, the coordination

4We could add support for multi-output bag operators by adding tuples of bags at the language level so that
an assignment statement could have multiple bag variables on its left-hand side, and modifying the bag operator
interface (see Section 3.4.3) to allow for emitting multiple outputs at the runtime level.

34 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

1: yesterdayCnts1 = EmptyBag
2: day1 = newBag(1)
3: do
4: yesterdayCnts2 = Φ(yesterdayCnts1,yesterdayCnts3)
5: day2 = Φ(day1,day3)
6: fileName = day2.map(x => “pageVisitLog” + x)
7: visits = readFile(fileName)
8: visitsMapped = visits.map(x => (x,1))
9: counts = visitsMapped.reduceByKey(_ + _)

10: ifCond = day2.map(x => x != 1)
11: if ifCond then
12: joinedYesterday = counts join yesterdayCnts2
13: diffs = joinedYesterday.map(...)
14: summed = diffs.reduce(_ + _)
15: outFileName = day2.map(x => “diff” + x)
16: summed.writeFile(outFileName)
17: end if
18: yesterdayCnts3 = counts
19: day3 = day2.map(x => x + 1)
20: exitCond = day3.map(x => x ≤ 365)
21: while exitCond

(a)

yesterdayCnts1

day1

yesterdayCnts2

day2

visits

joinedYesterday

diffs

summed

writeFile

yesterdayCnts3

day3

exitCond

visitsMapped

counts

ifCond

fileName

1 2

3

4

outFileName

(b)

Figure 3.2: (a) SSA representation of Visit Count and (b) its Mitos dataflow: The basic blocks
are marked with dotted rectangles; The small rectangles are dataflow nodes, corresponding to
variables in SSA; The variables corresponding to the thick-bordered nodes are bags; The colored
nodes make control flow decisions and influence the same-colored edges.

1

2

3

4

3.4. CONTROL FLOW COORDINATION 35

while ... do
x = ...
while ... do
y = ...
z = x join y

end while
end while

(a)

while ... do
...
if ... then
x1 = ...
y1 = ...

else
x2 = ...
y2 = ...

end if
x3 = Φ(x1, x2)
y3 = Φ(y1, y2)
z = x3 join y3

end while
(b)

A

B

A

B

C

D

Listing 3.2: Programs with non-trivial control flow structures.

logic is separated from the operator semantics. We refer to these two components together as
the Mitos runtime (runtime, for short), and we detail them in the following.

Before diving into the runtime, we first give some required preliminaries. We will use the
terms “logical” and “physical” to refer to parallelization: A dataflow system parallelizes a dataflow
graph (job) by creating multiple physical instances of each logical operator. A logical edge
between two logical operators is also multiplied into physical edges. Note that if an operator
requires a shuffle (e.g., a grouped aggregation), then one logical edge is multiplied into p × p
physical edges, i.e., one physical instance of the operator has p physical input edges corresponding
to one logical input edge, where p is the degree of parallelization.

3.4.1 Challenges for the Runtime

Devising an algorithm for coordinating the distributed execution of control flow statements is
challenging for three main reasons:

Challenge 1: Input elements from different bags can get mixed. Mitos aims at pipelining
loop execution for efficiency reasons. This means that different iteration steps can potentially
overlap. That is, different operators or different physical instances of the same operator may be
processing different bags that belong to different iteration steps. An example is the Visit Count
program’s file reading: When any instance of the file-reading operator is done reading the file
of the current iteration step, the instance can start working on the file that belongs to the next
step. The difficulty is that the output from these different instances get mixed when the next
operator is connected by a shuffle. This is because in case of a shuffle, each instance of the next
operator receives input from all instances of the previous operator. This means that the runtime
has to separate input elements that belong to different steps, so that appropriate inputs are used
for computing an output bag.

Challenge 2: The matching of input bags of binary operators is not always one-to-
one. In the case of binary operators (e.g., join), the runtime gives a pair of bags to an operator

36 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

at a time. To form a pair, we have to match bags arriving on one logical input edge to bags
arriving on the other logical input edge. This matching is not always one-to-one, e.g., sometimes
one bag has to be used several times, each time matching it with a different bag. The example
program in Listing 3.2a demonstrates such a case. Input x of the join is from outside the loop,
while input y is from inside the loop. This means that when the runtime provides the join with
pairs of input bags, it has to use a bag from x several times, matching it with different bags from
y each time. Therefore, the runtime has to save the bags coming from x.

Challenge 3: First-come-first-served does not work for choosing the input bags to
process. Even when the matching of bags between the two logical input edges is one-to-one,
the following naive algorithm for matching them up does not work: Assume we order bags in
the same order as their first elements arrive. In this case, we could match bags from each of the
inputs in the order they arrived, i.e., match the first bag from one input with the first bag from
the other input, then match the second bags from both inputs, and so on. However, doing so
might lead to errors. Suppose that the control flow in Listing 3.2b reaches the basic blocks in
the following order: ABDACD. It is then possible that, due to irregular processing delays, the
operator of x3 gets data from x1 first and then from x2, while the operator of y3 gets data from
y2 first and then from y1. This can happen because the operators in the different if branches are
not synchronized, i.e., they do not agree on a global order in which to process bags. This would
clearly lead to an incorrect result: The operator of z has to match the bag that originates from
x1 with the bag that originates from y1, and match the bag that originates from x2 with the
bag that originates from y2. Note that this issue can arise only if we perform loop pipelining.
Otherwise, all operators would finish the processing of one step before any operator starts the
next step. This means that it would not happen that y3 gets data from y2 first and then from
y1.

3.4.2 Coordination Based on Bag Identifiers

The high-level structure of our solution to the above challenges is the following. We introduce
a bag identifier (Section 3.4.2.1), which is straightforward to define from a hypothetical, non-
parallel execution. Then, we use these identifiers as a specification of what should happen during
the parallel execution. That is, we will show how to make sure that bags with the same IDs
are created during the distributed execution as in a non-parallel execution, and the bags that
each bag are computed from are also the same. Specifically, we will show how physical operator
instances can determine during a distributed execution

• the identifier of the output bag that it should compute next (Section 3.4.2.2);

• the identifier of the input bags that it should use to compute a particular output bag
(Section 3.4.2.3); and

• on which conditional output edge it should send a particular output bag (Section 3.4.2.4).

Note that the Mitos runtime is designed for allowing operators to start computing an output
bag as soon as its inputs start to arrive. The runtime achieves loop pipelining via this feature,
i.e., an operator can start a later step while some other operators are still working on a previous
step.

3.4. CONTROL FLOW COORDINATION 37

3.4.2.1 Bag Identifiers with Execution Paths

A bag identifier encapsulates both the identifier of the logical operator that created the bag and
the execution path of the program up to the creation of the bag. The execution path is a sequence
of basic blocks that the execution reached. In a distributed execution, the execution path is
determined by the condition nodes. A condition node appends a basic block5 to the path when
it evaluates its condition. Condition nodes let all other operators know about these decisions
through the control flow manager. The local control flow manager broadcasts6 the decision to all
remote control flow managers through TCP connections (which are independent from dataflow
edges). This way every physical instance of every operator knows how the execution path evolves.
The bag identifiers are also used to separate elements that belong to different bags (Challenge 1):
we tag each element with the bag identifier that it belongs to.

The execution path can grow arbitrarily large, which could conceivably introduce a bottle-
neck, if the coordination is implemented naively. For example, if the current execution path is
repeatedly sent over the network as a list of basic blocks attached to every bag (as part of the bag
ID), then we would require O(n2) amount of network communication over the complete program
execution, where n is the length of the complete execution path. Instead, we want to make sure
that the actual implementation performs only O(1) amortized work for every new basic block
that is appended to the execution path, and therefore requires only O(n) work over the complete
program execution. For this,

• condition nodes should broadcast only the currently added basic block;

• when we send a bag ID over the network, it is enough to only send the length of the
execution path in the ID, since every operator knows the current full list of basic blocks
from the broadcasts of the condition nodes, and the execution paths in the bag IDs are
always prefixes of the full list;

• the procedures described in the next sections should not repeatedly scan the entire path,
but incrementally keep track of any relevant information as the path evolves.

3.4.2.2 Choosing Output Bags

By watching how the execution path evolves, operators can choose the identifiers of output bags
to be computed: When the path reaches the basic block of the operator, the operator starts to
compute the bag whose bag identifier contains the current path. For example, in Challenge 3,
this means that the physical operator instances of both x3 and y3 choose to compute the output
bag with path ABD in its identifier first, and then ABDACD.

The execution paths in the bag IDs give rise to a natural ordering between two arbitrary bags
b1 and b2: let b1 < b2 if and only if the execution path of b1 is a prefix of the execution path of b2.
Note that the above procedure means that a logical operator will process bags in a monotonically
increasing order. However, this is only a local property of a logical operator, and is not true
globally between all operators: if there does not exist a (direct or indirect) dependency between
the bags computed by two operators, then their instances might process some bags in an order
that is not consistent with the above ordering.

5Or several blocks when its target basic block has only one successor block.
6As we will see in Section 3.6.5, this is orders of magnitude faster than the overhead of launching a new

dataflow job.

38 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

3.4.2.3 Choosing Input Bags

When an operator O2 decides to produce a particular output bag g2 next, it also needs to choose
input bags for it (Challenges 2 & 3). This choice is made independently for each logical input.

In a non-parallel execution, the operator would use the latest bag that was written to the
variable that the particular input refers to. We mirror this behavior in the distributed execution,
by examining the execution path while keeping in mind the operator’s and input’s basic blocks.
More specifically, for a logical input i of O2, let O1 be the operator whose output is connected to
i, b1 and b2 be the basic blocks of O1 and O2, and c be the execution path in the identifier of g2.
To determine the identifier of a bag coming from i to compute an output bag g2, we consider all
the prefixes of c. Among these prefixes, we choose the longest one such that it ends with b1. For
example, in Listing 3.2a when we are computing z and choosing an input bag from x, we always
choose the bag that the latest run of the outer loop computed. Concretely, if we are computing
the bag with the path ABBABBB, then the prefix we choose is ABBA.

Recall that Φ-nodes need to choose between their inputs at each run. We, thus, specially treat
Φ-nodes: For each particular output bag, a Φ-node reads a bag from only one input7. Therefore,
we adapt the above procedure to choose between the inputs by looking at the above-mentioned
prefixes for each input, and choosing the longer one.

It is worth noting that in some cases we need to materialize input bags. This happens in
two cases: First, when an arriving input bag is not the bag that is currently being processed;
Second, when the operator might need the same input bag later (for example, see Challenge 2
in Section 3.4.1). In both of these cases, the bag operator host saves the arriving input elements
and provides them (possibly multiple times) to the bag operator at an appropriate time. Note
that Mitos saves the elements in a serialized form to reduce the pressure on the Java garbage
collector. (Spilling to disk could also be easily implemented.) It discards such saved input bags
when they are not needed anymore. This happens when the execution path reaches a block
b3, such that b1 dominates8 b2 from b3. This is because in that case, the variable of O1 will
necessarily have a new value before O2 would want to read it. Also note that a saved bag is
always needed at least once. This is because conditional edges transmit data only when they
know that the target operator will run (which they can determine from the information that
they receive from the condition nodes).

3.4.2.4 Choosing Conditional Outputs

Operators look at how the execution path evolves after a particular output bag and send the
bag on such conditional output edges whose target is reached by the path before the next output
bag is computed. Specifically, let O1 be an operator that is computing output bag g, e be a
conditional output edge of O1, O2 be the operator that is the target of e, b1 be the basic block
of O1, b2 be the basic block of O2, and c be the execution path of the identifier of g. Note that
the last element of c is b1. O1 should examine each new basic block appended to the execution
path and send g to O2 when the path reaches b2 for the first time after c but before it reaches b1
again. This means that instances of O1 can discard their partitions of g once the execution path

7This is different from TensorFlow, where not taken branches receive and send dummy values (“dead ten-
sors”) [186].

8On the control flow graph, a node d is said to dominate [148] a node n from node s, when all paths from s
to n go through d. The control flow graph’s [6] nodes are the basic blocks and its edges are the possible control
flow transitions between the blocks.

3.4. CONTROL FLOW COORDINATION 39

reaches such a basic block from which every path to b2 on the control flow graph goes through
b1. (This can also be seen by considering the non-SSA form of the program: the variable of O1

will be overwritten before it is read by the variable of O2.)
In the case when O2 is a Φ-function, then we also need to consider the basic blocks of the

other inputs of O2. This is because if we consider the non-SSA form of the program, all the
inputs of O2 will be the same variable in this case, and therefore these assignment statements
might overwrite the results of each other. Therefore, in case of O2 being a Φ-function, we add
the following condition to the above procedure. Before sending g to O2, we check for every other
input of O2 (let the currently checked input operator be O3) whether the execution path has
reached the basic block of O3 between c and b2. If it did, then we do not send the output bag,
since O3 will send the output bag that O2 should forward. This additional condition makes sure
that the operators implementing Φ-functions do not actually need to have a logic for choosing
among their inputs, because a bag is only sent to an input edge of a Φ-function if it is appropriate
to emit the bag based on how the control flow proceeded during the program execution.

3.4.3 Bag Operator Host

To separate the above coordination logic from the semantics of bag operators (i.e., performing
a join, aggregation, etc.), we introduced the bag operator host. This provides a standard, push-
based interface for implementing the logic of bag operators: First, the operator’s open method is
called by the bag operator host so that the operator can initialize its state; Then, the operator
is given input elements by pushInElement method calls; Finally, the operator is closed by the
bag operator host, at which point it can emit its final output, e.g., all the results of a per-
group aggregation. In other words, each bag operator instance is wrapped by a bag operator
host, which performs the coordination logic described in the previous subsection on behalf of
the bag operator: It provides the bag operator with appropriate input bags, separates input
elements belonging to different input bags, and so forth. This way, it bridges the gap between
the underlying dataflow system’s operator interface, which does not know about bags, and Mitos’
bag operator interface.

In more detail, the bag operator host provides the following guarantees to bag operators:

1. For each output bag that the bag operator should compute, the runtime first calls
OpenOutBag on each physical instance of the bag operator. The runtime calls OpenOutBag
only when the bag operator instance is in a closed state, i.e., either as the runtime’s very
first function call to the bag operator instance during the program execution, or as the
runtime’s first call to the bag operator instance after the bag operator instance called
Close on its output collector.

2. After calling OpenOutBag, the runtime calls PushInElement any number of times. The
elements provided through these calls all belong to those input bags that should take part
in the computation of the current output bag. (Input elements for computing later output
bags are buffered up by the system, and provided to the bag operator at the appropriate
time.)

3. When there are no more PushInElement calls for a particular input bag, the runtime calls
CloseInBag on the bag operator.

40 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

3.4.4 Fault Tolerance

Mitos comes with its own fault-tolerance mechanism as it cannot directly use Flink’s Asyn-
chronous Barrier Snapshotting algorithm [39]. This is because the communication among control
flow managers happens independently of the dataflow edges that Flink knows about.

Note that Flink’s asynchronous algorithm was designed for a streaming setting (i.e., con-
tinuous queries), where the latency increase caused by synchronously taking a snapshot would
be unacceptable. In contrast, Mitos is targeting batch computations, and thus synchronous
snapshotting would be acceptable. Therefore, a simple alternative to Flink’s asynchronous al-
gorithm would be to take each snapshot by simply synchronously pausing the entire program
and saving all program state. However, this is not the algorithm that we implemented because
of three issues: 1) Even in a batch setting, asynchronous snapshots can be a bit faster, since
they can overlap the I/O intensive snapshot-writing with the normal program flow that might be
compute-intensive; 2) We would need to make changes inside Flink’s network stack because we
would need to drain all network buffers before a snapshot; 3) Snapshots would include operators’
internal states (not just bags), which we can mostly avoid, as we will see below.

Mitos provides an asynchronous snapshotting mechanism that is tied to basic blocks in the
execution path. A snapshot contains the values of all the variables of a program at a certain
point in the execution path, e.g. after every 10th basic block. In detail, Mitos takes snapshots
as follows. First, it designates one control flow manager to be the coordinator. The coordinator
selects the points in the execution path where snapshots should be taken and broadcasts these
decisions. Each operator can then individually determine when it reaches such a snapshot point
and write its latest output bag9 into the appropriate snapshot. Once it is done, it sends a ‘done’
message to the coordinator. When the coordinator receives all the ‘done’ messages, it writes its
state (the execution path) into the snapshot and marks the snapshot as complete. Note that this
is an asynchronous algorithm, because different operators can reach a certain snapshot point at
different wall-clock times. To restore from a snapshot, first the control flow managers read the
execution path and tell it to the operators. Then all operators read their output bags from the
snapshot and send these on their appropriate output edges. Normal execution then resumes.

3.4.5 Integration with the Underlying Dataflow System

We rely on Flink’s streaming API because it allows us to add any arbitrary cycle to the dataflow
graph. Note that we do not use any other streaming-specific features. As mentioned before, we
aimed for minimal changes in Flink, so that Mitos is as general as possible to be able to sit on
top of any dataflow system. We made only one non-trivial change in Flink to enable operators
to flush output network buffers at will, which is needed at the end of output bags.

A 7-byte overhead per bag element is introduced by the multiplexing of control events (such
as end-of-bag) with bag elements, and by adding some technical meta-information to each bag
element (such as keeping track of Bag IDs). These could be avoided by a tighter integration with
Flink, which would however require deeper changes in Flink itself, e.g., in its network stack.

9If the latest output bag is still the same as when the previous snapshot was taken, then we could avoid writing
the bag again, and just write a reference that points to the bag that is in the previous snapshot. Currently, this
optimization is not implemented.

3.5. OPTIMIZATIONS 41

3.4.6 External Side Effects

Mitos currently assumes that the order of side-effects does not matter. For example, the user
should not read/write the same file multiple times during a program execution, nor should
externally rely on output files being created or completed in a certain order.

We could serialize external side effects by automatically adding extra dataflow edges between
side-effecting operators (similarly to TensorFlow10). More specifically, we would add output
edges from a side effecting operator O1 to all other such side-effecting operators that can be
reached from O1 without first reaching any other side-effecting operator. (In simple cases, this
can be a loop edge, i.e., the edge might go from O1 to O1. For example, this can happen when
there is only one side-effecting operator in a loop body.) O1 would send a signal through this
output edge once it has completed all side-effects for a particular run of the operator. The next
side-effecting operator, which is on the receiving end of such a signal, would not perform any
side effects (such as reading from a file that was written to by O1) until it receives the signal.

3.5 Optimizations

In this section, we show how to incorporate several classic loop optimizations into Mitos’ control
flow handling. Note that we do not discuss the loop pipelining optimization here, as it is just
a natural consequence of Mitos’ control flow coordination algorithm shown in Section 3.4: An
operator instance can start working on a certain output bag as soon as it is finished with the
previous output bag and input elements for computing the new output bag start arriving.

3.5.1 Loop-Invariant Hoisting

We now show how to incorporate loop-invariant hoisting into our dataflows. That is, we show
how to improve performance when a loop involves a loop-invariant (static) dataset, which is
reused without updates during subsequent iteration steps. We can see an example of this in our
running example in Section 3.1: The pageTypes dataset is read from a file outside the loop and
is used in a join inside the loop. Another example is any iterative graph algorithm that performs
a join with a static dataset containing the edges of the graph.

It is a common optimization to pull those parts of a loop body that depend on only static
datasets outside of the loop, and thus execute them only once [34,60,65]. However, launching new
dataflow jobs for every iteration step prevents this optimization in the case of binary operators
where only one input is static. For example, if a static dataset is used as the build-side of a hash
join, then the system should not rebuild the hash table at every iteration step. Mitos operators
can keep such a hash table in their internal states among iteration steps. We make this possible
by having a single cyclic dataflow job, where the lifetime of operators spans all the steps.

We now show how to incorporate this optimization into Mitos. Normally, the bag operators
drop the state that they have built up during the computation of a specific output bag. However,
to perform loop-invariant hoisting, the runtime lets the bag operators know when to keep their
state that they build up for an input (e.g., the hash table of a hash join). Assume, without loss
of generality, that the first input of the bag operator is the one that does not always change
between output bags, and the second input changes for every output bag. Between two output
bags, the runtime tells the operator whether the next bag coming from the first input changes

10https://www.tensorflow.org/api_docs/python/tf/control_dependencies

https://www.tensorflow.org/api_docs/python/tf/control_dependencies

42 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

for the next output bag. If it changes, the operator should drop the state built-up for the first
input. Otherwise, the operator implementation should assume that the first input is the same
bag as before. For our example in Listing 3.2a, the first input bag changes at every step of the
outer loop, but not between steps of the inner loop. To know whether the input bag is changing,
the runtime can use the same mechanism that we described at the end of Section 3.4.2.3 for
keeping track of when to drop the buffered-up inputs.

3.5.2 Incremental Loops

Many iterative algorithms perform incremental updates on a dataset, i.e., they update only a
part of the dataset during each iteration step. For systems that launch separate dataflow jobs
for each iteration step, even such partially updated datasets have to be scanned in their entirety
at each step, to copy the unchanged elements. On the other hand, if we have a single dataflow
job that executes all iteration steps (as in Mitos), we can keep incrementally changing datasets
inside the state of our long-running operators (similarly to keeping the hash tables in the loop-
invariant optimization). Eliminating the copying of unchanged elements makes the run time of
each iteration step proportional to the number of changed elements instead of the size of the
whole dataset. This can yield huge performance benefits, as shown by Ewen et al. [65] and
Murray et al. [132].

Common examples are graph algorithms expressed in a Pregel-like model [117], where vertices
send messages to neighboring vertices, and change their states based on received messages. In
these algorithms, the fraction of vertices whose state is still changing often drops significantly as
the loop progresses.

To allow Mitos to optimize incremental updates to a dataset, we add the type MutableBag[A,K]
to our API. Here, A is the type of the elements, and K is the key type, used by joins and updates.
The design of MutableBag was inspired by the operators of the incremental loops [65] of Flink.
However, in Flink every incremental loop has exactly one mutable bag tied to it (which is called
the solution set). By having a separate type for mutable bags, we decouple this concept from
the loop API and provide more flexibility to the user (similarly to Alexandrov et al. [12]). For
example, in Mitos one can use multiple mutable bags in a loop or use a mutable bag across
nested loops. We provide the following primitives for manipulating MutableBags:

• ToMutable(b: Bag[A], keyF: A->K):
Creates a MutableBag[A,K] from a regular bag. keyF is a UDF, which is called for every
element of the bag to determine its key.

• Join(m: MutableBag[A,K], b: Bag[B], k: B->K):
Performs an inner join between MutableBag m and bag b, and returns a Bag[(K,A,B)],
which contains the matched elements with their join keys. The keys are extracted from
b by the key function k. The run time of this operation is proportional to the size of b,
since m is kept in a data structure that allows pointwise lookups based on the key that was
specified when m was created. In our implementation this data structure is a hash table.

• Update(m: MutableBag[A,K], up: Bag[A], k: B->K):
For every record u in up, looks for a record in m that has the same key as u, and either
replaces the found record with u, or adds u as a new record if a matching element was not
found. Similarly to Join, the run time is proportional to the size of updates.

3.6. EVALUATION 43

• toBag(m: MutableBag[A,K]):
Converts a MutableBag back to a regular bag.

We translate operations on these mutable bags in the following way. For every variable m
that holds a mutable bag, we create a special node n(m) in the dataflow graph, which takes care
of executing all the operations on m. To be able to implement the operations efficiently, n(m)
holds the contents of m in its state in a hash table, which it updates in-place for every call to
Update. The edges going into n(m) are determined by the operations involving m: for every
variable v that appears on the right-hand side of any of these operations, we connect the node
of v to n(m), so that n(m) receives all the input for all the operations. On the other hand, the
outgoing edges of n(m) are determined by the left-hand sides of all the operations involving m:
for every variable t on the left-hand sides, we connect a conditional output from n(m) to the
node of t.

To perform the operations on m in the order in which they would appear in a sequential
program, n(m) can rely on the execution paths in the IDs of the input bags, and use a similar
procedure as we showed earlier for choosing the next output bag to compute (Section 3.4.2.2).

In the case of mutable bags, our fault tolerance algorithm cannot avoid snapshotting the
internal state of the operator that is holding the mutable bag. However, we incrementalize these
snapshots by recording only the changed elements, and referring back to a previous snapshot for
the other elements.

3.5.3 Speculative Execution Opportunity

Having such a general support for control flow in Mitos would make it relatively easy to implement
a form of speculative execution for control flow branches. This is similar to speculative execution
in CPUs: before making a particular control flow decision, the system predicts the target of the
branch, and starts processing on the predicted branch target. If the prediction later turns out
to be wrong, then the system throws away the speculatively computed results. The benefit of
this optimization is that it enables loop pipelining in such cases where currently the wait for the
loop exit condition prevents Mitos from starting the next iteration step.

We could implement this optimization in Mitos as follows. When the system adds a basic
block to the execution path, it also makes a prediction about what will be the next basic block
to be added, and also broadcasts this prediction. Operators treat the predicted basic block as
if it were appended to the execution path, but mark the work performed for the predicted basic
block as tentative. If the prediction later turns out to be wrong, then they discard the tentative
work. We leave the implementation of this optimization for future work.

3.6 Evaluation

We implemented Mitos on OpenJDK 8 and Scala 2.11 and used Flink 1.6 as the underlying
dataflow system. We evaluate Mitos with the following main questions in mind:

(i) How well does Mitos perform vis-a-vis state-of-the-art systems? (Section 3.6.2)

(ii) Can one efficiently bring the ease-of-use of Spark to Flink without Mitos? (Section 3.6.3)

(iii) How well does Mitos scale with respect to the input dataset size? (Section 3.6.4)

44 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

(iv) What is Mitos’ iteration step overhead? (Section 3.6.5)

(v) How effective are Mitos’ loop optimizations? (Section 3.6.6)

(vi) How much overhead does Mitos’ fault tolerance has? (Section 3.6.7)

3.6.1 Setup

Hardware. We ran our experiments on a cluster of 26 machines, each with 2 × 8-core AMD
Opteron 6128 CPUs, 32 GB memory, 4×1 TB disks, a 1 Gb network card, and Ubuntu Linux
18.04.
Tasks and Datasets. We used the Visit Count example introduced in Section 4.1, where we
compare visit counts of subsequent days. We used two versions: one with and one without
the join of the pageTypes dataset. We also used the per-day PageRank task, i.e., we inserted
PageRank into the Visit Count example in place of the reduceByKey in Line 3. This resulted in
nested loops, as explained in Section 4.1. For Visit Count, we have generated random inputs,
with the visits uniformly distributed. The page types filter’s selectivity is 0.5. For PageRank
and Connected Components, we used a real graph11 with 118,142,155 nodes and 1,019,903,190
edges (17.23 GB in CSV format), downloaded from the graph dataset collection of the University
of Milan [27]. To be able to run many different PageRank computations, we randomly sampled
its edges many times. We have also performed microbenchmarks to isolate the iteration step
overhead.
Baselines. We performed most of our experiments against Spark 3.0 and Flink 1.6, with both
running on OpenJDK 8. We stored input data on HDFS 2.7.1. We also performed microbench-
marks against Naiad [132] and TensorFlow [186].
System Configuration. Driver memory was set to 8GB, and worker memory was set to 24GB.
In the case of Flink worker processes, this meant -Xmx and -Xms set to 20GB, plus 4GB off-heap
memory was allocated, which stored network buffers. In the case of Spark, only -Xmx was set.
Repeatability. We report numbers for the average of three runs. We also provide the code for
Mitos12.

3.6.2 Strong Scaling

We start by evaluating how well Mitos scales with respect to the number of worker machines as
well as how well it performs vis-a-vis two state-of-the-art dataflow systems: Spark and Flink.

3.6.2.1 Visit Count

Figure 3.3 shows the results for the Visit Count task. The size of the input for one day is 21
MB, and there are 365 days, i.e., the total input size is 7.6 GB. We observe that Mitos scales
gracefully with the number of machines. However, Spark and Flink show a surprising increase in
execution time as we give more machines to the system. This is because of their overhead in each
iteration step increases with the number of machines, and thereby becoming a dominant factor
in the execution time. We study this iteration step overhead in Section 3.6.5. In particular,

11http://law.di.unimi.it/webdata/webbase-2001/
12https://github.com/ggevay/mitos

http://law.di.unimi.it/webdata/webbase-2001/
https://github.com/ggevay/mitos

3.6. EVALUATION 45

0 5 10 15 20 25

102

103

3 · 102

Number of worker machines

E
xe

cu
ti
on

ti
m

e
(s

)

Spark Flink Mitos

Figure 3.3: Strong scaling for Visit Count.

0 5 10 15 20 25

103

104

Number of worker machines

E
xe

cu
ti
on

ti
m

e
(s

)

Spark Flink (not supported) Mitos

Figure 3.4: Strong scaling for per-day PageRank.

we observe that with the maximum number of machines, Mitos is 10× faster than Spark and
3× faster than Flink. The latter is an interesting result as Flink provides native control flow
support. Our system improves over Flink because it performs loop pipelining.

3.6.2.2 PageRank

Figure 3.4 shows the results for PageRank. Note that Flink does not support this task with its
native loop API due to the nested loops. We observe that Mitos scales gracefully, while Spark
stops getting faster beyond 9 machines. Our system reaches an improvement factor of 4.6× over
Spark with 25 machines.

Mitos performs and scales better than Spark and Flink. It achieves speedups of 4.6–10×
compared to Spark while matching Spark’s ease-of-use, and 3× compared to Flink while being
easier to use than Flink.

46 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

1 12 24

102

103

Number of worker machines

E
xe

cu
ti
on

ti
m

e
(s

)

Flink (separate jobs) Flink Mitos

Figure 3.5: Easy-to-use Flink workaround.

3.6.3 Ease-of-Use vs. Performance in Flink

It is worth noting that implementing Visit Count using Flink’s native loops was quite challenging.
This is because Flink does not have built-in support for file I/O or if statements inside native
loops. It took us almost 10 hours to implement such a task on Flink compared to less than 1
hour for its Spark counterpart. Thus, Flink users (including expert users) would typically resort
to the workaround of an imperative loop in the driver program (similarly as in Spark), which
launches a separate job per iteration step. However, this comes at the price of poor performance.
We implemented Visit Count using this workaround, Flink (separate jobs), to show this problem.

Figure 3.5 shows the results. Note that, as a reference, we also show the numbers for Mitos
and Flink (native loops) from Figure 3.3. We observe that launching separate Flink jobs from the
driver program results in a big performance hit. For 24 machines, this approach is 4.5× slower
than the Flink native loop, and 13.5× slower than Mitos. We also observe that the performance
of this approach gets worse as we increase the number of machines due to its inherent job launch
overhead. This result shows the high effectiveness and efficiency of our system: it allows users
to write control flow imperatively, i.e., it matches the ease-of-use of this approach (as well as of
Spark), while still achieving 13.5× better performance.

When users resort to an easy-to-use workaround in Flink due to the limitations of Flink’s
functional API, Mitos outperforms this approach by more than one order of magnitude.

3.6.4 Scalability With Respect to Input Size

Our goal is now to analyze how well Mitos performs with different input dataset sizes for Visit
Count. Figure 3.6 shows the results of this experiment. We observe that our system significantly
outperforms Spark, and the performance gap increases with the dataset size: it goes from 23× to
more than two orders of magnitude. This is because of the loop-invariant hoisting optimization
(see Section 3.6.6.1 for a detailed evaluation). Mitos outperforms also Flink, by 3.1–10.5×,
while being easier to use due to its imperative control flow interface. The surprisingly large
improvement factor over Flink for small data sizes is due to Flink’s native loop having a large

3.6. EVALUATION 47

102

103

104

4.54 · 10−2 4.54 · 10−1 4.54 · 100 4.54 · 101

> 100x

34.8x
27.2x22.3x

4.2x
3.1x

7.9x9x10.5x

Total Input Size (GB)

E
xe

cu
ti
on

ti
m

e
(s

)

Spark Flink
Mitos

killed after 16000s

9.08 · 101

Figure 3.6: Visit Count (with the pageTypes dataset) when varying the input size. The factors
are relative to Mitos.

1 3 5 7 9 13 19 25

100

101

102

103

100

101

102

103

Number of worker machines

T
im

e
pe

r
st

ep
(m

s)

Spark TensorFlow Flink (separate jobs)
Naiad Flink Mitos

Figure 3.7: Log-log plot for the per-step overhead.

per-step overhead due to a technical issue13.

Mitos can achieve more than two orders of magnitude speedup compared to Spark for large
input datasets.

3.6.5 Iteration Step Overhead

We now dive into studying the step overhead. First, we isolate the step overhead from the actual
data processing in a microbenchmark: a simple loop with minimal actual data processing in
each step. More specifically, we create a small bag with enough elements to give at least one
element to each partition, and then we map this bag at each iteration step. In TensorFlow, we
manually create as many operators as there are map operator instances in the other systems.

13https://issues.apache.org/jira/browse/FLINK-3322

https://issues.apache.org/jira/browse/FLINK-3322

48 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

102

103

3.4 · 10−2 3.4 · 10−1 3.4 · 100 3.4 · 101

1.9x4.5x
4.7x8.4x

Total Input Size (GB)

E
xe

cu
ti
on

ti
m

e
(s

)

Spark Mitos (pipelining disabled)

Figure 3.8: Visit Count (w/o pageTypes) when varying input size.

In this experiment, we also consider TensorFlow and Naiad as baselines to better evaluate the
efficiency of Mitos. Figure 3.7 shows the results. We observe that the native loop of Mitos is
about two orders of magnitude faster than launching new jobs for each step, i.e., Spark and
Flink (separate jobs). It is interesting to note that the job launch overhead increases linearly
with the number of machines. Importantly, this means that scaling out to more machines makes
the step overhead problem of Spark worse. Furthermore, we can also see that Mitos matches
the performance of other systems with native loops, i.e., Flink, TensorFlow, and Naiad, despite
being able to handle more general control flow. Note that even systems with native control
flow have some step overhead (∼1–10 ms). This is because they need to 1) broadcast control
flow decisions, and 2) track progress, i.e., determine when operator input for a certain step is
complete.

We now investigate the composition of Spark’s step overhead. Since in typical cases each step
launches a new dataflow job, we have considered so far Spark’s step overhead to be the job launch
overhead (task-launch overhead included). However, if a loop body does not contain an action
(which is an uncommon case), then Spark can execute the entire loop in a single dataflow job
(unrolled). One might think that this eliminates Spark’s step overhead. However, the number of
tasks per step is still the same. Therefore, we have to focus on the task-launch overhead (including
the initiation of shuffle-reads) to know the step overhead in this case. We ran a microbenchmark
that compares a loop with an action to the same loop without an action, but with the same
number of tasks. In our experiments, we observed only a 10% speedup from removing the
action. Therefore, we can conclude that most of Spark’s step overhead actually comes from
launching tasks. In other words, Mitos’ performance advantage would not significantly diminish
even in the case of a loop with no action.

We now examine how much effect the iteration step overhead has on a real program. As
this depends on the amount of actual data processing per step, we ran an experiment where we
varied the input size of the Visit Count program. In this experiment, we isolated the effect of
removing the job launch overhead from Mitos’ other optimizations: The join with the pageTypes
dataset is not present in the program, and thus Mitos’ loop-invariant hoisting optimization is
not applicable. Furthermore, we disabled the loop pipelining optimization of Mitos. Figure 3.8
shows the result. We observe that increasing the input dataset size decreases the effect of the
job launch overhead, and thereby the improvement factor of Mitos over Spark (in case when the

3.6. EVALUATION 49

10−0.2 100 100.2 100.4 100.6

102

103

Loop-invariant dataset size (GB)

E
xe

cu
ti
on

ti
m

e
(s

)

Spark Flink
Mitos (wo. loop-invariant hoisting) Mitos

Figure 3.9: Varying the loop-invariant dataset size.

other Mitos optimizations are not applicable or turned off). For a 34 MB input, Mitos is 8.4×
faster than Spark. However, even for a 34 GB input, Mitos is still 1.9× faster than Spark. In
practice, many real datasets fall into this size range [145].

The overhead of Mitos is two orders of magnitude less than launching separate dataflow jobs
per step, which, in real programs, can result in a 1.9–4.5× speedup over Spark, even when
Mitos’ other optimizations are disabled.

3.6.6 Optimizations

We proceed to evaluate Mitos’ loop optimizations: loop-invariant hoisting, loop pipelining, and
incremental loops.

3.6.6.1 Loop-Invariant Hoisting

We start by evaluating the loop-invariant hoisting optimization in Mitos. For this, we used the
version of the Visit Count example that has the join with the pageTypes dataset at every iteration
step. The pageTypes dataset does not change between steps, and therefore the loop-invariant
hoisting optimization can improve performance. Figure 3.9 shows the results when varying the
size of the loop-invariant dataset, while keeping the other part of the input constant (13 GB).
We observe that increasing the loop-invariant dataset size has very little effect on Mitos and
Flink. This is because they perform the loop-invariant hoisting optimizations i.e., they build the
hash table for the join only once and then just probe the hash table at every iteration step. Still,
Mitos is 5–6× faster than Flink.

On the other hand, the execution time of Spark (and the speedup of Mitos over Spark) linearly
increases because Spark does not perform this loop-invariant hoisting optimization. Note that,
in our Spark implementation, we manually inserted a repartitioning of the pageTypes dataset
once before the loop. This way, the join does not need to repartition at every iteration step.
However, this does not eliminate all redundancy: (1) Matching partitions might still be on
different machines, and thus network transfer still happens redundantly at each step; (2) The

50 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

0 5 10 15 20 25

102

103

4.1x4.1x4.2x2.3x

1.1x

Number of worker machines

E
xe

cu
ti
on

ti
m

e
(s

)

Mitos (not pipelined) Mitos

Figure 3.10: Loop pipelining with varying worker machine count.

102

103

3.4 · 10−2 3.4 · 10−1 3.4 · 100 3.4 · 101

2.6x

2.9x
2.6x

1.8x

Total Input Size (GB)

E
xe

cu
ti
on

ti
m

e
(s

)

Mitos (not pipelined) Mitos

Figure 3.11: Effect of loop pipelining when varying the input size.

join’s hash table building also still happens redundantly. As a result, Mitos is up to 45× faster
than Spark.

To isolate the effect of loop-invariant hoisting from other differences between Spark and
Mitos, we also ran Mitos with loop-invariant hoisting switched off. In this case, its execution
time increases linearly with the size of the loop-invariant dataset, similarly to Spark. Therefore,
Mitos is up to 11× faster than Mitos without loop-invariant hoisting.

Mitos performs loop-invariant hoisting, which improves its performance by up to 45× compared
to Spark.

3.6.6.2 Loop Pipelining

We now analyze the loop pipelining feature of Mitos, which allows it to outperform Flink. Recall
that, even though Flink also provides native loop support, our system is up to 3× faster in
Figure 3.3, 3.1–10.5× faster in Figure 3.6, and 5–6× faster in Figure 3.9. As one might think
that this performance difference could come from other factors, we ran an experiment to better
isolate the effect of loop pipelining. We ran Visit Count (without the pageTypes dataset) in

3.6. EVALUATION 51

0 5 10 15 20 25 30 35 40

10−1

100

101

102

Iteration step

St
ep

ti
m

e
(s

)

Mitos (non-incr.) Spark GraphX Flink (incr.) Mitos (incr.)

Figure 3.12: Time of the first 40 iteration steps of incremental and non-incremental versions of
computing connected components of a large graph. The rest of the 744 steps are similar to the
last ten shown here.

Mitos (non-incr.)
Flink (incr.)

Mitos (incr.)
Spark GraphX

0

10000

20000

4531305

19556

9364

T
ot

al
ex

ec
ut

io
n

ti
m

e
(s

)

Figure 3.13: Total time of incremental and non-incremental versions of computing connected
components.

Mitos with and without the loop pipelining optimization. Figure 3.10–3.11 show the results.
Overall, we clearly observe the benefits of loop pipelining: Our system can be up to 4× faster
with than without loop pipelining, which is made possible by our control flow coordination
mechanism. Varying the input size does not have a significant effect on the speedup achievable
by loop pipelining.
The control flow coordination algorithm of Mitos allows for loop pipelining, which results in
speedups of up to 4×.

3.6.6.3 Incremental Loops

To assess Mitos’ incremental loops, we perform experiments with the widely used label propaga-
tion algorithm [65,98] for computing the connected components of a graph. We run incremental
and non-incremental implementations of the algorithm in different systems. Note that all vari-
ants have the loop-invariant hoisting optimization, i.e., we keep the build-side of the hash-join

52 CHAPTER 3. EFFICIENT AND EASY-TO-USE CONTROL FLOW IN DATAFL. SYS.

that involves the edges of the graph. The graph that we used (see Section 3.6.1) has a large
diameter, and therefore computing the connected components requires 744 iteration steps until
convergence, with the majority of vertices getting their final values in the first 10 iteration steps.

In Figure 3.12 we plot the time taken for the first 40 iteration steps of several implementations.
We observe that the run time of the incremental versions (including Mitos) indeed decreases
significantly after the 10th iteration step. The algorithm converges after 744 iteration steps, but
the rest of the steps (after the 40th) are similar to the last 10 steps of this plot. We show the
total execution time in Figure 3.13.

After most of the vertex values have converged, Mitos is the fastest of the measured imple-
mentations. Mitos is faster than Flink by about a factor of three, because of the Flink issue
mentioned in Section 3.6.4.

In the first 10 iteration steps the Spark GraphX [77] implementation is the fastest one,
because GraphX has specific optimizations for graph computations, including a physical data
representation optimized for graphs. However, after the 10th iteration step it falls behind the
incremental Flink version and also Mitos, since the graph-specific optimizations cannot overcome
the limitation of scheduling new dataflow jobs at every iteration step. Note that the graph-specific
optimizations of GraphX could be applied together with the optimizations of Mitos, which would
probably close the gap in the first 10 iteration steps.

We have encountered an additional hurdle with the GraphX implementation: calling the
GraphX connected components library function using the default options resulted in long RDD
lineages, which eventually caused either an out-of-memory error, or a stack overflow during the
serialization of some internal data structure that holds the lineages. There is a configuration
option called checkpointInterval, which causes GraphX to take a checkpoint at every Nth
iteration step to durable storage (e.g., HDFS), and thus break the long lineage chains. The
interval can be easily set to a large enough value that the I/O overhead of performing the
checkpoint is negligible. However, we observed a roughly 2-times slowdown in all subsequent
iteration steps after taking the first checkpoint. Unfortunately, we could not trace down the
reason for this phenomenon.

The GraphX plot was obtained after extensive tuning of configuration parameters. Par-
allelism was set to 400. A larger parallelism resulted in more scheduling overhead and more
garbage collection overhead. A smaller parallelism increased the computation time in the first 10
steps and also after the slowdown caused by the first checkpoint. Setting the checkpoint interval
smaller adds to the execution time because of the HDFS I/O needed to perform the checkpoints,
and setting it larger adds more garbage collection pressure because of the long RDD lineages,
resulting in a slowdown at the ends of the intervals between checkpoints.
In loops having many iteration steps, but with most data points converging already in the first
few steps, Mitos’ incremental loops can result in more than an order of magnitude speedup.

3.6.7 Fault Tolerance

To test Mitos’ snapshotting mechanism (see Section 3.4.4), we used the Visit Count program
(without the pageTypes dataset) with an input data size of 34.4 GB. We configured Mitos to
snapshot every 10th iteration step. We observed that the execution without Mitos’ snapshotting
is 205s, while with Mitos’ snapshotting is 222s. This represents an overhead of 8.3%, which
shows the high efficiency of Mitos’ snapshotting algorithm.

Chapter 4

Nested Parallelism in Dataflow Systems

In this chapter, we discuss how our system, Matryoshka, flattens nested parallel programs, so
that they can be executed on a standard dataflow engine.

4.1 Motivating Examples

We detail four common examples where nested parallelism is essential. We then distill three
desiderata for proper nested parallelism support.

4.1.1 Bounce Rate

When analyzing website traffic data, a commonly used metric is the bounce rate [101,158], which
denotes the ratio of the visitors who visited only one page to all the visitors. Assume we have a
function for calculating the bounce rate from our entire page visit log. The function computes
a single value from a Bag of page visits, where Bag is the collection abstraction in a dataflow
engine (e.g., RDD in Spark).

def bounceRate(visits: Bag[Visit]): Double = {
val countsPerIP = visits.map((_, 1)).reduceByKey(_+_)
val numBounces = countsPerIP.filter(_._2 == 1).count()
val numTotalVisitors = visits.distinct().count()
numBounces / numTotalVisitors

}
Consider if now we want to calculate the bounce rate per day (or per country). Intuitively,

we can simply group by the days of visits and apply our bounceRate function on each group.
Although this makes sense in theory, it is problematic in practice because current dataflow engines
have the following (or similar) groupBy output type: Bag[(Day, Array[Visit])]. Here, the
inner collection, which holds one group of visits, is not the system’s collection abstraction. As a
result, the already written bounceRate function cannot consume it, because its input can only
be a Bag. One can try the usual workarounds explained before: While outer-parallel would be
to rewrite the bounceRate function to consume an Array instead of a Bag, inner-parallel would
be to rewrite groupBy to output an Array[(Day, Bag[Visit])]. However, besides requiring a
considerable extra effort to code them, it is hard to select the best of the workarounds. Making
such a selection depends on a complicated interplay of many factors, such as the group sizes,

53

54 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

number of groups and CPU cores, and memory size. Also note that neither of the workarounds
are suitable in case of skewed group sizes.

Ideally, we want to parallelize on both the outer and inner levels. This means running
the different invocations of the bounceRate function in parallel with each other, as well as
parallelizing the individual operations that are inside the bounceRate function. This requires
the following groupBy output type: Bag[(Day, Bag[...])], which indicates to the dataflow
engine that it should parallelize on both levels when processing the nested collection. One could
then benefit from high parallelism, low job launch overhead, and robustness to cluster- and
data-characteristics, such as data skew.

4.1.2 Partitioned Graph Analytics

We now discuss an example that highlights how proper nested parallelism support enhances the
composability of different algorithms, i.e., makes it easier for the user to build complex pipelines
out of smaller building blocks. Graph partitioning (e.g., connected components) is an important
building block in many graph processing algorithms [36, 103]. As an example, consider the task
of computing the average distances between all pairs of nodes in each connected component of
an input graph. For the first part of this task, current dataflow engines [77] typically1 provide a
connected components function similar to the following:

connectedComps: Graph => Bag[(VertexID, CompID)]

The above function takes a graph as input and produces a collection of vertices where each vertex
is tagged with the identifier of the component it belongs to. Assume that for the second part of
our task (i.e., computing the average distances between all node pairs in a connected component)
we already have a library function:

avgDistances: Graph => Double

Thus, we would need to call avgDistances on each component produced by connectedComps to
perform our task. However, avgDistances expects each connected component as one graph as
input while the output of connectedComps is a single collection for all the connected components
it identifies. Again, one would have to use one of the two common workarounds: outer- or inner-
parallel. Besides the performance problems we identified before, these workarounds require users
to modify the library functions or write cumbersome glue code between them.

We ideally want a nested collection as connectedComps’ output:
connectedComps: Graph => Bag[Graph], where Graph is itself represented by the collections
of its vertices and edges: (Bag[VertexID], Bag[(VertexID, VertexID)]). This allows us to
combine connectedComps and avgDistances in a natural way:

connectedComps(g).map(avgDistances)

The above line returns a Bag[Double] containing the average distances in each of the connected
components. Note that avgDistances is an iterative computation and hence existing systems,
such as TraNCE [166,167] and MRQL/DIQL [66,67], cannot flatten it.

1Flink Gelly:
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/
flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45,
Spark GraphX:
https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/apache/spark/graphx/
lib/ConnectedComponents.scala#L34

https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala#L34
https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala#L34

4.1. MOTIVATING EXAMPLES 55

4.1.3 Hyperparameter Optimization

Hyperparameter optimization is a common task in machine learning, which aims at building a
model with many different hyperparameter values to find out the setting that works best [17].
For example, consider the common case of a data scientist who aims at building a clustering
model using the K-means algorithm. To do so, she would like to run the algorithm with many
different random initializations of the centroids to find the best model for her needs.

In current systems, users typically employ the inner-parallel workaround to perform hyperpa-
rameter optimization: A loop in the driver program sequentially iterates over the hyperparameter
values and launches dataflow jobs for training a model with each of these values. However, this
workaround suffers from high job launch overhead, especially with many hyperparameter values.

Instead of workarounds, native support for nested parallelism would enable users to express
hyperparameter optimization in the following way: they create a bag of parameter values to try,
call a map on it, and in the UDF of the map train and test a model. For the training and testing,
they can use the system’s parallel operations. This allows the system to parallelize on both
levels: different hyperparameter values are tried in parallel, while at the same time individual
model training steps are also parallelized. This is shown in the following code (with a maxBy
instead of a map):

1 // Training examples:
2 val items = readFile(...)
3 // Create a collection of parameter values to try:
4 val params: Bag[Double] = ...
5 // Try each parameter value to find the best one:
6 params.maxBy {(p: Double) =>
7 // K-fold cross-validation for hyperparameter set to p:
8 new Bag(Seq(1,K)).map((rndSeed: Int) =>
9 trainingSet = items.sample(ratio, rndSeed)

10 validationSet = items minus trainingSet
11 model = train(p, trainingSet)
12 validate(model, validationSet)
13).avg // Take the average of the validation runs
14 }

Here, params.maxBy(f) (Line 6) calls f on each element of bag params and returns that element
of params for which f gave the largest value. This task has three nesting levels: The outermost
(non-nested) level, maxBy introduces the second level, and the map (Line 8) for the cross-validation
introduces the third level. Matryoshka allows dataflow engines to parallelize operations at all
these three levels (and more) and thus avoids the issues of the workarounds.

It is worth noting that machine learning training involves loops, and thereby a loop appears
inside the UDF in this example. Despite this common characteristic in modern data analytics,
state-of-the-art flattening-based systems [66,67,166] do not support loops at inner nesting levels.
Therefore, they are not suitable for this kind of tasks.

Note that some iterative hyperparameter optimization algorithms determine the hyperpa-
rameter values to try next based on the results of earlier values, which hinders parallelization.
Still, these algorithms often try many parameter values in one iteration step [53, 90], and thus
there are still parallelization opportunities. Also, sampling-based techniques often dynamically
vary the sample size [105]. Thus, it is important to efficiently handle both a large number of

56 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

small samples and a small number of large samples. A main feature of our system is exactly this
flexibility, as we experimentally demonstrate in Section 4.8.2.

4.1.4 Matrices as Nested Collections

We adapt an example task from Boehm et al. [26], and show how we can express the solution in
our system. We are given a matrix, where each column is treated as a separate vector, and the
task is to compute the correlations between all pairs of column vectors (which is representative
for more complex bivariate statistics). Suppose that we already have a library function for
computing the correlation between two vectors, where a vector is (sparsely) represented as a
collection of (index, value) pairs:

correlation: (Bag[(Int, Double)], Bag[(Int, Double)]) => Double

Suppose that a matrix is represented as a collection of (rowInd, columnInd, value) tuples.
Using a groupBy, we can transform this representation into a collection of column vectors. Then
we can use a cartesian product (cross) to get all pairs of columns, and then use a map to call
the above correlation library function for each pair:

// Matrix originally as (rowInd, colInd, value) tuples:
val m: Bag[(Int, Int, Double)] = ...
// Transform into Bag[(colInd, Bag[(rowInd, value)])]:
val cols: Bag[(Int, Bag[(Int, Double)])] =

m.groupBy(_.colInd)
.map(...) // project out colInd from the inner bags

// Compute the correlations:
(cols cross cols).map {((i, coli), (j, colj)) =>

(i, j, correlation(coli, colj))
}

4.1.5 Other Examples

Many other tasks in their natural specification require multiple levels of parallelism. For example,
many machine learning algorithms would benefit from nested parallelism [26], e.g., ensemble
learning [150] and building a multi-class classifier from a binary classifier using the one-vs-
rest approach [130]. Moreover, parallel dataflow engines often require broadcast variables for
accessing an originally parallel collection inside a UDF as a non-parallel collection [23]. In this
case, nested parallelism is beneficial as well because then the program is scalable in the size of
the collection that would have originally been broadcasted2.

4.1.6 Desiderata

We observe that, in all the above-mentioned examples, users can always employ one of the
common workarounds: outer- or inner-parallel. However, besides the effort of implementing
them, these two workarounds suffer from poor performance, being often far from the ideal (see
Figure 1.2). The reader might think users can manually write flattened versions of their nested
programs to solve the aforementioned problems. However, this is far from being realistic and

2https://issues.apache.org/jira/browse/SPARK-18731

https://issues.apache.org/jira/browse/SPARK-18731

4.2. MATRYOSHKA OVERVIEW 57

practical: Already for simple cases, such as the Bounce Rate example (Listing 4.1), it is hard to
devise a flattened version (Listing 4.3). This just becomes more challenging, even for expert users,
when there are control flow statements at inner nesting levels. Furthermore, manual flattening
is even less realistic when working with library functions written by someone else, such as in
Section 4.1.2.

To solve all these performance and usability problems, it is crucial to devise an automatic
solution for nested parallelism that provides scalability, and ease-of-use: Users should not worry
about workarounds or manual flattening. With this in mind, we identify three core desiderata
for proper nested parallelism support. The system should allow

1. scalable operations both inside and outside their UDFs;

2. nested collections;

3. loops at inner nesting levels.

4.2 Matryoshka Overview

In the following, we introduce Matryoshka, a system that flattens [22, 66, 175, 176] an input
program that has multiple levels of parallelism (nested-parallel program) into a program with
only one level of parallelism (flat-parallel program). This way, standard dataflow engines can
execute the program fully in parallel.

Figure 4.1 illustrates the general architecture of Matryoshka. Users provide their programs
in a high-level data analytics language that allows for nesting collections and parallel operations.
As mentioned before, we use Emma [9, 11, 12] as our query language, which is an embedded
DSL in Scala. This means that Emma is expressed in a general-purpose programming language
(similarly to Spark and Flink). For example, Listing 4.1 shows an Emma program for our per-day
bounce rate example. The crucial difference to Spark and Flink is that Emma’s data collection
type (Bag) and the operations over a Bag can be nested. It also allows for imperative control flow,
such as while loops and if statements. Note that our proposed techniques are compatible with
other analytics languages that have nesting, such as Pig Latin [136], SQL+nested data [146],
MRQL/DIQL [66,67].

Given a nested-parallel Emma program as input (the user’s program), Matryoshka removes
any nesting from (i.e., flattens) the program so that it can be executed on a standard dataflow
engine (without resorting to the inner-parallel or outer-parallel workarounds). We propose per-
forming this flattening in two phases. First, a parsing phase rewrites the input program by intro-
ducing into the code a set of new nesting primitives (InnerScalar, InnerBag, and NestedBag).
These nesting primitives inform the next phase about the nesting structure of the program.
Still in the parsing phase, Matryoshka turns imperative control flow constructs into higher-order
function calls. At the same time, it also makes closures explicit, i.e., when a UDF refers to an
outside variable, Matryoshka adds it as a parameter to the UDF.

One can see the output of the parsing phase as a logical plan, because the actual operator
implementations are still left open. In other words, the operations of the InnerScalar, InnerBag,
and NestedBag nesting primitives are not yet translated to flat operations of a parallel dataflow
engine. Thus, our next phase, which we call lowering phase, is responsible for this final translation
to a flat program: It executes the modified program outputted by the parsing phase, and when
it encounters an operation of the above nesting primitives, it selects a concrete implementation

58 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

Figure 4.1: Matryoshka architecture.

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val visitsPerDay: Bag[(Date, Bag[IP])] = visits.groupByKey()
3 visitsPerDay.map {(day: Date, group: Bag[IP]) =>
4 val countsPerIP = group.map((_, 1)).reduceByKey(_+_)
5 val numBounces = countsPerIP.filter(_._2 == 1).count()
6 val numTotalVisitors = group.distinct().count()
7 val bounceRate = numBounces / numTotalVisitors
8 return bounceRate
9 }

Listing 4.1: Bounce rate program (Section 4.1.1) using nested bags and nested parallel operations.
The brown parts are not supported in current dataflow engines.

and executes it. This lowering phase happens at run time because the selection of the optimal
implementation depends on the cardinality of intermediate datasets. Thus, for optimization
purposes, Matryoshka keeps track of the cardinalities at run time by exploiting the program
structure highlighted by our nesting primitives.

Note that the above splitting of the compilation into two phases also has the advantage that
we can minimize the amount of metaprogramming. Since we have an embedded DSL, flattening
necessarily involves some metaprogramming, i.e., changing the user’s code at the abstract syntax
tree level (see Section 4.3.1.1). However, we would like to minimize the metaprogramming,
because creating all the flat code with metaprogramming would be quite laborious. Therefore,
our first phase, which does the metaprogramming, just performs small transformations, such
as introducing the nesting primitives InnerScalar, InnerBag, and NestedBag, which are then
resolved to flat implementations in the second phase, at run time.

4.3. FLATTENING 59

For brevity reasons, in the following three sections, we assume that there are only two levels
of parallelism in the input program.

4.3 Flattening

Our goal is to produce efficient flat-parallel programs from nested-parallel programs to enable
execution on standard dataflow engines. This is challenging because finding the optimal operator
implementations requires knowledge about data characteristics, which are typically not available
at compile-time. We tackle this challenge by introducing a novel two-phase flattening process:
the parsing (performed at compile time) and lowering (performed at run time) phases. We then
present the core concept of lifting [20,175], which we rely on throughout both phases. Next, we
explain the three primitives the parsing phase uses to make nested-parallel operations explicit
(InnerScalar, InnerBag, and NestedBag). We also show how the lowering phase resolves these
primitives into calls to the standard, flat data-parallel operations of standard dataflow engines.
Finally, we show how to handle such bag operations that appear in a UDF of an operation other
than map.

4.3.1 Two-Phase Flattening

We perform the flattening of a nested-parallel program in two phases so that we can enable
further optimizations (Section 4.6). We first make explicit all nested-parallel operations in a
nested-parallel program (the parsing phase). We then translate these explicit nested-parallel
operations into efficient implementations having a single level of parallelism (the lowering phase).

4.3.1.1 Parsing Phase

This phase receives a nested-parallel program as input and outputs a program where all nested-
parallel operations are made explicit. This is carried out at compilation time leveraging meta-
programming, i.e., manipulating the abstract syntax tree of the input nested-parallel programs
provided by the user. Compile-time meta-programming is necessary for two reasons. First, we
need to turn scalar3 operations and control flow operations into staged computations.4 These
staged versions create a representation of the computation, which the system then can translate
to a flat-parallel computation in the lowering phase. Second, it is easier to distinguish between
Bags in different nesting situations at compile time while looking at the code as data, rather
than at run time. This distinction allows us to represent all Bags with flat Bags.

Let us illustrate this phase through the Bounce Rate example in Listing 4.1. The parsing
phase takes as input this program and outputs the explicitly nested-parallel program in Listing 4.2
by performing the following main changes (highlighted in brown). First, it wraps scalars that
are inside UDFs into InnerScalars (the lowering phase will need to turn these into Bags). For
example, in Listing 4.1, numBounces and numTotalVisitors in Lines 5–6 are scalars (integers),
while in Listing 4.2 they are InnerScalars. Second, it turns Bags inside UDFs into InnerBags.
An example is the group variable in Line 3 of Listing 4.1 and 4.2. Third, it turns nested bags,
i.e., Bag[(A,Bag[B])], into NestedBag[A,B], e.g., visitsPerDay in Line 2.

3We use the term scalar for any non-Bag type, even tuple types, such as (A,B).
4Staging a computation means creating a representation of the computation instead of executing it directly.

In general, staging allows a system to inspect a computation, transform it, instrument it, or execute it lazily.

60 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val visitsPerDay: NestedBag[Date, IP] = visits.groupByKeyIntoNestedBag()
3 visitsPerDay.mapWithLiftedUDF {(day: InnerScalar[Date], group: InnerBag[IP]) =>
4 val countsPerIP = group.map((_, 1)).reduceByKey(_+_)
5 val numBounces = countsPerIP.filter(_._2 == 1).count()
6 val numTotalVisitors = group.distinct().count()
7 val bounceRate = binaryScalarOp(numBounces, numTotalVisitors, _ / _)
8 return bounceRate
9 }

Listing 4.2: Explicitly nested-parallel bounce rate program.

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val countsPerIPPerDay: Bag[((Date, IP), Int)] =
3 visits.map((_, 1)).reduceByKey(_+_)
4 val numBouncesPerDay: Bag[(Date, Int)] =
5 countsPerIPPerDay.filter(_._2 == 1)
6 .map{case ((day,ip),count) => (day,1)}.reduceByKey(_+_)
7 val numTotalVisitorsPerDay: Bag[(Date, Int)] =
8 visits.distinct()
9 .map{case (day,ip) => (day,1)}.reduceByKey(_+_)

10 val bounceRatePerDay: Bag[(Date, Double)] =
11 (numBouncesPerDay join numTotalVisitorsPerDay)
12 .map{case (day, (numBounces, numTotalVisitors)) =>
13 numBounces / numTotalVisitors}

Listing 4.3: Flat-parallel bounce rate program, i.e., only using flat bags and one level of parallel
operations. Since there is no nesting anymore, this program can be executed on a standard
parallel dataflow engine, e.g., on Spark by just exchanging Bags with RDDs. (The key of operations
such as reduceByKey and join is the first element of the pairs.)

4.3.1.2 Lowering Phase

This phase receives an explicitly nested-parallel program (Listing 4.2) and outputs a flat-parallel
program (Listing 4.3). More specifically, it resolves the operations of the InnerScalar, InnerBag,
and NestedBag nesting primitives to flat physical implementations that are executable on a par-
allel dataflow engine. The resulting flat-parallel program is both equivalent to the initial input
nested-parallel program (Listing 4.1) and executable on any standard parallel dataflow engine.
For example, in our system architecture (Figure 4.1), SparkTranslator performs this phase for
Spark. There could be more translators added for other parallel dataflow engines, e.g., for Flink.

4.3.2 Lifting UDFs

Let us start by defining what it means to lift a UDF. As current dataflow engines cannot handle
parallel Bag operations inside a map UDF, we have to remove the map and perform the UDF’s
operations at the top level. This is known as lifting UDFs. Formally, if the original UDF had

4.3. FLATTENING 61

the type A=>B, the lifted version will have the type Bag[A]=>Bag[B]. Intuitively, lifting a UDF
consists of moving all the operations that were originally inside the UDF to the top level. (There
are other operations that have UDFs besides map, but here we explain the lifting of only map
UDFs. Section 4.3.6 discusses how to reduce other cases to lifting map UDFs.)

Lifting an operation does not only move it but also changes the operation. Originally, an
operation that is inside a UDF is invoked as many times as the UDF is invoked (disregarding
loops and other control flow for now). In a single call, the operation computes just one bag or
one scalar as its output inside the UDF. However, the lifted version of an operation is invoked
just once in total. During this single invocation, it needs to compute what the original version
computed over all the invocations of the UDF. If the original operation computed a scalar S, then
the lifted operation has to compute a Bag[S]. If the original operation computed a Bag[A], then
the lifted operation has to compute many bags, which could be expressed as a Bag[(T,Bag[A])].
Here, T denotes a tag type, which identifies inner bags by which UDF call they appeared in, see
Section 4.3.3. However, even though lifting bag operations in this way would indeed remove the
nesting of operations, but it would also introduce nested bags. Thus, the actual lifted operation
needs to represent the nested bag with a flat bag (as explained in Section 4.3.4).

For example, the operations in Listing 4.1 Line 5 have lifted versions in Listing 4.3 Line 4–6.
Observe the change in the variable names: the original operations computed numBounces for a
single day (an Int), while the lifted versions compute numBouncesPerDay (a Bag[Int]), i.e., the
number of bounces for each of the days.

In our two-phase flattening, lifting a map UDF is then performed as follows. The parsing
phase does not remove the map yet, it just changes the map into a mapWithLiftedUDF, to make
it explicit to the lowering phase that this UDF needs to be lifted. The reason we do not directly
perform lifting in a single phase is that our optimizations in Section 4.6 can be performed only
at run time: They need the information of which operations were in the same UDF. In contrast
to a normal map, a mapWithLiftedUDF calls its UDF only once (during the lowering phase), and
this single execution operates on all the elements of the bag that mapWithLiftedUDF is called
on. Inside the UDF of the mapWithLiftedUDF, a scalar that was in the original UDF is replaced
with an InnerScalar, which is represented by a Bag after the lowering phase. Similarly, a
Bag in the original UDF is replaced with an InnerBag, which has the same information as a
Bag[(T,Bag[A])], but is represented by a flat bag after the lowering phase.

4.3.3 InnerScalar

Lifting a UDF requires us to lift all its scalar operations. The challenge here is that scalar
variables originally do not involve any system-provided types, e.g., just a single Int value, and
not something like a Bag[Int]. This is a problem because the system needs to manipulate these
values to lift their operations.
Parsing Phase – Introducing InnerScalars. We propose to tackle this challenge by compile-
time metaprogramming [37], to change the code. Specifically, the parsing phase wraps scalar
variable types inside InnerScalar, i.e., a scalar type S turns into InnerScalar[S]. At the same
time, the parsing phase wraps scalar operations in the operations of InnerScalar. Specifi-
cally, b = f(a), where a and b are scalars, and f is a unary scalar operation, turns into b =
unaryScalarOp(a,f). Similarly, c = f(a,b), where a, b, and c are scalars and f is a binary
scalar operation, turns into c = binaryScalarOp(a,b,f). For example, if we have c = a +
b somewhere in a UDF, then what the system has to know is that c is computed from a and

62 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

b by some operation. Thus, we translate such a line of code as a binary scalar operation c
= binaryScalarOp(a,b,_+_), where a, b, and c are all InnerScalars. As a more concrete
example, Listing 4.2 shows such a lifted UDF with several InnerScalars in it. In summary,
InnerScalar makes the scalar operations inside UDFs explicit in the logical plan outputted by
the parsing phase, enabling optimized flat implementations in the lowering phase.
Lowering Phase – Translating InnerScalars to standard flat bags. The lowering phase
then resolves an InnerScalar to a flat Bag containing all the values that the variable would
have in all the invocations of the original UDF. By using a Bag, we are scalable in the number
of UDF invocations of the original code. For example, in Listing 4.1, the map UDF is originally
called for each day, and numBounces is a scalar that is computed for each day. The lowering
phase replaces this scalar with numBouncesPerDay, a Bag containing the values of numBounces
for each day.
Translating operations on InnerScalars to operations on flat bags. In detail, the imple-
mentation of unaryScalarOp is a map, which applies the given unary function (negation in the
above example) to each of the scalars. Implementing binaryScalarOp is a little more complex be-
cause we first have to bring together matching pairs of scalar values from its two inputs. That is,
we must find such pairs of scalar values that would have belonged to the same original UDF invo-
cation. Doing so allows us to execute the scalar operation over such pairs with a map. To achieve
this scalar match up, we add a tag to each element of the Bag that represents the InnerScalar.
A tag identifies invocations of the original UDF. For instance, in Listing 4.3 the tags identify
the days, and therefore numBouncesPerDay is a Bag[(Date, Int)]. We can then perform an
equi-join between the two input Bags representing the two InnerScalars, being the tag the join
key. In more detail, we implement binaryScalarOp(a,b,f) as a’.join(b’).map(f), where a’
and b’ are the Bags representing the a and b InnerScalars. For example, the flat version of
Listing 4.2 Line 7 is Listing 4.3 Line 10–13.

We create tags for all InnerScalars as follows: If the InnerScalar is created from another
InnerScalar (or InnerBag), we simply propagate the tags from the input; if mapWithLiftedUDF
runs on a NestedBag (Section 4.3.5), we then propagate the tags from the NestedBag; if
mapWithLiftedUDF runs on a non-nested Bag, we create the tags using zipWithUniqueId (a
standard operation in dataflow systems), which assigns unique tags. Note that the set of tags
is the same for all InnerScalars inside a UDF, which is important for our optimizations in
Section 4.6.

Earlier, we showed simplified generic type parameters for InnerScalars. However, the full
type involves the type of the tags as well as the type of the original scalar: InnerScalar[T,S].
After the lowering phase, this is represented as a Bag[(T,S)]. Formally, unaryScalarOp(s,f)
is resolved by the lowering phase to
s’.map((t,x)=>(t,f(x))), where s’ is a Bag[(T,S)] representing s. Moreover,
binaryScalarOp(a,b,f) is resolved to a’.join(b’).map((t,(x,y))=>(t,f(x,y))), where a’
and b’ are the bags representing the a and b InnerScalars.

4.3.4 InnerBag

Similarly to scalars, we must lift each Bag operation that is inside a UDF when lifting the UDF.
Originally, a Bag operation in a UDF creates many bags in many UDF invocations. The lifted
version creates just one flat bag for all the invocations of the UDF. This eliminates the per-bag
overhead occurring in each UDF invocation with the inner-parallel workaround. Still, lifting bag

4.3. FLATTENING 63

operations is tricky because the optimal physical implementation for joins and cross products in
some flattened operations depends on intermediate data characteristics visible only at run time.
We rely on our two-phase flattening process to overcome this difficulty.
Parsing Phase – Introducing InnerBags. The parsing phase introduces an InnerBag variable
instead of each Bag variable in the UDF. An InnerBag represents a collection of bags, where each
bag belonged to one invocation of the original UDF. For example, in Listing 4.1 countsPerIP is
a different bag in each invocation of the original map UDF. In the parsing phase, it is replaced
by an InnerBag (Listing 4.2 Line 4), which represents all these bags. InnerBag[A] contains
the same information as a Bag[(T,Bag[A])]: The T tags identify a UDF invocation, where the
corresponding inner bag occurred. However, the operations of InnerBag work with the inner
bags: For each of the classic operations of Bag[A] (e.g., map, filter, join, etc.), InnerBag[A]
has a corresponding operation that performs the same computation on all the inner bags. For-
mally, if there is a bag operation op: Bag[A]=>Bag[B], then its lifted version op’ has the type
Bag[(T,Bag[A])]=>Bag[(T,Bag[B])], and performs op’(xss) = xss.map(op). However, this
is a nested bag and we have to represent InnerBags with flat bags.
Lowering Phase – Translating InnerBags to standard flat bags. The lowering phase
resolves an InnerBag to be a flat Bag, which consists of all the elements of all the bags that
the InnerBag replaces. Similarly to InnerScalar, each element is tagged with an identifier of
the original UDF invocation. Formally, InnerBag[T,E] is resolved by the lowering phase to
Bag[(T,E)], where T is the tag type and E is the original Bag’s element type. For example,
from Listing 4.2 to Listing 4.3 countsPerIP is replaced by countsPerIPPerDay, which contains
all the values from all the bags that countsPerIP has, tagged by the day. As a more concrete
example, assume that, inside a UDF, there is a Bag variable whose value is {apple, orange} in
one UDF invocation and {dog, cat} in another. Then, the lowering phase could represent the
corresponding InnerBag as the flat bag {(0, apple), (0, orange), (1, dog), (1, cat)}.
Translating operations on InnerBags to operations on flat bags. InnerBag’s operations
mirror the operations of normal Bags: their signatures are the same but their inputs and outputs
are InnerBags and/or InnerScalars. The implementations of the operations are the lifted
versions of the corresponding Bag operations. We lift stateless Bag operations, which perform
over individual elements (such as map, flatMap, and filter), by performing the UDF on the
second component of the pairs and by forwarding the tags unchanged. Still, some other Bag
operations are stateful (e.g., aggregations). We lift these operations by keeping the state per
tag. For example, a reduce turns into a reduceByKey, where the key is the tag. Calling reduce
on an InnerBag then results in an InnerScalar. In case a Bag operation already has a per-key
state, we lift it by creating a composite key from the original key plus the tag. For instance, we
lift b.reduceByKey(f) (Listing 4.1 and 4.2, Line 4) as:

b’.map{case (t, (k, v)) => ((t, k), v)}
.reduceByKey(f)
.map{case ((t, k), v) => (t, (k, v))}

We also lift joins with a similar rekeying.
In our current implementation, these rekeying operations destroy information about the par-

titioning of the RDD, i.e., even if the RDD representing the InnerBag was already partitioned by
the tag before an InnerBag.reduceByKey call, a redundant repartitioning is later performed by
Spark again when there is a later operation needing a partitioning by the tag again. A careful

64 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

implementation could avoid this. For example, InnerBag.reduceByKey could be implemented
as follows for the case when the input RDD is already partitioned by tag: 1) Instead of map,
we would use mapPartitions, which has an optional argument for telling the system that the
UDF preserves the partitioning, and 2) Instead of calling reduceByKey, we would manually im-
plement the reduceByKey by using mapPartitions, where we would only perform the reduce
side, without a shuffle. A shuffle is not needed, because the rekeying before the reduceByKey is
injective.

Some other operations’ lifted versions are simply identical to the original operations, such as
distinct and union.

To handle operations that produce output for empty input bags (e.g., count has to produce
0), we additionally need to store all the tags in a separate Bag[T]. This is because InnerBag’s
representation Bag[(T,A)] does not have any element corresponding to empty inner bags. We
store the bag of tags once per lifted UDF, because they are the same for all InnerBags in a UDF.
(See also LiftingContext in Section 4.6.)

4.3.5 NestedBag

While InnerScalar and InnerBag are representations for scalars and non-nested Bags inside a
UDF, we still need to lift a nested Bag that is outside a UDF. The parsing phase introduces the
NestedBag for a nested Bag that is outside a UDF. This is the case for Listing 4.1 Line 2, where
a nested Bag comes from a groupBy, and is translated into a NestedBag in Listing 4.2 Line 2
Recall that NestedBags are a typical case in nested-parallel programs (Section 4.1.1–4.1.2).

To explain how the lowering phase translates a NestedBag to a flat Bag, we first focus on the
simplest case of a nested bag: Bag[Bag[I]], where I is some arbitrary scalar type. Similarly to
an InnerBag, we represent this as a flat Bag containing all the elements of the inner bags. Each
element of this flat Bag has a tag T that identifies which of the inner bags it originally belonged
to: Bag[(T,I)]. For instance, if the original nested bag is {{apple, orange}, {dog, cat}}, then
the lowering phase could represent the NestedBag with the flat bag {(0, apple), (0, orange), (1,
dog), (1, cat)}. Note that this is exactly the InnerBag type.

Still, in the more general case, the element type of the outer Bag is usually more complicated.
It usually has some other components besides the inner Bag. We capture these other components
in an arbitrary type O. Formally, we have a nested Bag before the parsing phase as follows:
Bag[(O,Bag[I])], i.e., the element type of the outer Bag is a pair of a scalar and an inner Bag.
The parsing phase turns this into a NestedBag[O,I]. Our flat representation of such a nested
Bag is composed of an InnerScalar[T,O] and an InnerBag[T,I]. For example, if our original
nested Bag was {(fruit, {apple, orange}), (animal, {dog, cat})}, then the NestedBag could be
represented by the InnerScalar {(0, fruit), (1, animal)} and the InnerBag {(0, apple), (0,
orange), (1, dog), (1, cat)}.

We further illustrate NestedBag by explaining the grouping of a flat bag, which is a com-
mon case of NestedBags. Specifically, let groupByKey be the operation that takes a bag of
key-value pairs Bag[(K,V)] and produces a Bag[(K,Bag[V])], where each of the inner bags
contains all the elements that have a specific key. The parsing phase changes a groupByKey to a
groupByKeyIntoNestedBag, which instead produces a NestedBag[K,V]. For example, grouping
the flat bag {(fruit,apple),(fruit,orange),(animal,dog),(animal,cat)} would result into the nested
bag already shown above.

4.4. DEALING WITH CLOSURES 65

4.3.6 Lifting non-Map UDFs

So far, we focused on lifting the UDF of a map. We now explain how to lift UDFs of other oper-
ations. We reduce other cases to lifting map UDFs via some simple program transformation. We
basically split a complex operation into a map with a UDF plus the UDF-less version of the original
operation. For example, consider the case where the input program has xs.groupBy(keyFunc).
We can change this into xs.map(x=>(keyFunc(x),x)).groupByKey(), where groupByKey is the
UDF-less version of groupBy (i.e., it uses the key that is already in the input tuples instead of a
UDF). Similarly, we can use the same splitting process for joins whose keys are given in UDFs,
for filter (using flatMap in the translation), and for maxBy (see Section 4.1.3).

In contrast, flatMap is a slightly different case. Here, we change xs.flatMap(f) into
xs.map(f).flatten(), where flatten is a special operation that removes the nesting struc-
ture. Flatten’s implementation simply removes the tags from an InnerBag.

The only operations whose UDFs we cannot lift are aggregations, e.g., reduce. Reduce’s
UDF is of the type (T, T) => T, and it uses this UDF to repeatedly combine elements of the
input bag. However, we could not think of any non-contrived example program where lifting such
a UDF would be actually needed, i.e., when reduce would be called on a nested bag and thus
the UDF would contain bag operations. Therefore, we believe that this is not a severe limitation
in practice. Note that this limitation is unrelated to lifting a reduce itself (i.e., not its UDF)
that is inside a UDF. This is a situation that we can handle, as explained in Section 4.3.4.

4.4 Dealing with Closures

Previously, we saw how to lift UDFs via three primitives for nested parallelism, namely InnerBag,
InnerScalar, and NestedBag. We now address the case where a UDF refers to a variable that is
defined outside the UDF, a.k.a., closure. For example, when initializing the ranks in PageRank,
we first have to compute the initial weight from the number of pages and then use this value
inside a UDF:

val initWeight: Double = 1.0d / pages.count()
val initPR = pages.map(x => (x, initWeight))

The challenge is that initWeight is in the memory of the driver program, while the UDF
typically runs on the worker nodes. Dataflow engines handle this situation by simply broadcasting
initWeight to all workers in the cluster. However, as we will shortly see, we have to make
additional considerations in our system. We will distinguish between two cases below, depending
on whether the UDF that has the closure is lifted.

4.4.1 Unlifted UDF Case

We first explain when this case happens. Consider the above two lines, where the UDF of the
map is not lifted but has a closure. Assume these two lines are themselves inside an outer UDF
and that such an outer UDF gets lifted because of its bag operations. In this case, initWeight
becomes an InnerScalar and the map becomes a lifted map (but its UDF is still not lifted).

The difficulty here is that the original reference to initWeight referred to just a single scalar
value. Leaving the code unchanged, the reference to initWeight would refer to all the scalars
that are in the InnerScalar. Instead, we model a map as a two-input operation: one input is
the pages bag and the other is the initWeight InnerScalar. It now becomes apparent that we

66 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

need a similar join on the tags as in a binary InnerScalar operation (see Section 4.3.3). That
is, each different value of initWeight has to meet the appropriate values of pages, i.e., those
with the same tag. We do so by introducing mapWithClosure, which takes the closure as an
extra argument and hands it into the inner UDF as an extra argument:

pages.mapWithClosure(initWeight, (x, clos) => (x, clos))

In more detail, mapWithClosure performs a join on the tags between the bags representing pages
and initWeight. Note that, due to this example’s simplicity, the inner UDF ended up being an
identity function, but this is not the case in general.

4.4.2 Lifted UDF Case

Consider our hyperparameter optimization in Section 4.1.3, where the Bag containing the training
data is defined at the outermost level but it is used inside a lifted UDF. This case is different
from the unlifted UDF case above because a lifted UDF is called inside the driver program. As
a result, we do not need to broadcast the closure to the worker nodes for the UDF to access it.

The difficulty in this case resides in that the closure is just a normal bag or scalar (not
InnerBag). We, thus, create a lifted version of the referenced bag (or scalar), where it is replicated
for each different tag value that is in the lifted UDF. However, this can make it very large, as it
involves replicating the bag (or scalar) as many times as the non-lifted version of the UDF would
have been invoked. To mitigate this problem, we create “half-lifted” operations, where only some
of the inputs are lifted. For instance, the following code performs a half-lifted equi-join between
left and right, where left is an InnerBag and right is a normal bag (left.repr accesses
the flat bag representing the InnerBag):

val rekeyed = left.repr.map {case (l,(k,v)) => (k,(l,v))}
val joined = rekeyed join right
joined.map {case (k, ((l, v), w)) => (l, (k, (v, w)))}

4.5 Control Flow at Inner Nesting Levels

We now discuss how to flatten programs in the presence of control flow statements inside UDFs.
If Matryoshka has to lift a UDF containing such statements, then it also needs to lift these
statements. However, doing so is challenging because control flow might go differently in different
executions of the UDF (e.g., loops exit at different iteration steps, or different if-branches are
taken). The lifted version of a control flow statement must cover all these different executions.
We leverage our two-steps flattening process to tackle this challenge. In the parsing phase, we
first substitute control flow statements with staged function calls (Section 4.5.1). In the lowering
phase, we then lift while loops and if statements (Section 4.5.2).

4.5.1 Control Flow as Higher-Order Functions

As a first step in the parsing phase (before we represent nested operations with our primitives),
we change control flow statements into (higher-order) function calls. This enables us to change

4.5. CONTROL FLOW AT INNER NESTING LEVELS 67

1 val allEdges: Bag[(Date, PageID, PageID)] = readFile(...)
2 val PRsPerDay = allEdges.groupBy(_.date).map {edges =>
3 val pages = edges.flatMap((a,b) => Seq(a,b)).distinct
4 var PR = pages.map(x => (x, initWeight))
5 do {
6 val newPR = ... // Compute one PageRank step (use PR from prev. step)
7 val delta: Double = PR.join(newPR)
8 .map{(k,(oldval, newval)) => abs(oldval-newval)}.sum
9 PR = newPR

10 } while (delta > epsilon)
11 return PR
12 }

Listing 4.4: PageRank – imperative control flow.

the function calls to the lifted versions. We, thus, encapsulate the lifted versions inside functions5,
which run during the lowering phase. This is similar to the operations of our nesting primitives
(InnerScalar, InnerBag, and NestedBag), which encapsulate the lifted versions of bag and
scalar operations. The function signatures are as follows. We express an if statement as a
function that takes as arguments the condition as a boolean value and a function for each of its
branches. Likewise, we express a while loop statement as a function that takes as argument the
body as a function. This body function takes the previous values of the loop variables as input
and returns both the next values of the loop variables and the value of the exit condition. Note
that these higher-order functions are similar to how several parallel dataflow engines support
control flow statements.

For example, Listing 4.4 shows an iterative program for computing PageRanks [140] per day,
which has control flow statements inside a UDF. This program is similar to our Bounce Rate
example in Section 4.1.1: it reads lines from a log file, groups these lines by date, and computes
a PageRank for each group. Listing 4.5 shows this program after we change the imperative while
loop to a higher-order function call (Lines 5–11). Then, the change to InnerBags, InnerScalars,
and NestedBags happens, and then the lowering phase finalizes the lifting to generate the flat-
parallel program.

4.5.2 Lifting Loops

We now focus on how we lift while loops and if statements. A lifted loop is basically a loop that
performs the work of many unlifted loops. In other words, the first iteration step of a lifted loop
executes the first iteration step of all the original loops, the second step of a lifted loop executes
the second step of all the original loops, and so on. The challenge is that the original loops might
finish at different steps from each other.

For example, consider the code in Listing 4.5. Before the lifting, the UDF of the map in
Line 2 is executed once for each element of the grouped bag (i.e., each group), i.e., there is a
separate loop for each group. However, recall that a lifted UDF is executed just once. This

5Alternatively, we could directly complete the lifting of the control flow statements during the parsing phase.
However, we want to minimize the amount of code generated by compile-time metaprogramming, because it is
much more tedious than writing code the normal way.

68 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

1 val allEdges: Bag[(Date, PageID, PageID)] = readFile(...)
2 val PRsPerDay = allEdges.groupBy(_.date).map {edges =>
3 val pages = edges.flatMap((a,b) => Seq(a,b)).distinct
4 val initialPR = pages.map(x => (x, initWeight))
5 val finalPR = doWhile(initialPR, PR => {
6 val newPR = // Use PR to compute one PageRank step
7 val delta: Double = PR.join(newPR)
8 .map{(k,(oldval, newval)) => abs(oldval-newval)}.sum
9 val cond: Boolean = delta > epsilon

10 return (newPR, cond)
11 })}
12 return finalPR
13 }

Listing 4.5: PageRank – loop as a higher-order function.

means that when the lifted UDF calls the lifted version of doWhile, the function should execute
all the iteration steps of all the loops.

We tackle this challenge by relying on the abstractions for lifted operations introduced in
Section 4.3. Assume we have already lifted all the bag and scalar operations inside the loop
body, i.e., substituted scalars and bags with InnerScalars and InnerBags. In this case, we
do not need to further modify the loop body when lifting the loop. This is because the lifted
versions of all the scalar and bag operations inside the loop body already do exactly what the
lifted loop needs: it executes the original operation on many scalars or bags at the same time.
Note that we also turn variables that are passed between iteration steps into InnerBags and/or
InnerScalars. For example, in Listing 4.5, the variables initialPR, PR, and NewPR are turned
into InnerBags by the parsing phase.

Still, we must manage data that enters or leaves the body at each iteration step and lift the
loop control logic. Specifically, we need to:

(P1) discard those parts of InnerBags and InnerScalars from the iteration steps whose original
loops have finished;

(P2) save the result of the discarded parts as soon as they finish; and

(P3) exit the lifted loop when all the parts are discarded, i.e., when all the original loops have
finished.

To check if an original loop has finished, we leverage the internal flat bag representation of
InnerScalars (i.e., Bag[(T,A)]). Recall that T is a tag identifying the original UDF invocations
and A is the type of the original scalar. Thus, the InnerScalar of the exit condition is represented
as a Bag[(LoopID, Boolean)], which tells us for each original loop if it should continue. For
instance, Line 9 in Listing 4.5 will be turned into such an InnerScalar. We leverage this bag
to achieve the above P1-P3 as follows (see Listing 4.6):

Impl. of (P1) We join each InnerBag and InnerScalar that enters the loop body with the
lifted exit condition on the tag to identify and discard those loops that already finished
(Lines 5 & 6);

4.5. CONTROL FLOW AT INNER NESTING LEVELS 69

1 var bodyIn: InnerBag[T,A] = initialBodyIn
2 var result = Bag.empty
3 do {
4 val (bodyOut, cond) = bodyFunc(bodyIn)
5 val bodyOutWithCond = bodyOut.joinOnTags(cond)
6 bodyIn = bodyOutWithCond.filter(_._2).map(_._1)
7 val finished = bodyOutWithCond.filter(not _._2).map(_._1)
8 result = result.union(finished)
9 } while (bodyIn.repr.notEmpty)

Listing 4.6: Lifted while loop. For ease of exposition, this code passes only one bag between
iteration steps, i.e., bodyFunc is an InnerBag[T,A]=>(InnerBag[T,A],InnerScalar[T,Bool])
function, such as in Listing 4.5

Impl. of (P2) We save into results bags exactly those values that we filtered out above, which
will contain all final results once the lifted loop exits (Line 7–8);

Impl. of (P3) If (P1) did not let through any element, then we exit the lifted loop. (Line 9)

4.5.3 Lifting If Statements

As mentioned before, the higher-order function version of an if statement is a function that takes
the condition as a boolean value, and takes two branch functions. As part of transforming the
code to this higher-order function representation, variables that are referenced from inside the if
statement but defined before the if statement are made explicit by adding them as parameters
to the branch functions. Similarly, variables that are assigned inside one of the branches and
then used later outside the if statement are made explicit by adding them as return values to
the branch functions.

A lifted if statement needs to do the work of many executions of the original if statement that
the original code would have executed in different UDF invocations. The challenge is that some
of the executions of the original if statement would have executed the then branch, while some
the else branch. Therefore, a lifted if statement executes both branches, but lets into each of the
branch functions only the values for those tags for which the if condition had the appropriate
value. (This is a somewhat similar idea to predication [28].)

In more detail, a lifted if statement takes an InnerScalar[T,Boolean], which specifies for
which of the tags does the if condition hold. Recall how loop exit conditions are joined on tags
with the loop variables to allow for filtering out tags for which the loop continues. A lifted if
statement can be implemented in a similar way: We join the InnerScalar of the condition on
the tags with the InnerBags and InnerScalars that are passed into the branches, and then filter
out those values where the condition has the appropriate value for the branch. This ensures that
when we then execute both branch functions, each of them only gets data belonging to those
tags where the condition had the appropriate value. Then we union the results of the branch
functions to get the final result.

70 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

4.5.4 Implementation

Here, we discuss some performance considerations when implementing the unioning of all the
partial result RDDs (called finished in Listing 4.6) in the lifted while loop. For ease of exposition,
Listing 4.6 Line 8 simply performs a binary (two-input) union at every iteration step: it unions
the RDD that stores the results of all earlier iteration steps (result) with the RDD that stores the
results coming from the current iteration step (finished). However, our actual implementation
is different, as explained in the next paragraphs.

First, we should not actually perform a binary union at every iteration step, since that
approach has an O(SN) worst-case total run time across all iteration steps, where S is the final
result size, and N is the number of iteration steps. This is because a binary union scans both
input RDDs, and therefore result elements from early iteration steps would get scanned again
and again in every remaining iteration step. Fortunately, Spark offers an n-ary union operator.
Therefore, instead of a cascade of binary unions, we just save all the finished RDDs in a list,
and apply an n-ary union after the loop is finished.

Second, we need to checkpoint (and manually force) the finished RDD at every iteration
step. This is needed to avoid referring back to RDDs from older iteration steps after the loop is
finished. Referring to the old RDDs would either trigger recomputations or considerably increase
the memory footprint of the program.

4.6 Optimizations

We now discuss how the lowering phase provides concrete operator implementations for the logical
plan outputted by the parsing phase. It uses an optimizer to choose the right physical operator
implementations at run time, based on different data characteristics. Most of the optimizations
depend on the sizes of the bags representing the InnerScalars. Fortunately, the structure of
the program, which is visible at the logical plan level, gives vital information about the sizes of
InnerScalars to the optimizer. In the remainder of this section, we first discuss how we track
the sizes of InnerScalars and then discuss optimizations based on these sizes.
InnerScalar Sizes. We exploit an important observation to track the sizes of InnerScalars:
All InnerScalars inside a lifted UDF have the same size. Recall that the bags representing
InnerScalars consist of (tag, scalar-value) pairs, where the tag is a unique key. Therefore,
the size of these bags depends on the number of different tags, which is constant across all lifted
operations inside a lifted UDF. This is because tags are in one-to-one correspondence with calls
that would have been made to the original UDF. This means that all InnerScalars inside
a lifted UDF have indeed the same size, and this size is known at the beginning of a lifted
UDF. The optimizer uses this size information when making decisions about physical operator
implementations, such as partition counts.
Computing and Tracking InnerScalar Sizes. Each lifted UDF has an associated metadata
object, which we call LiftingContext, which stores the InnerScalar size of that UDF. Op-
erations inside the lifted UDF always get the LiftingContext as an implicit argument. When
the LiftingContext is created, the InnerScalar size can be determined in several different
ways, depending on whether the current UDF is of a map whose input argument is a flat or a
NestedBag. 1) If it is a flat bag, then the size will be simply the size of this input bag; 2) If
it is a NestedBag, then the size is determined at the point where the NestedBag is created: if
it was created inside a lifted UDF, then we simply take the size information from that UDF’s

4.6. OPTIMIZATIONS 71

LiftingContext; if the NestedBag is created by a grouping, then we compute the number of
distinct keys.

4.6.1 Partition Counts of InnerScalars

Dataflow engines distribute programs across a cluster by partitioning bags and the computations
that create bags. If a bag is small, then each partition gets only a few elements, causing a high
relative per-partition overhead that dominates run time. Thus, it is important to set the number
of partitions in accordance with the bag’s size. In general, this is not possible to do for every bag
because we know the size of a bag only once the bag is already fully computed: at this point,
the per-partitioning overhead already occurred. Fortunately, we can do this for InnerScalars,
because we know their sizes upfront, as explained above.

4.6.2 Joins between InnerBags and InnerScalars

Recall from Section 4.4 that the mapWithClosure operation is implemented as a join between the
bag representing the InnerBag (the primary input) and the bag representing the InnerScalar
(the closure). A similar join occurs in the implementation of a lifted do-while loop (Line 5 in
Listing 4.6).

To implement these joins, there exist multiple join algorithms in dataflow engines: A broad-
cast join is better when one of the join inputs is small while a repartition join is better when
both inputs are large, and the key cardinality is also large enough. In many cases, selecting the
wrong join implementation results in a program failing or with more than an order of magni-
tude worse performance. Here we again exploit the previously collected information about the
sizes of InnerScalars to select the right join implementation. Specifically, we always choose a
broadcast join when there are not enough elements in the InnerScalar to give work to all CPU
cores. Above that, our current threshold for switching to a repartitiong join is 10000 elements
in the InnerScalar.

Note that dataflow engine optimizers can make similar join algorithm choices by themselves
in some cases. However, we have more information here than what is typically available to
an engine optimizer [14]: we know InnerScalar sizes already before they are computed (which
enables, e.g., fusing the join shuffle’s map side with preceding operations), and we also know that
the join key is a unique key in InnerScalars. We currently use this information as explained
above, but in the future it might be also possible to have a closer integration with a dataflow
engine optimizer, such as Catalyst [14]: Instead of directly making the join algorithm choice, we
could give the above information as hints to the engine optimizer. Currently we do not perform
cost-based optimization, which is out of scope for this thesis, but integration with a mature
system optimizer could enable that.

4.6.3 Half-lifted MapWithClosure

Recall from Section 4.4, that there exist half-lifted operations in lifted UDFs, where only one
of the inputs comes from inside the UDF, while the other input comes from outside. One of
these operations that have a half-lifted version is mapWithClosure, with the closure being an
InnerScalar from inside the UDF and the primary input being a closure of the enclosing UDF.
For example, this occurs in K-means, when we compute the new center assignment: We call
mapWithClosure on the bag of points (which does not change between K-means runs, and is

72 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

therefore outside the lifted UDF), with the closure being the current means. In this case, a
mapWithClosure is a cross product between the bag representing the InnerScalar and the
primary input bag.

One can implement this cross by broadcasting one of its inputs. However, the challenge
resides in selecting which input to broadcast. We address this as follows: If the InnerScalar
has only 1 partition, then we broadcast it. This is quick to check, and it is also the common case
due to the optimization in Section 4.6.1. Otherwise, we use Spark’s SizeEstimator to compare
the sizes of the two inputs and broadcast the smaller one.

4.7 Completeness and Correctness

We show proof sketches for the completeness and the correctness of our flattening procedure.
Before proceeding, let us mention that we assume that bags do not appear inside other data struc-
tures, such as Array[Bag[...]]. We believe this is a negligible limitation because such nesting
structures arise mainly when employing different variations of the inner-parallel workaround,
which is not needed when using Matryoshka. As mentioned in Section 4.3.6, we also assume
that the UDFs of bag aggregations, such as reduce, do not contain bag operations, which is an
uncommon case in practice. Also, we do not support recursive functions. This is because we
handle function calls by simply inlining them (through Emma’s compiler infrastructure).

Theorem 1. (Completeness) Matryoshka can flatten any nested program expressed with the
standard bag operations and without bags embedded in other data structures or in aggregation
UDFs and without recursive functions.

Proof. (Sketch) For brevity, we first show the proof for two levels of parallelism. The proof shows
that the parsing phase can always transform nested bags and UDFs with bag operations into the
InnerBag, InnerScalar, NestedBag nesting primitives (which have flat implementations).

As mentioned before, a preparation step of the parsing phase eliminates those non-map op-
erations that have UDFs with bag operations (Section 4.3.6), eliminates closures (Section 4.4),
and transforms control flow statements into a functional representation (Section 4.5.1). Then,
the parsing phase traverses the code statement-by-statement (compound statements are broken
down into atomic statements, similarly as in Section 3.3.1), and makes local changes to certain
statements. Thus we focus on proving that the parsing phase can handle any statement in the
input program. The next two paragraphs cover statements outside and inside UDFs, respectively.

The parsing phase modifies a top-level statement, i.e., that is not inside any UDF, based
on whether its UDF contains bag operations and whether its inputs and/or outputs are nested,
which leads to three cases:

1. The operation’s UDF contains bag operations. A top-level operation can only be a map in
this case, because all operations whose UDFs involve bags were eliminated by our aforemen-
tioned preparation step. Thus, the parsing phase turns the map into a mapWithLiftedUDF6;

2. Flat input and nested output. If the top-level operation is a map, the parsing phase modifies
it as in the previous case. Otherwise, the top-level operation is a groupByKey (no other
operation could introduce a nested bag from a flat bag) and hence the parsing phase turns
it into a groupByKeyIntoNestedBag;

6Recall that mapWithLiftedUDF’s UDF’s input/output types involve InnerBag and/or InnerScalar based on
the input/output types of the original map UDF.

4.7. COMPLETENESS AND CORRECTNESS 73

3. Nested input. This case occurs because of earlier statements whose outputs were already
transformed into a NestedBag. Here, if the top-level operation is a map, the parsing phase
turns it into a mapWithLiftedUDF. Otherwise, the top-level operation can only be a UDF-
less bag operation, which all have their flattened versions on NestedBag.

For statements inside UDFs, the parsing phase has to change them only if it lifts the UDF (i.e.,
when the UDF has bag operations). In this case, it turns each scalar value into an InnerScalar
and each Bag into an InnerBag. Operations of these types are substituted in place of the original
operations as explained in Sections 4.3.3 and 4.3.4. It also turns control flow operations into
their lifted equivalents (Section 4.5.2). Note that the lifting of operations that are in the bodies
of control flow constructs proceeds as usual, i.e., a surrounding control flow construct has no
effect on the lifting of an operation.

We now briefly discuss the case of handling more than two levels of parallelism. In this case,
we create a more complex NestedBag type, which has a separate instance of InnerScalar for
each intermediate level and one instance of InnerBag for the innermost level. Lifting tags for
three or more levels are composed of one lifting tag for each outer level. These tags are combined
into a composite key, which ensures that the implementations of the lifted operations are the
same for InnerBags and InnerScalars at any level.

Theorem 2. (Correctness) Matryoshka always produces a flat program that is equivalent to the
original input nested program.

Proof. (Sketch) The proof first shows that changing the data from the original representation
to our flattened representation is an isomorphism. That is, we can go from the original data
representation to our flattened data representation by such a map7 m, that 1) m is a bijection,
and 2) m preserves all the bag- and scalar operations. Bijection here means that different original
data structures are mapped to different flattened data structures. m preserving an operation f
means that m(f(x)) = f ′(m(x)), where f is an original operation in the user’s program, and
f ′ is the flattened version of the operation, operating on the flattened data. In other words,
if we first perform an original operation and then change to the flattened data representation,
we get the same result as if we first changed to the flattened data representation and then
performed the flattened version of the operation. For binary operations, preservation means
m(f(x, y)) = f ′(m(x),m(y)).

After we establish the isomorphism property for all the operations, the next step of the proof
is to note that the entire program from the inputs up to just before the final output operation8

is a composition of operations that are each preserved by m. Thus, the entire program up to
just before the output operation is also preserved by m. As a result, an output operation in the
flattened program receives the same data as if we ran the original program and just changed to
the flat data representation at the last moment before the output operation.

The final step of the proof is to show that for an output operation o, we can implement a
flattened output operation o′, for which o(x) = o′(m(x)) (or, equivalently, o′(x′) = o(m−1(x′))).
That is, the flattened output operation creates the same output file from the flat data represen-
tation as the original output operation would have created from the nested representation. This
way, the flattened program will produce the same output as the original program.

7The word “map” is used here in the mathematical sense, as opposed to the bag operation map in other parts
of the thesis.

8By output operation we mean writing a bag to a distributed filesystem, such as HDFS [164].

74 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

4.8 Evaluation

We implemented the experiments for Matryoshka on Spark 3.0 with OpenJDK 14 and Scala 2.12.
As a distributed filesystem, we used HDFS 2.7.1.

We carried out several experiments to demonstrate that the performance of our system is
consistent across a wide range of input dataset characteristics. We compare our system to
common practices for running nested-parallel programs on dataflow engines: namely the inner-
parallel and outer-parallel workarounds. We also compare to other systems supporting nested
parallelism, namely SystemDS [24, 26] and DIQL [67]. We designed the experiments to answer
the following questions: How does Matryoshka

(i) handle a varying number of inner computations?

(ii) scale with the number of machines?

(iii) handle skewed inner computation sizes?

(iv) chooses different operator implementations to achieve high efficiency?

(v) compare to DIQL [67] and SystemDS’ parfor construct [26]?

4.8.1 Setup

Hardware. We ran most of our experiments on a cluster of 25 machines: each with two 8-core
AMD Opteron 6128 processors, 32GB main memory, 4×1 TB hard disks, and 1 Gb network, and
64-bit Ubuntu Linux 18.04. We also experimented with a large cluster, see Section 4.8.8.
System Configuration. We configured Spark and HDFS with one node as the main/name
node and the others as workers/data nodes. We dedicated 22 GB memory per machine to Spark
processes and set the Spark default parallelism to 3× the total number of cores.9

Tasks and Datasets. We considered data analytics tasks from different areas: namely PageR-
ank (graph analytics), Average Distances (graph analytics), K-means (machine learning), Bounce
Rate (web analytics), and Pairwise Correlations (statistics). While Bounce Rate, Average Dis-
tances, and Pairwise Correlations are explained in Sections 4.1.1, 4.1.2, and 4.1.4, PageRank
and K-means are well-known tasks. To put PageRank at the inner nesting level, we perform a
grouping of the graph edges and compute a separate PageRank for each group (similarly to the
Bounce Rate example). This way, the program computes many PageRanks in parallel, similarly
to Topic-Sensitive PageRank [82] and BlockRank [97]. Listings 4.1 and 4.4 show the code for
Bounce Rate and PageRank, respectively. Note that K-means, PageRank, and Bounce Rate
have two levels of parallelism, while Average Distances has three levels. Note that Bounce Rate
and Pairwise Correlations have no control flow statements while the other three do. We gen-
erated datasets for each task, with sizes varying between 2 GB – 384 GB. Grouping keys are
generated from a uniform distribution, except in the data skew experiment where we used a Zipf
distribution.
Baselines. We considered the inner- and outer-parallel workarounds as well as DIQL [67] and
SystemDS [26] as baselines.

9The Spark documentation suggests setting the parallelism to 2-3× the total number of cores:
https://spark.apache.org/docs/3.0.0/tuning.html#level-of-parallelism

https://spark.apache.org/docs/3.0.0/tuning.html#level-of-parallelism

4.8. EVALUATION 75

R
un

ti
m

e
(s

)

1 2 4 8 16 32 64 128 256 512

103

104

105

Number of inner computations

Outer-p. Inner-p. Matryoshka

(a) K-means

1 2 4 8 16 32 64 128 256 512

103

104

Number of inner computations

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

(b) PageRank

4 8 16 32 64 128 256 512

103

104

Number of inner computations

R
un

ti
m

e
(s

)

O
O

M

O
O

M

(c) Average Distances

Figure 4.2: Scalability in the number and sizes of inner computations.

Repeatability. All the numbers we report are the median of three runs. We provide the code
of all our experiment programs10.

4.8.2 Weak Scaling

We start by evaluating scalability in both inner and outer collection sizes. In detail, we varied
two parameters (such as in a weak scaling experiment): (i) the number of inner computations
(outer scalability), and inversely, (ii) the input sizes of inner computations inner scalability). We
vary these two parameters at the same time so that the total input dataset size remains constant
(e.g., 20 GB for PageRank) thereby we can better evaluate the impact of nested parallelism. We,
thus, expect the run time to stay nearly constant.

Figure 4.2 shows the results for all our iterative tasks, i.e., with control flow statements (K-
means, PageRank, and Average Distances). We observe that Matryoshka scales gracefully with
the number of inner bags. This is not the case for the two workarounds, whose performance
is heavily affected by the number of inner computations. Matryoshka is up to two orders of

10https://github.com/ggevay/matryoshka

https://github.com/ggevay/matryoshka

76 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

magnitude faster than outer-parallel (for K-means) and up to 48× faster than inner-parallel
(for PageRank). More importantly, in the worst case, it achieves similar performance as both
baselines. Specifically, it is similarly good as inner-parallel for a very low number of inner
computations and similarly good as outer-parallel for a very large number of inner computations.
Surprisingly, our system is a bit faster than inner-parallel even for a small number of inner
computations in case of PageRank and Average Distances. This is due to the inner-parallel
workaround performing an extra groupBy when the nested bag is produced by a groupBy, which
is the case for PageRank and AverageDistances but not for K-means. Our technique avoids this
groupBy, as we work on the flat representation. Also note that our system obtains the best
performance compared to baselines for Average Distances, because this task has three levels of
parallelism. In such cases, outer-parallel can parallelize only the first level while inner-parallel
only the third. Matryoshka can parallelize all levels.

Overall, Matryoshka’s high performance comes from two main aspects. First, it makes use
of parallelization opportunities inside each inner computation, e.g., inside one K-means run
with a certain starting centroid configuration. Second, the number of Spark jobs it launches is
independent of the number of inner computations, keeping its overhead low and constant. This
is also why it maintains its performance close to constant for any number of inner computations.
In contrast, outer-parallel suffers from not fully parallelizing inner levels: it brings inner levels
into a single machine. On the other side, inner-parallel suffers from a high total job launch
overhead, which just gets amplified with iterative tasks.

We also observe that in the sweet spots, i.e., where both baselines are equally good (at 32
and 64 inner computations), our system is still at least ∼5× and up to 12× faster than both
baselines. This shows that even if users (or an optimizer) could select the best workaround for
a given number of inner computations, they still have significant drop-downs in performance
compared to Matryoshka.
Matryoshka scales in both inner and outer collection sizes, reaching orders of magnitude better
performance than baselines.

4.8.3 Scaling Out

We performed an experiment for each task varying the number of machines. We set the input
sizes and number of inner computations to 64. For each experiment, we start the line from where
there is enough total memory to avoid crashes or extra spilling to disk.

Figure 4.3 shows the results of this experiment. Overall, we observe that our system scales
gracefully, while the workarounds do not: when adding more machines, Matryoshka consistently
gets faster, while the two workarounds’ run times remain constant in many cases, or sometimes
even worsen. With the maximum number of machines, our system is 5–20× faster than inner-
parallel, and 2–7× faster than outer-parallel. The performance advantage of our system comes
from the same reasons as in the previous experiment: namely outer-parallel lacks inner-level
parallelism and inner-parallel has a high job launch overhead. In fact, we observe that the
overhead of inner-parallel just gets worse as we increase the number of machines because of two
main factors (see also Figure 3.7): more partitions mean more (i) scheduling and (ii) task-launch
overheads [138]. Matryoshka does not suffer from any of these problems.

When increasing the number of machines, Matryoshka scales better than the inner- and outer-
parallel workarounds.

4.8. EVALUATION 77

R
un

ti
m

e
(s

)

2 4 6 8 10 12 14 16 18 20 22 24
0

2,000

4,000

Number of machines

Outer-p. Inner-p. Matryoshka

(a) K-means

8 10 12 14 16 18 20 22 24
0

1,000

2,000

Number of machines

(b) PageRank

2 4 6 8 10 12 14 16 18 20 22 24
0

2,000

4,000

6,000

Number of machines

R
un

ti
m

e
(s

)

(c) Average Distances

Figure 4.3: Scalability in the number of machines.

4.8.4 Performance Without Control Flow – Comparison with DIQL

We now evaluate the performance of Matryoshka when a task has no control flow statements.
We repeated the experiments from Section 4.8.2 and Section 4.8.3 but using the Bounce Rate
task, which has no control flow statements. In addition to the inner-parallel and outer-parallel
workarounds, we also considered DIQL as a baseline. (DIQL does not support control flow
statements in the inner levels, and therefore we did not use it for the previous experiments.) We
used 256 inner computations for the scale-out experiment.

Figure 4.4 shows the results. We observe that the performance of our system is again nearly
constant with respect to the number of inner computations. In contrast, DIQL and outer-
parallel run out of memory in all the cases and inner-parallel suffers from the job launch overhead.
Surprisingly, DIQL was not able to flatten this program: It applied the outer-parallel workaround
instead, resulting in out-of-memory errors. In constrast, our system is up to 5× faster than inner-
parallel. For 4–32 inner computations, inner-parallel is ∼1.3× faster than Matryoshka. This is
because this program is constrained by memory when the entire input data is processed at the
same time, and hence spilling to disk occurs for Matryoshka. In contrast, inner-parallel processes
it in smaller chunks per job thereby avoiding spilling.

As DIQL ran out of memory in all cases for 48 GB input, we ran another experiment with
only 12 GB, to be able to compare execution times. Figure 4.5 shows the results. We observe

78 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

1 2 4 8 16 32 64 128 256 512

1 · 103

2 · 103

4 · 103

Number of inner computations

R
un

ti
m

e
(s

)

DIQL Outer-p. Inner-p. Matryoshka

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

(a) Weak scaling.

12 14 16 18 20 22 24
0

500

1,000

1,500

2,000

Number of machines

R
un

ti
m

e
(s

)

Inner-parallel Matryoshka

(b) Scaling out. Outer-parallel ran out of memory in all cases here.

Figure 4.4: Bounce Rate (no control flow). Input size is 48 GB.

that Matryoshka is faster than DIQL in all cases, by up to 6.6×.

Matryoshka is faster than baselines also when programs do not involve control flow statements.

4.8.5 Comparison with SystemDS’ Parallel For Loop

We now compare Matryoshka with SystemDS’ parallel loop construct. Boehm et al. [26] intro-
duced a parallel for loop (or parfor) in Apache SystemML/SystemDS [24,25,74], which allows for
adding outer levels of task parallelism on top of the data parallelism of linear algebra operators.
SystemDS uses a sophisticated optimizer to choose between different execution strategies for each
level: sequential execution; parallel on multiple cores of one machine (termed local parallelism);
or in a MapReduce/Spark11 job (termed remote parallelism). These execution strategies have

11Originally, Boehm et al. [26] described parfor execution on MapReduce, but SystemDS (which was formerly
SystemML) currently uses Spark.

4.8. EVALUATION 79

1 2 4 8 16 32 64 128 256 512

102

2 · 102

4 · 102

8 · 102

Number of inner computations

R
un

ti
m

e
(s

)

DIQL Matryoshka

O
O

M

O
O

M

O
O

M

O
O

M

Figure 4.5: Performance against DIQL for Bounce Rate. Input size is 12 GB.

further details to be chosen by the optimizer, such as how many parallel worker threads to use,
how to partition the input data of the parallel loop and how to merge the results.

Still, as SystemDS does not employ flattening, it cannot parallelize multiple levels using the
same remote-parallel Spark job. Therefore, we expect Matryoshka to have an edge over SystemDS
in certain cases: First, SystemDS might run into the usual problems of the outer- or inner-parallel
workarounds (such as the outer level not providing enough parallelism, or launching too many
Spark jobs for the inner executions). Second, deciding between the many possible execution
strategies for a complex program seems to be a very hard problem, and therefore the optimizer
might make wrong choices sometimes.

For this experiment, we used the pairwise correlation example of Boehm et al. [26], which
computes correlations between all pairs of columns of a matrix. In SystemDS, this task involves
three levels to be possibly parallelized: two nested parfor loops plus the vector operations at
the innermost level. How to express this task in our system is described in Section 4.1.4. In our
case, the nested parfor loops are substituted with a cartesian product, and therefore we have
only two levels to be parallelized. Matryoshka flattens these two levels, and therefore it always
parallelizes at all levels, using Spark.

We generate random matrices, and we vary the number of columns in powers of 2. For each
2-fold increase in the number of columns, the total amount of work to be performed should
increase 4-fold. We ran the experiment with two kinds of matrices (they are ∼3.6 GB with 128
columns):

1. dense with 106 rows (Figure 4.6)

2. a sparsity of 0.01 with 108 rows (Figure 4.7).

SystemDS uses an optimized matrix representation, which makes matrix/vector operations much
faster than Matryoshka in the dense case. In the sparse case, this advantage is greatly reduced.
SystemsDS’s Spark configuration (default parallelism, memory, version, etc.) is the same as
Matryoshka’s, except that we used JDK 11.0.2 instead of JDK 14 to work around an obscure
classloader issue.

We ran SystemDS in four configurations:

80 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

2 4 8 16 32 64 128

101

102

Number of columns

R
un

ti
m

e
(s

)
Matryoshka SystemDS auto. opt. SystemDS local-local

SystemDS remote-local SystemDS local-remote

O
O

M

H
D

F
S

erro
r

H
D

F
S

erro
r

H
D

F
S

erro
r

H
D

F
S

erro
r

H
D

F
S

erro
r

H
D

F
S

erro
r

Figure 4.6: Pairwise Correlations task – Comparison with SystemDS – dense input matrix

• optimized automatically : We let the optimizer freely choose execution strategies for all
levels.

• local-local : We constrain the optimizer to using local parallelism for both the outer parfor
and the inner parfor. This execution strategy uses only a single machine.

• remote-local : We constrain the optimizer to using a Spark job for the outer parfor, and
local parallelism for the inner parfor.

• local-remote: We constrain the optimizer to using local parallelism for the outer parfor,
and Spark jobs for the inner parfor.

Figure 4.6 shows the results for the dense matrix case. SystemDS’ optimized matrix repre-
sentation makes it faster than Matryoshka in all cases. Matryoshka runs out of memory with 128
columns, while SystemDS is still able to finish. (SystemDS in the local-remote configuration fails
with a HDFS error while creating a temporary file. This might be due to a bug in SystemDS
or HDFS, or some issue in our HDFS infrastructure.) Notably, the optimizer always chooses
a local-local execution strategy, which is indeed the best choice in all cases. (The difference
between local-local and auto. opt. with 64 columns is only due to a large variance with that
configuration in the run times of different runs.)

Figure 4.7 shows the results for the sparse matrix case, which shows a more nuanced picture,
because here SystemDS’ matrix representation has less advantage. Even though with a few
matrix columns SystemDS’ local-local strategy is still faster than Matryoshka, with more columns
Matryoshka becomes faster. This is because having more columns allows for more parallelization,
which Matryoshka can make better use of than SystemDS’ local-local strategy.

It is interesting to examine whether the optimizer can choose the best execution strategy
also in the sparse matrix case. The optimizer always chooses the local-local execution strategy,
similarly as in the dense matrix case. However, in the sparse matrix case, the remote-local and
local-remote strategies are better than the local-local strategy with many columns (by more
than an order of magnitude with 128 columns), and are able to keep up with or outperform
Matryoshka. However, the optimizer always chooses local-local, i.e., it is not able to find the best

4.8. EVALUATION 81

2 4 8 16 32 64 128

101

102

103

104

105

Number of columns

R
un

ti
m

e
(s

)

Matryoshka SystemDS auto. opt. SystemDS local-local-seq.
SystemDS remote-local-seq. SystemDS local-remote-seq.

O
O

M
K

illed
after

1
7

h
o
u
rs

O
O

M

O
O

M

O
O

M

Figure 4.7: Pairwise Correlations task – Comparison with SystemDS – sparse input matrix. We
killed auto. opt. after 17 hours, but the execution plan was the same as local-local, and therefore
in the results analysis we assume a similar run time.

choice among SystemDS’ different execution strategies. Matryoshka does not have an optimizer,
but instead flattens the nested parallelism, and thus parallelizes all levels using the same Spark
job.

Matryoshka runs out of memory with 128 columns, but neither of SystemDS’ four execution
strategies have this problem. This is because SystemDS’ optimizer can make a smart choice on
how many parallel instances (parameter k) of the parfor loop body can be running in parallel
to fit in memory. This parameter is essentially infinite in case of Matryoshka: all instances of
the inner computation run in the same Spark job. However, we could incorporate a similar
optimization as SystemDS: We could have an execution strategy that is a hybrid between the
flattened and the inner parallel workarounds: The inner parallel workaround runs one instance of
the inner computation per one Spark job, but we could instead run k instances in the same Spark
job, running the lifted version of the inner computation n/k times, where n is the number of
inner computations. This way, we would avoid running out of memory in some cases, similarly to
SystemDS. Also, this would avoid disk spilling in cases such as the one mentioned in Section 4.8.4
(4–32 inner computations in Figure 4.4a).

SystemDS’ specialized matrix representation provides a big advantage over Matryoshka in case
of dense matrices. However, with sparse matrices, Matryoshka’s flattened execution strategy
can make use of more parallelization opportunities than the execution strategy that SystemDS’
optimizer chooses.

4.8.6 Data Skew

We evaluate Matryoshka under data skew. We created skewed versions of Bounce Rate and
PageRank by changing the input generation to draw the grouping keys from a Zipf (instead of
uniform) distribution. This resulted in a few large groups and many small groups (1024 in total).

Figure 4.8 shows the results. We observe that Matryoshka significantly outperforms both
workarounds. It is 11×–71× faster than inner-parallel while outer-parallel always fails with out-

82 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

BounceRate
PageR

ank
102

103

104

3
,4
9
0

23
,9
73

3
10 33
6

R
un

ti
m

e
(s

)

Outer-p. Inner-p. Matryoshka

O
O

M

O
O

M

Figure 4.8: Skew handling.

of-memory. This experiment severely hits the already-explained issues of both workarounds.
More interestingly, we observe that our system is not significantly affected by skew: its run times
are within 15% of running on unskewed data of the same size.

Matryoshka is not affected significantly (∼15%) by data skew, achieving 71× better performance
than baselines.

4.8.7 Optimizations

We now study the efficiency of our optimizations discussed in Section 4.6.

4.8.7.1 InnerBag-InnerScalar Joins

We performed an experiment with PageRank to evaluate the effectiveness of Matryoshka to select
the right join algorithm (broadcast vs. repartition, see Section 4.6.2) when varying the number
of inner computations. Figure 4.9a shows the results. We observe that Matryoshka’s optimizer is
highly effective in selecting the right algorithm at any number of inner computations. It selects
the broadcast join when having a small number of inner computations and selects the repartition
join when having a very big number of inner computations. This prevents our system to fall
into cases where one of the algorithms fails or is more than an order of magnitude slower than
the other. For instance, the repartition join is up to 15× slower than the broadcast join when
the number of inner computations is small. The reason for this is that a repartition join gives
elements to only that many partitions as there are distinct keys, which is exactly the number of
inner computations. Thus, for a small number of inner computations, there is not enough work
for all CPU cores. In contrast, the broadcast join can be up to 3× slower than the repartition
join when the number of inner computations is big. Moreover, at the end of the plot, the
broadcast join fails with an out-of-memory, because it cannot fit the broadcasted dataset on a
single machine.

4.8. EVALUATION 83

100 101 102 103 104 105 106 107 108

103

104

Number of inner computations

R
un

ti
m

e
(s

)

Matry.’s selection Br. Repart.

(a) InnerBag-InnerScalar join strategies.

100 101 102 103 104 105 106
102

103

Number of inner computations

Br. scal. Br. bag Matry.’s sel.

(b) Impl. strat. for half-lifted MapWithClosure

Figure 4.9: Optimization experiments.

4.8.7.2 Half-lifted MapWithClosure

We performed an experiment with K-means where we tried the different strategies for half-
lifted mapWithClosure (see Section 4.6.3). We can see in Figure 4.9b that our optimizer always
makes the optimal choice, which prevents Matryoshka to crash or to fall into big performance
degradations (up to 4.6×).

Matryoshka selects the best operator implementation in most cases, preventing a program from
crashing or from being more than an order of magnitude slower.

4.8.8 Larger Datasets

We also used a larger cluster to run the weak scaling experiment (Section 4.8.2) with 8× larger
input sizes than in the previous experiments. This cluster has 36 machines, each with two Intel
Xeon E5-2630V4 CPUs (40 threads per machine). We gave 100 GB memory to each Spark
worker. Figure 4.10 shows the results. Compared to the inner-parallel workaround, we observe
similar speedups in case of PageRank as in the smaller experiments: Matryoshka gets more than
one order of magnitude faster from 128 inner computations. In case of Bounce Rate, we observe
almost twice as large speedups as in the smaller experiments: with 512 inner computations
Matryoshka is 8.9× faster than inner-parallel. The outer-parallel workaround runs out of memory
in all cases.
Matryoshka scales to hundreds of GBs of input data size on 1,440 CPU cores, achieving more
than one order of magnitude speedup over the inner- and outer-parallel baselines.

84 CHAPTER 4. NESTED PARALLELISM IN DATAFLOW SYSTEMS

1 2 4 8 16 32 64 128 256 512

103

2 · 103

4 · 103

8 · 103

Number of inner computations

R
un

ti
m

e
(s

)

Outer-p. Inner-p. Matryoshka

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

k
illed

k
illed

k
illed

(a) PageRank with input size of 160 GB. Inner-parallel was killed
when the run time exceeded 10× of Matryoshka.

1 2 4 8 16 32 64 128 256 512

103

2 · 103
4 · 103
8 · 103

Number of inner computations

R
un

ti
m

e
(s

)

Outer-p. Inner-p. Matryoshka
O

O
M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

(b) Bounce Rate with input size of 384 GB.

Figure 4.10: Larger total input size.

Chapter 5

Related Work

We will first survey the research literature in control flow handling in distributed dataflow systems
(Section 5.1) and then in nested parallelism (Section 5.2).

5.1 Control Flow Handling in Dataflow Systems

We will primarily focus on DDS, the approaches they take when handling loops and other
control flow statements, and examine these approaches from both the efficiency and ease-of-use
perspectives. Among the classes of systems discussed are:

• MapReduce extensions that add support for loops [34,60,61,63,193];

• DDS with operators beyond MapReduce1 (e.g., Spark, Flink, Naiad, TensorFlow);

• Systems with high-level programming models that compile to systems belonging to the
classes mentioned above (e.g., AutoGraph [126], Emma [9,11,12], Janus [92,93], SystemM-
L/SystemDS [24,25,74]);

• We take a slight detour to systems specialized for a particular data model, namely graphs
(e.g., GraphLab [116], Pregel [117]) and arrays (SciDB [31, 170]). We believe it is good
to know about these specialized systems when designing general dataflow systems, since
the specializations were motivated partly by insufficient loop support in the more general
systems.

MPI (Message Passing Interface) [169] is a message passing standard designed for parallel
computing architectures. It employs a classic distributed programming model, where it is possible
to implement iterative algorithms. However, MPI is different in that its programming model is
at a lower level relative to the programming models employed in DDS considered in this thesis.
Although MPI can be highly efficient, using it requires a larger programming effort and expertise
in contrast to DDS.

Section 5.1.3.4.4 discusses the closest related works to Mitos: compiling imperative APIs to
in-graph control flow. Section 5.1.1 gives a brief overview of the most important programming
models for expressing loops. Section 5.1.2 discusses the most important design choices for control
flow support in DDS. Section 5.1.3 introduces various programming models used for control flow

1We treat MapReduce also as a “dataflow system,” albeit where the structure of the dataflow graph is fixed.

85

86 CHAPTER 5. RELATED WORK

(a) (b) (c)

Figure 5.1: An illustration of the transitive closure of a digraph, where (a) depicts the initial
graph, (b) shows new edges (as dashed lines) at iteration step one, and (c) reflects yet another
new edge (as a dotted line) at iteration step two, after which the computation is finished.

in DDS. Lastly, Section 5.1.4 discusses optimizations that DDS commonly employ in handling
control flow.

5.1.1 An Overview of the Programming Models

In this section, we give a brief overview of the approaches for expressing control flow adopted
across several programming models. To ease our upcoming discussion about programming
models in this section, let us introduce an example: computing the Transitive Closure (TC)
of a digraph, G = (V,E), which yields a new digraph G∗ = (V,E∗), where E∗ = {(i, j) :
a path exists from vertex i to vertex j in G}. Figure 5.1 illustrates the steps taken when com-
puting the TC of a digraph.

There are numerous algorithms to compute the TC of a digraph [42]. A simple algorithm
would start from the set of edges of a graph G and then repeatedly calculate a new set of edges
by performing an equi-join between the current edge set and the original edge set. For example,
after the first step, the current edge set includes such (u, v) vertex pairs where v is reachable
from u by a path of length at most 2. After the subsequent step, we would include vertex pairs
reachable by a path of length 3, and so on. The algorithm terminates once the equi-join is no
longer able to add any new vertex pairs. Figure 5.2 depicts a representative dataflow job for this
simple TC algorithm.

Next, we highlight the implementation of the TC algorithm across four different programming
models: Datalog, SQL, functional control flow, and imperative control flow. We will transition
from programming models that are more declarative to those that are less so. To ease comparison
of the implementations across the four models, program statements that correspond to a common
operation will be colored in red, blue, and green, respectively.

5.1.1.1 Datalog

Datalog is a declarative logic programming language. An implementation of the TC algorithm
in Datalog [42] is simply:
1: Closure(x, y)← Edges(x, y)
2: Closure(x, y)← Closure(x, z) AND Edges(z, y).

Line 1 represents initialization: if an edge exists between two vertices x and y, then the TC will

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 87

Original edges

Current edges

Join

Write final
closure to file

Figure 5.2: A dataflow job for the transitive closure algorithm. The colors map to the colored
lines in the example codes. After the last iteration step, the final closure is written to a file (not
shown in the code listings).

include the (x, y) edge. Line 2 is a join step: if an (x, z) edge is part of the closure, and there is
also a (z, y) edge in the original graph, then the (x, y) edge should also be part of the closure.
In this manner, the x → z path is extended by one edge. Note that Datalog has set semantics,
which ensures that an edge can be added only once to the closure.

Since Datalog is declarative, there are varying execution strategies for a program. A com-
mon execution strategy is the so-called bottom-up evaluation [42]. In the case of our example
above, line 1 is executed and then the join specified in line 2 is executed iteratively until no ad-
ditional edges are added to the closure. This execution strategy makes Datalog relevant for this
survey: Although there is no explicit loop statement in Datalog, loops often appear in system
implementations.

For more details about Datalog, see Section 5.1.3.1.2.

5.1.1.2 SQL

An implementation of the TC algorithm as a recursive SQL query:
1: WITH RECURSIVE Closure(from, to) AS
2: (SELECT from, to FROM Edges)
3: UNION
4: (SELECT R.from, E.to
5: FROM Closure R, edges E
6: WHERE R.to = E.from)
7: SELECT * FROM Closure.

This approach involves more boilerplate than the Datalog version, but essentially specifies the
transitive closure the same way. The “with recursive” clause specifies that the definition of the
Closure relation will involve the Closure relation itself. The “union” keyword specifies that the
results of line 2 and lines 4-6 must be unioned (with set semantics, i.e., duplicates eliminated).
Finally, line 7 is a required part of every recursive query in SQL, and could be used to select a
subset of the Closure relation, but here we just select the entire relation. In contrast to SQL,

88 CHAPTER 5. RELATED WORK

Datalog does not require an explicit keyword for marking recursive queries. Furthermore, a
keyword for union is also not required in Datalog. Instead, the left-hand side of lines 1 and 2
both being Closure automatically implies union. For further details about recursive SQL queries,
see Section 5.1.3.1.2.

5.1.1.3 Functional Control Flow APIs

Like in Flink, Naiad, and TensorFlow, but unlike Spark, the implementation of the TC algorithm
below uses a higher-order function2 to specify the loop:
1: Edges .fixpointIterate(curClosure => {
2: curClosure.join(Edges)
3: .where(_.to).equalTo(_.from) {(left,right)=>
4: (left.from, right.to)
5: }
6: .distinct()
7: }).

Here, the argument to the higher-order function fixpointIterate is the loop body expressed as a
λ-expression (i.e., an anonymous function given inline). Lines 2-5 perform a join between the
current state of the curClosure dataset (corresponding to the current set of edges) and the Edges
dataset (corresponding to the original edges), whereas line 6 filters out duplicates.

The fixed point of a function f is a value c for which f(c) = c. It is for this reason that the
term “fixpoint” appears in fixpointIterate, since the final state of the closure dataset is a fixpoint
of the body function: body(curClosure) = curClosure. Note that both Datalog and SQL also
continue to evaluate the query until reaching a fixpoint. For further details about expressing
loops via higher-order functions, see Section 5.1.3.3.

5.1.1.4 Imperative Control Flow

We now show a TC implementation with an imperative control flow API, i.e., a standard while
loop, similar to Spark, Emma [9,11,12], and Mitos.
1: Closure = Edges
2: do
3: OldCount = Closure.count()
4: Closure = Closure.join(Edges)
5: .where(_.to).equalTo(_.from) {(left,right)=>
6: (left.from, right.to)
7: }
8: .distinct()
9: while Closure.count() ̸= OldCount .

Such an imperative API is more natural for many users than the previous functional API.
This is because data scientists are used to the standard, imperative control flow constructs from
languages such as MATLAB, Python, and R. However, as we will later see, programs written in
an imperative API are harder for the system to execute efficiently.

We should mention that in line 9 (the loop exit condition), we exit the loop once the number
of elements in the closure no longer grows. This is in contrast to the previous three examples,

2In this context, a higher-order function is a function that takes another function as an argument.

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 89

Driver program

Exit cond.Launch MR job

MapReduce job on the cluster

Disk
read

Map Reduce Disk
write

(a)

Driver program

Launch
iterative MR job

Iterative MapReduce job on the cluster

Disk
read

Map Red. Disk
write

Exit cond.

(b)

Figure 5.3: The difference between standard MapReduce and iterative MapReduce systems. In
standard MapReduce, a driver program launches jobs individually for each iteration step. On the
other hand, iterative MapReduce systems, such as Twister [58,60], need only launch a single job,
which includes all of the iteration steps. Note that these two approaches exist also in later DDS,
where the map and reduce steps are replaced by a larger dataflow graph. Also note that there
might be disk I/O also between the map and reduce steps. Figure adapted from Bu et al. [34].

which exit the loop when a fixpoint is reached. Instead, since the loop body is monotone (i.e.,
once an edge appears in the closure, it will always be there in subsequent iteration steps), it is
sufficient to evaluate the number of elements in the closure as the loop exit condition.

5.1.2 Key Design Choices

In this section, we will discuss the key design choices that affect control flow support in DDS:

• control flow execution approach,

• expressivity of loop APIs, including support for global state, and

• fault tolerance.

These choices influence both the performance and the usability of a system. Table 5.1 provides
an overview of the key characteristics of systems, whereas Table 5.2 highlights the expressivity
of loop APIs by DDS.

5.1.2.1 Control Flow Execution Approach

The simplest approach to implement control flow, such as loop, is to launch a separate dataflow
job for each iteration step [187]. This approach can be employed as a workaround even when a
dataflow system does not explicitly provide any control flow support: the user can write a driver
program to execute the control flow (e.g., by writing a while loop in Java) and submit a series
of dataflow jobs one by one (denoted as separate jobs in Table 5.1). However, this approach
has several performance issues: since the dataflow system is unaware of the control flow, some
optimizations cannot be performed. Furthermore, there will be a job launch overhead at each
iteration step.

90 CHAPTER 5. RELATED WORK

A more efficient approach is to integrate a loop into a single dataflow graph (denoted as
In-Graph Loops in Table 5.1), such as in Mitos. In this approach, a loop is executed entirely
in a single dataflow job without involving the driver program during the loop execution. Since
there is no job launch overhead at each iteration step, the per-step overhead can be 1-2 orders of
magnitude less than the separate jobs approach3 (see Figure 3.7), which can lead to an overall
speedup of several times [72, 118] (see Figure 3.8). A further advantage of in-graph control flow
is that it enables loop optimizations, such as loop-invariant hoisting and loop pipelining. We
will come back to loop optimizations in Section 5.1.4.

The third approach [61] is a hybrid of the previous two approaches (denoted as Reuse Tasks
But Involve the Driver in Table 5.1): In this case, there is only one dataflow job, which executes
all steps, but control is returned to the driver program after each iteration step. At these times,
the driver program launches the next iteration step (if the exit condition has not been met), for
which it reuses the job and its constituent tasks (which are already present on the machines of
the cluster).

The fourth approach extends a running dataflow job with additional dataflow nodes and
edges for each iteration step [133] (denoted as Extend Job in Table 5.1). Although this avoids
the job launch overhead at every iteration step, there is still an associated overhead due to the
creation of new tasks. Note that some papers [41, 120] use the terminology of “extending a job”
(or dataflow graph) differently: They also use it for the situation where we would say that a later
job consumes cached datasets of earlier jobs, e.g., for the case when in a Spark program there is
an action in every iteration step. We avoid this usage since Spark’s web UI clearly shows that,
in this case, later iteration steps that consume a cached dataset from an earlier step are new
jobs. Furthermore, one could use the terminology “extending a job” for lazily adding operations
to a not-yet-executed dataflow job. We avoid also this usage to prevent ambiguity with the
mechanism of extending a dataflow job that has already run (at least partially), which is a very
different mechanism from the lazy job building before job execution starts.

Thus far we have discussed approaches for implementing loops. Next, we will discuss how
these approaches apply also for conditionals (i.e., if statements). Like loops, conditionals can
also be implemented as multiple dataflow jobs: The first job would evaluate a condition, and
then a subsequent job would be launched for either the then branch or the else branch. However,
this does not work if a conditional is within a loop and the loop is implemented using in-graph
control flow. In this case, the entire conditional must be implemented in the same dataflow
graph as the loop. We show whether a system supports this in the In-Graph Cond. column in
Table 5.1. If a system does not provide support for this, then a simple, but wasteful workaround
is to execute both branches in the same dataflow job, and have a node that chooses between the
results.

5.1.2.2 Expressivity of Loop APIs

For our purposes, the expressivity of a language (and the associated system) is the ease with
which users are able to express mechanisms that arise in large-scale data analytics. We discuss
the following mechanisms:

• fixpoint loops,

3However, there are several optimization methods available to reduce the job launch overhead [118,139], which
will be discussed in Section 5.1.4.1.

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 91

T
ab

le
5.

1:
K

ey
de

si
gn

ch
oi

ce
s

of
th

e
su

rv
ey

ed
sy

st
em

s.
N

ot
e

th
at

sy
st

em
s

w
it
h

a
fu

nc
ti
on

al
m

od
el

al
so

al
lo

w
fo

r
im

pe
ra

ti
ve

co
nt

ro
l

flo
w

,
si

m
pl

y
by

la
un

ch
in

g
se

pa
ra

te
da

ta
flo

w
jo

bs
pe

r
st

ep
(a

s
a

w
or

ka
ro

un
d

fo
r

ex
pr

es
si

vi
ty

pr
ob

le
m

s)
.

H
ow

ev
er

,
th

is
ne

ga
ti
ve

ly
aff

ec
ts

th
e

pe
rf

or
m

an
ce

.

C
on

tr
ol

F
lo

w
M

od
el

Sy
st

em
(s

)
D

SL
D

es
ig

n
A

pp
ro

ac
h

C
on

tr
ol

F
lo

w
E

xe
cu

ti
on

Fa
ul

t
T
ol

er
an

ce
O

pe
n

Sr
c.

Se
pa

ra
te

Jo
bs

E
xt

en
d

Jo
b

R
eu

se
T
as

ks
B

ut
In

vo
lv

e
th

e
D

ri
ve

r

In
-G

ra
ph

L
oo

ps
In

-G
ra

ph
C

on
d.

R
ec

ur
s.

Q
ue

ri
es

B
ig

D
at

al
og

/R
aS

Q
L

[7
9,

16
3]

E
xt

er
na

l
Y

es
Y
es

So
m

e
N

o
N

o
Sp

ar
k

Y
es

C
og

[8
7]

E
xt

er
na

l
Y
es

N
o

N
o

Y
es

N
o

F
lin

k
Y
es

D
ri

ve
r

(I
m

pe
ra

ti
ve

)
Sp

ar
k

[1
89

]
E

m
b.

(t
yp

e)
Y
es

N
o

N
o

N
o

N
o

R
D

D
s

Y
es

F
lu

m
eJ

av
a

[4
5]

E
m

b.
(t

yp
e)

Y
es

N
o

N
o

N
o

N
o

M
ap

R
ed

uc
e

N
o

Im
pe

ra
ti

ve

E
m

m
a

[1
1,

12
]

E
m

b.
(m

et
ap

r.
)

Y
es

N
o

N
o

So
m

e
N

o
Sp

ar
k/

F
lin

k
Y

es
M

it
os

(E
m

m
a)

[7
2]

E
m

b.
(m

et
ap

r.
)

Y
es

N
o

N
o

Y
es

Y
es

A
sy

nc
.C

he
ck

po
in

ts
Y
es

A
ut

oG
ra

ph
(T

en
so

rF
lo

w
2.

0)
[1

26
]

E
m

b.
(m

et
ap

r.
)

Y
es

N
o

N
o

Y
es

Y
es

T
en

so
rF

lo
w

Y
es

Ja
nu

s
[9

2,
93

]
E

m
b.

(m
et

ap
r.

)
Y
es

N
o

N
o

Y
es

Y
es

T
en

so
rF

lo
w

N
o

Sw
ift

fo
r

T
en

so
rF

lo
w

E
m

b.
(m

et
ap

r.
)

Y
es

N
o

N
o

Y
es

Y
es

T
en

so
rF

lo
w

Y
es

M
yr

ia
[8

0,
17

8]
E

xt
er

na
l

Y
es

N
o

N
o

Y
es

N
o

Sa
ve

sh
uffl

e
pr

od
.s

id
e

+
op

t.
Y
es

Sy
st

em
M

L
/S

ys
te

m
D

S
[2

4,
25

,7
4]

E
xt

er
na

l
Y
es

N
o

N
o

N
o

N
o

M
R

/S
pa

rk
Y
es

M
us

ke
te

er
[7

5]
E

xt
er

na
l

Y
es

Y
es

(I
R

)
N

o
So

m
e

N
o

V
ar

ie
s

ba
se

d
on

ba
ck

en
d

Y
es

Fu
nc

ti
on

al

F
lin

k
[1

0,
65

]
E

m
b.

(t
yp

e)
Y
es

N
o

N
o

Y
es

N
o

A
sy

nc
.C

he
ck

po
in

ts
[1

84
]

Y
es

N
ai

ad
[1

20
,1

32
]

E
m

b.
(t

yp
e)

Y
es

N
o

N
o

Y
es

N
o

Sy
nc

.C
he

ck
po

in
ts

Y
es

D
ry

ad
L
IN

Q
[1

87
]

E
m

b.
(t

yp
e)

Y
es

N
o

N
o

N
o

N
o

D
ry

ad
(r

e-
ex

ec
ut

e
ve

rt
ic

es
)

Y
es

D
an

de
lio

n
[1

54
]

E
m

b.
(m

ix
ed

)
Y
es

N
o

N
o

Y
es

N
o

A
sy

nc
.C

he
ck

po
in

ts
N

o
O

pt
im

us
[1

02
]

E
m

b.
(t

yp
e)

Y
es

Y
es

N
o

N
o

N
o

D
yn

am
ic

re
pl

ic
at

io
n

su
bg

r.
N

o
T
en

so
rF

lo
w

(w
/o

A
ut

oG
r.

)
[1

86
]

E
m

b.
(t

yp
e)

Y
es

N
o

Y
es

Y
es

Y
es

A
sy

nc
.C

he
ck

po
in

ts
Y
es

M
X

N
et

Sy
m

bo
l,

G
lu

on
[4

7]
E

m
b.

(t
yp

e)
Y
es

N
o

N
o

Y
es

Y
es

C
he

ck
po

in
ts

Y
es

T
he

an
o

[8
]

E
m

b.
(t

yp
e)

Y
es

N
o

N
o

Y
es

Y
es

N
/A

(s
in

gl
e

m
ac

hi
ne

)
Y
es

W
ay

an
g/

R
he

em
[2

,3
,4

,1
07

]
E

m
b.

(t
yp

e)
Y

es
N

o
N

o
Y
es

N
o

V
ar

ie
s

ba
se

d
on

ba
ck

en
d

Y
es

G
ilb

er
t

[1
49

]
E

xt
er

na
l

Y
es

N
o

N
o

Y
es

N
o

F
lin

k
Y
es

M
R

Q
L

[6
6]

E
xt

er
na

l
Y
es

N
o

N
o

Y
es

N
o

Sp
ar

k/
F
lin

k
Y

es
D

IQ
L

[6
7]

E
m

b.
(m

et
ap

r.
)

Y
es

N
o

N
o

Y
es

N
o

Sp
ar

k/
F
lin

k
Y
es

It
er

at
iv

e
M

ap
R

ed
uc

e

C
G

L
-M

ap
R

ed
uc

e
[6

1]
E

m
b.

Y
es

N
o

Y
es

N
o

N
o

N
ar

ad
aB

ro
ke

ri
ng

[1
41

]
N

o
T
w

is
te

r
[5

8,
60

]
E

m
b.

Y
es

N
o

Y
es

N
o

N
o

C
he

ck
po

in
ts

Y
es

H
aL

oo
p

[3
4,

35
]

E
m

b.
Y
es

Y
es

N
o

N
o

N
o

H
ad

oo
p+

C
he

ck
po

in
ts

Y
es

O
th

er
C

IE
L

[1
33

]
E

m
b.

Y
es

Y
es

N
o

N
o

N
o

L
in

ea
ge

Y
es

92 CHAPTER 5. RELATED WORK

T
ab

le
5.

2:
E

xp
re

ss
iv

it
y

of
th

e
lo

op
A

P
Is

.
Fo

r
sy

st
em

s
th

at
pr

ov
id

e
a

fu
nc

ti
on

al
co

nt
ro

lfl
ow

A
P

I
w

e
co

ns
id

er
th

e
ex

pr
es

si
vi

ty
of

us
in

g
th

is
fu

nc
ti
on

al
A

P
I.

N
ot

e
th

at
in

th
es

e
sy

st
em

s
on

e
ca

n
al

so
w

ri
te

im
pe

ra
ti
ve

co
nt

ro
l
flo

w
us

in
g

th
e

se
pa

ra
te

jo
bs

w
or

ka
ro

un
d.

In
th

is
ca

se
ex

pr
es

si
vi

ty
im

pr
ov

es
,b

ut
th

er
e

is
a

pe
rf

or
m

an
ce

pe
na

lt
y.

C
on

tr
ol

F
lo

w
M

od
el

Sy
st

em
(s

)
D

SL
D

es
ig

n
A

pp
ro

ac
h

A
rb

it
ra

ry
Lo

op
C

on
d.

N
es

te
d

Lo
op

s
M

ul
ti
pl

e
Lo

op
V
ar

ia
bl

es
Sc

al
ar

s
in

Lo
op

s

R
ec

ur
s.

Q
ue

ri
es

B
ig

D
at

al
og

/R
aS

Q
L

[7
9,

16
3]

E
xt

er
na

l
O

nl
y

fix
p.

Y
es

Y
es

N
o

C
og

[8
7]

E
xt

er
na

l
O

nl
y

fix
p.

N
o

N
o

N
o

D
ri
ve

r
(I

m
pe

ra
ti
ve

)
Sp

ar
k

[1
89

]
E

m
b.

(t
yp

e)
Y
es

Y
es

Y
es

Y
es

F
lu

m
eJ

av
a

[4
5]

E
m

b.
(t

yp
e)

Y
es

Y
es

Y
es

Y
es

Im
pe

ra
ti
ve

E
m

m
a

[1
1,

12
]

E
m

b.
(m

et
ap

r.
)

Y
es

Y
es

Y
es

Y
es

M
it
os

(E
m

m
a)

[7
2]

E
m

b.
(m

et
ap

r.
)

Y
es

Y
es

Y
es

Y
es

A
ut

oG
ra

ph
(T

en
so

rF
lo

w
2.

0)
[1

26
]

E
m

b.
(m

et
ap

r.
)

Y
es

Y
es

Y
es

Y
es

Ja
nu

s
[9

2,
93

]
E

m
b.

(m
et

ap
r.
)

Y
es

Y
es

Y
es

Y
es

Sw
ift

fo
r

T
en

so
rF

lo
w

E
m

b.
(m

et
ap

r.
)

Y
es

Y
es

Y
es

Y
es

M
yr

ia
[8

0,
17

8]
E

xt
er

na
l

Y
es

N
o

Y
es

N
o

Sy
st

em
M

L/
Sy

st
em

D
S

[2
4,

25
,7

4]
E

xt
er

na
l

Y
es

Y
es

Y
es

Y
es

M
us

ke
te

er
[7

5]
E

xt
er

na
l

Y
es

Y
es

Y
es

Y
es

Fu
nc

ti
on

al

F
lin

k
[1

0,
65

]
E

m
b.

(t
yp

e)
Y
es

N
o

N
o

N
o

N
ai

ad
[1

20
,1

32
]

E
m

b.
(t

yp
e)

Y
es

Y
es

N
o

N
o

D
ry

ad
LI

N
Q

[1
87

]
E

m
b.

(t
yp

e)
Y
es

Y
es

N
o

N
o

D
an

de
lio

n
[1

54
]

E
m

b.
(m

ix
ed

)
Y
es

?
N

o
N

o
O

pt
im

us
[1

02
]

E
m

b.
(t

yp
e)

Y
es

?
N

o
N

o
T
en

so
rF

lo
w

(w
/o

A
ut

oG
r.
)

[1
86

]
E

m
b.

(t
yp

e)
Y
es

Y
es

Y
es

Y
es

M
X

N
et

Sy
m

bo
l,

G
lu

on
[4

7]
E

m
b.

(t
yp

e)
Y
es

Y
es

Y
es

Y
es

T
he

an
o

[8
]

E
m

b.
(t

yp
e)

Y
es

Y
es

Y
es

Y
es

W
ay

an
g/

R
he

em
[2

,3
,4

,1
07

]
E

m
b.

(t
yp

e)
Y
es

Y
es

N
o

N
o

G
ilb

er
t

[1
49

]
E

xt
er

na
l

Y
es

N
o

Y
es

Y
es

M
R

Q
L

[6
6]

E
xt

er
na

l
Y

es
Y
es

N
o

N
o

D
IQ

L
[6

7]
E

m
b.

(m
et

ap
r.
)

Y
es

Y
es

Y
es

Y
es

It
er

at
iv

e
M

ap
R

ed
uc

e

C
G

L-
M

ap
R

ed
uc

e
[6

1]
E

m
b.

Y
es

N
o

N
o

N
o

T
w

is
te

r
[6

0]
E

m
b.

Y
es

N
o

N
o

N
o

H
aL

oo
p

[3
4,

35
]

E
m

b.
A

pp
ro

x.
fix

p.
or

nu
m

.s
te

ps
N

o
N

o
N

o

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 93

• arbitrary loop conditions,

• nested loops,

• passing more than one dataset (or scalar) between iteration steps,

• interleaving non-system code with control flow, and

• scalar values in loops.

5.1.2.2.1 Fixpoint Loops

Many algorithms fall under a Fixpoint Loop (FL) scheme, where a function f is applied repeatedly
until convergence, as depicted below.
1: xs = ... // initialization
2: do
3: xs = f(xs)
4: while xs changed in this step.

The support for FL varies across systems. Recursive queries in SQL and (classic) Datalog
only support monotonic FI. In monotonic FI, f is a monotonic function, and thus the set xs
is monotonically increasing (i.e., elements are only added, but never removed). For example,
the TC algorithm has this property. In contrast, the well-known PageRank algorithm does not:
page ranks evolve over iteration steps, and consequently records (which contain the ranks) are
replaced. There are many other similar, non-monotonic graph algorithms, where vertex labels
continue to change, and thus cannot easily4 be implemented as a recursive SQL query or Datalog
program.

5.1.2.2.2 Arbitrary Loop Conditions

In many systems, users are free to write loops using arbitrary exit conditions. Besides FL, which
is a special case of arbitrary loop conditions, another common termination condition is evaluating
the delta between successive collections. For example, this is useful in PageRank, because the
ranks are floating point values that may change by very small amounts across a great many
iteration steps. In this case, the standard fixpoint exit condition would not work well, because
it would lead to far too many iteration steps with insignificant differences. We can solve this
problem if arbitrary exit conditions are allowed by a system: we specify a distance function and
exit when it is below a threshold.

The use of distance functions as described above can sometimes be mirrored in the FL case:
When updating the rank of a particular page, we can check whether the update is too small. If
it is indeed too small, then we do not actually perform the update. By modifying the algorithm
in this manner, the standard fixpoint exit condition is now sufficient to implement PageRank.

5.1.2.2.3 Nested Loops

Some algorithms require two or more nested loops. For example, a common algorithm for
computing strongly connected components requires two nested loops [120]. Another example

4There is a workaround: we can add the iteration step number to the records as an extra component, as shown
in the appendix of [34] via an implementation of k-means clustering, and in [32] via a translation of the Pregel
model to Datalog. Seo et al. [159] implement PageRank in this way.

94 CHAPTER 5. RELATED WORK

1: G = read(...); // Read graph as a matrix
2: authorities = round(G);
3: hubs = authorities ;
4: maxiter = ...
5: toler = ... // Convergence tolerance
6: converge = False
7: iter = 0
8: while !converge do
9: hubs_old = hubs

10: hubs = G %*% authorities
11: authorities_old = authorities
12: authorities = t(G) %*% hubs
13: hubs = hubs/max(hubs)
14: authorities = authorities/max(authorities)
15: delta_hubs = sum((hubs - hubs_old)^2)
16: delta_authorities = sum((authorities - authorities_old)^2)
17: converge = delta_hubs < toler and delta_authorities < toler or iter > maxiter
18: print(delta_hubs)
19: print(delta_authorities)
20: iter = iter + 1
21: end while

Figure 5.4: An implementation of HITS [106], taken from Apache SystemDS5. t(G) denotes the
transpose of the matrix G, and %*% denotes matrix multiplication.

is Li et al.’s [112] implementation of SimRank, which uses three nested loops. Furthermore,
training a machine learning model also involves nested loops. Typically, there is an inner loop
to find good model parameters and an outer loop to find good hyperparameters. Moreover, a
third loop may be required when using k-fold cross-validation. As a last example, some training
algorithms (e.g., k-means clustering) are sensitive to the starting values, in which case multiple
starting values are typically tried in a loop.

Although Datalog does not have explicit loop statements, we wrote yes under Nested Loops
in Table 5.2. This is because the dataflow graphs that result from certain Datalog programs can
be similar in structure to the dataflow graphs resulting from nested loops in other control flow
models.

5.1.2.2.4 Passing More Than One Loop Variable Between Steps

In some programming models, such as SQL, passing a dataset between iteration steps is implicit,
and restrictive: one can only pass a single dataset. However, passing more than one dataset
is useful, for example, in algorithms such as Gaussian non-negative matrix factorization [74] or
HITS [106]. Figure 5.4 shows an example of HITS, where both the hubs and authorities matrices
are passed between iteration steps. It can also be useful for keeping track of meta-information
about the loop, such as the learning rate.

5https://github.com/apache/systemds/blob/v2.0.0-rc3/src/test/scripts/applications/hits/HITS.dml

https://github.com/apache/systemds/blob/v2.0.0-rc3/src/test/scripts/applications/hits/HITS.dml

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 95

5.1.2.2.5 Interleaving Non-System Code with Control Flow

It is straightforward to execute non-system code (i.e., code that is not using the system’s API) at
every iteration step in systems that execute loops as separate dataflow jobs per step. For example,
for testing and debugging purposes, we would often like to collect various meta-information about
a loop, such as the number of steps, the time of each step, the value of a loss function at each step,
etc. This is trivial to achieve in a standard, imperative while loop that launches a new dataflow
job for every step: we can just add a few extra lines of code that run in the driver program, outside
the dataflow job. These extra lines run in each iteration step and collect or print the desired
information. Figure 5.4 shows an example where two values that determine convergence are
printed at each step. This information can help the user understand the algorithm’s convergence
behavior.

On the other hand, for an in-graph loop, all aspects of the program have to be built into
the dataflow job, since all of the steps are in a single dataflow job and the driver program
is not involved at every step. This is an issue in APIs where a loop is built by higher-order
functions, such as Flink. In this case, we have to rely on built-in system functionality to collect
meta-information6.

5.1.2.2.6 Scalar Values in Loops

There are times when it is convenient to use a simple scalar (non-collection) variable, which
takes different values at each iteration step. Examples of this include loop counters, learning
rates during training in machine learning, and the comparison of the loss function values between
consecutive iteration steps. Variables of this sort are trivially supported in systems with imper-
ative control flow, such as Spark or SystemML. Figure 5.4 illustrates an example with several
scalar values, which determine when to exit a loop.

However, scalars can be more difficult to work with in more rigid programming models or
loop APIs that only support collections of values. In such a programming model, we can emulate
scalars by wrapping them in 1-element collections. Such a wrapping is performed automatically
by Mitos: The user’s program can have scalars, and Mitos’ compilation procedure turns them
into 1-element collections Section 3.3.1.

5.1.2.3 Fault Tolerance

Fault tolerance is vital in DDSs, since many machines are employed and thus there is a high
chance that some machines will fail. Thus, we now turn our attention to the interplay between
loops and fault tolerance. For an overview of the fault tolerance mechanisms employed in the
varying DDSs, these are listed in Table 5.1. It is worth mentioning that some systems rely on
other systems in their execution layers (i.e., their backends). In these systems, the fault tolerance
will just refer to the backend system. For example, Emma can compile programs to either Flink
or Spark, and therefore Emma’s fault tolerance is provided by Flink or Spark, respectively.

5.1.2.3.1 Separate Dataflow Jobs

If we execute a loop in separate dataflow jobs, then we can just rely on the system’s standard
mechanisms for fault tolerance. For example, if each iteration step is launched as a separate

6For example, https://issues.apache.org/jira/browse/FLINK-1759

https://issues.apache.org/jira/browse/FLINK-1759

96 CHAPTER 5. RELATED WORK

MapReduce (MR) job, then MR provides fault tolerance: each job is itself fault tolerant, and
intermediate results between jobs are materialized in a fault tolerant distributed file system, such
as HDFS. However, performance can be further improved if we take advantage of the fact that
we have an iterative program, which we discuss next.

5.1.2.3.2 Twister

Twister [58, 60] is an iterative MR system, with a programming model that repeatedly executes
MR computations. Ekanayake et al. [58, 60] employ checkpoints between iteration steps, and
restart the current iteration step in the event of a failure. Note that this fault tolerance approach
differs from the fault tolerance that we get if we simply repeatedly run traditional (non-iterative)
MR jobs (e.g., Google’s or Hadoop’s MR implementation). Traditional MR provides more fine-
grained fault tolerance at the cost of more disk I/O, which would negate a lot of the performance
gains of Twister.

5.1.2.3.3 Spark – Resilient Distributed Datasets

Spark’s distributed collection type is called RDD (Resilient Distributed Dataset) [188]. In Spark,
fault tolerance is based on RDD lineage, shuffle files, and checkpointing. By default, Spark tracks
RDD lineage, i.e., how each RDD was computed. When a machine fails while computing a certain
RDD, Spark restarts the computation of those partitions of the RDD that were being computed
on the failed machine. If an RDD is computed from another RDD (parent RDD), this will trigger
the re-computation of some of the parent RDD’s partitions as well, since RDDs are ephemeral7

by default. In turn, this might trigger the recomputation of further parent RDD partitions, and
so on. This re-computation process can go back all the way to the source RDDs (e.g., that were
read from a reliable distributed filesystem, such as HDFS).

In many cases, Spark does not need to re-do the entire computation, but only a small part,
which is proportional to the work of the failed machine only. First, if all of the involved RDDs
only have narrow dependencies, i.e., each RDD partition has only one (or a few) parent partitions,
then the above re-computation process is confined to only a few partitions of each of the involved
RDDs. Second, for RDDs with wide dependencies, i.e., where each partition depends on all of
the partitions of a parent RDD, fault tolerance is handled by saving shuffle files8 (on the workers’
local disks). This ensures that one partition of a shuffle’s consumer side (i.e., the side after the
network transfer) can be recomputed by a limited amount of work: reading a small part of each
of the shuffle files from the producer side9, plus recomputing those shuffle files which were on
the failed machine.

Third, Spark also has a checkpointing10 mechanism to further limit recomputations. A user

7By ephemeral, we mean that they are not saved anywhere, not even in local memory (just forwarded to some
other RDD’s computation, which is requesting to read it).

8Shuffling is the repartitioning of data, which is necessary for joins, grouped aggregations, etc. Shuffle files
contain the data just before a shuffle’s network transfer.

9Shuffle files are sorted (or hashed), and therefore the computation of one partition at the consumer side needs
to read just a small interval of each shuffle file.

10Caching an RDD is different from checkpointing. From a fault tolerance perspective, the main difference is
that caching is local (by default), and therefore RDD caching usually does not help much for fault tolerance:
Typically, all cached RDDs lose some partitions upon a machine failure. These lost partitions are often exactly
the ones that would be needed for a recovery, because of the scheduler placing partitions on the same machine
with their dependencies.

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 97

can call the checkpoint method of an RDD, which causes Spark to save the RDD reliably in
a distributed file system, such as HDFS. This means that Spark can forget the lineage of that
RDD, since it can always reconstruct that RDD from the checkpoint instead of re-computing it
from its parent RDDs.

Checkpointing RDDs is especially important in the case of iterative computations. The
problem is that lineage can become excessively long: An RDD can refer back to RDDs created
at earlier iteration steps, which also refer back to RDDs from even earlier steps, and so on. Spark
cannot handle such long lineage chains (e.g., due to stack overflows when recursively traversing
them11). Therefore, users have to insert checkpoints to make Spark forget the lineages from
earlier steps. In cases where loops are hidden from the user behind higher-level APIs (e.g.,
GraphX or machine learning), this checkpointing can be performed automatically.

Checkpointing an RDD is an expensive operation, given that it involves writing it to disk,
typically on three machines. Hence, it is worth trading-off checkpointing time with recovery
time, i.e., checkpointing every nth (e.g., 10th) step, rather than at every step. The optimal n
depends on both the mean time to failure (MTTF) and the step time, which can both depend
on the size of the compute cluster. For a study on automatic checkpointing policies see Sharma
et al.’s paper [160].

5.1.2.3.4 Myria

Myria’s overall fault tolerance mechanism [179] is similar to Spark: It saves shuffle data at
the producer side, which allows it to re-execute all the work of only the failed machine from the
iterative program’s beginning. However, Myria introduces two optimizations for iterative Datalog
evaluation: recovered tuples are prioritized [192], and for Datalog programs with aggregations,
saved shuffle data is aggregated across iteration steps (similar to a MR combiner).

5.1.2.3.5 Checkpointing Incremental Loops

In order to not introduce a significant overhead by checkpointing, we would like to checkpoint
asynchronously, where checkpointing happens in the background, without suspending normal
program execution. This is straightforward to achieve, for example, in Spark [188], since RDDs
are immutable. Their immutability means that there is no danger that program execution would
change them during taking a checkpoint.

However, Flink and Naiad support incremental loops, which they achieve by keeping mutable
state across iteration steps (see Section 5.1.4.5). This means that taking a checkpoint of this state
cannot be arbitrarily overlapped with program execution. The problem is that if the mutable
state currently being checkpointed changes, then the checkpoint would become inconsistent.

To address the problem of checkpointing incremental loops, Xu et al. [184] explore varying
approaches. In their experiments, they report that head checkpointing, i.e., performing a check-
point at the beginning of an iteration step, is a good strategy. Since the loop’s mutable state
typically changes near the end of an iteration step, there is often enough time to perform the
checkpoint from the beginning of the step to the point when the state starts to mutate. In this
way, suspending the program execution can be avoided in many cases.

11https://issues.apache.org/jira/browse/SPARK-5484

https://issues.apache.org/jira/browse/SPARK-5484

98 CHAPTER 5. RELATED WORK

5.1.2.3.6 Optimistic Recovery

Schelter et al. [157] and Dudoladov et al. [54] take a different approach to fault tolerance for
iterative computations, one that does not involve taking checkpoints. Instead, they employ
so-called compensation functions, which are provided by the user, and invoked when a failure
happens. A compensation function should achieve a consistent system state that leads to the
correct result at the end of the program execution, despite the system state not being identical
to the state prior to the failure. This is possible due to the convergence properties of many
iterative data analytics: they converge to the same end state from many different intermediate
states.

5.1.2.3.7 TensorFlow

TensorFlow [1] is a machine learning system, which also explicitly represents global state (in
addition to computations) in its dataflow graphs (e.g., for building parameter server architec-
tures). To increase performance, TensorFlow supports asynchronous updating of parameters (in
the microstep sense, see Section 5.1.4.3) with relaxed consistency. This means that the fault
tolerance also does not need strong consistency: When a checkpoint is taken in parallel with
a training step, the checkpoint might only include a part of the updates that the training step
makes.

5.1.3 Programming Models

Iterative computation approaches and control flow constructs vary widely across programming
models. In this section, we will delve into four classes of programming models. First, we examine
two traditional programming models: SQL and Datalog. Second, we turn our attention to
iterative MapReduce, such as CGL-MapReduce [61], Twister [60], HaLoop [34,35], iHadoop [63],
and iMapReduce [193]. Third, we transition to programming models that incorporate control
flow into dataflow jobs using higher-order functions in DDS, such as Flink, Naiad, TensorFlow,
MXNet, Theano, MRQL, and DIQL. Fourth, we address programming models with imperative
control flow constructs, such as Emma, Spark, and SystemML. Lastly, we shortly discuss CIEL.

5.1.3.1 SQL and Datalog

Now, we dive into the approaches taken in both SQL and Datalog to support the implementation
of iterative algorithms.

5.1.3.1.1 Imperative Control Flow in SQL

Prior to the release of SQL:1999 (or SQL 3) support for iterative algorithms was unavailable.
For example, as showed in Libkin et al. [114], the transitive closure of a graph could not be
implemented in classic SQL. Today, however, modern SQL dialects and extensions offer several
ways to implement iterative algorithms.

In one line of work, procedural extensions to SQL have appeared. Among these extensions
are PL/SQL [69] (Procedural Language for SQL) and SQL/PSM [56] (SQL/Persistent Stored
Modules). These solutions offer traditional imperative control flow constructs and mutable vari-
ables, which enable SQL statements to be embedded in while loops. Grust et al. [55, 85, 86]

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 99

compile PL/SQL queries to standard SQL (recursive) queries, in order to avoid the interpretive
overhead of PL/SQL as well as context switches between PL/SQL and SQL.

Alternatively, we can employ a general-purpose programming language together with stan-
dard ways to embed SQL queries. For example, Java offers the Java Database Connectivity
(JDBC) API, and C# offers LINQ [123]. With this approach, SQL statements can be embedded
in imperative code using standard control flow constructs and executed repeatedly within these
constructs (e.g., as depicted in Hellerstein et al.’s paper on the MADlib analytics library [83]).
Likewise, modern DDS, such as Apache Flink and Apache Spark offer SQL APIs [14], which
allow for a similar combination of standard imperative code and SQL queries.

5.1.3.1.2 Recursive Queries in SQL and Datalog

Recursive queries (RQ) are yet another approach to express iterative algorithms. In SQL, RQ
are declared using the keywords WITH RECURSIVE. We can see an example in Section 5.1.1.2.

RQ were standardized in the SQL:1999 standard [57] on the basis of several research publi-
cations [5,7,15] and system-specific SQL extensions introduced in both IBM DB212 and Oracle.
For further insight into the evolution of RQ in SQL:1999 through SQL:2008 and leading DBMS
vendors, see the 2010 survey paper by Przymus et al. [147]. Today, there are ongoing efforts to
add support for SQL RQ in both Spark13 [79] and Hive14.

RQ in standard SQL have several limitations. First, queries must be monotonic, i.e., a row
appearing in a relation cannot make another row disappear. Thus, once a row r has been added to
the result table, a subsequent execution of the recursive query cannot result in the disappearance
of r. Second, the recursion must be linear, i.e., the query can refer to the result table only
once. Since SQL is widely used, many researchers have proposed extensions to overcome these
limitations and achieve greater expressivity [13, 124,142,194].

Like SQL, the Datalog [42] query language also supports recursion. To execute Datalog
queries on large datasets, numerous scalable systems have arisen. In 2012, Shaw et al. [161]
discussed how to compile linear Datalog programs into MapReduce jobs. Additionally, in 2012,
Borkar et al. [30] described how to compile XY-stratified Datalog programs to Hyracks [29] (a
distributed dataflow system). In 2015, Wang et al. [179] showed how to compile queries in yet
another subset of Datalog into Myria [80, 178] (a distributed data management system) jobs.
Shkapsky et al. [163] and Wu et al. [181] compile Datalog programs into Spark jobs, and Imran
et al. [87, 88] compile a Datalog program into a Flink job, using Flink’s in-graph loops [65].

Differential Dataflow [122] can also be the target of Datalog compilation. In this con-
text, Ryzhyk et al. [155] emphasize the use case of embedded incremental deductive databases.
Chothia et al. [49] focus on data provenance for iterative data analytics, and base their approach
on Differential Dataflow. In addition, there are a number of unpublished, yet promising research
efforts that build incremental Datalog evaluation systems based on Differential Dataflow’s incre-
mental nature15. By building on Differential Dataflow, these systems also have the potential to

12https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.porting.
doc/doc/r0052877.html

13https://jira.apache.org/jira/browse/SPARK-24497
14https://issues.apache.org/jira/browse/HIVE-16725
15https://www.nikolasgoebel.com/2018/09/13/incremental-datalog.html

https://github.com/comnik/declarative-dataflow
https://github.com/TimelyDataflow/differential-dataflow/blob/23b04441b43ce695f4bbaa08305e8af43fcb7345/
sosp2019-submission.pdf

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052877.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052877.html
https://jira.apache.org/jira/browse/SPARK-24497
https://issues.apache.org/jira/browse/HIVE-16725
https://www.nikolasgoebel.com/2018/09/13/incremental-datalog.html
https://github.com/comnik/declarative-dataflow
https://github.com/TimelyDataflow/differential-dataflow/blob/23b04441b43ce695f4bbaa08305e8af43fcb7345/sosp2019-submission.pdf
https://github.com/TimelyDataflow/differential-dataflow/blob/23b04441b43ce695f4bbaa08305e8af43fcb7345/sosp2019-submission.pdf

100 CHAPTER 5. RELATED WORK

support non-monotonic Datalog queries.
There are also standalone systems for large-scale Datalog evaluation [180,191], i.e., not build-

ing on an existing dataflow system. Yet another approach executes recursive SQL queries for
machine learning in distributed databases [91].

5.1.3.2 Iterative MapReduce

MapReduce [51] is a popular programming model for large-scale data processing, which does
not provide in-graph loop support. Although this limitation can be worked around by launching
a separate MapReduce job for each iteration step, there are still performance problems, as
previously mentioned. Therefore, MapReduce extensions have appeared that offer loop support,
which we discuss next.

Systems that extend MapReduce to provide loop support include CGL-MapReduce [61],
Twister [60], HaLoop [34, 35], iHadoop [63], and iMapReduce [193]. In these systems, a driver
program submits a single job to the system, which then executes all iteration steps. The basic
structure of these iterative MapReduce jobs is to execute the same map and reduce steps repeat-
edly until a termination condition is satisfied, as depicted in Figure 5.3. Executing all of the
iteration steps in a single job enables these systems to perform several optimizations, which will
be discussed in Section 5.1.4. In 2016, Lee et al. [110] performed an experimental comparison on
four iterative algorithms and demonstrated that HaLoop, Twister, and iMapReduce outperform
Hadoop.

Loop support across iterative MapReduce systems is exposed via user-facing APIs that closely
follow the systems’ internal architectures. To better understand an iterative MapReduce system’s
API, users need to dive into system internals. In the following, we examine five characteristics
of iterative MapReduce system APIs that programmers should be aware of.
Rigid computation structure. Whereas CGL-MapReduce, and iHadoop only allow for one
MapReduce computation per iteration step, both HaLoop [34, 35] and iMapReduce [193] allow
for a sequence of MapReduce computations per iteration step. Further, iMapReduce allows for
an “auxiliary” MapReduce computation to supplant built-in termination conditions with custom
ones. However, unlike general dataflow systems (e.g., Flink and Spark), none of these systems
allow for an arbitrary graph of operators.
Loop-invariant data handling. In Twister, loop-invariant input data can be read by mappers
and reducers in a special “configure” phase, which happens only once, before the first iteration
step. In HaLoop, a user can designate a dataset to be loop-invariant, which will cause it to be
passed along to reducers in each iteration step as a separate argument to the reduce function with
matching keys. That is, HaLoop will automatically perform an equi-join between the current
reducer input and the loop-invariant dataset. (See also Section 5.1.4.2.)
Accessing data from previous iteration steps. In general, by default, the output of a
MapReduce computation at a current step k serves as the input to a subsequent step k + 1.
However, in HaLoop the input of a step can include the results of all the previous steps.
Termination conditions. Iterative MapReduce systems provide mechanisms that allow users
to specify when a loop must terminate. The most common of these are fixpoints. However, they
vary in how they handle approximate fixpoints (see Section 5.1.2.2.2).
Broadcasting data to all mappers/reducers. Many iterative algorithms need to broadcast
shared information to all of the mappers or reducers in iterative MapReduce systems. For

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 101

example, in k-means clustering, the most recently computed clusters are broadcast to all of
the mappers in the subsequent iteration step in iMapReduce [193]. To handle this additional
communication, iterative MapReduce systems require custom API constructs.

5.1.3.3 Functional Control Flow APIs

Now we turn our attention to systems that offer higher-order functions for specifying control
flow, such as Flink [10, 41, 64, 65], Naiad [120, 132], Dandelion [154], MRQL [66], DIQL [67],
TensorFlow [1, 186], MXNet [47], and Theano [8]. They offer such a functional API instead
of a standard imperative control flow API (such as Spark) to be able to have in-graph control
flow, i.e., incorporate control flow into their dataflow jobs. This has several performance benefits
by eliminating job launch overhead, and by enabling several optimizations, such as eliminating
redundancy when dealing with loop-invariant data, enhancing data locality, and pipelining across
iteration steps. We will discuss these optimizations in Section 5.1.4.

We can see an example of a functional control flow API in Section 5.1.1.3. Each control
flow construct is expressed as a higher-order function, which takes user-defined function(s) that
specify loop bodies, exit conditions, if branches, etc. Next, we discuss the programming models
of the eight aforementioned DDS, each of which incorporates control flow into their dataflow jobs
using higher-order functions, and conclude with some remarks about usability.

5.1.3.3.1 Flink

Apache Flink’s [10, 41, 64, 65] collection-based API provides a loop operator with two variants.
One is denoted as iterate for bulk loops and the other is denoted as deltaIterate for incremental
loops. We will treat each one in turn.

Under the iterate variant, there are two types of termination conditions: one for a fixed
number of iteration steps and one for a data-dependent number of iteration steps. In the first
case, the syntax is

initialDataSet.iterate(numSteps, body: DataSet => DataSet)

where body is a user-defined function that builds the body of the loop as a dataflow, and DataSet
is Flink’s distributed collection type.

Note that basic collection transformations such as map, filter, flatMap, etc. are also higher-
order functions, but they take very different kinds of functions as arguments. A function given
to map takes just one element of a distributed collection and returns one element, while the body
function of iterate takes a distributed collection and returns a distributed collection.

In the second case, the specification of a custom termination condition is as follows:

initialDataSet.iterWithTerm(body: DataSet => (DataSet, DataSet))

Here, the body function returns two collections, the second of which is the termination condition:
exit the loop once this collection is empty.

Programming models are often heavily influenced by performance considerations, of which
Flink’s delta loop (or delta iteration) API [65] is a good example. In contrast with Flink’s bulk
loop shown above, the semantics of delta iterations are more complicated in order to make the
programs using it more efficient. Delta loops are incremental, i.e., they exploit the fact that in
many algorithms only a small part of the loop dataset changes per step. For example, in the

102 CHAPTER 5. RELATED WORK

transitive closure example, it often happens that many steps add only a few new pairs per step.
In this case, it is beneficial to not recreate the whole dataset at each step, but deal with only
the change. Delta loops make this possible by allowing the body function to return only the new
and/or changed elements of the main dataset. Therefore the execution time of a step in a delta
loop can be proportional to the number of new and/or changed elements, rather than with the
size of the whole dataset.

Although Flink offers several iterative constructs, there are two limitations. First, loops in
Flink cannot be nested. Second, Flink does not allow multiple datasets to be passed between
steps. However, both of these are just limitations of the current implementation.

5.1.3.3.2 Naiad, Differential Dataflow, and Timely Dataflow

Naiad [120, 132] is another DDS with a collection-based API. For loops, it has a programming
model that looks similar to Flink’s bulk loops: the user creates a fixpoint loop by calling a higher-
order function and giving it the loop body as a UDF. However, Naiad executes this in a way
that it automatically becomes an incremental loop, through the mechanism it calls differential
dataflow, where each operator of the dataflow job can efficiently react to small changes in its
inputs.

Naiad was originally written in C#, but a new implementation of Naiad’s core ideas exists in
Rust16. This implementation is modular: Timely Dataflow keeps track of iteration steps using a
system of hierarchical timestamps, whereas Differential Dataflow adds a set of collection-oriented
abstractions to the timely dataflow model.

5.1.3.3.3 DryadLINQ and Optimus

DryadLINQ [187] is a DDS with a collection-based API that leverages .NET LINQ. DryadLINQ
programs are executed on Dryad [89]. Loops can be expressed using either the standard, imper-
ative C# loop construct, or a higher-order function provided by DryadLINQ’s API17. However,
even when using the higher-order function, loop execution happens by launching a series of
dataflow jobs. Via the API users can specify an unrolling factor U , which means that each
dataflow job executes U steps of the loop [59]. We should note that the loop termination condi-
tion will only be evaluated at every Uth step.

Optimus [102] is a DDS built on DryadLINQ. It enables the run-time modification of dataflow
graphs. This feature allows for dynamic loop unrolling, where the dataflow graph is repeatedly
extended with copies of the loop body, for each iteration step. Since dataflow graph extensions
happen at run time, all of the iteration steps can be unrolled dynamically without knowing the
number of steps beforehand. In this manner, all of the iteration steps are in a single dataflow job,
which simplifies both fault-tolerance and job monitoring, and eliminates the job launch overhead.
However, the task launch overhead due to launching new operators is not eliminated, and it can
be a significant part of the step overhead (see Section 3.6.5).

5.1.3.3.4 Dandelion

Dandelion [154] is a DDS with a similar API to DryadLINQ. However, it focuses on heterogeneous
compute clusters, i.e., where there are also specialized compute cores, such as GPUs. It provides

16https://github.com/TimelyDataflow/
17https://github.com/MicrosoftResearch/Dryad/blob/master/LinqToDryad/DryadLinqExtension.cs#L205

https://github.com/MicrosoftResearch/Dryad/blob/master/LinqToDryad/DryadLinqExtension.cs#L205

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 103

a higher-order function for building loops, which enables in-graph loops, similarly to Flink and
Naiad. In the context of GPUs, an in-graph loop means that Dandelion ships a loop to a GPU,
and thus avoids context switching at every step.

In Table 5.1 we wrote mixed for Dandelion’s DSL embedding. Dandelion uses cross-compilation
for translating the .NET bytecode of UDFs to GPU code, which we classify as metaprogram-
ming. However, for other parts of the code (including control flow constructs) it relies on LINQ
types and their method calls, i.e., a type-based DSL embedding.

5.1.3.3.5 MRQL and DIQL

The MapReduce Query Language (MRQL [66]) is a SQL-like external DSL for large-scale data
processing. It can compile queries to Hadoop MapReduce, Apache Hama, Spark, and Flink.
It supports fixpoint loops using a special syntax. The termination condition is a user-specified
Boolean value for each element in the collection that is passed to the next step, indicating
whether an element has converged. The iterative process terminates when all of the elements have
converged. The Data-Intensive Query Language (DIQL [67]) is a similar DSL, but embedded
in Scala. Chlyah et al. [48] extend MRQL/DIQL’s monoid algebra to perform loop-related
optimizations, such as reordering operators and deferring shuffles to the end of loops.

5.1.3.3.6 TensorFlow, MXNet, and Theano

TensorFlow [1, 186], MXNet18 [47], and Theano19 [8] are three prominent dataflow systems for
machine learning (ML). These three ML systems are not distributed in the same sense as Flink,
Naiad, and Spark, given that distributed training in these systems requires another layer of
programming, besides the single machine program (e.g., distributed training in a parameter
server architecture, possibly with Keras20). However, they employ a dataflow programming
model, which is suitable even for single-machine programs, which can be executed on GPUs.
When executing dataflows on GPUs, similar design considerations apply to control flow support
as in the case of distributed dataflow graphs (one dataflow job can execute an entire loop or just
one iteration step, the control flow API can be imperative or functional, etc.).

Control flow is vital in ML systems. In 2018, Yu et al. [186] reported that within Google,
about 65% of TensorFlow jobs contain conditional statements and about 5% contain loops, for
such uses as processing sequential data in recurrent neural networks or agents performing a
sequence of actions in reinforcement learning.

Like Flink and Naiad, control flow in TensorFlow, MXNet, and Theano is incorporated
into the dataflow jobs via higher-order functions. Besides a function for building a while loop,
TensorFlow and MXNet also offer a function for building conditionals, akin to an if statement.

The loop APIs of TensorFlow, MXNet, and Theano slightly differ from those of Flink and Na-
iad. For example, they support the passing of multiple loop variables between iteration steps, via
the parameters of body functions, which allow tuples of variables (e.g., scalars, multidimensional
arrays) as their data types. Another difference is that the loop exit conditions are determined by
condition functions, independently of body functions. Condition functions take the same loop
variables as the body function, but return a Boolean, which determines whether to exit a loop.

18https://cwiki.apache.org/confluence/display/MXNET/Optimize+dynamic+neural+network+models+
with+control+flow+operators

19http://deeplearning.net/software/theano/library/scan.html
20https://keras.io/

https://cwiki.apache.org/confluence/display/MXNET/Optimize+dynamic+neural+network+models+with+control+flow+operators
https://cwiki.apache.org/confluence/display/MXNET/Optimize+dynamic+neural+network+models+with+control+flow+operators
http://deeplearning.net/software/theano/library/scan.html
https://keras.io/

104 CHAPTER 5. RELATED WORK

Unfortunately, this design does not allow for the inspection of the values of loop variables from
two successive iteration steps at the same time. However, this limitation can be overcome with
additional loop variables to store the values from earlier steps. Lastly, another small variation
is that both MXNet and Theano allow for returning the values of loop variables after each step
(i.e., not just the value after the last step). Note that besides the above API, TensorFlow 2.0
also incorporates AutoGraph, which compiles from an imperative API to in-graph control flow,
which we discuss in Section 5.1.3.4.4.

Yu et al. [186] argue that in-graph control flow support in dataflow jobs is advantageous in
these systems because of the need for automatic differentiation, which is a commonly used feature
when training neural networks. They argue that automatic differentiation can be better sup-
ported when a system can examine an entire program upfront, including control flow. However,
it should also be noted that PyTorch can still perform automatic differentiation of loops [143],
even though it is an eagerly evaluated machine learning framework, i.e., it executes control flow
in the driver program instead of building it into dataflow graphs.

5.1.3.3.7 Usability

When expressing in-graph loops via higher-order function calls, it is important to keep in mind
that body functions are called by the system

• exactly once (i.e., not for every iteration step),

• in the driver program,

• while building a dataflow job (i.e., not while the loop is running).

In other words, during the execution of a loop, the driver program is not involved, and therefore
every aspect of the loop body must be built into the dataflow graph upfront. Consequently, the
loop body can only contain operations that can be expressed using system-supported operators.
As mentioned in Section 5.1.2.2.5, this can make it cumbersome to perform certain tasks which
would be trivial if control flow is executed in the driver program instead of in-graph. Moreover,
users have to be careful not to accidentally use an operation that is executed immediately,
instead of as part of the dataflow job. These characteristics make these APIs unintuitive to
new users, which is evidenced by dozens of questions on the stackoverflow.com website about
tf.while_loop, theano.scan, and Flink’s loops. Listing 3.1 shows an example comparing
functional and imperative control flow APIs.

5.1.3.4 Imperative Control Flow in Dataflow Systems

Many DDSs have host languages that provide traditional imperative control flow constructs
(e.g., while loop, if statement), such as Scala in Spark. In contrast to functional control flow
APIs, which require greater effort to use, imperative control flow offers greater expressivity, and
facilitates the representation of several concepts discussed in Section 5.1.2.2.

However, even though imperative control flow in DDSs offers several benefits for users, it
is hard for the systems to efficiently execute imperatively written programs. We will present
several approaches in this section. Table 5.3 shows an overview.

https://stackoverflow.com/search?q=tf.while_loop

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 105

Table 5.3: Systems where control flow is expressed imperatively.

System(s) Loop
Unrolling

Separ. Jobs
Explicitly

Separ. Jobs
Implicitly In-Graph Tracing

Spark [189] Yes Yes No No No
DryadLINQ [187] Yes Yes No No No
FlumeJava [45] Yes Yes No No No
Emma [9,11,12] Yes No Yes Some No
Mitos (Emma) [72] No No No Yes No
TensorFlow [126] Yes Yes Yes Yes Yes
Janus [92,93] Yes No Yes Yes No
Myria [178] No No No Yes No
SystemML/SystemDS [24,25,74] Yes No Yes No No

5.1.3.4.1 Loop Unrolling

Recall that many of the distributed collection operations are lazy in the sense that they are not
executed at once when the driver program calls them. Instead, they build up a dataflow job to
be executed later, when an action is called. For example, creating a new distributed collection
from an existing one is typically a lazy operation.

Lazy operations allow for the unrolling of a loop: If the loop body does not involve any
actions, then the dataflow job will continue to grow at each iteration step, but not be executed
while the loop is running in the driver program. Such a dataflow job will have many similar
copies of the loop body chained one after the other.

Unfortunately, fully unrolling a loop is only possible in limited circumstances: specifically,
when control flow does not depend on values computed in dataflow jobs. The problem is that
most iterative algorithms require convergence checks and these depend on the results computed
in the current iteration step. If we rely on the control flow constructs of the host language, then
we need to get information from the distributed collections into the driver program (for example,
summing up the values of a collection of changes). This would require actions to be called at
every iteration step and thus dataflow jobs to be executed.

Also note that even unrolling a loop might not eliminate a signficant portion of the step
overhead. This is because unrolling a loop can create a large number of operators, proportional
to the number of iteration steps. Since each operator typically has an overhead from launching
tasks, this means that a per-step overhead can still be present. We experimentally demonstrate
this problem in Section 3.6.5.

There are instances when it is beneficial to partially unroll a loop: one job executes several,
but not all iteration steps. This way, we can amortize some of the per-job overhead. Ekanayake
et al. [59] explored partial loop unrolling in DryadLINQ, but found that the overhead is still
large in comparison to frameworks that specifically optimize for iterative computations.

Nemeth et al. [135] compile machine learning model evaluations expressed in Julia [18] to
parallel dataflows. They unroll control flow at compile time by “inlining” the input data into the
model, i.e., they perform partial evaluation [94] of the model with the input data.

106 CHAPTER 5. RELATED WORK

5.1.3.4.2 Explicitly Launching Separate Dataflow Jobs at Every Step

As mentioned before, a simple approach to loops in DDSs is to just let the driver program
launch separate dataflow jobs for every iteration step21. However, if done naively, this approach
can have a bad performance. One issue to keep in mind is that the distributed collections of
DDSs are typically ephemeral by default. Collections are not saved (either in memory or disk)
but recomputed if used in multiple jobs (which can happen due to various reasons in iterative
programs, as we show later). Therefore, users should explicitly persist datasets between the
dataflow jobs of different steps. However, if the system does not provide support for persistence
within the system, then we have to write it to disk (in, e.g., HDFS).

Spark [188, 189] solves this problem by offering the user the option of keeping a dataset in
the memory of the Spark worker processes between dataflow jobs. Specifically, Spark offers a
method on RDDs (Spark’s distributed collection type), called cache. Calling this method has
the effect that Spark will save the elements of the collection when they get computed the next
time, and then will use the cached elements if needed later. (Note that Spark also performs a
form of caching automatically before shuffles.) A related method is unpersist, which removes
a cached RDD. This can have several benefits: overriding Spark’s default cache eviction scheme
so that the right RDDs remain cached under tight resource constraints, reducing the work of
the garbage collections by reducing the number of live JVM objects in the worker processes, etc.
Note that paying attention to call persist and unpersist is extra user effort, which can be
avoided with the alternative approaches in Section 5.1.3.4.3–5.1.3.4.4. Also note that, in some
cases, Spark can automatically unpersist RDDs that went out of scope in the driver. However,
this mechanism relies on the finalizer of the RDD being called in the driver, which happens only
when a garbage collection in the driver happens. Since the driver itself has little memory pressure
in many Spark programs, the automatic unpersisting might happen later than ideal. In the next
paragraphs, we show how to use these Spark methods to handle the passing of intermediate data
between iteration steps and to handle loop-invariant datasets. Figure 5.5 shows an example.
Intermediate data between iteration steps. If the intermediate data is written to the disk
at the end of each step, and then read back at the beginning of the next step, this incurs a
considerable performance overhead. Early papers on DDSs did not present a solution to this
problem (DryadLINQ [187], FlumeJava [45], Hyracks [29]). In Spark, however, the user can call
cache on those RDDs which will be used in the next iteration step, and call unpersist on those
that were cached before but are not needed anymore. Also note that Shinnar et al. [162] discuss
keeping intermediate data in memory between jobs in the context of Hadoop.
Loop-invariant datasets. These are such datasets that are used throughout a loop without
any changes. For example, in the transitive closure example, the collection of edges is the same
in all iteration steps. We would like such datasets to be computed (or read from disk) only once.
In Spark, the user can achieve this by calling cache on such datasets before the loop. We will
discuss optimizations for loop-invariant datasets in Section 5.1.4.2.

TensorFlow allows for both in-graph control flow and for a variation of the above approach
of executing control flow in the driver program: we can create and distribute a graph once, and
then trigger its execution repeatedly from the driver program (with different inputs, such as new
batches of training data). This variation has a lower overhead than launching a completely new

21The approach of launching separate jobs works for branching constructs as well (if statement, switch-case): we
launch one job to compute the condition the if condition, and then the appropriate branch executes a subsequent
job.

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 107

1: Edges = readFile(...)
2: Edges.cache()
3: Closure = Edges
4: Closure.cache()
5: NewCount = Closure.count()
6: do
7: OldCount = NewCount
8: OldClosure = Closure
9: Closure = Closure.join(Edges)

10: .where(_.to).equalTo(_.from) {(left , right) =>
11: (left .from, right .to)
12: }
13: .distinct()
14: Closure.cache()
15: NewCount = Closure.count()
16: OldClosure.unpersist()
17: while NewCount ̸= OldCount

Figure 5.5: The transitive closure example, extended with caching in the style of Spark. The
blue lines are managing which datasets to keep in memory between dataflow jobs, The red lines
are actions, which trigger job executions.

graph at every iteration step, but in-graph loops are still faster: Yu et al. [186] report an 5×
difference in TensorFlow in a microbenchmark.

Note that most systems that provide support for in-graph control flow through a functional
API typically also allow the user to fall back to expressing control flow imperatively in the driver
program and executing each step as a separate dataflow job. However, in that case, the user
obviously does not get the performance benefits of in-graph loops.

5.1.3.4.3 Leaving Execution Details to the System

Ideally, we would like systems to automatically handle low-level execution details, such as caching.
However, there is no easy way to extend Spark with automatic caching of RDDs. The problem is
that Spark’s API is a type-based embedded DSL (see Section 2.3) that is only aware of method
calls involving RDDs and unaware of other parts of a driver program, such as the imperative
control flow constructs. Moreover, Spark does not directly recognize that there is a loop or
that an RDD will be used again in a subsequent job. However, recent systems, such as Apache
SystemML/SystemDS [24, 25, 74], and Emma [9, 11, 12] have a more holistic view of programs:
they hide execution details from users, yet still provide imperative control flow constructs. Next,
we discuss these systems.

SystemML [25, 74] is a large-scale machine learning system, whose programs are expressed
in a declarative language called DML, a DSL with an R-like syntax. The system compiles DML
programs to MapReduce or Spark. DML is an external DSL [70], i.e., it is not embedded in
a general-purpose language, but rather is an independent language. SystemML has complete
responsibility for the user programs written in this language, and therefore it is naturally aware
of everything in the source code, including loops and other control flow. This allows it to

108 CHAPTER 5. RELATED WORK

Table 5.4: Control flow handling approaches in DDS. In-graph loops allow for better perfor-
mance than executing control flow in the driver program with launching separate dataflow jobs.
Imperative control flow APIs are easier to use than the functional ones.

Performance−−−−−−−−−−→
Separate Jobs One Job (In-Graph Loops)

E
as

e
of

U
se

−−
−−
−−
−−
−→

Imperative
Control Flow

Dryad/DryadLINQ [187],
FlumeJava [45], Spark [189],
SystemML/SystemDS [24,25]

Mitos [72],
Janus [92,93], AutoGraph [126],

Swift for TensorFlow

Functional
Control Flow

Flink [65], Naiad [120],
TensorFlow 1.x [186], MXNet

automatically handle low-level execution details, such as caching. SystemDS [24] evolved from
SystemML, extending it with features for the end-to-end data science lifecycle.

Emma [9, 11, 12] is a metaprogramming-based Scala DSL (see Section 2.3 for an overview of
DSL types) for scalable data analysis compiling to Flink and Spark. Emma has a holistic view
of a user program, including its control flow. It achieves this via Scala’s macro system [37]. Like
SystemML, Emma takes care of low-level execution details, such as inserting appropriate cache
calls in loops.

5.1.3.4.4 Compiling Imperative APIs to In-Graph Control Flow

Functional control flow APIs allow the system to execute a loop as a single dataflow job, enabling
good performance. On the other hand, the imperative control flow APIs are more convenient to
use, but older systems with imperative APIs typically execute loops as separate dataflow jobs
per iteration step, which incurs a performance penalty. However, it is possible to combine the
advantages of both of these API approaches: recent systems provide an imperative control flow
API, but compile iterative programs into a single dataflow job. We can see an overview of these
approaches in Table 5.4.

AutoGraph [126] and Janus [92, 93] are both Python DSLs for machine learning, compiling
to TensorFlow. They allow for writing TensorFlow code in an imperative style with the standard
Python control flow statements, which is convenient for users. They use metaprogramming
to compile this code to a single TensorFlow dataflow job, which TensorFlow can then execute
efficiently. Swift for TensorFlow22 is a similar project aiming to compile from the Swift language
to TensorFlow.

Emma [9,11,12] can compile the user’s program into a single dataflow job only if the loop is
compilable to Flink’s in-graph loops, whose limitations we discussed in Section 5.1.3.3.1. Other-
wise, it compiles to separate dataflow jobs per step.

Mitos can always compile to a single dataflow job. The structure of Mitos dataflows mirror
SSA [148], which is a common intermediate representation of control flow in compilers of imper-
ative languages. Because of relying on SSA end-to-end, it is easy to add any of the standard
control flow constructs into Mitos (even unstructured ones, such as goto, break, continue, etc.):
the only step for adding a new control flow construct is to compile it to SSA, from which point

22https://github.com/tensorflow/swift/blob/f0d6c74ef5d016046afc1eac0b07a2f6b74b8fdf/docs/
GraphProgramExtraction.md#adding-intraprocedural-within-a-function-control-flow

https://github.com/tensorflow/swift/blob/f0d6c74ef5d016046afc1eac0b07a2f6b74b8fdf/docs/GraphProgramExtraction.md#adding-intraprocedural-within-a-function-control-flow
https://github.com/tensorflow/swift/blob/f0d6c74ef5d016046afc1eac0b07a2f6b74b8fdf/docs/GraphProgramExtraction.md#adding-intraprocedural-within-a-function-control-flow

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 109

Mitos can already handle it. Since SSA is quite common, translating the common control flow
constructs to it is well-studied and straightforward.

Note that the above-mentioned AutoGraph [126], Janus [92, 93], and Swift for TensorFlow
DSLs have to work with TensorFlow’s control flow primitives as their compilation targets. Specif-
ically, Janus compiles to TensorFlow’s lower-level control flow primitives, where standard control
flow operations have to be constructed from several primitive operations. AutoGraph and Swift
compile to TensorFlow’s higher-level control flow operations, where each of the standard control
flow constructs is expressed as a single higher-order function call. These compilation approaches
differ from Mitos’ approach, where the target of the compilation is Mitos’ own dataflows, whose
representation of control flow is directly based on SSA. Mitos’ approach is more general, as Au-
toGraph does not support goto. Also note that AutoGraph’s compilation of break and continue
involves introducing extra variables and conditionals, while Mitos can simply rely on the SSA
translation of these constructs.

There are instances when a user wants to interleave non-system code (e.g., printing) and
control flow (as discussed in Section 5.1.2.2.5). Systems with imperative APIs that execute loops
as separate dataflow jobs trivially allow for running non-system code at every step. In these
systems, non-system code runs in the driver program instead of being incorporated into dataflow
jobs. If we instead compile imperative control flow to in-graph loops then the question arises,
how to handle non-system code. To do so, we have to convert non-system code into system
code, which is a hard problem due to the potential for external side effects (e.g., I/O): If an
arbitrary interaction with the external world is allowed, the conversion might become invalid
if it is not executed in the context of the driver program, but rather executed in one of the
(cluster) worker machines. Unfortunately, current systems do not provide a general solution
to this problem. Instead, they convert a select set of non-system code into system code. For
example, AutoGraph handles an ordinary Python print statement by converting it to tf.print,
which is TensorFlow’s built-in printing function, and is thereby incorporated into the dataflow
job. Janus [92] does an additional trick: it records global object mutation attempts, and defers
them to the end of the job execution.

Myria [80] has an external DSL that includes a while loop construct. Myria compiles programs
that use this construct to a cyclic dataflow and executes the loop as a single dataflow job.
However, Myria does not allow for more general control flow, such as if statements or nested
loops.

Fernandez et al. [68] compile imperative Java code to stateful distributed dataflow graphs.
Their system has an imperative API not just in the control flow constructs, but also in working
with data: Instead of using higher-order functions to transform immutable collections, the user
writes imperative code to directly manipulate (annotated) data structures.

5.1.3.4.5 Trace-based Compilation

We turn our attention to a hybrid control flow handling approach, incorporated in TensorFlow
and MXNet, which builds a graph from the trace of an imperative in-driver execution23. In
TensorFlow 1.x, for example, let us assume that we apply the tf.contrib.eager.defun dec-
orator to a Python function f , which has both tensor and non-tensor parameters. Each time
f is called, TensorFlow will examine the non-tensor arguments to see whether the function was
called before with these non-tensor arguments. If it is the first time for these arguments, the

23https://www.tensorflow.org/api_docs/python/tf/function

https://www.tensorflow.org/api_docs/python/tf/function

110 CHAPTER 5. RELATED WORK

system will call the function in a special way called tracing. This entails calling the function
with special placeholders for the tensor parameters and building a graph. This graph can then
be used by TF for any values of the tensor parameters if the non-tensor arguments are the same.

The (somewhat complicated) consequences of the above mechanism on control flow handling
is as follows. Assume that control flow is specified with imperative Python code. If the control
flow depends on the non-tensor parameters of f , then TF will build just a single dataflow graph
for each concrete value of these parameters. These graphs will not contain control flow, but
instead loops will be unrolled, and only one branch of an if statement will be included in such a
graph. Since the entire function is in a single dataflow job, this should be efficient, provided that
the loop unrolling does not produce a very large graph. However, a drawback of tracing is that
the control flow cannot depend on neither the tensor arguments, nor any values computed from
tensors within the function, since this would require building the control flow into the dataflow
job, which is not possible via tracing.

As of the time of this writing, the state-of-the-art execution mode in MXNet is tracing in the
Gluon API24. However, in TensorFlow 2.0, the defun decorator uses AutoGraph by default (see
Section 5.1.3.4.4) instead of tracing, which allows for control flow depending on tensor values,
even when specifying control flow using Python’s control flow primitives.

5.1.3.5 CIEL

CIEL [133] is a DDS with a directed acyclic graph of operators, similar to Spark or Flink.
However, the crucial difference with regards to control flow is that operators in CIEL that are
a part of a running dataflow job can extend the job by spawning new operators. This low-level
mechanism enables the user to implement control flow constructs: an operator that evaluates
an if-condition can spawn the dataflow fragment of the then-branch or the else-branch. Loops
can be implemented in a manner akin to tail recursion: the dataflow fragment corresponding
to the loop body either produces a final result or spawns itself to execute the subsequent step
in the loop. Since this mechanism is too low-level, Murray et al. [131] created the Skywriting
script language, which is more high-level. Musketeer [75] implements certain loops by similarly
extending dataflow jobs. However, it performs these extensions at the level of its intermediate
representation instead of the execution level, where it launches separate jobs.

The performance characteristics of the spawning approach in CIEL is similar to that of
launching separate dataflow jobs for each step from a driver program: There is a per-step over-
head associated with launching operators, and internal operator state cannot be shared between
steps. However, the optimization of pipelining between iteration steps (which is otherwise typi-
cally possible only in systems with in-graph loops, see Section 5.1.4.4) is performed by CIEL.

5.1.3.6 Specialized Models

In this section, we breifly discuss computational models and systems that are specific to a par-
ticular data model, namely graph data and array data.

5.1.3.6.1 Graph Data

Many datasets can be represented as graphs and expressed as a collection of vertices and edges.
Accordingly, several programming models and systems have arisen for the processing of graphs.

24https://mxnet.incubator.apache.org/versions/1.8.0/api/python/docs/api/gluon/index.html

https://mxnet.incubator.apache.org/versions/1.8.0/api/python/docs/api/gluon/index.html

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 111

In these models, graphs serve as input, and each vertex and edge can have an associated state
of an arbitrary user-defined data type. This state can be modified during computation.

In the Pregel model [117], computation proceeds in a series of supersteps (inspired by the
Bulk Synchronous Parallel model [177]). In each superstep, the system runs a user-defined
vertex function in parallel (conceptually) for each active vertex of the graph. In one invocation
of the vertex function, a single vertex receives all of the messages that were sent to it in the
previous superstep, and can send messages to other vertices, which will receive them in the next
superstep. Usually, messages are sent along graph edges, but they can also be sent to any vertex
whose identifier is known.

In addition to receiving and sending messages, the vertex function can modify the state of
the vertex and its outgoing edges, modify the graph structure, and vote to halt the program. If
the vertex votes to halt, the vertex becomes inactive. In this case, the system will not run the
vertex function for this vertex in subsequent supersteps. In the event the vertex later receives a
message, it will become active once again. The program halts when all vertices are inactive, and
there are no further messages to be delivered.

There are several variations on the above-mentioned “think like a vertex” idea, where a single
invocation of a user-defined vertex function handles a single vertex and (possibly) its neighboring
vertices. For example, GraphLab [116] provides a shared memory programming model, where
a vertex function can directly read and write the states of its neighboring vertices, instead of
sending and receiving messages. Gonzalez et al. [76] introduce the Gather-Apply-Scatter model,
where the vertex function is split into three functions: the gather function aggregates information
about the vertices and edges adjacent to the vertex, the apply function uses the aggregation result
to update the vertex state, and the scatter function sends information out to neighboring vertices
based on the updated vertex state.

Unlike Pregel, GraphLab supports microstep iteration (or asynchronous iteration, see Sec-
tion 5.1.4.3), where a vertex function sees the results of the most recent updates, instead of
results from the previous supersteps. Instead of the global synchronization barrier among all of
the worker threads at the end of supersteps, GraphLab synchronizes only conflicting runs of the
vertex update function, i.e., when affected vertex neighborhoods overlap.

Xie et al. [183] investigate the relative advantages of microstep and superstep models. In their
study, they conclude that neither model outperforms the other in all circumstances. Therefore,
they introduce Hsync, a hybrid graph computation system that dynamically switches between
models automatically to optimize the performance.

GraphX [77] combines the benefits of a graph programming model and Spark, a general-
purpose DDS. In GraphX, users can leverage both graph and general distributed collection oper-
ations in a single system. GraphX adds a number of optimizations on top of Spark, and thereby
outperforms naive Spark implementations of graph algorithms. This way, GraphX achieves a
performance that is comparable to specialized graph processing systems. Similarly to GraphX,
Pregelix [33] has a graph programming model and executes programs on a DDS, Hyracks [29].
Gelly25 executes graph programs on Flink.

For more detailed information about graph-based programming models and systems, have a
look at these surveys: [16, 81,95,119,185].

25https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/libs/gelly/

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/libs/gelly/

112 CHAPTER 5. RELATED WORK

Table 5.5: Iteration support in streaming dataflow systems.

System(s) Cyclic Dataflows
for Streaming Data

Incremental Changes Across Both
Streaming Epochs and Iteration Steps

Iterations Inside
Micro-Batches

Flink Yes No N/A
Naiad/Timely Dataflow Yes Yes N/A
Spark No No Yes

5.1.3.6.2 Array Data

SciDB [31] is a data management system for large-scale n-dimensional array data. Array data
have inherent locality properties: data elements close in an array typically represent real-world
objects also close together. For example, a 2-dimensional array can be the pixels of an image. A
3-dimensional array can be a series of images of the same location from different times. In these
examples, close array elements represent close pixels, either in space or time.

Soroush et al. [170] extend SciDB with support for efficient iterative processing. Their ap-
proach introduces a programming model that is well-suited to exploiting the above-mentioned
locality properties of array data. The programming model can be thought of as a constrained
form of the Gather-Apply-Scatter model, with no scatter phase, and with the graph structure
corresponding to the locality properties of the processed array. More specifically, the gather
phase gathers data from a window in the array, such as a 3-by-3 block of pixels (instead of from
the neighborhood of a vertex in an arbitrary graph). We discuss optimizations enabled by this
model in Section 5.1.4.6.

5.1.3.7 Iterations in Streaming

In other parts of the thesis, we discuss batch computations, where the input data is finite
and available in its entirety. In streaming computations, the input data is not finite but arrives
continuously over a long time while the computation is running. Results should also be produced
continuously, using only the input data that has arrived so far. There are several DDS that are
also optimized for streaming computations, such as Naiad [120,132] and Flink [41]. In this section,
we discuss iteration handling in streaming computations. Table 5.5 provides an overview.

Flink. In its streaming API, Flink allows for adding arbitrary cycles into its streaming
dataflow jobs, but only using a low-level API. It does not provide certain basic services for
building an actual iteration, such as separating records belonging to different iteration steps.
However, there are research efforts to add support for structured iteration26 [38].

Naiad uses an incrementalization approach to handle both incremental iterations and stream-
ing computation. In Naiad, continuously arriving input data are divided into epochs. In each
epoch, a new batch of input data arrives, which changes the input collections, for which the
system computes the necessary changes in the output. Naiad has an elaborate mechanism to si-
multaneously handle incremental changes between iteration steps and between streaming epochs.
Timely Dataflow (see Section 5.1.3.3.2) supports streaming similarly.

Spark handles streaming computation using the so-called micro-batch approach, where the
system divides input data into small batches as it arrives, and starts separate batch computations
for each batch [190]. (This is in contrast to epochs in Naiad, which handle all epochs in the same

26https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66853132

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66853132

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 113

Table 5.6: Loop optimizations in DDS.

System Loop-Invariant Datasets
Loop-
Pipelining

Incremental
Loops

In-Memory
Caching

Repart. Indexes

Spark Manual Manual Manual (IndexedRDD [50]) No No
Flink Auto Auto Auto (hash joins) Only Unrolled Yes
Naiad Auto Auto Auto (Differential Dataflow) Yes Yes
Mitos Auto Auto Auto (hash joins) Yes No
DryadLINQ No Manual No Only Unrolled No
Twister Manual Manual Manual No No
HaLoop No Auto Auto No No

long-running dataflow job.) Since each batch is handled by a standard Spark batch program, we
can use Spark’s standard mechanisms for control flow (Section 5.1.3.4.2).

5.1.4 Optimizations

We turn our attention to the various optimizations to improve (control flow) efficiency in DDSs.
In particular, we will discuss optimizations to: (i) reduce dataflow job launch overhead, (ii)
eliminate redundancies involving loop-invariant data, (iii) loop pipelining, and (iv) efficiently
handle incremental changes to distributed collections across iteration steps. Table 5.6 provides
an overview of the varying loop optimizations in DDS.

5.1.4.1 Reducing Dataflow Job Launch Overhead

As previously discussed, launching a separate dataflow job for each iteration step is a simple
approach to implement loops in DDS. However, this can incur a significant overhead due to
potentially launching a large number of dataflow jobs (see Section 3.6.5). Thus, several methods
to reduce the (dataflow) job launch time have emerged, which we will discuss next.

Starting system processes incurs an overhead, which is particularly significant in JVM-based
systems due to JIT compilation [115]. To mitigate this problem, a commonly employed opti-
mization is to simply reuse actively running worker processes between dataflow jobs.

Scheduling decisions can also be made faster. Sparrow [139] distributes the scheduling itself.
Nimbus [118] caches scheduling decisions across iteration steps. By this, it achieves similarly
low step overhead as in-graph control flow, while being more flexible in, e.g., adapting to load
imbalances.

If the amount of computation to do in a dataflow job is small, it might be better to execute
it in a single machine instead of distributing it [121]. Switching to a single-machine execution
is beneficial any time when this way the execution completes faster than the overhead of a dis-
tributed execution. SystemML/SystemDS makes this decision by a heuristic based on memory
usage estimates and on its decision for earlier operations [25]. ML4All [99] makes this decision
based on whether the input has a single partition, while Rheem [3] employs cost-based opti-
mization. A similar optimization is performed by DryadLINQ [187], which dynamically chooses
how many parallel instances of an operator should be launched based on the input data size.

114 CHAPTER 5. RELATED WORK

This reduces overhead because the overhead of launching an operator typically depends on the
number of parallel instances [118], as our experiments in Section 3.6.5 also show.

5.1.4.2 Loop-Invariant Datasets

Loop-Invariant Datasets (LIDs) remain unchanged over the course of a loop. They provide
several optimization opportunities because naive implementations often do redundant work with
them.

Avoiding recomputation. As previously discussed, distributed collections in DDSs are typi-
cally ephemeral by default (i.e., they are not stored between dataflow jobs). If we launch new
jobs at each iteration step, LIDs should be persisted. In Spark, this is done using the cache
method. In the absence of such methods, LIDs can be written to a file before the loop and read
at each iteration step, thereby avoiding the need to recompute LIDs.

Avoiding disk I/O. LIDs that are not too large can be stored in memory instead of disk.
This can improve performance by eliminating disk I/O and deserialization. For example, Spark’s
cache method stores datasets in memory by default. However, in HaLoop [34, 35], data is
assumed not to fit in memory, and is therefore cached to disk. Elgohary et al. [62] utilize
compression to fit more cached data in memory, and perform linear algebra operations directly
on the compressed data to also avoid decompression costs.

Avoiding repeated repartitioning. LIDs are often used in operations that require their
inputs to be partitioned by key. For example, a standard way of performing an equi-join in
DDSs is to partition both inputs according to the join key, and then perform a local join on each
pair of partitions with matching keys. If LIDs are used in a join, then systems like Spark that
are unaware of loops will repeatedly repartition in each iteration step. This can be avoided by
manually inserting repartitioning before the loop. In SystemML/SystemDS, these repartitioning
operations are inserted automatically, thereby achieving a substantial speedup over Spark [25].
Also note that for Alternating Least Squares (ALS), it is beneficial to keep two representations
of the input matrix: both row and column partitioned.

Avoiding repeated network transfer. Even if LIDs are put into appropriate partitionings
before a loop, cached partitions might not be in the machines where they are needed. In this case,
they have to be transferred over the network in each iteration step. To avoid this, HaLoop tracks
the locations of cached partitions, and schedules tasks accordingly [34, 35]. Besides HaLoop,
DryadLINQ [187] also avoids repeated network transfers. In Spark, it is also possible to perform
this optimization, but very cumbersome even for an expert user due to technical issues in Spark’s
locality awareness.

Avoiding index rebuilding. It may be desirable to index LIDs for certain operations, which
can introduce redundancy in loops. For example, at the build side of a hash join, rebuilding the
hash table in each iteration step is redundant. Caching such a hash index is not straightforward
in Spark since the RDD interface allows for iterating over the elements of an RDD, but not
accessing them in any other way, such as performing a lookup in a hash table. For a possible
workaround in Spark, see IndexedRDD [50]. However, avoiding index rebuilding is easier for
in-graph loops, where a loop is executed within a single dataflow job. In this case, the operator
that performs the join is not restarted during each iteration step. Thus, it can keep its internal
state between steps, including any indexes. Flink [65], Naiad [120,132], and Mitos automatically
perform this optimization.

5.1. CONTROL FLOW HANDLING IN DATAFLOW SYSTEMS 115

Repeatedly sampling a dataset (as in, e.g., mini-batch gradient descent) also provides an
optimization opportunity similar to the upfront hash table building for joins above. The standard
Spark implementation of sampling scans the entire dataset, which is wasteful if only a small
sample is needed [99]. Instead, random access to the elements of the dataset to be sampled
opens the way for more efficient sampling algorithms, which do not scan the entire dataset. This
is easy to achieve in in-graph systems: a sample operator could just keep each partition of the
dataset in an array throughout all iteration steps, and sample from these arrays repeatedly. In
Spark, a similar trick as IndexedRDD can be used instead27.

Despite the above benefits of loop-invariant hoisting, it can also disastrously reduce perfor-
mance in some cases.28 Imagine that we have a matrix X, a column vector v, and we perform the
following computation in a loop body: t(X) %*% (X %*% v), where %*% denotes matrix multi-
plication, and t(X) denotes matrix transposition. If X is a loop-invariant matrix, then there are
two opportunities for loop-invariant hoisting, but both of them hurts performance. If we hoist
t(X) %*% X, then we get a much larger matrix than any of the matrices/vectors that occur in
the original computation if X has few rows but many columns. If we hoist only t(X), we prevent
the applicability of fused operators for scan sharing. To avoid this danger, SystemDS does not
apply loop-invariant hoisting by default.

5.1.4.3 Asynchronous Loops

In the research literature, the term asynchronous iteration is used for two different concepts:
for microsteps (in the context of microsteps vs. supersteps), and for the pipelining optimization
between supersteps. Let us treat each of these in sequence.

Many authors [46, 65, 76, 116, 132, 180, 183] use the term asynchronous iteration to mean
microsteps. Microsteps [65] arise, for example, in parameter servers29 [111, 168], the GraphLab
programming model [116], and in the evaluation of Datalog queries [179]. In these cases, each
microstep processes little data (e.g., a single training example, a single vertex and its neighbors).
Typically, microsteps are executed concurrently, without a total ordering among them [109],
and without global synchronization barriers across parallel tasks30. In contrast, supersteps [177]
are synchronous iteration steps, where a substantial amount of data-parallel computation takes
place in each iteration step (e.g., when all of the graph vertices simultaneously process incoming
messages in Pregel [117]). Also note that supersteps occur sequentially (i.e., there is a total
ordering among them) and subsequent steps are able to examine all of the results from earlier
steps. In this thesis, we primarily focus on superstep programming models.

In contrast, several papers [63, 72, 193] use the term asynchronous iteration to mean loop
pipelining, i.e., the removal of the full synchronization barrier between supersteps and thus
pipelining supersteps. In other words, they optimize a superstep-iteration by overlapping the
execution of supersteps. This optimization does not alter the semantics of the programming
model, i.e., all user code sees exactly the same intermediate program states as without the

27https://github.com/ggevay/rdd-sampling
28This example was pointed out by Matthias Boehm in personal communication.
29Most of the dataflow systems that we discuss do not support the parameter server architecture. However,

TensorFlow does provide support, by representing global state in its dataflow graphs: it includes special operations
(and corresponding dataflow nodes) called variables, which manage mutable state that is readable and writable
by other nodes.

30There are different consistency models that dictate how to handle conflicting microsteps [116]. In some models
(e.g., eventual consistency), a microstep might see stale data.

https://github.com/ggevay/rdd-sampling

116 CHAPTER 5. RELATED WORK

optimization. We will discuss this optimization in the next section.

5.1.4.4 Loop Pipelining

Loop pipelining, i.e., overlapping the execution of successive iteration steps, is a natural opti-
mization approach that offers several performance advantages. For example, the pipelining of
data transfers between operators in successive iteration steps eliminates the need to store inter-
mediate results between steps, which saves on memory usage or reduces disk I/O and possibly
eliminates (de)serialization. An additional performance benefit of pipelining comes from miti-
gating stragglers at the end of iteration steps. This is because pipelining allows the system to
already start the next iteration step when a straggler is still working on the current step.

Execution approaches that launch separate dataflow jobs for each iteration step do not fit well
with this optimization. For example, Spark typically cannot perform pipelining across iteration
steps: Since actions block the execution of the driver program, the next step cannot start while
the dataflow job of the current step is running.

In contrast, in-graph loops are naturally suited to pipelining. Examples of DDS that perform
this optimization include iHadoop [63], Naiad/Timely Dataflow [120,132], TensorFlow [186], and
Mitos. Flink, however, does not perform this optimization despite supporting in-graph loops,
but this is just an implementation limitation. Elnikety et al. [63] report a 25% performance
improvement in iHadoop due to pipelining. Other systems show even larger performance im-
provements: an up to 4x improvement in Mitos (Section 3.6.6.2) and a 2.5x–5x improvement in
TensorFlow [186].

iHadoop [63] performs an additional trick on top of pipelining: it starts a subsequent step
already before it evaluates the loop termination condition (akin to speculative execution in
modern CPUs with branch prediction). This can provide a speedup because the termination
condition evaluates to false in the majority of iteration steps, and the speculative computation
is wasted only in the last step. This additional optimization could likely be incorporated into
other systems, such as Mitos, as explained in Section 3.5.3.

Despite the benefits of pipelining, there is a caveat: the unlimited pipelining of iteration
steps can cause excessive memory consumption. This occurs when operators require a significant
amount of memory, and many instances belonging to different steps are started in parallel. To
mitigate this problem, TensorFlow enables users to set the maximum number of iteration steps
that the system will start in parallel.

5.1.4.5 Incremental Loops

Distributed collections in DDS, such as RDDs in Spark are typically read-only31. Consequently,
even if we just want to make a small change to a collection in an iteration step, we still have
to process the entire collection, including copying unchanged elements. For certain iterative
algorithms, this can be a major source of inefficiency.

Mitos, similarly to Naiad/Timely Dataflow [120, 132], REX [124], and Flink [65], efficiently
handle incremental changes in loops by keeping the states of long-running operators across iter-
ation steps (see Section 3.5.2). Bear in mind that this requires implementing all of the iteration

31Distributed collections are read-only primarily because of fault tolerance: the original collection has to be
available, in case we need to recreate another collection that is derived from it. However, see [50] for a workaround
in Spark.

5.2. NESTED PARALLELISM 117

steps as a single dataflow job. Otherwise, we would lose internal operator states between itera-
tion steps. More specifically, these systems keep collections in a data structure that allows for
pointwise access, such as a hash table. With this, the system can efficiently modify any part of
the collection without reprocessing the entire collection. SciDB [170] is an array database, which
pushes incremental loops into the storage manager. Mitos differs from all the above systems by
having a dedicated collection type for datasets that change incrementally.

5.1.4.6 Exploiting Locality Properties of Array Data

As discussed in Section 5.1.3.6.2, SciDB has a specialized model for processing large-scale array
data iteratively. In this model, computing an update for an array cell needs information from
nearby cells. Here we show two optimizations enabled by this locality property from Soroush et
al. [170].
Mini-iteration processing. SciDB partitions arrays into chunks to process them in parallel.
Furthermore, the chunks have a small overlap at their edges [31]. Soroush et al. [170] found that
during iterative processing it is enough to synchronize the replicas of cells in the overlapping
regions only at every few iteration steps. This cuts down on the communication cost, while it
does not significantly increase the required number of steps to convergence.
Multi-resolution optimization. An array in SciDB is often the discretized version of a con-
tinuous measurement. In such a scenario, it is meaningful to analyze an array at multiple
resolutions. Therefore, an optimization of SciDB is to first execute iterative computations on
lower-resolution versions of an original input array, and then use the result as a starting point
for the full-resolution computation. The system computes the lower-resolution versions from the
original version in a user-defined way. Note that the user has to pay attention that the output
of the iterative computation on the lower-resolution version is a valid intermediate step for the
iterative computation on the original array.

5.2 Nested Parallelism

Flattening (unnesting) is a classic technique for handling nested parallelism [20, 66, 67, 78, 84,
166, 167, 175, 176], especially in the field of compilers [21, 44, 144, 165]. The idea originates from
Blelloch, with the NESL nested-parallel vector language [20,21,22].
Flattening for Distributed Dataflow Systems. TraNCE [166,167], MRQL [66] and DIQL [67]
are the closest works to ours: these systems flatten nested-parallel queries and translate them
to distributed dataflow engines. However, these systems do not support flattening in the case
when there are control flow statements at inner nesting levels, which are common in modern
data analysis tasks. Also, DIQL and MRQL do not perform run-time optimizations, which is
crucial for achieving true flexibility in input data characteristics as shown by our experiments
in Section 4.8.7. Our two-phase flattening process enables Matryoshka to perform run-time
optimizations.
Compiling from Haskell. There are several works focusing on compiling from Haskell by
utilizing flattening. For instance, Nepal [44] and Data Parallel Haskell (DPH) [144] extend
Haskell with a data-parallel array type, which can be nested, and compile to a specialized multi-
core backend, written in Haskell. Ulrich et al. [175, 176] compile similarly from Haskell, but to
existing external relational backends. Still, Haskell is a purely functional language and therefore

118 CHAPTER 5. RELATED WORK

these works do not support imperative control flow either. Note that these works consider ordered
collections, in contrast to our unordered bags.

Other Functional Languages. Henriksen et al. [84] compile from Futhark, a purely functional
array language allowing for nesting, to parallel GPU code. They focus on dynamically choosing
which levels to parallelize, by employing a two-phase flattening process. However, their work
cannot be directly applied to dataflow engines as they require different abstractions and opti-
mizations. Slesarenko [165] performs flattening of arbitrarily complex types (e.g., more than two
levels), but he concentrates on the language level, and does not provide details of the backend
translation. His advanced datatype-generic programming techniques could complement our work
by greatly reducing our boilerplate code for handling complex nested types.

SystemML/SystemDS parallel for. As discussed before in Section 4.8.5, SystemML/Sys-
temDS [24, 25, 74] has a parallel for construct [26], by which users can express task parallelism
on top of the data parallelism of linear algebra operators. SystemDS’ optimizer chooses between
different parallel execution plans, which vary in how they execute each level: sequentially, or
parallel on multiple cores of one machine, or in a MapReduce/Spark job. However, as Sys-
temDS does not employ flattening, it can run into the problems of the inner- or outer-parallel
workarounds.

Manually launching parallel operations from inside other parallel operations.
Ray/RLlib [113,129] allows for nested parallelism but does not employ flattening. Also, it has a
different programming model from our parallel collection operations: Its unit of physical paral-
lelization (task) is directly exposed to the users: Task creation is in one-to-one correspondence
with certain method calls in the user code (f.remote). This is in contrast to our programming
model, where multiple task creations are hidden behind the abstraction of parallel collection op-
erations: When the user calls a parallel collection method (e.g., map), then our system translates
that to multiple task creations (i.e., multiple RDD partitions are created). By exposing physical
parallelization in its API, Ray requires users to carefully control parallelization at each nesting
level: they have to avoid under- or over-parallelization, i.e., dividing the work to too few or too
many parallel tasks. Katsogridakis et al. [100] extended Spark to launch Spark jobs from inside
Spark jobs. However, the multiple levels of parallelism are not flattened, and thus their system
runs into the problem of the inner-parallel workaround: launching too many Spark jobs.

Other works. Junghanns et al. [95, 96] mentions supporting collections of graphs, but they
then say that applying an operation on all graphs in a collection of graphs (i.e., map) is work
in progress, and do not go into details. Pig [136] automates the outer-parallel workaround:
Its language allows the user to use the same collection types and collection operations at inner
nesting level as outside, but it translates to parallel operations only at the outer level. Therefore,
it inherits the performance problems of the outer-parallel workaround. Emma [9,11,12] removes
certain simple kinds of nesting, e.g., it employs fold-group fusion to flatten the situation when a
grouping is followed by a map whose UDF aggregates each group. In other cases it falls back to
the outer-parallel workaround.

Skew handling. Lastly, data skew handling in large-scale data processing is a well-studied
problem [19,108,172], but those works are all orthogonal to ours: By flattening nested programs,
we remove skew problems that would arise when using the inner- or outer-parallel workarounds.
Our system could thus benefit from any general skew handling technique in dataflow engines,
e.g., Hurricane’s task cloning can mitigate skew issues in joins or grouped aggregations [19].
Smith et al. [166,167] handle skew by separating a bag into light and heavy keys, and executing

5.2. NESTED PARALLELISM 119

different operator implementations for the two cases.

120 CHAPTER 5. RELATED WORK

Chapter 6

Conclusion

In this final chapter, we summarize the contributions of the thesis, and provide an outlook on
potential future work.

6.1 Mitos

Modern data analytics often requires complex control flow, which is not well-supported in current
distributed dataflow systems: they either suffer from poor performance or are hard to use. We
presented the Mitos data analytics system, which uses the standard, easy-to-use, imperative
constructs for writing programs with control flow. To execute these programs efficiently, it
translates such a program to a single dataflow job.

Mitos uses an intermediate representation based on static single assignment form, abstracting
away from specific control flow constructs. This intermediate representation facilitates both the
dataflow job building and the coordination of the distributed execution of control flow statements.
In particular, we devised a meta-programming-based approach for building a single dataflow job
of a distributed dataflow system from a program with imperative control flow statements. Also,
our mechanism for coordinating the distributed execution of control flow statements enables
important optimizations, such as loop pipelining and loop-invariant hoisting.

The experimental evaluation shows that Mitos outperforms Spark by up to 45× thanks to
compiling iterative programs to a single dataflow job, which eliminates the job launch overhead
from iteration steps and enables loop optimizations. Interestingly, the results also show that
Mitos outperforms Flink, which also compiles iterative programs to a single dataflow job, by up
to a factor of 10.5× while also being easier to use. This speedup is due to Mitos having less
per-step overhead and having the loop pipelining optimization.

6.2 Matryoshka

Although modern data analytics tasks could benefit from nested parallel operations, current
parallel dataflow engines do not natively support them. Users, thus, utilize different workarounds
that parallelize on only one level, which typically does not yield optimal performance. We
presented Matryoshka, a system that takes a nested-parallel program as input and creates an
equivalent flat program, which can be executed efficiently on an existing dataflow engine. Thus,

121

122 CHAPTER 6. CONCLUSION

Matryoshka frees users from the burden of implementing and choosing between workarounds,
and instead lets users compose complex analytics programs in straightforward ways.

We experimentally evaluated Matryoshka using five common data analytics tasks. We found
that Matryoshka is up to two orders of magnitude faster than baselines (the DIQL system as
well as the outer- and inner-parallel workarounds) and also scales better when increasing the
cluster size. Importantly, it provides uniform performance across varying data characteristics,
e.g., (skewed) inner collection- or inner computation sizes. We also found that Matryoshka can
flatten programs that DIQL is not able to flatten.

Crucially, Matryoshka can flatten programs that have loops at inner nesting levels. As dis-
cussed throughout the thesis, loops are important in modern data analytics, and thus loop
support at inner nesting levels significantly extends the class of programs that we support.

6.3 Survey of Control Flow Handling in Dataflow Systems

In Section 5.1, we surveyed the research literature on how different dataflow systems support
iterations and other control flow. Incorporating iterations in distributed dataflow systems proved
to be surprisingly challenging. This is mainly because concentrating on just the performance
aspects introduces a new problem: it complicates execution engines and causes many low-level
execution details to leak through to the user-facing APIs. Consequently, users are required to
become experts on system internals, which limits a system’s potential user base. Thus, in recent
years there is ongoing research that focuses on simultaneously addressing both performance and
ease-of-use (e.g., Mitos).

In our survey, we provided an overview of the complex design space that is opened up due
to the tension between the performance and ease-of-use requirements: We discussed not only
performance optimizations, but also the usability issues of the various programming models with
respect to iteration and other control flow constructs.

6.4 Future Research

In this section, we discuss potential future work.

6.4.1 Speculative Execution in Mitos

As discussed in Section 3.5.3, we could add a form of speculative execution to Mitos. Currently
the system has to wait for the loop exit condition to be evaluated before starting the next
iteration step. However, the system could start to speculatively execute the next iteration step
already before the exit condition is evaluated (similarly to modern CPUs). This would enable
loop pipelining in cases where the evaluation of the loop exit condition currently prevents loop
pipelining.

6.4.2 Unifying Mitos and Matryoshka into a Single System

Due to historical reasons, Mitos is implemented on Flink, while Matryoshka is implemented on
Spark. Thus, combining them would involve changing Matryoshka’s backend. (It would not be
possible to change Mitos’ backend to Spark, since Mitos requires cyclic dataflows.)

6.4. FUTURE RESEARCH 123

With changing Matryoshka’s backend, a simple way to combine the two systems would be to
just use Mitos’ execution layer (see Section 3.4) to execute the lifted control flow that Matryoshka
produces (see Section 4.5). However, this would not make the generality of Mitos available at
inner nesting levels: A separate lifting procedure would have to be devised for each control
flow construct that we would like to support at inner nesting levels. A more complete way
of combining the two systems would be to devise a lifting procedure for Mitos’ control flow
handling, lifting it as one (complex) control flow construct. This way, we would support any
general imperative control flow at inner nesting levels.

Lifting Mitos’ control flow handling is challenging for two reasons. First, when lifting a control
flow construct, we have to make sure that it never happens that the lifted version executes a
lifted bag operator exponentially more times than the maximum control flow path length among
all the original UDF invocations. This would be a performance problem, because invoking an
operator has an overhead (see Section 3.6.5). For example, the lifting of while loops described in
Section 4.5 does not have the exponential explosion problem: the lifted version of a while loop
will execute lifted bag operators in the loop body simply as many times as the largest number
of iteration steps among all the original UDF invocations. However, a naive lifting of Mitos’
general control flow handling could have the exponential explosion problem: Imagine a naive
lifting, where there is a one-to-one correspondence between bag identifiers (in the Mitos sense,
see Section 3.4.2.1) and lifted operator invocations. This naive lifted version of Mitos’ control flow
handling would execute a lifted bag operator as many times as the number of different execution
paths reaching this operator among all the original UDF invocations. Now the problem is that
the number of different execution paths can be exponential in the number of control flow steps.
For example, if there is a while loop with an if statement in its body, then the number of different
execution paths can be exponential in the number of iteration steps, since each step of the loop
might execute a different if branch.

To avoid the above-mentioned exponential explosion of the number of lifted bag operator
invocations when lifting Mitos’ control flow handling, we would have to find a partitioning of all
possible execution paths into a “small” number of equivalence classes, and call lifted operators
only once per equivalence class. For this “small” number, we might hope to achieve O(lb) classes
for each execution path length l, where b is the number of basic blocks in the source code.

Another challenge in lifting Mitos’ control flow handling is that we have to make it scalable
in the total number of control flow steps across all UDF invocations. For example, in the current
implementation control flow decisions are broadcasted, which would be a performance bottleneck
when all UDF invocations are making control flow decisions.

6.4.3 Nested Parallelism in Stream Processing

We will now discuss how nested collections could model a windowed stream, a central concept
in stream processing, and how this would enhance the compositionality of a stream processing
system.

Both Mitos and Matryoshka are batch processing systems, i.e., they operate on bounded
datasets. In contrast, stream processing systems operate on unbounded datasets, i.e., streams
of data arriving continuously over time. To process such continuously arriving data, streaming
programs often group the elements of a stream into finite chunks, called windows. (This grouping
can be based on event timestamps, sessions, etc. Note that windows can overlap with each other.)

A window is processed by non-parallel code in current stream processing systems, such as

124 CHAPTER 6. CONCLUSION

Flink. This can remind us of one of the batch processing scenarios that we used as a motivation for
Matryoshka: In earlier batch processing systems, grouping operations emit each group as a non-
parallel collection, which can thus be processed only by non-parallel code. Matryoshka enables
treating groups as inner parallel collections. A future work could be to transfer Matryoshka’s
ideas to stream processing, where it could enable treating stream windows as parallel collections.
This would enhance the compositionality between batch- and steam processing programs, as one
could then apply a parallel batch program on each stream window.

A possible approach to transferring Matryoshka’s ideas to stream procesing is to rely on
incrementalization, as in Naiad/Differential Dataflow [132]: Input streams continuously change
the inputs of a program that is expressed in the same way as a batch program, and the system
continuously computes the appropriate changes to the output, and emits these changes as an
output stream. Note that in a streaming scenario, it would be important to compile the entire
program into a single dataflow job, and thus Mitos’ ideas are also needed if we want to support
control flow at the inner nesting levels of a streaming program.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. TensorFlow: A system for large-scale machine learning. In
OSDI, volume 16, pages 265–283, 2016.

[2] D. Agrawal, M. L. Ba, L. Berti-Équille, S. Chawla, A. K. Elmagarmid, H. Hammady,
Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani, P. Papotti, J. Quiané-Ruiz,
N. Tang, and M. J. Zaki. Rheem: Enabling Multi-Platform Task Execution. In F. Özcan,
G. Koutrika, and S. Madden, editors, SIGMOD, pages 2069–2072, 2016.

[3] D. Agrawal, S. Chawla, B. Contreras-Rojas, A. K. Elmagarmid, Y. Idris, Z. Kaoudi,
S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang, S. Thiru-
muruganathan, and A. Troudi. RHEEM: enabling cross-platform data processing - may
the big data be with you! PVLDB, 11(11):1414–1427, 2018.

[4] D. Agrawal, S. Chawla, A. K. Elmagarmid, Z. Kaoudi, M. Ouzzani, P. Papotti, J. Quiané-
Ruiz, N. Tang, and M. J. Zaki. Road to Freedom in Big Data Analytics. In EDBT, pages
479–484, 2016.

[5] R. Agrawal. Alpha: An extension of relational algebra to express a class of recursive
queries. IEEE Transactions on Software Engineering, 14(7):879–885, 1988.

[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools,
Second Edition. Pearson Addison Wesley, 2007.

[7] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proceedings of the
6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
110–119. ACM, 1979.

[8] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien,
J. Bayer, A. Belikov, A. Belopolsky, et al. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

[9] A. Alexandrov. Representations and Optimizations for Embedded Parallel Dataflow Lan-
guages. PhD thesis, Technische Universität Berlin, 2019.

[10] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Le-
ich, U. Leser, V. Markl, et al. The Stratosphere platform for big data analytics. VLDB
Journal, 23(6):939–964, 2014.

125

126 BIBLIOGRAPHY

[11] A. Alexandrov, G. Krastev, and V. Markl. Representations and optimizations for embedded
parallel dataflow languages. ACM Transactions on Database Systems (TODS), 44(1):4,
2019.

[12] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler, L. Thamsen, O. Kao, T. Herb,
and V. Markl. Implicit parallelism through deep language embedding. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pages 47–61.
ACM, 2015.

[13] G. Aranda, S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. Formalizing a broader
recursion coverage in SQL. In International Symposium on Practical Aspects of Declarative
Languages, pages 93–108. Springer, 2013.

[14] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al. Spark SQL: Relational data processing in Spark. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 1383–1394. ACM, 2015.

[15] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query process-
ing strategies. In Readings in Artificial Intelligence and Databases, pages 376–430. Elsevier,
1989.

[16] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S. Sakr, et al. Large scale
graph processing systems: survey and an experimental evaluation. Cluster Computing,
18(3):1189–1213, 2015.

[17] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(Feb):281–305, 2012.

[18] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[19] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. Rock you like a
hurricane: Taming skew in large scale analytics. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–15, 2018.

[20] G. E. Blelloch. Vector models for data-parallel computing. MIT press Cambridge, 1990.

[21] G. E. Blelloch. NESL: a nested data parallel language. Carnegie Mellon Univ., 1992.

[22] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–
97, 1996.

[23] C. Boden, A. Spina, T. Rabl, and V. Markl. Benchmarking data flow systems for scalable
machine learning. In Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond, pages 1–10, 2017.

[24] M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin,
S. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqi, and S. B. Wrede. SystemDS: A
declarative machine learning system for the end-to-end data science lifecycle. In Proceedings
of the 10th Conference on Innovative Data Systems Research (CIDR 2020), 2020.

BIBLIOGRAPHY 127

[25] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi,
N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, et al. SystemML: Declara-
tive machine learning on Spark. Proceedings of the VLDB Endowment, 9(13):1425–1436,
2016.

[26] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. R. Burdick, and
S. Vaithyanathan. Hybrid parallelization strategies for large-scale machine learning in
SystemML. Proceedings of the VLDB Endowment, 7(7):553–564, 2014.

[27] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc. of
the Thirteenth International World Wide Web Conference (WWW 2004), pages 595–601,
Manhattan, USA, 2004. ACM Press.

[28] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query execution.
In Cidr, volume 5, pages 225–237. Citeseer, 2005.

[29] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible and exten-
sible foundation for data-intensive computing. In 2011 IEEE 27th International Conference
on Data Engineering, pages 1151–1162. IEEE, 2011.

[30] V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Declarative systems for large-scale machine learning. IEEE Data Eng.
Bull., 35(2), 2012.

[31] P. G. Brown. Overview of SciDB: large scale array storage, processing and analysis. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 963–968. ACM, 2010.

[32] Y. Bu, V. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Scaling Datalog for machine learning on big data. arXiv preprint
arXiv:1203.0160, 2012.

[33] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(ger) graph analytics
on a dataflow engine. arXiv preprint arXiv:1407.0455, 2014.

[34] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: efficient iterative data pro-
cessing on large clusters. Proceedings of the VLDB Endowment, 3(1-2):285–296, 2010.

[35] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The HaLoop approach to large-scale
iterative data analysis. The VLDB Journal, 21(2):169–190, 2012.

[36] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in graph
partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.

[37] E. Burmako. Scala macros: let our powers combine!: on how rich syntax and static types
work with metaprogramming. In Proceedings of the 4th Workshop on Scala. ACM, 2013.

[38] P. Carbone. Scalable and Reliable Data Stream Processing. PhD thesis, KTH Royal Insti-
tute of Technology, 2018.

128 BIBLIOGRAPHY

[39] P. Carbone, S. Ewen, Gy. Fóra, S. Haridi, S. Richter, and K. Tzoumas. State management
in Apache Flink®: consistent stateful distributed stream processing. Proceedings of the
VLDB Endowment, 10(12):1718–1729, 2017.

[40] P. Carbone, G. E. Gévay, G. Hermann, A. Katsifodimos, J. Soto, V. Markl, and S. Haridi.
Large-scale data stream processing systems. In Handbook of Big Data Technologies, pages
219–260. Springer, 2017.

[41] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
Flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 36(4), 2015.

[42] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and
never dared to ask). IEEE transactions on knowledge and data engineering, 1(1):146–166,
1989.

[43] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Odersky, and
K. Olukotun. Language virtualization for heterogeneous parallel computing. ACM sigplan
notices, 45(10):835–847, 2010.

[44] M. M. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal – nested data
parallelism in Haskell. In European Conference on Parallel Processing, pages 524–534.
Springer, 2001.

[45] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizen-
baum. FlumeJava: easy, efficient data-parallel pipelines. In ACM Sigplan Notices, vol-
ume 45, pages 363–375. ACM, 2010.

[46] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed syn-
chronous SGD. arXiv preprint arXiv:1604.00981, 2016.

[47] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[48] S. Chlyah, N. Gesbert, P. Genevès, and N. Layaïda. On the optimization of iterative
programming with distributed data collections. 2020.

[49] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. Explaining outputs in modern data
analytics. Proceedings of the VLDB Endowment, 9(12), 2016.

[50] A. Dave. IndexedRDD. https://github.com/amplab/spark-indexedrdd, 2014. [Online;
accessed 30-April-2017].

[51] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
OSDI, 2004.

[52] J. M. Decker, D. Moldovan, G. Wei, V. Bhardwaj, G. Essertel, F. Wang, A. B. Wiltschko,
and T. Rompf. The 800 Pound Python in the Machine Learning Room. https:
//www.cs.purdue.edu/homes/rompf/papers/decker-preprint201811.pdf, 2018. [On-
line; accessed 2-Nov-2020].

https://github.com/amplab/spark-indexedrdd
https://www.cs.purdue.edu/homes/rompf/papers/decker-preprint201811.pdf
https://www.cs.purdue.edu/homes/rompf/papers/decker-preprint201811.pdf

BIBLIOGRAPHY 129

[53] T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation tradeoffs
in gaussian process bandit optimization. Journal of Machine Learning Research, 15:3873–
3923, 2014.

[54] S. Dudoladov, C. Xu, S. Schelter, A. Katsifodimos, S. Ewen, K. Tzoumas, and V. Markl.
Optimistic recovery for iterative dataflows in action. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 1439–1443. ACM, 2015.

[55] C. Duta, D. Hirn, and T. Grust. Compiling PL/SQL away. In Proceedings of the 10th
Conference on Innovative Data Systems Research (CIDR 2020), 2020.

[56] A. Eisenberg. New standard for stored procedures in SQL. ACM SIGMOD Record,
25(4):81–88, 1996.

[57] A. Eisenberg and J. Melton. SQL: 1999, formerly known as SQL3. ACM Sigmod record,
28(1):131–138, 1999.

[58] J. Ekanayake. Architecture and performance of runtime environments for data intensive
scalable computing. School of Informatics and Computing. Bloomington, Indiana Univer-
sity, 2010.

[59] J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C. Poulain, N. Araujo, and R. Barga.
DryadLINQ for scientific analyses. In 2009 Fifth IEEE International Conference on e-
Science, pages 329–336. IEEE, 2009.

[60] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a
runtime for iterative MapReduce. In Proceedings of the 19th ACM international symposium
on high performance distributed computing, pages 810–818. ACM, 2010.

[61] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for data intensive scientific analyses.
In eScience, 2008. eScience’08. IEEE Fourth International Conference on, pages 277–284.
IEEE, 2008.

[62] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald. Compressed linear
algebra for large-scale machine learning. Proceedings of the VLDB Endowment, 9(12):960–
971, 2016.

[63] E. Elnikety, T. Elsayed, and H. E. Ramadan. iHadoop: asynchronous iterations for MapRe-
duce. In 2011 IEEE Third International Conference on Cloud Computing Technology and
Science, pages 81–90. IEEE, 2011.

[64] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. Iterative parallel data
processing with Stratosphere: an inside look. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 1053–1056. ACM, 2013.

[65] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data flows.
Proceedings of the VLDB Endowment, 5(11):1268–1279, 2012.

[66] L. Fegaras. An algebra for distributed big data analytics. Journal of Functional Program-
ming, 27, 2017.

130 BIBLIOGRAPHY

[67] L. Fegaras and M. H. Noor. Compile-time code generation for embedded data-intensive
query languages. In 2018 IEEE International Congress on Big Data (BigData Congress),
pages 1–8. IEEE, 2018.

[68] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Making state explicit for
imperative big data processing. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 49–60, 2014.

[69] S. Feuerstein and B. Pribyl. Oracle PL/SQL Programming. O’Reilly Media, Inc., 2005.

[70] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[71] G. E. Gévay, J.-A. Quiané-Ruiz, and V. Markl. The power of nested parallelism in big data
processing –hitting three flies with one slap–. In Proceedings of the 2021 ACM SIGMOD
International Conference on Management of Data, pages 605–618, 2021.

[72] G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J.-A. Quiané-Ruiz, and V. Markl. Efficient
control flow in dataflow systems: When ease-of-use meets high performance. In IEEE 37th
International Conference on Data Engineering (ICDE), 2021.

[73] G. E. Gévay, J. Soto, and V. Markl. Handling iterations in distributed dataflow systems.
ACM Computing Surveys (CSUR), 54(9), 2021.

[74] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda,
Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine learning on MapReduce.
In 2011 IEEE 27th International Conference on Data Engineering, pages 231–242. IEEE,
2011.

[75] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, and S. Hand. Musketeer:
all for one, one for all in data processing systems. In Proceedings of the Tenth European
Conference on Computer Systems, pages 1–16, 2015.

[76] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation OSDI 12), pages 17–30,
2012.

[77] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. GraphX:
Graph processing in a distributed dataflow framework. In OSDI, volume 14, pages 599–613,
2014.

[78] T. Grust. Comprehending queries. In Ausgezeichnete Informatikdissertationen 1999.
Springer, 2000.

[79] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang, L. Ding, and C. Zaniolo.
RaSQL: Greater power and performance for big data analytics with recursive-aggregate-
SQL on Spark. In Proceedings of the 2019 ACM SIGMOD International Conference on
Management of Data, pages 467–484, 2019.

BIBLIOGRAPHY 131

[80] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, and A. Whitaker. Demonstration of the Myria big data
management service. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. ACM, 2014.

[81] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental
comparison of pregel-like graph processing systems. Proceedings of the VLDB Endowment,
7(12):1047–1058, 2014.

[82] T. H. Haveliwala. Topic-sensitive PageRank: A context-sensitive ranking algorithm for
web search. IEEE transactions on knowledge and data engineering, 15(4):784–796, 2003.

[83] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng,
C. Welton, X. Feng, K. Li, and A. Kumar. The MADlib analytics library: or MAD skills,
the SQL. Proceedings of the VLDB Endowment, 5(12):1700–1711, 2012.

[84] T. Henriksen, F. Thorøe, M. Elsman, and C. Oancea. Incremental flattening for nested
data parallelism. In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, pages 53–67, 2019.

[85] D. Hirn and T. Grust. PL/SQL without the PL. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 2677–2680, 2020.

[86] D. Hirn and T. Grust. One with recursive is worth many gotos. In Proceedings of the 2021
ACM SIGMOD International Conference on Management of Data, pages 723–735, 2021.

[87] M. Imran, G. E. Gévay, and V. Markl. Distributed graph analytics with Datalog queries
in Flink. LSGDA 2020 - International Workshop on Large Scale Graph Data Analytics,
2020.

[88] M. Imran, G. E. Gévay, J.-A. Quiané-Ruiz, and V. Markl. Fast Datalog evaluation for
batch and stream graph processing. World Wide Web: Internet and Web Information
Systems, 2021.

[89] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In ACM SIGOPS Operating Systems Review,
volume 41, pages 59–72. ACM, 2007.

[90] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pages 240–248, 2016.

[91] D. Jankov, S. Luo, B. Yuan, Z. Cai, J. Zou, C. Jermaine, and Z. J. Gao. Declarative
recursive computation on an RDBMS: or, why you should use a database for distributed
machine learning. ACM SIGMOD Record, 49(1):43–50, 2020.

[92] E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, and B.-G. Chun. JANUS: Fast and flex-
ible deep learning via symbolic graph execution of imperative programs. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), pages 453–468,
2019.

132 BIBLIOGRAPHY

[93] E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, T. Kim, and B.-G. Chun. Speculative
symbolic graph execution of imperative deep learning programs. ACM SIGOPS Operating
Systems Review, 53(1):26–33, 2019.

[94] N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys (CSUR),
28(3):480–503, 1996.

[95] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm. Management and analysis of big
graph data: current systems and open challenges. In Handbook of Big Data Technologies,
pages 457–505. Springer, 2017.

[96] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, and E. Rahm. Analyzing extended
property graphs with Apache Flink. In Proceedings of the 1st ACM SIGMOD Workshop
on Network Data Analytics, page 3. ACM, 2016.

[97] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the block structure of
the web for computing PageRank. Technical report, Stanford, 2003.

[98] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: mining peta-scale graphs.
Knowledge and information systems, 27(2):303–325, 2011.

[99] Z. Kaoudi, J.-A. Quiané-Ruiz, S. Thirumuruganathan, S. Chawla, and D. Agrawal. A
cost-based optimizer for gradient descent optimization. In Proceedings of the 2017 ACM
SIGMOD International Conference on Management of Data, pages 977–992, 2017.

[100] P. Katsogridakis, S. Papagiannaki, and P. Pratikakis. Execution of recursive queries in
Apache Spark. In European Conference on Parallel Processing, pages 289–302. Springer,
2017.

[101] A. Kaushik. ‘Bounce Rate’ as the Sexiest Web Metric Ever. http://www.marketingprofs.
com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp. [Online; accessed 29-
May-2020].

[102] Q. Ke, M. Isard, and Y. Yu. Optimus: a dynamic rewriting framework for data-parallel ex-
ecution plans. In Proceedings of the 8th ACM European Conference on Computer Systems,
pages 15–28, 2013.

[103] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. BigDansing: A system for big data cleansing. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages 1215–1230.
ACM, 2015.

[104] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

[105] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian optimization of
machine learning hyperparameters on large datasets. In Artificial Intelligence and Statis-
tics, pages 528–536. PMLR, 2017.

[106] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

http://www.marketingprofs.com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp
http://www.marketingprofs.com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp

BIBLIOGRAPHY 133

[107] S. Kruse, Z. Kaoudi, B. Contreras-Rojas, S. Chawla, F. Naumann, and J.-A. Quiané-Ruiz.
RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems. The
VLDB Journal, pages 1–24, 2020.

[108] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune: mitigating skew in MapRe-
duce applications. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 25–36, 2012.

[109] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, 1978.

[110] H. Lee, M. Kang, S.-B. Youn, J.-G. Lee, and Y. Kwon. An experimental comparison
of iterative MapReduce frameworks. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 2089–2094. ACM, 2016.

[111] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),
pages 583–598, 2014.

[112] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and J. Lui. Walking in the cloud: parallel
SimRank at scale. Proceedings of the VLDB Endowment, 9(1):24–35, 2015.

[113] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,
and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. In International
Conference on Machine Learning, pages 3053–3062, 2018.

[114] L. Libkin. Expressive power of SQL. Theoretical Computer Science, 296(3):379–404, 2003.

[115] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t get caught
in the cold, warm-up your JVM: Understand and eliminate JVM warm-up overhead in
data-parallel systems. In 12th USENIX Symposium on Operating Systems Design and
Implementation OSDI 16), pages 383–400, 2016.

[116] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: a framework for machine learning and data mining in the cloud. Proceedings
of the VLDB Endowment, 5(8):716–727, 2012.

[117] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages 135–146. ACM, 2010.

[118] O. Mashayekhi, H. Qu, C. Shah, and P. Levis. Execution templates: Caching control
plane decisions for strong scaling of data analytics. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 513–526, 2017.

[119] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Computing Surveys
(CSUR), 48(2):25, 2015.

134 BIBLIOGRAPHY

[120] F. McSherry, R. Isaacs, M. Isard, and D. G. Murray. Composable incremental and iterative
data-parallel computation with Naiad. Microsoft Research, 2012.

[121] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In HotOS,
volume 15, pages 14–14. Citeseer, 2015.

[122] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow. In Proceedings of
CIDR 2013, January 2013.

[123] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, relations and XML in
the .NET framework. In Proceedings of the 2006 ACM SIGMOD international conference
on Management of data, pages 706–706, 2006.

[124] S. R. Mihaylov, Z. G. Ives, and S. Guha. REX: recursive, delta-based data-centric compu-
tation. Proceedings of the VLDB Endowment, 5(11):1280–1291, 2012.

[125] D. Moldovan, J. Decker, F. Wang, A. Johnson, B. Lee, Z. Nado, D. Sculley, T. Rompf, and
A. B. Wiltschko. AutoGraph: Imperative-style coding with graph-based performance. In
SysML, 2019.

[126] D. Moldovan, J. Decker, F. Wang, A. Johnson, B. Lee, Z. Nado, D. Sculley, T. Rompf,
and A. B. Wiltschko. AutoGraph: Imperative-style coding with graph-based performance.
Proceedings of Machine Learning and Systems, 1:389–405, 2019.

[127] D. Moldovan, J. M. Decker, F. Wang, A. A. Johnson, B. K. Lee, Z. Nado, D. Sculley,
T. Rompf, and A. B. Wiltschko. AutoGraph: Imperative-style coding with graph-based
performance. arXiv preprint arXiv:1810.08061, 2018.

[128] A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-Virtualized. In Proceedings of the
ACM SIGPLAN 2012 workshop on Partial evaluation and program manipulation, pages
117–120, 2012.

[129] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed framework for emerging AI ap-
plications. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 561–577, 2018.

[130] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[131] D. G. Murray and S. Hand. Scripting the cloud with Skywriting. HotCloud, 10:12–12,
2010.

[132] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 439–455. ACM, 2013.

[133] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand.
CIEL: a universal execution engine for distributed data-flow computing. In Proc. 8th
ACM/USENIX Symposium on Networked Systems Design and Implementation, pages 113–
126, 2011.

BIBLIOGRAPHY 135

[134] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler. Everything old is new again: quoted
domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, pages 25–36. ACM, 2016.

[135] B. Nemeth, T. Haber, J. Liesenborgs, and W. Lamotte. Automatic parallelization of
probabilistic models with varying load imbalance. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages 752–759. IEEE,
2020.

[136] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a not-so-foreign
language for data processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110. ACM, 2008.

[137] S. M. Orzan. On distributed verification and verified distribution. PhD thesis, Vrije Uni-
versiteit Amsterdam, 2004.

[138] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy, S. Shenker,
and I. Stoica. The case for tiny tasks in compute clusters. In Presented as part of the 14th
Workshop on Hot Topics in Operating Systems, 2013.

[139] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed, low latency
scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 69–84. ACM, 2013.

[140] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

[141] S. Pallickara, H. Bulut, and G. Fox. Fault-tolerant reliable delivery of messages in dis-
tributed publish/subscribe systems. In Fourth International Conference on Autonomic
Computing (ICAC’07), pages 19–19. IEEE, 2007.

[142] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann, A. Kemper,
and T. Neumann. SQL-and operator-centric data analytics in relational main-memory
databases. In EDBT, pages 84–95, 2017.

[143] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. 2017.

[144] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. Chakravarty. Harnessing the multi-
cores: Nested data parallelism in Haskell. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2008.

[145] G. Piatetsky. Largest Dataset Analyzed Poll shows surprising stabil-
ity, more junior Data Scientists. https://www.kdnuggets.com/2016/11/
poll-results-largest-dataset-analyzed.html, 2016. [accessed 14-Oct-2020].

[146] P. Pistor and F. Andersen. Designing a generalized NF2 model with an SQL-type language
interface. In VLDB, volume 86, pages 25–28. Citeseer, 1986.

https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html
https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html

136 BIBLIOGRAPHY

[147] P. Przymus, A. Boniewicz, M. Burzańska, and K. Stencel. Recursive query facilities in
relational databases: a survey. In Database Theory and Application, Bio-Science and Bio-
Technology, pages 89–99. Springer, 2010.

[148] F. Rastello. SSA-based Compiler Design. Springer Publishing Company, Incorporated,
2016.

[149] T. Rohrmann, S. Schelter, T. Rabl, and V. Markl. Gilbert: Declarative sparse linear algebra
on massively parallel dataflow systems. In Datenbanksysteme für Business, Technologie und
Web (BTW 2017), pages 269–288. Gesellschaft für Informatik, Bonn, 2017.

[150] L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39, 2010.

[151] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-Virtualized: linguistic
reuse for deep embeddings. Higher-Order and Symbolic Computation, 25(1):165–207, 2012.

[152] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to runtime
code generation and compiled DSLs. In Proceedings of the ninth international conference
on Generative programming and component engineering, pages 127–136, 2010.

[153] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to runtime
code generation and compiled DSLs. Communications of the ACM, 55(6):121–130, 2012.

[154] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: a compiler and
runtime for heterogeneous systems. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 49–68. ACM, 2013.

[155] L. Ryzhyk and M. Budiu. Differential Datalog. Datalog, 2:4–5, 2019.

[156] S. Sakr, A. Liu, and A. G. Fayoumi. The family of MapReduce and large-scale data
processing systems. ACM Computing Surveys (CSUR), 46(1):11, 2013.

[157] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All roads lead to Rome: optimistic recov-
ery for distributed iterative data processing. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 1919–1928. ACM, 2013.

[158] D. Sculley, R. G. Malkin, S. Basu, and R. J. Bayardo. Predicting bounce rates in sponsored
search advertisements. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1325–1334, 2009.

[159] J. Seo, S. Guo, and M. S. Lam. SociaLite: Datalog extensions for efficient social network
analysis. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages
278–289. IEEE, 2013.

[160] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: Batch-interactive data-intensive
processing on transient servers. In Proceedings of the Eleventh European Conference on
Computer Systems, page 6. ACM, 2016.

[161] M. Shaw, P. Koutris, B. Howe, and D. Suciu. Optimizing large-scale semi-naïve datalog
evaluation in Hadoop. In International Datalog 2.0 Workshop, pages 165–176. Springer,
2012.

BIBLIOGRAPHY 137

[162] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta. M3R: increased performance for
in-memory Hadoop jobs. Proceedings of the VLDB Endowment, 5(12):1736–1747, 2012.

[163] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo. Big data ana-
lytics with Datalog queries on Spark. In Proceedings of the 2016 International Conference
on Management of Data, pages 1135–1149. ACM, 2016.

[164] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop distributed file system.
In Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on, pages
1–10. IEEE, 2010.

[165] A. Slesarenko. Lightweight polytypic staging: a new approach to nested data parallelism
in Scala. Scala Days, 2012.

[166] J. Smith, M. Benedikt, B. Moore, and M. Nikolic. TraNCE: Transforming nested collections
efficiently. Proceedings of the VLDB Endowment (PVLDB), 2021.

[167] J. Smith, M. Benedikt, M. Nikolic, and A. Shaikhha. Scalable querying of nested data.
arXiv preprint arXiv:2011.06381, 2020.

[168] A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proceedings
of the VLDB Endowment, 3(1-2):703–710, 2010.

[169] M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and D. Walker. MPI–the
Complete Reference: the MPI core, volume 1. MIT press, 1998.

[170] E. Soroush, M. Balazinska, S. Krughoff, and A. Connolly. Efficient iterative processing in
the SciDB parallel array engine. In Proceedings of the 27th International Conference on
Scientific and Statistical Database Management, page 39. ACM, 2015.

[171] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska. Au-
tomating model search for large scale machine learning. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, pages 368–380, 2015.

[172] Z. Tang, X. Zhang, K. Li, and K. Li. An intermediate data placement algorithm for
load balancing in Spark computing environment. Future Generation Computer Systems,
78:287–301, 2018.

[173] L. Tratt. Domain specific language implementation via compile-time meta-programming.
ACM Transactions on Programming Languages and Systems (TOPLAS), 30(6):1–40, 2008.

[174] J. Traub, Z. Kaoudi, J.-A. Quiané-Ruiz, and V. Markl. Agora: Bringing together datasets,
algorithms, models and more in a unified ecosystem [vision]. SIGMOD Record, 49(4):6–11,
2020.

[175] A. Ulrich. Query Flattening and the Nested Data Parallelism Paradigm. PhD thesis,
Universität Tübingen, 2018.

[176] A. Ulrich and T. Grust. The flatter, the better: Query compilation based on the flattening
transformation. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1421–1426. ACM, 2015.

138 BIBLIOGRAPHY

[177] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[178] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe, D. Hutchison, S. Jain,
R. Maas, P. Mehta, D. Moritz, B. Myers, J. Ortiz, D. Suciu, A. Whitaker, and S. Xu. The
Myria big data management and analytics system and cloud services. In Proceedings of
CIDR 2017, 2017.

[179] J. Wang, M. Balazinska, and D. Halperin. Asynchronous and fault-tolerant recursive
Datalog evaluation in shared-nothing engines. Proceedings of the VLDB Endowment,
8(12):1542–1553, 2015.

[180] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and G. Yu. Automating
incremental and asynchronous evaluation for recursive aggregate data processing. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of Data,
pages 2439–2454, 2020.

[181] H. Wu, J. Liu, T. Wang, D. Ye, J. Wei, and H. Zhong. Parallel materialization of Dat-
alog programs with Spark for scalable reasoning. In International Conference on Web
Information Systems Engineering, pages 363–379. Springer, 2016.

[182] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,
B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. HAnd, and D. Steinberg. Top 10
algorithms in data mining. Knowledge and information systems, 14(1):1–37, 2008.

[183] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. Sync or async: Time to fuse for
distributed graph-parallel computation. In ACM SIGPLAN Notices, volume 50, pages
194–204. ACM, 2015.

[184] C. Xu, M. Holzemer, M. Kaul, J. Soto, and V. Markl. On fault tolerance for distributed
iterative dataflow processing. IEEE Transactions on Knowledge and Data Engineering,
29(8):1709–1722, 2017.

[185] D. Yan, Y. Bu, Y. Tian, A. Deshpande, et al. Big graph analytics platforms. Foundations
and Trends® in Databases, 7(1-2):1–195, 2017.

[186] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean, S. Ghemawat,
T. Harley, P. Hawkins, M. Isard, M. Kudlur, R. Monga, D. Murray, and X. Zheng. Dynamic
control flow in large-scale machine learning. In Proceedings of the Thirteenth EuroSys
Conference, page 18. ACM, 2018.

[187] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing using a
high-level language. In OSDI, volume 8, pages 1–14, 2008.

[188] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012.

BIBLIOGRAPHY 139

[189] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. HotCloud, 10, 2010.

[190] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: An efficient
and fault-tolerant model for stream processing on large clusters. In Proceedings of the
4th USENIX Conference on Hot Topics in Cloud Ccomputing, HotCloud’12, Berkeley, CA,
USA, 2012. USENIX Association.

[191] Q. Zhang, A. Acharya, H. Chen, S. Arora, A. Chen, V. Liu, and B. T. Loo. Optimiz-
ing declarative graph queries at large scale. In Proceedings of the 2019 ACM SIGMOD
International Conference on Management of Data, pages 1411–1428, 2019.

[192] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: a distributed framework for prioritized
iterative computations. In Proceedings of the 2nd ACM Symposium on Cloud Computing,
page 13. ACM, 2011.

[193] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: A distributed computing framework
for iterative computation. Journal of Grid Computing, 10(1):47–68, 2012.

[194] K. Zhao and J. X. Yu. All-in-one: Graph processing in RDBMSs revisited. In Proceedings
of the 2017 ACM International Conference on Management of Data, pages 1165–1180.
ACM, 2017.

[195] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent.
In Advances in neural information processing, 2010.

140 BIBLIOGRAPHY

Acronyms

DDS Distributed Dataflow System

RDD Resilient Distributed Dataset

HDFS Hadoop Distributed File System

UDF User-Defined Function

DSL Domain-Specific Language

SSA Static Single Assignment form

IR Intermediate Representation

TC Transitive Closure

FL Fixpoint Loop

MR MapReduce

LID Loop-Invariant Dataset

141

	Title Page
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Control Flow in Distributed Dataflow Systems
	Nested Parallelism in Distributed Dataflow Systems
	Publications and Other Contributions
	Structure of the Thesis

	Background and Terminology
	Iteration vs. Iteration Step
	Distributed Dataflow Systems
	Domain-Specific Language Design Approaches
	Compiler Concepts
	Control Flow Analysis
	Static Single Assignment Form

	Efficient and Easy-To-Use Control Flow in Dataflow Systems
	Running Example and Motivation
	Mitos Overview
	Building Dataflows from Imperative Control Flow
	Simplifying an Imperative Program
	Intermediate Representation for General Control Flow
	Translating an Imperative Program to a Single Dataflow Job

	Control Flow Coordination
	Challenges for the Runtime
	Coordination Based on Bag Identifiers
	Bag Identifiers with Execution Paths
	Choosing Output Bags
	Choosing Input Bags
	Choosing Conditional Outputs

	Bag Operator Host
	Fault Tolerance
	Integration with the Underlying Dataflow System
	External Side Effects

	Optimizations
	Loop-Invariant Hoisting
	Incremental Loops
	Speculative Execution Opportunity

	Evaluation
	Setup
	Strong Scaling
	Visit Count
	PageRank

	Ease-of-Use vs. Performance in Flink
	Scalability With Respect to Input Size
	Iteration Step Overhead
	Optimizations
	Loop-Invariant Hoisting
	Loop Pipelining
	Incremental Loops

	Fault Tolerance

	Nested Parallelism in Dataflow Systems
	Motivating Examples
	Bounce Rate
	Partitioned Graph Analytics
	Hyperparameter Optimization
	Matrices as Nested Collections
	Other Examples
	Desiderata

	Matryoshka Overview
	Flattening
	Two-Phase Flattening
	Parsing Phase
	Lowering Phase

	Lifting UDFs
	InnerScalar
	InnerBag
	NestedBag
	Lifting non-Map UDFs

	Dealing with Closures
	Unlifted UDF Case
	Lifted UDF Case

	Control Flow at Inner Nesting Levels
	Control Flow as Higher-Order Functions
	Lifting Loops
	Lifting If Statements
	Implementation

	Optimizations
	Partition Counts of InnerScalars
	Joins between InnerBags and InnerScalars
	Half-lifted MapWithClosure

	Completeness and Correctness
	Evaluation
	Setup
	Weak Scaling
	Scaling Out
	Performance Without Control Flow – Comparison with DIQL
	Comparison with SystemDS' Parallel For Loop
	Data Skew
	Optimizations
	InnerBag-InnerScalar Joins
	Half-lifted MapWithClosure

	Larger Datasets

	Related Work
	Control Flow Handling in Dataflow Systems
	An Overview of the Programming Models
	Datalog
	SQL
	Functional Control Flow APIs
	Imperative Control Flow

	Key Design Choices
	Control Flow Execution Approach
	Expressivity of Loop APIs
	Fault Tolerance

	Programming Models
	SQL and Datalog
	Iterative MapReduce
	Functional Control Flow APIs
	Imperative Control Flow in Dataflow Systems
	CIEL
	Specialized Models
	Iterations in Streaming

	Optimizations
	Reducing Dataflow Job Launch Overhead
	Loop-Invariant Datasets
	Asynchronous Loops
	Loop Pipelining
	Incremental Loops
	Exploiting Locality Properties of Array Data

	Nested Parallelism

	Conclusion
	Mitos
	Matryoshka
	Survey of Control Flow Handling in Dataflow Systems
	Future Research
	Speculative Execution in Mitos
	Unifying Mitos and Matryoshka into a Single System
	Nested Parallelism in Stream Processing

	Bibliography
	Acronyms

