Skip to main content
Log in

Roadmap on chaos-inspired imaging technologies (CI2-Tech)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In recent years, rapid developments in imaging concepts and computational methods have given rise to a new generation of imaging technologies based on chaos. These chaos-inspired imaging technologies (CI2-Tech) consist of two directions: non-invasive and invasive. Non-invasive imaging, a much older research direction with a goal of imaging through scattering layers, has reached faster, smarter, and sharper imaging capabilities in recent years. The invasive imaging direction is based on exploiting the chaos to achieve imaging characteristics and increase dimensionalities beyond the limits of conventional imagers. In this roadmap, the current and future challenges in invasive and non-invasive imaging technologies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source was performed through this biological tissue. a The object, ‘letter H’ (500 × 330 μm) b part of the recorded speckle pattern, c the autocorrelation, and d the reconstructed object. The scale bars in a, b are 150 μm (20 pixels) and 447 μm (60 pixels), respectively

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Satat, M. Tancik, R. Raskar, Towards photography through realistic fog. In Computational Photography (ICCP), 2018 IEEE International Conference on (IEEE, 2018), pp. 1–10

  2. S. Narasimhan, S. Nayar, Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 713–724 (2003)

    Article  Google Scholar 

  3. R. Fattal, Single image dehazing. ACM Trans. Graph (TOG) 27, 1–9 (2008)

    Article  Google Scholar 

  4. R. Horisaki, R. Takagi, J. Tanida, Learning-based imaging through scattering media. Opt. Express 24, 13738–13743 (2016)

    Article  ADS  Google Scholar 

  5. K. Lee, Y. Park, Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun. 7, 13359 (2016)

    Article  ADS  Google Scholar 

  6. A.K. Singh, D.N. Naik, G. Pedrini, M. Takeda, W. Osten, Exploiting scattering media for exploring 3D objects. Light Sci. Appl. 6, e16219 (2017)

    Article  ADS  Google Scholar 

  7. S. Rotter, S. Gigan, Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017)

    Article  ADS  Google Scholar 

  8. A. Vijayakumar, J. Rosen, Interferenceless coded aperture correlation holography—a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 25, 13883–13896 (2017)

    Article  ADS  Google Scholar 

  9. H. Zhuang, H. He, X. Xie, J. Zhou, High speed color imaging through scattering media with a large field of view. Sci. Rep. 6, 32696 (2016)

    Article  ADS  Google Scholar 

  10. H. Wang, M. Lyu, G. Situ, eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express 26, 22603–22614 (2018)

    Article  ADS  Google Scholar 

  11. R.K. Singh, Hybrid correlation holography with a single pixel detector. Opt. Lett. 42, 2515–2518 (2017)

    Article  ADS  Google Scholar 

  12. V. Anand, S.H. Ng, J. Maksimovic, D. Linklater, T. Katkus, E.P. Ivanova, S. Juodkazis, Single shot multispectral multidimensional imaging using chaotic waves. Sci. Rep. 10, 13902 (2020)

    Article  Google Scholar 

  13. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, L. Waller, DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018)

    Article  ADS  Google Scholar 

  14. S.K. Sahoo, D. Tang, C. Dang, Single-shot multispectral imaging with a monochromatic camera. Optica 4, 1209–1213 (2017)

    Article  ADS  Google Scholar 

  15. A. Wagadarikar, R. John, R. Willett, D. Brady, Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, B44–B51 (2008)

    Article  Google Scholar 

  16. J. Bertolotti, E.G. van Putten, C. Blum, A. Lagendijk, W.L. Vos, A.P. Mosk, Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012)

    Article  ADS  Google Scholar 

  17. O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014)

    Article  ADS  Google Scholar 

  18. R. Horisaki, Y. Okamoto, J. Tanida, Single-shot noninvasive three-dimensional imaging through scattering media. Opt. Lett. 44, 4032–4035 (2019)

    Article  ADS  Google Scholar 

  19. R.H. Dicke, Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101–L106 (1968)

    Article  ADS  Google Scholar 

  20. J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  21. M.R. Rai, A. Vijayakumar, J. Rosen, Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express 26, 18143–18154 (2018)

    Article  ADS  Google Scholar 

  22. A.K. Singh, D.N. Naik, G. Pedrini, M. Takeda, W. Osten, Looking through a diffuser and around an opaque surface: a holographic approach. Opt. Express 22, 7694–7701 (2014)

    Article  ADS  Google Scholar 

  23. A. Singh, G. Pedrini, M. Takeda, W. Osten, Scatter-plate microscope for lensless microscopy with diffraction limited resolution. Sci. Rep. 7(1), 10687 (2017)

    Article  ADS  Google Scholar 

  24. X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, J. Zhou, Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci. Rep. 8, 4585 (2018)

    Article  ADS  Google Scholar 

  25. S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. Gigan, Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)

    Article  ADS  Google Scholar 

  26. S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)

    Article  ADS  Google Scholar 

  27. M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ, Learning-based lensless imaging through optically thick scattering media. Adv. Photonics 1, 036002 (2019)

    Article  ADS  Google Scholar 

  28. F. Wang, H. Wang, H. Wang, G. Li, G. Situ, Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27, 25560–25572 (2019)

    Article  ADS  Google Scholar 

  29. T. Ando, R. Horisaki, J. Tanida, Speckle-learning-based object recognition through scattering media. Opt. Express 23, 33902–33910 (2015)

    Article  ADS  Google Scholar 

  30. A. Vijayakumar, Y. Kashter, R. Kelner, J. Rosen, Coded aperture correlation holography—a new type of incoherent digital holograms. Opt. Express 24, 12430–12441 (2016)

    Article  ADS  Google Scholar 

  31. M. Kumar, A. Vijayakumar, J. Rosen, Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses. Sci. Rep. 7, 11555 (2017)

    Article  ADS  Google Scholar 

  32. M.R. Rai, A. Vijayakumar, J. Rosen, Single camera shot interferenceless coded aperture correlation holography. Opt. Lett. 42, 3992–3995 (2017)

    Article  ADS  Google Scholar 

  33. M.R. Rai, A. Vijayakumar, J. Rosen, Extending the field of view by a scattering window in an I-COACH system. Opt. Lett. 43, 1043–1046 (2018)

    Article  ADS  Google Scholar 

  34. J. Rosen, A. Vijayakumar, M. Kumar, M.R. Rai, R. Kelner, Y. Kashter, A. Bulbul, S. Mukherjee, Recent advances in self-interference incoherent digital holography. Adv. Opt. Photonics 11, 1–66 (2019)

    Article  ADS  Google Scholar 

  35. C. Liu, T. Man, Y. Wan, Optimized reconstruction with noise suppression for interferenceless coded aperture correlation holography. Appl. Opt. 59, 1769–1774 (2020)

    Article  ADS  Google Scholar 

  36. M.R. Rai, J. Rosen, Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH). Opt. Express 27, 24311–24323 (2019)

    Article  ADS  Google Scholar 

  37. Y. Wan, C. Liu, T. Ma, Y. Qin, S. Lv, Incoherent coded aperture correlation holographic imaging with fast adaptive and noise-suppressed reconstruction. Opt. Express 29, 8064–8075 (2021)

    Article  ADS  Google Scholar 

  38. M. Kumar, A. Vijayakumar, J. Rosen, O. Matoba, Interferenceless coded aperture correlation holography with synthetic point spread holograms. Appl. Opt. 59, 7321–7329 (2020)

    Article  ADS  Google Scholar 

  39. M.R. Rai, A. Vijayakumar, Y. Ogura, J. Rosen, Resolution enhancement in nonlinear interferenceless COACH with a point response of subdiffraction limit patterns. Opt. Express 27, 391–403 (2019)

    Article  ADS  Google Scholar 

  40. M.R. Rai, A. Vijayakumar, J. Rosen, Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an incoherent imaging system. Opt. Lett. 44, 1572–1575 (2019)

    Article  ADS  Google Scholar 

  41. M.R. Rai, J. Rosen, Resolution-enhanced imaging using interferenceless coded aperture correlation holography with sparse point response. Sci. Rep. 10, 5033 (2020)

    Article  ADS  Google Scholar 

  42. A. Bulbul, A. Vijayakumar, J. Rosen, Partial aperture imaging by system with annular phase coded masks. Opt. Express 25, 33315–33329 (2017)

    Article  ADS  Google Scholar 

  43. N. Dubey, J. Rosen, I. Gannot, High-resolution imaging with annular aperture of coded phase masks for endoscopic applications. Opt. Express 28, 15122–15137 (2020)

    Article  ADS  Google Scholar 

  44. A. Bulbul, J. Rosen, Partial aperture imaging system based on sparse point spread holograms and nonlinear cross-correlations. Sci. Rep. 10, 21983 (2021)

    Article  ADS  Google Scholar 

  45. N. Hai, J. Rosen, Interferenceless and motionless method for recording digital holograms of coherently illuminated 3-D objects by coded aperture correlation holography system. Opt. Express 27, 24324–24339 (2019)

    Article  ADS  Google Scholar 

  46. S. Mukherjee, A. Vijayakumar, J. Rosen, Spatial light modulator aided noninvasive imaging through scattering layers. Sci. Rep. 9, 17670 (2019)

    Article  ADS  Google Scholar 

  47. M.R. Rai, J. Rosen, Depth-of-field engineering in coded aperture imaging. Opt. Express 29, 1634–1648 (2021)

    Article  ADS  Google Scholar 

  48. V. Anand, S.H. Ng, T. Katkus, S. Juodkazis, White light three-dimensional imaging using a quasi-random lens. Opt. Express 29(10), 15551–15563 (2021)

    Article  ADS  Google Scholar 

  49. A. Bulbul, A. Vijayakumar, J. Rosen, Superresolution far-field imaging by coded phase reflectors distributed only along the boundary of synthetic apertures. Optica 5, 1607–1616 (2018)

    Article  ADS  Google Scholar 

  50. A. Bulbul, J. Rosen, Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photonics Res. 9, 1172–1181 (2021)

    Article  Google Scholar 

  51. A. Vijayakumar, J. Rosen, Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett. 42, 947–950 (2017)

    Article  ADS  Google Scholar 

  52. A. Vijayakumar, S.H. Ng, T. Katkus, S. Juodkazis, Spatio-spectral-temporal imaging of fast transient phenomena using a random array of pinholes. Adv. Photonics Res. 2, 2000032 (2021)

    Article  Google Scholar 

  53. K.M. Yoo, R.R. Alfano, Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 15, 320–322 (1990)

    Article  ADS  Google Scholar 

  54. A. Mosk, Y. Silberberg, K. Webb, C. Yang, Imaging, sensing, and communication through highly scattering complex media. Technical report, Defense Technical Information Center (2015)

  55. X. Xie, Q. He, Y. Liu, H. Liang, J.Y. Zhou, Non-invasive optical imaging using the extension of the Fourier–domain shower–curtain effect. Opt. Lett. 46, 98–101 (2021)

    Article  ADS  Google Scholar 

  56. B.Z. Bentz, B.J. Redman, J.D. van der Laan, K. Westlake, A. Glen, A.L. Sanchez, J.B. Wright, Light transport with weak angular dependence in fog. Opt. Express 29, 13231–13245 (2021)

    Article  ADS  Google Scholar 

  57. C. Wu, J.J. Liu, X. Huang, Z.P. Li, C. Yu, J.T. Ye, J. Zhang, Q. Zhang, X.K. Dou, V.K. Goyal, F.H. Xu, J.W. Pan, Non–line-of-sight imaging over 1.43 km. PNAS 118, e2024468118 (2021)

    Article  Google Scholar 

  58. J.W. Goodman, W.H. Huntley Jr., D.W. Jackson, M. Lehmann, Wavefront reconstruction imaging through random media. Appl. Phys. Lett. 8, 311–313 (1966)

    Article  ADS  Google Scholar 

  59. J.C. Dainty, D. Newman, Detection of gratings hidden by diffusers using photon-correlation techniques. Opt. Lett. 8, 608–610 (1983)

    Article  ADS  Google Scholar 

  60. G. Indebetouw, P. Klysubun, Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography. Opt. Lett. 25, 212–214 (2000)

    Article  ADS  Google Scholar 

  61. Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008)

    Article  ADS  Google Scholar 

  62. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, Recovering three-dimensional shape around a corner using ultra-fast time-of-flight imaging. Nat. Commun. 3, 745 (2012)

    Article  ADS  Google Scholar 

  63. A.P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, Controlling waves in space and time for imaging and focusing in complex media. Nat Photonics 6, 283–292 (2012)

    Article  ADS  Google Scholar 

  64. I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)

    Article  ADS  Google Scholar 

  65. J. Park, J.H. Park, H. Yu, Y.K. Park, Focusing through turbid media by polarization modulation. Opt. Lett. 40, 1667–1670 (2015)

    Article  ADS  Google Scholar 

  66. P. Berto, H. Rigneault, M. Guillon, Wavefront sensing with a thin diffuser. Opt. Lett. 24, 5117–5120 (2017)

    Article  ADS  Google Scholar 

  67. S. Ludwig, G. Pedrini, X. Peng, W. Osten, Single-pixel scatter-plate microscopy. Opt. Lett. 46, 2473–2476 (2021)

    Article  ADS  Google Scholar 

  68. J. Schindler, P. Schau, N. Brodhag, K. Frenner, W. Osten, Retrieving the axial position of fluorescent light emitting spots by shearing interferometry. J. Biomed. Opt. 21, 125009 (2016)

    Article  ADS  Google Scholar 

  69. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson et al., Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  70. D.N. Naik, R.K. Singh, T. Ezawa, Y. Miyamoto, M. Takeda, Photon correlation holography. Opt. Express 19, 1408–1421 (2011)

    Article  ADS  Google Scholar 

  71. M. Takeda, A.K. Singh, D.N. Naik, G. Pedrini, W. Osten, Holographic correloscopy—unconventional holographic techniques for imaging a three-dimensional object through an opaque diffuser or via a scattering wall: a review. IEEE Trans. Ind. Inf. 12, 1631–1640 (2016)

    Article  Google Scholar 

  72. I. Freund, Looking through walls and around corners. Physica A 168, 49–65 (1990)

    Article  ADS  Google Scholar 

  73. I. Freund, M. Rosenbluh, S.C. Feng, Memory effects in propagation of optical waves through disordered media. Phys Rev Lett. 61, 2328–2331 (1988)

    Article  ADS  Google Scholar 

  74. J.W. Goodman, Analogy between holography and interferometric image formation. J. Opt. Soc. Am. 60, 506–509 (1970)

    Article  ADS  Google Scholar 

  75. C. Balch et al., Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J. Clin. Oncol. 19, 3635–3648 (2001)

    Article  Google Scholar 

  76. J. Schindler et al., Resolving the depth of fluorescent light by structured illumination and shearing interferometry. Proc. SPIE 9718, 97182H (2016)

    Article  Google Scholar 

  77. W. Osten, K. Frenner, G. Pedrini, A.K. Singh, J. Schindler, M. Takeda, Shaping the light for the investigation of depth-extended scattering media. In Proceedings of SPIE 10503, Quantitative Phase Imaging IV (2018), p. 1050318

  78. J.T. Sheridan et al., Roadmap on holography. J. Opt. 22, 123002 (2020)

    Article  ADS  Google Scholar 

  79. D. Gabor, A new microscopic principle. Nature 161, 777 (1948). ((Proc. Roy. Soc. (London) A197, 454 (1949)))

    Article  ADS  Google Scholar 

  80. E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962)

    Article  ADS  Google Scholar 

  81. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  82. U. Schnars, W. Jüptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, Berlin, 2005)

    Google Scholar 

  83. V. Micó, J. García, Z. Zalevsky, Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics. J. Nanophotonics 3, 031780 (2009)

    Article  ADS  Google Scholar 

  84. A. Anand, V. Chhaniwal, B. Javidi, Tutorial: common path self-referencing digital holographic microscopy. Appl. Photonics Lett. 3, 071101 (2018)

    Article  ADS  Google Scholar 

  85. M. Takeda, W. Wang, Z. Duan, Y. Miyamoto, Coherence holography. Opt. Express 13, 9629–9635 (2005)

    Article  ADS  Google Scholar 

  86. J. Rosen, G. Brooker, Digital spatially incoherent Fresnel holography. Opt. Lett. 32, 912–914 (2007)

    Article  ADS  Google Scholar 

  87. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  88. R.K. Tyson, Principle of Adaptive Optics (CRC Press, Boca Raton, 2019)

    Google Scholar 

  89. K.R. Lee, J. Lee, J.-H. Park, J.-H. Park, Y.K. Park, One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector. Phys. Rev. Lett. 115, 153902 (2015)

    Article  ADS  Google Scholar 

  90. B. Das, N.S. Bisht, R.V. Vinu, R.K. Singh, Lensless complex amplitude image retrieval through a visually opaque scattering medium. Appl. Opt. 56, 4591–4597 (2017)

    Article  ADS  Google Scholar 

  91. R.V. Vinu, Z. Chen, J. Pu, Y. Otani, R.K. Singh, Speckle-field digital polarization holographic microscopy. Opt. Lett. 44, 5711–5714 (2019)

    Article  ADS  Google Scholar 

  92. B.I. Erkmen, J.H. Shapiro, Ghost imaging: from quantum to classical to computational. Adv. Opt. Photonics 2, 405–450 (2010)

    Article  ADS  Google Scholar 

  93. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, J. Lancis, Single-pixel digital ghost holography. Phys. Rev. A. 86, 41803 (2012)

    Article  ADS  Google Scholar 

  94. R.V. Vinu, Z. Chen, R.K. Singh, J. Pu, Ghost diffraction holographic microscopy. Optica 7, 1697–1704 (2020)

    Article  ADS  Google Scholar 

  95. A.S. Somkuwar, B. Das, R.V. Vinu, Y.K. Park, R.K. Singh, Holographic imaging through a scattering layer using speckle interferometry. J. Opt. Soc. Am. A 34, 1392–1399 (2017)

    Article  ADS  Google Scholar 

  96. J. Goodman, Statistical Optics (Wiley, New York, 2000)

    Google Scholar 

  97. M. Takeda et al., Spatial statistical optics and spatial correlation holography: a review. Opt. Rev. 21, 849–861 (2014)

    Article  Google Scholar 

  98. D.N. Naik, T. Ezawa, R.K. Singh, Y. Miyamoto, M. Takeda, Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer. Opt. Express 20, 19658–19669 (2012)

    Article  ADS  Google Scholar 

  99. L. Chen, R.K. Singh, Z. Chen, J. Pu, Phase shifting digital holography with the Hanbury Brown–Twiss approach. Opt. Lett. 45, 212–215 (2020)

    Article  ADS  Google Scholar 

  100. Y. Park, C. Depeursinge, G. Popescu, Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2002)

    Article  ADS  Google Scholar 

  101. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13, 4170–4191 (2002)

    Article  ADS  Google Scholar 

  102. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008)

    Article  Google Scholar 

  103. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M.S. Feld, Speckle-field digital holographic microscopy. Opt. Express 17, 12285–12292 (2009)

    Article  ADS  Google Scholar 

  104. G. Choi, D. Ryu, Y. Jo, Y.S. Kim, W. Park, H.-S. Min, Y. Park, Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 27, 4927–4943 (2019)

    Article  ADS  Google Scholar 

  105. D. Ryu, Y. Jo, J. Yoo, T. Chang, D. Ahn, Y.S. Kim, G. Kim, H.-S. Min, Y. Park, Deep learning-based optical field screening for robust optical diffraction tomography. Sci. Rep. 9, 1–9 (2019)

    Article  Google Scholar 

  106. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M.U. Gillette, G. Popescu, Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011)

    Article  ADS  Google Scholar 

  107. T.H. Nguyen, M.E. Kandel, M. Rubessa, M.B. Wheeler, G. Popescu, Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  108. P. Bon, G. Maucort, B. Wattellier, S. Monneret, Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009)

    Article  ADS  Google Scholar 

  109. X. Ou, R. Horstmeyer, C. Yang, G. Zheng, Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett. 38, 4845–4848 (2013)

    Article  ADS  Google Scholar 

  110. Y. Baek, Y. Park, Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics 15, 354–360 (2021)

    Article  ADS  Google Scholar 

  111. J. Li, A. Matlock, Y. Li, Q. Chen, C. Zuo, L. Tian, High-speed in vitro intensity diffraction tomography. Adv. Photonics 1, 33 (2019)

    Article  Google Scholar 

  112. J.M. Soto, J.A. Rodrigo, T. Alieva, Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express 25, 15699–15712 (2017)

    Article  ADS  Google Scholar 

  113. R. Ling, W. Tahir, H.-Y. Lin, H. Lee, L. Tian, High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express 9, 2130–2141 (2018)

    Article  Google Scholar 

  114. A. Matlock, L. Tian, High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography. Biomed. Opt. Express 10, 6432–6448 (2019)

    Article  Google Scholar 

  115. H. Hugonnet, M. Lee, Y. Park, Optimizing illumination in three-dimensional deconvolution microscopy for accurate refractive index tomography. Opt. Express 29, 6293–6301 (2021)

    Article  ADS  Google Scholar 

  116. Y. Baek, K. Lee, J. Oh, Y. Park, Speckle-correlation scattering matrix approaches for imaging and sensing through turbidity. Sensors 20, 3147 (2020)

    Article  ADS  Google Scholar 

  117. Y. Baek, K. Lee, Y. Park, High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl. 10, 024053 (2018)

    Article  ADS  Google Scholar 

  118. K. Lee, Y. Park, Interpreting intensity speckle as the coherency matrix of classical light. Phys. Rev. Appl. 12, 024003 (2019)

    Article  ADS  Google Scholar 

  119. I. Godfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, New York, 2016)

    MATH  Google Scholar 

  120. Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, A. Ozcan, Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018)

    Article  Google Scholar 

  121. J. Li, D. Wang, S. Li, M. Zhang, C. Song, X. Chen, Deep learning based adaptive sequential data augmentation technique for the optical network traffic synthesis. Opt. Express 27, 18831–18847 (2019)

    Article  ADS  Google Scholar 

  122. F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ, “Phase imaging with an untrained neural network. Light Sci. Appl. 9, 77 (2020)

    Article  ADS  Google Scholar 

  123. A. Sinha, J. Lee, S. Li, G. Barbastathis, Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017)

    Article  ADS  Google Scholar 

  124. Y. Li, Y. Xue, L. Tian, Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181–1190 (2018)

    Article  ADS  Google Scholar 

  125. S. Zheng, H. Wang, S. Dong, F. Wang, G. Situ, Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photonics Res. 9, B220–B228 (2021)

    Article  Google Scholar 

  126. S. Zhu, E. Guo, J. Gu, L. Bai, J. Han, Imaging through unknown scattering media based on physics-informed learning. Photonics Res. 9, B210–B219 (2021)

    Article  Google Scholar 

  127. K. Johnstonbaugh, S. Agrawal, D.A. Durairaj, C. Fadden, A. Dangi, S.P.K. Karri, S.-R. Kothapalli, A deep learning approach to photoacoustic wavefront localization in deep-tissue medium. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 2649–2659 (2020)

    Article  Google Scholar 

  128. A. Matlock, L. Tian, in Physical Model Simulator-Trained Neural Network for Computational 3D Phase Imaging of Multiple-Scattering Samples. arXiv:2103.15795 (2021)

  129. R. Horstmeyer, H. Ruan, C. Yang, Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015)

    Article  ADS  Google Scholar 

  130. R.G. Baraniuk, Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24, 118–121 (2007)

    Article  ADS  Google Scholar 

  131. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Article  ADS  Google Scholar 

  132. Y. Okamoto, R. Horisaki, J. Tanida, Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation. Opt. Lett. 44, 2526–2529 (2019)

    Article  ADS  Google Scholar 

  133. X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, A.P. Mosk, Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function. Opt. Express 25, 32829–32840 (2017)

    Article  ADS  Google Scholar 

  134. K. Ehira, R. Horisaki, Y. Nishizaki, M. Naruse, J. Tanida, Spectral speckle-correlation imaging. Appl. Opt. 60, 2388–2392 (2021)

    Article  ADS  Google Scholar 

  135. G. Barbastathis, A. Ozcan, G. Situ, On the use of deep learning for computational imaging. Optica 6, 921–943 (2019)

    Article  ADS  Google Scholar 

  136. R. Takagi, R. Horisaki, J. Tanida, Object recognition through a multi-mode fiber. Opt. Rev. 24, 117–120 (2017)

    Article  Google Scholar 

  137. R. Horisaki, F. Kazuki, J. Tanida, Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning. Opt. Rev. 25, 593–597 (2018)

    Article  Google Scholar 

  138. R. Horisaki, R. Takagi, J. Tanida, Learning-based focusing through scattering media. Appl. Opt. 56, 4358–4362 (2017)

    Article  ADS  Google Scholar 

  139. R. Horisaki, Y. Mori, J. Tanida, Incoherent light control through scattering media based on machine learning and its application to multiview stereo displays. Opt. Rev. 26, 709–712 (2019)

    Article  Google Scholar 

  140. R. Horisaki, R. Takagi, J. Tanida, Learning-based single-shot superresolution in diffractive imaging. Appl. Opt. 56, 8896–8901 (2017)

    Article  ADS  Google Scholar 

  141. R. Horisaki, R. Takagi, J. Tanida, Deep-learning-generated holography. Appl. Opt. 57, 3859–3863 (2018)

    Article  ADS  Google Scholar 

  142. R. Horisaki, Y. Nishizaki, K. Kitaguchi, M. Saito, J. Tanida, Three-dimensional deeply generated holography [Invited]. Appl. Opt. 60, A323–A328 (2021)

    Article  ADS  Google Scholar 

  143. L. Gao, J. Liang, C. Li, L.V. Wang, Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014)

    Article  ADS  Google Scholar 

  144. F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell, Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017)

    Article  ADS  Google Scholar 

  145. B.G. Saar, C.W. Freudiger, J. Reichman, C.M. Stanley, G.R. Holtom, X.S. Xie, Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010)

    Article  ADS  Google Scholar 

  146. M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000)

    Article  Google Scholar 

  147. R. Heintzmann, C.G. Cremer, Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating, in Optical Biopsies and Microscopic Techniques III, vol. 3568, ed. by I.J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P.M. Viallet (Stockholm, Sweden, SPIE, 1999), pp. 185–196.

    Chapter  Google Scholar 

  148. Y. Wu, H. Shroff, Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15(12), 1011–1019 (2018)

    Article  Google Scholar 

  149. L. Zhu, F. Soldevila, C. Moretti, A. d’Arco, A. Boniface, X. Shao, H.B. de Aguiar, S. Gigan, Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination (2021). arXiv:2107.08158

  150. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994)

    Article  ADS  Google Scholar 

  151. X. Hao, E.S. Allgeyer, D.-R. Lee, J. Antonello, K. Watters, J.A. Gerdes, L.K. Schroeder, F. Bottanelli, J. Zhao, P. Kidd, M.D. Lessard, J.E. Rothman, L. Cooley, T. Biederer, M.J. Booth, J. Bewersdorf, Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat. Methods 18, 688–693 (2021)

    Article  Google Scholar 

  152. F. Ströhl, C.F. Kaminski, Frontiers in structured illumination microscopy. Optica 3, 667–677 (2016)

    Article  ADS  Google Scholar 

  153. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, A. Sentenac, Structured illumination microscopy using unknown speckle patterns. Nat. Photonics 6, 312–315 (2012)

    Article  ADS  Google Scholar 

  154. L.-H. Yeh, L. Tian, L. Waller, Structured illumination microscopy with unknown patterns and a statistical prior. Biomed. Opt. Express 8, 695 (2017)

    Article  Google Scholar 

  155. H. Yilmaz, E.G. van Putten, J. Bertolotti, A. Lagendijk, W.L. Vos, A.P. Mosk, Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 2, 424–429 (2015)

    Article  ADS  Google Scholar 

  156. R.C. Prince, R.R. Frontiera, E.O. Potma, Stimulated raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2017)

    Article  Google Scholar 

  157. W.R. Silva, C.T. Graefe, R.R. Frontiera, Toward label-free super-resolution microscopy. ACS Photonics 3, 79–86 (2016)

    Article  Google Scholar 

  158. A. Gasecka, A. Daradich, H. Dehez, M. Piché, D. Côté, Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy. Opt. Lett. 38, 4510–4513 (2013)

    Article  ADS  Google Scholar 

  159. Y. Yonemaru, A.F. Palonpon, S. Kawano, N.I. Smith, S. Kawata, K. Fujita, Super-spatial- and -spectral-resolution in vibrational imaging via saturated coherent anti-Stokes Raman scattering. Phys. Rev. Appl. 4, 14010 (2015)

    Article  ADS  Google Scholar 

  160. C. Cleff, P. Groß, C. Fallnich, H.L. Offerhaus, J.L. Herek, K. Kruse, W.P. Beeker, C.J. Lee, K.-J. Boller, Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys. Rev. A 86, 23825 (2012)

    Article  ADS  Google Scholar 

  161. H. Kim, G.W. Bryant, S.J. Stranick, Superresolution four-wave mixing microscopy. Opt. Express 20, 6042–6051 (2012)

    Article  ADS  Google Scholar 

  162. H. Xiong, N. Qian, Y. Miao, Z. Zhao, C. Chen, W. Min, Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci. Appl. 10, 87 (2021)

    Article  ADS  Google Scholar 

  163. L. Gong, W. Zheng, Y. Ma, Z. Huang, Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl. 11, 034041 (2019)

    Article  ADS  Google Scholar 

  164. K.M. Hajek, B. Littleton, D. Turk, T.J. McIntyre, H. Rubinsztein-Dunlop, A method for achieving super-resolved widefield CARS microscopy. Opt. Express 18, 19263–19272 (2010)

    Article  ADS  Google Scholar 

  165. K. Watanabe, A.F. Palonpon, N.I. Smith, A. Kasai, H. Hashimoto, S. Kawata, K. Fujita et al., Structured line illumination Raman microscopy. Nat. Commun. 6, 10095 (2015)

    Article  ADS  Google Scholar 

  166. J.H. Park, S.-W. Lee, E.S. Lee, J.Y. Lee, A method for super-resolved CARS microscopy with structured illumination in two dimensions. Opt. Express 22, 9854–9870 (2014)

    Article  ADS  Google Scholar 

  167. J. Guilbert, A. Negash, S. Labouesse, S. Gigan, A. Sentenac, H.B. de Aguiar, Label-free super-resolution chemical imaging of biomedical specimens. bioRxiv 2021.05.14.444185 (2021)

  168. P. Arjmand, O. Katz, S. Gigan, M. Guillon, Three-dimensional broadband light beam manipulation in forward scattering samples. Opt. Express 29, 6563–6581 (2020)

    Article  ADS  Google Scholar 

  169. A.G. Vesga, M. Hofer, N.K. Balla, H.B. de Aguiar, M. Guillon, S. Brasselet, Focusing large spectral bandwidths through scattering media. Opt. Express 27, 28384–28394 (2019)

    Article  ADS  Google Scholar 

  170. M. Hofer, S. Shivkumar, B. El Waly, S. Brasselet, Coherent anti-stokes raman scattering through thick biological tissues by single-wavefront shaping. Phys. Rev. Appl. 14, 024019 (2020)

    Article  ADS  Google Scholar 

  171. H.B. De Aguiar, S. Gigan, S. Brasselet, Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping. Phys. Rev. A 94, 43830 (2016)

    Article  Google Scholar 

Download references

Funding

Section 2: Israel Science Foundation (1669/16). Section 3: NATO Grant no. SPS-985048 and European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857627 (CIPHR). Section 4: this work was supported by the National Natural Science Foundation of China (11534017, 61991450, 61991452, 11704421, 12074444); Department of Education of Guangdong Province (2018KCXTD011); The Key R&D Program of Guangdong Province (2019B010152001); Guangdong Basic and Applied Basic Research Foundation (2020A1515011184); Guangzhou Science and Technology Project (201805010004). Section 5: this work has been funded by the The German Research Association DFG with Grant no. Os 111/49-1 and the Baden-Wuerttemberg Stiftung within the project “Tiefenaufgelöste Fluoreszenzdetektion in streuenden Medien” (FluoTis). We thank our partners at ILM for the production of the phantoms and the collaboration during the project. Mitsuo Takeda is thankful to Alexander von Humboldt Foundation for the opportunity of his research stay at ITO, University of Stuttgart. Section 6: T. Sarkar would like to acknowledge the University Grant Commission, India for financial support as Senior Research Fellowship. Supports from the Science and Engineering Research Board (SERB): CORE/2019/000026 and the Council of Scientific and Industrial Research (CSIR), India- Grant No 80 (0092) /20/EMR-II, are acknowledged. Section 7: this work was supported by KAIST UP program, BK21+ program, Science-X, National Research Foundation of Korea (2015R1A3A2066550, 2021R1C1C2009220), and Institute of Information and communications Technology Planning and Evaluation (IITP) Grant (2021-0-00745). Section 8: this work was supported by the National Natural Science Foundation of China (62061136005, 61991452) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant no. QYZDB-SSW-JSC002). Section 10: this research has been funded by the FET-Open (Dynamic-863203), European Research Council ERC Consolidator Grant (SMARTIES-724473).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work. The manuscript was compiled by JR and VA.

Corresponding author

Correspondence to Vijayakumar Anand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosen, J., de Aguiar, H.B., Anand, V. et al. Roadmap on chaos-inspired imaging technologies (CI2-Tech). Appl. Phys. B 128, 49 (2022). https://doi.org/10.1007/s00340-021-07729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07729-z

Navigation