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Simultaneous Production of Psilocybin and a Cocktail of
b-Carboline Monoamine Oxidase Inhibitors in “Magic” Mushrooms
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Anna Komor,[b] Florian Meyer,[c] Christian Hertweck,[b, d] and Dirk Hoffmeister*[a]

Abstract: The psychotropic effects of Psilocybe “magic”

mushrooms are caused by the l-tryptophan-derived alkaloid

psilocybin. Despite their significance, the secondary metabo-
lome of these fungi is poorly understood in general. Our

analysis of four Psilocybe species identified harmane, har-
mine, and a range of other l-tryptophan-derived b-carbo-

lines as their natural products, which was confirmed by 1D
and 2D NMR spectroscopy. Stable-isotope labeling with
13C11-l-tryptophan verified the b-carbolines as biosynthetic

products of these fungi. In addition, MALDI-MS imaging

showed that b-carbolines accumulate toward the hyphal

apices. As potent inhibitors of monoamine oxidases, b-car-
bolines are neuroactive compounds and interfere with psilo-

cybin degradation. Therefore, our findings represent an un-
precedented scenario of natural product pathways that di-

verge from the same building block and produce dissimilar
compounds, yet contribute directly or indirectly to the same

pharmacological effects.

Introduction

Since ancient times, vision-inducing, consciousness-altering

natural products, so-called entheogens, have been used for
spiritual purposes. The producing plants or fungi have accom-

panied humankind and impacted the genesis of culture and re-

ligion.[1] Indisputably, mushrooms producing psilocybin (1,
Scheme 1) rank among the most prominent entheogens and

were considered the “flesh of the gods” (teonanacatl) by the
Aztecs.[1] Numerous species within the fungal genus Psilocybe

and other genera biosynthesize 1 which represents the phos-

phorylated prodrug to the psychotropic agent psilocin (2),[2]

first described by Albert Hofmann and co-workers sixty years
ago.[3] Subsequently, N-methylated l-tryptophan as well as in-

doleethylamines, i.e. , the intermediates of 1 baeocystin, nor-

Scheme 1. Schematic overview on psychoactive principles of Psilocybe
mushrooms (green) and ayahuasca (blue), their biosynthetic origin, and their
inactivation in the human body by monoamine oxidase (MAO) A.
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baeocystin, and norpsilocin were discovered.[4] Compound 2
interferes with serotonergic neurotransmission because it acts

as a partial agonist primarily on the 5-hydroxytryptamine (5-
HT)2A-receptor.[5] The perceptual and somatic effects include

synesthesia, visual hallucinations, dilated pupils, and others.[6]

The effects last for several hours before they subside when 2 is

eliminated both renally through O-glucuronylation and by for-
mation of 4-hydroxyindol-3-yl-acetaldehyde (Scheme 1). The
latter process is catalyzed by the monoamine oxidase isozyme

A (MAO A),[7] a mitochondrial flavin-dependent enzyme that
oxidatively deaminates serotonin and other biogenic and neu-
roactive amines. Consequently, MAO inhibitors generally in-
crease the pharmacological effects of such bioactive amines.

Another entheogen that has traditionally been consumed in
spiritual and healing ceremonies is a psychotropic brew,

known by its vernacular name ayahuasca, a Quechua term lit-

erally meaning “vine of the souls”. Unlike Psilocybe mushrooms,
it is not the product of a single biological species. Rather, aya-

huasca consists of leaves of N,N-dimethyltryptamine (DMT, 3,
Scheme 1) producers, e.g. , Psychotria viridis (Rubiaceae, coffee

family).[9] Compound 3 is inactive when taken up orally, but be-
comes neuroactive in the presence of MAO A inhibitors that

prevent 3 degradation in the human gut (Scheme 1). Such in-

hibitors are present in ayahuasca as well, because its second
ingredient is the bark of the jungle vine Banisteriopsis caapi

(Malpighiaceae), which produces b-carbolines, which are
strong reversible MAO inhibitors.[8] Ayahuasca’s synergism,

caused by two separate species, has empirically been discov-
ered in pre-Columbian times by South American natives.[9] It

compensates the fact that synchronous production of a bioac-

tive compound and the inhibitor of its own degradation as en-
hancer in one single species is unprecedented for psychotropic

natural products.
Besides 1 and its congeners, other amino-acid derived natu-

ral products have not been reported yet from Psilocybe mush-
rooms. Therefore, their secondary metabolomes appear sur-

prisingly little understood, despite 60 years of intensive re-

search. We addressed this knowledge gap and describe here
an in-depth re-analysis of natural-product profiles of five Psilo-

cybe species. In all of them, we identified b-carbolines as their
products, i.e. , a metabolic profile reminiscent of the active
principles of ayahuasca.

Results and Discussion

In the course of metabolic profiling of carpophores of Psilocybe

mexicana, we routinely extracted with methanol, using a pub-
lished protocol,[4c] and analyzed the crude extracts by LC-HR-

ESI-MS. As expected, 1, its immediate biosynthetic precursors
baeocystin and norbaeocystin, and low amounts of its dephos-

phorylated follow-up compound 2 were detected. However,

we also identified two very minor mass spectrometric signals
that showed retention times and masses dissimilar to those of

authentic standards of 1 and its precursors (Figure 1 A). These
signals appeared at tR = 4.53 min (m/z = 183.0916 [M++H]++) and

at tR = 4.89 min (m/z = 213.1022 [M++H]++). We hypothesized
that b-carbolines may account for these signals as the ob-

served masses are in good agreement with that of harmane (4,
Figure 1) and harmine (5).[10] Upon exposure to UV light, b-car-

bolines fluoresce.[11] Therefore, we repeated the analysis, this
time using an acidic aqueous mushroom extract and an HPLC

instrument interfaced to a fluorescence detector, excitation
was at l= 340 nm, emission was recorded at l= 410 nm. The

signals were detected again, and authentic 4 and 5 standards
showed identical retention times and masses (Figure 1 B).

We analyzed acidic aqueous extracts of other Psilocybe spe-

cies by HPLC and fluorescence detection (Figure 1 C) to investi-
gate if b-carbolines were present in those fungi as well. Com-

pound 4 and, in lower quantities, 5 were found (tR = 2.98 and
3.16 min) in carpophores of P. cyanescens, P. semilanceata, and

of two P. cubensis isolates, as well as in P. mexicana (both scle-
rotia and mycelium), and in P. cubensis mycelium. In addition

to the above-mentioned b-carbolines, we detected norhar-

mane (6, tR = 2.85 min, Figure 1) and perlolyrine (7, tR =

3.49 min), and identified them by their masses (m/z = 169.0763

and 265.0974 [M++H]++) and by comparison with synthetic
standards. The latter compound is known as a plant alkaloid

from Codonopsis pilosula (Campanulaceae, bellflower family).[12]

Overall, the b-carboline pattern was quantitatively and qualita-

tively inhomogeneous among species, yet indicated that their

occurrence is i) more widespread within the genus Psilocybe
and ii) independent of the developmental stage. For final evi-

dence that Psilocybe fungi contain b-carbolines, we purified
the two major compounds from P. cubensis carpophores. Sub-

sequent 1D and 2D NMR spectroscopy resulted in spectra (Fig-
ures S1–S10, Table S1, Supporting Information) that were iden-

tical to reported data for 4 and 5.[13]

Biosynthetically, b-carbolines derive from tryptamine and
have been isolated from plants, bacteria, and various fungi in-

cluding basidiomycetes.[10, 14] To confirm that the compounds
are intrinsic Psilocybe products, we carried out stable-isotope

labeling with 13C11-l-tryptophan and P. mexicana mycelium in
liquid axenic culture under controlled laboratory conditions,
along with an unlabeled control, and detected 4, 6, and 7
again. In the stable-isotope-treated cultures, the masses of the
carbolines expectedly increased by ten mass units (Figure 2).
This is compatible with the incorporation of ten 13C atoms, i.e. ,
a 13C10-tryptamine moiety. Thus, we had excluded a carboline
source other than Psilocybe’s intrinsic cellular metabolism.

We detected two further compounds in minor quantities.

The first one whose mass was identical to that of harmol (8,
m/z = 199.0869 [M++H]++) was eluted at tR = 4.26 min. However,
authentic 8 showed an shorter retention time (tR = 3.99 min,

Figure 2), which points to an isomer of 8 as Psilocybe metabo-
lite. P. mexicana mycelium also contained a compound at tR =

4.89 min (m/z = 213.1025 [M++H]++). Even though this molecular
mass is identical to that of 5, the retention time was not, as

this unidentified compound virtually co-eluted with 4 at tR =

4.53 min.
This mass is consistent with that of cordysinins C and D (9

and 10), i.e. , enantiomeric b-carbolines described from the cat-
erpillar fungus Ophiocordyceps sinensis.[15] Comparison with a

synthesized mixture of 9 and 10 confirmed that one of those
compounds, or both, is a P. mexicana metabolite as well.
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P. cubensis FSU12410 mycelia and carpophores were used to
quantify the concentration of 4, i.e. , the major b-carboline in
the fungal biomass (Figure 1 C, Table S2, Supporting Informa-

tion). Although mycelia showed a concentration of 21 mg g@1

dried biomass, we found a 100-fold lower concentration in the

carpophores (0.2 mg g@1). Sclerotia of P. mexicana contained
1.4 mg g@1 4 and 1.6 mg g@1 5. Next, we used MALDI imaging to
investigate the spatial distribution of 4 in fungal mycelium. An
actively growing P. cubensis culture was screened for a com-

pound with m/z 183.1(:0.7) Da, which corresponds to 4
(Figure 3). The signals of maximum intensity localized to the
hyphal tips while more mature areas showed low abundance.

Considered divine by native Central Americans, Psilocybe
mushrooms produce 1, a natural product that has been used

both as recreational drug and an immensely valuable candi-
date pharmaceutical, currently in advanced clinical trials, to

treat anxiety and depression.[16] Despite their history and im-

portance, the mushrooms’ capacity to make further com-
pounds has received deceptively little attention. We identified

five Psilocybe species as b-carboline producers. This capacity of
1-producing mushrooms is remarkable in the light of the syn-

ergistic pharmacology. 4 and 5 are potent reversible inhibitors
of mammalian brain and liver MAO A (Ki = 8.9 and 0.5 nm, for

brain, Ki = 9.9 and 0.2 nm for liver).[17] Human placental MAO A
is inhibited at Ki = 7.2 mm.[18] Furthermore, tetrahydro-b-carbo-
lines do not inhibit MAO A, yet represent neuroactive natural

products as well as they moderately inhibit serotonin reup-
take.[19]

Conclusions

Psilocybe mushrooms produce an ayahuasca-like and potential-

ly similarly synergistic set of metabolites that may impact
upon onset and duration of their effects. Remarkably, both
pathways originate from the same generic building block, l-

tryptophan, yet take different routes leading to dissimilar com-
pounds whose bioactivities in return contribute directly and in-

directly to the same pharmacology (Scheme 1). This is a
unique case in fungal chemistry and distantly related to the

bacterium Streptomyces clavuligerus that synchronously pro-

duces both the b-lactam antibiotic cephamycin and the b-lac-
tamase inhibitor clavulanic acid.[20]

Despite the co-occurrence of 1 and MAO inhibitors in Psilo-
cybe, numerous studies with pure synthetic compound have

shown that the somatic, endocrinic, and psychotropic effects
are the sole consequence of 1 uptake.[21] Future pharmacologi-

Figure 1. A) Chromatography of methanolic P. mexicana extracts. Top trace: overlaid extracted ion chromatogram (mass tolerance = 0.1 ppm) for the masses
of norbaeocystin (m/z = 257.0680 [M++H]++, tR = 1.33 min), baeocystin (m/z = 271.0836 [M++H]++, tR = 1.43 min), psilocybin (1, m/z = 285.0992 [M++H]++,
tR = 1.53 min), and psilocin (2, m/z = 205.1333 [M++H]++, tR = 3.01 min). Below, extracted ion chromatograms for the masses of harmane (4, m/z = 183.0916
[M++H]++) and harmine (5, m/z = 213.1022 [M++H]++). Bottom: UV/Vis chromatogram (recorded at l = 300 nm, portion from 4.25–5.25 min expanded) and mass
spectra. B) HPLC analysis with fluorescence detection. Upper trace: overlaid chromatograms of authentic 4 and 5, lower trace: acidic aqueous P. mexicana
mushroom extract. C) HPLC analysis with fluorescence detection. Upper trace: overlaid chromatograms of authentic 4–7, traces a–d: carpophores of P. cyanes-
cens, P. cubensis FSU12410, P. cubensis FSU12407, and P. semilanceata, respectively. Trace e: P. mexicana sclerotia, traces f and g: P. mexicana and P. cubensis my-
celium. D) Chemical structures of b-carbolines identified as Psilocybe natural products during this study, and of known Psilocybe indole alkaloids baeocystin,
norbaeocystin, and norpsilocin.
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cal research is therefore warranted to determine to
what extent Psilocybe b-carbolines contribute to the

actual psychotropic effects of magic mushrooms.
Compounds 1 and 2 are hypothesized to fulfill a

protective function in the mushrooms by altering
the behavior of invertebrate predators.[22] Our results

therefore also relate to chemical ecology and may
help understand if indoleethylamines and b-carbo-
lines co-evolved to fulfill and enhance the same bio-

logical function through addressing dissimilar tar-
gets.

Experimental Section

Materials and microbiological methods

Chemicals, solvents, and media components were pur-
chased from Cambridge Isotope Laboratories, Deutero,
Sigma–Aldrich, Roth, and VWR. Reference compounds
of 4 and 5 were purchased from Sigma. Compounds 1,
2, baeocystin, and norbaeocystin were purified from P.
cubensis carpophores.[4c, d] Reference compounds of 6–
10 were synthesized (below). Psilocybe isolates
(Table S3, Supporting Information) were maintained on
malt extract/peptone (MEP) solid medium (30 g L@1 malt
extract, 3 g L@1 soy peptone, 18 g L@1 agar, pH 5.6) at t =
23 8C in the dark. P. mexicana sclerotia were produced
in preserving jars filled with rye, supplemented with
cow manure and straw, and kept in the dark for
3 months. Carpophore production with P. cubensis and
P. mexicana was carried out as described.[4c] Carpo-
phores of P. cyanescens and P. semilanceata were collect-
ed near Jena, Germany, and dikaryotic isolates thereof
deposited in the Jena Microbial Resource Collection
(Table S3).

Stable-isotope labeling

P. mexicana FSU13617 was grown in 50 mL liquid MEP
medium amended with 1 mm 13C11-l-tryptophan (or

1 mm unlabeled l-tryptophan for control), for 14 d. The biomass
was harvested by filtration, lyophilized, homogenized and extract-
ed with 20 % (v/v) acetic acid in water. After filtration, the liquid
was evaporated under reduced pressure, and the residue was
solved in MeOH, filtered, and used for LC/MS (below).

Natural product extraction

Initially, mycelia and carpophores were lyophilized, ground, and ex-
tracted with anhydrous MeOH, as described to extract 1 gently
and to minimize its artificial dephosphorylation to 2.[4c] For im-
proved carboline yields, the fungal biomasses (mycelia, carpo-
phores, or sclerotia) were lyophilized, pulverized, and the powder
solved in 0.1 m HCl and subsequently extracted with methylene
chloride (1:1, v/v). The aqueous phases were collected, the pH
value adjusted to 12 using NaOH, which was followed by extrac-
tions with methylene chloride. The organic phases were dried
under reduced pressure in a rotary evaporator. The resulting crude
extracts were dissolved in methanol, centrifuged and filtered, and
subsequently used for chromatographic analysis or purification. To
quantify 4 titers in fungal biomass, the areas under the curve

Figure 2. LC-MS analysis of P. mexicana mycelial extracts after 13C stable-isotope labeling.
The generic labeling pattern is shown by red carbon atoms. UHPLC chromatograms were
recorded at l= 300 nm. Top trace: overlaid chromatograms of standards 4–10. Center
trace: culture grown with unlabeled l-tryptophan (control). Bottom trace: culture grown
in the presence of 13C11-l-tryptophan. Below, HR-ESI-MS spectra are shown. Blue: spectra
for tR = 4.26–4.28 min with coeluting 6 and the isomer of 8 (panel A: unlabeled, panel B:
13C-labeled situation). Green: spectra for tR = 4.50–4.52 min showing 4 and 9/10 coelut-
ing, panel C: unlabeled, panel D: 13C-labeled. Red: spectra for tR = 4.94 min showing 7,
panel E: unlabeled, panel F: 13C-labeled. Upper right: UV/Vis spectra of 4 and collective
spectra of the b-carbolines, detected at tR = 4.50 min.

Figure 3. MALDI-MS imaging of P. cubensis mycelium. The image was taken
to detect m/z 183.1(:0.7) Da, i.e. , the mass of 4 [M++H]++, and a portion was
overlaid on a photograph of the mycelium. Peripheral areas of the mycelium
showed highest abundance (red). The image was digitally optimized for
brightness which sets the maximum intensity to 60 % of the initial image.
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(AUCs) in the extracted ion chromatograms were determined and
referenced to a standard curve recorded with authentic 4.

Chromatographic purification of 4 and 5

Preparative HPLC was performed using an Agilent 1260 instrument
equipped with Phenomenex Luna C18 column (250 V 21.2 mm,
10 mm particle size), and run with 0.1 % trifluoroacetic acid (TFA) in
water (solvent A) and acetonitrile (ACN, solvent B). The flow was
20 mL min@1. A linear gradient was applied with an increase from
10 to 100 % B within 20 min. b-Carbolines were further purified by
semipreparative HPLC using an Agilent 1200 instrument equipped
with a Zorbax Eclipse XDB-C18 column (250 V 9.4 mm, 5 mm). and
the same solvents, applying a flow of 2 mL min@1 and a linear gra-
dient from 10 to 100 % B within 10 min. The final purification was
accomplished with the same solvents and instrument, but using a
Phenomenex Synergi RP-80 column (250 V 10 mm, 4 mm) and a gra-
dient that included an initial hold at 30 % B for 1 min, an increase
to 65 % B within 10 min, and to 100 % B within further 30 sec. This
procedure yielded 3.5 mg of 4 and 14.4 mg of 5, which were dis-
solved in [D6]DMSO for subsequent NMR analysis (below).

HPLC and mass spectrometry

HPLC and mass spectrometry were performed on a Thermo Accela
liquid chromatograph equipped with a C18 column (Grom-Sil 100
ODS-0 AB, 250 V 4.6 mm, 3 mm) fitted to an Exactive Orbitrap spec-
trometer, using electrospray ionization. The respective diode array
detectors covered the wavelength range of l= 200–400 nm. Initial-
ly, HPLC-UV chromatograms were extracted at l= 280 nm (to
detect 1), later at l= 300 nm to detect b-carbolines. Conditions for
HPLC included solvents 0.1 % TFA in water (A) and 0.1 % TFA in
ACN (B) at a flow rate of 0.4 mL min@1. The gradient was: initial
hold at 10 % B for 1 min, and linear increase to 98 % B within
4 min.

Standard analytical runs were performed on a Thermo Vanquish
Horizon UHPLC system equipped with a diode array and a fluores-
cence detector. This instrument was equipped with a Phenomenex
Kinetex XB-C18 column (100 V 2.1 mm, 1.7 mm particle size). For fluo-
rescence detection, excitation and emission were at l= 340 and
410 nm, respectively. Solvents were 0.1 % formic acid (FA) in water
(A) and ACN (B) at a flow rate of 1 mL min@1. The gradient was: ini-
tial hold at 5 % B for 1 min, and linear increase to 100 % B within
15 min. Chromatography and mass spectrometry to quantify the
concentration of 4 was done on an Agilent 1290 Infinity II UHPLC
instrument with a diode array detector (DAD) and interfaced to a
6130 quadrupole mass detector, run in ESI mode. The chromato-
graph was equipped with a Phenomenex Luna Omega Polar C18

50 V 2.1 mm (1.6 mm particle size) and a guard column. Separation
was at 25 8C and a flow of 0.5 mL min@1. Mobile phase A was 0.1 %
aqueous FA, phase B was ACN++0.1 % FA. A linear gradient was ap-
plied (% B): initially 1 %, within 3 min to 10 %, and within further
1 min to 100 %. UV/Vis spectra were recorded with the diode-array
detector during LC-MS analyses. Samples were dissolved in MeOH.

MALDI-MS imaging

P. cubensis mycelium was directly grown on indium tin oxide (ITO)-
coated glass slides for Imaging MS. ITO glass slides were placed
inside petri dishes and covered with 20 mL of MEP agar to form a
thin layer on which cultures were grown at room temperature for
up to 4 d. Subsequently, the slides were dried overnight at 37 8C
and sprayed with 2.5 mL of universal MALDI matrix (1:1 mixture of
2,5-dihydroxybenzoic acid and a-cyano-4-hydroxycinnamic acid)

dissolved at 20 mg mL@1 in a mixture of acetonitrile, methanol and
water (70:25:5), using the automatic ImagePrep device 2.0 (Bruker
Daltonics) with 60 consecutive cycles (a 1808 rotation of the
sample after 30 cycles was performed) of 31 seconds (1 s spraying,
10 s incubation time, and 20 s of active drying). Samples were then
analyzed on an UltrafleXtreme MALDI TOF/TOF instrument (Bruker
Daltonics), operated in the positive reflector mode using flexCon-
trol 3.0. The analysis was performed from 100 Da to 3,000 Da, accu-
mulating 500 shots by taking 10 random shots at each raster posi-
tion (raster width 200 mm). The acquisition method was externally
calibrated using the Peptide Calibration Standard II (Bruker Dalton-
ics). Spectra were processed with baseline subtraction in flexAnaly-
sis 3.3. Images were obtained using root mean square normaliza-
tion and brightness optimization.

Nuclear magnetic resonance spectroscopy

NMR spectra were recorded on a Bruker Avance III 600 MHz spec-
trometer at 300 K. The solvent was [D6]DMSO.

1H and 13C NMR
chemical shifts were referenced relative to residual protons present
in deuterated DMSO at dH = 2.49 ppm and dC = 39.5 ppm.

Syntheses of reference compounds

To synthesize 6, we followed the protocol by Snyder et al.[23] but
substituted ethyl acetate by formaldehyde. The synthesis of 7 was
carried out as described.[18] For 8 synthesis, a published procedure
was applied,[24] but replacing HBr by HCl. A mixture of 9 and 10
was synthesized following a published procedure.[25]
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