Skip to main content
Log in

Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Topological polar vortices, which are electric analogs of magnetic objects, present great potential in applications of future nanoelectronics because of their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities, it is prerequisite to manipulate the polar states and chirality by using external stimuli. Here, we probe the evolutions of polar state and chirality evolutions of topological polar vortices in PbTiO3/SrTiO3 superlattices under an electric field by using atomically resolved in situ scanning transmission electron microscopy and phase-field simulations. We find that, under electric field, the chiral vortex cores can be moved laterally to form close-pair structures, transform into a/c domain stripes, and finally become a nonchiral c-domain. Such transition is reversible and spontaneous after bias removal. Interestingly, during switching and back-switching events, the vortex rotation can be changed, offering a potential strategy to manipulate vortex chirality. The revealed dynamic behavior of individual polar vortices at the atomic scale provides fundamentals for future device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, C. M. Schlepüetz, A. R. Damodaran, P. Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. W. Martin, and R. Ramesh, Nature 530, 198 (2016).

    Article  ADS  Google Scholar 

  2. R. Ramesh, and D. G. Schlom, Nat. Rev. Mater. 4, 257 (2019).

    Article  ADS  Google Scholar 

  3. V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L. Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, Nat. Mater. 18, 377 (2019).

    Article  ADS  Google Scholar 

  4. A. K. Yadav, K. X. Nguyen, Z. Hong, P. García-Fernández, P. Aguado-Puente, C. T. Nelson, S. Das, B. Prasad, D. Kwon, S. Cheema, A. I. Khan, C. Hu, J. Íñiguez, J. Junquera, L. Q. Chen, D. A. Muller, R. Ramesh, and S. Salahuddin, Nature 565, 468 (2019).

    Article  ADS  Google Scholar 

  5. S. Das, Y. L. Tang, Z. Hong, M. A. P. Gonçalves, M. R. McCarter, C. Klewe, K. X. Nguyen, F. Gómez-Ortiz, P. Shafer, E. Arenholz, V. A. Stoica, S. L. Hsu, B. Wang, C. Ophus, J. F. Liu, C. T. Nelson, S. Saremi, B. Prasad, A. B. Mei, D. G. Schlom, J. Íñiguez, P. García-Fernández, D. A. Muller, L. Q. Chen, J. Junquera, L. W. Martin, and R. Ramesh, Nature 568, 368 (2019).

    Article  ADS  Google Scholar 

  6. A. R. Damodaran, J. D. Clarkson, Z. Hong, H. Liu, A. K. Yadav, C. T. Nelson, S. L. Hsu, M. R. McCarter, K. D. Park, V. Kravtsov, A. Farhan, Y. Dong, Z. Cai, H. Zhou, P. Aguado-Puente, P. García-Fernández, J. Íñiguez, J. Junquera, A. Scholl, M. B. Raschke, L. Q. Chen, D. D. Fong, R. Ramesh, and L. W. Martin, Nat. Mater. 16, 1003 (2017).

    Article  ADS  Google Scholar 

  7. J. Kim, M. You, K. E. Kim, K. Chu, and C. H. Yang, npj Quantum Mater. 4, 29 (2019).

    Article  ADS  Google Scholar 

  8. I. I. Naumov, L. Bellaiche, and H. Fu, Nature 432, 737 (2004).

    Article  ADS  Google Scholar 

  9. N. Balke, B. Winchester, W. Ren, Y. H. Chu, A. N. Morozovska, E. A. Eliseev, M. Huijben, R. K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L. Q. Chen, and S. V. Kalinin, Nat. Phys. 8, 81 (2011).

    Article  Google Scholar 

  10. Y. L. Tang, Y. L. Zhu, X. L. Ma, A. Y. Borisevich, A. N. Morozovska, E. A. Eliseev, W. Y. Wang, Y. J. Wang, Y. B. Xu, Z. D. Zhang, and S. J. Pennycook, Science 348, 547 (2015).

    Article  ADS  Google Scholar 

  11. P. Sharma, Q. Zhang, D. Sando, C. H. Lei, Y. Liu, J. Li, V. Nagarajan, and J. Seidel, Sci. Adv. 3, e1700512 (2017).

    Article  ADS  Google Scholar 

  12. P. Shafer, P. García-Fernández, P. Aguado-Puente, A. R. Damodaran, A. K. Yadav, C. T. Nelson, S. L. Hsu, J. C. Wojdel, J. Íñiguez, L. W. Martin, E. Arenholz, J. Junquera, and R. Ramesh, Proc. Natl. Acad. Sci. USA 115, 915 (2018).

    Article  ADS  Google Scholar 

  13. P. Behera, M. A. May, F. Gpmez, S. Susarla, and S. Das, arXiv: 2105.14109.

  14. Z. Hong, and L. Q. Chen, Acta Mater. 152, 155 (2018), arXiv: 1711.00995.

    Article  ADS  Google Scholar 

  15. L. L. Ma, Y. Ji, W. J. Chen, J. Y. Liu, Y. L. Liu, B. Wang, and Y. Zheng, Acta Mater. 158, 23 (2018).

    Article  ADS  Google Scholar 

  16. K. Du, M. Zhang, C. Dai, Z. N. Zhou, Y. W. Xie, Z. H. Ren, H. Tian, L. Q. Chen, G. Van Tendeloo, and Z. Zhang, Nat. Commun. 10, 4864 (2019).

    Article  ADS  Google Scholar 

  17. C. T. Nelson, Z. Hong, C. Zhang, A. K. Yadav, S. Das, S. L. Hsu, M. Chi, P. D. Rack, L. Q. Chen, L. W. Martin, and R. Ramesh, Microsc. Microanal. 25, 1844 (2019).

    Article  Google Scholar 

  18. P. Chen, X. Zhong, J. A. Zorn, M. Li, Y. Sun, A. Y. Abid, C. Ren, Y. Li, X. Li, X. Ma, J. Wang, K. Liu, Z. Xu, C. Tan, L. Chen, P. Gao, and X. Bai, Nat. Commun. 11, 1840 (2020), arXiv: 1910.00182.

    Article  ADS  Google Scholar 

  19. I. I. Naumov, and H. Fu, Phys. Rev. Lett. 101, 197601 (2008), arXiv: 0808.2832.

    Article  ADS  Google Scholar 

  20. J. Wang, and M. Kamlah, Phys. Rev. B 80, 012101 (2009).

    Article  ADS  Google Scholar 

  21. S. Prosandeev, I. Ponomareva, I. Kornev, and L. Bellaiche, Phys. Rev. Lett. 100, 047201 (2008).

    Article  ADS  Google Scholar 

  22. L. Van Lich, T. Shimada, J. Wang, V. H. Dinh, T. Q. Bui, and T. Kitamura, Phys. Rev. B 96, 134119 (2017).

    Article  ADS  Google Scholar 

  23. S. Yuan, W. J. Chen, L. L. Ma, Y. Ji, W. M. Xiong, J. Y. Liu, Y. L. Liu, B. Wang, and Y. Zheng, Acta Mater. 148, 330 (2018).

    Article  ADS  Google Scholar 

  24. A. Y. Abid, Y. Sun, X. Hou, C. Tan, X. Zhong, R. Zhu, H. Chen, K. Qu, Y. Li, M. Wu, J. Zhang, J. Wang, K. Liu, X. Bai, D. Yu, X. Ouyang, J. Wang, J. Li, and P. Gao, Nat. Commun. 12, 2054 (2021).

    Article  ADS  Google Scholar 

  25. L. Lu, Y. Nahas, M. Liu, H. Du, Z. Jiang, S. Ren, D. Wang, L. Jin, S. Prokhorenko, C. L. Jia, and L. Bellaiche, Phys. Rev. Lett. 120, 177601 (2018).

    Article  ADS  Google Scholar 

  26. X. Li, C. Tan, C. Liu, P. Gao, Y. Sun, P. Chen, M. Li, L. Liao, R. Zhu, J. Wang, Y. Zhao, L. Wang, Z. Xu, K. Liu, X. Zhong, J. Wang, and X. Bai, Proc. Natl. Acad. Sci. USA 117, 18954 (2020), arXiv: 1911.09822.

    Article  ADS  Google Scholar 

  27. Y. Sun, A. Y. Abid, C. Tan, C. Ren, M. Li, N. Li, P. Chen, Y. Li, J. Zhang, X. Zhong, J. Wang, M. Liao, K. Liu, X. Bai, Y. Zhou, D. Yu, and P. Gao, Sci. Adv. 5, eaav4355 (2019).

    Article  ADS  Google Scholar 

  28. Z. Hong, S. Das, C. Nelson, A. Yadav, Y. Wu, J. Junquera, L. Q. Chen, L. W. Martin, and R. Ramesh, Nano Lett. 21, 3533 (2021).

    Article  ADS  Google Scholar 

  29. P. Gao, C. T. Nelson, J. R. Jokisaari, S. H. Baek, C. W. Bark, Y. Zhang, E. Wang, D. G. Schlom, C. B. Eom, and X. Pan, Nat. Commun. 2, 591 (2011).

    Article  ADS  Google Scholar 

  30. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).

    Article  ADS  Google Scholar 

  31. N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013).

    Article  ADS  Google Scholar 

  32. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science 349, 283 (2015), arXiv: 1502.08028.

  33. S. Jesse, B. J. Rodriguez, S. Choudhury, A. P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E. A. Eliseev, A. N. Morozovska, J. Zhang, L. Q. Chen, and S. V. Kalinin, Nat. Mater. 7, 209 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Gao, Xiangli Zhong, Jie Wang or Xuedong Bai.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51991340, 51991344, 11974023, 51672007, 21773303, 11875229, and 51872251), the Chinese Academy of Sciences (Grant Nos. XDB33030200, and ZDYZ2015-1), the National Key R&D Program of China (Grant No. 2016YFA0300804), the Key R&D Program of Guangdong Province (Grant Nos. 2018B030327001, 2018B010109009, and 2019B010931001), the Bureau of Industry and Information Technology of Shenzhen (Grant No. 201901161512), the Beijing Excellent Talents Training Support (Grant No. 2017000026833ZK11), and the “2011 Program” Peking-Tsinghua-IOP Collaborative Innovation Center for Quantum Matter.

Supporting Information

The supporting information is available online at http://phys.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Tan, C., Jiang, Z. et al. Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. Sci. China Phys. Mech. Astron. 65, 237011 (2022). https://doi.org/10.1007/s11433-021-1820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1820-4

Keywords

PACS number(s)

Navigation