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1. Introduction

Artificial intelligence (AI) and deep learning have fundamentally
changed our way of life, and the need of high-performance and
energy-efficient computing has grown rapidly in this big data
era.[1] However, conventional digital systems based on CMOS
computing devices and von Neumann architectures are facing

several challenges these days, including
the limitation of Moore’s law scaling and
frequent data movement between process-
ing and memory unit, known as the von
Neumann Bottleneck.[2] Although CMOS-
based digital solutions such as graphic
processing units (GPU) and application-
specific integrated circuits (ASIC) can be
designed as dedicated AI chips for fast
computation, due to the limitation in power
and footprint scaling, new computing devi-
ces and architectures are being developed
to reduce the size and power requirements
for AI accelerators and edge computing.[3,4]

Novel computing technologies have
arisen in this More-than-Moore era,
and analog in-memory computing with
emerging nonvolatile memory arrays have
become strong contenders for AI accelera-

tors. The vector-matrix multiplication (VMM) computation is per-
formed in situ within the memory array, eliminating extensive data
movements for matrix multiplication. The VMM computation is
highly parallel and requires low power by directly using Ohm’s
law for multiplication and Kirchhoff ’s law for accumulation, lead-
ing to much improved computation efficiency for MAC opera-
tions.[5,6] Figure 1a illustrates an example of a VMM operation
calculated with analog in-memory computing through a parallel
read process. Neural weights are stored in memory cells as differ-
ent conductance levels. The input vector is encoded as voltage
through digital-to-analog converters (DACs) and fed to the memory
array. The current of each column is measured in parallel with
analog-to-digital converters (ADC) and decoded as dot-product results.

Many prior works have demonstrated using in-memory com-
puting for AI acceleration, with different computing elements
such as digital memory devices like NAND Flash,[7] SRAM[8],
and emerging analog devices such as phase-change memory
(PCM)[9,10] and resistive random access memory (ReRAM).[11]

ReRAM is a promising candidate due to its demonstrated capa-
bility to maintain multiple conductance levels,[12,13] ability to
scale down to <10 nm node, and low programming voltage.[14,15]

Also, the nonvolatility of ReRAM enables it to store trained
weights for long-term computation better than a volatile memory
like SRAM. A hybrid system with ReRAM and SRAM can
combine the merits of nonvolatility of ReRAMwith the fast speed
of SRAM.[16]
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As the demands of big data applications and deep learning continue to rise, the
industry is increasingly looking to artificial intelligence (AI) accelerators. Analog in-
memory computing (AiMC) with emerging nonvolatile devices enable good hard-
ware solutions, due to its high energy efficiency in accelerating the multiply-and-
accumulation (MAC) operation. Herein, an Applied Materials custom-designed
system-on-chip (SoC) targeting AI applications with analog in-memory computing
using resistive random-access memory (ReRAM) as the compute element is
demonstrated. The first silicon achieves high energy efficiency in MAC operations.
This chip is implemented with LeNet-1 neural network on ReRAM tiles and
demonstrated by Modified National Institute of Standards and Technology (MNIST)
classification with accuracy matching that predicted in the simulations. A simu-
lation framework, AI Sim, is also developed to evaluate the system performance for
large-scale application and guide the bitcell development and design choices.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200014 2200014 (1 of 13) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:fuxi_cai@amat.com
mailto:j_hsu@amat.com
https://doi.org/10.1002/aisy.202200014
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com


Various AI-related applications have been demonstrated with
analog in-memory computing using ReRAM based systems,
such as image compression,[17,18] convolutional kernel,[13,19]

motion detection,[20] online training,[21–24] and combinatorial
optimization.[25] Some system designs use ReRAM array as
standalone memory macro driven by essential analog peripherals
and control signals from external components on the printed-
circuit board (PCB). The ReRAM may be either a passive
array[17,21] or one-transistor-one-resistor (1T1R) configuration
with decoding blocks.[18,22,26] An alternative approach directly
integrates the ReRAM with essential analog residing circuitry
and decoding blocks[27] or additional digital processors[24]

designed on chip. The tight integration will minimize the RC
delay and signal loss during transmission and enable high-level
program control for complicated tasks.

In this work, we custom designed a system on chip (SoC) with
fully integrated ReRAM tiles, analog peripheral circuitry, and a
RISCV processor in a single die. The ReRAM tile is designed as a
configurable intellectual property (IP) block and serves as the pri-
mary component to construct various neural networks. The tiled
approach with optimized analog periphery and digital system
enables the scalability of the system to implement larger-scale
deep neural networks (DNNs).[28,29]

We have implemented the first layer of the LeNet-1 on our
ReRAM tile, with 2-bit per bitcell for weight storage. A bench-
mark with 1000 test images demonstrated in hardware a test
accuracy of 96.8%. In addition, our AI Sim platform is developed
for large-scale neural network implementations. The AI Sim can
evaluate the optimal bitcell properties and tile architecture before
hardware, providing guidelines in making design decisions. By
correlating simulated and actual silicon results, the performance
of the simulator can be tuned to scale to larger networks and
applications.

2. System-on-Chip (SoC) Design

2.1. ReRAM Integration

The SoC chip is designed using the 65 nm technology node and
fabricated using split-fab mechanism, where all CMOS circuits
and back-end-of-line (BEOL) metal layers up to the ReRAM
bottom metal layer are deposited by the foundry, and the wafer
is transferred to the Applied Materials META R&D foundry for
ReRAM integration along with the rest of the metal layers.
ReRAM devices are designed in a 1T1R architecture, where
the filamentary ReRAM (f-ReRAM) is inserted between two

Figure 1. a) Analog in-memory computing with memory array. The VMM is performed by a parallel read operation. Input bits are converted to a pulse
train by bit-serial DACs and sensed by binary-weighted TIA and ADC to achieve bit-wise MAC computation. b) An illustration of ReRAM integrated into the
65 nm BEOL process. Inset: transmission electron microscopy of ReRAM stack with contacts to both top and bottom electrodes. c) DC I–V curves for f-
ReRAM devices. Arrows show the sweep direction for set and reset. Currents are normalized to arbitrary units and forming is not shown. Inset: The
schematic of 1T1R bitcell. d) The custom-designed PCB for silicon testing and AI application demonstration.
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metal layers in the BEOL (see Experimental Section for details),
which is illustrated in Figure 1b.

The resistive switching mechanism of f-ReRAM is the forma-
tion and rupture of conductive filaments, which are controlled by
a programming voltage applied across the two metal electrodes.
When the external voltage is removed, the filaments remain and
the device can retains its current resistance.[30] Although the
f-ReRAM usually requires an extra high voltage for the one-time
forming step, it has an advantage of a larger memory window.[31]

The series transistor provides precise current compliance and
control filament geometry and stochastic behavior during the
forming and programming steps. A typical DC I–V curve for
the f-ReRAM is shown in Figure 1c. It demonstrates bipolar
switching with distinct set and reset operations (more switching
curves can be found in Figure S1, Supporting Information).
Drive line (DL) is defined as the signal line connected to the
top electrode, with bit line (BL) and word line (WL) connecting
the source and gate of the series transistor, respectively
(Figure 1c).

After the ReRAM integration and the deposition of the top
layers’ metal, the chips were then diced and packaged in
pin-grid-array (PGA) for silicon testing (Figure S2, Supporting
Information). We designed a custom PCB with a socket to test
our SoC chip and an field programmable gate array for digital
control signals and transfer of data (Figure 1d). Some additional
peripherals are designed on the board to support test features
(see Experimental Section for details).

2.2. System-on-Chip Design

The SoC design is based on the open-source single-core micro-
controller system PULPino, based on 32-bit RISCV cores.[32,33]

We customized the digital design and connected four ReRAM
tiles to the PULPino system, which can be scaled to various
applications by adding additional tiles. Each ReRAM tile is an
independent IP module containing a 64� 64 1T1R ReRAM
array, along with the essential analog peripherals such as
digital-to-analog converter (DAC), transimpedance amplifier
(TIA), analog-to-digital converter (ADC), and digital controller
that is used to configure the analog circuit and transmit data.
The chip also contains a 32 kB instruction memory and a
512 kB data memory for storing the instructions and data for
the RISCV core. A phase-locked loop (PLL) is used for generating
a high-frequency clock for the SoC system, and IO peripherals
like serial peripheral interface (SPI), universal asynchronous
receiver-transmitter (UART), and general-purpose input/output
(GPIO) are included in the design to communicate to the host
machine. A microscopic photo of the die is shown in Figure 2a.

An illustration of the ReRAM tile design is shown in
Figure 2b. The 1T1R array has 64 separate DLs, WLs, and
BLs, with each line addressing a specific bitcell. Each DL is driven
by 8-bit DACs, which holds the input data for MAC operations.
The BL of each column is connected to a sense amplifier (SA)
circuitry. Groups of eight BLs share one 8-bit ADC; thus, eight
MAC operations are required to readout the entire 64� 64 array
MAC results. More details of the analog peripherals will be
discussed in Section 3.2.

Figure 2c shows a block diagram of the SoC architecture. The
design is scalable using standard AXI interface to connect all four
ReRAM tiles, which allows additional tiles and different ReRAM
array sizes for a wide range of neural networks and portability to
future designs.

3. Results and Discussion

3.1. Bitcell Programming

Finite-state machines (FSM) designed in the digital blocks of
each tile design control the bitcell programming. Several modes
are defined for different ReRAM array operations, such as
“form,” “reset,” “set/POT (potentiation),” “DEP” (depression),
and “MAC” modes. Figure 3a shows the array configuration
for a “set” mode, where the selected WL is connected to the
10-bit on-chip DACWL, which can be set from 0.5 to 3 V to control
programming current, and the selected DL is connected to the 8-
bit DACDL, which varies from 0.5 to 3 V to provide the program-
ming voltage for the ReRAM device. All unselected rows and
columns are connected to ground. By controlling the MUX on
the WL, DL, and BLs, pulses with target voltage levels can be sent
to corresponding signal lines (illustration of other modes can be
found in Figure S4, S6, S7, Supporting Information).

Finite state machines control the timing and the sequence of
the DL and WL. The DL and WL pulse width, as well as the delay
between the WL and DL edges, are programmable through the
configuration registers. This enables flexibility in tuning
programming conditions (Figure S3, S5, S8, Supporting
Information).

With the combination of “Form”, “Set”, and “Reset”mode, the
device conductance can be formed and programmed to different
levels (see Figure S9 and S10, Supporting Information).
Particularly, the adaptive set and reset pulse trains are used to
fine tune to target current levels, which is a method that has been
reported in our previous work[34] (see Figure S11, Supporting
Information). The adaptive set pulse train will first be applied
to the device under test (DUT), with the voltage across 1T1R
bitcell starting from 0 to 3 V and a fixed gate voltage around
1.1 V. Each set pulse is followed by a read pulse to sample the
current of ReRAM device (Figure S12, Supporting
Information). If the current reaches the target threshold, the
set process will halt, and the rest of set pulse will be skipped.
The adaptive reset process is similar, except that the voltage
across bitcell steps from 0 to �3 V, and gate is connected to
Vdd to minimize serial resistance of the transistor (Figure 3b).
Using the double-sided adaptive programming mechanism,
we can demonstrate a 3-bit storage per cell in a 32� 32 subarray
on one tile, with device current spanning from 5 to 25 μA. Each
conductance level is programmed into four columns (Figure S13,
Supporting Information), and the cumulative distribution
function (CDF) plot is shown in Figure 3c.

3.2. Multiply and Accumulation in ReRAM Tile

The fundamental feature of the analog MAC function is the ana-
log multiplier. The multiplier leverages Ohm’s law: V�G¼ I,
where V is the voltage across the ReRAM bit cell and G is the
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conductance of the ReRAM bit cell. Figure 4a shows the signal
path of the analog MAC operation (only shows one column as an
example). During a MAC operation, array is configured into the
“MAC” mode to allow multiple rows to be turned on and simul-
taneously aggregate multiply operations (Figure S14, Supporting
Information). The 8-bit input is converted to a serial pulse train
by the bit-serial DAC and a bitwise MAC is performed
(see Experimental Section for more details).

As the multiplication result of each bitcell is current, the
accumulation function of MAC connects the output of each
bitcell on the same column (BL). Current electrically sums in
a shared channel which computes the accumulated partial
sum of a certain input bit for all the rows. To read out the MAC
current value (Imac), a TIA followed by an ADC is used to convert
the analog current back to digital code by calculating the partial
sum from each cycle and combining the binary-weighted sum as
the output value (Figure S15, Supporting Information).

In this architecture, the TIA serves two functions: to convert
the current (Imac) to voltage with programmable gain and provide
the common-mode reference voltage (Vcm) for the ReRAM
bit-cells. A successive-approximation ADC (SAR ADC) shares
multiple columns to save power consumption and silicon area.

Figure 4b-e shows the example of performing a multiple-and-
accumulation operation in the programed ReRAM tile on the
chip, using its “MAC” mode. To have a more intuitive interpre-
tation from the MAC result, we programmed certain patterns in
the ReRAM array, with all bitcells programmed to relatively
similar conductance levels. In Figure 4b, the logo “AMAT” is pro-
grammed in a 26� 7 subarray, with most bitcells programmed to
8–10 μA. By sending a read voltage of 0.3 V for the five rows of
the subarray and 0 V to all other 59 rows in the ReRAM tile, a
MAC operation of all five rows is performed and the total current
of corresponding 26 columns is shown in Figure 4c. A qualitative
connection can be observed between the value the total MAC

Figure 2. a) The SoC die photo. Design blocks are labeled in their corresponding layout sections. b) Simplified illustration of the ReRAM tile design. Each tile
contains a 64� 64 1T1R array, with 64 8-bit input DACs and eight 8-bit ADCs forMAC operation. Each ADC is shared by every eight column. c) Block diagram
of the SoC architecture. Four Tile IPs are connected through AXI bus to the SoC as peripheral, making the design scalable for connecting more tiles.
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current and the number of programmed cells in the column. For
example, the first column of the first letter “A” has double cur-
rent of its second column, as it contains four programmed bit-
cells compared with two in the second column.

A more quantitative experiment is shown in Figure 4d-e to
demonstrate the functionality of the MAC circuitry. An incre-
mental staircase-shaped pattern is programmed into a 5� 5
subarray with each bitcell programmed to �6 μA, and the
MAC operation is activated with the read voltages applied to
the five selected rows. It can be observed from Figure 4e that
the result currents are perfectly proportional to the number of
cells in the corresponding column, demonstrating good linearity
of the ADC and sensing circuitry.

3.3. Neural Network Implementation

To further demonstrate the capability of this SoC on accelerating
neural network applications, we have implemented a LeNet-1
network on our ReRAM tiles to demonstrate performance on
the MNIST dataset.[35] More is discussed in Experimental
Section about the MNIST dataset.

LeNet-1 is one of the earliest convolutional neural networks
(CNN) invented by Professor Yann LeCun and others in the late
1990s, which is designed to achieve better performance in clas-
sifying handwritten digits.[36] It is a three-layer neural
network with two convolutional layers and one fully connected
layer (Figure 5a), making it a slimmer model with less weights

compared with the more popular LeNet-5 and more hardware-
friendly to implement on ReRAM array.

In this experiment, we implement the first convolutional layer
on our ReRAM tile, which contains four 5� 5 filters. The weights
of the LeNet-1 are trained in PyTorch with quantization-
aware training for 3-bit weights and 8-bit activations
(see Experimental Section for details). As ReRAM conductance
can only store positive-valued information, the 5� 5 filter
weights are flattened and stored in a 25� 2 differential pair, with
one column storing only the positive weights and the other one
storing the additive inverse of negative weights, so that the
difference of the two columns equals the original weight
(Figure 5b,c).

The original 25� 4 weight matrix size is doubled after using
the positive–negative pair and contains only four levels from 0 to
3 (equivalent 2-bit) and stored onto a 25� 8 subarray in one
ReRAM tile and thenmapped to four equally spaced conductance
levels (Figure 5d, S17, Supporting Information). Figure 5e shows
the CDF plot of the ReRAM stored weights, showing the majority
of the weights confined within the target levels (also see
Figure S16, Supporting Information, for retention).

During the inference of MNIST images, the convolution is cal-
culated in a weight-stationary fashion. The 5� 5 sliding window
will move through the grayscale input image (the handwritten
digit “6” in Figure 5f ), and the windowed region is flattened
and set by DACs on appropriate DLs. As each filter is imple-
mented in two adjacent columns containing positive and

Figure 3. a) Array voltage configuration at “Set” mode. b) The adaptive set and adaptive reset pulse schemes to fine tune ReRAM conductance. The
voltage labeled in waveform represents the voltage drop across the 1T1R bitcell. c) ReRAM conductance CDF of eight levels (3-bit) stored in 32� 32
subarray, with increments of four columns programmed to distinct levels.
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negative weights, their MAC results will be stored separately in
the memory. After the sliding window computes the entire input
image, 24� 24 positive and negative feature maps (Figure 5g,h)
remain and the net output is generated by subtracting the nega-
tive map from the positive one. (Figure 5f ).

As the eight columns of the MAC are computed in parallel and
stored separately, all four feature maps of the first layer can be
computed from a similar approach shown in Figure 5f–h.
Hardware-to-software correlation is illustrated in Figure 6a,b,
between the ideal first-layer output feature map simulated from
Python software and our experimental MAC result measured
from on-chip ADC and ReRAM stored weights.

With the first-layer activation output from the hardware, we
can verify the accuracy performance through a hybrid approach,
by plugging the first-layer activation hardware results into our
Python model to finish predictions in PyTorch model
(Figure 6c). The hardware output feature maps in Figure 6b will
be scaled to the similar range of the simulation results in
Figure 6a.

The fully connected layer output before SoftMax activation
(i.e., the “Logits”) is shown in Figure 6d. It can be observed that
although the results of the hardware hybrid approach differ
slightly from the python-only approach, the winning neurons
both point to the sixth digit, and both approaches can finally

Figure 4. a) Simplified diagram of the current-sensing circuitry. The complete signal path from the input DAC through the 1T1R bitcell to the SAR ADC is
illustrated. b) “AMAT” letters programmed in the ReRAM array. Most ReRAM cells are programmed around 8�10μA c) The MAC current from (b), with
0.3 V read voltage only sent to the five rows where ReRAM cells are programmed. d) A staircase pattern programmed in the ReRAM array. Most ReRAM
cells are programmed around 6μA. e) The MAC current from (d), with 0.3 V read voltage only sent to the five rows where ReRAM cells are programmed.
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Figure 5. a) The LeNet-1 neural network illustration. b) The weight of the first filter of first layer in LeNet-1 trained by quantization-aware training. c) The
expanded weight converted from (b), with differential pair of positive- and negative-weight columns. d) The programmed weight in 25� 8 ReRAM array.
e) The CDF plot of bitcell conductances in (d), grouped in ideal weight levels. f–h) An illustration of the 2D convolutional with the original 28� 28 input
image with the 25� 2 ReRAM weight array. Two 24� 24 output feature maps (the positive feature map g and negative feature map h) are generated by
scanning the 5� 5 window through the entire input image and performing MAC operations. The two feature maps are subtracted by processor and
generate the final result in (f ).

Figure 6. a–b) The correlation of Lenet-1 first-layer output from the ideal PyTorch simulation in (a) and the silicon results measurement with ReRAM
programmed weights and SoC MAC operation in (b). c) The illustration of the hardware hybrid approach. The first-layer activation from the hardware
measurement is normalized and plugged into the second layer in software model for accuracy evaluation. d) The comparison of the LeNet-1 logits -
between the PyTorch-only flow and the hardware hybrid flow. e) The comparison of the LeNet-1 prediction for input image in (c) between the PyTorch-only
flow and the hardware hybrid flow. Both approaches predict the outcome “6” with > 99% confidence.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200014 2200014 (7 of 13) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


predict the number “6” with �99% probability in Figure 6e (See
Figure S18, Supporting Information, for another example).

3.4. Benchmark Results

3.4.1. Test Accuracy

To achieve the test accuracy of the MNIST data, benchmarks with
hundreds of images need to be run during the inference. As the
on-chip data memory size is limited to 512 kB and cannot store a
large image dataset, we developed a flow that utilizes an external
flash on the PCB for larger-scale benchmarks.

In this test, 1000 images from the original 10 000 test dataset
are stored in the on-board flash before the benchmark. During
the inference benchmark, the processor will communicate to the
external flash through on-chip SPI master and grab one image at
each time (Figure S19, Supporting Information). The 28� 28
input image is sent to the ReRAM tile to perform the first-layer
convolution, as Section 3.3 discussed. The output feature maps
from all eight columns are then stored back to external flash
through the SPI interface, and the processor will continue to load
the next image. After the 1000 image inference is completed, all
the output feature maps are read from flash and passed to the
software model to generate the final prediction.

The inference results are illustrated in the confusion matrix in
Figure 7a. From the 1000 images benchmark, a test accuracy of
96.8% can be achieved, which is within 2% of baseline accuracy
of the 98.7% simulated in software.

3.4.2. Energy Efficiency

Besides the test accuracy, another important benchmark we
investigated is energy efficiency of the SoC, which is usually eval-
uated by TOPS/W. TOPS/W is defined as the ratio of throughput
and power, where throughput is calculated by the number of
Tera Operations per Second. Peak TOPS/W is important to

evaluate in-memory computing hardware. Peak TOPS/W is
computed at top clock frequency and 100% array utilization.

TOPS
W ðPeakÞ ¼ Number of operations=Sec

Power consumption (1)

Some debate TOPS/W as a metric and if it can reflect actual
system energy efficiency, due to the ambiguity of how the
throughput and power are defined and measured.[37] Also, the
conventional peak TOPS/W focuses more on the system archi-
tecture design, but is inadequate in representing the quality of
the bitcell and array used for MAC operation, which is an impor-
tant factor in analog in-memory computing. To take into
consideration the bitcell memory elements, we defined an
“AiMC” TOPS/W as

AiMC TOPS=W ¼ Tp �M � N � Y (2)

where Tp stands for peak TOPS/W of a single tile, with through-
put and power measured at the maximum clock frequency. Tp is
mainly constrained by the system design limitations such as peak
clock frequency, system power, as well as the tile array size.

M represents bit precision of input defined by the m-bit DAC
and N represents the bits per bitcell defined by the logarithm N
that represents number of stable levels in the analog ReRAM
array. This serves as a normalization factor for the TOPS, as
different systems use different precisions for weights and activa-
tions. Many have discussed multiplying the TOPS with the bit
precision of input and weight as a scaling factor to normalize
different systems with various precisions all to a 1-bit precision
metric, assuming that an n-bit MAC will require n� more
operations than a 1-bit precision system.[6,26]

Y stands for array yield, which is an important scaling factor
for the AiMC peak TOPS, considering that a failing bitcell in the
array cannot be programmed to the target conductance level and
cannot contribute to the MAC operation.

Figure 7. a) Confusion matrix of the 1000 test image benchmark. The true label is presented in the x-axis and the predict label is presented in y-axis. b) The
“AiMC” TOPS/W for the SoC. A linear relation of TOPS/W against the number of bits per bitcell and the array yield is observed.
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From the illustration in Figure 7b, it can be observed that
improving the number of bits per bitcell and array yield can
increase the AiMC TOPS/W, which guides our future develop-
ment plan. With an example of the 3-bit per cell (Figure 3c), we
can measure energy efficiency of �73.9 TOPS/W per single tile
at the clock frequency of 100MHz. By further optimizing the
ReRAM characteristics using improved structure and recipe,
and targeting 8-bit per cell bitcell, we can extrapolate to >197
TOPS/W per single tile. Furthermore, in a larger system
of multiple tiles integrated and configured together, with
further optimization of the array utilization, dataflow, and
power management, much higher energy efficiency can be
achieved.

4. Simulator for DNN Acceleration

While the discussion so far focuses mainly on LeNet-1, a useful
but relatively small neural network, DNNs that find applications
in the industry today have millions of trainable weights. And so,
scaling analog in-memory computing (AiMC) technology to
real-world applications requires several hundred ReRAM tiles
to store these weights.

To design an efficient AiMC-based hardware accelerator
system, several ReRAM-related nonidealities affecting
system accuracy need to be considered, such as device-to-
device variation, limited retention, read disturb, etc. These
ReRAM device characteristics need to be parameterized with a

Table 1. Design considerations for AiMC-based AI hardware accelerators.

Analog in-memory computing system design considerations

ReRAM Physics Bitcell Array Analog peripheral circuit

ReRAM switching physics CMOS device selection Array yield ADC precision

Endurance Operating current range and on/off ratio Device-to-device variation ADC multiplexing

Retention Read and write voltages Parasitics, IR drop DAC precision

Read speed Number of conductance levels Size of arrays Partial sum quantization accuracy loss

Read disturb – – Peripheral circuit-induced noise

RTN noise – – PVT sensitivity

Figure 8. a) AI Sim, DNN system simulator usage model. b,c) Example-simulated results showing accuracy dependence on quantization and noise for
VGG-8 neural network on CIFAR-10 dataset.
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software tool so that they can be updated in the evolving ReRAM
fabrication process.[38]

In addition, the array design and its analog peripheral circuit
are also critical factors to be considered. A software tool is needed
to incorporate these parameters when engineering ReRAM
bitcells and exploring analog design choices, which can help
designers and engineers understand these complex interactions
and help make some broad tradeoffs and aid chip design.[29,39]

Table 1 shows a detailed list of design considerations discussed
earlier.

With the goal of modeling realistic performance at a system
level, we built a simulation platform named AI Sim using the
PyTorch framework.[40] Figure 8a illustrates its usage model at
a high level. AI Sim models DNN accuracy considering different
quantization schemes, ReRAM bitcell nonidealities (like finite
on/off ratio, read disturb, drift), mixed signal circuit precision,
and noise. It also estimates system performance metrics like
power, performance, area (PPA), inference time, and TOPS/W
by considering various mapping and dataflow strategies, compo-
nent circuit characteristics, and process technology assumptions.

It serves to accelerate R&D by providing feedback for bitcell
development and providing operation specification for the circuit
design.

Figure 8b,c shows examples of AI Sim analyses: VGG-8 model
accuracy degrades sharply with ReRAM bitcell precisions below 4
bits. Higher ADC bitwidth and lower bit line (BL) noise are also
required for maintaining high inference accuracy. These analy-
ses can provide important guidelines in the early stage of system
design and ReRAM development to guarantee high inference
accuracy in the finished system.

The AI Sim also helps in making architecture tradeoffs and
exploring algorithms which are tolerant to nonidealities. With
programmed bitcell data from actual silicon measurement, the
AI Sim can extrapolate inference performance of a large DNN
implemented on these devices by extracting the variance of target
bitcell levels. In addition, the AI Sim is also capable of investi-
gating inference accuracy degradation over time or after cycling
by extrapolating bitcell reliability data such as retention character-
istics (Figure 9) and read disturb (Figure 10), using the approach
discussed in prior works.[41,42]

Figure 9. Comparison of eight-level ReRAM conductance distribution a) before and after three days and c) before and after seven days. Simulated Impact
of Retention on inference accuracy of five models with ideal weights (blue dotted line) and with weights of extracted Gaussian variations b) before and
after three days and d) before and after seven days (box plot is plotted from 50 trials, with each trial sample having different variation from the
distribution).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200014 2200014 (10 of 13) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


We first investigated the retention of our programmed
ReRAM conductance at room temperature. The bitcell in a
32� 32 subarray of ReRAM tile is programmed to eight levels,
as shown in Figure 3c. We fitted each of the eight levels using a
Gaussian distribution and extract its mean conductance value
and standard deviation (Figure S20, Supporting Information).

The network then runs inference with resampled weights.
Inference accuracy is evaluated for 50 trials of resampling across
several neural networks such as VGG-8, ResNet, and MobileNet.
The simulated results show that running inference with devices
similar to those from the 32� 32 subarray would lead to less than
4% accuracy degradation for LeNet, VGG-8, and ResNet
(Figure S21, Supporting Information).

To investigate the impact of retention characteristics, the
programmed bitcell data is extracted again after 3 and 7 days.
The comparison of the eight-level distribution is plotted in
Figure 9a,c.

We repeated the extrapolation above by resampling weights
from the newly computed Gaussian variables after 3 and 7 days.
The simulated results show that device retention remains stable
within a week and all five models would not degrade by more
than 2% mean accuracy within 7 days (Figure 9b,d).

Similarly, to investigate the impact of read disturbance on
inference performance, the programmed bitcell data is extracted
again after 100 000 MAC operations and 500 000 MAC opera-
tions. The MAC operation is designed to turn all odd rows or
all even rows simultaneously and read the current, meaning
all the bitcells are read once every two MACs. The comparison
of the eight-level distribution is plotted in Figure 10a,c.

Inference accuracy of five models is simulated again by resam-
pling weights from the newly computed Gaussian variables. Based
on simulation, there is less than 1% accuracy degradation for four
models after 100 000 MAC (Figure 10b), and there is no further
significant impact on inference after 500 000 MACs. (Figure 10d).

Figure 10. Comparison of eight-levels ReRAM conductance distribution a) before and after 100 k MAC operations and c) before and after 500 k MAC
operations. Simulated Impact of Retention on inference accuracy of five models with ideal weights (blue dotted line) and with weights of extracted
Gaussian variations b) before and after 100 k MAC operations and d) before and after 500 k MAC operations (box plot is plotted from 50 trials, with
each trial sample having different variations from the distribution).
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5. Conclusion

In this work, we have designed and fabricated a SoC with multi-
ple ReRAM tile arrays integrated with an RISCV processor. We
demonstrated the standard MNIST benchmark with LeNet
implemented on hardware with 96.8% test accuracy and
�73.9 TOPS/W energy efficiency per tile at 65 nm technology.
The ReRAM tile design can be treated as an independent design
IP and a building block, making the system design expandable
and flexible for different ReRAM technologies and also for larger-
scale neural networks and different applications. With careful
optimization of the larger system integrated with many tiles,
higher energy efficiency is possible to be achieved. The AI
Sim, which was correlated to silicon, allows explorations and
trade-offs between bitcell, end applications, neural networks,
and design choices.

6. Experimental Section

ReRAM Devices: The ReRAM stack was built using a traditional
metal–oxide dielectric and a metal-containing oxygen exchange layer, both
of which were deposited using an Impulse physical vapour deposition
process using AMAT’s Endura platform.

PCB Design and Test Setup: We designed a customized PCB for silicon
bring-up as well as AI application demonstrations. Besides the essential
components, the PCB included additional on-board DACs and ADCs to
provide extra testing and calibration capabilities. An SPI flash was also
included on board to enable large dataset storage for benchmark.

A Xilinx Opal Kelly XEM6010 module was connected to the PCB,
making connection to the host machine. It controls digital signals and
loads programs from the host machine to the SoC chip and receives data
results from the chip, through FrontPanel SDK.

Modified National Institute of Standards and Technology Database
(MNIST): The MNIST dataset is a collection of images of handwritten
digits, which is a standard dataset used in computer vision and machine
learning. It contains a training set of 60 000 samples and a testing set of
10 000 samples. It was created from a subset of NIST’s larger dataset, with
all digits normalized and cropped to fit in to 28� 28-pixel grayscale
images.

Quantization Aware Training: The training of the neural network was
performed using Applied’s AI Sim with high-performance GPU. As
ReRAM array stores weights in four levels, we limited the weight precision
to 3-bit using quantization-aware training by incorporating Xilinx Brevitas
library in PyTorch.[43]

The 3-bit weight after training contained only integers from �3 to 3
(in fact only seven distinct levels), but as we stored the weight on
ReRAM tiles using positive and negative differential pairs, only four levels
(0, 1, 2, 3) were needed to map weights to conductance. This explains why
we trained the weights in 3-bit but only require 2-bit per bitcell in hardware.

Bit-Serial DAC and Binary-Weighted Multiplier Accumulator: In our
system, we used bit-serial DAC input and binary-weighted TIA and ADC
to achieve MAC computation (Figure S15, Supporting Information).

In a MAC operation, the input is converted to an 8-bit serial pulse train
by DAC and bitwise MAC is performed. A small-fixed read voltage
(0.1–0.3 V) represents an input digit “1”to minimize the read disturbance,
and 0 V is for input digit “0.”

TIA and ADC will calculate the partial sum from each cycle and combine
the binary-weighted sum as the output value. The MAC computation
requires eight cycles from input plus several reset-and-ready cycles in total.

More details about our bit-serial DAC and binary-weighted multiplier
accumulator can be founded in our previous published work.[44]

AI Sim Model Parameter Selection: In a comprehensive simulation
framework such as AI Sim, parameter selection in the neural network

model can be quite challenging given the various considerations shown
in Table 1.

There are mainly two types of evaluation parameters our AI Sim
selected.

The first type was neural network related, which was mainly the model
size and hyperparameters used during training. We followed the original
size and layers of neural network models (i.e., LeNet and ResNet-18) and
swept the hyperparameters to achieve the best test accuracy.

The second type was hardware related, such as variations, retention,
read disturbance from ReRAM devices, circuit noise from analog periph-
eral circuits, and tile size from system architectures. Those were extracted
from actual hardware measurements or by design and entered into our AI
Sim to help align experimental results with simulated results.

Our current approach used the original model parameters as baseline
and modified them when including the hardware nonidealities, which
required trial and error. A more efficient approach was to use a generic
search approach to automate the model parameter selection, which will
be our goal in the future work.[39]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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