Skip to main content

Advertisement

Log in

Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

High-fat diet (HFD) consumption is a risk factor for dyslipidemias, insulin resistance, and arterial hypertension linked with gut dysbiosis. Probiotic administration has been suggested as a safe therapeutic strategy for gut microbiota modulation and treatment and/or prevention of cardiometabolic disorders. Here, we assessed the effects of a potentially probiotic formulation containing strains of the Limosilactobacillus (L.) fermentum 139, 263, and 296 on the cardiometabolic disorders and gut microbiota derangements provoked by the HFD consumption. Male Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6) groups for 4 weeks. L. fermentum formulation (109 colony-forming unit (CFU)/ml of each strain) was daily administered by oral gavage. After 4-week follow-up, biochemical measurements, blood pressure (BP), heart rate (HR), sympathetic tone, and gut microbiota composition were evaluated. HFD consumption for 4 weeks increased lipid profile, insulin resistance, sympathetic tone, and blood pressure and impaired gut microbiota composition in male rats. Administration of L. fermentum formulation improved the gut microbiota composition, lipid profile, insulin resistance, autonomic dysfunction, and BP in rats fed with a HFD. Administration of a potentially fruit-derived probiotic formulation of L. fermentum strains improved gut microbiota composition and alleviated hyperlipidemia, insulin resistance, and sympathetic hyperactivity and increased BP in rats fed a HFD. Our findings may encourage the development of randomized controlled trials to assess the effects of L. fermentum treatment in subjects with cardiometabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable for that section.

References

  1. Billingsley HE, Carbone S, Lavie CJ (2018) Dietary fats and chronic noncommunicable diseases. Nutrients 10(10):1385. https://doi.org/10.3390/nu10101385

    Article  CAS  PubMed Central  Google Scholar 

  2. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T, Zheng J, Sinclair AJ, Mann J, Li D (2019) Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68(8):1417–1429. https://doi.org/10.1136/gutjnl-2018-317609

    Article  CAS  PubMed  Google Scholar 

  3. Taylor LE, Gillis EE, Musall JB, Baban B, Sullivan JC (2018) High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 315(6):H1713–H1723. https://doi.org/10.1152/ajpheart.00389.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavalcanti-Neto MP, Aquino JS, Romão da Silva LF, Silva RO, Guimarães KSL, de Oliveira Y, Souza MM, Vidal H, de Brito Alves JL (2018) Gut microbiota and probiotics intervention: a potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol Res 130:152–163. https://doi.org/10.1016/j.phrs.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  5. Cavalcante RGS, Albuquerque TMR, Luna Freire MO, Ferreira GAH, Santos LAC, Magnani M, Cruz JC, Braga VA, Souza EL, de Brito Alves JL (2019) The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutr Metab Cardiovasc Dis 29(12):1408–1417. https://doi.org/10.1016/j.numecd.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  6. Shin JH, Nam MH, Lee H, Lee JS, Kim H, Chung MJ, Seo JG (2018) Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. Eur J Nutr 57(6):2081–2090. https://doi.org/10.1007/s00394-017-1481-4

    Article  CAS  PubMed  Google Scholar 

  7. Romão da Silva LF, de Oliveira Y, Souza EL, Luna Freire MO, Braga VA, Magnani M, de Brito Alves JL (2019) Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: a randomized, triple-blind, placebo-controlled trial. Food Funct 11(8):7152–7163. https://doi.org/10.1039/d0fo01661f

    Article  CAS  Google Scholar 

  8. Robles-Vera I, Toral M, Visitación N, Sánchez M, Gómez-Guzmán M, Romero M, Yang T, Izquierdo-Garcia JL, Jiménez R, Ruiz-Cabello J, Guerra-Hernández E, Raizada MK, Pérez-Vizcaíno F, Duarte J (2020) Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids. Mol Nutr Food Res 64(6):e1900616. https://doi.org/10.1002/mnfr.201900616

    Article  CAS  PubMed  Google Scholar 

  9. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  10. Albuquerque TMR, Garcia EF, Araújo AO, Magnani M, Saarela M, Souza EL (2018) In vitro characterization of Lactobacillus strains isolated from fruit processing by-products as potential probiotics. Probiotics Antimicrob Proteins 10(4):704–716. https://doi.org/10.1007/s12602-017-9318-2

    Article  CAS  PubMed  Google Scholar 

  11. Garcia EF, Luciano WA, Xavier DE, Costa WCA, Oliveira KS, Franco OL, de Morais Júnior MA, Lucena BTL, Picão RC, Magnani M, Saarela M, Souza EL (2016) Identification of lactic acid cacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Front Microbiol 7:1371. https://doi.org/10.3389/fmicb.2016.01371

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chapman CMC, GibsonGR RI (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50(1):1–17. https://doi.org/10.1007/s00394-010-0166-z

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira Y, Cavalcante RGS, Cavalcanti Neto MP, Magnani M, Braga VA, Souza EL, de Brito Alves JL (2020) Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food Funct 11(6):5581–5594. https://doi.org/10.1039/d0fo00514b

    Article  CAS  PubMed  Google Scholar 

  14. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  15. de Brito Alves JL, Nogueira VO, Oliveira GB, Ferreira da Silva GS, Wanderley AG, Leandro CG, Costa-Silva JH (2014) Short- and long-term effects of a maternal low-protein diet on ventilation, O2/CO2 chemoreception and arterial blood pressure in male rat offspring. Br J Nutr 111(4):606–615. https://doi.org/10.1017/S0007114513002833

    Article  CAS  PubMed  Google Scholar 

  16. Guimarães KSL, de Araújo EV, Aquino JS, Gadelha DA, Balarini CM, Costa-Silva JH, Magnani M, Vidal H, Braga VA, de Brito Alves JL (2017) Effect of maternal dyslipidaemia on the cardiorespiratory physiology and biochemical parameters in male rat offspring. Br J Nutr 118(11):930–941. https://doi.org/10.1017/S0007114517003014

    Article  CAS  PubMed  Google Scholar 

  17. de Araújo EV, Guimarães KSL, Magnani M, Cruz JC, Vidal H, Braga VA, de Brito Alves JL (2019) Maternal dyslipidemia during pregnancy and lactation increases blood pressure and disrupts cardiorespiratory and glucose hemostasis in female rat offspring. Appl Physiol Nutr Metab 44(9):925–936. https://doi.org/10.1139/apnm-2018-0756

    Article  PubMed  Google Scholar 

  18. Kamimura BA, Cabral L, Noronha MF, Baptista RC, Nascimento SAS (2020) Amplicon sequencing reveals the bacterial diversity in milk, dairy premises and serra da canastra artisanal cheeses produced by three different farms. Food Microbiol 89:103453. https://doi.org/10.1016/j.fm.2020.103453

    Article  CAS  PubMed  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and all-species living tree project (LTP) taxonomic frameworks. Nucleic Acids Res 42(database issue):D643–D648. https://doi.org/10.1093/nar/gkt1209

  23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

  24. Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58(3):531–539. https://doi.org/10.1111/j.0006-341x.2002.00531.x

    Article  PubMed  Google Scholar 

  25. Shannon CE (1997) The mathematical theory of communication. 1963 MD Comput 14(4):306–317

  26. Palaniyandi SA, Damodharan K, Suh JW, Yang SH (2020) Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins 12(3):1161–1172. https://doi.org/10.1007/s12602-019-09585-y

    Article  CAS  PubMed  Google Scholar 

  27. Yadav R, Khan SH, Mada SB, Meena S, Kapila R, Kapila S (2019) Consumption of probiotic Lactobacillus fermentum MTCC: 5898-fermented milk attenuates dyslipidemia, oxidative stress, and inflammation in male rats fed on cholesterol-enriched diet. Probiotics Antimicrob Proteins 11(2):509–518. https://doi.org/10.1007/s12602-018-9429-4

    Article  CAS  PubMed  Google Scholar 

  28. Kullisaar T, Zilmer K, Salum T, Rehema A, Zilmer M (2016) The use of probiotic L. fermentum ME-3 containing Reg'Activ cholesterol supplement for 4 weeks has a positive influence on blood lipoprotein profiles and inflammatory cytokines: an open-label preliminary study. Nutr J 15(93):1–6. https://doi.org/10.1186/s12937-016-0213-6

  29. Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN (2021) The gut microbiome in hypertension: recent advances and future perspectives. Circ Res 128(7):934–950. https://doi.org/10.1161/CIRCRESAHA.121.318065

    Article  CAS  PubMed  Google Scholar 

  30. Yang T, Magee KL, Colon-Perez LM, Larkin R, Liao YS, Balazic E, Cowart JR, Arocha RT, Febo M, Vickroy T, Martyniuk CJ, Reznikov LR, Zubcevic J (2019) Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol (Oxf) 226(2):e13256. https://doi.org/10.1111/apha.13256

    Article  CAS  Google Scholar 

  31. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole-Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia-Pereira F, Johnson RD, Pepine CJ, Raizada MK (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120(2):312–323. https://doi.org/10.1161/CIRCRESAHA.116.309006

    Article  CAS  PubMed  Google Scholar 

  32. de Brito Alves JL, Sousa VP, Cavalcanti Neto MP, Magnani M, Braga VA, Costa-Silva JH, Leandro CG, Vidal H, Pirola L (2016) New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension. Front Physiol 7(448):1–8. https://doi.org/10.3389/fphys.2016.00448

    Article  Google Scholar 

  33. Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K, Chunchai T, Kerdphoo S, Eaimworawuthikul S, Thiennimitr P, Pongchaidecha A, Lungkaphin A, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2018) Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur J Nutr 57(6):2091–2104. https://doi.org/10.1007/s00394-017-1482-3

    Article  CAS  PubMed  Google Scholar 

  34. Gómez-Guzmán M, Toral M, Romero M, Jiménez R, Galindo P, Sánchez M, Zarzuelo MJ, Olivares M, Gálvez J, Duarte J (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59(11):2326–2336. https://doi.org/10.1002/mnfr.201500290

    Article  CAS  PubMed  Google Scholar 

  35. Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J (2018) Lactobacillus fermentum improves tacrolimus-induced hypertension by restoring vascular redox state and improving eNOS coupling. Mol Nutr Food Res e1800033. https://doi.org/10.1002/mnfr.201800033

  36. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308. https://doi.org/10.1038/ismej.2013.155

    Article  CAS  PubMed  Google Scholar 

  37. Hor YY, Lew LC, Jaafar MH, Sie-Yik Lau A, Ong JS, Kato T, Nakanishi Y, Azzam G, Azlan A, Ohno H, Liong MT (2019) Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res 146:104312. https://doi.org/10.1016/j.phrs.2019.104312

  38. Lew LC, Hor YY, Jaafar MH, Sie-Yik Lau A, Khoo BY, Sasidharan S, Choi SB, Ong KL, Kato T, Nakanishi Y, Ohno H, Liong MT (2020) Effects of potential probiotic strains on the fecal microbiota and metabolites of D-galactose-induced aging rats fed with high-fat diet. Probiotics Antimicrob Proteins 12(2):545–562. https://doi.org/10.1007/s12602-019-09545-6

    Article  CAS  PubMed  Google Scholar 

  39. Molina-Tijeras JA, Diez-Echave P, Vezza T, Hidalgo-García L, Ruiz-Malagón AJ, Rodríguez-Sojo MJ, Romero M, Robles-Vera I, García F, Plaza-Diaz J, Olivares M, Duarte J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J (2021) Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacol Res 167:105471. https://doi.org/10.1016/j.phrs.2021.105471

    Article  CAS  PubMed  Google Scholar 

  40. Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, Eaton V, Seok R, Leiner IM, Pamer EG (2020) Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28(1):134–146. https://doi.org/10.1016/j.chom.2020.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M (2020) The controversial role of human gut Lachnospiraceae. Microorganisms 8(4):573. https://doi.org/10.3390/microorganisms8040573

    Article  CAS  PubMed Central  Google Scholar 

  42. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J (2019) Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA 116(26):12672–12677. https://doi.org/10.1073/pnas.1904099116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C (2017) A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:103. https://doi.org/10.1186/s13073-017-0490-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  45. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105(11):2420–2428. https://doi.org/10.1038/ajg.2010.281

    Article  CAS  PubMed  Google Scholar 

  46. Toya T, Corban MT, Marrietta E, Horwath IE, Lerman LO, Murray JA, Lerman A (2020) Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 15(1):e0227147. https://doi.org/10.1371/journal.pone.0227147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calderón-Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, Jimenez-Hernandez N, Artacho A, Pla-Pagà L, Companys J, Ludwig I, Romero MP, Rubió L, Solà R (2020) Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep 10:6436. https://doi.org/10.1038/s41598-020-63475-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, Ventura M (2017) Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol 93(12):1–10. https://doi.org/10.1093/femsec/fix153

    Article  CAS  Google Scholar 

  49. Qian L, Huang J, Qin H (2020) Probiotics and dietary intervention modulate the colonic mucosa-associated microbiota in high-fat diet populations. Turk J Gastroenterol 31(4):295–304. https://doi.org/10.5152/tjg.2020.19013

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu D, Wen B, Zhu K, Luo Y, Li J, Li Y, Lin H, Huang J, Liu Z (2019) Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol 103(13):5269–5283. https://doi.org/10.1007/s00253-019-09764-5

    Article  CAS  PubMed  Google Scholar 

  51. Ménard A, Smet A (2019) Review: other Helicobacter species. Helicobacter 24(Suppl 1):e12645. https://doi.org/10.1111/hel.12645

    Article  PubMed  Google Scholar 

  52. Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD, Morrison M, Nitert MD (2018) Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9(3):189–201. https://doi.org/10.1080/19490976.2017.1406584

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X, Xing Y, Liu L (2020) Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed apoE-/- mice. Front Pharmacol 11:223. https://doi.org/10.3389/fphar.2020.00223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil—Finance code 001) for the scholarships (MSc) awarded to Georgianna de Araújo Henriques Ferreira. Additionally, the authors thank for the research productivity fellowship from the Brazilian National Council for Scientific and Technological (CNPq) awarded to de Brito Alves JL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz de Brito Alves.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo Henriques Ferreira, G., Magnani, M., Cabral, L. et al. Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet. Probiotics & Antimicro. Prot. 14, 349–359 (2022). https://doi.org/10.1007/s12602-021-09889-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09889-y

Keywords

Navigation