Skip to main content
Log in

An Extension of the Multiple Erdélyi-Kober Operator and Representations of the Generalized Hypergeometric Functions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we investigate the extension of the multiple Erdélyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer’s G-function. An action of the regularized multiple Erdélyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we define an alternative regularization better suited for representing the Bessel type generalized hypergeometric function p−1Fp. A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alzer, On some inequalities for the gamma and psi functions. Mathematics of Computation 66, No. 217 (1997), 373–389.

    Article  MathSciNet  Google Scholar 

  2. G.E. Andrews, R. Askey, R. Roy, Special Functions. Cambridge University Press, Cambridge (1999).

    Book  Google Scholar 

  3. R. Beals, Advanced Mathematical Analysis. Springer Science and Business Media, New York (1973).

    Book  Google Scholar 

  4. R. Beals, R. Wong, Special Functions and Orthogonal Polynomials. Cambridge Studies in Advanced Mathematics (No. 153), Cambridge University Press, Cambridge (2016).

    Book  Google Scholar 

  5. Y.-K. Cho, H. Yun, Newton diagram of positivity for 1F2 generalized hypergeometric functions. Integr. Transf. Spec. Funct. 29, No. 7 (2018), 527–542.

    Article  Google Scholar 

  6. L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, Revised and Elarged Edition, D. Reidel Publishing Company, Dordrecht-Holland/Boston-U.S.A. (1974).

    MATH  Google Scholar 

  7. O. Costin, H.M. Friedman, Foundational aspects of divergent integrals. J. Func. Anal. 267 (2014), 4732–4752.

    Article  Google Scholar 

  8. R. Estrada, R.P. Kanwal, Regularization pseudofunction, and Hadamard finite part. J. Math. Anal. Appl. 141 (1989), 195–207.

    Article  MathSciNet  Google Scholar 

  9. S.I. Kalmykov, D.B. Karp, Log-concavity and Turán type inequalities for the generalized hypergeometric function. Analysis Mathematica 43, No. 4 (2017), 567–580.

    Article  MathSciNet  Google Scholar 

  10. D. Karp, Representations and inequalities for generalized hypergeometric functions. J. of Math. Sciences 207, No. 6 (2015), 885–897.

    Article  MathSciNet  Google Scholar 

  11. D. Karp, J.L. López, Representations of hypergeometric functions for arbitrary values of the parameters and their use. J. of Approximation Theory 218 (2017), 42–70.

    Article  MathSciNet  Google Scholar 

  12. D. Karp, J.L. López, On a particular class of Meijer’s G functions appearing in fractional calculus. To appear. International Journal of Applied Mathematics 31, No. 5 (2018), 521–543; DOI: 10.12732/ijam.v31i5.1http://www.diogenes.bg/ijam/.

    Article  Google Scholar 

  13. D. Karp, E. Prilepkina, Hypergeometric functions as generalized Stieltjes transforms. J. Math. Anal. Appl. 393, No. 2 (2012), 348–359.

    Article  MathSciNet  Google Scholar 

  14. D. Karp, E. Prilepkina, Completely monotonic gamma ratio and infinitely divisible H-function of Fox. Computational Methods and Function Theory 16, No. 1 (2016), 135–153.

    Article  MathSciNet  Google Scholar 

  15. D.B. Karp, E.G. Prilepkina, Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions. Integr. Transf. Spec. Funct. 28, No. 10 (2017), 710–731.

    Article  MathSciNet  Google Scholar 

  16. D. Karp, E. Prilepkina, Hypergeometric differential equation and new identities for the coefficients of Nørlund and Bühring. SIGMA 12 (2016), Art. # 052, 23 pp.

  17. D.B. Karp, E.G. Prilepkina, Extensions of Karlsson-Minton summation theorem and some consequences of the first Miller-Paris transformation. Integr. Transf. Spec. Funct. 29, No. 12 (2018), 955–970; DOI: 10.1080/10652469.2018.1526793.

    Article  MathSciNet  Google Scholar 

  18. D. Karp, S.M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric function. J. of Approximation Theory 161 (2009), 337–352.

    Article  MathSciNet  Google Scholar 

  19. A.A. Kilbas, M. Saigo, H-Transforms and Applications. Ser. Analytical Methods and Special Functions 9, Chapman & Hall/CRC, Boca Raton (2004).

    Book  Google Scholar 

  20. V.S. Kiryakova, Generalized Fractional Calculus and Applications. Ser. Pitman Research Notes in Math. 301, Longman - J. Wiley (1994).

  21. V. Kiryakova, All the special functions are fractional differintegrals of elementary functions. J. Phys. A: Math. Gen. 30 (1997), 5085–5103.

    Article  MathSciNet  Google Scholar 

  22. V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No. 2 (2008), 203–220; at http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  23. V. Kiryakova, From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. 17, No. 4 (2014), 977–1000; DOI: 10.2478/s13540-014-0210-4https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  24. Y.L. Luke, The Special Functions and Their Approximations. Vol. 1, Academic Press, San Diego (1969).

  25. N.E. Nørlund, Hypergeometric functions. Acta Mathematica 94 (1955), 289–349.

    Article  MathSciNet  Google Scholar 

  26. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  27. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series Vol. 3: More Special Functions. Gordon and Breach Sci. Publ. (1990).

    MATH  Google Scholar 

  28. A.M. Sedletskii, Analytic Fourier transforms and exponential approximations, I. J. of Mathematical Sciences 129, No. 6 (2005); Russian original: Sovremennaya Mathematika. Fundamentalnyie Napravleniya. 5 (2003), 3–152.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii B. Karp.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, D.B., López, J.L. An Extension of the Multiple Erdélyi-Kober Operator and Representations of the Generalized Hypergeometric Functions. FCAA 21, 1360–1376 (2018). https://doi.org/10.1515/fca-2018-0071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0071

MSC 2010

Key Words and Phrases

Navigation