
Online Scheduling with Bounded Migration

Peter Sanders
Universität Karlsruhe (TH), Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe, Germany

email: sanders@ira.uka.de http://algo2.iti.uni-karlsruhe.de/sanders.php

Naveen Sivadasan
Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

email: ns@mpi-sb.mpg.de http://www.mpi-inf.mpg.de/~sivadasa/

Martin Skutella
TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

email: skutella@math.tu-berlin.de http://www.math.tu-berlin.de/~skutella/

Consider the classical online scheduling problem where jobs that arrive one by one are assigned to identical parallel
machines with the objective of minimizing the makespan. We generalize this problem by allowing the current
assignment to be changed whenever a new job arrives, subject to the constraint that the total size of moved jobs is
bounded by β times the size of the arriving job. For small values of β, we obtain several simple online algorithms
with constant competitive ratio. We also present a linear time ‘online approximation scheme’, that is, a family of
online algorithms with competitive ratio 1 + ε and constant migration factor β(ε), for any fixed ε > 0.

Key words: scheduling; approximation; online algorithm; sensitivity analysis

MSC2000 Subject Classification: Primary: 90C27, 90C31, 68Q25; Secondary: 90C10, 68M20

OR/MS subject classification: Primary: production/scheduling, sequencing, multiple machine; Secondary: integer
programming

1. Introduction One of the most fundamental scheduling problems asks for an assignment of jobs
to m identical parallel machines so as to minimize the makespan. (The makespan is the completion time
of the last job that finishes in the schedule; it also equals the maximum machine load.) In the standard
classification scheme of Graham, Lawler, Lenstra, & Rinnooy Kan [16], this scheduling problem is denoted
by P | |Cmax and it is well known to be strongly NP-hard [13].

The offline variant of this problem assumes that all jobs are known in advance whereas in the online
variant the jobs are incrementally revealed by an adversary and the online algorithm can only choose
the machine for the new job without being allowed to move other jobs. Note that dropping this radical
constraint on the online algorithm yields the offline situation.

We study a natural generalization of both offline and online problems. Jobs arrive incrementally but,
upon arrival of a new job j, we are allowed to migrate some previous jobs to other machines. The total
size of the migrated jobs however must be bounded by βpj where pj is the size of the new job. For
migration factor β = 0 we get the online setting and for β = ∞ we get the offline setting.

For an offline optimization problem, an approximation algorithm efficiently (in polynomial time) con-
structs schedules whose values are within a constant factor α of the optimum solution value. The number α
is called performance guarantee or performance ratio of the approximation algorithm. A family of poly-
nomial time approximation algorithms with performance guarantee 1 + ε for all fixed ε > 0 is called a
polynomial time approximation scheme (PTAS).

In a similar way, competitive analysis evaluates solutions computed in the online setting. An online
algorithm achieves competitive ratio α if it always maintains solutions whose objective values are within a
factor α of the offline optimum. Here, in contrast to offline approximation results, the achievable values α
are not determined by limited computing power but by the apparent lack of information about parts of
the input that will only be revealed in the future. As a consequence, for all interesting classical online
problems, it is rather easy to come up with lower bounds that create a gap between the best possible
competitive ratio α and 1. In particular, it is usually impossible to construct a family of (1+ε)-competitive
online algorithms for such problems.

1

http://algo2.iti.uni-karlsruhe.de/sanders.php
mailto:sanders@ira.uka.de
http://algo2.iti.uni-karlsruhe.de/sanders.php
http://www.mpi-inf.mpg.de/~sivadasa/
mailto:ns@mpi-sb.mpg.de
http://www.mpi-inf.mpg.de/~sivadasa/
http://www.math.tu-berlin.de/~skutella/
mailto:skutella@math.tu-berlin.de
http://www.math.tu-berlin.de/~skutella/

2

Related Work For the online machine scheduling problem, Graham’s list scheduling algorithm keeps
the makespan within a factor 2− 1

m of the offline optimum [14]: Schedule a newly arriving job on a least
loaded machine. It can also easily be seen that this bound is tight. For the offline setting, Graham [15]
shows that sorting the jobs in the order of non-increasing size before feeding them to the list scheduling
algorithm yields an approximation algorithm with performance ratio 4

3 −
1

3m . Later, exploiting the
relationship between the machine scheduling problem under consideration and the bin-packing problem,
algorithms with improved approximation ratios have been obtained in a series of works [9, 12, 20].

Finally, PTASes for a constant number of machines and for an arbitrary number of machines are given
in [15, 25] and by Hochbaum and Shmoys [18], respectively. The latter PTAS partitions jobs into large
and small jobs. The sizes of large jobs are rounded such that an optimum schedule for the rounded jobs
can be obtained via dynamic programming. The small jobs are then added greedily using Graham’s
list scheduling algorithm. This approach can be refined to an algorithm with linear running time (see,
e.g., [17]): replace the dynamic program with an integer linear program on a fixed number of variables
and constraints which can be solved in constant time [21].

In a series of papers, increasingly complicated online algorithms with better and better competitive
ratios beating the Graham bound 2 have been developed [6, 19, 2]. The best result known to date is a
1.9201-competitive algorithm due to Fleischer and Wahl [11]. The best lower bound 1.88 on the competi-
tive ratio of any deterministic online algorithm currently known is due to Rudin and Chandrasekaran [24]
(see also Rudin [23]). For randomized online algorithms there is a lower bound of e

e−1 ≈ 1.58 [8, 29]. For
more results on online algorithms for scheduling we refer to the recent survey articles by Albers [3] and
Sgall [30].

Strategies that reassign jobs were studied in the context of online load balancing where jobs arrive
in and depart from a system of m machines online and the scheduler has to assign each incoming job
to one of the machines. Deviating from the usual approach of comparing against the optimal peak
load seen so far, Westbrook [31] introduced the notion of competitiveness against current load : An
algorithm is α-competitive if after every round the makespan is within α factor of the optimal makespan
for the current set of jobs. Each incoming job j has size pj and reassignment cost cj . For a job,
the reassignment cost has to be paid for its initial assignment and then every time it is reassigned.
Observe that the optimal strategy has to pay this cost once for each job for its initial assignment. Thus
the optimal (re)assignment cost S is simply the sum of reassignment costs of all jobs scheduled till
now. Westbrook showed a 6-competitive strategy for identical machines with reassignment cost 3S for
proportional reassignments, i.e., cj is proportional to pj , and 2S for unit reassignments, i.e., cj = 1 for
all jobs. Later Andrews, Goemans, and Zhang [4] improved it to competitive ratio 3.5981 with the same
reassignment factors. They also showed (3+ε)- and (2+ε)-competitive strategies for the proportional and
unit case, respectively, where the reassignment factor depends only on ε. For arbitrary reassignment costs
they achieve 3.5981-competitiveness with 6.8285 reassignment factor. They also present a 32-competitive
strategy with constant reassignment factor for related machines.

Our Contribution We consider the online setting where jobs arrive incrementally but there are no
job departures. In Section 3 we describe a simple online algorithm which achieves approximation ratio 3

2
using a moderate migration factor β = 2. Notice that already this result beats the lower bound 1.88
(1.58) on the competitive ratio of any classical (randomized) online algorithm without migration. Using
a more sophisticated analysis, the migration factor can be decreased to 4

3 while maintaining competitive
ratio 3

2 . This result is tight since we can show that any robust1 scheduling strategy with competitive
ratio 3

2 has migration factor at least 4
3 . We also show another tightness result: The algorithms considered

in Section 3 have the nice property that they work locally, i.e., they only migrate jobs from the machine
where the new job is being assigned to. We prove that any robust local strategy has competitive ratio at
least 3

2 . In Section 4 we present a more sophisticated algorithm with migration factor 4 and competitive
ratio 4

3 . For the special case of two machines it is shown in Section 5 that we can achieve competitive
ratio 7

6 with a migration factor of 1. Moreover, this ratio is tight for migration factor 1.

In Section 6 we present a family of online algorithms with competitive ratio 1 + ε and constant
migration factor β(ε), for any fixed ε > 0. On the negative side, no constant migration factor suffices
to maintain competitive ratio 1, i.e., optimality. We provide interpretations of these results in several

1We give a precise definition of robustness in Section 3 after the proof of Theorem 3.2.

3

different contexts:

(i) Online algorithms. Online scheduling with bounded job migration is a relaxation of the classical
online paradigm. Obviously, there is a tradeoff between the desire for high quality solutions
and the requirement to compute them online, that is, to deal with a lack of information. Our
result can be interpreted in terms of the corresponding tradeoff curve: Any desired quality can
be guaranteed while relaxing the online paradigm only moderately by allowing for a constant
migration factor.

(ii) Sensitivity analysis. Given an optimum solution to an instance of an optimization problem and
a slightly modified instance, can the given solution be turned into an optimum solution for the
modified instance without changing the solution too much? This is the compelling question in
sensitivity analysis. As indicated above, for the scheduling problem under consideration one has
to answer in the negative. Already one additional job can change the entire structure of an
optimum schedule. However, our result implies that the answer is positive if we only require
near-optimum solutions.

(iii) Approximation results. Our result yields a new PTAS for the scheduling problem under consid-
eration. Due to its online background, this PTAS constructs the solution incrementally. That is,
it reads the input little by little always maintaining a (1 + ε)-approximate solution. Indeed, it
follows from the analysis of the algorithm that every update only takes constant time. In particu-
lar, the overall running time is linear and thus matches the previously best known approximation
result.

We believe that each of these interpretations constitutes an interesting motivation for results like the one
we present here in its own right and can therefore lead to interesting results for many other optimization
problems. After reading a preliminary version of this paper [27], Epstein and Levin [10] came up with
similar results for the bin packing problem.

Our results can also be interpreted within the framework of online load balancing (see the discussion
above and [31, 4]), with proportional reassignments and without job deletions. But our requirements
are stronger in the sense that a strategy with reassignment factor β ensures that when a new job j
arrives, the total reassignment cost incurred (for scheduling it) is at most βcj . This is different from
the more relaxed constraint that after t rounds, the total reassignment cost incurred is at most β

∑
cj

(summing over all jobs seen till round t). Moreover, almost all our scheduling strategies are robust, i.e.,
they convert any α-competitive schedule to an α-competitive schedule after assigning the newly arrived
job, whereas in [31, 4] it is required that the schedule so far is carefully constructed in order to ensure
the competitiveness after assigning/deleting a job in the next round.

The underlying details of the presented online approximation scheme have the same roots as the original
PTAS by Hochbaum and Shmoys [18] and its refinements [17]. We distinguish between small and large
jobs; a job is called large if its size is of the same order of magnitude as the optimum makespan. Since
this optimum can change when a new job arrives, the classification of jobs must be updated dynamically.
The size of every large job is rounded such that the problem of computing an optimum schedule for the
subset of large jobs can be formulated as an integer linear program of constant size. A newly arriving
job causes a small change in the right hand side of this program. This enables us to use results from
sensitivity analysis of integer programs in order to prove that the schedule of large jobs needs to be
changed only slightly. Our PTAS is very simple, it uses only this structural result and does not use any
algorithms from integer programming theory.

In Section 7 we discuss an application of bounded migration to configuring storage servers. This was the
original motivation for our work. In this application, the objective is to maximize the minimum machine
load. It is well-known [5] that any online deterministic algorithm for this machine covering problem has
competitive ratio at least m (the number of machines). There is also a lower bound of Ω(

√
m) for any

randomized online algorithm. We develop a simple deterministic online strategy which is 2-competitive
already for migration factor β = 1.

A preliminary version of this work appeared in proceedings of ICALP 2004 [27].

4

2. Preliminaries We consider the problem of scheduling a set of jobs {1, . . . , n} on a set of m
identical parallel machines M = {1, . . . ,m}. Job j ∈ {1, . . . , n} has a positive processing time or size pj

and arrives in round j. The number of jobs is unknown in advance and the processing time of job j is
only revealed in round j. For a subset of jobs N ⊆ {1, . . . , n}, the total processing time of jobs in N
is p(N) :=

∑
j∈N pj ; moreover let pmax(N) := maxj∈N pj denote the maximum processing time of a job

in N .

A schedule S for a subset of jobs N is an assignment of the jobs in N to the set of machines M ,
i.e., S : N → M . We denote the set of jobs scheduled on (i.e., assigned to) machine i ∈ M by S−1(i) ⊆
N . The load of machine i is p(S−1(i)) and the makespan of schedule S is the maximum machine
load maxi∈M p(S−1(i)). We say that machine i ∈ M is a least loaded machine with respect to schedule S
if p(S−1(i)) = mini′∈M p(S−1(i′)). For a subset of jobs N , let opt(N) denote the minimal makespan of
a schedule for N . The following well-known facts are due to Graham [14].

Observation 2.1 Let N be a set of jobs.

(i) The value lb(N) := max
{p(N)

m , pmax(N)
}

is a lower bound on opt(N) satisfying

lb(N) ≤ opt(N) < 2 lb(N) . (1)

(ii) Consider an arbitrary schedule for N with makespan κ. Assigning a new job j 6∈ N to a least
loaded machine yields a schedule for N ∪ {j} with makespan at most

max{κ,opt(N ∪ {j}) + (1− 1
m)pj} .

In the following sections we often consider the subset of jobs N = {1, . . . , j − 1} that have arrived in
the first j− 1 rounds and a newly arrived job j. If N and j are clear from the context, we sometimes use
the shorter notation opt := opt(N) and opt′ := opt(N ∪ {j}).

We conclude this section by stating an easy but important Corollary of Observation 2.1 ((ii)).

Corollary 2.1 Given an α-approximate schedule for the jobs in N , assigning a new job of size at
most (1 + 1

m−1)(α− 1)opt′ to a least loaded machine yields an α-approximate schedule for N ∪ {j}.

3. Simple Strategies with Small Migration Factors We start by presenting a very simple
(

3
2 −

1
2m

)
-competitive algorithm with migration factor 2. The algorithm is based on the following procedure.

Procedure 1
Input: A schedule for a set of jobs N and a new job j 6∈ N .
Output: A schedule for N ∪ {j}.
Choose one of the following two options which minimizes the resulting makespan:

Option 0: Assign job j to a least loaded machine.

Option 1: Let i be the machine minimizing the maximum job size. Repeatedly remove jobs from this
machine (in any order); stop before the total size of removed jobs exceeds 2pj. Assign job j to
machine i. Assign the removed jobs successively to a least loaded machine.

Theorem 3.1 Given a
(

3
2 −

1
2m

)
-approximate schedule for N and a new job j 6∈ N , Procedure 1 outputs

a
(

3
2 −

1
2m

)
-approximate schedule for N ∪ {j}. The migration factor is bounded by 2.

Proof. From the description of Procedure 1, it is clear that the migration factor is at most 2. We
call a job small if its processing time is at most 1

2opt′, otherwise it is called large. If the new job j is
small, Option 0 yields makespan at most

(
3
2 −

1
2m

)
opt′ by Corollary 2.1. Thus, we can assume from now

on that j is large.

Since there are at most m large jobs in N ∪ {j}, all jobs on machine i chosen in Option 1 are small.
Thus, after removing jobs from machine i as described above, machine i is either empty or the total size
of removed jobs exceeds the size of the large job j. In both cases, assigning job j to machine i cannot

5

increase its load above
(

3
2 −

1
2m

)
opt′. Thus, using the same argument as above, assigning the removed

small jobs successively to a least loaded machine yields a
(

3
2 −

1
2m

)
-approximate schedule for the set of

jobs N ∪ {j}. �

Corollary 3.1 Scheduling every newly arriving job according to Procedure 1 is a
(

3
2 −

1
2m

)
-competitive

algorithm with migration factor 2.

Next we show that the migration factor can be decreased to 4
3 without increasing the competitive ratio

above 3
2 . This result is achieved by carefully modifying Procedure 1.

Procedure 2
Input: A schedule for a set of jobs N and a new job j 6∈ N .
Output: A schedule for N ∪ {j}.
Choose one of the following m + 1 options which minimizes the resulting makespan. (Break ties in favor
of Option 0.)

Option 0: Assign job j to a least loaded machine.

Option i [for i ∈ {1, . . . ,m}]: Ignoring the largest job on machine i, consider the remaining jobs on
machine i in order of non-increasing size and remove a job unless the total size of removed jobs
will exceed 4

3pj. Assign job j to machine i. Assign the removed jobs successively to a least loaded
machine.

In the analysis of Procedure 2 we make use of the following structural property of a schedule. A
schedule for a set of jobs N has property (∗) if the load on any machine excluding its largest job is at
most opt(N). For example, a schedule constructed by list scheduling has always property (∗). We show
that Procedure 2 maintains property (∗).

Lemma 3.1 Given a schedule for N satisfying property (∗) and a new job j 6∈ N , Procedure 2 outputs a
schedule for N ∪ {j} satisfying property (∗).

Proof. Let M ′ ⊆ M be the subset of machines touched by Procedure 2 for scheduling job j. It
suffices to argue that the total load on machine i ∈ M ′ excluding the job j′ that entered the machine last
is at most opt′. Except for the very last case considered below, we will prove this stronger property for
machine i ∈ M ′.

If j′ 6= j, then j′ was assigned as part of the redistribution phase. Since redistribution is always
performed on a currently least loaded machine, the load on this machine excluding this last job is at
most opt′.

It remains to consider the case j′ = j. If Option 0 is chosen and assigns j to machine i, then machine i
is a least loaded machine of the initial schedule; in particular, its load excluding j is at most opt ≤ opt′.
Otherwise, j is assigned to machine i by Option i, which we assume from now on. Since we always break
ties in favor of Option 0, the makespan of the schedule produced in Option i is strictly smaller than the
makespan of the schedule obtained in Option 0. We distinguish two cases.

Case 1. The makespan of the schedule obtained by assigning j to a least loaded machine i′ (Option 0)
is determined by machine i′. As the makespan obtained by Option i is strictly smaller than the makespan
obtained by Option 0, the load of machine i minus the size of j is at most the makespan of a least loaded
machine i′ in the initial schedule and thus at most opt ≤ opt′.

Case 2. The makespan of the schedule obtained by assigning j to a least loaded machine i′ (Option 0)
is not determined by machine i′. In this case, it must be determined by machine i 6= i′ since this is the
only machine whose makespan can possibly be decreased by choosing Option i. Remember that we break
ties in favor of Option 0. Thus, the makespan of machine i must have been decreased in Option i. Since
we did not touch the largest job on machine i, it still has the desired property. �

Theorem 3.2 Given a 3
2 -approximate schedule for N satisfying property (∗) and a new job j 6∈ N ,

Procedure 2 outputs a 3
2 -approximate schedule for N ∪ {j} satisfying property (∗). The migration factor

is bounded by 4
3 .

6

Proof. The bound on the migration factor is clear from the description of Procedure 2. Moreover
it follows from Lemma 3.1 that the computed schedule for N ∪ {j} has property (∗). To show the
approximation result, we distinguish three cases depending on the size of job j.

Case 1. If pj ≤ 1
2opt′, Option 0 yields a schedule of makespan at most 3

2opt′ by Corollary 2.1.

Case 2. If pj ≥ 3
4opt′, then 4

3pj ≥ opt so that for any machine i it is feasible to migrate all but
the largest job due to property (∗). Since there are at most m − 1 jobs in N of size larger than 1

2opt′,
there is a machine i that only contains jobs of size at most 1

2opt′. Then Option i yields a schedule with
makespan at most 3

2opt′. (Apply the same argument as in Case 1 for the reassignment of removed jobs.)

Case 3. It remains to consider the situation when pj = 1
2opt′ + δ for some 0 < δ < 1

4opt′. In the
following a job in N is called huge if its size is strictly larger than opt′ − δ and tiny if its size is strictly
smaller than δ. The subsets of huge and tiny jobs are denoted by NH and NT, respectively. Notice that
in an optimal schedule for N a huge job can only share a machine with tiny jobs.

Claim. In the given schedule S for N there exists a machine i that does not contain huge jobs
and p(S−1(i) \NT) ≤ opt.

In an optimal schedule for N the jobs in N \ (NH ∪ NT) are scheduled on the m − |NH| machines
that do not contain a huge job. This yields p(N \ (NH ∪NT)) ≤ (m− |NH|)opt. By a simple averaging
argument, among the m− |NH| machines that do not contain a huge job in the given schedule S there is
one as claimed above.

It remains to show that Option i yields a 3
2 -approximate schedule for N ∪{j}. Since p(S−1(i) \NT) ≤

opt, there is at most one job of size strictly larger than 1
2opt on machine i. Consequently, every job

removed during Option i has size at most 1
2opt and the reassignment of these jobs does not cause

a problem with respect to the bound 3
2opt′. We still need to show that the load of machine i after

assigning job j does not exceed 3
2opt′.

If there is a tiny job that is not removed from machine i, then the total size of removed jobs is larger
than 4

3pj − δ ≥ pj and we are done since the load of machine i in the given schedule S is at most 3
2opt.

We can assume in the following that all tiny jobs are removed from machine i.

If S−1(i) \ NT contains only one job, we are done since this job is not huge such that together with
job j it does not exceed the bound 3

2opt′ on the load of machine i. Finally, if S−1(i) \ NT contains
more than one job, then, as already argued above, the second largest job has size at most 1

2opt ≤ 4
3pj

and is therefore removed (remember that the jobs are considered in order of non-increasing size during
the removal phase). Since this job is not tiny, it has size at least δ and the total size of removed
jobs is at least δ + p(S−1(i) ∩ NT). Therefore the load of machine i after the removal phase is at
most p(S−1(i) \NT)− δ ≤ opt− δ and we can afford to assign job j to machine i. �

In Section 4 we present a more sophisticated algorithm with migration factor 4 and competitive ratio 4
3 .

Moreover, in Section 5 we present a specialized algorithm for the case of two machines with migration
factor 1 and competitive ratio 7

6 ; and we also show that this result is tight, i.e., migration factor 1 does
not allow for a smaller competitive ratio.

Robustness The scheduling strategies for minimizing the makespan discussed in this section (and
in Section 4) are robust in the following sense. The only invariant that we require in their analyses is that
before the arrival of a new job the current schedule is α-approximate. Job j can then be incorporated
yielding again an α-approximate schedule. In other words, we do not require that the current schedule
is carefully constructed so far, to maintain the competitiveness in the next round. Only for Procedure 2
the schedule must additionally satisfy that, on any machine, the load excluding the largest job is at most
the optimum makespan. This is a rather mild assumption as even the simple list scheduling algorithm
and almost all natural scheduling strategies ensure this.

Negative Results Theorems 3.1 and 3.2 raise the question which migration factor is really necessary
to achieve competitive ratio 3

2 . We can prove that Procedure 2 is optimal in the sense that any robust
scheduling strategy needs migration factor at least 4

3 in order to maintain competitive ratio 3
2 .

Lemma 3.2 There exists a 3
2 -approximate schedule fulfilling property (∗) such that, for any 0 < ε < 4

21 ,

7

26

2 2

2 2

2 2

2 2

4 4

1 2 3

6

1
1 1

1

6

10

7

11 26

7

4

4

1 2 3 10 11

6

2 2

6
7

1

7

1

Figure 1: An instance with 26 machines and 50 jobs. The load of the machines is depicted on the vertical
axis. On the right hand side an optimal schedule with makespan 8 is given. On the left hand side there
is a 3

2 -approximate schedule fulfilling property (∗). If a new job of size 6 + ε arrives, jobs of total size at
least 8 have to be moved in order to obtain a schedule that is still 3

2 -approximate.

upon arrival of a new job, migration factor 4
3 − ε is necessary to achieve 3

2 -competitiveness.

Proof. The situation is depicted in Figure 1. There are 26 machines and 50 jobs. A 3
2 -approximate

schedule fulfilling property (∗) with makespan 12 is given on the left hand side of the figure while an
optimal schedule with makespan 8 is given on the right hand side. In both schedules, machines 3 to 10
are identically packed and the same holds for machines 11 to 26. Notice that machine 2 is empty in the
optimal schedule. Therefore, upon arrival of a new job of size 24

4−3ε , the optimal makespan remains 8.
Notice that 6 < 24

4−3ε < 7 due to our choice of ε.

In order to incorporate the new job into the schedule on the left hand side of Figure 1 without increasing
the makespan, jobs of total size at least 8 have to be migrated: First of all notice that it does not make
sense to assign the new job to one of the machines currently containing a job of size 7. If the new job
is assigned to one of the machines currently containing a job of size 6, this job has to be removed from
the machine. In order to reassign it without increasing the makespan, two more jobs of size 1 have to be
moved. Finally, in order to schedule the new job on one of the first two machines, jobs of total size at
least 8 have to be moved.

Thus, the migration factor is at least 8 · 4−3ε
24 = 4

3 − ε. �

An additional feature of Procedures 1 and 2 is that they are local in the sense that they migrate jobs
only from the machine where the newly arrived job is assigned to.

Lemma 3.3 There is a class of optimal schedules for which, upon arrival of a new job, it is not possible
to achieve a competitive ratio smaller than 3

2 using only local migration (even if an arbitrary migration
factor is allowed).

Proof. The following optimal schedule on m machines, upon the arrival of a new job, enforces a
competitive ratio of at least 3/(2 + 2

m) for any amount of local migration. This bound converges to 3
2 for

large m. Machines 1 and 2 each contain one job of size 1
2 and m

2 jobs of size 1
m (we assume that m is

even). All other machines contain a single job of size 1; see Figure 2. The newly arriving job has size 1.
The optimum makespan is 1 + 1

m and the makespan achievable by any local strategy is 3
2 (by scheduling

the new job e.g. on machine 1 and migrating all small jobs to other machines). �

4. A 4
3
-Competitive Strategy with Migration Factor 4 Taking up the line of research pursued

in Section 3, we show that competitive ratio 4
3 can be achieved by a more sophisticated algorithm with

migration factor 4.

8

m1 2 3 · · ·
Optimal initial schedule

m1 2 3 · · ·
Optimal final schedule

Figure 2: An instance where local migration is not better than 3
2 -competitive.

Procedure 3
Input: A schedule S for a set of jobs N and a new job j 6∈ N .
Output: A schedule for N ∪ {j}.
Choose one of the following m + 1 options which minimizes the resulting makespan.

Option 0: Assign job j to a least loaded machine.

Option i [for i ∈ {1, . . . ,m}]: If pj < max{ 1
2p(S−1(i)), pmax(S−1(i))}, then skip Phase 1 and set ` := j.

Phase 1: Remove all jobs from machine i and schedule job j there. Assign the removed jobs
successively to a least loaded machine, except for the largest job ` which is handled in Phase 2.

Phase 2: Choose one of the following m+1 sub-options which minimizes the resulting makespan.

Sub-option 0: Assign job ` to a least loaded machine.
Sub-option k [for k ∈ {1, . . . ,m}]: Ignoring the largest job on machine k, repeatedly remove

jobs from this machine; stop before the total size of removed jobs exceeds 2p`. Assign job `
to machine k. Assign the removed jobs successively to a least loaded machine.

Theorem 4.1 Given a 4
3 -approximate schedule for N and a new job j 6∈ N , Procedure 3 outputs a

4
3 -approximate schedule for N ∪ {j}. The migration factor is bounded by 4.

Proof. We first prove that the migration factor in Option i > 0 is bounded by 4. If Phase 1 is
not skipped, then the total processing time of jobs migrated in Phase 1 is p(S−1(i)) ≤ 2pj . Moreover,
the total processing time of jobs migrated in Phase 2 is bounded by 2p`. Notice that p` = pj or p` =
pmax(S−1(i)) ≤ pj . Thus, the total processing time of migrated jobs is bounded by 4pj .

We partition the set of jobs N ∪ {j} into subsets of small, medium and large jobs. A job j′ is small
if pj′ ≤ 1

3opt′ and it is large if pj′ > 2
3opt′. Otherwise, if 1

3opt′ < pj′ ≤ 2
3opt′ we say that job j′

is medium. If job j is small, then Option 0 yields a 4
3 -approximate schedule by Corollary 2.1. We can

therefore assume from now on that j is medium or large.

In an optimal schedule for N ∪ {j} a large job can share a machine only with small jobs. Since j
is medium or large, the number m′ of large jobs in N is bounded by m − 1. Moreover, in an optimal
schedule for N ∪ {j} at most two medium jobs can share a machine such that the number of medium
jobs in N is at most 2(m − m′) − 1 (the −1 is due to the fact that j is medium or large). Thus there
exists a machine i that contains at most one medium job and no large jobs in the given schedule for N .
We show that Option i yields a 4

3 -approximate schedule for N ∪ {j}.

9

We first argue that the schedule for (N ∪ {j}) \ {`} after Phase 1 has makespan at most 4
3opt′. If

Phase 1 is being skipped, this is obvious. Otherwise, job j is assigned to the empty machine i. By choice
of i the jobs in S−1(i) \ {`} are small such that assigning them successively to a least loaded machine
does not cause a problem with respect to the bound 4

3opt′ by Corollary 2.1.

It remains to consider Phase 2 where a schedule S′ for (N ∪ {j}) \ {`} with makespan at most 4
3opt′

and job ` are given. We first argue that job ` is medium or small. If Phase 1 has been skipped, then ` = j
and p` = pj < 1

2p(S−1(i)) ≤ 2
3opt′. Otherwise, if Phase 1 has not been skipped, job ` is medium or

small by choice of i.

If ` is small, Sub-option 0 yields a 4
3 -approximate schedule by Corollary 2.1. We can therefore assume

from now on that ` is medium.

By the same argument already used above for schedule S, there exists a machine i′ such that S′−1(i′)
contains at most one medium job and no large jobs. We show that Sub-option i′ yields a 4

3 -approximate
schedule for N ∪ {j}.

Let `′ denote the largest job on machine i′. Since all jobs removed from machine i′ in Sub-option i′

are small, assigning them successively to a least loaded machine does not cause a problem with respect to
the bound 4

3opt′. It therefore remains to consider the situation on machine i′ after assigning job ` to it.
If all jobs except `′ are removed from i′, then assigning ` yields a total load of p`′ +p` ≤ 4

3opt′ (since ` is
medium and `′ is medium or small). Otherwise, if apart from `′ other (small) jobs remain on machine i′,
then the total size of jobs removed is larger than 2p` − 1

3opt′ > p` (since ` is medium). Therefore the
total load on machine i′ after assigning job ` is at most 4

3opt′. �

5. The Two Machine Case In this section we present an online algorithm for the two machine
case which achieves competitive ratio 7

6 with migration factor 1. Before we discuss the algorithm, we first
prove that this result is best possible.

Theorem 5.1 Any online algorithm with migration factor at most 1 has competitive ratio at least 7
6 .

Proof. Consider an instance consisting of four jobs with sizes 1
3 , 1

3 , 1
2 , and 1

2 . The optimal makespan
is obviously opt = 5

6 . It is easy to verify that the only 7
6 -approximate schedule is the optimal schedule

that assigns one job of size 1
3 and one job of size 1

2 to each machine. After the arrival of a new job j of
size pj = 1

3 , the optimal makespan is opt′ = 1. With migration factor 1, however, one can only achieve
makespan 7

6 . �

Before we present our particular online algorithm, we first prove the existence of an online algorithm
with competitive ratio 7

6 and migration factor 1. We even show that there is such an online algorithm
which is robust and uses only local migration; see Section 3 for the definitions of robustness and local
migration.

Lemma 5.1 Consider an arbitrary 7
6 -approximate schedule for a given set of jobs N on two machines

and a newly arriving job j. There is a subset of jobs X of total size p(X) ≤ pj residing on one of the two
machines such that scheduling job j on this machine and migrating the jobs in X to the other machine
yields a 7

6 -approximate schedule for N ∪ {j}.

Proof. If pj ≤ 1
3opt′, it follows from Corollary 2.1 that assigning job j to a least loaded machine

yields the desired schedule, i.e., X can be chosen to be the empty set in this case. In the following we
assume that pj > 1

3opt′.

Consider an optimal schedule for N ∪ {j}. We describe the difference between this optimal schedule
and the given schedule for N ; see Figure 3. Let δ1 be the subset of jobs assigned to the first machine
in both schedules. Similarly, ∆2 is the set of jobs assigned to the second machine in both schedules.
The remaining two sets δ2 and ∆1 capture the differences between these two schedules except for job j,
which is only present in the optimal schedule; see Figure 3. In the following we assume without loss of
generality that p(δ1) ≤ p(δ2). Since

p(δ1) + p(δ2) + pj ≤ opt′ , (2)

10

opt′

δ1

∆1

1

δ2

∆2

2

Given schedule for N

j

δ1

δ2

1 2

∆2

∆1

Optimal schedule for N ∪ {j}

Figure 3: Comparison of given schedule for N and optimal schedule for N ∪ {j} on two machines.

we get p(δ1) < 1
3opt′ as pj > 1

3opt′. Also notice that

p(∆1) + p(∆2) ≤ opt′ . (3)

Without exceeding migration factor 1, we can remove the subset of jobs δ1 from the first machine,
assign j to this machine, and then assign all jobs in δ1 to the least loaded machine. If pj +p(∆1) ≤ 7

6opt′,
we are done by Corollary 2.1; set X := δ1 or X := ∅, depending on which machine has smaller load after j
has been scheduled. We thus assume from now on that

pj + p(∆1) > 7
6opt′ (4)

and thus, by (3),

pj > p(∆2) + 1
6opt′ . (5)

We distinguish two cases.

Case 1: p(∆2) ≤ 1
3opt′. Since pj + δ2 ≤ opt′ by (2), removing the jobs in ∆2 from the second

machine, assigning job j to this machine, and then assigning all jobs in ∆2 to the least loaded machine
yields the desired result by Corollary 2.1; set X := ∆2 or X := ∅, depending on which machine has
smaller load after j has been scheduled.

Case 2: p(∆2) > 1
3opt′. Then pj > 1

2opt′ by (5) and thus p(δ1) + p(δ2) < 1
2opt′ by (2).

Since p(∆1) < 2
3opt′ by (3), we get

p(∆1) + p(δ1) + p(δ2) < 7
6opt′ . (6)

If pj +p(∆2) ≤ 7
6opt′, then X := δ2 is a feasible choice and we are done. Otherwise, pj +p(∆2) > 7

6opt′

together with (4) and (3) implies that pj > 2
3opt′. As a consequence of (2) we get p(δ1)+p(δ2) < 1

3opt′.
Moreover, since p(δ1) ≤ p(δ2) we obtain p(δ1) < 1

6opt′. By (3) we get p(∆1) + p(∆2) + p(δ1) < 7
6opt′.

Therefore X := ∆2 is a feasible choice and the proof is complete. �

Of course, the result in Lemma 5.1 can be easily turned into an online algorithm with competitive
ratio 7

6 and migration factor 1 using brute force: Simply determine the subset of jobs X by complete
enumeration. The following more efficient algorithm is based on the intuition that it is sufficient to know
those jobs in X whose size is at least 1

3opt′. The remaining jobs can be chosen greedily. We call a job
in the initial schedule S large if it is among the three largest jobs on its machine. Otherwise, it is small.
Since in a 7

6 -approximate schedule for N there are at most three jobs of size at least 1
3opt′ on each

machine, we know that small jobs have size at most 1
3opt′. For i ∈ {1, 2}, we define a family of subsets

of N by

Li := {Y ⊆ S−1(i) | p(Y) ≤ pj and Y only contains large jobs} .

As there are at most three large jobs on machine i in schedule S, the family Li contains at most 23

subsets of jobs.

11

Procedure 4
Input: A schedule S for a set of jobs N and a new job j 6∈ N .
Output: A schedule for N ∪ {j}.
We define an option for each i = 1, 2 and Y ∈ Li. Choose one of these (at most 16) options which
minimizes the resulting makespan.

Option i, Y : Migrate all jobs in Y to the other machine and assign job j to machine i. Consider the
small jobs in S−1(i) in arbitrary order: Migrate a small job unless the total size of migrated jobs
will exceed pj or migrating the job will not lead to an improved makespan.

Theorem 5.2 Given a 7
6 -approximate schedule for N and a new job j 6∈ N , Procedure 4 outputs a

7
6 -approximate schedule for N ∪ {j}. The migration factor is at most 1.

Proof. The bound on the migration factor is clear from the description of Procedure 4. Let i ∈ {1, 2}
and X ⊆ S−1(i) be a subset as in Lemma 5.1. Moreover, let Y ⊆ X be the subset of large jobs in X. We
prove that Option i, Y yields a 7

6 -approximate schedule for N ∪ {j}. We distinguish two cases.

Case 1: X = ∅. In this case, assigning job j to machine i yields a 7
6 -approximate schedule for N ∪{j}.

In Option i, ∅, our algorithm assigns j to machine i and afterwards only migrates small jobs if this
decreases the makespan. Therefore it also outputs a 7

6 -approximate schedule for N ∪ {j}.

Case 2: X 6= ∅. In this case we may assume that assigning job j to any of the two machines yields
a schedule with makespan strictly larger than 7

6opt′ (otherwise we can choose X := ∅ and are back in
Case 1). In other words,

p(S−1(1)) > 7
6opt′ − pj and p(S−1(2)) > 7

6opt′ − pj . (7)

We refer to machine i in the following as the first machine and to the other machine as the second
machine. We first argue that the load of the second machine in the schedule computed by Option i, Y
is at most 7

6opt′. Since Y ⊆ X, migrating the large jobs in Y cannot increase the load of the second
machine beyond 7

6opt′. Thus, before we start to migrate small jobs, the load of the second machine is
at most 7

6opt′. It follows from Corollary 2.1 that the load of the second machine remains below 7
6opt′

if we improve the makespan by migrating small jobs of size at most 1
3opt′.

It remains to show that the load of the first machine i in the schedule computed by Option i, Y is at
most 7

6opt′. We distinguish two sub-cases.

Case 2a: All small jobs in S−1(i) are migrated to the second machine in Option i, Y . In this case we
have migrated all jobs in X and possibly some more. In particular, the load of machine i in our schedule
is at most the load of machine i in the 7

6 -approximate schedule described in Lemma 5.1.

Case 2b: There is a small job k ∈ S−1(i) which is not migrated in Option i, Y . There can be two
reasons for not migrating job k. If k is not migrated because this does not decrease the makespan, then
the load of machine i is at most 7

6opt′ by Corollary 2.1 and we are done. Otherwise, the total size of
jobs that have already been migrated is larger than pj − pk ≥ pj − 1

3opt′. Because of (7) the load of the
second machine is at least 7

6opt′ − pj + pj − 1
3opt′ = 5

6opt′. As the total load of the two machines is
at most 2opt′, the load of machine i is at most 7

6opt′. �

6. An Online Approximation Scheme with Constant Migration The results presented in
Section 3, 4, and 5 raise the question how far the competitive ratio for online algorithms with constant
migration factor can be decreased. We first prove that optimality (i.e., competitive ratio 1) cannot be
achieved. However, for any fixed ε > 0 we can get down to competitive ratio 1 + ε.

The following lemma states that online algorithms with constant migration factor and competitive
ratio 1 do not exist.

Lemma 6.1 Any online algorithm which always maintains an optimal solution has migration factor Ω(m).

Proof. Consider a scheduling instance with m machines and 2m − 2 jobs, two of size i
m for all

i = 1, . . . ,m− 1. Up to permutations of machines, any optimum schedule has the structure depicted

12

1

m321
Optimal initial schedule Optimal final schedule

1 2 3 m

new
job

Figure 4: An instance where all machine configurations have to change to maintain optimality.

in the left part of Figure 4. The optimum makespan is 1 − 1
m . When a new job of size 1 arrives, the

optimum makespan increases to 1. Again, the structure of an optimum schedule for the enlarged instance
is unique; see the right hand side of Figure 4. From each machine in {2, . . . ,m − 1}, at least one of the
two jobs has to move. Hence the total size of jobs that have to be migrated is at least

1
m

m−2∑
i=1

min{i, m− 1− i} ≥ 1
m

bm−2
2 c∑

i=1

i

which is in Ω(m). �

In the remainder of this section, ε > 0 is a fixed constant. (In the following we assume without
loss of generality that ε < 1.) We develop an algorithm with competitive ratio 1 + O(ε) and constant
migration factor β(ε). This algorithm is based on a combination of several techniques known from
the area of polynomial time approximation schemes for machine scheduling problems. The root of the
presented method is the polynomial time approximation scheme by Hochbaum and Shmoys [18] and
its refinements [17]. The pivotal point of our online approach is to establish a connection to classical
sensitivity analysis for integer linear programming.

The following observation belongs to the folklore in the field of scheduling; see, e.g., [1].

Observation 6.1 Rounding up each job’s processing time to the nearest integer power of 1+ ε increases
the makespan of an arbitrary schedule at most by a factor of 1+ε. In particular, in specifying a (1+O(ε))-
competitive algorithm we can assume that all processing times are integer powers of 1 + ε.

In the remainder of this section we thus consider the situation when all processing times are integer
powers of 1 + ε. The current set of jobs is denoted by N and the newly arriving job by j. Moreover we
set N ′ := N ∪ {j}. A job in N ′ is called large if its processing time is at least ε lb(N ′) where, according
to Observation 2.1,

lb(N ′) := max
{

p(N ′)
m , pmax(N ′)

}
;

otherwise, it is called small. The subsets of large and small jobs in N ′ are denoted by N ′
L and N ′

S,
respectively. Notice that N ′ is the disjoint union of N ′

L and N ′
S. We also define a much finer partition of

the jobs in N ′ into classes of equal-size jobs N ′
i , i ∈ Z, with

N ′
i := {j′ ∈ N ′ | pj′ = (1 + ε)i} .

Moreover, let NL := N ′
L ∩N , NS := N ′

S ∩N , and Ni := N ′
i ∩N for i ∈ Z. Then N is the disjoint union

of NL and NS; also the subsets Ni, i ∈ Z, form a partition of N .

It is a well known fact from the area of approximation algorithms for machine scheduling problems
that the crucial skeleton of a schedule is given by the assignment of large jobs. Due to Corollary 2.1 the

13

small jobs can later be filled in greedily. We start by describing the set of all schedules of large jobs as
the set of integral lattice points of a polyhedron.

Let I := {i ∈ Z | ε lb(N ′) ≤ (1 + ε)i ≤ pmax(N ′)} denote the index set of those classes that might
contain large jobs such that N ′

L =
⋃

i∈I N ′
i and NL =

⋃
i∈I Ni. We can bound the number of such job

classes as follows.

Observation 6.2 The number |I| of classes of large jobs is at most O
(

1
ε log 1

ε

)
.

Proof. By definition of I it holds that

|I| ≤ 1 + log1+ε

pmax(N ′)
ε lb(N ′)

≤ 1 + log1+ε
1
ε ≤ 1 + 2

ε log 1
ε ∈ O

(
1
ε log 1

ε

)
.

This concludes the proof. �

Given an assignment of large jobs to machines, we say that a particular machine obeys configuration
k : I → N0 if, for all i ∈ I, exactly k(i) jobs of size (1 + ε)i are assigned to this machine. The set of
configurations that can occur in any schedule for N ′

L is denoted by

K := {k : I → N0 | k(i) ≤ |N ′
i | for all i ∈ I} .

Up to permutations of machines and up to permutations of equal size jobs, an arbitrary schedule for N ′
L

can be described by specifying, for each k ∈ K, the number yk of machines that obey configuration k.
Conversely, a vector y ∈ N0

K specifies a feasible m-machine-schedule for N ′
L if and only if∑

k∈K

yk = m , (8)

i.e., the schedule uses exactly m machines, and∑
k∈K

k(i) yk = |N ′
i | for all i ∈ I, (9)

i.e., the set of jobs assigned to the machines is N ′. We denote the set of vectors y ∈ N0
K satisfying (8)

and (9) by S′. Thus, S′ represents the set of all schedules for N ′
L (up to permutations of machines and

up to permutations of equal size jobs). If we replace |N ′
i | with |Ni| on the right hand side of (9), then

constraints (8) and (9) characterize the set S of all schedules for NL.

For a configuration k ∈ K let
load(k) :=

∑
i∈I

(1 + ε)i k(i)

denote the load of a machine obeying configuration k. The makespan of a schedule y ∈ S or y ∈ S′ is
thus equal to max{load(k) | yk > 0}. For µ ≥ 0 we denote the set of configurations of load at most µ by

K(µ) := {k ∈ K | load(k) ≤ µ} .

The subsets of all schedules for NL and N ′
L with makespan at most µ are denoted by

S(µ) := {y ∈ S | yk = 0 if load(k) > µ}

and

S′(µ) := {y ∈ S′ | yk = 0 if load(k) > µ} ,

respectively.

In the following, we usually interpret a schedule y ∈ S(µ) or y ∈ S′(µ) as a vector in N0
K(µ) by ignoring

all zero-entries corresponding to configurations in K \K(µ). We can thus write

S(µ) = {y ∈ N0
K(µ) | A(µ) y = b}

and

S′(µ) = {y ∈ N0
K(µ) | A(µ) y = b′} ,

where A(µ) is a matrix in N0
(1+|I|)×|K(µ)| and b, b′ are vectors in N0

1+|I|. The first row of the linear
system A(µ) y = b′ corresponds to constraint (8); the remaining |I| rows correspond to constraints (9).

The next observation is crucial for applying sensitivity analysis of integer linear programming later.

14

Observation 6.3 The vectors b and b′ are equal for all but at most one entry where they differ by 1.

Proof. The first entry of both b and b′ is equal to m (see the right hand side of (8)). The remaining
entries are equal to |Ni| and |N ′

i |, respectively. Notice that |Ni| = |N ′
i | unless j ∈ N ′

i . In the latter
case |N ′

i | = |Ni|+ 1. �

The next lemma contains the key insight for the result presented in this section.

Lemma 6.2 Consider a schedule for NL and denote its makespan by µ. This schedule can be turned into
a schedule for N ′

L with makespan at most max{µ,opt(N ′
L)} while touching at most 2O(1

ε log2 1
ε) machines.

Proof. Let µ′ := max{µ,opt(N ′
L)}. If NL = N ′

L (i.e., if j is small), there is nothing to be shown.
Moreover, if µ′ ≥ 2opt(N ′

L), the required schedule can be obtained by simply assigning j to the least
loaded machine. Notice that the load of this machine as well as the size of job j are at most opt(N ′

L).
We can therefore assume in the following that j ∈ N ′

L and µ < 2opt(N ′
L).

Let y ∈ S(µ′) denote the given schedule for NL. Then, y satisfies

A(µ′) y = b , y ∈ N0
K(µ′) . (10)

We are looking for a schedule y′ ∈ S′(µ′), that is, y′ must satisfy

A(µ′) y′ = b′ , y′ ∈ N0
K(µ′) . (11)

By Observation 6.3, the right hand sides of the systems of linear equations in (10) and (11) are equal
for all but one entry where they differ by 1. Using a sensitivity result from integer linear programming2

there exists a solution y′ to (11) satisfying

‖y − y′‖∞ ≤ 3
∣∣K(µ′)

∣∣ ∆ ,

where ∆ is an upper bound on the absolute value of any sub-determinant of the matrix A(µ′). The
number of machines whose configurations are different in schedules y and y′ is bounded from above by

‖y − y′‖1 ≤
∣∣K(µ′)

∣∣ · ‖y − y′‖∞ ≤ 3
∣∣K(µ′)

∣∣2 ∆ , (12)

To complete the proof, we have to show that the right hand side of (12) is constant. First we give an
upper bound on the number of configurations |K(µ′)|, i.e., on the number of machine configurations with
load at most µ′. Since each job in N ′

L has size at least

ε lb(N ′)
(1)

≥ ε
2 opt(N ′) ≥ ε

2 opt(N ′
L) > ε

4 µ′ ,

there are less than 4
ε jobs in any configuration k ∈ K(µ′) with load at most µ′; in particular, it holds

that k(i) < 4
ε for all i ∈ I. This yields∣∣K(µ′)

∣∣ ≤
(

4
ε

)|I| = 2|I| log
4
ε ∈ 2O(1

ε log2 1
ε) (13)

by Observation 6.2.

We now turn to ∆ which must be an upper bound on the absolute value of any sub-determinant of
the matrix A(µ′). The entries in the first row of A(µ′) are all 1 (see (8)) and the remaining entries are
of the form k(i) < 4

ε (see (9)). The maximum dimension of a square sub-matrix of A(µ′) is at most the
number of rows which is 1 + |I|. Hence the absolute value of any sub-determinant is upper-bounded by

∆ := (1 + |I|)!
(

4
ε

)|I| ≤
(
(1 + |I|) 4

ε

)|I| = 2|I|(log(1+|I|)+log 4
ε) ∈ 2O(1

ε log2 1
ε) . (14)

The claimed result follows by plugging the upper bound (13) on
∣∣K(µ′)

∣∣ and the upper bound (14) on ∆
into (12). �

We now return to the complete set of jobs N ′ also including small jobs. Building upon Lemma 6.2 we
show how to incorporate small jobs in the following theorem.

2For the convenience of the reader we quote the used result:

Corollary 17.2a (from [28]). Let A be an integral m × n-matrix, such that each subdeterminant of A is at most ∆ in

absolute value, let b′ and b′′ be column m-vectors, and let c be a row n-vector. Suppose max{cx | Ax ≤ b′; x integral} and

max{cx | Ax ≤ b′′; x integral} are finite. Then for each optimum solution z′ of the first maximum there exists an optimum

solution z′′ of the second maximum such that ‖z′ − z′′‖∞ ≤ n∆(‖b′ − b′′‖∞ + 2).

15

Theorem 6.1 Any (1+ ε)-approximate schedule for N can be turned into a (1+ ε)-approximate schedule
for N ′ = N ∪ {j} such that the total size of jobs that have to be moved is bounded by a constant β(ε)
times pj with β(ε) ∈ 2O(1

ε log2 1
ε).

Proof. We distinguish two cases. If the newly arrived job is small, i.e., pj < ε lb(N ′), then j can
simply be assigned to a least loaded machine by Corollary 2.1 and no job in N has to be moved.

It remains to consider the situation when job j is large. The given schedule for N induces a schedule
for NL with makespan µ ≤ (1 + ε)opt(N) ≤ (1 + ε)opt(N ′). By Lemma 6.2, the latter schedule can be
turned into a schedule for N ′

L with makespan at most

max{µ,opt(N ′
L)} ≤ (1 + ε)opt(N ′) ,

by touching only 2O(1
ε log2 1

ε) machines. In the following, this subset of machines of constant size is
denoted by M ′. We construct a schedule for N ′ as follows:

(i) Start with the schedule for N ′
L discussed above.

(ii) The small jobs in NS which the given schedule for N assigned to one of the machines in M \M ′

are assigned to the same machine again.
(iii) The remaining jobs in NS = N ′

S are assigned one after another to a least loaded machine.

The makespan of the partial schedule constructed in steps (i) and (ii) is bounded by the maximum of
the makespan of the given schedule for N and the optimal makespan of the schedule for N ′

L. It is thus
bounded by (1+ ε)opt(N ′). Assigning small jobs greedily to a least loaded machine in step (iii) therefore
results in a (1 + ε)-approximate schedule for N ′ by Corollary 2.1.

Finally, notice that, in the whole process, only jobs that have initially been scheduled on machines M ′

are moved. The total size of these jobs is bounded from above by

2opt(N ′) |M ′|
(1)

≤ 4 lb(N ′) |M ′| ≤ pj
4
ε |M

′| .

We can therefore set β(ε) := 4
ε |M

′| ∈ 2O(1
ε log2 1

ε). �

Corollary 6.1 Theorem 6.1 can be strengthened by adding the requirement that the schedules for N
and N ′ only differ on constantly many machines.

Proof. In the proof of Theorem 6.1, the only critical step in the construction of the schedule for N ′

is the reassignment of small jobs. In general the number of small jobs which need to be reassigned is not
constant. Moreover, in the worst case, every such small job is assigned to a different machine.

This problem can be solved by grouping small jobs into batches of size roughly ε lb(N ′). Each batch
can be treated as one single small job. In this way we can reduce the number of small jobs which need
to be reassigned to a constant. �

We can finally state the main result of this section.

Theorem 6.2 There exists a (1 + ε)-competitive online algorithm with constant migration factor β(ε) ∈
2O(1

ε log2 1
ε) such that the running time for incorporating a newly arrived job is constant. More precisely,

the algorithm maintains and updates a data structure in time 22O(1
ε

log2 1
ε
)

in each iteration3. From this
data structure a (1 + ε)-approximate schedule can be obtained in time linear in the number of jobs (and
not depending on ε).

Proof. Before we discuss the required data structure in detail, we first give a rough outline and
intuition.

We consider again the scheduling strategy described in the proof of Theorem 6.1. In Step (i) we ignore
all small jobs and construct the schedule for the large jobs N ′

L. This schedule is stored as a vector y ∈ N0
K

(array) in our data structure. It follows from the proof of Lemma 6.2 that only a constant number of
3Here we make the common assumption that operations with numbers of polynomial size take constant time.

16

or Batch Head

Config Head

of
machines

Machine Node

Machine Node

Machine Node

Machine Node

Batch Head

array of Config Heads – each pointing to the set of machines

with same configuration with respect to NL.

next

prev

Batch Head

Batch Head

Job Node

Job Node

Job Node

size

next

total
size

next

Figure 5: The date structure used to represent a schedule.

different possibilities have to be taken into consideration in order to find this schedule. The schedule
for N ′

L in Step (i) can thus be found in constant time. Step (ii) is trivial; nothing has to be changed on
the machines in M \M ′.

We finally turn to Step (iii) where the small jobs that were previously assigned to M ′ are successively
reassigned to a least loaded machine. In order to perform this step in constant time, we apply the
same trick as in the proof of Corollary 6.1 and assume that small jobs are grouped into batches of size
roughly ε lb(N ′). Each batch can be treated as one single small job such that the number of small jobs
that we have to deal with in Step (iii) is constant. We finally have to argue that we can always find a
least loaded machine in constant time. In fact, since we are only looking for a (1 + O(ε))-approximate
schedule, it is not really necessary to find a least loaded machine. It suffices to find a machine whose
load differs from the minimum load by at most ε lb(N ′). We can therefore assume that the machines are
assigned to O(1

ε) buckets according to their current load where every bucket contains machines whose
load is within a range of at most ε lb(N ′). In Step (iii) it then suffices to always choose a machine from
the non-empty bucket that contains the machines of smallest loads. This can obviously be done in O(1

ε)
time.

We now give a detailed description of the data structure. We assume in the following without loss
of generality that ε < 1. A (1 + ε)-approximate schedule for N can be represented using the following
simple data structure. We assume that initially the schedule is given to us in this form. Later we show
how to update it in constant time while scheduling job j. The machine configurations are represented
using structures as shown in Figure 5.

There is an array of Config Heads of dimension |K(4 lb(N ′))| ∈ 2O(1
ε log2 1

ε) (notice that 4 lb(N ′) ≥
2opt(N ′) > (1 + ε)opt(N ′)), one for each possible configuration k ∈ K(4 lb(N ′)). Each Config Head
corresponding to a configuration k stores the number of machines yk scheduled according to this config-
uration. Moreover, each Config Head points to the list of machines (list of Machine Nodes) obeying that
configuration.

Each Machine Node points to the list of jobs scheduled on that machine, grouped into batches. Each
large job is put into a batch of its own. The small jobs on a machine are grouped into at most O(1

ε)
batches of size at most ε lb(N). Thus there is only a constant number O(1

ε) of batches on any machine.
Each batch has a Batch Head that points to the list of jobs (Job Nodes) in the batch. Since these jobs
can recursively be grouped into smaller batches again, the list might also contain Batch Heads. The jobs
that are scheduled on a machine are thus represented by a tree rooted at the Machine Node whose inner
nodes are batches and whose leafs are the jobs. Since every inner node has at least two child nodes, the
size of the tree is linear in the number of jobs on the machine (i.e., leaf nodes).

Finally, the machines are partitioned into O(1
ε) buckets according to their current load. Each bucket

contains machines whose load lies within an interval of size at most ε lb(N ′).

17

We next discuss the details of updating the data structure when scheduling job j. If j is small (i.e.,
pj < ε lb(N ′)), then:

(i) Pick any machine i from the non-empty bucket containing the least loaded machines. Since there
are O(1

ε) buckets, this takes O(1
ε) time.

(ii) Find a batch of small jobs on machine i of total size at most ε lb(N ′)− pj and add job j to this
batch. If no such batch exists, create a new batch for job j. Consider all batches and merge
small batches into larger batches of size at most ε lb(N ′). All this takes O(1

ε) time since there
are at most O(1

ε) batches on machine i.
(iii) Reassign machine i to a bucket according to its new load. Also this takes O(1

ε) time.

The overall time needed to assign a small job to an approximately least loaded machine is thus O(1
ε). If

the new job j is large (i.e., pj ≥ ε lb(N ′)), we proceed as follows:

(iv) Enumerate all 22O(1
ε

log2 1
ε
)
schedules (vectors) y′ ∈ S′ for N ′

L with ‖y−y′‖∞ ∈ 2O(1
ε log2 1

ε). Choose

one with minimum makespan. This takes 22O(1
ε

log2 1
ε
)

time.
(v) The component-wise difference between y and y′ specifies a subset of configurations and a non-

zero number of machines that should be modified for each such configuration. For each configu-
ration we remove the required number of machines from the front of the machine list pointed to
by the respective Config Head. Since the total number of required machines is 2O(1

ε log2 1
ε) (see

Lemma 6.2), this takes 2O(1
ε log2 1

ε) time.
(vi) Remove all batches of small jobs from these machines and reschedule the remaining jobs among

these machines in order to achieve the configurations indicated by y′. Since the number of jobs
and batches on each machine is O(1

ε), this takes 2O(1
ε log2 1

ε) time.
(vii) Assign the machines to their new Config Heads and to buckets according to their load. This

takes time 2O(1
ε log2 1

ε) again.
(viii) Each of the 2O(1

ε log2 1
ε) batches of small jobs is being reassigned as in the small job case discussed

above. This takes 2O(1
ε log2 1

ε) time.

The running time of the entire procedure is 22O(1
ε

log2 1
ε
)
.

There is one more issue that needs to be discussed. Whenever a new job arrives, the lower bound lb on
the makespan of an optimal schedule might increase such that the classification of large and small jobs has
to be updated. This means, that the list of configurations that are currently being used changes. Certain
classes of formerly large jobs are now small and therefore neglected in the updated configurations. Notice,
however, that machines belonging to the same Config Head before the update still belong to a common
Config Head after the update. It is thus sufficient to update the array of Config Heads, potentially
merging several old Config Heads into a new one without touching all Machine Nodes. This can be done
in 2O(1

ε log2 1
ε) time.

Notice that there is no need to assign the jobs that became small immediately to batches of small jobs.
On each machine this is done as soon as the machine is being touched in the future. We always preserve
the invariant that the number of batches of small jobs is O(1

ε) on any machine.

Due to the monotonically increasing lower bound lb, we also need to update the bucket structure from
time to time by merging two buckets into one. This can obviously also be done in O(1

ε) time.

Notice finally, that from the described data structure a corresponding schedule can be obtained in
linear time. For each Machine Node parse the tree containing the jobs scheduled on the machine. As
mentioned above, the size of the tree is linear in the number of jobs contained in it. This concludes the
proof. �

The migration factor β(ε) we obtain is exponential in 1
ε . This raises the question whether a migration

factor that is polynomially bounded in 1
ε is possible. We do not know of an instance proving the converse

and leave the question as an open problem.

As a corollary to Theorem 6.2, we obtain the following known result; see, e.g., [17].

Corollary 6.2 There is a polynomial time approximation scheme with linear running time for the
scheduling problem P | |Cmax.

18

7. Maximizing the Minimum Machine Load An alternative, yet less frequently used objective
for machine scheduling is to maximize the minimum machine load. We have, however, a concrete applica-
tion using this objective function that was the original motivation for our interest in bounded migration:
Storage area networks (SAN) usually connect many disks of different capacity and grow over time. A
convenient way to hide the complexity of a SAN is to treat it as a single big, fault tolerant disk of huge
capacity and throughput [7, 26]. A simple scheme with many nice properties implements this idea if we
manage to partition the SAN into several sub-servers [26] of about equal size. Mapping to the scheduling
framework, the disks correspond to jobs and the sub-servers correspond to machines. Each sub-server
stores the same amount of data. For example, if we have two sub-servers, each of them stores all the
data to achieve a fault tolerance comparable to mirroring in ordinary RAID level 0 arrays [22]. More
sub-servers allow for a more flexible tradeoff between fault tolerance, redundancy, and access granularity.
In any case, the capacity of the server is determined by the minimum capacity of a sub-server. Moreover,
it is not acceptable to completely reconfigure the system when a new disk is added to the system or when
a disk fails. Rather, the user expects a “proportionate response”, i.e., if she adds a disk of x GByte
she will not be astonished if the system moves data of this order of magnitude but she would complain
if much more is moved. Our theoretical investigation confirms that this ‘common sense’ expectation is
indeed reasonable.

We concentrate on the case without job departures (disk failures) and present a 1
2 -competitive online

algorithm with migration factor 1. In order to motivate the scheduling procedure, we first discuss a
negative result. The following lemma shows that it is not possible to start with an arbitrary 1

2 -approximate
schedule for N and obtain a 1

2 -approximate schedule for N ∪ {j} with constant migration factor.

Lemma 7.1 There is a 1
2 -approximate schedule on m machines such that upon the arrival of a new job

it is not possible to obtain a 1
2 -approximate schedule with migration factor less than m− 2.

Proof. Consider the following m-machine schedule for 3m − 1 jobs of unit size. Machine 1 con-
tains 2m jobs while all remaining machines contain only one job. The optimal minimum load for this
instance is 2 and the considered schedule is 1

2 -approximate. When a new job of size 1 arrives, the new
optimal minimum load is 3. But to achieve minimum load greater than 1, any strategy has to move at
least m− 2 jobs. �

We show that the following simple strategy, which is very similar to Procedure 1, leads to a 1
2 -

competitive online algorithm with migration factor 1.

Procedure 5
Input: A schedule for a set of jobs N and a new job j 6∈ N .
Output: A schedule for N ∪ {j}.
Repeatedly remove jobs from the least loaded machine in any order; stop before the total size of removed
jobs exceeds pj. Assign job j to this machine. Assign the removed jobs successively to a least loaded
machine.

With respect to a given schedule a machine is called multi-job machine if at least two jobs are assigned
to it. In the analysis of Procedure 5 we make use of a special structural property of schedules. A schedule
for a set of jobs N has property (∗∗) if the load of any multi-job machine is at most twice the minimum
load. For example, a schedule constructed by list scheduling in order of non-increasing processing times
has always property (∗∗). We show that Procedure 5 maintains property (∗∗).

Lemma 7.2 Given a schedule for N satisfying property (∗∗) and a new job j 6∈ N , Procedure 5 outputs
a schedule for N ∪ {j} satisfying property (∗∗).

Proof. The proof is based on the following claim.

Claim: Given a schedule satisfying property (∗∗) and a new job whose size is at most the minimum
machine load, assigning the new job to a least loaded machine maintains property (∗∗).

This claim is true since incorporating the new job does not decrease the minimum machine load and
the load of the machine the new job is assigned to increases at most by a factor of 2.

19

Let Machine i be a least loaded machine in the given schedule S for N . As a consequence of the
claim, reassigning the removed jobs in Procedure 5 successively to a least loaded machine maintains
property (∗∗). It therefore remains to show that property (∗∗) holds in the intermediate schedule imme-
diately after assigning job j to machine i (before assigning the removed jobs). Notice that the minimum
machine load in this intermediate schedule is at least the minimum machine load of the given schedule
for N . If pj ≤ p(S−1(i)), then property (∗∗) obviously holds for the intermediate schedule. Otherwise,
if pj > p(S−1(i)), then all jobs are removed from machine i such that machine i is not a multi-job machine
in the intermediate schedule. Thus property (∗∗) holds in this case as well. �

Theorem 7.1 For the objective to maximize the minimum machine load, any schedule satisfying prop-
erty (∗∗) is 1

2 -approximate. In particular, scheduling every newly arriving job according to Procedure 5
is a 1

2 -competitive algorithm with migration factor 1 for this objective.

Proof. The proof is based on the following claim.

Claim: Consider an arbitrary schedule. If there is at most one job on every machine, the schedule is
optimal. Otherwise, the maximum load of a multiple-job machine is an upper bound on the optimum.

The first part of the claim is clear. Consider an arbitrary schedule S with at least one machine
containing at least two jobs. Let L denote the maximum load of a multiple-job machine in S. In the
following we call a job large if its size is strictly larger than L. Notice that S schedules each large job on
a machine of its own.

Consider an optimum schedule S∗ and modify S∗ as follows: For each machine i: If machine i contains
a large job, then delete machine i and all jobs scheduled on it. The resulting schedule is denoted by S̄∗.
We apply exactly the same procedure to schedule S and denote the resulting schedule by S̄. Notice
that S̄∗ schedules a subset of the jobs scheduled by S̄ since each large job occupies a machine of its
own in S. Moreover, for the same reason, S̄∗ uses at least as many machines as S̄. Thus, the minimum
machine load in S̄∗ is at most the maximum machine load in S̄ which is equal to L. In particular, there
exists a machine in S̄∗ and thus in S∗ whose load is at most L. This concludes the proof of the claim.

As an immediate consequence of the claim, any schedule satisfying property (∗∗) is 1
2 -approximate.

Together with Lemma 7.2 this yields a bound of 1
2 on the competitiveness. Finally, the bound on the

migration factor is clear from the description of Procedure 5. �

We close this section with an interesting open problem. Woeginger [32] presents a PTAS for the
problem to maximize the minimum machine load on identical parallel machines. This raises the question
whether an online PTAS with constant migration factor β(ε) as in Section 6 can be obtained for the
max-min objective function. Lemma 7.1 seems to indicate that this is more tricky than for the makespan
objective. At least, it is not enough to only take care of the objective function in each iteration but also
the overall structure of the schedule has to be ‘reasonable’ such that it can be easily adapted in future
iterations without too much migration.

Acknowledgments. We thank the anonymous referees for their careful reading and their numerous
suggestions which lead to an improved presentation of the paper. We would also like to thank Gerhard
Woeginger for interesting discussions and helpful comments on the topic of this paper. Part of this work
was done while all three authors were at Max-Planck-Institut für Informatik in Saarbrücken.

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes for minimizing average weighted
completion time with release dates, Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (New York City, NY), 1999, pp. 32–43.

[2] S. Albers, Better bounds for online scheduling, SIAM Journal on Computing 29 (1999), 459–473.
[3] , Online algorithms: a survey, Mathematical Programming 97 (2003), 3–26.
[4] M. Andrews, M.X. Goemans, and L. Zhang, Improved bounds for on-line load balancing, Algorithmica

23 (1999), 278–301.
[5] Y. Azar and L. Epstein, On-line machine covering, Journal of Algorithms 1 (1998), 67–77.

20

[6] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra, New algorithms for an ancient scheduling problem,
Journal of Computer and System Sciences 51 (1995), 359–366.

[7] A. Brinkmann, K. Salzwedel, and C. Scheideler, Compact, adaptive placement schemes for non-
uniform requirements, 14th ACM Symposium on Parallel Algorithms and Architectures, 2002,
pp. 53–62.

[8] B. Chen, A. van Vliet, and G. J. Woeginger, Lower bounds for randomized online scheduling, Infor-
mation Processing Letters 51 (1994), 219–222.

[9] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, An application of bin-packing to multiprocessor
scheduling, SIAM Journal on Computing 7 (1978), 1–17.

[10] L. Epstein and A. Levin, A robust APTAS for the classical bin packing problem, Automata, Lan-
guages and Programming (M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, eds.), Lecture Notes
in Computer Science, vol. 4051, Springer, Berlin, 2006, pp. 214–225.

[11] R. Fleischer and M. Wahl, Online scheduling revisited, Journal of Scheduling 3 (2000), 343–353.
[12] D. K. Friesen, Tighter bounds for the multifit processor scheduling algorithm, SIAM Journal on

Computing 13 (1984), 170–181.
[13] M. R. Garey and D. S. Johnson, Strong np-completeness results: Motivation, examples and implica-

tions, Journal of the ACM 25 (1978), 499–508.
[14] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45

(1966), 1563–1581.
[15] , Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics 17

(1969), 263–269.
[16] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and approx-

imation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics 5
(1979), 287–326.

[17] D. S. Hochbaum, Various notions of approximation: Good, better, best, and more, Approximation
Algorithms for NP-Hard Problems (D. S. Hochbaum, ed.), Thomson, 1996, pp. 346–398.

[18] D. S. Hochbaum and D. B. Shmoys, Using dual approximation algorithms for scheduling problems:
Theoretical and practical results, Journal of the ACM 34 (1987), 144–162.

[19] D. R. Karger, S. J. Phillips, and E. Torng, A better algorithm for an ancient scheduling problem,
Journal of Algorithms 20 (1996), 400–430.

[20] M. A. Langston, Processor scheduling with improved heuristic algorithms, Ph.D. thesis, Texas A&M
University, 1981.

[21] H. W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Operations
Research 8 (1983), 538–548.

[22] D. Patterson, G. Gibson, and R. Katz, A case for redundant arrays of inexpensive disks (RAID),
Proceedings of ACM SIGMOD’88 (1988), 109–116.

[23] J. F. Rudin III, Improved bounds for the on-line scheduling problem, Ph.D. thesis, The University of
Texas at Dallas, 2001.

[24] J. F. Rudin III and R. Chandrasekaran, Improved bounds for the online scheduling problem, SIAM
Journal on Computing 32 (2003), 717–735.

[25] S. Sahni, Algorithms for scheduling independent tasks, Journal of the ACM 23 (1976), 116–127.
[26] P. Sanders, Algorithms for scalable storage servers, SOFSEM 2004: Theory and Practice of Computer

Science, vol. 2932, 2004, pp. 82–101.
[27] P. Sanders, N. Sivadasan, and M. Skutella, Online scheduling with bounded migration, Automata,

Languages and Programming (J. Diaz, J. Karhumäki, A. Lepistö, and D. Sannella, eds.), Lecture
Notes in Computer Science, vol. 3142, Springer, Berlin, 2004, pp. 1111–1122.

[28] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Chichester, 1986.
[29] J. Sgall, A lower bound for randomized on-line multiprocessor scheduling, Information Processing

Letters 63 (1997), no. 1, 51–55.
[30] J. Sgall, On-line scheduling — a survey, Online Algorithms: The State of the Art (A. Fiat and G. J.

Woeginger, eds.), Lecture Notes in Computer Science, vol. 1442, Springer, Berlin, 1998, pp. 196–231.

21

[31] J. Westbrook, Load balancing for response time, J. Algorithms 35 (2000), no. 1, 1–16.
[32] G. J. Woeginger, A polynomial-time approximation scheme for maximizing the minimum machine

completion time, Operations Research Letters 20 (1997), 149–154.

