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Quantum computing is a promising new computing paradigm that may yield both significant speedup over classical algorithms
as well as new ways to think about problems and finding novel solution algorithms. While large-scale error-corrected quantum
computers are still under development, a selection of noisy intermediate-scale quantum processing units is readily made
available by some companies via cloud access. Despite the lack of error correction, these units can be used to test established
quantum algorithms on custom problem setups. Here, we solve the finite element problem of a two-dimensional cantilever,
completely fixed on one side and loaded on the opposite side, on a 15-qubit QPU from IBM.
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1 Problem setup

The size of current Quantum Processing Units (QPUs) constrains the complexity and discretization of problems that can run
efficiently on available hardware. As an example for a 2-dimensional mechanical problem, we discretize a 2-dimensional
cantilever that is completely fixed on the left and loaded vertically on the right (cf. 1). The discretization is chosen so that the
number of degrees of freedom in the model is a power of two. Here, in total 6 nodes are used for two linear finite elements.
Since the leftmost two nodes are fixed and the problem is 2-dimensional, each of the four free nodes displays two degrees of
freedom, resulting in a total number of 8 degrees of freedom for the whole system.
The material parameters used describe aluminium, with a Young’s modulus of E = 70GPa and Poisson’s ratio of ν = 0.3.
The length of the cantilever is l = 2m, its height is h = 1m. The load applied on the top right node is f = −1 kN.

2 Linear equation system and solution algorithm

Fig. 1: Problem sketch. The cantilever
is fixed on the left and loaded on the top
right.

The linear equation system describing the discretized model is computed by assembling
the two local stiffness matrices of the finite elements to get the global stiffness matrix
and the global force vector respectively from the local force vectors, then ignoring the
rows and columns corresponding to fixed degrees of freedom. The system to solve is
Ku = f , with dimension 8. The analytical solution is computed straightforwardly (cf.
Table 1). Naturally, this system will show locking. It is not the goal of this work to
develop a perfect FE system of the problem. Instead, we are comparing the analytical
solution to the solution found by a QPU. Consequently, we can ignore all the formalities
of proper FE setups and concentrate on the solution algorithm.

3 Solving the FE problem on a QPU

Instead of working with discrete bits that can represent either 0 or 1, Quantum Comput-
ers (QCs) work with qubits as elementary units, which can represent a complex super-
position of 0 and 1 as |Ψ⟩ = α |0⟩ + β |1⟩ , α, β ∈ C. The state space of QCs grows
exponentially with each qubit added to the system, since the combined basis is formed by the tensor product of the individual
qubit bases.

The Harrow-Hassidim-Lloyd (HHL) algorithm [1] can be used to solve linear equation systems on QCs. To formulate the
problem in quantum terms, the system is expressed in terms of ket vectors K |u⟩ = |f⟩ with

K = K†,det(A) = 1 , |b⟩ =
∑

i bi |i⟩
||∑i bi |i⟩ ||

=
∑

i

βi |i⟩ , |u⟩ =
∑

i ui |i⟩
||∑i ui |i⟩ ||

=
∑

i

αi |i⟩ ,

since quantum states are normalized. The first demand for the matrix to be Hermitian is automatically satisfied, since the
stiffness matrix is real and symmetric. Setting the determinant to 1 can be done with an appropriate transformation. Since
the HHL algorithm scales strongly with the condition number of the system, a good preconditioner has to be applied before
sending the problem to a QPU. We used an incomplete LU decomposition to lower the condition number of K.
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Fig. 2: Sketch of the HHL quantum circuit, produced
with Qiskit [3]. An ancilla |A⟩, a work |W⟩, and an
input-output register |IO⟩ are necessary to transform the
right-hand side |b⟩ of the equation system into an ap-
proximation of the solution vector |u⟩.

Fig. 3: Undeformed position (blue), analytical solu-
tion (orange) and quantum-computed solution (green)
for the problem. The red bars show the standard devia-
tion of each nodal position into each direction. The red
arrow indicates the load.

Figure 2 shows a sketch of the quantum circuit with the three basic
elements comprising the algorithm. These are Quantum Phase Estima-
tion (QPE) [2], a multi-controlled y-rotation Ry , and a conditional mea-
surement performed on the ancilla qubit |A⟩0. The algorithm starts by
initializing the work register |W⟩ as the right-hand side vector |b⟩ of the
linear equation system. The QPE approximates the eigenvalues of K by
applying a succession of controlled K2k rotations, so that the work regis-
ter contains the eigenvalue approximation. Controlled on this eigenvalue
representation, the Ry gate rotates the ancilla qubit into the superposition

|A⟩ =
√

1− c2

λ̃i
2 |0⟩A + c

λ̃i
|1⟩A. The last step is an inverse QPE (uncom-

putation) that undoes the QPE from the beginning, such that the whole
QPU is now in the state

|Ψ⟩ =
∑

i

βi

[√
1− c2

λ̃i
2 |0⟩+ c

λ̃i

|1⟩A

]
⊗ |vi⟩IO ,

where the work register was omitted for brevity since it is not needed
anymore, and |b⟩ =

∑
i βi |vi⟩ is described as a superposition of K’s

eigenvectors |vi⟩. Since a measurement of a qubit projects the system
into exactly the measured state, measuring the ancilla qubit brings the
system either into the state where |A⟩ = |0⟩A, or into the state where
|A⟩ = |1⟩A. The latter option results in the global state

|Ψ⟩ =
∑

i

βi

λ̃i

|vi⟩IO = |ũ⟩ ≈ |u⟩ ,

which provides an approximation |ũ⟩ of the desired displacement vector
|u⟩. Measuring the input-output register puts the bits representing the
solution vector into the classical result register.

4 Results

The code for this work was produced using the qiskit [3] package, which also offers a direct interface to work with the QPUs
made available by IBM. The largest available unit is the ibmq_16_melbourne device [4], offering 15 qubits connected as a
ladder graph. The computation was done 200 times on this QPU. Table 1 compares the analytical solution as a reference to
the QPU solution, along with the standard deviation on the 200 shots and the relative error.

N3x N3y N4x N4y N5x N5y N6x N6y
Reference [mm] 12 -18 -12 -17 16 -49 -16 -52
Mean Quantum [mm] 30 -29 -22 -26 30 -38 -27 -26
Std. Dev. [mm] 3 2 4 3 2 2 2 2
Rel. Err. [%] -146 -64 -84 -51 -88 24 -63 51

Table 1: Analytial and quantum-computed displacements, along with standard deviation and relative error.

The standard deviation among the 200 shots is in the range of ≈10−20%, while the relative error with respect to the
reference solution is significantly higher. Figure 3 shows a plot of the node positions and the standard deviation for each
degree of freedom. Unlike in the case for a 1-dimensional cantilever [5], there is a clear bias in the solution vector. The correct
positions are not within the standard deviation of the results. It is unclear where exactly this bias comes from and further work
is required to identify the issue.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References
[1] A. W. Harrow, A. Hassidim, and S. Lloyd, Physical review letters 113 (15), 150502, (2009)
[2] A. Y. Kitaev, Russian Mathematical Surveys, 52 (6) p. 1191–1249, (1997)
[3] H. Abraham, A. Offei, I. Y. Akhalwaya, et al., Qiskit: An Open-source Framework for Quantum Computing, (2019)
[4] IBM Quantum. https://quantum-computing.ibm.com/, (2021)
[5] A. Mielke and T. Ricken, PAMM 20(1), (2020)

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com


