Foundations of computing Volume 15

Andrzej Kaczmarczyk

Algorithmic Aspects of Resource Allocation and Multiwinner
Voting: Theory and Experiments

.'ﬁ
Universitatsverlag der TU Berlin e

Andrzej Kaczmarczyk

Algorithmic Aspects of Resource Allocation
and Multiwinner Voting:
Theory and Experiments

The scientific series Foundations of computing of the
Technische Universitdt Berlin is edited by:

Prof. Dr. Stephan Kreutzer

Prof. Dr. Uwe Nestmann

Prof. Dr. Rolf Niedermeier

Foundations of computing | 15

Andrzej Kaczmarczyk

Algorithmic Aspects of Resource Allocation
and Multiwinner Voting:
Theory and Experiments

Universitéatsverlag der TU Berlin

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the

Deutsche Nationalbibliografie; detailed bibliographic data

are available on the internet at http://dnb.dnb.de.

Universitétsverlag der TU Berlin, 2021
http://www.verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2020

Gutachter: Prof. Dr. Rolf Niedermeier (TU Berlin)

Gutachter: Prof. Dr. Sylvain Bouveret (Université Grenoble Alpes)
Gutachter: Prof. Dr. Felix Brandt (TU Miinchen)

Die Arbeit wurde am 10. Dezember 2020 an der Fakultét IV unter
Vorsitz von Prof. Dr. Markus Brill erfolgreich verteidigt.

This work—except for quotes, figures and where otherwise noted—
is licensed under the Creative Commons Licence CC BY 4.0
http://creativecommons.org/licenses/by /4.0

Cover image: Mount Kazbek by Andrzej Kaczmarczyk, 2012
CC BY 4.0 | https://creativecommons.org/licenses/by/4.0

Print: docupoint GmbH
Layout/Typesetting: Andrzej Kaczmarczyk

ORCID iD Andrzej Kaczmarczyk: 0000-0003-1401-0157
http://orcid.org,/0000-0003-1401-0157

ISBN 978-3-7983-3215-7 (print)
ISBN 978-3-7983-3216-4 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Published online on the institutional repository of the
Technische Universitdt Berlin:

DOI 10.14279/depositonce-12056
http://dx.doi.org/10.14279 /depositonce- 12056

http://dnb.dnb.de
http://www.verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
http://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
http://orcid.org/0000-0003-1401-0157
http://dx.doi.org/10.14279/depositonce-12056

Zusammenfassung

Diese Arbeit befasst sich mit der Untersuchung von Themen des Forschungs-
gebiets Computational Social Choice im Lichte realer Anwendungen. Dabei
tragt sie zu einem besseren Versténdnis der Bereiche der fairen Zuordnung
und der Mehrgewinnerwahlen bei. Fiir beide Konzepte schlagen wir — inspiri-
ert von realen Anwendungen — verschiedene neue Begriffe und Erweiterungen
bestehender Modelle vor. Anschlieftend analysieren wir die Komplexitét der
Beantwortung von Berechnungsfragen, die durch die eingefiihrten Konzepte
aufgeworfen werden. Dabei fokussieren wir uns auf die parametrisierte Kom-
plexitdt. Hierzu identifizieren wir verschiedene Parameter, welche natiirliche
Merkmale der von uns untersuchten Berechnungsprobleme beschreiben. Durch
die Nutzung dieser Parameter entwickeln wir erfolgreich effiziente Algorith-
men fiir Spezialfdlle der untersuchten Probleme. Wir ergénzen unsere Analyse
indem wir zeigen, welche Parameter vermutlich nicht verwendet werden kon-
nen um effiziente Algorithmen zu finden. Dabei zeichnen wir ein umfassendes
Bild der Berechnungskomplexitéit der untersuchten Probleme. Insbesondere
konzentrieren wir uns auf vier Themen, die wir, gruppiert nach unseren beiden
Schwerpunkten, unten vorstellen. Fiir alle Themen bis auf eines prasentieren
wir Experimente, die auf Implementierungen der von uns neu entwickelten
Algorithmen basieren.

Wir konzentrieren uns zunéchst auf die faire Zuordnung unteilbarer Ressourcen.
Hier betrachten wir eine Menge unteilbarer Ressourcen und eine Gruppe von
Agenten. Jeder Agent gibt eine Bewertung des Nutzens jeder Ressource ab
und die Aufgabe besteht darin, eine "‘faire"’ Zuordnung der Ressourcen zu
finden, wobei jede Ressource hichstens einem Agenten zugeordnet werden
kann. Innerhalb dieses Bereiches konzentrieren wir uns auf die beiden folgenden
Problemstellungen.

Der soziale Kontext bei der fairen Zuordnung unteilbarer Ressourcen. In vielen
Szenarien, in denen Ressourcen zugeordnet werden sollen, ist es unwahrscheinlich,
dass jeder Agent alle anderen kennt. Vorstellbar ist beispielsweise ein Szenario,
in dem die Agenten Mitarbeiter eines grofsen Unternehmens reprisentieren. Es
ist hochst unwahrscheinlich, dass jeder Mitarbeiter jeden anderen Mitarbeiter
kennt. Motiviert durch solche Szenarien entwickeln wir ein neues Modell der
graph-basierten Neidfreiheit. Wir erweitern den klassischen Neidfreiheitsbegriff
um die sozialen Beziehungen von Agenten, die durch soziale Netzwerke modelliert

werden. Einerseits zeigen wir, dass wenn das soziale Netzwerk der Agenten
einfach ist (zum Beispiel, wenn es sich um einen gerichteten azyklischen Graph
handelt), in manchen Féllen faire Zuordnungen effizient gefunden werden konnen.
Andererseits stellen wir diesen algorithmisch positiven Ergebnissen mehrere
NP-schweren Féllen entgegen. Ein Beispiel fiir einen solchen Fall sind soziale
Netzwerke mit einem konstanten Knotengrad.

Faire Zuteilung an wenige Agenten mit begrenzter Rationalitdt. Begrenzte
Rationalitdt beschreibt die Idee, dass Menschen aufgrund kognitiver Grenzen
dazu neigen, Probleme, mit denen sie konfrontiert werden, zu vereinfachen.
Eine mogliche Folge dieser Grenzen ist, dass menschliche Agenten in der Regel
einfache Bewertungen der gewiinschten Ressourcen abgeben; beispielsweise
koénnten Agenten die verfligharen Ressourcen nur in zwei Gruppen, erwiinschte
und unerwiinschte Ressourcen, kategorisieren. Durch Anwendung von Techniken
zum Losen von Ganzzahligen Linearen Programmen zeigen wir, dass unter
der Annahme einer kleinen Anzahl von Agenten die Ausnutzung begrenzter
Rationalitdt dabei hilft, effiziente Algorithmen zum Finden neidfreier und
Pareto-effizienter Zuweisungen zu entwickeln. Weiterhin zeigen wir, dass unser
Ergebnis ein allgemeines Verfahren liefert, welches auf eine Reihe verschiedener
Fairnesskonzepte angewendet werden kann, wie zum Beispiel Neidfreiheit bis
auf ein Gut oder Neidfreiheit bis auf irgendein Gut. Auf diese Weise gewinnen
wir effiziente Algorithmen fiir eine Reihe fairer Zuordnungsprobleme (wenige
Agenten mit begrenzter Rationalitit vorausgesetzt). Dariiber hinaus zeigen wir
empirisch, dass unsere Technik in der Praxis anwendbar ist.

Weiterhin untersuchen wir Mehrgewinnerwahlen, bei denen uns eine Menge
von Wéhlern sowie ihre Préferenzen iiber eine Reihe von Kandidaten gegeben
sind. Das Ergebnis eines Mehrgewinnerwahlverfahrens ist eine Gruppe (oder eine
Menge von Gruppen im Falle eines Unentschiedens) von Kandidaten, welche die
Préferenzen der Wahler am besten einem bestimmten Ziel folgend widerspiegeln.
In diesem Kontext untersuchen wir die folgenden Themen.

Die Robustheit von Wahlergebnissen. Wir untersuchen, wie robust die Ergeb-
nisse von Mehrgewinnerwahlen gegeniiber moglicher Fehler der Wahler sind.
Unter der Annahme, dass jeder Wihler eine Stimme in Form einer Rangliste von
Kandidaten abgibt, modellieren wir einen Fehler als einen Tausch benachbarter
Kandidaten in der Rangliste. Wir zeigen, dass fiir Wahlregeln wie SNTV, k-
Approval und k-Borda die minimale Anzahl an Vertauschungen, welche zu einer
Ergebnisdnderung fiihrt, einfach zu berechnen ist. Fiir STV und die Chamberlin-
Courant-Regel ist diese Aufgabe allerdings NP-schwer. Wir schliefsen unsere
Untersuchung der Robustheit unterschiedlicher Wahlregeln ab mit einer experi-

ii

mentellen Evaluierung der durchschnittlichen Anzahl zufélliger Vertauschungen,
die zu einer Anderung des Ergebnisses fiihren.

Strategische Abstimmung bei Wahlen mit mehreren Gewinnern. Wir fragen,
ob eine bestimmte Gruppe von kooperierenden Wéhlern ein Wahlergebnis zu
ihren Gunsten manipulieren kann. Dabei konzentrieren wir uns auf die k-
Approval-Wahlregel. Wir zeigen, dass die Berechnungskomplexitéit der besagten
Manipulation eine reiche Struktur besitzt. Auf der einen Seite identifizieren wir
mehrere Fille in denen das Problem in Polynomzeit 16sbar ist. Auf der anderen
Seite identifizieren wir jedoch auch NP-schwere Fille. Fiir einige von ihnen zeigen
wir, wie die Berechnungsschwere durch parametrisierte Algorithmen umgangen
werden kann. Wir préasentieren zudem experimentelle Untersuchungen, welche
darauf hindeuten, dass unsere Algorithmen in der Praxis anwendbar sind.

iii

Abstract

This thesis is concerned with investigating elements of computational social
choice in the light of real-world applications. We contribute to a better under-
standing of the areas of fair allocation and multiwinner voting. For both areas,
inspired by real-world scenarios, we propose several new notions and extensions
of existing models. Then, we analyze the complexity of answering the computa-
tional questions raised by the introduced concepts. To this end, we look through
the lens of parameterized complexity. We identify different parameters which
describe natural features specific to the computational problems we investigate.
Exploiting the parameters, we successfully develop efficient algorithms for spe-
cific cases of the studied problems. We complement our analysis by showing
which parameters presumably cannot be utilized for seeking efficient algorithms.
Thereby, we provide comprehensive pictures of the computational complexity of
the studied problems. Specifically, we concentrate on four topics that we present
below, grouped by our two areas of interest. For all but one topic, we present
experimental studies based on implementations of newly developed algorithms.

We first focus on fair allocation of indivisible resources. In this setting, we
consider a collection of indivisible resources and a group of agents. Each agent
reports its utility evaluation of every resource and the task is to “fairly” allocate
the resources such that each resource is allocated to at most one agent. We
concentrate on the two following issues regarding this scenario.

The social context in fair allocation of indivisible resources. In many fair
allocation settings, it is unlikely that every agent knows all other agents. For
example, consider a scenario where the agents represent employees of a large
corporation. It is highly unlikely that every employee knows every other em-
ployee. Motivated by such settings, we come up with a new model of graph
envy-freeness by adapting the classical envy-freeness notion to account for social
relations of agents modeled as social networks. We show that if the given social
network of agents is simple (for example, if it is a directed acyclic graph), then
indeed we can sometimes find fair allocations efficiently. However, we contrast
tractability results with showing NP-hardness for several cases, including those
in which the given social network has a constant degree.

Fair allocations among few agents with bounded rationality. Bounded ratio-
nality is the idea that humans, due to cognitive limitations, tend to simplify
problems that they face. One of its emanations is that human agents usually

tend to report simple utilities over the resources that they want to allocate; for
example, agents may categorize the available resources only into two groups of
desirable and undesirable ones. Applying techniques for solving integer linear
programs, we show that exploiting bounded rationality leads to efficient algo-
rithms for finding envy-free and Pareto-efficient allocations, assuming a small
number of agents. Further, we demonstrate that our result actually forms a
framework that can be applied to a number of different fairness concepts like
envy-freeness up to one good or envy-freeness up to any good. This way, we
obtain efficient algorithms for a number of fair allocation problems (assuming few
agents with bounded rationality). We also empirically show that our technique
is applicable in practice.

Further, we study multiwinner voting, where we are given a collection of voters
and their preferences over a set of candidates. The outcome of a multiwinner
voting rule is a group (or a set of groups in case of ties) of candidates that
reflect the voters’ preferences best according to some objective. In this context,
we investigate the following themes.

The robustness of election outcomes. We study how robust outcomes of
multiwinner elections are against possible mistakes made by voters. Assuming
that each voter casts a ballot in a form of a ranking of candidates, we represent
a mistake by a swap of adjacent candidates in a ballot. We find that for rules
such as SNTV, k-Approval, and k-Borda, it is computationally easy to find
the minimum number of swaps resulting in a change of an outcome. This task
is, however, NP-hard for STV and the Chamberlin-Courant rule. We conclude
our study of robustness with experimentally studying the average number of
random swaps leading to a change of an outcome for several rules.

Strategic voting in multiwinner elections. We ask whether a given group
of cooperating voters can manipulate an election outcome in a favorable way.
We focus on the k-Approval voting rule and we show that the computational
complexity of answering the posed question has a rich structure. We spot several
cases for which our problem is polynomial-time solvable. However, we also
identify NP-hard cases. For several of them, we show how to circumvent the
hardness by fixed-parameter tractability. We also present experimental studies
indicating that our algorithms are applicable in practice.

vi

Preface

The thesis contains a collection of outcomes of my research activity at TU
Berlin in the Algorithmics and Computational Complexity group of Prof. Dr.
Rolf Niedermeier from November 2016 to July 2020. During the whole period,
my research activities were funded by Deutsche Forschungsgemeinschaft (DFG)
as a part of the project AFFA: Algorithms for Fair Allocations (NI 369/15 and
BR 5207/1). This research project was jointly led by Robert Bredereck and
Rolf Niedermeier.

The presented results are mainly based on conference publications prepared
with close collaboration with several coauthors, who are, in alphabetical order,
Robert Bredereck, Piotr Faliszewski (AGH University of Science and Technology,
Cracow, Poland), Dusan Knop (Czech Technical University in Prague, Prague,
the Czech Republic), Rolf Niedermeier, Piotr Skowron (University of Warsaw,
Warsaw, Poland), and Nimrod Talmon (Ben-Gurion University of the Negev,
Beer-Sheva, Israel). Furthermore, some experiments were conducted on software
implemented by Lydia Kalkbrenner (as a part of her bachelor’s thesis supervised
by Rolf Niedermeier with support from Robert Bredereck and myself) and by
Aleksander Figiel during his work as a student assistant in the Algorithmics
and Computational Complexity group.

Below, I briefly list my contributions to the publications laying the foundation
for the respective chapters.

Chapter 4 The idea of augmenting the standard notion of envy-freeness with
a social network over agents (thus relaxing the standard envy-freeness) appeared
during brainstorming at one of the early meetings regarding the AFFA project. In
the conference version, which I presented at the 17th International Conference on
Autonomous Agents and Multiagents Systems (AAMAS ’18) [BKN18] and later
(as a poster) at DIMEA Days 2019 in Brno, the majority of the results was jointly
developed by all authors. Then, supported by Robert Bredereck, I was mainly
responsible for preparing a journal version, extending the conference paper by
parameterized complexity results. A revision of the journal version is currently
being prepared for the second round of reviewing for the journal Artificial
Intelligence.

vii

Chapter 5 The crucial idea behind the main result, conjectured by Robert
Bredereck, was shared with Dusan Knop and me. Shortly later, DuSan provided
the technical result implementing Robert’s idea. The result was then wrote
up, revised and polished by all authors who jointly prepared a paper later
presented by me at the 20th ACM Conference on Economics and Computation
(ACM EC ’19) [Bre+19b]|. Then, I extended the model and together with
Dugan Knop we revised some of the results (regarding different relaxations
of envy-freeness) adapting them to the new model. Aleksander Figiel, guided
by Dusan Knop, Robert Bredereck and myself, implemented the algorithms
from the conference paper. Thereby, he developed a framework for testing the
running times and the outcomes of the algorithms which I used used to conduct
the experiments in the thesis.

Chapter 7 The problem of analyzing the robustness of multiwinner voting
rules was proposed to Robert Bredereck, Rolf Niedermeier, Piotr Skowron,
Nimrod Talmon, and myself by Piotr Faliszewski during his stay at TU Berlin
with the group. The theoretical results, developed jointly, were augmented
with an experimental study, conducted by me closely collaborating with Piotr
Faliszewski. Robert Bredereck presented the work, whose write-up was jointly
prepared by all authors, at the 10th International Symposium on Algorithmic
Game Theory (SAGT ’17) |Bre+17]. The long version of the paper, improved
by Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier and myself in both
theoretical and practical parts, has been published in the journal Artificial
Intelligence [Bre+21a].

Chapter 8 Studying coalitional manipulation, later narrowed down to coali-
tional manipulation in shortlisting scenarios, was proposed by Robert Bredereck.
I conceived the ideas for polynomial-time algorithms which were then checked,
wrote up, and proofread by all authors. All other parts of the resulting paper,
presented by me at 26th International Joint Conference on Artificial Intelligence
(IJCAT ’17) |BKN17], were developed jointly by all authors. I was mainly re-
sponsible for preparing an extended version of the paper for a journal submission.
The extended version has recently been published in the journal Autonomous
Agents and Multi-Agent Systems [BKN21]. Robert Bredereck and I were help-
ing Rolf Niedermeier supervising Lydia Kalkbrenner who implemented several
algorithms from the conference paper as a part of her bachelor’s thesis. After
few fixes, I used these implementations to conduct experiments.

viii

In addition to the above-mentioned works, I was involved in other research
projects that are not covered by my thesis. I contributed to a theoretical study
on improving the results from Chapter 5 [Bre+20c] as well as to an experimental
study focused on applying these results in practice [Bre+21b], an experimental
study on electing committees representing voters proportionally [Bre-+19al, a the-
oretical study of strategic voting in single-winner elections [KF19|, a theoretical
and practical study on strategic voting in apportionment elections [Bre-+20a], a
theoretical analysis of the problem of selecting a collective set of items [Bre-+20b],
a theoretical and practical analysis of parallel elections [Boe+20], a theoretical
analysis of scheduling problems in the context of resources [Ben+21], and two
works concerning selecting multiple committees [BFK20, BKN20].

Acknowledgements I am very grateful to my supervisor, Rolf Niedermeier,
who made my journey through carrying out the research and writing the thesis
possible. His patience and eagerness to help had been constantly motivating me,
while his deep expertise, insightful feedback and keen ideas pushed me to lift my
work to a higher level. I am also very thankful to Sylvain Bouveret and Felix
Brandt, the external reviewers of my thesis, whose valuable comments allowed
me to improve the presentation of my thesis. I am also grateful to the Deutsche
Forschungsgemeinschaft for financially supporting me during my research.

I would like to acknowledge all my coauthors for thousands of inspiring and
fruitful discussions, numerous tedious proofreading rounds, and lots of advice.
Next to my closest collaborator, Robert Bredereck, from whom I have learned
the most, I want to thank (in alphabetical order) Matthias Bentert, Niclas
Boehmer, Piotr Faliszewski, Aleksander Figiel, Till Fluschnik, Michal Furdyna,
Péter Gyorgyi, Dusan Knop, Martin Lackner, Piotr Skowron, and Nimrod
Talmon. The time I spent at TU Berlin would have never been so memorable
without other (former) group members and friends of the group with whom
I am not co-authoring any paper (I wish we could change that one day!). In
alphabetical order, these are: Markus Brill, Jichua Chen (Thank you very much
for the dissertation latex template!), Vincent Froese, Anne-Marie George, Klaus
Heeger, Danny Hermelin, Anne-Sophie Himmel, Junjie Luo, Leon Kellerhals,
Tomohiro Koana, Christian Komusiewicz, George B. Mertzios, André Nichterlein,
Malte Renken, Ulrike Schmidt-Kraepelin, Manuel Sorge, Ondfej Suchy, Mathias
Weller, and Philipp Zschoche. Special thanks go to Christlinde Thielcke for
solicitously and tirelessly helping me with all administrative matters.

Undoubtedly, the thesis would not exist without the support of my family,

ix

especially my grandparents Gertruda and Czestaw, my parents Ruta and Marek,
my brother Jacek and my dear wife Marta. Their care, inspiration, and good
words kept me motivated and focused on the goal while I was going through
occasional hard times.

Last but not least, soli Deo gloria.

Contents

1. Introduction

2. Preliminaries and Notation

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

Basics
Vectors and Matrices
Graph Theory
Computational Complexity
Parameterized Computational Complexity
Integer Linear Programming
Experimental Environment

I. Resource Allocation. Dealing with Private Bundles

3. Formalism of Resource Allocations

4. Graph Envy-Freeness
4.1. Imtroduction
4.2. Basic Definitions o oo L
4.3. Model and Discussion
4.4. Finding Weakly Graph-Envy-Free Allocations
4.5. Finding Strongly Graph-Envy-Free Allocations
4.6. Conclusion

5. High Multiplicity Allocations
5.1. Introduction L
5.2. Preliminaries
5.3. Seeking Envy-Free Pareto-Efficient Allocations
5.4. Beyond Envy-Freeness
5.5. Experimental Evaluation
5.6. Conclusions

o O O Ot ot

13
15

17
17
23
25
31
50
62

67
67
71
78
89
96

xi

II.

Multiwinner Voting. Dealing with Collective Sets of Re-
sources

6. Elections, Multiwinner Voting Rules, and Election Generation
6.1. Elections and Multiwinner Voting
6.2. Generating Synthetic Election Data

7. Robustness of Multiwinner Voting Rules
7.1. Introduction
7.2. Preliminaries
7.3. Classical Computational Complexity
7.4. Parameterized Computational Complexity
7.5. Beyond the Worst Case: An Experimental Evaluation
7.6. Conclusions

8. Coalitional Manipulation for Multiwinner Elections
8.1. Introduction
8.2. Preliminaries
8.3. Complexity of Tie-Breaking
8.4. Complexity of Coalitional Manipulation
8.5. Experimental Insights
8.6. Conclusion

9. Conclusion
9.1. Catching up with the Future
9.2. Epilogue

Bibliography

xii

105

107
107
111

113
113
115
123
137
146
150

153
153
158
171
177
198
203

207
209
212

213

CHAPTER 1

Introduction

This work provides a study of computational aspects of two prominent fields
of social choice theory: fair allocation of indivisible resources and multiwinner
voting. For both areas of our interest, we conduct theoretical analyses and then
apply (elements of) our findings in experimental studies.

In a nutshell, the problem of fair allocation of indivisible resources, which we
study in Part I, is to distribute a collection of unsplittable resources to a set
of agents. Each agent is endowed with its private valuations of the resources
and each resource can be allocated to only one agent. The goal is to allocate
resources in the fairest possible manner. Arriving at a better understanding of
the meaning of “the fairest” is one of the objectives of this work. Typical real-
world examples of fair allocation include dividing inheritance [PZ90], spectrum
(frequency) allocation [Guo+16], distributing chores [Mar(2], and allocating
resources in virtualized computing environments [Sti+10].

At a high level, multiwinner voting, covered in Part II, is a procedure leading
to choosing (from a usually large pool of candidates) a fixed number of candi-
dates that are most suitable (with respect to some criterion such as excellence)
according to the preferences of the voters. An archetypical application is se-
lecting (various types of) governments or supervisory boards. Besides politics,
multiwinner voting also naturally appears, for example, when shortlisting nomi-
nees for various prizes such as the Grammy Awards [Rec20], in recommender
systems [Cha+19], or in deciding on a funding for research projects [Min19].

Our goals for both areas are threefold. First, we aim at bringing them closer
to reality by proposing extensions of the previously known concepts or asking
new, practically relevant questions. Second, we seek efficient algorithms to
address our newly defined problems and extensions in practice. Thus we aim
at providing algorithmic tools for a further analysis. As a necessary step to
achieve the second goal, we also categorize the introduced problems (or problem
variants) with respect to their computational hardness charting their borders
of tractability. Third, we perform experimental studies using our findings and
observations from the first two mentioned points.

The thesis consists of four main chapters (two chapters per studied area).

1. Introduction

In each of them, we analyze one topic from the respective area and carry out
a study aiming at achieving the goals described in the preceding paragraph.
Below, we describe the problems we focus on in the thesis in more detail.

e In Chapter 4, we incorporate social relations into the traditional problem
of fair allocation. Thus we aim at reflecting the phenomenon that humans
tend to pay greater attention to their “socially-close” peers than to “socially-
distant” individuals.

e In Chapter 5, we introduce a variant of the fair allocation of indivisible
resources problem which is suitable for scenarios involving resources that
come in many indistinguishable copies. For example, this applies for food
banks where there could be a lot of packages of rice, pasta, and the like
to distribute.

e In Chapter 7, we pose and address a new question related to multiwinner
elections: “How robust are the outcomes of different multiwinner voting
rules against unintentional mistakes of the voters?”. Answering this ques-
tion for a single election can in practice serve as a measure of confidence
for an election outcome. For example, if the election models a panel
of experts selecting projects to be funded, then a low confidence of the
experts for the chosen projects could indicate a need to hire more experts.

e In Chapter 8, we introduce the concept of coalitional manipulation into
the domain of multiwinner voting rules and obtain a fairly general model
of coalitional manipulation in multiwinner elections. The model opens up
avenues for a more fine-grained investigation on the practical vulnerability
of an election to a targeted and coordinated manipulative action. In
particular, the model could be of use for an interdisciplinary behavioral
study on the phenomenon of manipulation (similar to that of Scheuer-
man et al. [Sch+19)]).

We contribute to a better understanding of the above-mentioned problems
providing several efficient (polynomial-time) algorithms. Whenever this is
impossible, then we successfully use the toolbox of parameterized complexity to
get round computational hardness. Let us briefly explain the intuition behind
the concept of parameterized complexity. The idea is to describe certain features
of a problem by a so-called parameter, usually being an integer. Then, after
identifying a parameter of interest that represents a studied feature well (which
is, per se, also a nontrivial task), the next step is to exploit the additional

information that the parameter provides. The hope is to come up with efficient
algorithmic solutions tailored to the considered parameter. In our work, we study
several different natural parameterizations for which we used various approaches
such as dynamic programming, special cases of efficiently-solvable INTEGER
LINEAR PROGRAMMING formulations, or data reduction (implicitly). We obtain
several efficient algorithms for the corresponding (constrained) variants of the
considered problems. Exploiting the concept of parameterized reductions, we
also provide numerous parameterized intractability results. These intuitively
show that for several parameters of the considered problems one presumably
cannot exploit the parameter to achieve an efficient algorithm.

Finally, in all but one of the four aforementioned chapters, we conduct exper-
imental studies. In Chapters 5 and 8, we empirically show that the algorithms
proposed therein are indeed applicable in practice (occasionally, theoretically ef-
ficient algorithms turn out to be practically computationally infeasible). To this
end, we conducted experiments on real-world data (from spliddit.org [Pro-+20],
provided to us by the authors of this web service [GP15]), as well as on synthetic
data generated using well-established models. In Chapter 7, we empirically draw
qualitative conclusions about the behavior of different multiwinner voting rules
for various elections. In this study we included real-world data from the Preflib
library [MW13] as well as synthetic data. We do not present experiments for
the problems considered in Chapter 4 because of a lack of suitable data and
reliable and meaningful synthetic models.

We take a moment to discuss the relations between fair allocation of indivisible
resources and multiwinner voting. At first sight, these two areas might appear
very obliquely related, especially considering that in the fair allocation domain
we speak of resources and agents, whereas in multiwinner voting we deal with
voters and candidates. However, observe that both voters and agents play similar
roles in the two areas. First, they express the preferences over possible choices
(either resources or candidates). Second, they are focal points of both scenarios:
we either want to guarantee fairness for the agents or to aggregate preferences
of the voters in the best possible way. From this perspective, both resources
and candidates are, in a sense, subject to the agents or voters. Altogether, these
similarities justify treating voters as agents and candidates as resources. As a
result, we can describe multiwinner voting in the domain of fair allocation of
indivisible resources as follows. In multiwinner voting, we select one collective
set of resources that are, on an intuitive level, shared by all agents equally.
Naturally, the selected set of resources should fulfill a predefined goal based on
agents preferences as much as possible. Additionally, the selected set of resources

1. Introduction

could be subject to further constraints like the number of resources it contains,
a cost of resources, or similar issues. The presented interpretation has already
been adopted by several works in the domain of multiwinner voting [Bre+20b,
SFL16]. It has also been used in the setting called participatory budgeting (see
a survey by Aziz and Shah [AS20]). In participatory budgeting each candidate
comes at a cost and the selected set of candidates cannot exceed a given budget.

Each of the two parts of the thesis consists of three chapters: one short pre-
liminary chapter devoted to introducing necessary definitions and two chapters
describing our results. Additionally every part starts with a brief description of
the respective area. We conclude the thesis in Chapter 9.

CHAPTER 2

Preliminaries and Notation

In this chapter, we provide basic notation and introduce basic concepts used
in the thesis.

2.1 Basics

We use the standard brace notation for sets and their elements. We also use
the brace notation for collections, sometimes also called multisets. Thus, we
explicitly say whether we mean a set or a collection whenever skipping this
comment would lead to ambiguities. For some positive integer n, we denote the
set {1,2,...,n} by [n]. Let A and B be sets. By |A| we denote the number of
elements in A, by (4) we denote all size-two subsets of 4, and by 2* we mean
all subsets of A. By A x B :={(a,b): a € AAb € B} we denote the Cartesian
product of A and B.

2.2 Vectors and Matrices

We use boldface letters for vectors and normal letters for their entries. For
example, for some positive integer y, x = (z1,x2, ..., zy) is a vector of dimension y.
Whenever we deal with matrices, we always refer to them by single capital letters.
For a matrix with r rows and ¢ columns, we say that it is of dimension r x c.
Symbolically, we denote a matrix A of dimension r x ¢ whose entries are integers
(an integral matrix) as A € Z"*°. All vectors can alternatively be considered as
matrices with either of dimensions equal to one. Because we extensively use
integer linear programs in which it is convenient to speak about a “solution
vector,” we follow a convention that each vector is a column vector. This
is equivalent to saying that each vector is a single-column matrix. So, a

vector x = (z1,x2,...,xy) is in fact a matrix with dimensions y x 1 and thus the
following:
z1
T2
X =
Ly

2. Preliminaries and Notation

2.3 Graph Theory

Throughout this section we define standard graph-theoretical concepts used
in the thesis.

Undirected Graphs A (simple undirected) graph G = (V,E) is a tuple
consisting of a set V of vertices and a set £ C (‘2/) of edges. For an edge e =
{v,v'} € E, we say that v is adjacent to v' and that e is incident to v and to v'.
We call two adjacent vertices neighbors. For every vertex v € V, by N(v) =
{v": {v,v'} € E} we denote the neighborhood of v and by A(v) := |N(v)| the degree
of v.

Directed Graphs A (simple) directed graph G = (V, A) is a tuple consisting
of a set V of vertices and a set A C {(v,v"): v,v' € V Av #v'} of ares.

For an arc e = (v,v") € A, we say that v and v are adjacent to each other,
and that e is incident to v and to v'. We call two adjacent vertices neighbors.
For an arc e = (v,v") € A, we also say that v points to v'. We call e an
incoming arc of v’, and an outgoing arc of v. For a vertex v € V, we refer to the
set NT(v) :== {v': (v,v") € A} as the out-neighborhood of v and we call AT (v) ==
|N+(v)} the out-degree of v. Analogously, we define the in-neighborhood of v as
N~ (v) = {v": (v/,v) € A} and the in-degree of v as A~ (v) == |N~ (v)|.

2.4 Computational Complexity

In this section we give a short primer on computational complexity theory,
giving a canonical way of studying the inherent difficulty of computational
problems.

At the foundation of computational complexity theory are decision problems.
Let ¥ be a finite alphabet and let ¥* be the set of all finite words over X.
Then, given a language £ € 27, the corresponding decision problem is to decide
whether a given string Z € 2%, called an instance, belongs to £ or not. The
alphabet is usually assumed to be binary (i.e.,% = {0,1}). An example of a
decision problem is testing whether a given number is prime. Here, assuming
the standard binary alphabet ¥, a single instance is a binary representation of
a number and the set £ is the set of binary representations of all primes.

The difficulty of a decision problem is most often measured with respect to the
so-called worst-case computational complexity. The worst-case computational
complexity is the worst possible running time needed by any algorithm to decide
an instance of the problem; here the running time is an alias for the number

2.4. Computational Complexity

of basic operations in a given computational model. In our work, the only
computational model considered is that of Random Access Machines.

We say that a problem L is solvable in polynomial time if there exists a de-
terministic Turing machine that, for every instance Z, decides if Z belongs
to £ in running time (Z)° for some constant ¢, where (Z) is the length of an
encoding of the instance. The class P is a collection of all polynomial-time
solvable problems, which are considered to be “theoretically tractable.” Another
important class, NP, consists of all problems that can be solved in polynomial
time by a non-deterministic Turing machine. It is clear that P C NP. However,
even though non-deterministic Turing machines seem to be much more powerful
than their deterministic counterparts, the question whether P = NP remains
a long-standing open question in computer science. The answer is, however,
strongly conjectured to be negative and we assume so throughout this thesis.
This assumption gives birth to a widespread belief in “theoretically intractable”
problems—those in NP\ P.

A central tool used in computational complexity analysis is the concept of
polynomial-time many-one reductions.

Definition 2.1. Let ¥ be a finite alphabet. A polynomial-time many-one
reduction from a problem £ € ¥* to a problem £’ € ©* is a polynomial-time
computable function f: ¥* — ¥* such that, for every instance Z € ¥*, Z € L &
f@ecr.

We say that a problem £ is (polynomial-time many-one) reducible to a problem £’
if there is a polynomial-time many-one reduction from £ to £'.

Polynomial-time many-one reductions allow to order problems with respect
to their hardness. Briefly, if a problem £ is reducible to a problem £’, then,
knowing how to solve £’, we can solve every instance of £ by reducing to an
equivalent instance of £’ using a polynomial-time reduction. Thus, intuitively,
L' is at least as hard as £. We are now ready to formally define the class of
NP-hard problems, that is, all problems at least as hard as every problem in NP,
and the class of NP-complete problems, which are the hardest problems in NP.

Definition 2.2. We say that a problem £ is NP-hard if every problem in NP is
(polynomial-time many-one) reducible to £. We say that £ is NP-complete if £
is NP-hard and also belongs to NP.

A standard way of showing that a problem £ is NP-hard is to devise a reduction
from another NP-hard problem. Then, to prove NP-completeness, it is enough
to show that £ is in NP.

2. Preliminaries and Notation

2.5 Parameterized Computational Complexity

The central goal of parameterized computational complexity, which is briefly
described in this section, is to find a way of circumventing the conjectured
“practical intractability” of NP-hard problems. The general approach introduced
by Downey and Fellows [DF95] is to identify a particular feature—a parameter,
which is usually a natural number—of a problem and then to measure the
problem’s computational complexity with respect to both the instance size and
the parameter value. The hope is that the problem becomes “tractable” for
certain values of the parameter. Here, we only give a primer on computational
complexity and we omit all proofs; we refer to standard textbooks [Cyg+15,
DF13, FG06, Nie06] for the details.

Definition 2.3. Let ¥ be a finite alphabet. Then, a set £ C ¥* x N is a param-
eterized problem and, for an instance Z = (z, k), k is the parameter value.

Since no polynomial-time algorithm for any NP-hard problem is known, it
seems that a superpolynomial computational complexity for NP-hard problems is
unavoidable. This is where the tractability concept for parameterized problems
plays a central role. Intuitively, parameterized problems are tractable if the
superpolynomial growth in the computational complexity is exclusively related
to the parameter value.

Definition 2.4. A parameterized problem L is fixed-parameter tractable with
respect to parameter k if, for every instance instance Z = (z, k), it is solvable
in running time f(k) - (Z)¢ for some computable function f, some constant c,
and (Z) being the length of encoding of Z. The class of fixed-parameter tractable
problems is called FPT.

For reasons of brevity, throughout the thesis we sometimes say that an
algorithm runs in FPT-time with respect to some parameter k if it solves every
instance of some fixed problem in a running time compliant with the criteria of
fixed-parameter tractability from Definition 2.4. To show a canonical example of
a problem solvable in FPT-time, let us first define the VERTEX COVER problem.

VERTEX COVER

Input: An undirected (simple) graph G = (V, E) with a set V of
vertices and a set E of edges, and a positive integer k.

Question: Is there a vertex cover C' C V of size k, that is, a subset
of k vertices of G such that every edge in F is incident to at least one
vertex in C7

2.5. Parameterized Computational Complexity

Observe that VERTEX COVER requires that for each edge at least one of its
endpoints is in a sought vertex cover. Thus, we can construct a search tree in
which starting from an arbitrarily chosen edge, we take one of its endpoints,
remove all edges incident to the chosen endpoint, and then repeat the process
until we either find a vertex cover or we select more than k vertices. Indeed,
since the depth of the described search-tree is at most k and at each step
we branch into at most two choices of an endpoint to analyze, we obtain an
algorithm running in time O(2*(|E| + |V|)). Hence, the presented algorithm runs
in FPT-time with respect to the parameter “vertex cover size” (denoted by k in
our definition of VERTEX COVER).

The class FPT is an analogue of the class P from classical complexity theory.
Similarly, the hierarchy of classes W]t], for ¢t € N, plays a role similar to that
of NP in classical complexity theory. Namely, it is conjectured that FPT C W[1] C
W[2] C Again, as in classical complexity theory, a concept of reductions serves
as a way to define respective W]t]-hardness notions and exclude fixed-parameter
tractability.

Definition 2.5. Let ¥ be a finite alphabet. A parameterized polynomial-time
many-one reduction from a parameterized problem £ € ¥* xN to a parameterized
problem £ € ¥* x N is a function f: ¥* x N — ¥* x N such that for every
instance Z = (z,k) € ¥* x N, instance Z' = (z/, k') = f(Z) = f((z,k)) € " x N,
and some computable function g: N — N:

1. f((z,k)) can be computed in time g(k) - ()¢ for some constant c;
2. k' < g(k);
3.Tele f(I)eLl.

We say that a problem £ is (polynomial-time many-one) reducible in the pa-
rameterized sense to a problem L’ if there is a parameterized polynomial-time
many-one reduction from £ to £’.

With the concept of parameterized reductions, showing a parameterized
reduction from a W(t] problem to some parameterized problem £ implies that £
is (presumably) not fixed-parameter tractable. Covering all caveats (like, for
example, basic complexity assumptions, similar to NP # P founding classical
computational complexity theory) related to the W[t] classes is well beyond the
scope of this introduction. Yet, we provide a basic W[1] problem frequently
used in the literature (and sometimes in this thesis) to (presumably) exclude

2. Preliminaries and Notation

fixed-parameter tractability of other parameterized problems by showing their W-
hardness. Specifically, it is widespread to use the CLIQUE problem parameterized
by the clique size, denoted as k in the definition below.

CLIQUE

Input: An undirected (simple) graph G = (V, E) with a set V of
vertices and a set E of edges, and a positive integer k.

Question: Is there a clique C C V of size k, that is, a subset of
k vertices of G such that they are pairwise adjacent in G?

We do not know a convenient characterization in terms of a function upper-
bounding the time complexity for the classes W([t]. For this reason, it is useful
to define another class that is a superset of all W[t] classes.

Definition 2.6. A parameterized problem £ is in class XP if there is an algo-
rithm that, for each instance Z = (z, k) of £, decides whether Z € £ in time (z)**
for some constant ¢, where (z) is the length of an encoding of z.

Naturally, it is known that FPT C XP; the strong containment is conjectured
(P = NP implies the collapse of the whole W[t] hierarchy).

Even stronger intractability of a parameterized problem arises if the problem
remains NP-hard even if the value of the parameter is constant. We sometimes
call such problems para-NP-hard.

2.6 Integer Linear Programming

A mathematical problem of finding integral (optimal) solutions to a set of
linear inequalities has become one of the fundamental problems in computer
science. Formally, its decision variant can be expressed as follows.

INTEGER LINEAR PROGRAM FEAsIBILITY (ILPF)

Input: An integral constraint matrix A of dimension r x ¢, a right-hand
side vector b € Z", and two boundary vectors 1 € Z* and u € Z!
Question: Is there an integral vector x € Z' such that Ax = b
and 1< x < u.

In our work we also use the optimization variant of ILPF. Specifically, we

define INTEGER LINEAR PROGRAMMING where the goal is to minimize a linear
function with integral variables subject to a set of linear constraints.

10

2.7. Experimental Environment

INTEGER LINEAR PROGRAMMING (ILP)

Input: An constraint matrix A of dimension r x ¢ with all entries being
integral, an right-hand side vector b € Z", two boundary vectors 1 € Z*
and u € Z', and a vector w € Z* representing a linear goal function.
Task: Find an integral vector x € Z' that minimizes wTx subject
to Ax=band1<x<u.

For the sake of readability, we always provide the goal function simply as a
function, not as a vector. The ILP problem is NP-hard, thus each problem
in NP has an ILP formulation (computable in polynomial time with respect to
the size of the encoding of the source problem’s input). This fact, together with
numerous useful results already present in the literature, makes ILP a quite
universal tool for studying the computational complexity.

Even though in the above definition our goal is to minimize the linear func-
tion represented by w, the variant with maximization of the goal function is
equivalent. Additionally, the integral inequalities in the definition of ILP may
be augmented with some linear equalities by simulating each equality by two
“opposite” inequalities. (See, for example, a textbook by Schrijver [Sch86, Chap-
ter 7] for a detailed discussion on the equivalence of different ILP definitions).
Thus, in our applications of ILP, we sometimes maximize the goal function and
usually also use equalities.

We end this section with a very prominent result about fixed-parameter
tractability of ILP with respect to the number of variables. The follow-
ing Proposition 2.1 was first shown by Lenstra [Len83] and then improved
by Kannan [Kan87] and Frank and Tardos [FT87].

Proposition 2.1 ([FT87, Kan87, Len83]). Let Z be an instance of ILP with
t variables (that is, the constraint matriz has t columns). There is an algorithm
that finds an optimal solution x € Z' to T in O (> . (T)) time (where (I) is
the input size).

A typical use-case of Proposition 2.1 is to show fixed-parameter tractability of
a problem for some parameter p by devising an ILP formulation of the problem
such that the number of variables in this formulation is upper-bounded by some
function f(p) of the parameter.

2.7 Experimental Environment

In our thesis, we present results of several experiments we carried out to
closer investigate our problems. While in Chapter 7 we simply analyze some

11

2. Preliminaries and Notation

properties of the experimental outcomes neglecting the efficiency of our algo-
rithms, in Chapters 5 and 8 we mainly focused on the running times; thus, in
this section we briefly the (computing) environment used for the experiments
from these two sections.

The experiments in Chapters 5 and 8 were conducted on machines with
Intel® Xeon® W-2125 4.00 GHz processors with four cores, equipped with
256 GB of RAM memory. The machines were operated by Ubuntu 18.04.4 LTS.
The experiments in Chapter 7 were partially run on different machines but,
since for them we did not focus on running time, we do not provide the exact
specification.

12

Part 1

Resource Allocation. Dealing with
Private Bundles

Since 1948, when Steinhaus [Ste48] was the first to ask how to fairly distribute
a divisible resource (nowadays so-called “cake”) among a set of agents with
(possibly different) heterogeneous valuations of the resource, studying this
kind of problems has gained significant attention in mathematics, economics,
computer science, and the like.

Throughout the years, in the theory of fair division two basic research di-
rections have evolved depending on the nature of the resources; namely, they
can be either divisible or indivisible.! The former type yields the so-called
cake cutting problem (we refer to the books [BT96, Mou03, RW98| and recent
surveys [BCM16, Marl7, Prol3, Prol6] for details). In this part, however, we
solely focus on the latter case of indivisible resources where, as intuition suggests,
a resource either cannot be divided or becomes valueless if split; for instance, a
piano or a pet.

Nowadays, fair allocation of indivisible goods is a fundamental topic lying in
the intersection of economics and computation [BCM16, BKV18]. Unfortunately,
from a computational perspective, even for special cases, it typically is a
notoriously hard (NP-hard and beyond) problem [BBN16, BLO08, Kei+09],
motivating the efforts to overcome this hardness in various ways. In this
part, we focus on approximate fairness concepts and on deriving fixed-parameter
tractability results for parameters assumed to be small in relevant practical

1Usually all considered resources have the same nature, however there are a few works
considering variants of the problem with mixed natures of the resources [AW19, Azi+19|.

application scenarios. The goal of both chapters in this part is to identify
special cases where we can efficiently compute exact solutions of fair allocation
problems. Whereas in Chapter 5 we mostly focus on providing fixed-parameter
tractability results based on integer linear programming methods, in Chapter 4,
we mainly define an “approximate notion of fairness” and detect fair allocation
problem variants for which it is computationally feasible to find approximate
solutions.

An important aspect of problems we consider in this part is that each resource
is allocated to a single agent for its exclusive use (unlike in Part IT where, in
principle, a single resource can be used by many agents). Such an assumption is
justified for many real-life cases such as workstations, single-person dorm rooms,
stock shares, and (radio) frequency bands.

14

CHAPTER 3

Formalism of Resource Allocations

We devote this chapter to establishing notation and formally defining what
is an allocation. We also cover fundamental concepts of fairness and efficiency
that are then used for presenting our results. Throughout the whole thesis we
always denote resources by R and agents by A.

Definition 3.1. An allocation of resources R to agents A is a mapping 7: A —
2™ such that 7(a) and 7(a’) are disjoint whenever a # o’. For every agent a € A,
we call 7(a) the bundle of a under .

Measuring fairness requires a possibility to compare how much agents like
different bundles. There are different ways to model preferences of agents over
resources. A well-established (and quite flexible) way, which we also focus on, is
to express the preferences numerically using so-called utility functions.

Definition 3.2. For a set of resources R, a function u: 2% — Z is called a utility
function and, for some bundle X € R its output is called the wutility of X.

In our work, we solely focus on utility functions that are additive. Additivity
intuitively means that each resource has always a fixed utility, independently of
other resources in a bundle.

Definition 3.3. A utility function u: 2% — Z is additive when, for each bun-
dle X € R, u(X) = >, cxu({r}). We slightly abuse the notation and, for a
singleton {r} C R, we write u(r) instead of u({r}).

In fair allocation problems we consider, it is always the case that each agent
comes with its own, private utility function over the set of resources. Thanks
to additivity, each agent can report utility values solely for single items. Thus,
we always simplify additive utility functions from Definitions 3.2 and 3.3 to
functions that are mapping each resource to its utility, and, without introducing
ambiguity, call the latter also utility functions. Note that Definition 3.3 allows
for negative utility values as well as positive utility values. As we will show
later in Chapters 4 and 5, negative utility values make allocation problems
more complicated. Indeed, one cannot assume that enriching a bundle with one

15

3. Formalism of Resource Allocations

resource increases the utility of the bundle. Indeed, this added resource might
have a negative utility, which will result on decreasing the utility of the bundle.
In our work we consider allocations that are fair. There are several well-
known fairness concepts studied in the literature (some of them we introduce
in Chapter 4 where we need them) but we mostly focus on envy-freeness. This
is reached when, after allocating the resources, there is no agent that is willing
to swap its own bundle with any bundle of resources assigned to another agent.

Definition 3.4. An allocation 7 is envy-free if there are no two agents a1 and as
with utility functions u; and wus such that:

ui(m(ar)) < ui(m(az)). (3.1)

16

CHAPTER 4

Graph Envy-Freeness

In this chapter, we focus on finding an enwvy-free allocation of indivisible
resources to agents, a central task in many multiagent systems. Often, non-
trivial envy-free allocations do not exist, and, when existing, finding them can
be computationally hard. Classical envy-freeness requires that every agent likes
the resources allocated to it at least as much as the resources allocated to any
other agent. In many situations, this assumption can be relaxed since agents
often do not even know each other. We enrich the envy-freeness concept by
taking into account (directed) social networks of the agents. Thus, we require
that every agent likes its own allocation at least as much as those of all its
(out)neighbors. This leads to a “more local” concept of envy-freeness. We also
consider a strong variant where every agent must like its own allocation more
than those of all its (out)neighbors.

We analyze the classical and the parameterized complexity of finding alloca-
tions that are envy-free with respect to one of the variants of our new concept,
and that are complete. To this end, we study different restrictions of the agents’
preferences and of the social network structure. We identify cases that become
easier (from NP-hard to P) and cases that become harder (from P to NP-hard)
when comparing classical envy-freeness with our graph envy-freeness. Further-
more, we spot cases where graph envy-freeness is easier to decide than strong
graph envy-freeness, and vice versa.

4.1 Introduction

Modern management strategies emphasize the role of teams and team-work.
To have an effective team one has to motivate the team members in a proper
way. One method of motivating team members is to reward them for achieving
a milestone. On the one hand, it is crucial that every member of a team feels
rewarded fairly. On the other hand, in every team there are hierarchical or
personal relations, which one should take into account in the rewarding process.
Since, according to the recent labor statistics in the US [Bur], the average cost
of employee benefits (excluding legally required ones) is around 25% of the
whole cost of labor, it is important to effectively use rewarding instruments. It

17

4. Graph Envy-Freeness

is tempting to follow a simplistic belief that tangible incentives motivate best,
and thus reward employees with cash bonuses and pay raises. However, it has
been shown that to keep the employee satisfaction high, an employer should
also honor the employees with non-financial rewards [Hai+15].

We propose a model for the fair distribution of indivisible goods which can
be used to find an allocation of non-financial rewards' such that each team
member is satisfied with her or his rewards and, at the same time, is not worse
off compared to any other peer whom he or she is in relation with. Besides
the rewarding scenario, our model has numerous further potential applications;
just to mention a few: targeting marketing strategies (giving non-monetary
bonuses to loyal customers), allocating physical resources to virtual resources
in virtualization technologies (both network and machine virtualization), and
sharing charitable donations between cities or communities which may envy
each other.

Returning to our initial example of reward management, it is a well-established
fact that team members evaluate the fairness of rewarding based on comparisons
with their peers. This phenomenon, first described seventy years ago by the
social psychologist Festinger [Fesb4], is probably one of the reasons of the
popularity of fair allocation (division) problems in computer science. Naturally,
when evaluating the subjective fairness of rewards, every team member tends
to compare itself to similar peers, neglecting those who differ substantially in
position, abilities, or other aspects. This has already been reflected by one of
Festinger’s hypotheses; however, so far, most research in computer science has
focused on fairness notions based on “global” comparisons, that is, pairwise
comparisons between all members of society.

In this chapter we aim at incorporating “local” comparisons into the fair
allocation scenario. Having a collection of indivisible resources we look for
a way to distribute them fairly among a group of agents which, prior to the
distribution, shared their opinions on how they appreciate the resources. For
example, imagine that a company is to reward a team of three employees
responsible for a successful project. The team consists of a key account manager
(KAM) being the chief of the group, an internet sales manager (ISM), and
a business-to-business (B2BSM) sales manager. The company intends some
non-financial rewards to recognize the employees’ performances. The rewards
are “participating in a language course,” “being the company’s representative

IFinancial rewards can be interpreted as divisible resources while we focus on indivisible
resources.

18

4.1. Introduction

KAM B2BSM ISM

language course O vl v

TV episode O val vl

high-end office v v v
employee-of-the-month award vl val vl

Table 4.1.: The results of a survey concerning the employees’ preferences over the
possible rewards. Checked boxes indicate the approved rewards of a particular person.

97 L

for an episode of a documentary program,” “moving to a new high-end office,”
and “receiving an employee-of-the-month award.” The employees (agents) were
surveyed for their favorite rewards, yielding the results given in Table 4.1.

Each agent considers a rewarding unfair if after exchanging all its rewards
with all rewards of some peer, the agent would get more approved rewards.
According to the company’s rewarding policy, all rewards must be handed out.
Considering the standard model of resource allocation, where each agent can
compare itself to each other agent, the company cannot find a fair reward
allocation. At least one agent has to get two rewards. As a consequence, two
employees that have one reward are envious. However, a rewarding policy in
the company assumes that a team’s chief is always a basis of team success and
thus deserves a better reward. Hence, both sales managers do not compare
their rewards to the ones of their boss. Naturally, the key account manager’s
reward should be at least as good as the ones of the others. To illustrate these
relations, we use the directed graph depicted in Figure 4.1.

In this case, the company can reward the key account manager with the
office and the employee-of-the-month award, and distribute the two remaining
rewards equally to the internet and business-to-business managers. Doing so,
the company achieves a fair rewarding. The key account manager has two
favorite rewards and there is no incentive to exchange them. The remaining
team members do not compare themselves to their boss, so they do not envy
her or him. Finally, both the business-to-business and internet managers have
one favorite reward, so there is no envy. Thus, by introducing the graph of
relations between the employees, we are able to represent social comparisons.

Related Work Abebe, Kleinberg, and Parkes [AKP17]| and Bei, Qiao, and
Zhang [BQZ17] introduced social networks of agents into the fair division context.

19

4. Graph Envy-Freeness

T B2BSM D

Figure 4.1.: An illustration of who compares to whom for the introductory example.
Every node represents an employee and arcs represent directions of comparisons, for
instance, if an arc points from the key account manager to the internet sales manager,
then the former compares herself to the latter.

They defined fairness concepts based on social networks and then studied them
from a computational complexity perspective. Although they defined local envy-
freeness, their concept significantly differs from ours by considering divisible
resources.

Strongly related to our model is a parallel work of Aziz et al. [Azi+18]. They
analyzed relations of different notions of envy-freeness in the context of partial
knowledge of agents (extending similar work of Bouveret and Lemaitre [BL16]
classifying fairness concepts in the case of full knowledge) introducing epistemic
envy-freeness. More importantly in the context of this work, Aziz et al. [Azi+18]
presented a general framework for fairness concepts which also captures our
model. However, since their main goal was to introduce the framework, they
did not study this specific model.

Recently, Beynier et al. [Bey+19] published a study on finding local envy-free
allocations in the so-called housing markets, where an allocation assigns at most
one resource per agent. This restriction, together with their assumptions that a
given social network is undirected and that preferences are ordinal, makes their
model substantially different to ours. Notably, they also studied the impact of
different graph classes on the computational complexity of the problem, showing
that even for very simple graphs the problem is NP-hard.

Very recently, Eduard et al. [Edu+20] took up our model and conducted a
thorough study of the influence of “tree-likeness” and the density of the social
network of the agents on the computational complexity of finding graph-envy-
free allocations. Instead of considering the number of resources and the number
of agents, they focused on the number of resource types and the number of agent
types. (Two resources are of the same type if they are valued exactly the
same; two agents are of the same type if they value all resources exactly the
same.) It turned out that even for social networks very similar to trees, finding

20

4.1. Introduction

graph-envy-free allocations is W[1]-hard with respect to the combined parameter
“number of resource types, number of agent types, and maximum bundle size.”

Distributed allocation of indivisible resources is another variant of the alloca-
tion problem that has been recently studied in the context of social relations
between agents. In this distributed version, an allocation, instead of being
executed by a central mechanism, emerges from a sequence of trades between
the agents initially endowed with some resources. Gourveés, Lesca, and Wilczyn-
ski [GLW17] considered housing markets with a social network describing the
possible agent interactions. They addressed the computational hardness of
several questions such as existence of a Pareto-efficient allocation, reachability of
a particular allocation, or reachability of a resource for a candidate. They proved
that answering these questions is NP-hard in general, but it is polynomial-time
solvable for some restricted cases. Their model has been further studied by Ben-
tert et al. [Ben+19] and Saffidine and Wilczynski [SW18]. Chevaleyre, Endriss,
and Maudet [CEM17] enriched the distributed allocation problem with monetary
payments for the trades and the initially possessed resources. They defined a
version of graph envy-freeness which takes into account not only allocations of
resources as in our case but also the payments of agents. They showed several
results describing convergence of trades leading to a fair allocation and that
finding a sequence of trades reducing unfairness among the agents is NP-hard.

A somewhat orthogonal model where relations of resources, instead of agents,
are described by a graph has also been studied recently [Bei+21, Bil+19, Bou+17,
IP19, Suk17]. The main focus of this line of work is to study allocations that
assign to agents only bundles that form connected components with respect to
the given graph.

Our model is also related to a work of Gourvés, Monnot, and Tlilane [GMT18§]
who introduced and studied the computational complexity of the SUBSET
SuM WITH DIGRAPH CONSTRAINTS problem. Their main motivations were
applications in job scheduling and the issue of updating modular software. By
adding solution constraints encoded as a directed acyclic graph, they generalized
standard SUBSET SUM obtaining a variant similar to our model for the case of
identical preferences.

In contrast to previously studied models, in our work, we assume that allo-
cations are computed by a central authority and that each agent can obtain
more than one resource. Furthermore, the resources we study are not subject to
monetary payments to agents as a compensation for not obtaining a resource.

21

4. Graph Envy-Freeness

Our Contributions Our work follows the recent trend of combining fair
allocation with social networks. We introduce social relations into the area of
fair allocation of indivisible resources without monetary payments. Making use of
a greater model flexibility resulting from embedding agents into a social network,
we define two new versions of the classical envy-freeness property; namely, (weak)
graph envy-freeness and strong graph envy-freeness. Even though Chevaleyre,
Endriss, and Maudet [CEM17] also introduced a property called graph envy-
freeness, their version differs from ours. Namely, instead of being a property
of an allocation, it describes a particular state of the negotiations between the
agents and includes monetary payments paid to the agents or by the agents in
the negotiations so far. These differences (mainly monetary payments) result in
the fact that in their framework, under mild assumptions, efficient and strong
graph envy-freeness always exist. This stands in sharp contrast to our setting
of indivisible resources, where efficient envy-free allocations might not exist.
Moreover, as we will see, it is usually NP-hard to determine this.

We study problems concerned with finding (weakly /strongly) graph-envy-
free efficient allocations employing completeness as the efficiency criterion. We
assume that the agents’ preferences over the resources are cardinal, additive, and
monotonic. We go beyond the general case (with no further constraints on agent
preferences and an arbitrary social network), and we analyze our problems with
respect to social networks being directed acyclic graphs or strongly connected,
and with respect to identical or 0/1 preferences over the resources. As a
result, we explore a broad and diverse landscape of the classical computational
complexity of the introduced problems. Our results reveal that in comparison
to classical envy-freeness, our model sometimes simplifies the task of finding a
proper allocation and sometimes makes it harder. Similarly, we identify cases
where finding a (weakly) graph-envy-free allocation is easier than finding a
strongly graph-envy-free allocation but also cases where the opposite is true.
Additionally, our work assesses the parameterized computational complexity of
several cases with respect to a few natural parameters such as the number of
agents, the number of resources, and the maximum number of neighbors of an
agent.

Organization In the following sections, after covering necessary preliminaries
(Section 4.2), we formally introduce our new model, discuss it, and present
the corresponding computational problems (Section 4.3). Then, we analyze
the problem of finding (weakly) graph-envy-free allocations that are complete

22

4.2. Basic Definitions

(Section 4.4) followed by a study on seeking strongly graph-envy-free alloca-
tions (Section 4.5). We end with conclusions and suggestions for future work
(Section 4.6).

4.2 Basic Definitions

In this section, we provide several graph-theoretical definitions regarding
directed graphs followed by definitions of the fairness and efficiency concepts
we use in this chapter.

4.2.1 Paths, Connected Components, and Condensations

In all definitions below, we use some arbitrary directed graph G = (V, A)
where V is a set of vertices and A is a set of arcs.

Definition 4.1. A directed path in a graph G is a sequence S = (e, es,...,ek)
of distinct arcs of G such that there is a sequence v1,va,...,vr+1 of vertices of G
such that for each i € [k], it holds that (v;,v;+1) € S. If such a path exists in G,
then we say that G contains a (directed) path of length k from v; to vii1.

Interchangeably with “G contains a path,” we say that “there is a path in G.”

Definition 4.2. A graph G = (V, A) is strongly connected if, for each pair of
distinct vertices v,v’ € V, G contains a directed path from v to v’.

Sometimes, it is convenient to work with directed graphs as collections of
strongly connected parts.

Definition 4.3. Let G = (V, A) be a directed graph. A graph G’ = (V’, A") with
V' CV and A’ C A is a subgraph of G.

Definition 4.4. Let G be a directed graph and G’ with a vertex set V' be a
strongly connected subgraph of G. Graph G’ is a strongly connected component
of G if it is inclusion-wise maximal, that is, there is no vertex v € V'\ V' from
which, simultaneously, there is a path in G to the vertices in G’ and there is a
path in G from each vertex in G’ to v.

Eventually, a partition of a graph into its strongly connected components
together with arcs reflecting connections between them yields the so-called
condensation of the graph.

Definition 4.5. Let G be a directed graph and G’ with a vertex set V' be a
strongly connected component of G. We contract G’ by deleting all vertices

23

4. Graph Envy-Freeness

from V' (and their incident arcs) from G and adding a new vertex v* (and the
corresponding incident arcs) to G such that N*(v*) =, .\, N*(v) and N~ (v*) =

UvGV’ N~ (v).

Definition 4.6. A condensation of a directed graph G is a directed graph
obtained by contracting every strongly connected component in G.

4.2.2 Preferences, Fairness, and Efficiency

We continue with defining standard concepts needed to formally introduce our
problems. In all subsequent definitions, we refer to a set of resources as R and
to a set of agents as A. In this chapter we focus on numerical utility functions
that, in addition to being additive (see Definition 3.3), are also monotonic (and
sometimes we restrict them even further).

Definition 4.7. An additive utility function w: R — Z is monotonic if it maps
to non-negative utilities only. A utility function is a 0/1 wutility function if, for
each r € R, u(r) is either zero or one.

For convenience, throughout this chapter, we frequently refer to additive
monotonic or 0/1 preferences instead of saying, for instance, “preferences ex-
pressed by additive monotonic utility functions.” In the problems we study
(introduced in Section 4.3), we always speak about multiple utility functions
representing agent preferences (one function per agent) and we, call preferences
identical if every corresponding agent has the same utility function.

Having defined preferences, we formally present our graph fairness concepts
based on comparisons between neighbors in a social network.

Definition 4.8. Let G = (A, &) be a directed graph, called an attention graph,
representing a social network over the agents (i.e., the agents are the ver-
tices of G). We call allocation « (weakly) graph-envy-free if for each pair of (dis-
tinct) agents a1, a2 € A such that a2 € N (a1) it holds that ui(7(a1)) > ui(r(az)).
By replacing the weak inequality in our criterion with a strict inequality, we
obtain the definition of a strongly graph-envy-free allocation.

Naturally, an allocation which gives nothing to every agent is always (weakly)
graph-envy-free. To overcome this trivial case, we combine our fairness concepts
with the concept of completeness, which, intuitively, forbids leaving any resources
unassigned.

Definition 4.9. An allocation 7 of a set R of resources to a set A of agents is
complete if | J,. , 7(a) = R.

24

4.3. Model and Discussion

The notion of completeness has very natural real-life interpretations. First,
complete allocations guarantee that the resources are not “wasted” by not
assigning them. Second, if one assumes that disposing unallocated resources
comes at a price, then completeness guarantees that the price of disposing
unallocated resources is zero. Due to the second interpretation, complete
allocations are sometimes referred to as allocations without free disposal (see Bei,
Huzhang, and Suksompong [BHS20] for an example in the fair division domain).

4.3 Model and Discussion

The section is devoted to the model we introduce, a discussion on the model
and its variants, and a collection of basic observations that give an initial
intuition about problems that we consider.

4.3.1 Computational Problem

The core of our investigations is a computational problem related to our
setting of fair allocation. We define our problems in the form of search problems
instead of decision problems. In practical applications in which fair allocation
problems are usually found, it is important not only to know that there exists an
allocation with particular features, but also to know how it looks like. Clearly,
all our problems also have natural decision variants.

C-GEF-ALLOCATION (resp. C-sGEF-ALLOCATION)

Input: A set A of n agents, a set R of m indivisible resources, a
family U = {u1,us,...,u,} of agent non-negative utility functions, and
a directed graph G = (A4,).

Task: Find a complete and graph-envy-free (resp. strongly graph-
envy-free) allocation of R to A.

Our definitions of C-GEF-ALLOCATION and C-SGEF-ALLOCATION already
assume additive, monotonic utility functions since this is the type of preferences
we focus on. We remark, however, that this assumption could be relaxed to
achieve more general problems. Yet, many of our positive (polynomial-time
solvability and fixed-parameter tractability) results would not apply any more.
Throughout the chapter, in the running text, we abbreviate the problem names
to C-GEF-A and C-sGEF-A, respectively.

25

4. Graph Envy-Freeness

4.3.2 Discussion

As we already mentioned while defining completeness in Section 4.2.2, for
studying envy-freeness one needs to additionally require that an allocation is
in some sense efficient. This disallows wasting all resources and, as a result,
obtaining a trivial “empty,” yet envy-free allocation. Apart from completeness,
other prominent efficiency notions are Pareto-efficiency and maximization of
the (utilitarian) social welfare. Intuitively, an allocation is Pareto-efficient if one
cannot reallocate the resources such that one agent is happier and all others
are not worse off after the reallocation (we focus on Pareto-efficiency in the
next Chapter 5). An allocation maximizes the (utilitarian) social welfare if
every resource is given to an agent that values this resource the most. In
our setting of additive monotonic utilities (and assuming that there are no
“valueless” resources for which every agents reports utility zero), completeness
is the weakest of the mentioned notions in a sense that every Pareto-efficient
allocation and every allocation maximizing the (utilitarian) social welfare is
also complete. Consequently, there is a trade-off between the existence of an
envy-free efficient allocation and the strength of the required efficiency concept.
So, in practice, choosing an efficiency concept suitable for an application might
be nontrivial and is a problem on its own. Since we do not particularly focus
on this issue in our work, while discussing our model in this section, we take
the “least restrictive” path and we require all allocations to be complete.

Our work studies the computational complexity of finding envy-free allocations
from two main perspectives. The first one is the nature of preferences that
agents report for different resources. The second one is the structure of agent
relations in terms of their awareness or knowledge of each other.

Preference Domains We study the cardinal preferences that are additive
and monotonic. This type of preferences is considered as a reasonable trade-off
between expressive power and elicitation simplicity. However, in the domain of
fair allocation, this type of preferences usually leads to (computationally) very
challenging problems.

In this chapter, we consider three constrained types of preferences to track
down how the problem’s hardness is related to the constraints. To this end, we
study identical preferences, 0/1 preferences, and identical 0/1 preferences. At
first glance, these constraints might seem too strong to yield a practical model.
However, apart from being widespread in the fair allocation literature, they are
also practically motivated. Assuming, for example, that agents are humans, it

26

4.3. Model and Discussion

is rather tedious and error-prone for an agent to assign an arbitrarily chosen
number to a resource. This, in effect, makes it harder to collect valid utilities.
So, it might be desirable to just let the agents choose whether they like or
dislike a particular resource making the process less painful and more reliable;
such scenario is modeled by 0/1 preferences. Actually, it even can be impossible
to survey all agents. Then, collecting preferences from a sample of all agents,
averaging them and then using the averaged ones for all agents naturally leads
to identical preferences.

In the most restricted variant of identical 0/1 preferences, one can in fact
think of giving indistinguishable resources to the agents. Such a scenario is
natural when there are a lot of resources of the same type. An extreme case of
0/1 preferences, would be considering a unit of money as a single resource. In
this light, the case of identical 0/1 preferences is interesting because it could
serve as a fallback each time a set of indivisible resources cannot be allocated
fairly. Then, selling the resources and allocating the obtained money makes
them somewhat “more divisible,” which may allow for a fair allocation. Observe,
that this still is not identical to the case of cake-cutting since, clearly, one cannot
divide money indefinitely.

Relations Structure The concept of graph envy-freeness is a more general
version of the standard envy-freeness concept—graph envy-freeness is equivalent
to envy-freeness if the given attention graph is a complete graph. In another
extreme case, if the attention graph is an edgeless graph, then graph envy-freeness
is purposeless, for it does not impose any constraints. In the former case—that
is, seeking (complete) envy-free allocations—we know that the corresponding
problem is computationally challenging. Obviously, in the latter case the problem
boils down to finding any complete allocation and becomes trivial. Hence, the
major focus of this work is to nail down the computational complexity of finding
complete and (weakly/strongly) graph-envy-free allocations for attention graph
structures between these two extremes.

Our motivation, however, is not purely theoretical. Associating the attention
graph over agents with their “social relations,” “attention relations,” or their
“knowledge” of each others brings our studies closer to the real world. From
this perspective, the graph classes under our consideration—directed acyclic
graphs, strongly connected graphs, and general graphs—represent different
situations that occur in reality. Directed acyclic graphs are suitable to cover
different kinds of hierarchical structures, for example, a corporation’s employees

27

4. Graph Envy-Freeness

or departments. Strongly connected graphs model non-scattered or coherent
communities, where there are no clearly separated parts; just to mention groups
of classmates, friends, or teammates. Agent relations can also form structures
that are beyond the two above mentioned cases, which justifies analyzing general
graphs as attention graphs. Consider, for example, a professional association
divided into local branches. Here, most probably, the relations between agents
form a so-called small-world network [WS98]. More precisely, there are some
attention relations between prominent members of different branches, yet the
low-ranked members of a local branch pay attention only to each other, featuring
a specific “clustering” effect.

The above interpretation of the attention graph might seem arguable when
compared to our choice of the attention graph being directed. However, we find
it very likely that, especially for knowledge or attention relations, such a relation
might be one-directional. As in our introductory example, it seems natural
that subordinates rather do not envy their bosses (at least to a reasonable
level). Also, in the case of knowledge, asymmetric information is not uncommon.
Consider so-called “social media influencers” who are people highly visible in
the social media and who are paid by companies to market their products.
Influencers’ social-media followers definitely know a lot more of the influencers’
personal lives than the other way around.

We point out that our graph envy-freeness concept is designed in a way that
an agent totally neglects resources that were not assigned to it and its neighbors
in the attention graph (a model where such resources are not neglected is defined
and briefly analyzed by Aziz et al. [Azi+18]). As a result, an interesting situation
can occur if an agent gets nothing. Such an agent can still be not envious (for
example, when the agent has no neighbors in the attention graph), even though
it is clear that there are some resources that could have been assigned to the
agent such that the agent would be better off. This phenomenon might be
considered as a flaw in modeling fairness. However if a central authority that
assigns resources is trusted, then even such an agent that gets nothing might
feel comfortable. Moreover, the agents might also be very committed and agree
that the situation happened for a greater good or they might be “emotionless”
(non-human agents).

4.3.3 Basic Observations

We start with a technical observation saying that graph envy-freeness can be
checked in polynomial time. It is enough to compare each agents’ own bundle
value to the values the agent assigns to its neighbors’ bundles.

28

4.3. Model and Discussion

Observation 4.1. Given a set R of resources, a set A of agents with additive
monotonic utility functions over resources in R, and some allocation w: A — 2%,
one can decide in polynomial time whether m is (weakly/strongly) graph-envy-free.

Proof. Tt suffices to compute the utility every agent associates with its bundle
and then compare it to the utilities the agent assigns to the bundles of its
neighbors. O

Due to Observation 4.1—showing containment of C-GEF-A and C-sGEF-A
in NP—every NP-hardness and W(1]-hardness proof in Sections 4.4 and 4.5
(in our work every W[1]-hardness proof also yields NP-hardness) also implies
NP-completeness of the corresponding decision problem discussed in the proof.

Intuitively, the resources that have no value for each agent are meaningless
for the concept of (weakly/strongly) graph-envy-free allocation. In the following
observation, we formally show that indeed we can rule them out in the first
place.

Observation 4.2. Consider an instance I of C-GEF-ALLOCATION or C-
SGEF-ALLOCATION. Without loss of generality, in I, there are only resources
to which at least one agent assigns positive utility.

Proof. Assume that I with an agent set A and a resource set R contains a
resource r € R that has utility zero for all agents. Let = be some complete
allocation of R to A. Consider the (unique) allocation 7’ with exactly the same
bundles as those of = but excluding resource r. Since, for each pair of (not
necessarily distinct) agents a,a’ € A, uq(m(a’)) = uo(n'(a’)), it must follow that
7 is (weakly/strongly) graph-envy-free if and only if 7’ is (weakly/strongly)
graph-envy-free. O

Observation 4.2, albeit simple, results in a useful consequence for the case
of identical 0/1 preferences; namely, C-GEF-A and C-sGEF-A boil down to
distributing a certain number of indistinguishable resources.

Observation 4.3. Consider an instance of C-GEF-ALLOCATION with m re-
sources, identical utility functions, and graph G = (A, E) with some graph-envy-
free allocation n. If agent b gets mo resource in w, then every agent reachable
from b also gets no resource in .

Proof. Let a be an agent with no resource in allocation =. We give an inductive
argument with respect to the distance from a. Consider a base case of an

29

4. Graph Envy-Freeness

agent a’ reachable from a with distance one (i.e., (a,a’) € £) that gets at least
one resource in 7. Because the resources are identical and all of them have a
positive value (see Observation 4.2), agent ¢ must envy o’ which contradicts
that 7 is graph-envy-free. Let us now consider an agent o’ at distance k from a.
Let b be an agent at distance k — 1 from a such that (b,a’) € G. By applying the
induction hypothesis, we know that agent b has no resource. Then, due to the
base case of distance one, the same holds for a’, which proves the hypothesis for
distance k. O

4.3.4 ILP Models of the Problems

We present two ILP formulations (out of many possible ones), one for C-GEF-
A and one for C-sGEF-A, that we will utilize in order to show fixed-parameter
tractability in several subsequent proofs in this chapter. The two models are
almost identical, so we first provide the model for C-GEF-A and then describe
a small change leading to the one for C-sGEF-A.

To devise the ILP model for C-GEF-A, we fix an instance of C-GEF-

A consisting of agents A = {a1,a2,...,an}, resources R = {ri,r2,...,7m}, a
utility functions family ¢/ = {u1,us,...,u,}, and an attention graph G = {4, £}.
For some resource r, a type of r is a vector t, = (ua; (1), Uay (), ..., Ua, ().

By T := {t.: r € R}, we denote the set of all possible types of the resources and,
for each t € T, by #t the number of resources of type t¢.

Our ILP model consists of the following variables. For each agent a; € A
and each type t € T, we use an integral non-negative variable zf. The value
of x} represents the number of resources of type t given to agent a in a sought
allocation. Using the introduced variables, we model C-GEF-A using the
following ILP program (we do not include any goal function, since it is enough
to find any feasible solution):

VeeT: > ai=4#t (4.1)
1€[n]
Y(ai,a;) €€ Y ai-tli] =) ab - t]i] (4.2)
teT teT

Inequalities (4.1) ensure that a sought allocation is complete, while Inequali-
ties (4.2) guarantee weak graph envy-freeness.

We obtain the model for C-sGEF-A, by adding 1 to the right-hand side of
the weak inequality in (4.2).

30

4.4. Finding Weakly Graph-Envy-Free Allocations

4.4 Finding Weakly Graph-Envy-Free Allocations

We analyze the classical complexity and the parameterized complexity (Ta-
ble 4.3) for finding allocations that are complete and (weakly) graph-envy-free.
We identify cases where using our graph-based envy-freeness concept leads to
decreased complexity (from NP-hard to P) and cases where it leads to increased
complexity (from P to NP-hard), each time comparing to classical envy-freeness.

As a warm-up, we consider the case where the attention graph is acyclic. As
mentioned in Section 4.3, such an attention graph can describe hierarchical
dependencies between agents well. In Observation 4.4, we show that for this
scenario C-GEF-A can be solved in linear time. Although the solution is
straightforward (allocating all resources to agents without incoming arcs in the
attention graph), Observation 4.4 provides a good starting point for further
studies on detecting more polynomial-time solvable cases.

Observation 4.4. C-GEF-ALLOCATION for monotonic additive preferences
and an acyclic input graph is solvable in linear time.

Proof. For an acyclic directed graph G, there is always a complete and graph-
envy-free allocation that allocates all resources to some arbitrary source agent a*:
In such allocation, no agent can envy some out-neighbor because out-neighbors
always get the empty bundle. A source agent (without incoming arcs) can be
found in linear time. O

As the next step, we show that restricting the preferences to identical 0/1
preferences also makes the corresponding variant of C-GEF-A polynomial-time
solvable for an attention graph that is strongly connected. Here, because of
transitivity of the “greater or equal” relation, we obtain a simple tractable case
where all agents must obtain the same number of resources. To show this, we
start with the following Observation 4.5.

Observation 4.5. Let n: A — 2% be a graph-envy-free allocation for the case
of identical utility functions. Then, for every pair {a,a’} of agents that belong to
the same strongly connected component and a (universal) utility function w, it
holds that (1) u(n(a)) = u(n(a")), and (2) |x(a)| = |7(a’)| for 0/1 utility function.

Proof. Consider an input graph which is a cycle over two agents, a1 and as. For
any graph-envy-free allocation 7 it must be true that u(w(a1)) > u(w(a2)) and
u(m(az)) > u(n(a1)). Thus, u(n(a1)) = u(n(a2)). By an inductive argument, the
last equation holds for every pair of agents in a cycle of any length. Moreover,

31

4. Graph Envy-Freeness

adding new edges connecting agents being part of a cycle does not change
the situation because the relation “greater than or equal to” is transitive and
reflexive. Combining this result with Observation 4.2, we conclude that we need
to give every agent the same number of resources. O

It is not hard to see that the proof of Observation 4.5 in fact yields a simple
algorithm solving the variant of C-GEF-A in question.

Corollary 4.6. C-GEF-ALLOCATION for identical 0/1 preferences and an
input graph being strongly connected is solvable in linear time.

Proof. Using Observation 4.5, our algorithm checks whether the number of
resources is divisible by the number of agents and returns true if and only if
this is the case. O

Contrasting the case of an acyclic attention graph (see Observation 4.4),
restricting preferences to identical 0/1 preferences does not guarantee that the
corresponding variant of C-GEF-A becomes polynomial-time solvable in general.
We obtain Theorem 4.7, showing that even with identical 0/1 preferences, GEF-
ALLOCATION becomes intractable as soon as an attention graph is not strongly
connected, by utilizing the second point of Observation 4.5. This point allows
us to view agents from the same strongly connected component as a “uniform
block of agents,” which then constitutes an important building block of the
proof of Theorem 4.7.

Theorem 4.7. C-GEF-ALLOCATION for identical 0/1 preferences is NP-hard
even if each vertex has out-degree at most two and it is W[1]-hard for the
parameter “number of resources.”

Proof. We prove Theorem 4.7 by giving two very similar many-one polynomial-
time reductions from CLIQUE. We first show the general scheme of the reduction
and prove its correctness. Then, tailoring the scheme to particular cases, we
indeed show the NP-hardness when each vertex has out-degree at most two and
the W[1]-hardness for the parameter “number of resources.”

Construction Consider a CLIQUE instance formed by an undirected graph
G = (V,E) with aset V = {v1,v2,...,v,} of vertices and a set £ = {e1,e2,...,em}
of edges, where we seek a clique of size k, that is, a set of k pairwise adjacent
vertices. Without loss of generality, assume that 1 < k <n and m > (’2‘)

32

4.4. Finding Weakly Graph-Envy-Free Allocations

We present a polynomial-time many-one reduction from CLIQUE to C-GEF-A
using a special variable = € N, z > k?, that will be defined later in order to
show both statements of the theorem. We introduce z* + na + m agents and
a*+kxz+ (§) resources which are assigned utility one by each agent. We specify an
input graph G over the agents in two steps. First, we define strongly connected
components of G and then we add arcs connecting them. By connecting two
strongly connected components we mean adding an arc between two arbitrarily
chosen vertices, one from each connected component. In a first step, we build
the following strongly connected components:

1. We introduce a root component G* which consists of z* vertices;

2. for each vertex v € V, we introduce a vertex component G, which consists
of = vertices;

3. for each edge e € E, we introduce an edge component G. which consists of
one vertex.

Then, we connect the strongly connected components to form G of the C-GEF-A
instance. Figure 4.2 depicts graph G resulting from the following steps:

1. For each edge e = {v',v"} € E, we connect G,» and G,~ to edge compo-
nent G. (with an arc pointing to G.);

2. We connect the root component with every vertex component (with an
arc starting at the root component).

For the sake of readability we extend the concept of envy from agents to
sets of agents. We say that a strongly connected component A’ envies another
strongly connected component A" if there exists an agent from A’ that envies
an agent from A”. For identical 0/1 preferences, a solution to C-GEF-A has to
allocate exactly the same number of resources to every agent being a part of the
same strongly connected component (Observation 4.5 (2)). Thus, we say that
we are allocating some number of resources to a strongly connected component
(instead of an agent) when we uniformly distribute these resources to the agents
that belong to the component.

Correctness We claim that there is a k-clique in G if and only if there is a
complete and graph-envy-free allocation for the constructed C-GEF-A instance.
Assume that there is a k-clique C = (V¢, E¢) in graph G. We create a complete
and graph-envy-free allocation as follows:

33

4. Graph Envy-Freeness

TN

Figure 4.2.: An illustration of the general construction of G in the proof of The-
orem 4.7. The circles represent strongly connected components. Labels indicate
the name (upper part) and the number of agents in the component (lower part).
The connections represent arcs between two arbitrarily chosen agents from different
components.

Q
<
Q\

Gc
M)

g

e

C
P

e We give z* resources to agents in G*, a resource per agent;

e we give z resources to every agent in every vertex component associated
with a vertex from Vi, a resource per agent;

e we give one resource to every agent in every edge component associated
with an edge from Ec, a resource per agent.

The allocation is complete because we assign

#* + |Volz + |Ec| = o* + kx + <§>
resources. No agent in an edge component has an outgoing arc; hence, by
definition, no edge component envies. Every vertex component G,, v € G, may
envy only edge components it is connected to. If v € Vi, then no vertex in G,
envies anybody, because every vertex in G, has one resource and every vertex of
every edge component has at most one resource. If v ¢ V¢, then v cannot envy
because all edge components representing v’s incident edges, which are not a
part of clique C, have no resource allocated. Finally, the root component does
not envy because each of its agents gets one resource and no other agent gets
more.

34

4.4. Finding Weakly Graph-Envy-Free Allocations

Conversely, assume that there exists a complete and graph-envy-free allocation
for the constructed instance of C-GEF-A. Observe that the root component
can have no resources if and only if every vertex component has no resources.
This in turn is impossible because if each vertex component has no resources,
then every edge component also cannot have resources as this would make at
least one vertex component envious. Thus, the root component has to get some
resources. So, on the one hand, the root component gets at least z* resources
because it consists of this number of agents. On the other hand, because of a
lack of resources, the root component cannot get 2z* resources. This derives
from the following calculations using the fact that, by definition, = > k? > 4:

o+ kx + (g) — 2t <kzr+k®<22® <2t

Thus, every agent in the root component gets one resource. Since every agent
in the root component might envy all other agents (even all agents in the edge
components due to transitivity of the “not less than” relation), every other agent
can get at most one resource. Besides the root component’s resources, there
are still kz + (g) resources left. For every feasible solution there exist exactly
k vertex components whose agents have a one-resource bundle. Because

(k+1)x—kx+xzkx+k2>km+(’;),

one cannot allocate resources to more than k vertex components. Contrarily,
if one allocates x resources to k — 1 vertex components, then there are still
z + (%) resources left. However, since each vertex component has an arc to
exactly two edge components, there are at most 2(k — 1) < z edge components
that can have at most one resource each. Thus, a feasible allocation chooses
exactly k vertex components and (’;) edge components. Moreover, every vertex
component has to be connected to chosen edge components. This exactly
corresponds to choosing k distinct vertices and (%) distinct edges such that every
edge is incident to two of the chosen vertices.

In the final step of the proof we give concrete values for z in order to show
the claims.

1. We obtain NP-hardness for C-GEF-A with identical 0/1 preferences and
maximum out-degree two setting « := nm. Indeed, since nm > k(%) =
k* + EHL 2 meets the requirement z > k*. In the root component, there

35

4. Graph Envy-Freeness

are (nm)* agents, which means that it is possible to connect the root

component to all vertex components using a different agent from the root
component. Thus, the maximum out-degree is two.

2. We obtain W[1]-hardness for C-GEF-A with respect to the number of
resources by setting x := k*. With such a choice the overall number of
resources is depending solely on k, which implies the W[1]-hardness.

Naturally, both choices of x allow for performing the reduction in polynomial
time. O

The above theorem not only shows that identical 0/1 preferences do not
guarantee polynomial-time solvability. In fact, it presents two stronger negative
results. C-GEF-A with identical 0/1 preferences presumably cannot be “effi-
ciently” solved even for few resources or even if each agent is allowed to envy at
most two other agents.

The remaining hope for positive results (in the form of fixed-parameter
tractability) for the case of general attention graphs and identical 0/1 preferences
lies in the scenario with few agents. In the following Proposition 4.8 we show
that indeed this variant of C-GEF-A is fixed-parameter tractable with respect
to the number of agents. In fact, we show that the fixed-parameter tractability
holds also for the case of 0/1 preferences that are not identical.

Proposition 4.8. C-GEF-ALLOCATION with 0/1 preferences is fized-parameter
tractable with respect to the parameter “number of agents.”

Proof. We show that, for the case of 0/1 preferences, the number of variables in
the model from Section 4.3.4 is upper-bounded by a function of the number n of
agents in an instance of C-GEF-A. Observe that, for 0/1 preferences, there are
at most 2" different resources types. Thus, the model uses at most n-2" variables.
Eventually, the result is a consequence of applying a result of Lenstra [Len83]
(presented in Proposition 2.1) for ILP models with a bounded number of
variables. O

The intractability results set by Theorem 4.7 suggest that the restriction
that an attention graph must be strongly connected should be kept in further
investigations on seeking polynomial-time solvability of C-GEF-A. Thus, we
relax the constraints on preferences and we allow for more values than just 1
and 0 turning to the case of identical monotonic additive preferences. However,
the first point of Observation 4.5 opens up a way for a (quite straight-forward)

36

4.4. Finding Weakly Graph-Envy-Free Allocations

reduction from the NP-hard and W[1]-hard EEF EXISTENCE [BLO08| problem.
As a result, the following Proposition 4.9 shows that C-GEF-A for identical
monotonic additive preferences is intractable (in the parameterized sense) for
few agents even if each agent has at most one neighbor in the attention graph.

Proposition 4.9. C-GEF-ALLOCATION for identical monotonic additive pref-
erences is NP-hard and WI[1]-hard when parameterized by the number of agents
even if the input graph is a cycle.

Proof. We give a polynomial-time many-one reduction from the NP-hard prob-
lem EEF EXISTENCE with monotonic additive identical preferences studied
by Bouveret and Lang [BL08]. The problem is to decide whether there exists
an envy-free, Pareto-efficient allocation for a given set A of agents, a set R
of resources, and monotonic additive identical utility functions of the form
u: R — N. For monotonic additive identical preferences it is enough that an
allocation is complete and envy-free to be a solution for EEF EXISTENCE (see
Bliem, Bredereck, and Niedermeier [BBN16] for a more detailed discussion). To
build an instance of GEF-ALLOCATION we take the whole input from the EEF
EXISTENCE instance and we add a graph being a cycle over all the agents (in an
arbitrary order). To solve EEF-ALLOCATION every agent has to get an equally
valuable bundle which is also the case for the new C-GEF-A instance. The
reduction is clearly computable in polynomial time. O

Observe that Proposition 4.9 does not exclude fixed-parameter tractability
for few resources (if the preferences are identical). Actually, the following Theo-
rem 4.10 shows that C-GEF-A is fixed-parameter tractable when parameterized
by the number of resources.

Theorem 4.10. C-GEF-ALLOCATION with identical preferences is fixed-pa-
rameter tractable with respect to the number of resources for an input graph
being strongly connected.

Proof. Assume an instance of C-GEF-A with identical preferences and a
strongly connected attention graph. Let n be the number of agents and m be
the number of resources. According to Observation 4.2, one can withdraw from
consideration all zero-valued resources. If there are more agents than there are
resources, then the answer for the instance is “no.” This is a direct implication
of the fact that in the case of a strongly connected input graph and identical
preferences each agent has to have the same utility and there is at least one
non zero-valuable resource. In the opposite case, we can test all possible n™

37

4. Graph Envy-Freeness

allocations. Because n”™ < m™ and the test for completeness and envy-freeness
in a polynomial-time task, we obtain a fixed-parameter algorithm for parameter
“number of resources.” O

We continue our investigations on the computational complexity of C-GEF-A
considering the last yet unsettled case; namely, the case of 0/1 preferences and
few resources. With the classic envy-freeness notion (or G being complete for
C-GEF-A), finding a complete and envy-free allocation can easily be seen to
be fixed-parameter tractable with respect to the number of resources (using an
analogous technique as used by Bliem, Bredereck, and Niedermeier [BBN16,
Proposition 1]). For graph envy-freeness however, the following Theorem 4.11
shows that the problem becomes W[1]-hard even for 0/1 preferences and a
strongly connected attention graph. This result provides an example where
C-GEF-A, which is tractable (parameterized by the number of resources) for
the case of a complete (directed) attention graph, may become intractable if
one deletes some arcs from the attention graph.

Theorem 4.11. C-GEF-ALLOCATION with 0/1 preferences and an input graph
being strongly connected is NP-hard; it is W[1]-hard with respect to the combined
parameter “number of resources and maximum out-degree”; it is W[1]-hard with
respect to the parameter “number of resources”; and it is NP-hard even if the
mazimum out-degree of the attention graph is three.

Proof. To prove Theorem 4.11, we give a polynomial-time many-one reduction
from CLIQUE to C-GEF-A. To this end, we first fix notation, then describe the
construction, and eventually conclude the argument with proving the construc-
tion’s correctness.

Let I be a CLIQUE instance, where given an undirected graph G = (V, E) with
a set V = {v1,va,...,v,} of at least two vertices, a set E = {e1,es,...,em} of
edges, and a clique size k, we ask whether there is a set of k pairwise adjacent
vertices. Without loss of generality, we assume that 2 < £ < n and m > (;)
The reduction transfers instance I to and instance I’ with agent set A, resource
set R, utilities U, and attention graph G.

Construction We build the set A of agents of all vertices and edges of G, a
set D of dummy agents, and a set C of k* constraint agents. Set D is the union
of n+m groups of k° distinct agents each—one group D(v) per each vertex v € V
and one group D(e) per each e € E. Hence, in total, |A| = n(k®+1)+m(k®+1)+&>.

38

4.4. Finding Weakly Graph-Envy-Free Allocations

| V|E|C|D

Re|] 1000
Re|1]11]0]0
REJO |11 |1
RAR:|[O [0 |11

Table 4.2.: The utilities the agents give to the resources in the construction in the
proof of Theorem 4.11.

We introduce k vertex resources, (';) edge resources, and k3 constraint resources;

we refer to these sets as, respectively, R, Re, and R.. Additionally, we set apart
(5) (arbitrary) constraint resources that we call distinguished constraint resources
and denote them by R? (naturally, R C R.). Then, we let R := R, URe U Re,
and thus we have exactly k* + (§) + k resources.

We proceed with constructing the graph G step by step. We refer to Figure 4.3
for a better understanding of the big picture of the construction. First, for
each group of dummy agents, we create a subgraph called a separator gadget.
For each agent = € V U E, the separator gadget S(z) is a directed cycle over all
agents in D(z). Then, using previously defined separator gadgets, we create one
part of G as follows:

1. for each agent v; € V, i € {1,2,...n — 1}, we arbitrarily select two distinct
agents z and y from S(v;) and we create two arcs: (vi,z) and (y,vit1);

2. we select two distinct agents x and y from S(v,) and add two arcs: (vy,)
and (y,v1).

We proceed analogously with all agents in E. In the next step of constructing
the attention graph, for each edge e = (vi,v;) € E, we add two arcs to G: (vi,e)
and (v;,e). We conclude the construction by adding a directed cycle C' over
all constraint agents, adding an arc from each e € F to a distinct, arbitrarily
chosen constraint agent, and adding an arc from an arbitrary chosen constraint
agent to vy.

The final point of the construction deals with the utilities. We use 0/1 utilities
as depicted in Table 4.2.

Correctness We start proving the correctness of the reduction stating a key
lemma about the constraint resources.

39

4. Graph Envy-Freeness

Lemma 4.12. In every graph-envy-free allocation for I', all constraint resources

0 -8
oo
Ny

Figure 4.3.: The construction in the proof of Theorem 4.11.

must be given to the constraint agents, one resource per agent.

Proof. We give a proof by contradiction.

By definition of C-GEF-A, all

constraint resources must be allocated. Towards a contradiction, assume there
is a graph-envy-free allocation 7 allocating a constraint resource to some fixed

agent a* & C. We consider the two following cases, both giving a contradiction.

By our construction, the above cases are exhaustive and non-overlapping.

40

1. Agent o*

resource. This “chain reaction,”

is an arc (b,

€ D. Clearly, a* is a part of some separation gadget S(z)
that forms a cycle over k® agents. This in turn means that there is an
arc (b,a*) € G; thus, agent b has to also get a resource not to envy, which
forces another agent, the one preceding b in the cycle, to also get another
in fact imposes that all k° agents in S(x)
need to get a resource. However, there are only k* + (§) + k < k° resources;
hence, we get a contradiction because = cannot be graph-envy-free.

. Agent a* € VUE. Then, there exists some dummy agent b such that there
a). Thus, for b not to envy, it has to get a resource and we
arrive at the first case achieving a contradiction.

O

4.4. Finding Weakly Graph-Envy-Free Allocations

Equipped with Lemma 4.12, we prove the correctness of our reduction. We
start with showing that a clique in the original instance implies a “yes™-instance
in I’ and then we prove that non-existence of a clique in the original existence
means that I’ is a “no’-instance.

Let 8 = {1,%2,...,0%} be a clique of size k in I, and let £ = {éhég,...,é(; }
be the set of edges of the clique. Then, a graph-envy-free allocation = for
instance I’ is constructed as follows.

1. The distinguished constraint resources are given to those constraint agents
whose incoming arcs come from the agents in F; formally, for each é € E,
if (¢,a) € G, a € C, then w(a) = {r}, r € R:.

2. According to Lemma 4.12, the remaining constraint resources are given to
the constraint agents that have not gotten any resource yet, one resource
per agent.

3. Each agent ¢ € F gets a separate edge resource and each agent o € V gets
a separate vertex resource.

Since the number of edges in clique & and the number of the distinguished
constraint resources is the same, according to Steps 1 and 2, allocation 7 complies
with Lemma 4.12. Observe that the edge agents can only envy agents that
got a distinguished constraint resource. Thus, according to Step 1, only edge
agents in £ can be envious. However, in Step 3, each of these agents gets an
edge resource; hence, none of them envies. By the construction, an agent v € V
that has no resource envies an agent e € E such that n(e) € R. if and only
if v € e € E; in other words, whenever agent e = {v,v'} gets an edge resource,
agents v and v’ have to get a vertex resource each. Since § is a clique, due to
Step 1, it is indeed true that = meets this requirement. Thus, 7 is complete
and graph-envy-free.

Next, assume that I is a ‘“no’-instance, and for the sake of contradiction,
suppose that « is a graph-envy-free allocation for I’. Due to Lemma 4.12
all constraint resources are evenly distributed among the constraint agents.
Thus, what follows from the fact that there are ('2“) constraint agents with a
distinguished constraint resource, there isAa set I of (’;) edge agents that are
assigned a single edge resource by . Let V be a set of vertices such that each
vertex © € V has an outgoing arc pointing to at least one agent in E. By the
construction of G, in fact, V are vertices in G that are incident to edges in E.
Thus, clearly, |[V| > k. However, if 7 is graph-envy-free, then |V| = k because

41

4. Graph Envy-Freeness

each agent in V has to get a vertex resource not to envy and there are k of these
resources. In this case, V must be a clique, yielding a contraction.

The reduction is indeed correct and computable in polynomial-time. One
can easily check that the graph G is strongly connected and that its maximum
out-degree is at most three. Furthermore, the number of resources is a function
solely of parameter k. O

4.4.1 Few Identical Resources and Small Maximum Out-Degree

We devote this section to prove Theorem 4.14. This positive result intuitively
says that if there are few resources as well as agents that have identical utility
functions and each agent pays attention to relatively few other agents, then
C-GEF-A can be solved efficiently. We start with the following Lemma 4.13
about large connected components and then present Theorem 4.14 together
with its proof.

Lemma 4.13. Consider an instance of C-GEF-ALLOCATION with m identical
resources and graph G. Assume that G has a strongly connected component C
such that at least one the following holds:

1. the vertex corresponding to C has in-degree greater than m in the conden-
sation of G or

2. component C has more than m agents.

Then, an equivalent instance of C-GEF-ALLOCATION with an attention graph G’
such that G' is a subgraph of G and G' does not contain C can be computed in
polynomial time.

Proof. Suppose I is an instance of C-GEF-A that meets the assumptions
of Lemma 4.13. We show that a new, equivalent instance I’ of C-GEF-A with
a graph G’ that does not contain the strongly connected component C can be
constructed in polynomial time. In order to obtain I’, we construct G’ from G
by removing component C and all strongly connected components reachable
with a path from C.

Due to Observation 4.5, either all agents in C get at least one resource or
none of them gets any. In fact, in both cases of the lemma, all agents in C get
no resource. Giving resources to all agents yields an immediate contradiction in
Case 2 because of the lack of resources. In Case 1, the lack of resources is also a
reason for a contradiction—due to Observation 4.3, each of the in-neighbors of C
has to get at least one resource. So, in both cases no agent in C gets a resource.

42

4.4. Finding Weakly Graph-Envy-Free Allocations

Consequently, thanks to non-negative resource values, no agent that has an
outgoing arc pointing to an agent in C can envy anymore; hence, it is safe to
eliminate such arcs from G. Furthermore, again due to Observation 4.3, every
agent reachable from every agent of C cannot get a resource. As a result, we
can safely remove C and all components reachable from it. Naturally, such a
procedure can be applied in polynomial-time, for example, using a modification
of BFS. O

Theorem 4.14. C-GEF-ALLOCATION with identical preferences is fixed-pa-
rameter tractable with respect to the combined parameter “number of resources
and maximum out-degree.”

Proof. We give an algorithm that yields the requested fixed-tractability. A high-
level idea of the algorithm is to guess a collection of bundles and the connections
of agents that get the bundles. For each such a guess, the algorithm checks
whether the guessed situation can be implemented in the input attention graph.

In the proof, we focus on the strongly connected components of an input
graph G, thus we merely use the condensation of an input graph G. This suffices,
since, for identical preferences, the internal structure of strongly connected
components does not play any role. What is important, are only arcs between
distinct strongly connected components. So, in the proof, we speak about a
bundle pack that is a collection of bundles given to agents of the same strongly
connected component.

We decompose the algorithm into the following four major steps, then we
argue about their correctness and running times separately to finish the proof.
The four steps read as follows (Figure 4.4 illustrates the concepts introduced by
the presented steps).

1. Guess a number g of bundle packs and partition the resources into ¢ packs
{P1,Ps,..., Py} (thus, all packs are mutually disjoint and their union
contains all resources). We call such a guess a partial structure of a
solution.

2. To every pack P of the partial structure, assign a weight p(P) € {1,2,...m}.
Then, add arcs between the packs such that the arcs do not create a cycle.
We obtain a vertex-weighted directed acyclic graph over the packs that
fully describes a solution. Intuitively, each weight represents the number
of bundles a pack consists of (and, what is equivalent, the number of
agents in a strongly connected component to which the pack is given in

43

4. Graph Envy-Freeness

., oG
Py e Ps Py P; a.e
oo, O

G

Figure 4.4.: The two example structures on the left both consist of three packs.
The packs label their respective vertices in the structures. Each structure vertex
(representing some pack P) is also labeled with its integer weight p(P). For clarity,
we neglect the definition of resources and utility functions. On the right, instead of
the attention graph G, we only provide its condensation. Here, each vertex label is
the number of agents in the respective strongly connected component. The shaded
vertices form a subgraph of the condensation that meets the criteria from Step 4 of
the algorithm for the second example structure. Note that there is no subgraph of the
condensation that is isomorphic to the first example structure.

the solution). The arcs represent the structure of the strongly connected
components to which the packs are given. A partial structure with weights
and arcs is a structure (see Figure 4.4 for examples).

3. Check the sanity of a guessed structure. First, for each pack P in the
structure run the algorithm from Theorem 4.10 feeding it with the resources
in P, a clique over p(P) agents, and the input (identical) preferences. Then,
assuming that the attention graph is the one formed by the structure and
that each agent in each strongly connected component of the structure
gets the same number of resources from the component’s pack, check
whether the structure describes a graph-envy-free allocation. If at least
one of the aforementioned tests fails, then proceed with another guess.
Otherwise, continue with the next step.

4. Check whether there exists a subgraph G’ in the condensation of G such
that G’ has no incoming arcs from vertices outside of G’ and it is isomorphic
to the graph described by the guessed structure (including weights).

Correctness Each structure formed in Steps 1 and 2 describes an allocation
where all resources are allocated. Moreover, checking all possible structures
exhaustively considers all possible relations (in terms of the attention graph)

44

4.4. Finding Weakly Graph-Envy-Free Allocations

that can occur between the strongly connected components that are assigned
resources.

We next show that Step 3 dismisses a guessed structure if and only if the
structure does not describe a graph-envy-free allocation. Let us consider some
pack P of the structure and an allocation #’ that is graph-envy-free for some
strongly connected component C(P). We refer to the agents of the connected
component C(P) as A(P) and we define p(P) = |A(P)|. A direct corollary
of Observation 4.16 is that (assuming identical preferences) =’ is graph-envy-free
for C(P) if and only if it would be strongly graph-envy-free if the relations
between agents in A(P) were forming a complete graph. Thus, by dismissing
a pack P for which there is no graph-envy-free allocation «’ for a clique of
agents in A(P), we cannot dismiss a correct solution for the whole problem.
Moreover, Observation 4.16 shows that in such an allocation 7’ each agent in a
connected component gets exactly a bundle of the same value—an equal share.
This justifies why we can safely dismiss a guessed structure if, for each pack,
allocating an equal share of the resources in the pack to every agent of the
pack’s component does not lead to a graph-envy-free allocation considering only
the relation graph described by the structure’s arcs.

We reach Step 4 only if a guessed structure describes a graph-envy-free
allocation assuming there are no other arcs than those in the structure. Let S
be the (directed acyclic) graph described by the structure. Let G' be a subgraph
of the condensation of G whose vertices are labeled with each strongly connected
component’s size. We show that the structure describes a graph-envy-free
allocation for the input instance if and only if there exists such a G’ that has
no incoming arcs from vertices that are not part of G’ and is isomorphic to S,
including weights. Let G’ be a subgraph meeting the criteria of the claim.
Because G’ is isomorphic to S, there is a graph-envy-free allocation n of the
resources to all agents of G’ if the arcs not present in S are ignored. In fact, by
definition of G’, every arc present in G’ and not present in S starts in some agent
in G’ and ends in an agent not in G’. Since every agent outside of G’ has no items,
such arcs cannot introduce envy, which means that = is also graph-envy-free
for the whole input instance. Let &’ be the directed graph of the structure
describing a graph-envy-free allocation for the input instance. It is immediate
that G contains a subgraph G’ isomorphic (including weights) to S’ or one of the
graphs maintaining the reachability relation of §’. Let S be exactly the graph
that G’ is isomorphic to (since we check all possible structures, the algorithm has
to finally find S). Indeed, if G’ has an incoming arc from outside of its agents,
then the agent from which this arc comes has to be envious; a contradiction.

45

4. Graph Envy-Freeness

Running Time Because in each solution there are at most m packs, the
number of all possible partial structures is upper-bounded by m™. Subsequently,
there are at most m™ - m* structures. The sanity check consists of at most m in-
vocations of the algorithm from Theorem 4.10, which runs in FPT-time with
respect to parameter m, and a single, polynomial check of the graph envy-
freeness property as described in Observation 4.1. Therefore, the first three
steps of the algorithm run in f(m)-poly(|I|) time. It remains to show that Step 4
is computable in FPT-time with respect to the number of resources plus the
maximum out-degree A of vertices in G.

Running Time of Step 4 The problem we need to solve in this step is very
similar to DIRECTED SUBGRAPH [ISOMORPHISM if we take the condensation
of G as a host graph and the guessed structure as a pattern graph. A subtle
difference is that we need to ensure that a subgraph G’ isomorphic to the guessed
structure has no arcs incoming from outside of G’. Although originally DIRECTED
SUBGRAPH ISOMORPHISM does not obey this constraint, we simulate it by
appropriate coloring of the condensation of G and the guessed structure followed
by solving DIRECTED COLORED SUBGRAPH ISOMORPHISM.

We color each vertex v, representing a pack P of the guessed structure,
with in-degree deg™ (v) with a color Xs(v) := p(P)m + deg™ (v). Similarly, we
color each vertex v with in-degree deg™ (v) in the condensation graph of G,
representing a strongly connected component with ¢ agents, with a color A.(v) :=
¢m + deg™ (v). Then, we solve DIRECTED COLORED SUBGRAPH ISOMORPHISM
for such transformed graphs. The running time follows from Lemma 4.15 because
each guessed structure has at most m packs, we have at most m? colors in the
transformed graphs, and the maximum degree of the condensation of G is at
most (A + 1)m. O

Definition 4.10. In the SUBGRAPH ISOMORPHISM problem, given an undirected
host graph H and an undirected pattern graph G, the question is whether there
is a subgraph H’ of H isomorphic to G. When graphs G and H are colored
and the isomorphism has to be color preserving, then we obtain COLORED
SUBGRAPH ISOMORPHISM. Additionally, if the graphs are directed, we arrive
at DIRECTED (COLORED) SUBGRAPH [SOMORPHISM.

SUBGRAPH ISOMORPHISM is a well-studied problem (see the survey of Marx
and Pilipczuk [MP13] and its more detailed version [MP14] for a collection
of results on the problem’s parameterized complexity). Sometimes, subtasks

46

4.4. Finding Weakly Graph-Envy-Free Allocations

related to this problem are solved using the color-coding technique so COLORED
SUBGRAPH ISOMORPHISM appears “internally” as a part of proofs from time to
time (see, for example, the proof of Theorem P.1 by Marx and Pilipczuk [MP13]).
However, we are not aware of a publication concerning the specific relation
between DIRECTED COLORED SUBGRAPH ISOMORPHISM and SUBGRAPH ISO-
MORPHISM that we present in the following lemma (see Lemma 2.6 by Marx
and Pilipczuk [MP13] describing a very similar idea in a different context of
fixing images of prescribed vertices).

Lemma 4.15. DIRECTED COLORED SUBGRAPH ISOMORPHISM is fized-param-
eter tractable with respect to the combined parameter “the number of vertices
in the pattern graph, the number of distinct colors in the input graphs, and the
mazximum degree of the host graph” for directed acyclic graphs.

Proof. A general strategy of the proof is to show a parameterized many-one
reduction from DIRECTED COLORED SUBGRAPH ISOMORPHISM to SUBGRAPH
IsoMORPHISM and then to use an appropriate result for the latter.

Construction Let G° = (V(G°), E(G°), A\co) and H® = (V(H®), E(H®), Ago)
be directed colored graphs—a pattern graph and a host graph, in order, with
respective vertex-coloring functions A¢ and A\y—forming an instance I of Di-
RECTED COLORED SUBGRAPH ISOMORPHISM. We illustrate the construction’s
steps in Figure 4.5.

We first transfer G° and H° to undirected graphs subdividing each arc by
adding two special colors cpeg and cena marking, respectively, the beginning of
an arc and the end of an arc. This transformation allows us to encode the
directions of arcs. Specifically, for each arc e = (u,v) € E(G°) U E(H), we add
two vertices ' and o', and replace e with three edges {u,u'}, {u/,v'}, {v',v}
setting the colors of v and v’ to cpeg and cena respectively. In the resulting
(now undirected) graph, for each edge e = {u,v}, we add a new vertex z, two
edges {u,z} and {z,v}, and delete edge e. We color the new vertex z with a new
color ¢y that we refer to as the void color; we refer to all vertices colored with
the void color as the dummy vertices and refer to the corresponding vertex-set
as V. We refer to the resulting graphs and functions as G, H!, Ag1, and A1
respectively.

Second, we transfer G* and H' to non-colored graphs. Intuitively, we encode
each vertex’ color with the bulb gadget. The bulb gadget of color ¢ > 0 consists of
a cycle of size 3 and a cycle of size 3+ 4; the two cycles have exactly one common

47

4. Graph Envy-Freeness

Figure 4.5.: The step-by-step construction of G? from G° described in the proof
of Lemma 4.15. The unnamed graph shows an auxiliary step helping to visualize the
construction. The numbers inside the vertices represent colors: cpheg = 4, Cend = 5.
The dummy vertices are colored gray. For clarity, the bulbs are only demonstrated for
two vertices; in fact, every non-dummy vertex has its own bulb constructed.

vertex called the foot. For each vertex v € V(G') U V(H") with color i # ¢y,
we construct a copy of the respective bulb gadget and connect vertex v to
the bulb gadget’s foot. Note that we do not create any bulb gadgets for the
dummy vertices. This final transformation, together with neglecting the coloring
functions, gives us undirected, non-colored graphs G? and H?—these graphs
form an instance I' of SUBGRAPH [SOMORPHISM.

Naturally, the whole construction involves polynomially-many steps, and thus
the reduction runs in polynomial time.

Correctness We show that there is a directed, colored subgraph HO of H°
that is isomorphic to G° respecting colors if and only if there is an undirected,
non-colored subgraph H? of H? isomorphic to G2.

Having HO we apply the same transformations as those applied to G° and
to HY obtaining H2. Tt is clear that H2 is a subgraph of H? and that it is
isomorphic to G2.

48

4.4. Finding Weakly Graph-Envy-Free Allocations

For the reverse direction, suppose we have H? that is a a subgraph of H? and
is isomorphic to G? via an 1somorphlsm n: V(G?) = V(H2) In two steps, we
will show how to transform H? to a directed colored subgraph HO of H° that
is isomorphic to G°. We say that a vertex is adjacent to a bulb gadget if the
vertex is adjacent to the foot of the gadget. Similarly, we say that a vertex is
adjacent to a cycle if the vertex is adjacent to exactly one vertex of this cycle.

First, we “bring back” colors of H? thus obtaining an interim graph H H1.
Consider some vertex v € V(HQ) NV (H') that originally had color i := Mg (v)
and some vertex u € V(G?) N V(G*) originally colored to j := Ag1(u). We show
that n(u) = v if and only if s = 5. To this end, we distinguish two cases depending
on whether j = ¢5. We first assume that j # c¢y. By the construction, vertex u
is adjacent to its respective bulb gadget in G2. We show that if n(u) = v, then
vertex v is also adjacent to a bulb of color j; from this it follows that i = j. First
observe that no vertex « € V(H?) NV (H') such that Ay (z) # ¢y is part of a
cycle of size 3. If it were the case, then there would be an edge connecting two
dummy vertices or an edge connecting a dummy vertex with the foot of some
bulb gadget. However, by the construction there are no such edges. Since every
dummy vertex has only neighbors that are not dummy vertices (and, what we
have just shown, these neighbors cannot be part of a cycle of size three), then
no dummy vertex is adjacent to a vertex of a cycle of size three. As a result,
v cannot be a dummy vertex and thus v is (by the construction) adjacent to
a bulb. Note that v’s neighbors, by definition, are only some dummy agents
and the foot of v’s bulb. Note that every dummy agent (by the construction)
has degree two and all feet have degree exactly 5. Hence, no dummy agent
can play a role of a foot. Thus, v is adjacent only to the foot of its own bulb.
Naturally, if v is mapped to u, then it must be the case that both v and v are
connected to a bulb of the same color; as a result, it holds that i = j. Now
let us consider the remaining case where j = ¢y, that is, u is a dummy vertex.
By the construction, vertex u has two neighbors and none of them is a dummy
vertex. We already know that every non-dummy vertex is mapped to another
non-dummy vertex with the same color. Hence, both neighbors of u are mapped
correctly. So, it follows that v has to be mapped to a dummy vertex. Thus, v
is a dummy vertex and ¢ = j = ¢y. Eventually, since we know that the vertices
are mapped correctly with respect to their colors, we get 7 by coloring each
vertex in V(ﬁ\?) N V(H') with its respective color and removing all bulbs. Note
that H1 is a subgraph of H' (which is essentially H? with proper colors instead
of bulbs) and is isomorphic to G* (being just G with proper colors instead of
bulbs).

49

4. Graph Envy-Freeness

The final step is to transform Hltoa subgraph HO of H° isomorphic to G°.
To achieve this, we first remove every dummy vertex in ol by adding an edge
between its neighbors (by the construction each dummy vertex has exactly two
neighbors). In the second step substitute all paths of form {u,z,y,v} in ol
with z colored to cpeg and y colored to cena With an arc (u,v). Such paths, by our
construction, are non-overlapping and exactly encode the respective directed
arcs (u,v) in H°. Performing all substitutions we achieve HO. Since applying
the same procedure to G' would give G°, it is clear that H! is isomorphic to G*
if and only if HO is isomorphic to G°.

Let ¢ be the number of different colors the input graphs are colored with.
Applying our reduction, we arrive at an instance I’ in which the pattern
graph G? has at most f(E(G°),q) := |E(G")|(2 4+ 3+ 2¢ + 12) + |V (G®)|(¢ + 6) €
O(|V(GY)|?q) vertices. Furthermore, for A being the maximum degree of H°, we
obtain the host graph H? having maximum degree at most A 4+ 1. Due to a
result of Cai, Chan, and Chan [CCCO06, Theorem 1|, SUBGRAPH ISOMORPHISM
is fixed-parameter tractable for the combined parameter “number of vertices of
the pattern graph and maximum degree of the host graph,” which yields the
result. O

Theorem 4.14 mainly provides a classification result. It remains open to
further improve the running time in order to obtain a practically relevant
efficient algorithm. Theorem 4.14 concludes our results for C-sGEF-A. A
compact overview of the results in the tabular form is depicted in Table 4.3.

4.5 Finding Strongly Graph-Envy-Free Allocations

We move on to the strong variant of our envy-freeness concept and analyze
how this stronger notion affects the computational complexity (Table 4.5).
Again, we start with those restrictions of C-SGEF-ALLOCATION that result in
the computationally least hard variants of the problem; specifically, we restrict
the utility functions to be identical and the attention graph to be strongly
connected. At the beginning, it might come a bit surprising that for C-sGEF-A
the computationally simplest case is not the one of acyclic attention graphs
(recall that the case of identical utility functions and strongly connected attention
graphs was NP-hard for C-GEF-A, see Proposition 4.9). However, observing
that as soon as the “greater than” relation forms a cycle, we arrive at a trivial

2The rows referring to more specific utility functions are omitted, as they are subsumed by
row “additive.”

50

4.5. Finding Strongly Graph-Envy-Free Allocations

i);"gfeerences parameterization
#agents #resources outdegree #aiirtlfise;ee #risl?:(;ggiez
directed acyclic
@ additive’? P & P& P& P& P&
£ strongly connected
= id. 0/1 PO PO PO PO PO
& id. WI[1]-h t FPT & p-NP-h WI[1]-h { FPT &
& 0/1 FPT § WI[1]-h } p-NP-h t FPT § WI[1]-h }
g additive WI[1]-h t W][1]-h p-NP-h WI[1]-h { WI[1]-h f
'*g general
§ id. 0/1 FPT § W(1]-h ¢ p-NP-ho FPT§ FPT o
< id. W[1]-h t WI[1]-h o p-NP-h o WJ[1]-h T FPT e
0/1 FPT § WI[1]-h ¢ p-NP-h o FPT § WI[1]-h §
additive W[1]-h W][1]-h ¢ p-NP-h o W[1]-h T WI[1]-h f
o Th. 47 t Pr.4.9 f Th. 4.11 § Pr.4.8
Reference legend: g oy "4 4 Q Cor. 4.6 & Th. 4.10 e Th. 4.14

Table 4.3.: Parameterized complexity of C-GEF-ALLOCATION. The results are
grouped by three criteria: the attention graph type, the preference type, and the
parameterization. All cases except for the polynomial-time solvable ones are NP-hard.

impossibility (assuming identical utility functions), immediately explains the
situation. We present this observation formally below.

Observation 4.16. Let G be a graph that contains a strongly connected com-
ponent with more than one vertex. Then, there is no strongly graph-envy-free
allocation if the agents have identical preferences.

Proof. By definition, there is a cycle in every strongly connected graph with
more than one vertex. Let us arbitrarily choose some agent a from the cycle.
Let us call its predecessor a—. Now, by the definition of strongly graph-envy-
free allocation and transitivity of the “greater than” relation, we have that
u(m(a)) > u(r(a=)) and u(r(a-)) > u(w(a))—a contradiction. O

Next, we present Algorithm 4.1 which, applying Observation 4.16, finds a com-
plete, strongly graph-envy-free allocation for the case of identical 0/1 preferences
and arbitrary input graphs.

Proposition 4.17. C-sSGEF-ALLOCATION for identical 0/1 preferences can be
solved in linear time.

o1

4. Graph Envy-Freeness

Procedure 4.1: Let R be a set of resources, let A be a set of agents such
that every agent assigns the preference value of one to every resource, and let
G = (A, E) be a directed graph.

1 if |A] =1 then

2 L Allocate all resources to the single vertex; return

3 if there exists a cycle in G then

4 L No allocation is possible; return

5 Build a graph G’ = (AU {v:}, E') where
E ={(u,v): (v,u) € E}U{(vs,u): u € AN |Ng(u)| =0}

6 Assign every vertex w € V a label £(w) being the length of the longest path
from vs decreased by one

7 if |[R| > >, cw f(w) then
8 Assign ¢(w) arbitrary resources from R to every agent w € V
9 Assign the remaining resources to arbitrary agents with zero in-degree in

graph G; return

10 No allocation is possible; return

Proof. By Observation 4.2, we know that we can assume without loss of gener-
ality that there are no resources with value zero. Hence, in Algorithm 4.1 we
safely assume that every resource is assigned utility one by every agent.
Algorithm 4.1 first checks whether the graph either consists of only one vertex
or contains a cycle. If the former is true, then it is enough to give it all the
resources to obtain a complete and strongly graph-envy-free allocation. If the
input graph is cyclic, then by Observation 4.16 no feasible allocation exists.
Giving resources to some agent with zero in-degree cannot break strong graph
envy-freeness. Thus, the task reduces to finding a strongly graph-envy-free
(possibly incomplete) allocation 7 that guarantees strong graph envy-freeness
for all agents and then to distribute the remaining resources to agents with zero
in-degree. An allocation 7 should, naturally, use as few resources as possible.
Algorithm 4.1 finds such an allocation = building graph G’ and assigning every
agent w € V a label ¢(w). Label ¢(w) is the minimal number of resources that
w has to get to achieve a strongly graph-envy-free allocation with the smallest
number of resources. We make an inductive argument based on the label value
assigned by the algorithm to prove this claim. Let us focus on the input graph G.
Since the agents in A with label 0 are sinks, it is clear that giving them no
resources never violates strong graph envy-freeness. Let us consider some label

52

4.5. Finding Strongly Graph-Envy-Free Allocations

value x > 0 and an agent a € A with £(a) = z. Because x is the length of a path
from a to the furthest sink, there exists an arc (a,a’) such that agent a’ has
label z — 1 and gets a bundle of at least — 1 resources. Thus, indeed, agent a
has to get at least x resources to achieve a strongly graph-envy-free allocation.

Using the breadth-first search, we can assign the labels to the agents and
check whether a graph is cyclic in linear time. Since the same holds for our
procedure of building auxiliary graph G’, Algorithm 4.1 runs in linear time. [

The linear-time solvability settled in Proposition 4.17 heavily depends on the
identical 0/1 preferences. Indeed, in the following Proposition 4.18 we show
that C-sGEF-A becomes intractable for identical preferences in the case of
acyclic attention graphs, which stands in contrast to C-GEF-ALLOCATION that
is always solvable in polynomial time if the attention graph is acyclic. Reducing
from the NP-hard UNARY BIN PACKING [Jan+13], we mainly use the fact that
in a (directed) path over k agents, the first agent has to get a bundle with utility
at least k — 1.

Proposition 4.18. C-sGEF-ALLOCATION with identical monotonic additive
preferences is NP-hard even if the input graph is acyclic and the mazimal
out-degree is one.

Proof. We give a polynomial-time many-one reduction from UNARY BIN PACK-
ING [Jan+13] where, for a given multiset of integer item sizes encoded in unary,
a bin size b, and the maximal number of bins k, the question is whether it is
possible to partition the items to at most k bins each with capacity b.

Let I = (S,b,k) be an instance of UNARY BIN PACKING, where S =
{s1,82,...,8,} and S := > 7" s;. Without loss of generality we assume that
S = k-b. We create an instance of SGEF-ALLOCATION with the following
input: The set R:= {r},75,...,m} U{r1,72,...,rn} U{ri,r5,..., 75} of resources,
and the set A of agents, containing bin agents {ai,as,...,ar}, dummy agents
{al,ah,...,a;}, and k special agents af,a3,...,aj. To form the graph G describ-
ing the agent relations we first build a (directed) path (ay,aj_4,...,a}) through
the dummy agents. Then we create an arc from every bin agent to a;. Finally,
for each i € [k], we create an arc from a; to a;. For i € [b], we set the value of
each 7} to be i — 1. For i € [n], we set the value of r; to be s;. The value of the
special resources is set to b+ 1.

According to graph G, for an allocation to be strongly graph-envy-free, each
dummy agent a}, i € [b], has to get resources of total value at least i — 1. This
implies that all bin agents have to achieve a utility of b, and each special agent

93

4. Graph Envy-Freeness

has to get resources valued at least b+ 1. This means that the minimal value
of allocated resources is exactly Zie[b}(i — 1)+ S+ k(b+1). However, the sum
of utilities of all resources is exactly the same. Hence, one can only allocate
the resources achieving strong graph envy-freenessf one can allocate resources
representing the items to pack S to bin agents.

The reduction is polynomial-time executable, thus proving NP-hardness.
Clearly, no agent vertex has out-degree higher than one. O

Observe that the NP-hardness from Proposition 4.18 holds even if each agent
can envy at most one other agent. On the positive side, C-SGEF-A with
identical utility functions turns out to be fixed-parameter tractable with respect
to the number of agents. In the following Proposition 4.19, we show this
combining a brute-force approach with solving the ILP model of C-sGEF-A
from Section 4.3.4.

Proposition 4.19. C-sGEF-ALLOCATION with identical preferences is fired-
parameter tractable with respect to the number of agents.

Proof. A general approach in the proof is to distinguish two cases depending on
whether there are more distinct utility values reported by agents than agents
themselves. It turns out that if this is the case, then we can efficiently brute-force
a given instance. Otherwise, we employ the ILP model from Section 4.3.4 and
show that the number of variables is upper-bounded by the number of agents,
obtaining fixed-parameter tractability due to Lenstra’s result [Len83] recalled
in Proposition 2.1.

Consider an instance of C-SGEF-A with an attention graph G, a set R of
resources, and the number ugig of different utility values assigned to R by the
agents of the instance. Since checking whether a graph is acyclic can be done
in polynomial time, thanks to Observation 4.5, we can assume without loss of
generality that G has no cycles.

Let us first consider the case in which uaig > |A|. Since G is a directed
acyclic graph, it has a topological ordering > computable in polynomial time.
Furthermore, there clearly exists at least one agent a* in G with no incoming
arc. These observations allow us to find a strongly graph-envy-free allocation
in two polynomial-time computable steps. First, using the fact that waig > |A|,
we select exactly |.A| differently valued resources and distribute them such that
if a = a, then a gets a more valuable resource. The second step is to give
all remaining resources to a*. Because > is a topological ordering, for every

54

4.5. Finding Strongly Graph-Envy-Free Allocations

arc (a,a’) it holds that a > a. Since a has, by definition, a resource with greater
value than that of a’, a does not envy a’.

Let us now consider the case where uaig < |A|. In the ILP model from Sec-
tion 4.3.4 the number of variables is the product of the number of agents and
the number of different possible resource types. Recall that a type of some
resource is defined as a vector of utility values given to the resource by all
agents. Thus, in our case of identical utility functions, a resource type boils
down to a single number that is the utility given by the agents to a particular
resource. By the assumption of this case, the number of different utilities given
to the resources by agents is upper-bounded by |A|. Eventually, the whole
number of variables in the ILP model from Section 4.3.4 is upper-bounded
by |A| which gives us fixed-parameter tractability by Lenstra’s result [Len83]
from Proposition 2.1. O

Continuing good news brought by Proposition 4.19, we provide a fairly general
positive result for the case with few resources. Specifically, in Theorem 4.20, we
show that C-sGEF-A is fixed-parameter tractable with respect to the number
of resources, independently of the attention graph structure and the preference

type.

Theorem 4.20. C-SGEF-ALLOCATION is fized-parameter tractable with respect
to the number of resources.

Proof. A high-level idea in the proof is to identify certain special cases of C-
SGEF-A depending on whether the structure of the input graph. Then, for
each case, we use a different way of solving the case, exploiting features that
that the case displays.

We can divide vertices of every directed graph into three groups. Group V;
consists of sources, that is vertices with in-degree zero. Group V; consists of
sinks, that is vertices with out-degree zero. All other vertices belong to group
Vi. Observe that no vertex belongs to Vo N'V; N'V; but there might be vertices
that belong to V; N'Vs.

Let us denote the number of agents, which are vertices, by n and the number
of resources by m. We distinguish different cases and for each them provide an
algorithm to solve it:

1. m > n. We check all possible allocations of the resources to the agents.
Since there are at most n™ possible allocations, by the assumption that
there are at least as many resources as agents, we obtain that the number
of possible allocations is upper-bounded by m™.

95

4. Graph Envy-Freeness

56

. m < |(VoUVi)\ V&|. There is no strongly graph-envy-free allocation because

each agent from (V; U Vi) \ Vi has to get at least one resource.

. m=|(VaUW;)\ V&|. We check all possible, at most O(m!) allocations.

(Ve UV \ V&| < m < n and Vi # 0. Since we have at least one source, that

can get arbitrarily many resources, there always is a strongly graph-envy-
free allocation in which no sink agent gets any of the resources. Hence,
one can ignore the sink agents and check all |(V; U V;) \ Vi|™ allocations in
FPT-time (with respect to m, as in Case 1).

(Ve U V) \ Vil <m < n and V; = 0. First, observe that when V; =0, then,

the condition for this case gives us that |Vi| < m (recall that VinV; =@ by
definition). In this case, unlike in Case 4, we cannot easily ignore the sink
agents because there might be scenarios in which these agents have to get
some resources. Consider some sink agent ¢ € V; and let N(t) be the set of
agents from which there is an arc to t. We want to describe all sinks t € V;
by their respective sets N(t); hence, for some sink ¢t € V;, we call the
set N(t) a type of t. Observe that there are at most 2/Vil < 2™ different
types of sink vertices. This means that without exceeding the FPT-time,
we can guess which resources will be allocated to each agent in Vi and
which resources will be allocated to the sink agents of a certain type (there
are, respectively, at most O(m) and O(m?") such guesses). Clearly, if
there is a strongly graph-envy-free allocation, then it is described by such
a guess. To show how to proceed with a guess, let us fix an arbitrary
one. We show that, using this guess, we are able to, again, guess a
strongly graph-envy-free allocation (if it exists) in FPT-time. The clue is
to correctly allocate the guessed resources to the given sets of sink vertices
of different types. Observe that for all sink agents of the same type we
can ignore their utility functions, as the sink agents cannot envy (they
have no outgoing arcs). Moreover, all sink agents of the same type have
incoming arcs from exactly the same inner vertices, which makes the sink
agents indistinguishable. Furthermore, there are at most m resources and
thus, we have to distribute the guessed resources for the sink agents of the
particular type to at most m of these sink agents. As a result, for each
type, we can check all possible allocations of the guessed resources for this
type to at most m arbitrarily selected sink agents of this type. There are
at most 2™ types and for each of them we have at most O(m™) possible
guesses of how to distribute resources within this type.

4.5. Finding Strongly Graph-Envy-Free Allocations

The list of above cases is exhaustive. Indeed if m > n, then we obtain the first
case; otherwise, we list all possible cases with respect to the relation between m
and |(Vz; U Vi) \ Vi| < n (with one case split to two depending on whether the
set Vi is empty or not). O

Propositions 4.18 and 4.19 are tailored to the case of identical preferences.
Thus, they do not cover the case of 0/1 preferences without the same utility
functions. However, the following Proposition 4.21, using a reduction from
CLIQUE, shows that C-SGEF-A remains hard also in the case of 0/1 preferences.
The result holds even for acyclic attention graphs.

Proposition 4.21. C-SGEF-ALLOCATION with 0/1 preferences is NP-hard for
an input graph being either strongly connected or acyclic even if the mazximal
out-degree is three.

Proof. We prove Proposition 4.21 by giving a polynomial-time many-one re-
duction from CLIQUE. We first present the reduction for C-sGEF-A with an
acyclic attention graph. Then we massage the reduction to cover the case of an
attention graph being strongly connected.

In the CLIQUE problem, for a given graph and an integer k, we ask whether
there is a set of k pairwise adjacent vertices in the given graph. Let I be a CLIQUE
instance formed by an undirected graph G = (V, E) with a set V = {v1,v2,...,vn}
of vertices and a set E = {e1,e2,...,en} of edges, and a target clique size k.
Without loss of generality, assume that 1 < k¥ <n and m > (’;)

We construct an instance I’ of C-SGEF-A associating each vertex and edge
of G with an agent, adding n separating agents, and the source s and sink ¢
agents. Formally, we set A :=VUEU{v},v3,...,v5}U{s,t}. The following steps
describe the construction of graph G; the construction is depicted in Figure 4.6.

1. For each edge e = {v,v’'} € G, we add three arcs, (v,e), (v',€), and (e,t),
to G.

2. For each vertex v; € V, i € [|V]], we add arc (v;,v:) to G.
3. For each vertex v; € V, i € [|[V] — 1], we add arc (v, vi;) to G.
4. We add arc (s,v}).

Then, we add m edge resources and n + k vertex resources. We arbitrarily split
the edge resources into two sets: set R~ of m — ('2“) edge resources and set R*
of (';) edge resources. We refer to the latter ones as distinguished edge resources.

57

4. Graph Envy-Freeness

Figure 4.6.: The construction in the proof of Proposition 4.21. The dashed arc is
used in the case of the input graph being strongly connected.

We denote the set of vertex resources by R®. Furthermore, we add n separating
resources, using R to refer to them, and a special resource r*. We define
the utilities of the resources as depicted in Table 4.4. Naturally, the described
construction of a single instance of C-SGEF-A is computable in polynomial
time.

To show the correctness of the above reduction and finish the proof, we state
the following useful lemma, which gives the requirements of graph-envy-free
allocations for instance I'.

Lemma 4.22. In an allocation = for instance I', the vertex agents, the edge
agents and agent s are not envious if and only if

1. r® e n(s),
2. Vi€ [n]: 7)) NRI =1, and
3. Vee E: |r(e)N(RTURY)| =1
Proof. We prove the lemma for both directions separately.

(=) Claim 1 holds because agent s, having an outgoing arc, gives a positive
utility only to resource r©. Hence, s has to get r©. Similarly, there is the same

58

4.5. Finding Strongly Graph-Envy-Free Allocations

s V. E t f,...o;
=11 0 0 0 0
R-|0 0 1 O 0
R0 1 1 0 0
RO 0 0 0 1
R*|0 1 0 O 0
0 0 0 1 0

Table 4.4.: Utilities of resources in the proof of Proposition 4.21. Resource 7" is
needed only to prove Proposition 4.21 for the input graph being strongly connected.

number of separating resources and separating agents, who have an outgoing arc
each. The separating resources are the only resources to which the separating
agents assign positive utility; thus, each separating agent has to get a separating
resource, which is exactly what Claim 2 formalizes. The very same argument
for the edge agents yields Claim 3.

(«) Reusing the argumentation from the opposite direction, it is immediate
that allocation 7 does not introduce envy if we neglect the vertex resources.
However, observe that the vertex resources are given utility zero by every agent
except for the vertex agents. Thus, no matter how we allocate the vertex
resources, all non-vertex agents remain unenvious. O

In other words, Lemma 4.22 says that each complete strongly graph-envy-free
allocation for I’ gives all separating resources to the separating agent, one
resource per agent; gives all edge resources to the edge agents, one resource per
agent; and gives 7 to agent s. (Note that Lemma 4.22 does not specify how to
allocate the vertex resources.) Using this convenient (partial) characterization of
solutions to I’, in the following we prove correctness of the presented reduction.

Suppose C = (V¢, Ec) is a clique of size k (i.e., consisting of k vertices) in G.
We construct a complete strongly graph-envy-free allocation = for instance I’.
We allocate the special resource to s, the separating resources to the separating
agents (a resource per agent), and the edge resources to the edge agents such
that each e € Ec gets a distinguished edge resource. To each agent v € V, we
allocate two vertex resources if v belongs to Vi, or else we allocate one vertex
resource to v. Clearly, all resources are allocated. Thanks to Lemma 4.22, it
remains to show that no vertex agent is envious. Observe that if v € Vi, then v
values its bundle at two. As a result, v cannot envy because the only arcs it has
are arcs pointing to some edge agents and each of them has a single resource.

99

4. Graph Envy-Freeness

So, towards a contradiction, let v € V' \ V& be an envious vertex agent. Since v
gets one resource that v values at one, v can only envy an edge agent with a
distinguished resource. Thus, let e € E¢ be such an agent to which v is pointing.
This means that edge e belongs to clique C' but v does not belong to this clique;
a contradiction.

For the reverse direction suppose 7 is a solution to I’. Due to Lemma 4.22,
we know that there are exactly (’;) edge agents with a distinguished resource;
we refer to them as selected edge agents. By construction, = has to give each
vertex agent at least one vertex resource and every vertex agent that is pointing
to a selected edge agent two vertex resources; we call the latter selected vertex
agents. To avoid envy, each selected edge agent can only have an incoming arc
from two selected vertex agents. Associating selected vertex agents with vertices
and selected edge agents with edges, this situation exactly maps to finding a
clique in graph G. This concludes the proof for G being acyclic.

We can easily adapt the aforementioned reduction to the case where the
attention graph is strongly connected. We do so by adding an arc (¢,s) and
one special resource r¥. We let only agent ¢ give utility one to »¥. We claim
that these two problems are equivalent; that is, there is a one-to-one mapping
between complete strongly graph-envy-free allocations for them.

Let 7 be a strongly graph-envy-free allocation for an acyclic attention graph G.
We obtain an allocation 7’ for a strongly connected graph G’ by copying = and
additionally giving ¥ to t. Clearly, the only envy that could have emerged,
between t and s, is prevented by rY. Since every agent except for ¢ gives r¥
utility zero, resource r¥ cannot change the envy state of another agents.

Conversely, if an allocation 7’ is strongly graph-envy-free for G’, then =«'(¢) =
{r¥}. Thus, we construct an allocation = for the corresponding acyclic attention
graph G by copying n’ and removing resource r¥. Since arc (¢,s) does not exist
in G, agent t, that gets no resource under =, is not envious under . Naturally,
every other agent was not envious under «’ so it cannot be envious under .

O

Similarly as in the case of identical preferences, NP-hardness from Proposi-
tion 4.21 can be successfully tackled for the case of few agents of resources.
Parameterized tractability of C-sSGEF-A with respect to the number of re-
sources has already been shown for a general case in Theorem 4.20. The
following Corollary 4.23, which is a straightforward consequence of Proposi-
tion 4.8, complements the picture by stating that C-sGEF-A with identical
utility functions is tractable for few agents.

60

4.5. Finding Strongly Graph-Envy-Free Allocations

Corollary 4.23. C-sSGEF-ALLOCATION with 0/1 preferences is fized-parameter
tractable with respect to the parameter “number of agents.”

The last remaining question in our analysis of the computational hardness
of C-sGEF-A is the parameterized computational complexity of C-sGEF-A
with respect to the number of agents in the case of general monotonic additive
utility functions. Theorem 4.24 provides a negative answer showing that for
this parameterization C-SGEF-A remains intractable even for acyclic attention
graphs.

Theorem 4.24. C-sGEF-ALLOCATION for monotonic additive preferences is
NP-hard and W[1]-hard when parameterized by the number of agents even if the
input graph G is either a directed path or a cycle.

Proof. We give a parameterized reduction from the NP-hard UNARY BIN PACK-
ING where, for a given collection of integer item sizes encoded in unary, the
maximal number k of bins each of size B, the question is whether it is possible
to partition the items to at most k bins respecting bin size B. UNARY BIN
PACKING is known to be W[1]-hard with respect to the number of bins [Jan-+13].

A general idea is to create a resource for each item and construct an agent to
represent every bin. Each of the constructed agents gives every resource the
same utility as the size of an item the resource represents. Then, we construct
an instance of SGEF-ALLOCATION so that every agent has to get a bundle to
which it assigns utility at most B.

To present the reduction formally let us fix an instance I = {S, B,k} of
UNARY BIN PACKING, where 8 = {s1,s2,...,s,} and S =37 | s;. Without loss
of generality, we assume that S = k-B. We create a new instance of SGEF-ALLO-

CATION with the following input. Let R := {r1,...,7n, Tnt1,Tnt2, -, Tk, 7"} be
the set of resources and let A := {a1,a2,..., art2} of agents. Associating vertices
with agents, we construct graph G which is a directed path (a1, a2, ..., akt2).

Agent a4 gives no utility to every resource. Moreover resource r* is assigned
a non-zero utility only by the two agents ar and axi1, that is, ug41(r*) == 1,
up(r*) == £ = B and V;eui(r*) := 0. For every resource r;, 0 < i < n, we set the
utility function values to s; for agents from {u1,us,...,ur} and zero otherwise.
Resource r,4j, 0 < j < k, is assigned utility zero by all agents except for a;,
which assigns utility one.

To show that solving the new instance is equivalent to solving the initial
instance of UNARY BIN PACKING, we first observe that agent ax;1 must have
a non-zero utility. The only resource the agent can get to achieve this is r*.

61

4. Graph Envy-Freeness

Observe that this implies that ax has a bundle of utility at least B + 1. By
obtaining the resources rn+1,7n+2,- .., nt+k, agent ax can get at most utility one;
namely, from resource r,1%x. As a result, ax has to get utility at least B by
obtaining a selection of the resources ri,72,...,7,. We can apply this argument
iteratively, for the remaining agents ai,as2,...,axr—1. Thus, we get that each
agent a; to ay obtains a subset of {ri,rs,...,r,} that it values to at least B.
Since there are exactly k of these agents, this bound is tight. To fulfill the
requirements of strong graph envy-freeness, each agent a; € {a1,a2,...,a;} also
gets resource rn+;. The solution to UNARY BIN PACKING is now formed by sets
of elements s; corresponding to the bundles of agents a1, as, ..., ax.

So far we have shown the proof for the case of directed paths. However,
one can add an arc from ax41 to a1, transforming the path into a cycle. Then,
adding one resource liked only by agent ap+1 yields a proof for the case of a
cycle.

Our reduction is executable in polynomial time. There are polynomially many
agents with respect to the parameter & of UNARY BIN PACKING, which proves
the theorem. O

We end this section summing up our analysis of the (parameterized) compu-
tational complexity of C-sGEF-A with Table 4.5.

4.6 Conclusion

We introduced a new model in the area of indivisible resource allocations
by combining social networks with the classical notion of envy-freeness. Our
model seems to be a promising line of (future) research (recently also taken up
by Eduard et al. [Edu+20] and Lange and Rothe [LR19]). Our computational
complexity analysis provided a number of parameterized computational hardness
lower bounds. However, we came up with several parameterized tractability
results and a few polynomial-time algorithms for a couple of specific scenar-
ios. See Figure 4.7 for a compact, graphical representation of our findings.
Note that our model clearly differs from the one of Chevaleyre, Endriss, and
Maudet [CEM17], which considers distributed resource allocations of indivisible
resources with monetary payments, which do not appear in model. In fact,
introducing them to our considerations would have a huge impact on the results
we obtained.

3The results for identical 0/1 preferences in this case are subsumed by the results presented
in row “id.”

62

4.6. Conclusion

preferences parameterization
type
#agents #resources outdegree #ailelrtl:ise;ee #risstlg;gie:
directed acyclic
id. 0/1 Po Po Po P o Po
@ id. FPT & FPT § p-NP-h § FPT & FPT t
= 0/1 FPT & FPT § p-NP-h © FPT & FPT t
2 additive W/[1]-h t FPT § p-NP-h W(1]-h } FPT t
2 strongly connected®
& id. O(1) o o(1) () O(1) e O(1) e O(1) e
g 0/1 FPT & FPT 1 p-NP-h © FPT & FPT t
E additive WIJ1]-h t FPT § p-NP-h } WI[1]-h } FPT §
g general
@ id. 0/1 Po Po Po Po Po
id. FPT & FPT p-NP-h § FPT & FPT t
0/1 FPT & FPT § p-NP-h © FPT & FPT t
additive WIJ[1]-h t FPT t p-NP-h } WI[1]-h } FPT t
Reference legend: o Pr.4.17 t Th. 4.24 1 Th. 4.20 § Pr.4.18
© & Pr.4.19 Q Pr. 4.21 & Cor. 4.23 e Obs. 4.16

Table 4.5.: Parameterized complexity of C-sGEF-ALLOCATION. The results are
grouped by three criteria: the attention graph type, the preference type, and the
parameterization. All hardness results also imply classical NP-hardness.

63

4. Graph Envy-Freeness

General

General

FPT(m + A)
W(1]-h(n+A)

FPT(n)

W[1]-h(m)
p-NP-h(A)

p-NP-h(A)
W(1]-h(m + A)

I:I identical 0/1 D 0/1 D identical |:| additive

Figure 4.7.: A compact illustration of computational complexity of C-GEF-A (left)
and C-sGEF-A(right), presented also in Tables 4.3 and 4.5. Sets represent spaces of
all possible problem instances with a particular type of preferences and a particular
structure of the attention graph. Types of preferences are indicated by the sets marked
with background patterns. Different structures of the attention graph are indicated by
the blobs tagged with labels. For example, an entry “P” in the set labeled as “SCG”
and on checkered background in the left picture, means that C-GEF-A is in P when
the attention graph is strongly connected (indicated by set “SCG”) and the preferences
are identical 0/1 (represented by the checkered background). Similarly, an entry
“p-NP-hard” in the set labeled “DAG” on the left-to-right diagonal background on the
right picture indicates that C-sGEF-A is para-NP-hard with respect to parameter A
already when the attention graph is acyclic and directed (indicated by set “DAG”),
and when the utility functions are 0/1. Naturally, this hardness transfers, for example,
to C-sGEF-A for the case of general graphs and general utility functions.

64

4.6. Conclusion

In our study (especially for C-GEF-A), we presented a number of (parame-
terized) computational hardness results. In a sense, they lay the foundations for
a more refined search for islands of tractability concerning practically motivated
use cases of our basic models. To this end, there are plenty of opportunities.
First, it appears natural to deepen our studies by considering various special
graph classes for the underlying social network (besides classes of graphs with
bounded tree-width or bounded clique-width studied by Eduard et al. [Edu+20]).
Note, however, that the class of constant-degree graphs alone is not enough to
achieve (fixed-parameter) tractability. Thus, one might need to combine param-
eters related to the underlying social network with such natural parameters as
the maximum utility value, the number of resources per bundle or the number
of different “types” of resources in order to achieve fixed-parameter tractability
results. Our results also show that the aforementioned natural parameters
alone also do not usually admit fixed-parameter tractability (e.g., parameter
“maximum utility value” does not guarantee fixed-parameter tractability). In
addition, one may move from directed to undirected graphs or one may consider
graphs that only consist of small connected components. Finally, including
further fairness and efficiency concepts, beyond the ones we studied, appears to
be promising as well (see the conference paper behind this chapter [BKN18]| for
a preliminary study towards this direction). We demonstrate a detailed study on
parameterization by the number of agents and the maximum utility value in the
following Chapter 5, where we show that it leads to fixed-parameter tractability
for a number of different variants of indivisible fair allocations problems.

We also provide several combinatorial algorithms obtaining fixed-parameter
tractability of various variants of the problems we study. However, our theoretical
results only provide the worst-case computational complexity. Thus, a natural
follow-up is to experimentally assess the running times of our algorithms. Not
only can such a study verify practical applicability of the algorithms, but it
can also reveal important structural features of the studied problem instances.
These insights could lead to improving the algorithms and lowering their running
times. For example in Chapter 5, we take such an experimental approach and
apply the algorithms devised therein to solve real-world instances.

The above paragraph brings up yet another challenge related to our model:
to collect compatible real-world data. This could open the way for experimental,
qualitative study of fair allocation in social context. Possibly, we could also
answer such questions as “How likely is it in practice that an envy-free allocation
respecting social relations can be found quickly?” or “How many graph-envy-free
allocations are there on average?”.

65

CHAPTER 5

High Multiplicity Allocations

In this chapter, we further study the parameterized computational complexity
of problems in the context of fair allocations of indivisible goods. More specifi-
cally, we show fixed-parameter tractability results for a broad set of problems
concerned with envy-free and Pareto-efficient allocations of resources (with
agent-specific utility functions) to agents. In principle, this implies efficient
exact algorithms for these (generally computationally intractable) problems
whenever we face instances with few agents and low maximum (absolute) util-
ity values. This holds true also in high-multiplicity settings where we may
experience numerous copies of a single resource (modeled by encoding resource
multiplicities in binary).

On the technical side, our approach provides an algorithmic theorem covering
a number of fair allocation problems in the additive preferences model. To
achieve this, our main technical contribution is to elaborately use tools from
integer linear programming. More specifically, we exploit results originally
going back to a famous result of Lenstra [Len83] (recalled in Proposition 2.1)
concerning the fixed-parameter tractability of INTEGER LINEAR PROGRAMMING
with respect to the number of variables and the more recent framework of
(COMBINATORIAL) N-FOLD INTEGER PROGRAMMING [HKW10, HOR13]. We
reveal and exploit a fruitful interaction between these two cornerstones in the
theory of integer (linear) programming, which may be of independent interest
in applications going beyond the fair allocation domain. We also experimentally
assess running times of our algorithms on real-world data obtained from the
authors of spliddit.org [Pro+20]. The achieved results provide strong evidence
that our techniques are practically relevant.

5.1 Introduction

We continue seeking efficient ways of computing fair allocations by focusing
on deriving fixed-parameter tractability results for parameters assumed to
be small in relevant practical application scenarios. Using INTEGER LINEAR
PROGRAMMING methods, we succeed in providing a collection of fixed-parameter
tractability results for natural problem parameters.

67

5. High Multiplicity Allocations

As introduced in Chapter 3, we focus on the model where agents evaluate
resources (which are to be distributed among them) by individual utility func-
tions, assigning each resource an agent-specific utility value. The quality of an
allocation is determined by the sums of the utility values of the resources the
agents received. The goal is to find an allocation that is fair to the agents. We
consider an allocation to be fair when it is envy-free, that is, there is no agent
wishing to swap its own bundle with a bundle of another agent (recall Defini-
tion 3.4 for a formal statement). To make this concept truly meaningful, usually
Pareto-efficiency of an allocation is requested in addition to envy-freeness. Intu-
itively, an allocation is Pareto-efficient if there exists no allocation dominating
it; that is, there is no other allocation such that at least one agent gets a bundle
it values more than in the old allocation and all other agents get bundles with
values at least as good as they had before. However, note that an envy-free and
Pareto-efficient allocation sometimes does not exist (for instance, consider the
trivial case of two agents and one resource).

Next, let us become more specific about the concrete allocation problems
we study with respect to fairness and Pareto-efficiency. As said, due to the
general computational hardness, we study more constrained scenarios, reflected
by choosing some problem-specific parameters in the spirit of parameterized
complexity analysis. The two most central parameters for our studies are

e the number of agents (there even are prominent resource allocation pro-
tocols for two agents, so it is realistic to assume that in many relevant
applications this is a small number) and

e the maximum absolute utility value (usually high maximum utility implies
a lot of different possible utility values, and for humans it is often difficult
to distinguish between too many of them [Bot-04]; so, a small maximal
absolute utility value is usually a realistic assumption).

We will allow for high-multiplicity resources, making it possible to compactly
encode large input instances. In addition, we will provide results for a number
of relaxations of envy-freeness and Pareto-efficiency. One of such relaxations is
envy-freeness up to one good (EF1) [Lip+04]. Here, every agent a is envious if
there is another agent b with whom a would prefer to swap its bundle even if a
would ignore the most valuable resource in b’s bundle. Further concepts include:
envy-freeness up to any good (EFX) [Car+16, PR18| and graph-envy-freeness
discussed in Chapter 4. Amanatidis, Birmpas, and Markakis [ABM18] provide
a comparison of approximate or relaxed fairness notions.

68

5.1. Introduction

e . t i th
utilities (resources) | whiteboard laptop compute programmung ma

server student student
theory group 3 2 1 -1 3
a.i. group 1 2 4 3 2
software group 1 3 1 3 -1

Figure 5.1.: Utilities that the three research groups from the toy example report for
the tools.

Roughly speaking, our work provides fairly universal, INTEGER LINEAR PRO-
GRAMMING-based tools that provide a number of fixed-parameter tractability
results exploiting the parameters number of agents and maximum absolute value
of utility. Specifically, we show tractability of finding envy-free and Pareto-
efficient allocations for several variants of envy-freeness. Doing so, besides
significantly extending the range of known fixed-parameter tractability results
in this context, we also provide useful integer programming-based techniques
that may be of independent interest beyond applications in the context of re-
source allocations. In particular, as a by-product we resolve two cases left open
by Bliem, Bredereck, and Niedermeier [BBN16]: we show that computing an
envy-free and Pareto-efficient allocation of indivisible goods is fixed-parameter
tractable for the combined parameter number n of agents plus the maximum
value umax of utility for binary encoded additive preferences. (We complete their
Table 1 [BBN16] for the slightly weaker parameter combination n + umax but
leave the complexity for n + z, where 2 denotes the number of different utility
values, open.)

5.1.1 An Illustrative Example of Fair Allocations

Before more formally defining the investigated computational problems and
presenting our corresponding main results, we present a toy example motivating
and helping to understand the subsequently presented results. Assume that
there are four whiteboards (w), ten laptops (1), four compute servers (c), two
programming students (p), and one math student (m) to be allocated to three
research groups in the computer science department: theory group (t), artificial
intelligence group (a), and software group (s). Furthermore, assume that the
utilities of the research groups for these resources can be expressed numerically
as depicted in Figure 5.1. Observe that while tools usually have a non-negative
utility, supervising a student might come even with negative utility, for example,
when the student does not fit well to the group.

69

5. High Multiplicity Allocations

allocation 1 u(m) t a s

t | 4xw,1xm t 15 3 19

al| 4xc,1xp a 6 19 23

s 10 x1L,1xp] 3 7 33
allocation 7o u(ms) t a s

t |4xw,1x1L1xm t 17 2 18
4xXc,2Xp a 8 22 18

s 9 x1 s 6 10 27
allocation 73 u(ms) | t a s

t | 4xw,2x11xm t 19 2 16
a 4xXc,2Xp a 10 22 16
s 8 x1 s 9 10 24
allocation 74 u(ma) t a s

t |4dxw,1x1L1xm t 17 5 15
a| 4xc¢,1x11xp a 8 21 19
s 8x 11 xp] 6 10 27

Figure 5.2.: Different allocations illustrating several aspects of our studies on envy-
free Pareto-efficient allocations.

70

5.2. Preliminaries

An allocation that maximizes the social welfare, that is, allocation m in Fig-
ure 5.2, simply allocates every resource to one of the agents that valuates it
the most. For instance, the theory group will get all whiteboards and the
math student, the artificial intelligence group will get all compute servers and
a programming student, and the software group will get all laptops and a
programming student. As we can see, however, in table u(m), where we list
in each table entry the utility value of the bundle of resources allocated to the
“column agent” viewed from the perspective of the respective row agent, the
theory group as well as the artificial intelligence group envy the software group.
Thus, allocation m; is Pareto-efficient but not envy-free.

To obtain an envy-free allocation we can, starting with =, transfer resources
from the software group to the artificial intelligence group and the theory
group. For example, the theory group would be unenvious by getting one laptop
and the artificial intelligence group would be unenvious by getting the second
programming student. However, if we perform both transfers simultaneously,
then we end up with allocation w2 which is still not envy-free since the theory
group now still envies the software group. One can transfer one more laptop
from the software group to the theory group to obtain the envy-free and Pareto-
efficient allocation 7.

Notably, just transferring one laptop from the software group to the theory
group and one laptop from the software group to the artificial intelligence group
also leads to an envy-free allocation (see 74). However, this allocation is not
Pareto-efficient because it is “dominated” by .

5.2 Preliminaries

For a matrix A € Z™*", the ¢;-norm ||A]|: is the sum of the absolute val-
ues of all of its entries, that is, [[Af1 = > 7", 377", |ai;[; the loo-norm [[A]ls
is defined in a similar way (by changing the sums with maxima): ||Al« =

MAaX; ¢ [p] MAX] |Cij]-

5.2.1 High-Multiplicity Allocations and Changes

Consider an arbitrary set A of n agents and a set R of resources among which
some come in multiple copies; for example, there might be a bunch of identical
chocolate bars or identical computers. As Definition 3.1 states, an allocation
is a function that assigns the resources to the agents. In the presented case,
however, it might be more convenient to look at an allocation as a function that
assigns a certain number of resources of each kind to each agent. The following

71

5. High Multiplicity Allocations

definitions capture this concept of high-multiplicity resources formally.

Let R be a collection of resources of h different types, where for each type t €
T := [h] there are #(t) copies of the resource of type t. Consequently, one can
naturally encode an allocation using an integral vector of dimension n -k, leading
to the following alternative definition of an allocation.

Definition 5.1. An allocation = € N is a vector (mg,,..., 4, Tay,- .., 70,),

where agent a; is allocated =, resources of type ¢t € T.

Alternatively, we could have defined an allocation as a two dimensional
h x n matrix. However, in our application in which we frequently use integer
linear programs with allocations as variables, a vector representation is more
convenient and matches the definition of the ILP problem from Section 2.6
(where all variables are contained in a vector).

An allocation may be transformed into a different allocation # using an
exchange.

Definition 5.2. Let 7 € N™* be an allocation. An ezchange vector n € N""
is a non-negative integral vector, that is, n = (ana,)tETa wed such that, for

every resource type ¢ € T, it holds that >, > c 4 e e < #(1).

Intuitively, an exchange n = (nfl%a,) should be understood in a way

teT ,a,a’ €A
that agent a gives n’_, ., many resources of type t to agent o', as demonstrated
in Example 5.1. The additional requirement in Definition 5.2 is a sanity check

that an exchange leaves the total number of resources intact.

Example 5.1. Consider two types ¢; and t» of resources, each having two
copies. Furthermore, consider two agents a and b, and an allocation = =
(nél,mt,l , ﬂ,iz,mtf) =(2,0,0,2). Suppose that agent a gives one resource of
type t1 to b and agent b gives one resource of type t2 to a. This swap can
be modeled by exchange (134, M a:Ma—t:Mo—a) = (1,0,0,1) and results in

an allocation # = (&%, 4,1, 722, #,%) = (1,1,1,1).

Based on the so-called moves in societies introduced by Knop, Koutecky,
and Mnich [KKM18], we now proceed with further definitions capturing the
dynamics of allocations. Observe that a given exchange can be implemented for
some allocations, whereas it might be impossible to do for other allocations.

72

5.2. Preliminaries

Definition 5.3. For a given allocation , an exchange n = (n;%,)te,ﬂa,a,eA is

admissible if

Tot D NMersa— D Masar >0 Vac A VteT.

a’€A a’€A

Given an allocation =, there are many admissible exchanges leading to the
same outcome after we apply all of the prescribed exchanges. We illustrate this
phenomenon in a short Example 5.2.

Example 5.2. Consider five resources of a single resource type, two
agents a and b, and an initial allocation = = (n},n;) = (2,3). Let n =
(Ma—b>M—a) = (1,2) be an admissible exchange. Applying n to m, we obtain
an allocation 7' = (3,2). We also obtain the same allocation =’ by applying
a different exchange ' = (2, 3) to =.

In Example 5.2 we observe that what really matters for the result of applying
an exchange is the difference in the agents’ bundles. In other words, we only
care about an overall impact of an exchange instead of particular exchanges
that led to the final allocation. In the following definition, we formally express
this observation. We introduce a change (as opposed to an exchange discussed
so far) and additionally (analogously to Definition 5.3) we specify a condition
that ensures that a particular change is applicable to a given allocation. To
avoid confusion, we emphasize that from now on we will only be speaking about
changes because they are more appealing to work with for our purpose.

Definition 5.4. Consider a set A of agents and a set of resources formed by
a set T of resource types with each resource type t € T having #(t) copies.
A change is a vector A = (Ag)temeA € Z™™ such that, for every resource
typet € T, >, 4 AL = 0. Given an allocation =, the change A is admissible if
0 < m + AL < #(1).

The notion of a change is a convenient tool to define an efficiency concept we
mostly focus on; namely, Pareto-efficiency. This concept intuitively means that
if there is a possibility to change an allocation in a way that no agent is worse
off and at least one is better off, then such an allocation should be modified
because of being inefficient.

73

5. High Multiplicity Allocations

Definition 5.5. An allocation = is Pareto-dominated if there is an admissible
change A leading to an allocation # = 7 + A such that:

Va € A: Zua(t)ﬁ'f1 > Zua(t)ﬂ'fl and (5.1)
teT teT

Jae A D uat)ie > Y ua(t)ms . (5.2)
teT teT

In fact, Pareto-dominated allocations are rather undesirable, since they can
always be changed to allocations that are more “satisfying” for the agents. Thus,
to achieve allocations that do not underutilize resources one should consider
allocations that are not Pareto-dominated (in fact, in the literature both weaker
and stronger notions of efficiency have been studied).

Definition 5.6. An allocation 7 is Pareto-efficient if it is not Pareto-dominated.

5.2.2 N-Fold Integer Programming

Recall the ILP problem as defined in Section 2.6. We pay special attention
to some restrictions of ILP. Most importantly, we restrict the structure of the
constraint matrix A. Let N be a positive integer. Then, N-FOLD INTEGER
PROGRAMMING (N-FoLD IP) is a restricted variant of ILP." To define the N-
FoLD IP problem, we first introduce bimatrices and N-fold products in the
following two definitions.

Definition 5.7. Let T € Z™* and D € Z°*' be two matrices. A bimatrix (%)
is an (r + s) X ¢ matrix containing matrix 7' as the top r rows and matrix D as
the last s rows.

Definition 5.8. For some positive integers r, t, and s, let T € Z™** and D € Z°**
be some matrices. An N-fold product E™) of a bimatrix E = (%) is the following
matrix of size (r + N -s) x (N - t):

T T ... T
D 0 0

BN _ (g)uv) _|lo D --- 0 (5.3)
0 0 D

ISince the name N-roLD IP stands for N-FOLD INTEGER PROGRAMMING, the above sentence
is not precise. This is because the goal function in N-ForLb IPs does not need to be linear,
while, by definition, it is linear in the ILP problem. We could have written N-FoLp ILP
but we decided to keep the traditional name.

74

5.2. Preliminaries

Using an N-fold product matrix as a constraint matrix in the ILP problem,
we obtain the N-FOLD INTEGER PROGRAMMING problem.

N-FoLD INTEGER PROGRAMMING (N-FoLp IP)

Input: An integral constraint matrix A®) ¢ Z+N-x(N1) heing
an N fold product of a bimatrix A = (%), where T € Z"** and D € Z**,
a right-hand side vector b € Z"™tV*, two boundary vectors 1 € Z"V"*,
ucZV* and a vector w € Z"V'* representing a linear function.

Task: Find a vector x € ZV'* of integers that minimizes wTx subject
to AMx=band 1< x < u.

A special case of N-FOLD IP is the so-called COMBINATORIAL N-FoLD IP
problem. Therein, one further restricts the input in such a way that D = 17,
that is, the matrix D has only one row which is the all-ones vector [KKM20a)].

The first algorithms to solve N-FOLD IP relied on the concept of the Graver
basis [HKW10, HOR13]. In what follows, we discuss only the notions directly
needed in this chapter; for a more detailed discussion of the topic see the
corresponding monographs [LHK13, Onn10].

Definition 5.9. Let x,y € Z" be two n-dimensional integer vectors. We write
y C x if, for each 7 € [n], ziy; > 0 and |y;| < |zi].

Observe that C imposes a partial order on n-dimensional vectors.

Definition 5.10. For an integer matrix A € Z™*", its Graver basis G(A) is the
set of C-minimal non-zero elements in the set {z € Z" | Az = 0}.

Below, we show an example demonstrating Definition 5.10.

Example 5.3. Let A be an all-ones matrix of dimension 1 x 4. Consider
some vector x := (0,0,—1,1). Then, naturally, Ax = 0. The product
of matrix A and a vector y = (1,—1,-1,1) is also 0. However, x C y
and y Z x, thus y is not a C-minimal element. Similarly, scaling x by
any constant ¢ € Z such that |¢| > 1 yields a vector z such that Az = 0,
x C z, and z Z x. Finally, a vector q := (—1,1,0,0), for which it also holds
that Aq = 0, is incomparable (according to C) to x, and vice versa.

The Graver basis constitutes the so-called test set [Gra75] for ILPs as formally
presented in Proposition 5.1. The name comes from the fact that, for some

75

5. High Multiplicity Allocations

arbitrary feasible solution of an integer linear program, the solution is optimal
if there is no vector in the Graver basis whose addition leads to another feasible
solution that yields a smaller value of the goal function.

Proposition 5.1 ([Gra75]). Consider a feasible solution %X to some instance
of ILP with a vector w representing the goal function. Then, either of the
following is true:

e X is an optimal solution or

e there exists a vector g € G(A) such that x + g is feasible for the given ILP
and wTx > wT(x+g).

In the subsequent results, we use a specific structure of solutions to N-FOLD
IP in order to upper-bound the number of the elements of the Graver basis.

Definition 5.11. Consider an instance of N-FOLD IP with a constraint ma-
trix E®) being an N-fold product of some matrices D € Z"** and A e Z**!.
Every potential solution vector x can be expressed as x = (x1, X2, ...,xn) Where
each x; € Z*, i € [N], is called a brick.

The key property of the N-fold product is that the number of nonzero
bricks—that is, bricks that do not consist solely of zeros—in its Graver basis is
upper-bounded by a constant that does not depend on N. Furthermore, this
constant is an upper bound of the ¢;-norm of every vector in the Graver basis.
We state these results (proven and stated in multiple forms [HOR13, HS07,
Onnl0]) in the following proposition.

Proposition 5.2. For some natural number N, let E?Y) be an N-fold product of
a bimatriz E. The number of nonzero bricks in every g € G (E™N)) is tightly upper-
bounded by a constant g(E) called the Graver complexity of E. Furthermore, it
holds that ||g|l1 < g(E).

Our final step towards bounding the Graver complexity of the bimatrix F
is to show how large g(F) can be depending on E. We proceed using the
bound on g(E) that has been proven for N-fold IP [EHK18]. Since we use this
bound only for combinatorial N-fold IPs, we simplify it here. Recall that in
combinatorial N-fold IPs, the matrix D on the diagonal of E®¥) has only one
row of ones. In this case, observe that the ¢;-norm of an element of the Graver
basis of 17 is 2. Indeed, as indicated in Example 5.3, its Graver basis consists
of vectors having exactly two nonzero entries of which one is set to —1 and the

76

5.2. Preliminaries

other to 1. Using the just-established upper bound of the ¢;-norm of an element
of the Graver basis of matrix 17, we derive an upper-bound on the Graver
complexity of the (whole) bimatrix E = (%) = (,5). To obtain this bound,
shown in the following Proposition 5.3, we apply Lemmata 2 and 3 by Eisenbrand,
Hunkenschroder, and Klein [EHK18] to our special case of interest. Therein, an
upper bound of the ¢;-norm of an element of the Graver basis of the matrix D
in bimatrix E is referred to as Lp. Since in our case this ¢;-norm upper bound
(as we have shown above) is 2, we substitute “their” Lp with 2 and we arrive at
the following proposition.

Proposition 5.3 ([EHK18|). Let T € Z"*" and A = ||T||s. Then, g((%)) <
24rA+1)".

Intuitively, Proposition 5.1 upper-bounds the Graver complexity of a combina-
torial N-fold integer program by a function solely of the number of constraints
and the maximum absolute value of each entry in the constraint matrix—mnote,
that the number of variables of the integer program is irrelevant. The Graver
complexity also upper-bounds the ¢;-norm of elements of the Graver basis of
the constraint matrix (see Proposition 5.2). Thus, if the value of the upper
bound is “sufficiently small,” then one can enumerate the whole Graver basis
and use its elements to iteratively improve a solution to an N-fold integer
program (see Proposition 5.1) with an unbounded number of variables, possibly
much larger than the number of constraints.

5.2.3 Presburger Arithmetic

Presburger arithmetic is a helpful tool to represent, transform and combine
multiple integer linear programs. Intuitively, Presburger arithmetic [Pre29] is
a logical language for defining arithmetical properties of integers. Presburger
arithmetic is a first-order theory over the domain of natural numbers with atoms
being linear equations. The formulas of Presburger arithmetic are then built
using standard logical symbols.

To start with, let us consider a simple linear equation where we ask whether
there is an integer vector x such that for a given integer vector a and an integer b
equation a’x = b holds. We can model the aforementioned problem of checking
whether a linear equation is solvable with the following Presburger arithmetic
sentence:

» = (Ix)(aTx = b).
Naturally, asking whether ¢ is true is equivalent to asking whether the above-
mentioned linear equation has a solution.

(s

5. High Multiplicity Allocations

Now, let us recall the INTEGER LINEAR PROGRAM FEASIBILITY problem
(ILPF) in which we ask whether for some integer constraint matrix A, an integer
right-hand side vector b, and boundary vectors 1, u there is a vector x such
that Ax = b and 1 < x < u. Let r be the number of rows of matrix A, and,
for each i € [r], let a; be the i-th row of A. Then, answering such an instance
of ILPF can be alternatively presented as checking whether the following
sentence in Presburger arithmetic is true:

@) | N\ ax=ba]. (ILP:PA)
i€[r]

Naturally, we can build more complicated Presburger arithmetic sentences. We
can use the universal quantifier, build a chain of quantifiers, and negate atoms.
Even though we indeed use more complicated sentences in this thesis, we will
always finally arrive at sentences in the form of (ILP:PA).

5.3 Seeking Envy-Free Pareto-Efficient Allocations

The following basic problem [BBN16] is the starting point for our considera-
tions in this section.

EEF-ALLOCATION

Input: A set A of agents, a set T of resource types, agent utili-
ties uq: T — Z for every a € A, and resource multiplicities #(¢) € N for
teT.

Question: Is there an envy-free Pareto-efficient allocation?

EEF-ALLOCATION is known to be ¥5-complete and remains NP-hard for
several restricted cases [BLO8]. Our goal in this section is to study EEF—
ALLOCATION from a parameterized viewpoint focusing on the parameterization
by the number of agents plus the maximum utility (specifically, its absolute
value). We show that for this selection of parameters EEF-ALLOCATION
is fixed-parameter tractable. We mention that our results are constructive,
thus we not only can give positive algorithmic results for the decision version
of EEF—-ALLOCATION but also for the corresponding search or optimization
problems.

Before we briefly discuss our choice of the parameterization, let us settle some
notation used in the remainder of this chapter and link it to our toy example

78

5.3. Seeking Envy-Free Pareto-Efficient Allocations

in Figure 5.2. We refer to the number of agents, that is three in the example,
as n; formally, n := | A|. We denote the number of resource types, that is five in
the example, by h; formally, h = |T|. By umax We mean the maximum absolute
value of the utilities reported by the agents, that is four in our example; formally,
Umax ‘= MaXqe A MaXteT |Ua(t)|.

Note that for n agents and the maximum (absolute) utility wmax, the num-
ber |T| of possible resource types is at most ul,,. Thus, our parameterization
is very “strong” in the sense that it severely restricts the input instances. How-
ever, this strong parameterization allows our algorithm to be fixed-parameter
tractable in the so-called high-multiplicity regime, where the multiplicities of
the resources are given in binary in the input. Our fixed-parameter tractability
result, formally stated in the following Theorem 5.4, also answers two main open
questions of Bliem, Bredereck, and Niedermeier [BBN16] (see the discussion in
the last paragraph of Section 5.1).

Theorem 5.4. EEF-ALLOCATION with n agents and the maximum utility
value umax s fized-parameter tractable when parameterized by n + Umax-

Before we prove Theorem 5.4 step-by-step in the subsequent sections, we
describe its high-level idea, which intuitively illustrates our approach, together
with the organization of the proof.

In Section 5.3.1, we begin with showing that if an allocation = is not Pareto-
efficient (i.e., 7 is dominated by some allocation #’), then it is dominated by an
allocation # which does not differ from 7 much (see Lemma 5.5). In other words,
there exists a constant cmax = Cmax(, Umax) such that if r is not dominated
by any allocation #’ with || — #'||; < ¢max, then = is Pareto-efficient. Using
this insight, in Section 5.3.2, we define a set of “small allocation-improving
changes” D, in a way that an allocation = is dominated if and only if there
exists an change A € D such that @ + A is an allocation. Consequently, an
allocation = is a solution for a given instance of EEF—-ALLOCATION if it is
envy-free and, for all A € D, w + A is not an allocation. We can express an
allocation as a relatively simple integer linear program in which both the number
of variables and the number of constraints is upper-bounded by a function of
the parameter n + umax. This in turn makes it possible to “negate” such a model,
which we show in Section 5.3.3, while keeping the dimension upper-bounded in
terms of a function the parameter (by introducing large coefficients). Finally, we
collect the aforementioned negation integer linear programs for all A € D and
these (applied to 7 + A) together with the integer linear program for envy-free
allocation m yield the model for EEF—ALLOCATION. The resulting model’s

79

5. High Multiplicity Allocations

dimensions are upper-bounded by a function solely of the parameter, eventually
yielding fixed-parameter tractability exploiting ILP-related results going back
to that of Lenstra [Len83] from Proposition 2.1.

5.3.1 Locality of Dominance Test

We show that if an allocation of resources to agents is not Pareto-efficient,
then it is dominated by an allocation that is “close” to it. To this end, we show
the following.

Lemma 5.5. Let A be a set of n agents, let T be a set of resource types, and
let 7 be an allocation. If m is dominated with respect to agent utilities uq: T — Z,
where umax 1S the mazimum absolute utility value, then there exists a change A
such that

1. change A is admissible for m,
2. the allocation w + A dominates =, and

3. HAH1 <2- (4n * Umax + 1)n

Proof Idea Before we give a formal proof of Lemma 5.5, we describe the idea
behind it. First, we give an integer linear program which can be used to decide
whether there exists an allocation dominating the given allocation w. That is,
we show that the following problem is fixed-parameter tractable with respect to
the combined parameter n + umax-.

ALLOCATION DOMINANCE

Input: A set of agents A, a set of h resource types T, agent utilities
uq: T — Z for every a € A, resource multiplicities #(t) € N for t € T,
and an allocation = € N™*,

Question: Is there an allocation that dominates w7

Then, we show that one can modify the aforementioned ILP formulation (in a
way similar to Knop, Koutecky, and Mnich [KKM20a|) so that the modified
instance is in fact an instance of COMBINATORIAL N-FoLD IP. Finally, we
conclude that if the given allocation = is dominated, then there exists a vector g
in the Graver basis of the constraint matrix of the modified model which is
witnessing this fact. Since we design our model such that vector g is in fact
a change that, after applied, leads to an allocation dominating =, the upper
bound of ||A|lx from Lemma 5.5 follows from Proposition 5.3.

80

5.3. Seeking Envy-Free Pareto-Efficient Allocations

Proof of Lemma 5.5. We start with providing the following natural formulation
of the ALLOCATION DOMINANCE problem. In order to find a dominating
allocation x, for every agent a € A and every resource type ¢t € 7, we introduce
an integral variable z!, that indicates how many resources of type t allocation x
assigns to agent a.

D ua(t) wh > ua(t) -, Va € A, (5.4)
teT teT
>l < #(t) Vte T, (5.5)
acA
0 <zl < #(1) Va € AVtET. (5.6)

Constraints (5.4) ensure that each agent a valuates the bundle that x assigns
to a at least as good as the one it gets from w. Constraints (5.5) and (5.6)
prevent allocation x from assigning more resources than available. We add the
following goal function

max Z Z (ual(t) - xfl) - Z Zua(t) Sl (5.7)

ac AteT ac AteT

Note that the value of the goal function is 0 if we set x = =; hence, 0 constitutes
a lower bound on the value of the goal function. However, if there is a solution x
for which the value of the goal function is positive, then x dominates =. ?

Now, let us present the integer linear program defined by Inequalities (5.4),
(5.5), and (5.6) using matrices. In the following matrix representation, we order
the sought variables according to the resource types they correspond to; that is,
we consider vector x = (x',x?,...,x") where each vector x' == (x4, ,Xb,,..., x5).
Representing the right-hand side vectors of Inequalities (5.4) and (5.5) as the
appropriate vector b, the upper bounds from Inequality (5.6) as the appropriate
boundary vector u and, for each ¢ € T, building the appropriate matrix U; € Z™*"

expressing the respective conditions from Inequality (5.4), we arrive at the

2We note that at this point one may already derive an upper bound on ||x||c as a consequence
of a result due to Papadimitriou [Pap81, Theorem|; namely, |[|X|cc < nh - ((n + h) -
tmax)2+ where tmax = max,c7 #(i). Note that this upper bound is worse than
the one we claim. In particular, our bound is independent of the number of resources.

81

5. High Multiplicity Allocations

following matrix form of the above integer linear program:

Ui Uy - U

1T 0 .- 0

0o 1T 0 x<b,

0 0 17
0<x<u.

Observe that such a formulation resembles N-FoLD IP; in fact, it is called a
combinatorial pre-N-fold IP. Our goal now is to find a small matrix U which we
can use to “embed” all of the matrices U;. Observe that the matrices U; have
diagonal form and that ||U;||cc < umax holds. Thus, let us consider the following
matrix U e Z™* (v Zumax+1),

—Umax *°° Umax 0 PN 0 . 0 0
0 N 0 —Umax cor Umax N 0 0
U=
0 0 0 0 cor —Umax ° Umax

We show a way to use the above-defined matrix U to substitute each ma-
trix U; so that we obtain a COMBINATORIAL N-FoOLD IP equivalent to the
original ILP that we started with in this section. Furthermore, the new
COMBINATORIAL N-FoLD IP will be “small enough” to use Proposition 5.3
and finally prove Lemma 5.5.

The matrix U is designed in such a way that, for every ¢t € 7 and the
corresponding matrix U;, there is a set of columns of U that, if taken out and
assembled in order to construct a new matrix, form U;. It is enough to go
through U; column by column and select the same-looking columns from each
block of matrix U. We mimic this kind of selection in two steps. First, we
replace all matrices U; with a copy of U and, as a consequence, we add additional
variables by substituting each variable a;flj, where a; € A and t € T, with a

82

5.3. Seeking Envy-Free Pareto-Efficient Allocations

vector X, as depicted below:

xal X,l1
Ui Uy -+ U zk v U ... U %1
a2 a2
1T o --- 0 . 1T 0 .- 0 .
0 17 ... 0 1 o a7 0 1
A)
SIZ’an Xan
. 2 . 52
S . 22, Do : %2,
0 o --- 17 . 0 o --- 1T)
st t t t
where xaj T (xﬂj,*umax? mflj,*umaxle? Tt xaj;“max) .

Second, using the boundary constraints we “neglect” some (actually a vast
number) of the extra variables, that is, we set both their lower bound and upper
bound to 0. Observe that, for a; € A and ¢ € T, the variables in vector)Eflj serve
as selectors of such a column c from the respective copy of matrix U (the copy
used to substitute U;) that is identical to the j-th column in U;. Selecting such
a column c is equivalent to letting variable a7 , such that y = u.; () mimic
variable :z:flj and setting all other variables from fcflj to 0. Thus, we introduce
new constants x4 ., where x4, =1 if uq(t) = v and x},,, == 0, otherwise. Now,
the boundary vectors can be expressed by the following inequalities:

0 < ah, < X #0).

Performing the described substitutions leads to an ILP formulation that is
very similar to the COMBINATORIAL N-FoLD IP. However, it still contains
inequalities coming from Constraints (5.4) and (5.5). Thus, according to our
definition of COMBINATORIAL N-FOLD IP, we need to further transform the
model to obtain equalities from the aforementioned inequalities (note that the
constrains involving boundary vectors are always given as inequalities). Thus,
we add one slack variable for each Constraint (5.4) and one slack variable
for each Constraint (5.5). Observe that to keep the N-FoLD IP structure,
adding one slack variable to each Constraint (5.4)—which is a single row in
the copies of U—requires adding it to all copies of U. Thus, we need to
augment each copy of the matrix U with an identity matrix of dimension n x n.
Consequently, we obtain an excessive number of slack variables (note that in
each constraint coming from Constraint (5.4) we add h slack variables). Hence,
we can use the excessive variables as slack variables for constraints coming

83

5. High Multiplicity Allocations

from Inequality (5.5). Eventually, applying all the transformations described
above, we arrive at COMBINATORIAL N-FOLD IP with the following values of
parameters from Proposition 5.3:

® 7r=n, o (:=2n- (umax + 1) + n,
® ||T|lco == tmax, and e N:=h.

By computing the upper bound according to the above values, we obtain the
desired upper bound on the ¢;-norm of an element of the Graver basis because
each vector of the Graver basis corresponds to an admissible change for w. [

5.3.2 Modeling the Existence of Envy-Free Efficient Allocations

We use Lemma 5.5 from the previous section to express the existence of a
solution to the EEF—ALLOCATION problem. To do so we first represent the
existence of such an allocation as a “complicated” sentence in the framework of
Presburger arithmetic. Afterwards, we apply several transformations to bring
the sentence to the form of Sentence (ILP:PA).

Potential Changes Leading to Domination

Basing on the bound given by Lemma 5.5, we define the set D of all possible
changes that, if admissible for some allocation =, would yield an allocation
that dominates «. To make our arguments simpler, we add a special agent ¢
whose purpose is to collect all resources that are unassigned to the agents in A.
Let A° denote the set AU {o} and let cmax == 2 (4(n + 1) - Umax + 1)" ! be the
upper-bound from Lemma 5.5 (note that our set of agents is now augmented
by ¢). Then, the set D can be defined as follows:

D= {A e 2" Al < Cmax A (Z > ua(t)- AL > 1) A

ac AteT
/\/\(Zua(t)-A§20>A/\<ZAZ=O>}. (5.8)
a€A teT teT acA®

Thanks to agent ¢, we could require that, for each resource type t € T, a
change A fulfills >, _,, AL = 0. Naturally, |D| < (2cmax + 1)V, Furthermore,
it is not hard to generate D, since it is straightforward to verify the given
conditions for all vectors with ||A]|; < ¢max.

84

5.3. Seeking Envy-Free Pareto-Efficient Allocations

Existence of Envy-Free Efficient Allocation in Presburger Arithmetic

Having the set D, we can say that some envy-free allocation = is Pareto-eflicient
if there is no change in D that is admissible for w. Our goal in this section
is to formally express this observation in Presburger arithmetic, which will
help us to show that we can construct an integer linear program modeling the
existence of envy-free efficient allocations. To this end, we use three logical
predicates allocation(x), allocation”(x), and EF(x). Intuitively, the first two are
true if and only if x is an allocation and the last one becomes true if and only
if x is an envy-free allocation. Using these operators, we express the desired
observation as the following logical sentence ¢:

= (Ix) (allocation(x) ANEF(x) A (VA € D) (ﬁ allocation” (x + A))) . (5.9)

Notice that this is a natural description of the EEF—ALLOCATION problem in
“high-level” Presburger arithmetic.

The rest of this section is devoted to formally describing the predicates used
in the above definition of (.

e allocation(x): We verify that x is a non-negative vector and that every
resource is allocated to at least one agent (including the artificial agent ¢).
Thus, we have

allocation(x) := /\ (Z zt = #(t)) A /\ (xfl > 0) .

teT \acA® a€ A teT

e EF(x): We check the natural valuation condition for every pair of agents
in A (note that o ¢ A); hence, the following condition:

EF(x) == /\ (Z ua(t) - b > Zua(t) . x’;/) .

a,a’€ A \teT teT

e allocation”(x + A): We check whether z := x + A is an allocation, which is
equivalent to checking whether A is admissible to allocation x (see Defini-
tion 5.3). Note that because we added agent o, we know that x distributes
all resources and that A only redistributes these resources. Consequently,
applying change A leads to an agent having a negative number of some
resource of type t if and only if some other agent has more than #(t) copies

85

5. High Multiplicity Allocations

of resource type t. Thus, we check only one of these conditions in the
following definition of the predicate:

allocation (z) := /\ (zfl > 0) .
a€A° teT

Due to the definition of D in Formula (5.9), if z is an allocation, then
indeed allocation z dominates x.

5.3.3 Obtaining and Solving ILP Formulation

The goal of this part of the proof is to express formula ¢ from Section 5.3.2 as
an integer linear program that has a number of variables that is upper-bounded
by a function of parameter n + umax. We do this in two steps. The first one is to
ensure that we can express ¢ with an equivalent formula that is a conjunction
of atoms (as we will show, ¢ contains disjunctions of atoms) that allows for
obtaining an ILP. The second, final step of the proof is to show that we can
apply a result of Lenstra [Len83] (presented in Proposition 2.1) to show EEF—
ALLOCATION in the time yielding the requested FPT result from Theorem 5.4.

Obtaining ILP Formulation by Negating the Allocation Predicate

Since allocation” (x+A) is a conjunction of atoms, we observe that if we negate it,
then we arrive at a disjunction of atoms. This is not desirable for our purposes of
modeling our problem as an ILP instance. However, it is possible to transform
the disjunctions into conjunctions for a fixed (given) A using large coefficients.

Note that the negation of allocation” (z%) is true if and only if there exists an
agent a and a resource type t such that either = —Af, is negative or =}, — AL > #(¢).
We can model this expression as follows. Let #max = maxier #(t) and fix a € A
and t € 7. We add a binary variable 3! that takes value 1 if 2}, + A%, < 0. We
achieve this via the following constraint:

.Z‘Z—FAZ § —1+(#max+cmax+1)(1_y2)' (510)

The inequality above is universally fulfilled when 3. = 0, since we have 0 <
z!, < Mmax and {Afl{ < cmax. However, y! can be set to 1 without violating
Constraint (5.10) only if zf, + A% < 0; thus showing that change A does not lead
to an allocation.

Observe that if we put together Constraint (5.10) applied to all pairs a € A,

t € T, then the condition
PO BEES! (5.11)
ac AteT

86

5.3. Seeking Envy-Free Pareto-Efficient Allocations

ensures that at least one variable y’ is set to 1. This, in turn, implies that
x + A is not an allocation. For brevity, we encapsulate the collection of con-
straint resulting from applying Constraint (5.10) for all pairs a € A,t € T
together with inequality (5.11) in the predicate certificate(x + A,y). Naturally,
certificate(x + A, y) is a conjunction of atoms and, if true, certifies that x + A is
not an allocation.

Finally, we incorporate the certificate(x + A,y) predicate into the sentence ¢,
thus arriving at the following equivalent form of it:

@ = (Ix) (allocation(x) ANEF(x) A (VA € D) (HyA) (certiﬁcate(x + A, yA))) .

Using Lenstra’s Algorithm

A characteristic feature of ¢ is that, for each A € D, the corresponding vector y*
is independent of other vectors y® . Thus, defining a vector y == (y*) acp Of
certificates, we arrive at the following formula ¢ p that is equivalent to ¢:

e = (3x) Jy) (allocation(x) ANEF(x) A /\ certificate(x + A7yA)> . (5.12)
AeD

Observe that the existential sentence orp indeed describes an integer linear
program over variable vectors x and y. Invoking Lenstra’s algorithm (Proposi-
tion 2.1) we can solve the integer linear program defined by (5.12) in FPT-time
with respect to the number of the program’s variables. Note that the number d
of variables of ¢ip is upper-bounded by

d=(n+1)-h+2h(n+1)-D| < (n+1) -h+2h(n+1)- (2emax + 1)""TY
=(n+1)-h+2h(n+1)-(2-2-(4n - Umax + 1)™)" "D (5.13)
Since h < (2umax + 1)", we obtain the fixed-parameter tractability of finding an
envy-free and Pareto-efficient allocation with respect to the number n of agents
plus the maximum absolute value umax of utility—which concludes the proof
of Theorem 5.4.
5.3.4 Relaxing Pareto-Efficiency

The algorithm described so far in Section 5.3 finds an envy-free Pareto-eflicient
allocation only if such an allocation exists. In case there is no such allocation,
the algorithm only reveals this fact. However, in practice, in that case we would

87

5. High Multiplicity Allocations

rather be interested in finding an allocation that is (in some sense) “almost”
Pareto-efficient. This is why we conclude this section by showing one approach
of tweaking the algorithm to work in this way.

Recall that, in Section 5.3.3, in order to write the predicate certificate(-) we
added numerous variables y (for a fixed A) to certify that at least one of the
certificate conditions holds (i.e., at least one condition in the original system
does not hold). To do so (for a fixed A) we added the constraint 1Ty > 1
(see Constraint (5.10)) requiring that there is always at least one certificate
guaranteeing that the change A does not lead to a proper allocation. Such a
certificate, naturally, cannot be found if there is no Pareto-efficient envy-free
allocation. However, instead of simply acknowledging that no solution exists,
we show how to find an allocation that is “not far” from Pareto-efficiency.

To this end, we change condition 1Ty > 1 to 1Ty < 1 and take advantage from
the possibility to maximize a linear goal function in the integer program ¢ip
from Section 5.3.3. Thus, if we maximize

> 1Tys,

AeD

then we are seeking a solution that maximizes the number of valid certificates
in our search space D of possible changes. Note that the value of the above
expression is upper-bounded by |D| and is equal to it if there exists a Pareto-
efficient envy-free allocation. If there is no Pareto-efficient envy-free allocation,
then the modified ILP formulation no longer only reveal nonexistence, but it
computes an envy-free allocation that has the fewest “small” changes leading to
a dominating allocation.

Importantly, the modification presented in this section does not affect the
requirement that the returned allocation has to be envy-free. We also do not
require that the computed allocation is complete. Indeed, we did not add
constraints on the artificial agent ¢ in ¢p that would require that we cannot
leave resources unallocated. So, in the worst case, it may happen that the
returned allocation does not allocate any resource. This will be the case, for
instance, for n agents and n — 1 resources valued positively by every agent.
Certainly, obtaining an empty, trivial allocation for the presented scenario
is highly undesirable, yet due to the requirement of envy-freeness it is also
unavoidable. The way to go to deal with such tricky cases is to relax envy-
freeness, and how to do it within our framework is the topic of the next section.

88

5.4. Beyond Envy-Freeness

5.4 Beyond Envy-Freeness

The idea behind the proof in Section 5.3 is quite universal. Indeed, it is possible
to widely extend it to more general (broader) settings that consider different
fairness and efficiency notions [Bre+19b, Theorem 2|. In this thesis, however,
we restrict our considerations to different relaxations of envy-freeness; thus, we
define the following EFFICIENT F-ALLOCATION, where F is a placeholder for
various “envy-freeness concepts.”

EFFICIENT F-ALLOCATION [Bre+19b]

Input: A set A of agents, a set T of resource types, agent utili-
ties uq: T — Z for every a € A, and resource multiplicities #(i) € N for
teT.

Question: Is there an F-free allocation which is Pareto-efficient?

By identifying important properties of F, one can eventually obtain the
following general results for the whole family of problems.

Theorem 5.6 (Bredereck et al. [Bre+19b]). EFFICIENT F-ALLOCATION, with
n agents and the mazimum absolute utility value umax, parameterized by n+ umax
is fired-parameter tractable if F-ALLOCATION admits an ILP formulation
with f(n + umax) variables, where f is a computable function depending solely
on the value of n + Umax.

We feature Theorem 5.6 by applying it to several different fairness concepts
that have been considered in the literature so far. In this way, we show that the
corresponding problems emerging from these concepts are also fixed-parameter
tractable with respect to our parameter in our high-multiplicity regime.

In the subsequent sections, we study (and define) envy-freeness up to one
good [Azi+19, BKV18, Car+16, Lip+04], envy-freeness up to any good [Azi+19,
Car+16, PR18], and graph envy-freeness (studied also in Chapter 4). For all
of them, we provide the corresponding ILP formulations compliant with Theo-
rem 5.6. As a consequence, we obtain the following, general result.

Corollary 5.7. EFFICIENT F-ALLOCATION, with n agents and the mazximum
absolute utility value umax, parameterized by n+ umax 15 fized-parameter tractable
if F is (graph) envy-freeness, (graph) envy-freeness up to one good, or (graph)
envy-freeness up to any good.

89

5. High Multiplicity Allocations

5.4.1 Envy-Freeness up to Any Good

Allocations that are envy-free might not exist; for example, one cannot achieve
envy-freeness when allocating a single resource among two agents that value
it positively. To get around this natural limitation in practice, a slightly less
demanding notion of envy-freeness, envy-freeness up to any good (EFX) [Azi+19,
Car+16, PR18] has been introduced. Intuitively, under EFX (where X at the
last position is meant to symbolically represent “any”) agent a’s envy towards
agent o' is acceptable as long as the envy vanishes after pretending that a
resource that least reduces the difference between a’s own bundle utility and
that of a’ as seen by a does not exist. Clearly, each envy-free allocation is also
an EFX allocation.

Definition 5.12 ([Azi+19]). An allocation « is called envy-free up to any
good (EFX) if for each pair of (distinct) agents a,a’ € A with additive utility
functions u, and wu,s it holds that

Vr € m(a’) Aua(r) > 0: uq(m(a)) > ua(r(a’) \ {r}) and (5.14)
Vr € m(a) Aua(r) <0: ua(m(a) \ {r}) > ua(w(a’)). (5.15)

Note, that the conditions of EFX stated above use universal quantifiers.
However, to check them it is enough to consider “the worst-case choice” of
the resource to neglect. Fix some distinct agents ¢ and «’. Naturally, in
Condition (5.14) the worst-case choice is the resource with the minimum utility
for agent a that is in the bundle of o’. In Condition (5.14), the worst-case choice
is the resource with the maximum, but still negative, utility value for agent a in
its own bundle.

In the remainder of this section we give an ILP model with at most f(n +
Umax) variables for checking whether an allocation is EFX. To this end, we fix
some allocation = described by a vector x = (mfl)ae . and then, for each pair
of agents a,a’ € A and utility value v € [umax], we introduce binary variables
representing the worst-case choices as follows:

v
a,a’

1. If a # d/, then we introduce z which is 1 if and only if v is the minimum
utility of a resource in the bundle of a’ as seen by agent a;

—v

2. if a = o, then we introduce =z, %, which is 1 if and only if —v (note the
minus) is the maximum negative utility (closest to zero) of a resource
in a’s own bundle.

90

5.4. Beyond Envy-Freeness

Our choice of variables reflects the two conditions in Definition 5.12. Observe
that, for both conditions in Definition 5.12, the variable r bound by the universal
quantifiers, which represents a resource, might not exist. For each pair of
agents a,a’ € A we add special binary variables z_ ,, that are 1 in such a
degenerate case.

Before formally presenting the ILP formulation using the above-described
variables, for each agent a € A and utility value v € [umax|, we define the
following sets:

e 7" which is the set of resource types with utility exactly v for a; formally,
To v ={t €T |ua(t) =v}; and

e 7Y, which is the set of resource types with utility at most v for a; formally,
TS0 = {t € T | ua(t) < v}.

Using a “big” constant M :=), #(t), we proceed with the following ILP
model:

Z zl, < M- <Z sz’a/> Va,a' € A,a # a' Vv € [Umax), (5.16)

teT Y w=1
Ty 0 < Z zt Va,a' € A,a # a’' Vv € [tmax), (5.17)
teT oY
Ty o =1 Va,a' € Aja # d, (5.18)
v=0
-1
zh < M- (:caZ) Va € AV € [umax], (5.19)
teT =" w=-v
a:;z, < Z xfl/ Va € A,a # a' Vv € [tmax], (5.20)
teTg
Z T +x0,=1 Va € A. (5.21)
v=1

We show that Conditions (5.16), (5.17), and (5.18) indeed ensure the designed
meaning of variables z) ,, and =, ,, for all utility values v € [umax] and distinct

agents a and o’. Let us fix two distinct agents a and o’. Conditions (5.18)
ensure that there is exactly one v € {0} U [umax] for which variable z} ,, equals 1.

91

5. High Multiplicity Allocations

Conditions (5.17) ensure that variable z ,, can be 1 only if agent o’ has (under
allocation =) a resource to which a gives utility v. Finally, (for fixed a and a’)
to fulfill all inequalities in Condition (5.16), indeed the variable z ,, for the
smallest possible v € [umax] must be set to 1. Observe that z ., is 1 if and
only if the left-hand sides of all conditions in (5.16) and the right-hand sides
of all conditions in (5.17) are 0; this guarantees the intended meaning of z .,
as an indicator that o’ has no resources that are positively valued by a. The
rest of the above-listed constraints analogously ensure the meaning of the
variables of form z,%. Note that Condition (5.19) uses the same technique as
Condition (5.16), but by exchanging the summation borders it works in the
opposite way.

Below we complement the above ILP model with two more condition sets
which ensure that allocation 7 is EFX.

Umax

D woua(t) + Mag o > Y wua(t) = Y vwh. Vad € Aa#d, (5.22)

teT teT v=1
Zxéua(t) + Mzl , > ZxZ/ua(t) — Z vrgs Va,a € Aja#ad. (5.23)
teT teT v=1

Observe that Conditions (5.22) and (5.23) become trivially fulfilled if, respec-
tively,) ., and g , are 1. Otherwise, we basically mimic the definition of EFX
by neglecting one resource. Specifically, the resource that is “the worst-case
choice” for being neglected. Hence, if neglecting this resource makes a pair
of agents non-envious, then we know that this must be the case for all other
resources.

5.4.2 Envy-Freeness up to One Good

It is an open question whether allocations that are envy-free up to any good
(studied in the preceding section) always exist but it is conjectured that, in
general, they might not exist [Car+16, CGM20]. Thus, to deal with such cases
the notion of envy-freeness up to one good (EF1) [Azi+19, BKV18, Car-+16,
Lip+04] has been introduced. The intuition behind EF1 is similar to the one
behind EFX. The difference is that this time we accept envy of a towards
agent a' already if the resource that most reduces the difference between a’s
own bundle utility and that of a’ as seen by a can be neglected to remove the
envy of a. Naturally, each EFX allocation is also EF1. Importantly, allocations
that are envy-free up to one good, unlike those that are envy-free or envy-free
up to any good, always exist [Car+16]. Hence, they can serve as a fallback

92

5.4. Beyond Envy-Freeness

in practical applications where, finally, “some” allocation has to be computed.
In theoretical studies, the guarantee of their existence can be treated a “lower
bound” on the fairness of allocations and thus might serve a yardstick for other
fairness concepts.

Definition 5.13 ([Azi+19]). An allocation = is called envy-free up to one good
(EF1) if for each pair of (distinct) agents a,a’ € A with additive utility functions,
respectively, u, and u,: either a does not envy a’ or it holds that

Iren(a)Um(a): wua(nla)\{r}) > ua(r(a’)\ {r}).

Observe that in contrast to EFX, where to fulfill its requirements one has to
consider “the worst-case choice” of a resource to be neglected, in EF1 it is “the
best-case choice” that is required by Definition 5.13. Based on this observation,
we, again, give an ILP model with the number of variables upper-bounded
by some (computable) function of n + umax for checking whether an allocation
is EF1 below.

Again, we fix some allocation 7 described by a vector x = (azfl)aeA’teT. For
each pair of agents a,a’ € A and utility value v € [umax], we introduce binary
variables representing the candidate resources for the best-case choices (as
opposed to the model of EFX where we were modeling the worst-case choices)
as follows:

v

1. If a # o/, then we introduce z;, ,,, which is 1 if and only if v is the maximum
utility of a resource in the bundle of a’ as seen by agent a;

2. if a = o, then we introduce z %, which is 1 if and only if —v is the minimum
utility of a resource in a’s own bundle.

Again, we add two special variables to handle degenerate cases. First, for each
agent a € A, we add variable 23 ,, which will be 1 if agent a has no resource
with a negative utility in its bundle under 7. Second, for each pair of distinct
agents a,a’ € A, variable xga, will be 1 if the bundle of agent a’ does not contain
a resource that has a positive value for agent a. Furthermore, for each pair
of distinct agents a,a’ € A and each utility value v € [umax], we add one more
variable y; ,,, which will be 1 if utility value v is the utility of the best-case
resource to be neglected for a and a’. Since for a pair of distinct agents a,a’ € A
variables of the form z; ., and z;7 are computed independently of each other,
the intuitive role of y; ./ is to aggregate their values and select one that finally
constitutes “the best-case choice” of a resource to be neglected for agents a

93

5. High Multiplicity Allocations

and a’. We are now ready to lay out our ILP model for EF1 (that is similar to
that of EFX, yet, due to several nuances, worth repeating as a whole).

Ty o < Z z Va,a' € A,a # a' Vv € [tmax], (5.24)
teT Y
dowia=1 Va,d € Aja#d, (5.25)
v=0
T, < Z Tl Va € A,a # a' Yo € [tmax], (5.26)
teT, Y
Toat Y Tan=1 Vac A, (5.27)
v=1
Yoo < Taar + T, 0 Va € A,a # a' Yo € [umax], (5.28)
> vew <1 Va,a' € Aja#a. (5.29)
v=1

To explain the above ILP formulation, let us fix a pair a,a’ € A of distinct
agents. Condition (5.24), for some utility value v € [umax] ensures that some
resource of utility v for agent a can be a candidate for the best-case choice
resource if it actually is in the bundle of a’. Condition (5.25) ensures that we
are considering at most one such a candidate for the best-case choice resource
and, in case such a candidate does not exist, Condition (5.25) ensures that
we encode this situation properly by setting) ,, to 1. For some agent a € A,
Conditions (5.26) and (5.27) work analogously to Conditions (5.24) and (5.25)
but for best-case choice resources among those that are assigned to a initially.
Finally, Conditions (5.28) and (5.29) assume that for agents a and a’ at most
one “best-choice resource” to neglect is chosen.

To conclude the ILP model, we add the following constraint that guarantees
that allocation = is EF1:

Umax

melua(t) > mellua(t) — Z VYo o/ Ya,a' € A,a #d'. (5.30)

teT teT v=1

To show that Condition (5.30) is correct, we first assume that allocation = is
EF1 and we fix (without loss of generality) a pair a,a’ € A of distinct agents
and (again without loss of generality) consider the situation that a is comparing
its bundle to the one of a’. If a is not envious, then we do not even need to

94

5.4. Beyond Envy-Freeness

artificially neglect a resource. Thus, all conditions of the model are met with all
variables set to 0; except for the special variables z3 , and 9 , that have to be
set to 1. If a was initially envious, then let r be a resource of type ¢t € T with
utility value v or —v for a such that, after neglecting r, a is not envious. In such a
case, we set . ., to 1 fulfilling Condition (5.30). Depending on whether r € 7(a)
we either set 7, or x; ., to 1-—since r is either in the bundle of a or o’ we
definitely can do so without invalidating Conditions (5.24) and (5.26).

For the reverse direction, let us assume that the model is feasible with some
solution S. Without loss of generality, we, again, fix a pair a,a’ € A of distinct
agents and (also without loss of generality) consider the situation that a is
comparing its bundle to the one of a’. We first focus on Condition (5.30). If, for
all v € [Umax), Yo o, =0, then agent a does not envy a’. Otherwise, there is (at
least) one resource with some utility v or —v that can be neglected, which will
lead to making a non-envious towards a’. Observe that due to Condition (5.29)
there is exactly one such value v. Moreover, Condition (5.28) guarantees that
at least one resource with utility value v or —v for a has been selected by
the variables of form y; ., and y; ;. Due to the semantics of these variables
described earlier, it guarantees that indeed there is a resource r € R (assuming
allocation 7) meeting the criterion of EF1 from Definition 5.13.

5.4.3 Graph Envy-Freeness

Another way of relaxing the concept of envy-freeness is to restrict the ability
of agents to feel envy. One such relaxation is, studied in Chapter 4, graph
envy-freeness. Herein, agents are embedded into a social network and they
can be envious towards their neighbors in this social network. Below we
recall Definition 4.8.

Definition 5.14. Let G = (A,€) be a directed graph, called an attention
graph, representing a social network over the agents (i.e., the agents are the
vertices of G). Allocation 7 is (weakly) graph-envy-free if for each pair of (distinct)
agents a1, az € A such that a2 € N (a1) it holds that ui(w(a1)) > ui(n(az)). By
replacing the weak inequality in our criterion with a strict inequality, we obtain
the definition of a strongly graph-envy-free allocation.

Observe that this rather general idea of narrowing down the possibility of
envying according to some graph can also be easily applied to EF1, EFX,
and similar concepts whose core depends on comparing two (or even more)
agents. Furthermore, this kind of graph-based concepts are equivalent to their
“bare” counterparts when the social network is a complete (bi-directional) graph.

95

5. High Multiplicity Allocations

Indeed, a similar observation applies to our ILP formulations. We do not give a
specific ILP formulation for graph envy-freeness because, in fact, it is possible to
combine all EF, EF1 and EFX with a graph and thus obtain the corresponding
graph versions of these notions.

Observe that the graph does not add specific constraints. In fact, it always
works as a “filter” for the constraints that were already presented in the devised
ILP formulations; for example, if the graph consists of all possible arcs except
for an arc from some agent a to agent a’, then it suffices to remove all constraints
comparing this particular pair of agents (note that in the presented models
the order of agents in a pair matters). Thus, to construct ILP formulations
for the respective graph-versions of various envy-freeness concepts, one has to
apply the corresponding, already presented ILP formulation and delete some
constraints depending on the attention graph. Naturally, deleting constraints
cannot increase the number of variables of any ILP formulation, so the resulting
ILP formulation would also meet the criteria of Theorem 5.6.

5.5 Experimental Evaluation

The theoretical upper bounds shown by Theorem 5.4 are purely of classification
nature and cannot be used to derive any reasonable running time upper bounds
in reality.

Let us, for example, analyze the theoretical worst-case running time of an
algorithm straightforwardly based on the proof of Theorem 5.4. Recall that
Proposition 2.1 says that one can solve an ILP instance Z with ¢ variables
in O (*°°") (7)) time (where (Z) is the input size). Considering n agents,
maximal utility umax, and h resource types, our final integer linear program (as
depicted in the proof of Theorem 5.4) has t > (numax)”Qh variables. Thus, if
we have ten agents and maximum utility ten, then, substituting h by its upper
bound nj.y, already ¢ < 100" becomes enormous and the theoretical running
time is far more than t*; such an instance is clearly unsolvable in practice. Even
if we assume that, as its likely in practice, there are much fewer resource types
than nt,, = 100, say 10, then we arrive at ¢ > 100'°°%; which again yields an
instance unsolvable in practice (recall, that the running time is at least ¢). So,
clearly, a naive algorithm directly applying Theorem 5.4 would not work in
practice.

96

5.5. Experimental Evaluation

5.5.1 Towards Practical Implementation

The major reason why the naive implementation of the proof of Theorem 5.4
would be practically computationally infeasible lies in the size of the set D
of potential changes that can lead to a dominating allocation. Indeed, the
integer linear program depicted in Section 5.3.3 contains a separate collection
of constraints and variables for each element of D. As a result, the number of
variables of the integer liner program increases exponentially.

Intuitively, the ILP from Section 5.3.3 is a collection (conjunction) of multiple
ILPs. One of them “finds” an envy-free allocation and all others ensure that there
is no change that dominates this allocation. The problem of finding a Pareto-
efficient envy-free allocation is ¥5-hard [BLO8|. Without going into formal
details, it means that solving multiple ILPs in unavoidable to tackle the problem.
However, instead of solving them at one shot—Ilike the ILP from Section 5.3.3
does—we resort to the paradigm of separation subroutine [GLS81, Sch&6].
Therein, one starts with solving a small ILP, and then one iteratively uses
another ILP to improve the original solution. If the original solution can be
improved, then the original ILP is augmented with new constraints preventing it
from obtaining the original solution. Next, we demonstrate that this high-level
description of the subroutine separation technique suits well for our use case.

We start with the following ILP, presented using the predicates introduced
in Section 5.3,

¢ = (Ix) (allocation(x) A EF(x)) .

Assuming that = is an allocation found by solving ¢, we then solve the ALLOCA-
TION DOMINANCE problem for allocation 7. If the answer is negative, then = is
envy-free and Pareto-efficient. Otherwise, when y dominates =, let A =y — =
be the improving change computed by the ALLOCATION DOMINANCE ILP.
We employ the same technique as the one presented in Section 5.3.3 and,
defining #max = maxie7 #(i), we modify ¢ adding the following constraints:

zh+ AL < =14+ (1 — 25) (#max) VYa € AVtE T, (5.31)
zh 4+ AL > —(#max) + 25 2#HFmax + 1) Ya € AVt €T, (5.32)
SN (e +zn) (5.33)

ac AteT

Observe that the improving change is a constant in the updated ¢. We repeat
the above procedure, this time starting with the updated ¢ until either a
subsequent ¢ yields an allocation x that is not Pareto-dominated or ¢ becomes

97

5. High Multiplicity Allocations

infeasible. In the former case, allocation x is envy-free and Pareto-efficient; in
the latter case, an envy-free and Pareto-efficient allocation does not exist.

The main idea behind the above approach is basically the same as that
of Section 5.3.3; the only difference is that here we compute elements of D
dynamically and we add them “on request.” In the worst-case, it still can
happen that we have to compute all elements of D. Hence, our technique might
be successful only if, on average, there are relatively few changes in D that
actually lead to Pareto-dominating allocations (or that certify that all envy-free
allocations are Pareto-dominated). Indeed, in the remainder of this section,
we show that for real-world data it actually frequently happens that despite
enormous theoretical running time, our dynamic approach allows for finding
envy-free and Pareto-efficient allocations quickly.

5.5.2 Experimental Setup

We implemented the aforementioned procedure and then tested it on real-world
data gathered by the free, publicly-accessible, online service spliddit.org [Pro+20].
The service, after being fed with a list of indivisible resources, agents and utilities
that the agents give to the resources, computes an allocation that is guaranteed
to be envy-free up to one good [GP15]. The data set, which we subsequently
refer to as the spliddit data set, was shared with us by the authors of the service:
Ariel Procaccia, Jonathan Goldman, Nisarg Shah, and David Kurokawa.

In our implementations we used C++ and the IBM ILOG CPLEX Interac-
tive Optimizer (version 12.9.0.0) for solving the integer linear programs. The
specification of the machines used for our experiments is provided in Section 2.7.

Data

The spliddit data set consists of 3244 instances with up to 15 agents and up to
85 resource types. Before we briefly describe the data set, we refer to the more
detailed statistics depicted in a series of charts in Figure 5.3.

By design, spliddit.org requires all necessary input data to be manually
provided via the web graphic interface—it is not possible to feed the service with
data in bulk in any form. This observation justifies the following characteristic
feature of the spliddit data set. Overall, as it can be noticed in Figure 5.3, there
is a large majority of small instances that contain few agents and few resource
types. However, as already mentioned at the beginning of this section, even for
such small numbers our algorithm, if implemented naively, would run extremely
long. Importantly, the spliddit data set does not contain any resources that

98

5.5. Experimental Evaluation

wn w0
g 7 g]
3 3]
g 1073 g 1073
7] 0]
5 102 4 = 102 4
Sy 3 Yy]
s}] Q]
g 10" 4 E 10" 4
§ 10°] § 100—:
= E = E
2 4 6 8 10 12 14 5 10 15 20 25 30+
number of agents number of resource types
(a) Counts of instances with different (b) Counts of instances with different
numbers of agents. numbers of resource types.
30+

79} 103 0

S 251 qu

=]

2 20 g

qH) 102 S

B 15 kS

8 1 8

2 10 100 o

- :

S 5 S

100
T T T
5 10 15

number of agents

(c) Counts of instances with particular numbers of resource
types and agents.

Figure 5.3.: Plots presenting the statistics of the spliddit data set.

99

5. High Multiplicity Allocations

fairness criterion || min [s] | avg [s] | max [s]

EF 005 | 0.01 2.02

EFX 0.66 0.03 73.47
EF1 0.67 0.03 22.67

Figure 5.4.: The minimum, average, and maximum running time required to find
a Pareto-efficient allocation meeting a given fairness criteria or decide that such an
allocation does not exist.

have negative utility values. This is a consequence of the construction of the
online interface that does not allow to choose negative utilities.

We also mention that in the instances of the spliddit data set, each resource
comes in one copy. This is expected, since the service allows for submitting
evaluations privately by each agent (participant). Thus, it is highly unexpected
that all participants provide exactly the same evaluation of all resources.

5.5.3 Experimental Results

Our goal was to assess whether our implementation is fast enough to be
used in practice. The running times we obtained while experimenting with the
spliddit data set suggest that our approach is indeed appropriate for real-world
applications that involve human agents.

As depicted in Figure 5.4, we were always able to find an envy-free and
Pareto-efficient allocation or decide that such an allocation does not exist within
two seconds. In at most 75 seconds, we were able to compute allocations that are
Pareto-efficient and envy-free up to any resource (EFX) using the ILP model
devised in Section 5.4.1.

In the discussed experiments, we took an advantage of setting an optimization
goal for an ILP. We set the goal so that we sought allocations that are Pareto-
efficient, fair (with respect to the three fairness concepts we experimented with),
and additionally maximize the total sum of utilities that the agents get from
their own bundles—a measure frequently called social welfare. We observed
that adding this optimization goal allowed to significantly (for some instances
even more than ten times) speed up the algorithm. Intuitively, the speed-up
comes from the observation that if no resource has negative utility (for any
agent), then each allocation maximizing social-welfare is also Pareto-efficient
(the opposite is not true). For clarity, in Figure 5.4, we decided not to present
the running times for the case for which we did not use the optimization goal.

100

5.6. Conclusions

It turned out that even though EFX is a relaxation of envy-freeness, the
computation took considerably more time. We conjecture that this is due to
the fact that the classical envy-freeness together with Pareto-efficiency form a
very discriminative collection of properties. So, on the one hand, if allocations
meeting these properties exist, then one needs to look for such allocations in a
relatively small search space, which can be done efficiently. On the other hand,
if such allocations do not exist, then finding this out is not computationally
demanding either. For comparison, we also ran our benchmark for seeking
allocations that are Pareto-efficient and envy-free up to one resource. On
average, the observed running times, depicted in more details in Figure 5.5, were
very similar to those of seeking EFX and Pareto-efficient allocations. However,
the maximum running time, compared to that of finding a Pareto-efficient and
EFX allocation, dropped roughly three times. This phenomenon most likely
comes from the fact that an allocation that EFX is also, by definition, EF1 but
not necessarily the other way round.

5.6 Conclusions

We have presented the fairly general Theorem 5.6 for scenarios of high-
multiplicity fair resource allocation of indivisible resources. The theorem ex-
ploits structural properties of ILP formulations of the studied notions of both
allocation fairness and Pareto-efficiency. Remarkably, an important feature
of Theorem 5.6 is that it covers fair allocation scenarios with indivisible resources
having only negative utilities (so-called indivisible chores allocation [Azi+19])
and scenarios where an indivisible resource could be assigned a negative utility
for one agent and a positive utility for another agent (so-called allocation of
mixed manna [AW19)]).

We believe that Theorem 5.6 substantially contributes to our understanding
of the differences (and similarities) between the studied fairness concepts. All
studied fairness concepts admit ILP formulations with a number of variables
upper-bounded by the number of agents plus the maximum absolute value of
utility to apply Theorem 5.6. However, some of them are significantly more
complicated than the others, indicating that it might be demanding to write an
ILP formulation that meets the criteria of Theorem 5.6.

In our experiments, we confirmed that our approach is applicable for real-
world problems by obtaining practically feasible running times on the data from
spliddit.org. Thus, we believe we have brought real added value not only from
the theoretical perspective but also from the practical one.

101

5. High Multiplicity Allocations

102 5
] 271 ef-max-swf-pareto
] efx-max-swf-pareto
| T efl-max-swi-pareto
1 IR
10° 4 HH
] E
] _ B
)]
g | -
€ 1 o
0|]
g 10 3 1 e
g] 4
=) 1 A
e] 5 -
1071 5 4]
L ;
10 T T T T T T T T T T T

2 3 4 5 6 7 8 9 10 11 15
number of agents

Figure 5.5.: Comparison of running times (in seconds) of finding Pareto-efficient
allocations meeting different notions of fairness for various numbers of agents. Each
box shows quartiles of the collected data with the median depicted by the middle bar.
The so-called whiskers around the boxes represent the maximum and minimum.

102

5.6. Conclusions

It is worth pointing out that the allocation fairness concepts discussed in Sec-
tion 5.4 do not form an exhaustive list of what can be found in the literature.
The intended meaning is to provide some examples of what is possible. We
believe that a significant number of already studied notions of allocation fair-
ness admit ILP formulations compliant with Theorem 5.6 (note that Bred-
ereck et al. [Bre+19b] provide ILP formulations for a few more fairness notions).

As for future work with respect to theoretical studies, it is widely believed
that general statements like in Theorem 5.6 are highly beneficial classification
results; however, algorithms designed for specific problems usually outperform
this approach both in theory and practice. This leads us to the open questions
of providing an algorithm for EEF—ALLOCATION with better running time or
running time lower bounds.

The practical part of our work brings up at least two challenges. First, we
have conducted our test on data that, in fact, did not have resources coming in
high-multiplicity. We are not aware of any real-world data that would feature
the high-multiplicity regime. Thus, to draw valuable insights from testing the
algorithm in the high-multiplicity scenario, it is desirable to first gather data
that would inherently have resources coming in many copies. Apart from a
natural way which is to collect real-world data, this could also be achieved by
coming up with appropriate data generation models. Second, showing that we
are able to solve fair allocation problems relatively effectively calls for more
insightful experiments leading to, for example, checking robustness of solutions,
finding out qualitative differences between allocations, or learning important
features that could give hints for designing faster, specialized algorithms.

103

Part 11

Multiwinner Voting. Dealing with
Collective Sets of Resources

In Part II we shift our focus from the traditional resource allocation scenario
considered in Part I-—where agents own resources privately—to a variant where
the goal is to find a best collection of resources that are shared by all agents
and thus, in some sense, satisfy them.

As a natural consequence, since here we have no individual bundles but rather
a single, collective set of resources, the nature of addressed questions changes
significantly. Observe that we are no longer concerned with envy between agents
because all agents share the same resources, implying that there are no bundles.
Thus, formally, we have an ideal situation where all envy (according to the
definitions we used in Part I) disappears. This perspective immediately raises a
question about a middle ground between the two extremes of private bundles of
resources and a collective set of resources. Indeed, such scenarios, implemented
by allowing sharing resources between agents, recently have also been studied
from the computational perspective [SS19]. In Part II, however, we are only
interested in the well-established (as we will explain in the next paragraph)
extreme case of a single collective set of resources.

As already mentioned, studying the case of a collective set of resources leads
to asking fairly different questions than those in the classical fair allocation
scenarios. Indeed, for a single set of commonly shared resources, instead of
discussing envy, we are rather concerned with how “satisfying” a particular
collection of resources is for each agent, and how to choose such a set of
resources satisfying all agents most. Ideally, we would like to achieve a certain

level of satisfaction using as few resources as possible or a fixed number of
resources. This goal occurs naturally whenever we face a situation that we have
limited space for resources to keep or whenever each resource comes at some
(not necessarily tangible) cost. The second described variant—selecting a fixed
number of collective sets of resources—is actually equivalent to multiwinner
voting intensively studied in social choice during the last years (we refer to the
book chapters [Fal+17, FR15, LX15] for a comprehensive list of multiwinner
voting literature). Indeed, by representing voters by agents and resources
by candidates, we exactly arrive at multiwinner voting, where voters specify
preferences over (possibly sets of) candidates and the task is to select a “best”
set of candidates—a committee. Thus, from now on, we turn to the domain of
multiwinner elections and use the terms “voters” and “candidates” instead of,
respectively, “agents” and “resources.”

We devote Part II to studying multiwinner elections. However, this time
instead of focusing on how to achieve a “best” outcome (which by now is a
relatively well-studied problem [Elk+17, Fal+19]), we rather investigate how
hard it is to change some, already existing, outcome by changing the preferences
of the voters. This question, formally relating to the robustness (or stability) of
an outcome, is especially relevant since multiwinner voting is extensively used
in the real world (from political elections through selecting nominees for prizes
such as The Oscars [Acal9] to hiring employees by HR departments [Ide20]).
However, before we start studying the computational complexity of changing
a multiwinner election outcome (Chapter 7) and of strategically influencing a
multiwinner election by a group of voters (Chapter 8), in the following Chapter 6
we provide a short primer on multiwinner voting.

106

CHAPTER 6

Elections, Multiwinner Voting Rules, and
Election Generation

In this chapter, we lay the formal foundations for investigating multiwinner
elections from the practical perspective as well as for studying them through
the theoretical lens.

6.1 Elections and Multiwinner Voting

The intuitive goal of these elections is to select a most suitable (with respect
to a given goal) set of candidates of a given size based on the voter preferences.
Naturally, voter preferences can be expressed in various ways. In contrast to
indivisible resource allocations (which we considered in Part I of the thesis) where
preferences are usually expressed cardinally, in the area of voting preferences are
frequently expressed as rankings from the most to the least desirable candidate.
This intuitive description can leads to the following Definition 6.1.

Definition 6.1. An election & = (C,V) consists of a set C = {c1,c2,...,cm} Of
candidates and of a collection V = {v1,vs,...,v,} of voters, where each voter v; is
associated with a total order =; over the candidates in C sometimes called a vote
or a ranking. For a vote v; € V, the position pos, (c) € [m] of a candidate c € C
is 1 if it is the most preferred according to >;, it is 2 if it is the second most
preferred according to >;, and so on.

Instead of ~;, we write = whenever the voter v; under consideration is clear
from the context. Throughout the thesis, for two disjoint sets A and B of
candidates, sometimes, when specifying a preference order, we write A = B to
denote the fact that each candidate in set A is preferred to each candidate in
set B, but the particular order of the candidates within these sets is irrelevant
for the discussion. See Example 6.1 for an illustration of Definition 6.1 and the
conventions introduced above.

Example 6.1. Let C = {a,b,c,d} be a set of four candidates and let D =
{b,d} C C. Consider an election £ = (C,V), where V = {v1,v2,vs,v4} is a set

107

6. Elections, Multiwinner Voting Rules, and Election Generation

of four voters with the following total orders (rankings) over the candidates
in C:

vira > c>b > d,

va: a = ¢ > d > b,

vs:d = a = ¢ = d, and

vg: c = D = a.

Now, the position of candidate a in vote vz is 3, whereas candidate d
is ranked on top by voter vs. Since vote vy is either ¢ = b = d = a
orc > d = b > a, we can only say that V, ranks c first and a last.

Definition 6.1 of elections does not contain any process that might be used
to settle the outcome of an election. Thus, to determine the winner(s) of an
election a voting rule has to be applied.

Definition 6.2. A multiwinner voting rule M is a function that, given an
election (C, V) and a positive integral committee size k < |C|, outputs a set M(E, k)
of size-k subsets of C referred to as the winning committees. If there are multiple
winning committees, they are considered to be tied for victory.

One may argue that the above definition should rather use the name multiwin-
ner voting correspondence for M (instead of multiwinner voting rule) because it
returns a set of tied committees instead of a single committee (see, for example,
the discussion on ties by Obraztsova, Zick, and Elkind [OZE13]; a textbook chap-
ter on elections [BR15]; or a work by Barbera, Sonnenschein, and Zhou [BSZ91]
where a voter instead of ordering the candidates was assumed to order all subsets
of candidates of a given size). However, the phrasing of Definition 6.2 is now
well-established [Bra+16, End17] and without doubts most frequently used in
the literature.

6.1.1 Committee Scoring Rules

To give some intuition on multiwinner voting rules, we devote this section to
introduce those of them, that are used in both Chapters 7 and 8. Intuitively,
for some election and a requested committee size k, the rules in the family
of committee scoring rules assign a score to each committee consisting of
k candidates and they select those committees that obtain the highest score.
We formally describe the above procedure and then provide a toy example as
an illustration.

108

6.1. Elections and Multiwinner Voting

A fundamental part of committee scoring rules is a scoring function associating
scores with positions in votes.

Definition 6.3. A scoring function for m candidates is a function v, : [m] = Q
that associates each candidate-position within a given vote a score.

Below, we define some scoring functions frequently studied in the literature
as well as used in practice and afterwards we give an example to demonstrate
their application.

Definition 6.4. Let m be the number of candidates. The Borda scoring function
function B, (i) :== m — i associates to a candidate at some position ¢ € [m] in a
vote a score equal to the number of candidates ranked worse. For some ¢ € [m],
the t-Approval scoring function oy (i) is 1 if i < ¢ and 0 otherwise. We refer to
the special case oy as the Plurality scoring function.

)

For reasons of convenience, we frequently use the term “Approval score’
instead of a;-score and the term “Borda score” instead of 3,,-score if it does not
lead to ambiguity. Having defined scoring functions, we proceed with defining
the score of a candidate in an election.

Definition 6.5. For a scoring function -,,, the ~,,-score of a candidate c € C in
an m-candidate election € = (C, V) is defined as ym-scoreg(c) =\, Ym(pos,(c)).

Depending on which scoring functions are used and how exactly scores of
committees are computed, we obtain different multiwinner rules.

The Single Non-Transferable Vote voting rule (SNTV) outputs the committees
whose members have the highest sum of Plurality scores. To select a committee
of size k, one can also use the k-Borda voting rule. This rule works analogously
to SNTV, however, instead of using the Plurality scoring function, it applies the
respective Borda scoring function. Yet another analogous committee scoring rule
is t-Approval using the ¢-Approval scoring function. Note that ¢-Approval does
not necessary use a value of ¢ that is equal to k. Indeed, whereas in Chapter 7
we focus entirely on the case of ¢ = k, in Chapter 8 we also consider scenarios
where it is not the case. Due to the similarities of above-mentioned rules, we
deal with them collectively in Definition 6.6.

Definition 6.6. Consider some election & = (C,V) with m candidates, some
committee size k, and a committee S = {ci,c2,...,ck} € C. The score of
committee S is:

109

6. Elections, Multiwinner Voting Rules, and Election Generation

3.

ai-score(S) =) o ai-score(c) for the Single Non-Transferable Vote voting
rule;

ag-score(S) =) _ o ax-score(c) for the t-Approval voting rule with a special
case of t = k referred to as k-Approval; and

Br-score(S) =) .4 Br-score(c) for the k-Borda voting rule.

The SNTV, k-Borda, and t-Approval rules select those committees that maximize
the respective committee scores.

In passing, we note that t-Approval related rules come in the literature under
various names such as Limited Voting [KM15|, Constant Scoring Rules |GF81],
t-Bloc [Mei+08], and, for the case of t = k, Bloc [DD16]. The following example
showcases the rules from Definition 6.6 and displays their differences.

110

Example 6.2. Consider the following election with six candidates a to f:

vi:a >=d>=e>=b>=c = f,
vera = d = e b= f > c
vs:b=c>=¢e>=d > f > a,
va: b = d = f = d > e > a, and
vsie = a > c¢c>=b>= f > d

We show which committees of size k = 2 are selected by SNTV, k-Approval,
3-Approval, and k-Borda,. Since SNTV is exactly the same as 1-Approval
and k-Approval in our case is 2-Approval we actually show outcomes of
under all of 1-Approval, 2-Approval, and 3-Approval.

The committee {a,b} is selected as a unique winning committee under 1-
Approval since both a and b are ranked on the first position by exactly
two voters, and there is no other candidate with a;i-score at least two.
Moving to k-Approval, it turns out that the unique winning committee
is {a,d} because candidate b whose as-score is two is outperformed by
candidate d who appears three times at the first two positions of the voter
rankings. Analogously, under 3-Approval, we again obtain a different
outcome consisting of two tied committees {e,a} and {e, d}.

To compute the outcome of k-Borda, we first have to compute Borda
scores of the candidates. To demonstrate how to compute it, let us consider
candidate a. Since a is two times at the first position and on the last position

6.2. Generating Synthetic Election Data

and once on the second position, the Borda score of a is 2-5+4+2-0 = 14.
One can easily verify that the Borda score of b, being 16, is the highest,
that the Borda score of e, being 15, is second highest, and that no other
candidate exceed the score of 14. Thus, the winning committee under k-
Borda is {b,e} and is distinct from the outcomes of all other demonstrated
rules.

All rules defined above—SNTYV, ¢t-Approval, and k-Borda—are examples of
committee scoring rules for which finding the winners can be done in polynomial
time assuming the number of winning committees is not exponential with respect
to the input size [Elk+17, Fal+19, SFS19].

6.2 Generating Synthetic Election Data

The Impartial Culture and Mallows distributions lie at the foundations
of probably most common election generation models in the literature on
experimental election study [BR16]. Here we provide their definitions and brief
intuitive explanations as we also adapt them for our experiments; for a detailed
discussion and literature overview we refer to a book chapter by Boutilier and
Rosenschein [BR16]. For brevity, we interchangeably use words “distribution”
and “model”; for example, we refer to a model that generates elections according
to the Impartial Culture distribution as the Impartial Culture model.

We start with the simpler (and also less expressive) of the two models we
use—the Impartial Culture distribution.

Definition 6.7. In the Impartial Culture distribution, for a set C of candidates,
each ranking over the candidates in C is equally likely.

Despite of being appealing because of its simplicity and intuitiveness, Impartial
Culture is generally believed not to reflect real-life elections well; in particular,
it cannot model voters that share a very similar opinions on the candidates.
Thus, to better explore the space of possible elections, there is a need of a more
expressive model—one of them being the Mallows model. A rough intuition
behind the Mallows model is that there is a given central ranking and the more
swaps are necessary to modify some preference order v to become this central
one, the less probable it is to draw v; in particular, the central order is the most
probable one to be generated.

Definition 6.8. Let vy be the central ranking over a fixed set of candidates,
¢ be a dispersion parameter, d be a distance measure between two rankings.

111

6. Elections, Multiwinner Voting Rules, and Election Generation

Then, in the Mallows distribution, the probability of a given ranking v is

¢d(v0,v)

Z where Z=1-(1+¢) - (1+¢+¢>)---(1+---+¢™).

Note that the normalization constant Z in Definition 6.8 is independent of V.
Observe that for ¢ = 1, the Mallows model becomes equivalent to the Impartial
Culture model and for ¢ = 0 it draws the central ranking V,. For generating
elections in our work, as the distance measure from Definition 6.8, we used the
Kendall tau distance that measures the number of swaps of adjacent candidates
needed to make two measured rankings identical. For reasons of simplicity, in
the definition below we abstain from providing a very formal definition as in
our experiments, to generate elections, we used external generators provided by
the PrefLib library [MW13].

Definition 6.9 ([Ken38]). The Kendall tau distance between two rankings v
and v’ is equal to the number of swaps of adjacent candidates that are necessary
to transform v into v'.

In our experiments, we also use a so-called Mixed Mallows model, which is a
combination of two Mallows models (with independent central orders and values
of parameter ¢) from which one samples rankings with respect to some given
distribution.

Definition 6.10. Let M; and M, be two Mallows distributions with probabil-
ities P! and P? of a ranking v; and let p the probability of drawing an order
from model M;. The Mized Mallows distribution (over distributions M; and M>)
provides some ranking v with probability p - P} + (1 — p) P2

Intuitively, Mixed Mallows allow for exploring the space of possible elections
by providing bimodal distributions of votes.

112

CHAPTER 7

Robustness of Multiwinner Voting Rules

We investigate how robust the results of committee elections are to small
changes in the input preference orders, depending on the voting rules used. We
focus on the problem of computing the smallest number of swaps that lead to
changing the election outcome. We show that this problem is typically NP-hard,
but we also spot fixed-parameter tractability for natural parameters such as
the number of voters or the number of candidates. Finally, for a number of
rules, we assess experimentally the average number of random swaps necessary
to change the election result.

7.1 Introduction

We study how multiwinner voting rules—that is, procedures used to select
fixed-size committees of candidates—react to (small) changes in the input
votes. We are mainly interested in the complexity of computing the smallest
modification of the votes that affects the election outcome. Before we present our
ideas formally, we discuss them on the intuitive level in the following example.

Consider a research-funding agency that needs to choose which of the sub-
mitted project proposals to support. The agency asks a group of experts to
evaluate the proposals and to rank them from the best to the worst one. Then,
the agency uses some formal process—here modeled as a multiwinner voting
rule—to aggregate these rankings and to select k projects to be funded. (In
practice, the agency would, likely, use a two-stage process and the selected
projects would be sent for further, more detailed, evaluation; very roughly put,
this is how the National Science Centre (NCN) in Poland operates.) Imagine
that one of the experts realized that, instead of ranking a proposal A better than
a proposal B, he or she should have given the opposite opinion. Would such
a “mistake” influence the result of the process? Depending on the multiwinner
voting rules used, it may not affect the results, it may cause a minor change or a
great change in the result. Thus, the agency prefers to avoid such situations by
making the process more robust against such unintentional changes, as a result
increasing confidence about the final selection. So, the agency would want to
be able to compute the smallest number of swaps that change the result. In

113

7. Robustness of Multiwinner Voting Rules

cases where this number is too small, the agency could possibly fight this issue
by inviting more experts to gain more stable results.

Below we provide a slightly more formal introduction. A multiwinner voting
rule (recall Chapter 6) is a function that, given a set of rankings of the candidates
and an integer k, outputs a family of size-k subsets of the candidates—the
winning committees. We consider the following two issues (for simplicity, below
we ignore ties and assume to always have a unique winning committee):

1. We say that the robustness radius of an election & (for committee size k)
under a multiwinner rule M is the smallest number of swaps of adjacent
candidates which are necessary to change the election outcome. We ask
for the complexity of computing the robustness radius (referred to as the
ROBUSTNESS RADIUS problem) under a number of multiwinner rules. This
problem is strongly related to the MARGIN OF VICTORY [BST19, Carll,
Mag+11, Xial2] and DESTRUCTIVE SWAP BRIBERY problems [EFS09,
SYE13]. Furthermore, our work follows up on the study of Shiryaev, Yu,
and Elkind [SYE13], who considered the robustness of single-winner rules.

2. We ask (for a given voting rule) how many random swaps of adjacent
candidates are necessary, on average, to move from a randomly gener-
ated election to one with a different outcome. We assess this kind of
robustness of our rules experimentally for elections generated according
to the Impartial Culture, Mallows, and a mixture of two Mallows mod-
els (see Section 6.2 for definitions), and for real-world data available in
PrefLib [MW13].

There is quite a high number of multiwinner rules. We consider only some
of them, selected to represent a varied set of ideas from the literature, ranging
from variants of scoring rules, through rules inspired by the Condorcet criterion,
to the elimination-based STV rule.

We show that the ROBUSTNESS RADIUS problem tends to be NP-hard (some-
times even for a single swap). We seek fixed-parameter tractability results with
respect to natural parameters to circumvent this hardness. For example, we
find several algorithms that yield fixed-parameter tractability with respect to
the number of voters (these algorithms are useful, for instance, for scenarios
with few experts, such as in our introductory example). See Table 7.1 for an
overview of our theoretical results. We mention that Misra and Sonar [MS19]
followed up on our results and, in particular, have considered several variants of
the Chamberlin—Courant rule and certain nearly-structured preference domains.

114

7.2. Preliminaries

Recently, Gawron and Faliszewski [GF19] applied our notions of robustness to
the case of approval elections.

We furthermore perform an experimental evaluation of the robustness of our
rules with respect to random swaps. We conclude that, on average, to change
the outcome of an election, one needs to make the most swaps under the k-Borda
rule, whereas STV and SNTV (Single Non-Transferable Vote) require fewest
swaps to achieve this result.

This chapter is organized as follows. In Section 7.2 we provide the necessary
background, including the definitions of the rules that we focus on. Then,
in Sections 7.3 and 7.4, we introduce the ROBUSTNESS RADIUS problem and
study its computational complexity; in the former section we mostly focus
on the classic complexity, whereas in the latter we provide several FPT algo-
rithms. In Section 7.5 we describe our experiments. We conclude our findings
in Section 7.6.

7.2 Preliminaries

We first describe the voting rules on which we focus and then we explain
our notion of robustness radius and the corresponding computational problem
ROBUSTNESS RADIUS.

7.2.1 The Chamberlin—Courant Rule

The Chamberlin—Courant rule [CC83| (as well as SNTV, k-Approval, and
k-Borda; see Section 6.1.1) is an example of a committee scoring rule [Elk+17,
Fal+19, SFS19], so it outputs the committees with the highest score computed
according to some scoring function. The Chamberlin—Courant rule, however,
computes the committee scores in a significantly different way than the rules
from Definition 6.6, under which each candidate contributes a fixed score to
all possible committee containing this candidate. In the Chamberlin—Courant
rule, the score of a given committee depends on how much every voter is
satisfied with the voter’s highest-ranked candidate present in the committee
under consideration; thus, the contribution of a candidate to the score of a
committee depends also on the different candidates the committee contains.
The satisfaction of a voter is measured using the Borda scoring function, B,
which is the reason why we refer to the Chamberlin—Courant rule as 3-CC.

IFor STV there is a polynomial-time algorithm for computing a single winning committee,
but deciding whether a given committee wins is NP-hard.

115

7. Robustness of Multiwinner Voting Rules

Voting Rule Complexity of ROBUSTNESS RADIUS
SNTV, k-Approval, k-Borda (P) P (Th.7.1)
NP-hard (Cor. 7.3)
k-Copeland® (P) FPT(m) (Pr.7.6)
W][1]-hard(n) (Cor. 7.10)
7777777777777777777777777 NP-hard (Th.7.2)
NED (NP-hard [Azi+17]) FPT(m) (Pr. 7.6)
W][1]-hard(n) (Cor. 7.10)
p-NP-hard(B) (Th. 7.4)
B-CC FPT(m) (Pr.7.6)
(NP-hard [BSU13, LB11, PRZ0S]) FPT(n) (Th.7.9)
p-NP-hard(B) (Th. 7.5)
STV (NP-hard! [CRX09]) FPT(m) (Pr.7.6)
FPT(n) (Th.7.7)

Table 7.1.: Summary of our results. For each rule, we provide the complexity of its
winner determination. The parameters m, n, and B mean, respectively, the number of
candidates, the number of voters, and the robustness radius; p-NP-hard(B) means NP-
hard even for constant B. We leave open the parameterized complexity of ROBUSTNESS
Rabius for k-Copeland® and NED with respect to B.

Definition 7.1. Consider an election £ = (C, V) with m candidates, a committee
size k, and a committee S = {c1,ca,...,cx} C C. The representative c* € S of a
voter v € V in S is the highest-ranked candidate in S according to v’s ranking;
that is, ¢* :== argmin_ g pos,(c). The satisfaction of voter v from S is the Borda-
score (in v’s ranking) of the voter’s representative . The dissatisfaction of voter v
from S is equal to (m — 1) minus the voter’s satisfaction.

In plain words, the outcome of the 5-CC rule consists of those committees
that satisfy the voters the most or, equivalently, dissatisfy them the least.
In Definition 7.2, we formally present the former variant.

Definition 7.2. Consider an election & = (C,V) with m candidates, a com-
mittee size k, and a committee S = {ci1,ca,...,cx} C C. Under the Chamberlin—
Courant (8-CC) rule, the score of committee S is defined as 8-CC-score(S) ==

116

7.2. Preliminaries

V1
Vg :
V3.

Vg :

score sat. (dissat.)
a>b>c>d, of S vy V2 v3 V4
¢ = b»a>d S={a,c} | 11 3(0) 3(0) 3(0) 2(1)
a>c>b>d, S = {a,b} 11 3(0) 2(1) 3(0) 3(0)
b=a>=c>=d S={od} | 8 2(1) 2(1) 1(2) 3(0)

Figure 7.1.: The election considered in Example 7.1 to demonstrate the 8-CC rule.

> vey Blargmin g pos, (c)). The Chamberlin-Courant rule selects those commit-
tees that maximize the respective committee scores.

In the following Example 7.1, we present Definition 7.2 in action.

Example 7.1. Consider an election consisting of four candidates a, b, ¢,
and d for which we apply S-CC to find a winning committee of size two.
In Figure 7.1, we present four example voters, together with a table with
the scores of several committees of size two and with the satisfaction and
dissatisfaction values of the voters. Let us briefly analyze committee S =
{a,c} to demonstrate how to compute the scores presented in Figure 7.1.
Candidate a is a representative of voters v1, vz, and v4 because a is preferred
to ¢ by all of them. Both voters v; and v3 rank candidate a on top; thus
their satisfaction is 3, which in turn means that their dissatisfaction is 0.
Voter vs ranks a at the second position which gives satisfaction 2 and
dissatisfaction 1. Regarding voter v2, its representative is candidate c that
gives satisfaction 3 and dissatisfaction 0.

Eventually, the winners under 8-CC are {a,c} and {a,b}. We do not
consider committees consisting of d because d cannot be a representative of
any voter (d is always at the worst position). It can also be easily verified
that committee {b, c} obtains a worse score than that of the claimed winning
committees.

Determining the winner under g-CC is well-known to be NP-hard [LB11,
PRZ08] and WI2]-hard when parameterized by the committee size [BSU13].
Yet, there are many ways of dealing with this negative result, including FPT-
algorithms for other parameters [BSU13], approximation algorithms [LB11,
SFS15], algorithms for restricted domains [BSU13, Pet18, Sko-+15], and heuris-
tics [Fal-+18b].

117

7. Robustness of Multiwinner Voting Rules

7.2.2 Condorcet-Inspired Rules

Other multiwinner rules include those based on the idea of a Condorcet
winner. A candidate ¢ is a Condorcet winner if for each other candidate d,
more than a half of the voters prefer ¢ to d. A candidate is a weak Condorcet
winner if it is preferred to every other candidate by at least a half of the voters.
Gehrlein [Geh85] generalized this notion to the multiwinner case as follows.

Definition 7.3. For an election, a committee is Gehrlein strongly-stable if every
committee member is preferred to every nonmember by more than a half of the
voters in the election. A committee is weakly-stable if every member is preferred
to every nonmember by at least a half of the voters in the election.

We can naturally categorize multiwinner rules basing on whether they always
output committees that coincide with all Gehrlein weakly- or strongly-stable
committees of elections.

Definition 7.4. A multiwinner rule is Gehrlein strongly-stable if, for each
possible election, it outputs exactly the Gehrlein strongly-stable committees
whenever they exist. A multiwinner rule is Gehrlein weakly-stable if, for each
possible election, it outputs exactly the Gehrlein weakly-stable committees
whenever they exist.

We provide two exemplary representatives of Gehrlein strongly-stable and
Gehrlein weakly-stable rules.

Definition 7.5 ([Coe04]). Consider an election & = (C, V) with m candidates,
a committee size k, and a committee S = {c1,¢c2,...,c} CC. The NED score
(Number of External Defeats) of committee S is the number of pairs (c,e) such
that c € S, e € S, and c is preferred to e by at least a half of the voters. The NED
rule outputs the committees with the highest NED score.

In passing, we note that originally the definition of the NED rule [Coe04] used
a “dual” definition of the NED score, and thus it was choosing committees whose
NED score was the smallest. The NED rule is Gehrlein weakly-stable but not
Gehrlein strongly-stable. This is intuitively expected, since NED grants points
to committees for an external defeat “already” if a member of a committee is
preferred by a half of the voters to some nonmember. This stands in contrast
to Gehrlein strongly-stable committees, in which each member is preferred to
every nonmember by more than a half of the voters. The next rule we define,
k-Copeland®, is Gehrlein strongly-stable but not Gehrlein weakly-stable.

118

7.2. Preliminaries

2
NED Copeland®-®
v oa >~ b - d - C, score score
va: ¢ = b = a - d, {a, b} 4 a 2.5
4
vs:a > c > b > d, {a,c} b 2
{b,c} 3 . 1
va: b = a > d > c d <
{d, e} =3 d 0.5

Figure 7.2.: The election considered in Example 7.2 to demonstrate the 2-Copeland®-®
and NED rules.

Definition 7.6. Consider an election £ = (C,V) with m candidates, a committee
size k, and a committee S = {c1,c2,...,c} CC. For any «a € [0, 1], the Copeland®
score of some candidate ¢ € S is the number of candidates d such that c
is preferred to d by a majority of voters plus an o-fraction of the number
candidates e such that exactly a half of the voters prefer ¢ to e. The k-
Copeland™ rule outputs committees consisting of k candidates with the highest
Copeland® scores.

We illustrate the NED and Copeland® (for a = 0.5) rules in Example 7.2.

Example 7.2. Let us again consider an election consisting of four can-
didates a, b, ¢, and d and four voters depicted in Figure 7.2, where we
also present a table with the NED scores and the 2-Copeland®® scores
of example committees of size two. We show how to compute the score
of committee S = {a,c}; applying the same reasoning allows to compute
the NED scores of the other committees. Candidate a is preferred by
more than a half of the voters to candidate d and exactly by a half of the
voters to candidate b; thus, a contributes two points to the NED score of
committee S. Candidate c is preferred exactly by a half of the voters to
both b and d. Hence, we have another two points for committee S and we
obtain the total score of four.

Next, let us show how to compute the 2-Copeland®-® score of candidate b,
which displays a difference between NED and 2-Copeland®® occurring
when there are ties in the numbers of voters preferring one candidate
to another. Here, we observe that candidate b is preferred to d by all
voters, so b clearly gets one point. Remarkably, the other candidates are
preferred to b exactly by a half of the voters. Thus, since we consider the

119

7. Robustness of Multiwinner Voting Rules

parameter a = 0.5 of 2-Copeland®, b gets a half of a point for each of these
comparisons. Eventually, the score of b is two.

Observe that the sets of winning committees under NED and 2-
Copeland®® are different. According to NED committees {a,b} and {a, c}
win the election while according to 2-Copeland®® only committee {a,b}
wins the election. Since {a,b} and {a, c} are the only Gehrlein weakly-stable
committees for the considered election, the outcome of 2-Copeland®® also
shows that k-Copeland® is not Gehrlein weakly-stable.

Detailed studies of Gehrlein stability mostly focused on the weak variant of the
notion [BC10]. Some recent findings, as well as results presented in this thesis,
suggest that the strong variant is more appealing [Azi+17, SSX17]. For example,
all Gehrlein weakly-stable rules are NP-hard to compute [Azi}17], whereas
there are strongly-stable rules (such as k-Copeland®) that are polynomial-time
computable. However, we mention that there are approximation algorithms for
some Gehrlein weakly-stable rules [SSX17].

7.2.3 Single Transferable Vote (STV)

Multiwinner voting rules, such as STV, can also be round-based. Roughly
speaking, in each round, STV picks the most suitable candidate to join the
final committee, removes those voters that supported the chosen candidate
from further consideration, and repeats this procedure until the committee is
selected. In the case of STV, the most suitable candidate is the candidate that
is ranked on top most frequently. However, to avoid selecting underrepresented
candidates, STV uses the so-called Droop quota [Dro81]. In brief, the Droop
quota—Dbeing roughly a ratio of the total number of voters and the size of a
sought committee—expresses by how many voters a candidate has to be ranked
on top to deserve to be elected.

Definition 7.7. Let £ = (C,V) be an election with m candidates and n voters,
k be a committee size, and let ¢ := | ;%7] + 1 be the Droop quota. The STV rule
constructs the winning committee S by executing the following two steps until
it picks k candidates to the committee.

1. If there is a candidate ¢ who is ranked first by at least g voters (i.e., whose
Plurality score is at least ¢), then include ¢ in S; remove from the election
exactly ¢ voters that rank c first; and remove ¢ from the remaining votes.

2. If such a candidate ¢ does not exist, then remove a candidate d that is
ranked first by the fewest voters.

120

7.2. Preliminaries

Note that Definition 7.7 does not exactly specify which g voters to remove
if there are more than ¢ voters that rank first a candidate selected to the
committee in some round. Similarly, the definition does not specify which
candidate to remove if there is more than one that is ranked first by the fewest
voters (see Example 7.3 below for an election illustrating this issue). There are
couple of ways to cope with these ambiguities. We adopt one that allows to
compute all possible winning committees and then collectively outputs them as
tied winning committees.

Definition 7.8. A committee S wins under the parallel-universes (STV) tie-
breaking model if there is any way of breaking ties occurring during applying
the STV rule that results in S being elected.

The name of the model from Definition 7.8 comes from an intuitive illustration
where the STV rule, whenever it faces a tie, branches out into independent
elections, as if happening in parallel universes, according to all possible ways of
breaking the tie.

In Example 7.3 we demonstrate how the STV rule works and how to apply
the parallel-universes tie-breaking model.

Example 7.3. Consider an election consisting of three candidates a, b,
and c and the following voters:

three voters: a = b = ¢
two voters: ¢ > b > q;
two voters: b > ¢ > a;

voter v*: a > c > b.

Applying STV to the election, we aim at a committee of size k := 2. We
first compute the Droop quota, which in our case is ¢ = [§] +1=3. We
immediately see that a has the highest Plurality score (which is four) that
in turn is greater than ¢. Thus, we take a to the winning committee and
we proceed with removing ¢ voters ranking a at the top position. Observe
that if we now remove v* and remove a from the remaining votes, then the
next candidate taken to the winning committee is b, because b has Plurality
score three, and we obtain the winning committee of size two. However, if
we do not remove v*, then we need to take c¢ to the winning committee.

121

7. Robustness of Multiwinner Voting Rules

Thus, for both committees {a,b} and {a,c} there is a way of breaking ties
that leads to electing them (one way per committee); as a result, STV
with parallel-universes tie-breaking reports these two committees as the
winning committees.

We can compute some STV winning committee in polynomial time by breaking
the internal ties in some arbitrary way, but it is NP-hard to check whether a
given committee wins (assuming parallel-universes tie-breaking) [CRX09).

7.2.4 Robustness Radius: Problem Statement

In order to study how robust an election is under some multiwinner rule M,
we introduce the following computational problem in which we ask whether a
given number of swaps of adjacent candidates is sufficient to change the outcome
of the election. Intuitively, the more swaps one needs to change the outcome of
an election, the more robust the election is.

M ROBUSTNESS RADIUS

Input: An election £, a committee size k, and a positive integer /.
Question: Are there ¢ swaps of adjacent candidates in the votes
of £ that when applied to election £ give an election &' such that
M(E' k) # M(E k).

The ROBUSTNESS RADIUS problem is strongly related to some other problems
studied in the literature. Specifically, in the DESTRUCTIVE SWAP BRIBERY
problem (DSB for short) we ask if it is possible to preclude a particular candidate
from winning by making a given number of swaps [EFS09, KF19, SYE13|. DSB
was already used to study robustness of single-winner election rules by Shiryaev,
Yu, and Elkind [SYE13]. We decided to give our problem a different name,
and not to refer to it as a multiwinner variant of DSB, because we feel that
in the latter the goal should be to preclude a given candidate from being a
member of any of the winning committees, instead of changing the outcome in
any arbitrary way. In this sense, our problem is very similar to the MARGIN OF
VICTORY problem [BST19, Carll, Mag+11, Xial2], which is also related to the
notions of approximation for sublinear winner determination algorithms and
sampling of elections [DN15, FT17]; the MARGIN OF VICTORY problem has the
same goal, but instead of counting single swaps, it counts how many votes are
changed.

122

7.3. Classical Computational Complexity

7.3 Classical Computational Complexity

We show that ROBUSTNESS RADIUS tends to be computationally challenging.

Indeed, we obtain polynomial-time algorithms only for the simplest of our rules:
SNTV, k-Approval, and k-Borda.

Theorem 7.1. ROBUSTNESS RADIUS is solvable in polynomial time for SNTV,
k-Approval, and k-Borda.

Proof. Each of our rules proceeds by computing an individual score for each
of the candidates (based on this candidate’s positions in the preference orders
of the voters) and by letting the winning committees consist of the candidates
with the highest scores. We first describe a general strategy for dealing with
rules of this form and then show how to implement this strategy for SNTV,
k-Approval, and k-Borda.

Let M be one of SNTV, k-Approval, and k-Borda, let £ = (C,V) be an election,
where C = {c1,c2,...,cm} and V = {v1,v2,...,v,}, and let k be the committee
size. For each candidate ¢ € C, let score(c) be the individual score of candidate c.
Without loss of generality, assume that score(ci) > score(cz) > -+ - > score(cm)—
we can always achieve this by relabeling the candidates. We are interested in
computing a shortest sequence of swaps of adjacent candidates that transforms
election &€ into some election £ such that M (€, k) # M(E', k). We consider two
disjoint cases:

1. There is a unique winning committee in election £ or
2. there are several tied winning committees in election &.

First, we deal with the case of a unique winning committee W = {c1,ca,...,cx}.
It holds that score(ck) > score(ck+1) (otherwise W would not be a unique commit-
tee). Consider some arbitrary sequence of swaps that, for the chosen multiwinner
voting rule M, transforms £ into some election & such that M(E, k) # M(E', k),
and consider the first swap whose execution changes the set of winning commit-
tees. Prior to this swap, each of the candidates ci,cs,...,c, had its individual
score higher than each of the candidates cgt1,cr+2,...,cm. After the swap some
candidate from the latter group had its individual score at least as high as one
of the members of the former group. Thus, to find a shortest sequence of swaps
that changes the result of election &, it suffices to find a shortest sequence of
swaps that ensures that some candidate ¢ € C\ W has a score at least as high as
some candidate from committee W. Then, there must be at least two winning
committees, one with ¢ and without c.

123

7. Robustness of Multiwinner Voting Rules

Now let us consider the case where there are several winning committees. It
must hold that score(ci) = score(cix+1) and we can partition the set of candidates
into three sets, depending on the relation of their score to that of c:

Cabove = {ci C C: score(c;) > score(ck)},
Cequal = {c; C C: score(c;) = score(ck)},

Chelow = {¢i C C: score(c;) < score(ck)}.

Each M-winning committee of election £ consists of all candidates from Capove
and an arbitrary subset of k — |Cabove| candidates from Cequai. As in the previous
case, let us consider a sequence of swaps that transforms election £ into an
election with a different set of winning committees, and consider the first swap
after which the set of winning committees changes. The effect of this swap must
be that one of the following situations arises:

1. Not all candidates in Cequar have the same score;

2. all candidates in Cequa have the same score, but some candidate in Capove
obtains score at most that of the candidates in Cequal; Or

3. all candidates in Cequar have the same score, but some candidate in Chelow
obtains score at least that of the candidates in Cequal-

So, to find a shortest sequence of swaps that changes the result of election &,
it suffices to find a shortest sequence of swaps that ensures that one given
candidate has score higher (or equal) than some other given candidate. For
example, to deal with the situation from Item 1, it suffices to try each pair p,d
(the names stand for “preferred” and “despised”) of distinct candidates from Cequal
and find a shortest sequence of swaps that ensures that p scores better than d
does. We treat other possible scenarios listed above analogously.

Let us now stress a consequence of the above reasoning for both the case of a
unique winning committee and the case of several winning committees: To prove
our theorem it remains to show for each of our three rules a polynomial-time
procedure that, given two candidates, p and d, finds a shortest sequence of swaps
that ensures that p scores better than (or the same as) d does. We provide such
procedures below. Note that we focus on the case of ensuring that p’s score is
at least that of d. Adapting our reasoning to the case of ensuring that p has a
greater score than d is straightforward.

124

7.3. Classical Computational Complexity

SNTV We guess three nonnegative numbers, B;, B2, and B;. We find B; votes
where d is ranked first and p is ranked as high as possible, and we shift p to
the top position. In effect, d looses its Plurality point and p gains it. Then,
we find B> votes where p is ranked as high as possible, but not on the
first position, and we shift p to the top position. Finally, we find B3 votes
where d is ranked first, and therein we shift d down by one position. If at
any point of this algorithm we do not find sufficiently many voters with
a given property, then we drop the respective guess of By, Bs, and Bs.
We check if as a consequence of our swaps p’s score is at least the same
as that of d and, if so, we store the number of performed swaps. Finally,
after considering all possible O(n®) guesses of B, B2, and Bs, we output
the lowest number of swaps observed. Note that our procedure must have
succeeded for at least one guess; in particular, for the guess ensuring that
all voters rank p on top.

k-Approval We proceed in the same way as in the case of SNTV, but herein
the guesses are more intricate. First, we partition the voters into four
groups of voters who:

1. neither give a point to p nor to d;
2. give a point to p but not to d;

3. give a point to d but not to p; and
4. give points to both p and d.

Observe that there is no point in affecting the voters in the second group,
but there are two ways of altering those in the third group. Hence, we
guess numbers B, B, By, and By of voters whose preference orders we
will modify. For the first group, we execute the smallest number of swaps
that ensures that B: voters give a point to p. For the third group, we
execute the smallest number of swaps that ensures that B} voters give
a point to p and that Bf voters do not give a point to d. Note that
these operations are, in essence, independent (except for one special case
when d is just above p, which can easily be treated separately). For the
fourth group, we execute the smallest number of swaps that ensures that
B, voters do not give a point to d.

k-Borda We perform the following operation until the score of p is at least
the same as that of d. We find a vote where p is ranked below d, but the
difference between their positions is smallest, and we shift p one position

125

7. Robustness of Multiwinner Voting Rules

higher (possibly passing d, if in this vote p is ranked just below d). Note
that if the score of p is lower than that of d, then there must be a vote
where p is ranked below d, each swap decreases the difference between
the scores of p and d by one point or by two points (if p passes d), and
our strategy of choosing swaps ensures the highest number of swaps of
value two.

This completes the proof. O

We contrast the positive result from Theorem 7.1 for SNTV, k-Approval,
and k-Borda with a general NP-hardness of computing the robustness radius for
all Gehrlein weakly-stable rules.

Theorem 7.2. ROBUSTNESS RADIUS is NP-hard for each Gehrlein weakly-stable
rule, even for committee size k = 1.

Proof. We reduce from the NP-hard EXACT 3-SET COVER problem [GJ79] where
we are given a set X = {z1,2,...,z3,} of elements and a set S = {51, 52,...,5m}
of triples of elements of X. We ask whether there are h triples that, together,
contain all elements of X. In the following polynomial-time many-one reduction
we assume that every element occurs in exactly three input triples; this variant
of the problem remains NP-hard [Gon85].

Our reduction proceeds as follows. For each element x € X, we have an
element candidate c(x). Extending this notation, later in the proof, for a given
subset X' C X of the elements, we write ¢(X’) to denote the set of element
candidates that correspond to the members of X’ (in particular, C(X) means the
set of all element candidates). We will have 2m + 8h voters and for each of them
we introduce 4h + 1 distinct dummy candidates. We write D to denote the set of
all these dummy candidates, and for each voter v we write D(v) to denote the
set of dummy candidates associated with v. Further, we also have two special
candidates p and d. Altogether, we have 2 4+ 3h + (4h + 1)(2m + 8h) distinct
candidates, collected in the set

C={p,d}Uc(X)UD.

We form the following 2m +8h voters, where, in each preference order, the ellipsis
represents all candidates not mentioned explicitly, ordered in an arbitrary way
(recall that for two disjoint sets of candidates C and D, by writing C = D, we
mean that each candidate in C is before each candidate in D):

126

7.3. Classical Computational Complexity

\%
14
+
X
|
o

Figure 7.3.: A graph representation of the election constructed by the reduction in
the proof of Theorem 7.2. All dummy candidates D and all element candidates c(X)
are contracted to a single vertex. All arcs between vertices forming together one

contracted vertex are neglected.

1. For each triple S € S, there are two voters
vs: d>c¢(S)>p>= D(vs) ... and
vs: c(X)\e(S) = D(vs) =p=d=...;
2. for each : € [h — 1], there is a voter with preference order
vi: d>D(v) =p=c(X)>=...;
3. for each i € [h + 1], there is a voter with preference order:

vi: d=c(X)=DW)=p=...;

4. for each i € [3h], there are two special voters
vi: d>c(X)=Dwi)=p>...and

vi: prd=D@;) = c(X) > ...

We form an instance of ROBUSTNESS RADIUS that consists of an election
with the candidates and voters described above, committee size k = 1, and the

number B of swaps set to 4h.

127

7. Robustness of Multiwinner Voting Rules

We present the constructed election visually as a weighted graph in Figure 7.3.
In this graph, each vertex corresponds either to a single candidate or to a set
of candidates. If we have an edge with weight w from a vertex associated with
candidate ¢ to a vertex associated with candidate ¢/, then it means that w more
voters prefer ¢ to ¢’ than the other way round. For example, there is an arc
with weight 6 + 8k pointing from candidate d to a vertex associated with ¢(X).
This arc indicates that for every element candidate c(z) (where z € X), the
number of voters that prefer d to c(z) is greater by 6 + 8h than the number
of voters that prefer ¢(z) to d. To see that this indeed is the case, note that
every voter in groups 2, 3, and 4 prefers d to ¢(z); hence, we have 8h voters
who prefer d to c(z). In group 1 (consisting of 2m voters), d is preferred to
by exactly m + 3 voters. Thus, in this group, six more voters prefer c(z) to d
than the other way round. The computation is analogous for all other element
candidates; thus, candidate d is preferred to each of them by 6 + 8 more voters
than the other way around.

Now we show that the reduction is correct. Note that, as the committee size is
one, if some candidate is a Condorcet winner, then every Gehrlein weakly-stable
rule outputs a single winning committee, containing exactly this candidate.
Similarly, if there are weak Condorcet winners in the election, then the winning
committees are exactly those singletons that contain them. In our election, d is
a Condorcet winner (indeed, in Figure 7.3 there are arcs from d to every other
vertex), so committee {d} wins uniquely.

Let us assume that there is an exact cover of X with h triples from S, and
let I = {i1,42,...,in} be the set of indices of these triples (formally, we have that
U,er Si = X). If for each i € I we shift candidate p to the top of the preference
order of voter vg,, then altogether we make 4h swaps and p becomes a weak
Condorcet winner. This is so because (i) p is ranked on the fifth place in each
of these votes, (ii) the swaps cause p to pass d in h votes (so p ties with d in
their head-to-head contest), and (iii) the swaps cause p to pass each element
candidate exactly once (so p ties in a head-to-head contest with each element
candidate). As a consequence, {p} and {d} are two winning committees and we
see that the election result has changed.

Let us now consider the reverse direction. We first note that if we perform up
to 4h swaps, then we can change the winning margins indicated in Figure 7.3 by
at most 8h. Thus (assuming that m > 2), after 4h swaps candidate d certainly is
still preferred to each candidate other than p by a majority of the voters. Further,
after 4h swaps still at least half of the voters prefer d to p. From this observation
it follows that in each vote either p already is preferred to d or it takes at

128

7.3. Classical Computational Complexity

least four swaps to move p ahead of d; as a result, with 4h swaps, we can make
at most h voters prefer p over d and this is just enough to ensure that p and d
tie in their head-to-head contest. As a consequence, after 4h swaps d certainly
is a (weak) Condorcet winner and {d} is among the winning committees.

To ensure that {d} is not the only winning committee, it is necessary to
guarantee that some other candidate is a weak Condorcet winner. Based
on Figure 7.3, it is clear that after 4h swaps all element candidates and dummy
candidates lose at least one head-to-head contest (assuming m > 1), so only
candidate p may become a weak Condorcet winner. For this to happen, p needs
to pass d in h votes and p needs to pass each element candidate in at least one
vote. A simple counting argument shows that this is possible only by shifting p
to the top position in h votes from the first group that correspond to an exact
cover of X with h triples from S.

We conclude by noting that the reduction obviously works in polynomial
time. O

Concerning the k-Copeland® rule, a simple modification of a proof of Kacz-
marczyk and Faliszewski [KF19, Theorem 6] (who reduce from CLIQUE) shows
that computing the robustness radius for this rule is NP-hard too, even for
committees of size k = 1. More specifically, to adapt this proof, one needs to
only add polynomially-many (with respect to the input) dummy candidates.

Corollary 7.3. k-Copeland® ROBUSTNESS RADIUS is NP-hard for any « € [0,1].

Without much surprise, we find that ROBUSTNESS RADIUS is also NP-hard
for B-CC and STV. For these rules, however, the hardness results are, in fact,
significantly stronger. In both cases it is already NP-hard to decide whether the
outcome of the given election changes after a single swap, and for STV the result
holds even for committees of size one. Committee size equal to one cannot yield
NP-hardness for 8-CC because in this case it is equivalent to the single-winner
Borda rule, for which the problem is polynomial-time solvable [SYE13] (this
also follows directly from Theorem 7.1).

Theorem 7.4. 3-CC ROBUSTNESS RADIUS is NP-hard and W[1]-hard with
respect to the size of the committee even if the robustness radius B = 1.

Proof. We show the result by giving a polynomial-time many-one reduction from
the REGULAR MULTICOLORED INDEPENDENT SET problem. In this problem
we are given a regular graph G, where each vertex has degree d and has one
of h colors, and we ask if there is an h-colored independent set, that is, a

129

7. Robustness of Multiwinner Voting Rules

size-h set of pairwise non-adjacent vertices containing one vertex from each
color. This problem is known to be both NP-complete and W[1]-hard for the
parameter h [Cyg+15, Corollary 13.8]. To obtain our W[1]-hardness result, we
will ensure that the reduction uses committees of size that is a function of A
only. Specifically, we will use committee size h + 2.

Input Instance Let (G,h,d) be an instance of REGULAR MULTICOLORED
INDEPENDENT SET and let s := [V(G)| and r := |£(G)| be the numbers of,
respectively, vertices and edges in the input graph. We assume, without loss
of generality, that s > 2h. Indeed, in a graph with no isolated vertices there is
no independent set that contains more than a half of the vertices. Below we
describe the election that we use in our f-CC ROBUSTNESS RADIUS instance.

Candidates and Committee Size The set of candidates consists of the
vertex set V(G) of graph G, the set Z = {20, 21,22} of special candidates, the
set X = {z1,...,z,} of safe candidates, and the set D of dummy candidates.
Further in the proof we exactly specify the number of dummy candidates and
we show that there are polynomially many of them with respect to r +s. We
set the committee size k := h + 2.

High-Level Idea The idea of the construction is to construct our election
such that the following holds simultaneously:

1. The safe committee {20, 21,21, ..,z5} always wins (possibly uniquely);

2. for each V' C v, if V' is an h-colored independent set, then {z¢, 22} UV’ is
a winning committee in the initial election;

3. no other committees apart from those mentioned in the two points above
can win;

4. using a single swap of adjacent candidates—which gives the robustness
radius of one—it is possible to ensure that the safe committee is the only
winning committee. More precisely, a single swap suffices to change the
set of winning committees if and only if there is an h-colored independent
set for G.

In particular, we will ensure that if there is no h-colored independent set, then
the safe committee will have a dissatisfaction (recall Definition 7.1 for the notion

130

7.3. Classical Computational Complexity

of dissatisfaction) lower by at least four points than the next best committee
(so a single swap would not suffice to change the set of winning committees).

Dummy Candidates and Value A In our construction we make sure that
the safe committee has dissatisfaction

A = 8r + hs?,

and that this is the lowest possible dissatisfaction (prior to performing swaps).
To simplify our construction, we use numerous dummy candidates and we adopt
the following convention. Whenever we put a dummy candidate among the
top A positions in a vote, we put this dummy candidate behind position A in
all other votes (on its own, this is not enough to guarantee that no dummy
candidate belongs to a winning committee, but we will later show that this
indeed is the case). As a consequence, for n voters we need at most O(nA)
dummy candidates. Since we will form only polynomially many voters, we will
also need only polynomially many dummy candidates.

Voters In the following, we partition the voters of our election in four groups,
each playing a specific role in the construction. We briefly mention the voters’
respective roles and formally prove the correctness of our implementation of the
roles later. Whenever we put the symbol “ >> ” in a preference order, we mean
listing A “fresh” dummy candidates (i.e., ones that are not ranked among the
top A positions by any other voter), followed by all the remaining candidates in
some arbitrary order.

Special Candidate Voters This group consists of h+3 voters with preference
orders of the form zo = >> . These voters ensure that every winning
committee includes candidate zo.

Safe Committee Voters For each color ¢ € [h], we form (s+1)-s/2+6d voters
with preference order z; = 2o = 3> . These voters ensure that the safe
committee {20, 21,71, 2,...,z} is indeed winning.

Vertex Selection Voters For each color i € [h], we add s voters, where each
vertex candidate of color i appears exactly once on each of the first
s positions, candidate 2; is ranked on position (s + 1), and all other
top A positions are occupied by the dummy candidates. Formally, we
form these votes as follows. We start with s votes with preference orders:

131

7. Robustness of Multiwinner Voting Rules

V1= V2 = o > Vg1 & Vs - zZ1 > >,
O D 7 S Vs - U1 I >,
Vs > V1 - e - Vs—2 - Vs—1 - Z1 - >>> .

Then, we replace each vertex candidate that is not of color ¢ with a fresh
dummy candidate. The role of this group is to ensure that except for the
safe committee, every other winning committee (if it exists) must contain
exactly one vertex of each color.

Independent Set Voters For every edge {u,v}, we introduce two pairs of
voters with preference orders of the forms:

u>=v>=z0>=>>, and
VU 20 - > .

The role of this group is to ensure that if there is a winning committee
that contains h vertex candidates, then the vertices corresponding to these
candidates form an independent set.

This completes the construction. We note that it is executable in polynomial
time. Before we formally prove the correctness of our construction, we discuss
several important facts about possible winning committees for the constructed
election.

Safe Committee In our construction, the safe committee {29, 21,z1,..., 20}
provides a total dissatisfaction equal to A. To see this, note that the special
candidate voters and the safe committee voters have dissatisfaction zero for the
safe committee. For every color, the respective vertex selection voters together
have a dissatisfaction equal to s2. Thus, the dissatisfaction of all vertex selection
voters of all colors is hs®>. The independent set voters generate a dissatisfaction
equal to 8r (for each edge, the two pairs of voters in total have dissatisfaction 8).
Altogether, the safe committee has dissatisfaction score A = 8r + hs?.

Independent Set Committees FEvery committee {20, 22} UV’, where V' C
V(@) is an h-colored independent set, causes total dissatisfaction exactly A.
Indeed, for such a committee the following holds (we provide additional expla-
nations for the last two voter groups below):

132

7.3. Classical Computational Complexity

1. Special candidate voters have a dissatisfaction equal to zero;

2. each safe committee voter has a dissatisfaction equal to one (due to
candidate 22), so altogether their dissatisfaction is h((s + 1) - s/2 + 6d) =
(s+1) - hs/2 + 6hd;

3. vertex selection voters have total dissatisfaction h(s — 1) - s/2. To see
this, consider a group of vertex selection voters for some color i. As)V’
is h-colored, it contains exactly one vertex of color i, which these voters
rank on all positions between 1 and s (and they rank all other committee
members below these positions). This means that their dissatisfaction
is0O+1+4---+(s—1)=(s—1)-s/2. As there are h colors, after multiplying
this number by h, we get our total dissatisfaction;

4. independent set voters have total dissatisfaction 8 — 6hd. To show this,
we first note that the voters in this group have a dissatisfaction at most 8r
due to candidate z9. However, for each edge {u,v} such that V' contains
exactly one of the vertex candidates u, v, this dissatisfaction is decreased
by six. If our committee contained both u and v, then the dissatisfaction
would be decreased by eight, but this does not happen as we assumed V'’ to
be an independent set. Since our committee contains exactly h vertices and
each vertex touches exactly d unique edges (because V' is an independent
set), we have total dissatisfaction 8r — 6hd.

One can verify (and we will show this formally later) that if we replace V'’
with a set of h vertices of different colors not forming an independent set, then
the dissatisfaction would be higher by at least four points. Briefly, for every two
points that we gain by “covering” some edge with two vertices rather than one,
we loose six points for being able to cover one edge less.

Losing Committees Next, we show that every other committee causes a
total dissatisfaction of at least A + 4. To this end, we distinguish between five
cases for possible committees.

Case 1 (Committees That Do Not Contain zo) Every committee C’ that
does not contain candidate zo causes the total dissatisfaction of at least A+
h. When 2z is not part of the committee, then up to k = h + 2 voters from
the special candidate voters group have dissatisfaction at least one (in the
best case, they are represented by their second-best choice), and the last

133

7. Robustness of Multiwinner Voting Rules

one has dissatisfaction at least A. Thus, zo must belong to all winning
committees.

Case 2 (Committees That Contain zo, z1, and z2) Every committee C’

that contains zo, 21, and 2> causes the total dissatisfaction at least A+4. To
see this, let us first consider the dissatisfaction of the voters when they are
represented by {zo, 21, 22} only. In this case, the special candidate voters
have dissatisfaction zero; the safe committee voters have the dissatisfaction
of h((s +1)-s/2 4 6d); the vertex selection voters have dissatisfaction hs?;
and the independent set voters have dissatisfaction 8r. Thus, the total
dissatisfaction is

h((s+1)-5/2+6d)) + (hs®) + (87) = A+ h((s+ 1) 5/2+ 6d.

Let us now consider the remaining h — 1 candidates. Each of the safe
candidates can decrease the dissatisfaction by exactly (s+1)-s/2+6d. The
decrease comes from the vertex selection voters, who, for a given vertex,
decrease the dissatisfaction by at most 1+ 2+ --- 4+ s. Each of the vertex
candidates can decrease the dissatisfaction by at most (s+1)-s/246d. This
is due to the independent set voters—if an edge is covered by a single vertex
candidate, then the dissatisfaction decreases by six; if it is covered by two
vertex candidates, then it decreases by eight, but we “split” it over two
candidates, so each of them decreases the dissatisfaction by four. We have
that h((s+1)-s/2+6d)— (h—1)((s+1)-s/2+6d) = (s+1)-5/2+6d > 4. That is,
altogether the remaining h — 1 candidates cannot cause the dissatisfaction
to be lower than A + 4.

Case 3 (Committees That Contain zo but Not z2) Consider a commit-

134

tee C' that contains 2o and does not contain z,. If it does not contain all
candidates from {z1,z2,..., 75}, then its dissatisfaction must be (much)
larger than 2A. For example, if it does not contain some candidate z;,
then at least (s+1)-s/2+6d— (h+1) > 2 voters with a preference order of
the form x; = 20 = >> are dissatisfied by at least A. Thus, let us assume
that C’ contains zo and all candidates from {z1,z2,...,z,}. If it does not
contain z;, then—using a similar reasoning as before—the vertex selection
voters cause dissatisfaction (much) greater than 2A. Summarizing, the
safe committee is the only committee that contains zo, does not contain zs,
and has dissatisfaction lower than A + 4 (indeed, as we have seen, it has
dissatisfaction exactly A).

7.3. Classical Computational Complexity

Case 4 (Committees That Contain zo but Not z;) Consider a commit-
tee C’ that contains zo and does not contain z;. If this committee does
not contain at least a single vertex candidate for each color, then its
dissatisfaction is (much) larger than 2A. For example, let us assume that
C’ does not contain a vertex candidate of color i. Then, s — (h+1) > 1 of
the vertex selection voters corresponding to color i are dissatisfied by at
least A. Thus let us assume that C’' contains at least one vertex candidate
for each color. Then, if C’ does not contain zz, then it has dissatisfaction
(much) greater than 2A due to the safe committee voters. In summary, if
a committee contains zp, does not contain z;, and causes dissatisfaction
lower than A + 4, then it must contain z; and a vertex candidate of each
color.

Case 5 (Non-Independent Set Committees) Finally, let C’ be a commit-
tee of the form {z9,22} UV’, where V' contains vertices of each color, but
these vertices do not form an independent set. Such a committee causes
dissatisfaction at least A +4. The special candidate voters have dissatisfac-
tion zero, the safe committee voters have dissatisfaction h((s+1)-s/2+ 6d),
the vertex selection voters have dissatisfaction h(s — 1) - s/2, and the in-
dependent set voters have dissatisfaction at least 8 — 6hd + 4. We have
analyzed the dissatisfaction of the first three groups of voters when con-
sidering the independent set committees; the calculations are the same.
Let us, thus, consider the final group of voters. Let ¢ be the number
of edges between vertices from V'. There are ¢ edges that are covered
twice (i.e., by two vertices from V'), hd — 2q edges that are covered once,
and all remaining edges are uncovered. The total dissatisfaction of the
independent set voters is at least 8 — 6(hd — 2q) — 8¢ = 8r — 6hd + 4q. Since
V' is not an independent set, we have ¢ > 1 and the claim follows.

Correctness of the Reduction The correctness easily follows from the
above discussion. On the one hand, if graph G does not contain an h-colored
independent set, then the safe committee is the only winning committee with
total dissatisfaction A and every other committee has dissatisfaction at least A+4.
Thus, a single swap cannot change the set of winning committees. On the other
hand, if graph G does contain an h-colored independent set, then the safe
committee is not a unique winning committee. It is easy to verify that then
the safe committee does not win anymore if one swaps candidate z2 with some
candidate z; in some vote from the safe committee group. O

135

7. Robustness of Multiwinner Voting Rules

In fact, the proof of Theorem 7.4 implies much more than stated in the
theorem. In particular, our construction shows that the problem remains NP-
hard even if we are given the current winning committee as a part of the
input. Furthermore, the same construction implies that deciding whether a
given candidate belongs to some 3-CC winning committee is both NP-hard
and coNP-hard (the NP-hardness result is sometimes taken for granted in the
literature, but has not been shown formally yet; see, for instance, Footnote 4 in
the work of Bredereck et al. [Bre+16]).

We conclude this section by showing that the ROBUSTNESS RADIUS problem
is NP-hard for STV even if we consider its single-winner variant (i.e.,if we fix
the committee size to be one) and consider exactly one swap.

Theorem 7.5. STV ROBUSTNESS RADIUS is NP-hard even for committee size
k =1 and robustness radius B = 1.

Proof. We give a polynomial-time many-one reduction from STV WINNER
DETERMINATION, where, given an election, one needs to decide whether a
given candidate is an STV winner in the election. This problem is known to
be NP-hard [CRX09, Theorem 4| for committee size ¥ = 1. Formally, in an
instance Z of the STV WINNER DETERMINATION problem, we are given an
election €& = (C,V) with n voters, and a distinguished candidate c € C. We ask if
there is a valid run of STV such that ¢ becomes a winner in £. Without loss of
generality, we can assume that c is ranked first by some voter.

Based on Z, we construct an instance Z’ of the STV ROBUSTNESS RADIUS
problem as follows. We fix the new set of candidates to be ¢’ = C U {d}, where
d is a dummy candidate needed by our construction. For each voter v € V,
we put d in v’s preference ranking right behind ¢ and add two copies of such
a modified vote to Z’; we call such votes non-dummy. Eventually, we obtain
an election £ by adding 2n + 1 dummy voters who rank d first, ¢ second, and
then all remaining candidates in some fixed arbitrary order. Candidate d is the
unique winner in & as it is ranked first by a majority of the voters. If we want
to change the outcome of election & with a single swap, then we need to swap c
and d in the preference order of one of the dummy voters; otherwise d would
still be ranked at the top by a majority of the voters. Let us call an election
resulting from swapping d and c in the preference of an arbitrary dummy voter
as &".

Observe that if ¢ wins in Z, then c also wins in £”. Indeed, STV first
eliminates all candidates except for ¢ and d. In such a truncated profile, there

136

7.4. Parameterized Computational Complexity

are 2n + 1 voters who prefer ¢ to d and 2n voters who prefer d to c; hence c is
the unique winner.

If ¢ is not a winner in Z, then ¢ will be eliminated before some other candidate
from C U {d} in every possible run of STV on £”. Consider some sequence of
eliminations performed by STV on £”. At each step in the sequence, either
c is eliminated (because it happens to be the candidate ranked at the top by
the fewest voters) or there is a candidate x in C \ {c} that is ranked first by at
least two more non-dummy voters when compared to c. Since in £, considering
only the dummy voters, candidate d is ranked first by exactly 2n of them and
candidate c is ranked first by exactly 1 of them, we have that overall x must
be ranked first by at least one more voter than candidate c. Thus, ¢ will be
removed from the election before x and also before d (because candidate x is
at the first place of at most 2n — 1 votes). After c is removed from £”, there
will be at least 2n + 1 voters who rank d first. Thus, d is the unique winner of
the election. Consequently, we have shown that the outcome of election &' can
change with a single swap if and only if the answer to the original instance Z is
b(yeS.” D

7.4 Parameterized Computational Complexity

We complement our investigations on the complexity of the ROBUSTNESS RaA-
DIUS problem by showing several algorithms providing fixed-parameter tractabil-
ity results for a few parameters.

First, we mention that ROBUSTNESS RADIUS is fixed-parameter tractable
when parameterized by the number of candidates. The proof is implicit, for
example, in the works of Dorn and Schlotter [DS12] and Knop, Koutecky, and
Mnich [KKM20b]|, where it is shown that computing the smallest number of
swaps leading to ensure a victory of a preferred candidate in a single-winner
election is fixed-parameter tractable when parameterized by the number of
candidates. The proofs rely on constructing an ILP formulation of the problem
where the number of variables is a function of the number of candidates and
then applying the result of Lenstra [Len83| from Proposition 2.1. However,
to use their technique to solve ROBUSTNESS RADIUS, we can easily, without
adding new variables, exchange their (set of) inequalities that guarantee that
the preferred candidate wins, with a set of inequalities ensuring that a chosen
committee does not win. Thus, to find the smallest number of swaps preventing
some (originally winning) committee from winning, one can construct an integer
linear program for each originally winning committee separately. Analogously,

137

7. Robustness of Multiwinner Voting Rules

one can find a series of swaps that guarantees that some committee that was
originally not winning is winning after the swaps are executed. Since the number
of committees to try is upper-bounded by a function solely of the number of
candidates, this approach yields fixed-parameter tractability of ROBUSTNESS
RADIUS with respect to the number of candidates.

Proposition 7.6. ROBUSTNESS RADIUS for k-Copeland, NED, STV, and 3-CC
is fized-parameter tractable when parameterized by the number of candidates.

The theoretical running time upper bounds achievable using the technique
behind Proposition 7.6 (the upper bounds vary slightly depending on to which
problem we apply the technique) are of purely classification nature. To the
best of our knowledge, so far no experiments has been conducted to investigate
the computational efficiency of the approach from Proposition 7.6 in practice.
For STV and 8-CC we have fixed-parameter tractability not only with respect
to the number of candidates, as mentioned above, but also with respect to
the number n of voters. For the case of STV, we assume that the committee
size k is such that we never need to “delete non-existent voters” and we refer to
committee sizes where such deleting is not necessary as normal.

Definition 7.9. For an election with n voters, a committee size k is normal if

and only if (|25 | +1)k < n.

Example 7.4 below illustrates and discusses some cases of non-normal com-
mittees. It includes an important case where k > n, which yields an assumption
we make in our subsequent proofs.

Example 7.4. Clearly, a committee size k is not normal if k¥ > n (where
n is the number of voters). Since in each stage of STV (in which we select
a candidate to a winning committee) we delete at least ¢ > 1 voters, we
have more voter deletions than voters.
Similarly, taking elections with n = 12 voters and committee size k =5
also leads to a non-normal committee. In this case, we would need to
12

delete ¢ = [575] + 1 = 3 voters for each committee member, which would

require deleting “15 voters out of 12.”

Arguably, the cases with non-normal committee sizes are abnormal and
indicate that STV should not be used. This is so, because the idea behind
STV is that it proportionally represents the voters subsequently transferring

138

7.4. Parameterized Computational Complexity

votes “unused” in one round to the next round. A non-normal committee size,
however, makes STV use some votes more than once which contradicts this idea.
For a more detailed discussion on STV and its multiple variants we refer to a
work of Tideman and Richardson [TR00].

Theorem 7.7. For normal committee sizes, STV ROBUSTNESS RADIUS is
fixed-parameter tractable when parameterized by the number n of voters.

Proof. Let £ = (C,V) be the input election with n candidates and let k be the
size of the desired committee. Since k is normal, we have that k¥ < n. For each
candidate ¢, we define the rank of ¢ as rank(c) := minyey(pos,(c)). Intuitively,
the rank of a candidate is the highest position on which the candidate appears
in the votes of an election.

First, we prove that a candidate with a rank higher than k + 1 cannot be a
member of a winning committee. For the sake of contradiction, let candidate ¢
with rank(c) > k + 1 be a member of some winning committee W. The STV
rule adds a candidate to the committee only when the number of voters who
rank such a candidate first matches or exceeds the quota [%] + 1; then, it
immediately removes this candidate. Recall that by the assumption on the
rank of ¢, it is never ranked better than on position k. Thus, before ¢ was
included in W, STV must have removed some candidate ¢’ from the election
without adding it to W (recall that ¢ had to be ranked first by some voter
to be included in the committee). Whenever STV eliminates a candidate, it
always chooses one with the lowest Plurality score. Since at the moment when
¢ was removed, the Plurality score of ¢ was equal to zero (because no more
than k < rank(c) candidates had been removed by that moment), we have that
the Plurality score of ¢’ also must have been zero. Consequently, removing ¢’
from the election did not affect the top preferences (i.e.,candidates ranked
the first) of the voters. Hence, right after removing ¢/, STV removed another
candidate with zero Plurality score. By repeating this argument sufficiently
many times, we conclude that ¢ must have been eventually eliminated, and, so,
could not have been added to W. This yields a contradiction and proves our
claim.

Second, a direct corollary of the fact that each member of a winning committee
has rank at most k is that we can test in FPT-time (with respect to the number
of voters) whether a given sequence of swaps has led to changing the result of
our election. Indeed, as there are at most kn candidates with rank at most k&,
the number of winning committees is upper-bounded by (kn)*, which by the
assumption that the committee size is normal is at most n?". Thus, we can

139

7. Robustness of Multiwinner Voting Rules

output all winning committees after applying a given sequence of swaps and
compare the outcome with the outcome of the original election.

Third, we observe that the robustness radius for our election is at most nk.
Indeed, we can take a member of a winning committee and with at most kn swaps
we can push it back to have rank k + 1 or higher. Since a rank greater than k
prevents a candidate from belonging to any winning committee, the outcome
of the election is changed. For the sake of simplicity (and without weakening
any statement of the proof), we again use the assumption that the committee is
normal (i.e., k < n) and we upper-bound nk with n*. Due to the discussion in
this paragraph, from now on, we focus on sequences of at most n? swaps.

Fourth, we observe that in order to change the outcome of an election, we
should only swap such pairs of candidates that at least one candidate in the pair
has rank at most n? + k. Indeed, consider a candidate ¢ with rank(c) > n® + k.
After n? swaps, the rank of this candidate would still be above k, so it still
would not belong to any winning committee (indeed, as without the shifts, the
candidate would be eliminated in the initial set of rounds, when the candidates
with no first-place votes are eliminated). Thus, a swap of two candidates with
ranks higher than n? + k cannot affect the set of winning committees (the exact
positions of these two candidates have no influence on the STV outcome).

Collecting the bits, recall that we focus on sequences of at most n* swaps
that involve candidates with ranks at most n? + n. Note that there are at
most n(n® + n) candidates with rank at most n? + n. Thus, there are at most
(2n3 + 2712)"2 possible n2-long sequences, constructed by picking one candidate
for each of the n? swaps and then choosing whether we swap the candidate
with the preceding or with the following candidate. In such a way, we obtain
an upper-bound on the number of all swap sequences that we need to check in
order to find a shortest one that guarantees a result change. For each sequence
of swaps, we test in FPT-time whether the election outcome changes. O

The algorithm for the case of 8-CC is more involved. Briefly put, it relies on
finding in FPT-time (with respect to the number of voters) either the unique
winning committee or two committees tied for victory. In the former case, it
combines brute-force search with dynamic programming, and in the latter case,
either a single swap or a greedy algorithm suffice. For clarity, we start with
presenting the first phase, that is, finding the unique winning committee or two
tied committees, as a separate proposition.

Proposition 7.8. Given an election and a committee size, one can check in
FPT-time with respect to the number of voters whether the election has a unique

140

7.4. Parameterized Computational Complexity

B-CC winning committee (in which case it outputs this committee) or whether
there is more than one 3-CC winning committee (in which case it outputs any
two winning committees).

Proof. Let £ = (C,V) be the input election with n voters and let & be the
committee size. If k£ > n, then every winning committee consists of each voter’s
most preferred candidate and sufficiently many other candidates to form a
committee of size exactly k. Thus, in this case the algorithm can provide the
required output in polynomial time, so we assume that k¥ < n. To avoid trivial
cases, without loss of generality, we also assume that there are more than
k candidates.

Our algorithm proceeds by considering all partitions of V into k disjoint sets
(there are at most k™ < n™ such partitions). For a partition Vi, Vs, ..., Vi, the
algorithm proceeds as follows (intuitively, the voters in each group V; are to be
represented by the Borda winner of the election (C,V;)):

1. For each election &; = (C,V;) we compute, in polynomial time, the set B;
of candidates that are Borda winners of &;.

2. If each B; is a singleton and all B;’s are distinct, then we store a single
committee W = By, Bs, ..., Bx.

Otherwise, we form two distinct committees, W7 and W2, such that for
each B;, WiNB; # 0 and WonB; # (. First, we form a set W, by taking the
union of all singletons among By, Ba, ..., Bi. Clearly, [Ws| < k because oth-
erwise we would not enter this part of the algorithm. Then, we form a new
sequence Bi, Bs,. .., B; of sets by removing from sequence Bi, Bs, ..., By
all those sets that have a nonempty intersection with Wy. If the new
sequence turns out to be empty, then every set V;, where i € [k], has their
Borda winner(s) in Wy. Thus, we form Wi and W» by extending Wy by
adding arbitrary candidates such that W; and W, are distinct; this is
possible because there are more than & candidates in the election. If the
new sequence is not empty, then we form W7 and W, as follows. We first
include all members of Wy in both sets. Then, for each B;, we include the
lexicographically first member of B in W; and the lexicographically last
one in Ws (recall that each of the Bj contains at least two candidates).
This ensures that W; and W» are distinct. If W7 and Wa still contain fewer
than k candidates, then we extend them by including arbitrary candidates
(ensuring that they remain distinct; this is possible because there are more
than k candidates in total). After constructing Wi and Wa, we store both.

141

7. Robustness of Multiwinner Voting Rules

We check whether among the stored committees there is a unique committee W
such that every other stored committee has a lower 3-CC score. If such a
committee exists, then we output it as the unique winning committee. Otherwise,
there are two stored committees, W'and W”, that both have 8-CC score not
smaller than every other stored committee has. We output W’ and W” as two
committees tied for winning. If there is more than one choice for W’ and W",
then we pick an arbitrary pair. O

Before we move on to the proof of the fixed-parameter tractability of 3-CC
ROBUSTNESS RADIUS, we introduce some additional notation. Let & = (C,V) be
some election and let v € V. By top(v) we mean the candidate ranked first by wv.
By top(£) we mean the set {top(v): v € V}, that is, the set of candidates who
are at least once ranked first in election £. Recall that for a committee W, the
representative of some voter v is the member of W that v ranks highest. Finally,
for committee W and voter v, we define reppos, (W) to be the position of v’s
representative in W in v’s vote.

Theorem 7.9. 3-CC ROBUSTNESS RADIUS is fized-parameter tractable when
parameterized by the number of voters.

Proof. Let &= (C,V) be the input election with m candidates and let & be the
committee size. Using Proposition 7.8, we check whether there is a unique
B-CC winning committee in £ and, depending on the result, we proceed with
distinguishing two cases.

There Is a Unique Winning Committee W We first describe a function
that encapsulates the effect of shifting forward a particular candidate within
a given set of votes. For each voter v, each candidate ¢, and each nonnega-
tive integer b, we define the vote shift(v, c,b) obtained from vote v by shifting
candidate ¢ by b positions forward, and we define:

g(’U7 ¢, b) = 5m(posshift(v,c,b) (C)) - B’m (repposshift(v,c,b) (W))

In other words, g(v,c,b) is the difference between the Borda scores of ¢ and the
highest-ranked member of W in vote v with ¢ shifted b positions forward.

Let V' be some subset of voters, and rename the voters so that V' =
{v1,...,v, }. For each candidate ¢ and each nonnegative integer b, we define:

7

gV eb) = max{zgm, ¢,b)

=1

b1,...,bn/ZOandb1+~~~+bnr:b}‘

142

7.4. Parameterized Computational Complexity

Intuitively, g(V’, c,b) specifies how many points more ¢ would receive from the
voters in V' as their representative than these voters would assign to their
representatives from W, if we shifted ¢ by b positions forward in an optimal way.
We assume that ¢(0,¢,b) = 0 for each choice of ¢ and b. We can compute
g(V',¢,b) in polynomial time using dynamic programming and the following
formula (for each 1 <t < n’):*
g({vi,...,ve},¢,0) = max g({vi,...,ve—1},¢,0—be) + g(ve, ¢, be).

0<b;<b

With the function g in hand, we are ready to describe the algorithm. We
consider every partition of V into k disjoint subsets Vi, Vs, ..., V; fix one such
partition. Our goal is to compute the smallest nonnegative integer b such that
there is a sequence of nonnegative integers by, ..., b that adds up to b, and a
sequence ci, ..., c of (not necessarily distinct) candidates so that:

(a) g(Vi,e1,b1) + -+ g(Vi, cx, br) > 0 and
(b) there is a committee W’ such that {ci,...,cx} C W’ and W’ # W.

The role of candidates ci,...,c is to be the representatives of the voters from
the sets Vi, ..., Vi, respectively, in a new committee W', distinct from W, that
either defeats W or ties with it. More formally, condition (a) ensures that there
is a way to perform b = b; + - -- + by swaps so that the score of committee W’
is at least as large as that of W, and condition (b) requires that W’ # W and
deals with the possibility that candidates in ¢1, ..., ¢, are not distinct.

To compute b, we will need the following function f (C’ is a subset of
candidates—we will end up using only polynomially many different ones—i € [k],
and b is a nonnegative integer):

f(claivb) = max{zg(‘/jvcjabj)

j=1

Cla~~~,Ci€Cl,b1,--.,b¢Zo,bl+---+bi:b}.

We have that the smallest value of b such that f(C’, k,b) > 0 is associated with
candidates ci,...,c, and values b, ..., b that satisfy condition (a) above, under
the condition that ci,...c, belong to C’. To obtain the smallest value of b that
is associated with values b1, ...,b; and c1,...,cx that satisfy both conditions (a)
and (b) above, it suffices to compute:

bvy,...vi, =min{b e N|w e WA f(C — {w}, k,b) > 0}.

2Tt is possible to compute g(V’, ¢, b) using a greedy algorithm, but the dynamic programming
formulation is far easier and allows us to sidestep many special cases.

143

7. Robustness of Multiwinner Voting Rules

The fact that we use sets of the form C — {w} in the invocation of function f
ensures that we obtain committees distinct from W. Since we try all w € W, we
consider all possible committee different than W. The smallest value by, ... v,
over all partitions of V is the smallest number of swaps necessary to change the
outcome of the election.

It remains to show that we can compute function f in polynomial time. This
follows by assuming that f(C’,0,b) = 0 (for each C’ and b) and applying the
standard dynamic programming technique based on the following formula (which
holds for each i € [k]):

f(C'ib) = F(C i —1,b—b;) + g(Vi, ci, bi).

max
0<b; <b, c; C’
Altogether, the part of the proof where there is a unique 3-CC winning committee
for £ is complete.

There Are at Least Two Committees That Tie for Victory Let Wy
and Wg be two 8-CC winning committees for £ that we obtained from invoking
the algorithm from Proposition 7.8. We check if there is some voter v whose
representatives under W4 and Wg are distinct.

If this is true, then a single swap is sufficient to prevent one of the committees
from winning. Let a and b be the (distinct) representatives of v under, respec-
tively, W4 and Wg. Without loss of generality, we assume that a is ranked higher
than b; thus a € W because v does not have a as a representative under Wg. It
suffices to swap b with the candidate that precedes b. It is clearly possible since
b was ranked below a. It also increases the -CC score of Wg (since a € Wg),
while the score of W, either stays the same or decreases (the former happens,
for example, if b was ranked just below a and b also belonged to Wa; the latter
occurs, for example, if a was the predecessor of b but b ¢ Wa). In consequence,
Wa is not a winning committee after the swap and, thus, the set of winning
committees changes.

Let us now consider the case where each voter has the same representative
under both W4 and Wg, and let R be the set of the voters’ representatives.
Hence, R C Wa N Wpg. Since W4 and Wp are distinct (and, by definition, of
the same size), there exist candidates a € W4 \ W and b € Wg \ Wa; thus,
we know that |R| < k. We claim that R = top(£), that is, we claim that each
representative is ranked first by some voter. For the sake of contradiction,
assume that there is a voter v not represented by its top-preferred candidate.
In this case, we can obtain committee W by copying W4 and then replacing

144

7.4. Parameterized Computational Complexity

candidate a with candidate top(v). Observe that the representative of voter v is
ranked higher under W¢ than under Wa. Since all other voters have either the
same or even higher-ranked representatives under W than under Wy, we get a
contradiction to the fact that W, is a winning committee. Thus our claim holds.
As a consequence, all 8-CC winning committees for election £ are exactly those
that contain all candidates from R. To change the election outcome, we have
to transform £ to an election £’ that differ in the top-choice candidates they
yield, that is, top(&) # top(€’). We consider two types of actions that achieve
this effect:

1. Shift some candidate ¢ € C\ R to the top position of some voter v, thus
obtaining election &’ such that ¢ € top(£’). By assumption, ¢ ¢ top(€),
thus we obtain the requested effect.

2. For some candidate d € R and each voter v that ranks d on top, shift the
highest-ranked member of R\ {d} to the first position in »’. This creates
election & such that top(€’) is strictly contained in top(&).

Actions of the first type include the cheapest one that creates an election &’
such that top(&’) \ top(€) # 0, whereas actions of the second type include the
cheapest one that creates an election £’ such that top(€) \ top(€’) # 0. Thus, it
suffices to determine the cheapest action among (polynomially-many) actions
of each type and output its cost as the smallest number of swaps necessary to
change the outcome of the election. O

It is natural to ask whether Theorem 7.9 holds for other variants of the
Chamberlin—Courant rule (i.e., for variants based on scoring functions other
than the Borda one). This issue is quite intriguing. While the first part of the
proof—where we deal with the case of a unique winning committee—is general
and works for any scoring function (indeed, it suffices to replace the Borda
scoring function 8 in the definition of function g with any other scoring rule),
the situation of the second part is harder to deal with. Indeed, in the second
part of the proof, when we consider the case where not all voters have the same
representative, we rely on the fact that a single swap of a representative will
increase the score of a committee. This is crucial for our argument, and due to
this assumption it does not matter which two specific winning committees Wa
and Wp we obtained from Proposition 7.8. Without it, we would have to be
more careful in choosing them.

We conclude this section by noting that the ROBUSTNESS RADIUS problem
for k-Copeland® and NED is W([1]-hard for the parameterization by the number

145

7. Robustness of Multiwinner Voting Rules

of voters. This result is a corollary to a W[1]-hardness proof of Kaczmarczyk and
Faliszewski [KF19, Theorem 7| for Copeland® DESTRUCTIVE SHIFT BRIBERY.
One can easily adapt this proof by inserting sufficiently many dummy candidates
between the non-dummy ones, so that the only reasonable swaps are those that
shift the designated candidate backward. Since the proof of Kaczmarczyk and
Faliszewski [KF19] uses an odd number of voters, it applies to NED as well,
and thus we arrive at Corollary 7.10.

Corollary 7.10. ROBUSTNESS RADIUS for k-Copeland and NED is W[1]-hard
when parameterized by the number of voters.

7.5 Beyond the Worst Case: An Experimental Evaluation

In the previous Sections 7.3 and 7.4, we presented a theoretical, worst-case
analysis of the computational complexity of ROBUSTNESS RADIUS for a number
of multiwinner rules. In this section, we go beyond the worst-case analysis and
we present results of experiments in which we measure the empirical average
robustness of our rules—that is, the average number of randomly selected swaps
that are necessary to change election results under a particular rule. Note that
we indeed do not compute the robustness radius—representing the worst case in
the sense that it is the minimum (optimal) number of swaps leading to change of
the outcome of an election—but rather try to experimentally assess the average
robustness of elections under different voting rules.

In the presented experiments we are not concerned with the running times
of our algorithms. Hence, we do not focus on the technical specification of the
computing machines we used.

In this section, we excluded from consideration the NED rule. We found
finding the average robustness for this rule to be computationally too expensive.
However, we expect the results to be similar to the results that we obtained for
k-Copeland®.

We performed a series of experiments using five distributions of rankings.
Three of them were synthetic ones and the remaining two were based on real-
life datasets obtained from the PrefLib [MW13] library of real-life preference
data. Regarding the real-life data, we used the dataset of preferences over
sushi sets [Kam03] and the dataset with preferences over university courses.
We treated the real-life elections as distributions by selecting votes from them
uniformly at random. Regarding the synthetic distributions, we used the ones
listed below (recall Section 6.2 for the definitions and intuitive descriptions as
well as for further literature references):

146

7.5. Beyond the Worst Case: An Experimental Evaluation

(i) Impartial Culture (IC),

(ii) Mallows model with parameter ¢ between 0 and 1 and the central order
drawn uniformly at random, and

(iii) a mixture of two Mallows models with two separate values of parameters
o1, ¢2, and two central orders drawn uniformly and independently at
random. Additionally, we draw uniformly at random a value p € [0,1]
and for each vote that we are to generate, we use the first model with
probability p, and the second model with probability 1 — p.

For each of our five distributions, and for each of the voting rules that we
consider, (for k-Copeland®, we took a = 0.5) we performed 2000 simulations. In
each simulation we had drawn an election containing ten candidates (except for
the elections generated from the sushi dataset, where there were only nine can-
didates) and 30 voters from the given distribution. Then, we repeatedly drew a
pair of adjacent candidates uniformly at random and performed a swap until the
outcome of the election changed (actually, we never did more than 5000 swaps in
order to change the outcome). The average number of swaps required to change
the outcome of an election for different rules and for different distributions is
depicted in Figure 7.4. We present the results for committee size k = 3. We
have also performed simulations for k = 5 that led to similar conclusions. We
note that the standard deviations in our experiments were fairly high (usually
close to the value of the reported averages, but sometimes almost twice as
large as the value of the reported average). This means that in many elections
the required number of random swaps was, in fact, notably smaller than the
provided average, and in some elections this number was significantly above the
average.

After each randomly chosen swap of adjacent candidates, we ran a standard
algorithm (mostly a naive one; for 5-CC we used the ILP formulation by Skowron,
Faliszewski, and Lang [SFL16]) for computing the winners of the altered elections
under the rule under consideration. However, for STV with parallel-universes
tie-breaking, we augmented our approach with observations from Theorem 7.7.
Thus, for a committee size k, whenever a swap beyond position k + 1 was
performed, we withdrew recomputing the winning committees (in the proof
of Theorem 7.7 why in the winning committees cannot change as a result of
such swaps).

As expected, the average number of swaps required to change an election
outcome decreases with the increase of randomness in the voters’ preferences.

147

7. Robustness of Multiwinner Voting Rules

Mallows mixed Mallows Sushi University Courses Impartial Culture

STV

SNTV

p-cC

Bloc
k-Copeland®?
k-Borda

0 200 0 200 0 200 0 200 0 200

Figure 7.4.: Experimental results showinga the average number of swaps needed
to change the outcome of random elections obtained according to the description
in Section 7.5. Expectedly, the standard deviations (which are not depicted in the
graphs) were quite high, being of the same order as the averages themselves (and often
a bit larger).

Indeed, one needs relatively few swaps to change the results of elections generated
using the Impartial Culture distribution, but changing the results of elections
generated according to the Mallows model requires many more (random) swaps.
It is notable that the results regarding the Mallows model are somewhat different
from those for the Sushi dataset, as it is often believed that the Mallows model
captures the preference orders from the Sushi dataset well [Kam03]. Our
results give some circumstantial evidence that there is some nontrivial difference
between the Sushi dataset and the Mallows model (which, after all, is to be
expected—it is unlikely that a simple synthetic model would capture real-life
data perfectly). In particular, based on the fairly small radii of the elections
generated using the Sushi distribution, we conclude that the preferences there
are rather diverse.

Our analysis shows that among the rules on which we focused, k-Borda,
followed by k-Copeland®?®, is the most robust. Further, our experiments show
that the rules that achieve either diversity (8-CC and, to some extent, SNTV)
or proportionality (STV) are usually more vulnerable to small changes in
the input. This is aligned with the theoretical insights provided by Bred-
ereck et al. [Bre+21a] (with a minor exception of SNTV); therein the authors
show that indeed small changes in the input should have more impact on §-CC,
STV than on k-Borda and k-Copeland®). For the case of k-Borda, indeed, we
would expect that many swaps would cancel each other out (in terms of the effect
on the Borda scores of the candidates), which explains the rule’s large average
robustness. The performance of Borda can also be explained by noting that it
is a maximum likelihood estimator for a noise model that is somewhat similar
to ours (see, for instance, the overview provided by Elkind and Slinko [ES16]).

148

7.5. Beyond the Worst Case: An Experimental Evaluation

The results for STV call for some additional discussion. Indeed, the average
robustness of STV turned out to be close to 10 in the Sushi, University Courses,
and Impartial Culture distributions, whereas for the Mallows model it was
over 60, and for the mixture of two Mallows models it was just below 40. The
results for SNTV were qualitatively similar, whereas 8-CC typically achieves
much higher average robustness values (e.g.,in the Sushi dataset its average
robustness was more than four times larger than that of STV; for the other
datasets—except for the University Courses dataset—it was over two times
larger).

From a theoretical perspective, low average robustness of STV is not com-
pletely surprising as this rule cannot be easily interpreted as a maximum
likelihood estimator [CRX09, CS05] and we should expect lower average robust-
ness from rules focusing on diversity and proportional representation. Yet, the
fact that, on average, to change the result of an election with 30 voters and
10 candidates (committee size 3) we may need only about 10 random swaps of
adjacent candidates is worrisome. In many elections—especially in the low-stake
and medium-stake ones—we would expect many voters to make small mistakes,
where they rank two adjacent candidates in an opposite order (e.g., because
these voters would be tired of the ranking process, or because they would view
these two candidates as similar etc.). As a consequence, for small STV elections
there is a danger that the outcome is affected by very minor, hard to predict,
and hard to observe issues.

Since relatively small STV elections are common in practice (e.g., the rule is
used by various universities and their departments for internal elections), this
result is quite meaningful. In particular, the organizers of such elections may
wish to check if small numbers of random swaps can change the results of their
elections and, if so and if this is feasible, they might wish to return to discussions
on the voted issues. Of course, this would require some agreement of the voters
that if the outcome is not “clear” in the sense of the average robustness, then
the discussions are resumed; which, in fact, might be impossible in some setting,
but would be quite acceptable in others.

The above discussion is equally applicable to the case of SNTV, but usually
when SNTV elections are conducted, the voters only submit their top preferences,
so computing the average robustness would be difficult. For the case of 5-CC,
the test could be executed—and might be meaningful and reasonable—but
the danger of non-robust results seems to be smaller than in the case of STV
(vet, note that for the University Courses dataset the results of 3-CC are as
non-robust as those of STV).

149

7. Robustness of Multiwinner Voting Rules

7.6 Conclusions

We formalized the notion of robustness of multiwinner rules and stud-
ied the complexity of assessing the robustness of collective multiwinner de-
cisions. Our experimental analysis supports the theoretical findings of Bred-
ereck et al. [Bre421a] and indicates that k-Borda is the most robust among our
rules, and that proportional rules, such as STV and the Chamberlin—Courant
rule, are on the other end of the spectrum. Indeed, for these rules we sug-
gest that organizers of small-scale elections run tests of the robustness of the
obtained results. Notably, for k-Borda, SNTV, and k-Approval, we provided
polynomial-time algorithms that can be used to efficiently assess the robustness
of an election under these rules.

Our notions of robustness have already attracted attention of other researchers,
who have, for example, studied the complexity of the ROBUSTNESS RADIUS
problem for the Chamberlin—Courant rule in more detail [MS19] (e.g., by con-
sidering structured preference profiles) or who have considered the approval
setting [GF19, MS19]. Other interesting research directions involve considering
counting variants of our problems to assess the probability that a given number
of random swaps can change the results (see the initial results of Gawron and
Faliszewski [GF19]).

A more open-ended research direction is to seek further notions of robustness,
both for the single- and multiwinner voting settings, taking both a practical
as well as a theoretical perspective. For example, while in our experiments
we focused on random alterations affecting the votes, in our theoretical study
of ROBUSTNESS RADIUS we sought an optimal set of swaps leading to a change
in an election outcome. A relevant step to unify these notions would be to
theoretically study for how many elections resulting from performing a certain
number of swaps in an initial election the outcome under some multiwinner
voting rule changes (formally, this question requires studying counting prob-
lems). Another collection of open problems would be investigating robustness
of elections against a different type of actions than swaps; for example, shifts.
Finally, one may want to account for the following facts. First, intuitively
performing an action altering the top of a preference order might have more
impact that one altering the tail of a preference order. Second, actions at the top
might be rarer as people tend to be more sure about their preferred choices. So,
one needs to investigate scenarios which take into account where in a preference
order a particular action occurs. Such cases seem to provide a range of open
problems concerning both theoretical and experimental studies.

150

7.6. Conclusions

The ROBUSTNESS RADIUS problem models a somehow extreme situation
where the goal is to change the result of an election in any way, without a
clear goal. In Chapter 8, we study a scenario where a group of manipulators
coordinate to obtain a specific, desired outcome. Observe that this scenario
could provide another measure of robustness—the more robust an election is, the
higher number of manipulators is needed to change the outcome. Even though
we do not directly study this measure in Chapter 8, we provide algorithmic
tools (and settle computational lower bounds) which could be of use for further
studies on different notions of robustness.

151

CHAPTER 8

Coalitional Manipulation for Multiwinner
Elections

In this chapter, we provide the first in-depth study of the computational
complexity of coalitional strategic voting in multiwinner elections. We focus on
shortlisting of candidates—that is, selecting a group of “best” candidates—as a
special case of multiwinner elections. Specifically, we analyze the perhaps most
basic voting rule in this scenario, t-Approval (every voter approves ¢ candidates).
In particular, we investigate the influence of several different group evalua-
tion functions (e.g., egalitarian versus utilitarian) and tie-breaking mechanisms
modeling pessimistic and optimistic manipulators. Among other things, we con-
clude that whereas in the utilitarian variant strategic voting is computationally
tractable, in the egalitarian setting strategic voting may be computationally
intractable regardless of the tie-breaking rule. Altogether, we provide a fairly
comprehensive picture of the computational complexity landscape of this sce-
nario. We also conduct preliminary experiments providing strong evidence that
the computational intractability of the egalitarian variant can be overcome in
practice by fixed-parameter tractable algorithms that we present.

8.1 Introduction

Assume that a university wants to select the two favorite pieces in classical
style to be played during the next graduation ceremony. The students were
asked to submit their favorite pieces. Then a jury consisting of seven members
(three juniors and four seniors) from the university staff selects from the six most
frequently submitted pieces as follows: Each jury member approves two pieces
and the two winners are those obtaining most of the approvals. The six options
provided by the students are “Beethoven: Piano Concerto No. 5” (b1), “Beethoven:
Symphony No. 6” (b2), “Mozart: Clarinet Concerto” (ma1), “Mozart: Jeunehomme
Piano Concerto” (m2), “Uematsu: Final Fantasy” (o1), and “Badelt: Pirates of
the Caribbean” (o02). The three junior jury members are excited about recent
audio-visual presentation arts (both interactive and passive) and approve o
and o2. Two of the senior jury members are Mozart enthusiasts, and the

153

8. Coalitional Manipulation for Multiwinner Elections

other two senior jury members are Beethoven enthusiasts. Hence, when voting
truthfully, two of them would approve the two Mozart pieces and the other two
would approve the two Beethoven pieces. The winners of the selection process
would be 01 and o2, both receiving three approvals whereas every other piece
receives only two approvals.

The senior jury members meet every Friday evening and discuss important
academic issues including the graduation ceremony music selection processes,
why “movie background noise” recently counts as classical music [Glo20], and the
influence of video games on the ability of making important decisions. During
such a meeting they agreed that a graduation ceremony should always be
accompanied by pieces of traditional, first-class composers. Thus, finally all
four senior jury members decide to approve b1 and m1, so these two pieces are
played during the graduation ceremony.

This toy example illustrates important aspects of strategic voting in multi-
winner elections. In case of coalitional manipulation for single-winner elections
(where a coalition of voters casts untruthful votes in order to influence the
outcome of an election; a topic which has been intensively studied in the litera-
ture [BR15, CW16]) one can always assume that a coalition of manipulators
agrees on trying to make a distinguished alternative win the election. In case of
multiwinner elections, however, already determining concrete possible goals of a
coalition seems to be a demanding task: There may be exponentially many (in
the input size) different outcomes which can be reached through strategic votes
of the coalition members and each member could have its individual evaluation
of these outcomes.

Multiwinner voting rules come up very naturally when one has to select
from a large set of candidates a smaller set of “the best” candidates. For this
selection, various criteria, such as proportional representation, diversity, or
excellence [Elk+17], can be interesting. We focus on the last scenario. Here, the
goal is to select the best (say highest-scoring) group of candidates. Aiming at
excellence comes very naturally in the context of shortlisting, where the objective
is to find a short list of candidates selected from an initial, much larger list of
candidates. For instance, a human resource department wanting to fill a vacancy
would select, from all job candidates, a short list of prospective applicants
who should be further assessed to find the best fitting applicant [Ide20]. This
example neatly illustrates the universal purpose of shortlisting, that is, saving
effort at the same time increasing the quality of evaluating suitable candidates.
Indeed, human resource departments will either waste a lot of time and effort
interviewing every applicant in detail or they will significantly decrease the

154

8.1. Introduction

quality of interviewing to speed up the process unless they apply shortlisting
beforehand.

A standard way of candidate selection in the context of shortlisting is to
use scoring-based voting rules. We focus on the two most natural ones: SNTV
(single non-transferable vote—each voter gives one point to one candidate)
and t-Approval (each voter gives one point to each of ¢ different candidates, so
SNTV is the same as 1-Approval).! Obviously, for such voting rules it is trivial
to determine the score of each individual candidate.

The main goal of our work is to model and understand coalitional manip-
ulation in a computational sense—that is, to introduce a formal description
of how a group of manipulators can influence the election outcome by casting
strategic votes and whether it is possible to find an effective strategy for the
manipulators to change the outcome in some desirable way. We find studying
coalitional manipulability from the computational complexity point of view rel-
evant for two main reasons. First, in a natural way we complement well-known
work on manipulation for single-winner rules initiated by Bartholdi III, Tovey,
and Trick [BTT89], coalitional manipulation for single-winner rules initiated
by Conitzer, Sandholm, and Lang [CSLO7], and (non-coalitional) manipulation
for multiwinner rules initiated by Meir et al. [Mei+08]. Second, we provide
efficient algorithms that allow for experimental study of coalitional manipula-
tion that might be interesting both for verifying how likely is or what is an
impact of coalitional manipulation in practice (analogously to studies for the
single-winner case [BNW11, CT07, Dav+14, Erd+15, Lu+12, Wall1]) and for
interdisciplinary study on human behavior when manipulating (like the one
recently conducted for multiwinner elections by Scheuerman et al. [Sch+-19]).

In coalitional manipulation scenarios, given full knowledge about other voters’
preferences, one has a set of manipulative voters who want to influence the
election outcome in a favorable way by casting their votes strategically. To
come up with a useful framework for coalitional manipulation for multiwinner
elections, we first have to identify the exact mathematical model and questions
to be asked. A couple of straightforward extensions of coalitional manipulation
for single-winner elections or (non-coalitional) manipulation for multiwinner
elections do not fit. Directly extending the single-winner variant, one would
probably assume that the coalition agrees on making a distinguished candidate
part of the winners or that the coalition agrees on making a distinguished

L Although some experts argue that t-Approval is not a proper rule for shortlisting applica-
tions [BCO08, Elk+17], this rule seems quite frequent in practice—for example, “The Board
of Research Excellence” in Poland was elected using a variant of ¢-Approval [Min19].

155

8. Coalitional Manipulation for Multiwinner Elections

candidate group part of the winners. The former is unrealistic because in
multiwinner settings one typically cares about more than just one candidate—
especially in shortlisting it is natural that one wants rather some group of
“similarly good” candidates to be winning instead of only one representative of
such a group. The latter—that is, agreeing on a distinguished candidate group
to be part of the winners—is also problematic since there may be exponentially
many “equally good” candidate groups for the coalition. Notably, this was
not a problem in the single-winner case; there, one can test for a successful
manipulation towards each possible candidate avoiding an exponential increase
of the running time (compared to the running time of such a test for a single
candidate).

We address the aforementioned issue of modeling coalitional manipulation for
multiwinner elections by extending a single-manipulator model for multiwinner
rules of Meir et al. [Mei+08]. In their work, the manipulator specifies the utility
of each candidate and the utility for a candidate group is obtained by adding
up the utilities of each group member. We build up on their idea and let each
manipulator report the utility of each candidate. However, aggregating utilities
for a coalition of manipulators (in other words, computing a single utility of
coalition by aggregating the utilities of manipulators) becomes conceptually
demanding—this is especially true for a coalition of manipulators who have
diverse utility values for single candidates but still have strong incentives to
work together (e.g.,as we illustrated in our introductory example).

We only consider coalitions that are fixed, that is, irrespectively of how
different the opinions of manipulators are, none of them leaves the coalition. At
first glance, this assumption might look too restrictive and unrealistic. However,
we believe there are good reasons for making this assumption. First, changing
coalitions in the real world usually requires a significant overhead (e.g., formal
agreements and negotiations that cost both money and time) which makes such
a change rather a last resort. This holds true especially if a coalition is aiming
at long-term benefits as, for example, strategic cooperation among firms or
governments. Second, there are real-world cases where coalitions are forced, for
example, in hierarchical administrative divisions (and their local governments)
in countries. Third, computing a best possible manipulation for a given coalition
is an important step in deciding whether it is useful to attempt to form such
a coalition. To wrap up, instead of focusing on coalition dynamics, we rather
concentrate on an analysis of a strength of, intuitively speaking, potential, fixed,
or forced coalitions.

156

8.1. Introduction

Our Contributions We devise a formal description of coalitional manipu-
lation in multiwinner elections arriving at a new, nontrivial model capturing
two types of manipulators’ attitudes and a few natural ways of utility aggregation.
To this end, in our model, we distinguish between optimistic and pessimistic
manipulators and we formalize aggregation of utilities in a utilitarian and an
egalitarian way.

Using our model, we analyze the computational complexity of finding a suc-
cessful manipulation for a coalition of voters, assuming elections under rules
from the family of t-Approval voting rules. We show that, even for these fairly
simple rules, the picture of the computational complexity of coalitional ma-
nipulation is diverse. In particular, we observe that finding a manipulation
that maximizes the utility of a worst-off manipulator (egalitarian aggregation)
is NP-hard (regardless of the manipulators’ attitude). This result stands in sharp
contrast to the polynomial-time algorithms that we give for finding a manipu-
lation maximizing the sum of manipulators’ utilities (utilitarian aggregation).
Additionally, we show how to circumvent the NP-hardness for the egalitarian
aggregation providing an (FPT) algorithm that is efficient for scenarios with few
manipulators and few different utility values that manipulators assign to agents.
We survey our computational complexity results in Table 8.1 (Section 8.6).

Related Work To the best of our knowledge, there is no previous work
on the computational complexity of coalitional manipulation in the context
of multiwinner elections. We refer to recent textbooks for an overview on
the huge literature on single-winner (coalitional) manipulation [BR15, CW16].
Most relevant to our work, Lin [Linll] showed that coalitional manipulation in
single-winner elections under t-Approval is solvable in linear time by a greedy
algorithm. Meir et al. [Mei+08] introduced (non-coalitional) manipulation for
multiwinner elections. While pinpointing manipulation for several voting rules
as NP-hard, they showed that manipulation remains polynomial-time solvable
for k-Approval—a rule that can be interpreted as a multiwinner equivalent of
1-Approval. Obraztsova, Zick, and Elkind [OZE13] further extended the latter
result for different tie-breaking strategies and identified additional tractable
special cases of multiwinner scoring rules. Yet, they conjectured manipulation
to be hard in general for (other) scoring rules. Summarizing, t-Approval is
simple but comparably well-studied and as such it is very suitable for serving as
a showcase for our study of the presumably computationally harder coalitional
manipulation.

157

8. Coalitional Manipulation for Multiwinner Elections

Organization Section 8.2 introduces basic notation and formal concepts. It
also describes our model for coalitional manipulation in multiwinner elections,
its variants with respect to different ways of evaluating candidate groups (util-
itarian vs. egalitarian), and two kinds of manipulators behavior (optimistic
vs. pessimistic). In Section 8.3, we present algorithms and complexity results
for computing the output of several tie-breaking rules that allow to model
optimistic and pessimistic manipulators. In Section 8.4, we formally define
the coalitional manipulation problem and explore its computational complexity
using t-Approval as a showcase. Later, in Section 8.5 we present the prelimi-
nary results demonstrating practical applicability of the algorithms we develop.
We refer to our conclusion in Section 8.6 and Table 8.1 therein for a detailed
overview of our findings.

8.2 Preliminaries

In this chapter, following Debord [Deb92], we use the name k-excellence-group,
abbreviated to k-egroup, for committees of size k selected by multiwinner voting
rules.? Thus we emphasize our focus on shortlisting and bring our terminology
closer to shortlisting (real-life) applications where the word “committee” tradi-
tionally rather refers to voters and not to candidates (especially frequently in
the term “selection committee”). For the sake of brevity, we use egroup if the
size of an excellence-group is either not relevant or clear from the context.

In the following sections, we formally define and explain our model and the
respective variants, which we also motivate with short real-world examples.
To this end, we discuss how we evaluate an egroup in terms of utility for a
coalition of manipulators and introduce tie-breaking rules that model optimistic
or pessimistic viewpoints of the manipulators.

8.2.1 Evaluating Excellence-Groups

As already discussed in the introduction, one should not extend the model
of coalitional manipulation for single-winner elections to multiwinner elec-
tions in the simplest way (e.g., by assuming that the manipulators agree on
some distinguished candidate or on some distinguished egroup) as it would
badly harm the expressiveness of coalitional manipulation. Instead, we follow
Meir et al. [Mei+08] and assume that we are given a utility function evaluating
the candidates for each manipulator and a minimum utility of an egroup, that,
if achieved, indicates a successful manipulation.

2We modified Debord’s term “elite” as we feel that it might carry negative connotations.

158

8.2. Preliminaries

Considering a collection of such utility functions there are several ways,
each coming with distinct features, of computing the utility of an egroup. In
this chapter, we study the following three variants: utilitarian, egalitarian,
and candidate-wise egalitarian.

In the utilitarian variant (considered by Meir et al. [Mei+08]) the utility of
an egroup is the sum of utility values assigned by each manipulator to every
candidate in the egroup. This is perhaps the most intuitive way of evaluating
the utility of an egroup. Although it does not provide any guarantee on a
single manipulator’s utility after a manipulation (it might even happen that
some manipulator is significantly worse off compared to voting sincerely as
illustrated in Example 8.1), the utilitarian variant is justified if the manipulators
are able to “internally” compensate such losses, for example, by paying money
to each other. For a real-world example, imagine an international company
with branches (voters) scattered around the world considering actions to be
taken (candidates) in order to reduce its carbon footprint. Seeking the most
efficient solution, the company surveys the branches for pointing the actions that
reduce the footprint most (utilities). Imagine there is a country that subsidizes
companies that reduce the emissions the most. It is natural for all branches in
this country to coordinate and vote strategically to force implementation of the
most effective footprint-reducing actions. Moreover, it is understandable that
the office branches, whose footprint is rather small and thus so is the possible
reduction, will rather support the actions that help the factory branches to
reduce the footprint. To compensate, the company might decide to distribute
more money from the received benefit to the office branches.

Example 8.1. Consider the election €& = (C,V) where C = {b1, b2, m1, ma,
01,02} is a set of candidates and V = {v1,v2,v3} is the following multiset of
three votes:

V1, V2 01 = 02 = m1 = ma > by = ba,
V3 mg = m1 = ba = by = 01 = 0o.
Additionally, consider two manipulators, u; and us, that report utilities to
the candidates as depicted in the table below.

u(-) ‘ by b2 m1 ma2 o1 02
U1 10 5 4 0 0 0
U2 1 2 5 7 0 0

Let us analyze the winning 2-egroup under the SNTV voting rule. Observe

159

8. Coalitional Manipulation for Multiwinner Elections

that if the manipulators vote sincerely, then together they give one point
to b1 and one to ms (one point from each manipulator). Combining
the manipulators’ votes with the non-manipulative ones, the winning 2-
egroup consists of candidates o1 and ms that both have score two; all
other candidates have lower score, so tie-breaking is unnecessary. The
utility of egroup {m1, 01} is equal to seven (with respect to the utilitarian
evaluation). Manipulator us’s utility is seven. However, both manipulators
can do better by giving their points to candidate b;. Then, the winners
are candidates o, and by, giving the total utility of 11 (according to the
utilitarian variant). Observe that in spite of the growth of the total utility,
the utility value gained by wu», which is one, is lower than in the case of
sincere voting.

The egalitarian variant comes in handy, for the scenarios where it is essential
to guarantee a certain level of utility for every manipulator. Specifically, the
utility of an egroup is the utility of a manipulator whose sum of utilities of
candidates from the egroup is the smallest; thus, the egalitarian variant aims
at maximizing this number. For a real-world example, imagine a parliament
(voters) deciding about possible steps to reduce particulate matter pollution
(candidates). Seeking a way to reduce particulate matter below a certain
threshold, a coalition of representatives from districts currently not meeting the
threshold decides to vote strategically. Naturally, particulate matter reduction
(utilities) are differently affected by different steps in the respective districts.
The goal of the coalition is that even the worst district is below the threshold,
which corresponds to egalitarian aggregation.

The candidate-wise egalitarian variant models again scenarios where, as in
the utilitarian variant, the overall utilities from members of an egroup are
summed up. The utility of the respective candidates, however, is aggregated in
a pessimistic way, that is, assuming the lowest utility assigned by any member
of the coalition is taken into the sum. For a real-world example, imagine a
parliament (voters) deciding on different actions (candidates) to support the
economy after a crisis. Representatives of the same party naturally work together
as a coalition of strategic voters. Each representative has a different prediction
from their own group of experts on the effectiveness of the actions (utilities),
which at the end will sum up. To be on the safe side, the coalition decides to
take into account for their decision the most pessimistic evaluation any expert
group makes for a respective candidate, which corresponds to our candidate-wise
egalitarian aggregation variant.

160

8.2. Preliminaries

We formalize the described variants of k-egroup evaluation (for » manipulators)
in Definition 8.1.

Definition 8.1. Let C be a set of candidates, S C C be an egroup, U =
{u1,uz,...,ur} be a family of manipulator utility functions where u;: ¢ — N,
i € [r]. Then the utility of S is:

o utily(S) =, i D ces ulc) in the utilitarian variant,
e egaly (S) == minyev) g u(c) in the egalitarian variant, and

e candegal;; (S) =Y _.minyev u(c) in the candidate-wise egalitarian variant.

ceS

Intuitively, these functions determine the utility of a k-egroup S according
to, respectively, the utilitarian and the egalitarian variants of evaluating S by a
group of r manipulators (identifying manipulators with their utility functions).
We omit subscript U when U is clear from the context. To illustrate Definition 8.1
we apply it in Example 8.2.

Example 8.2. Consider a set C = {b1, b2, m1,m2} of candidates and two
manipulators u1, u2 whose utility functions over the candidates are depicted
in the table below.

'LL() ‘ b1 b2 mi mo
Uy 10 5 4 0

Then, evaluating the utility of 2-egroup S = {b1, m1} by applying the three
different evaluation variants gives:

o util(S) = (10 +4) + (1 + 5) = 20,
o cgal(S) = min{(10 + 4); (1 + 5)} = 6, and
e candegal(S) = min{10, 1} + min{4,5} = 5.

Observe that whereas {b1,m1} is the optimal k-egroup for the utilitar-
ian variant, it is not the case for the egalitarian variant according to
which {b1,m2} obtains the maximum utility 8. For a change, the optimal
choice of k-egroup for the candidate-wise egalitarian variant is {b2,m1}
yielding utility 6.

161

8. Coalitional Manipulation for Multiwinner Elections

Analyzing Example 8.2, we observe that we can compute the utilitarian
value of egroup S by summing up the overall utilities that each candidate in S
contributes to all manipulators; for instance candidate b, always contributes the
utility of 11 =10 + 1 to the manipulators, independently of other candidates in
the egroup. Following this observation, instead of coping with a collection of
utility function, we can “contract” all manipulator functions to a single function.
The new function assigns each candidate a utility value equal to the sum of
utilities that the contracted functions assign to this candidate. Analogously, we
can deal with the candidate-wise egalitarian variant by taking the minimum
utility associated to each candidate as the utility of this candidate in a new
function. Thus, in both variants, we can consider a single utility function
instead of a family of functions. This is more formally presented in the following
observation.

Observation 8.1. Let C be a set of candidates, U = {u1,us,...,u,} be a family
of utility functions such that u;: C — N, i € [r], and eval € {util, candegal} be an
evaluation function. Then, there always exists a (single) utility function v': C —
N such that for every egroup S C C it holds that evaly(S) =3 su'(c).

Proof. We fix some (non-empty) set C of candidates. Consider a multiset of
manipulator utility functions U = {u1,us,...,u,} and an egroup S C C. For
the utilitarian variant, create a new utility function ' that assigns to each
candidate the sum of utilities given to this candidate by all manipulators; that
is, u'(c) = 3, e ur(c) for all ¢ € C. For each candidate function v’ returns the
sum of utilities given to a candidate by all functions from family U, so

utily (S) = Z Zm(c) = Z Z ui(c) = Zu;(c)
i€[r] ceS ceS ielr] ceS

We follow a similar strategy proving Observation 8.1 for the candidate-wise
egalitarian evaluation. We introduce a function " defined as v'(c) := minuecv u(c)
for each candidate c € C. Naturally,

candegal; (S) = Z ggg u(c) = Z o' (c).

ceS ceS

8.2.2 Breaking Ties

According to Definition 6.2, a multiwinner voting rule (for a committee size k)
returns a set of tied k-egroups; hence, to select a single k-egroup from the set of
co-winning k-egroups one has to consider tie-breaking rules.

162

8.2. Preliminaries

Definition 8.2. A multiwinner tie-breaking rule is a mapping that, given an
election and a family of co-winning k-egroups, outputs a single k-egroup.

Among different tie-breaking rules, there is a collection of natural rules that
is of particular interest in order to model the behavior of manipulative voters.
Indeed, in addition to simple lexicographic and randomized tie-breaking rules,
both pessimistic and optimistic tie-breaking rules have already been used to
model the manipulator’s behavior in case of a single manipulator [Mei+08,
OZE13]. To model optimistic and pessimistic manipulators in a meaningful
manner we follow this path and make use of the model introduced by Obraztsova,
Zick, and Elkind [OZE13]. Here, a manipulative voter v is described not only by
its preference order > over the candidates but also by a utility function u: C — N,
which allows to express preferences over candidates more precisely than an order.
Indeed, we cannot simply use ordinal preferences as it is insufficient to use the
fixed lexicographic order of the manipulators’ preferences (resp. the reverse of it)
over candidates to model optimistic (resp. pessimistic) tie-breaking already in
case of a single manipulator [OZE13]. For example, it is a strong restriction to
assume that a manipulator would always prefer its first choice together with its
fourth choice towards its second choice together with its third choice. It might
be that only its first choice is really acceptable (in which case the assumption is
reasonable) or that the first three choices are comparatively good but the fourth
choice is absolutely unacceptable (in which case the assumption is wrong). To
cover this in the tie-breaking process, coalition-specific tie-breaking rules get—in
addition to the original election, the manipulators’ votes, and the co-winning
excellence-groups—the manipulators’ utility functions in the input. We discuss
the formal implementations of these rules and their properties in the remainder
of this section.

We start by briefly discussing some necessary notation and central concepts
that will allow us to tailor Definition 8.2 to t-Approval, our special case of
interest.

Definition 8.3. Let £ = (C,V) be an election, k be the size of the egroup
to be chosen, and M be a scoring-based multiwinner voting rule. Then, the
set CT = Nsemer S of confirmed candidates contains the candidates that are
in all co-winning k-egroups; the set P := USGM@M S\ CT of pending candidates
contains the candidates that are in some co-winning committee but not in all
of them; and the set C~ := C\ (CT UP) of rejected candidates consists of all
candidates that are in no co-winning committee.

163

8. Coalitional Manipulation for Multiwinner Elections

Naturally, |CT| < k, [CTUP| > k, and (for some fixed scoring-based multiwinner
voting rule) every candidate from P U C~ receives fewer points than every
candidate from C*. Additionally, all pending candidates receive the same
number of points.

We define the following families of tie-breaking rules which are considered in
this chapter. In order to define optimistic and pessimistic rules, we assume that
in addition to C*, P, and k, we are given a family of utility functions. The given
data is sufficient to evaluate the k-egroups as discussed in Section 8.2.1 even
though it does not contain full information about an election. To emphasize
that election data is unnecessary, in Definition 8.4 we introduce the name
“tie-breaking perspective” to denote the input of tie-breaking rules.

Definition 8.4. For a set C, a tie-breaking perspective (C*t,P,k,U) over C D
CT U P is a quadruple consisting of disjoint sets C* of confirmed candidates
and P of pending candidates, a committee size k such that |CT| <k < [Ct|+]|P],
and a family U of utility functions over candidates in C.

Tie-breaking perspectives form the input of all multiwinner tie-breaking rules
we study in this chapter (formally, lexicographic tie-breaking does not require
any family of utility function but we keep it in the input of this tie-breaking rule
for consistency). For the sake of defining further concepts using tie-breaking
perspectives, we usually do not need to exactly know all elements of set C besides
the candidates in C* and P. Thus, in the following Definition 8.5, and generally
whenever it does not lead to an error or ambiguity, we omit the part “over C.”
Note, however, that if we wanted to compute the outcome of a tie-breaking rule
for a given tie-breaking perspective, we have to know the whole set C since the
tie-breaking rule might depend on the utility functions of candidates other than
those in C* and P.

Definition 8.5. Let (CT,P,k,U) be a tie-breaking perspective, F be a multi-
winner tie-breaking rule, and eval € {util, egal, candegal}. Then:

e Tie-breaking rule F belongs to the family Fex of lexicographic tie-breaking
rules if and only if ties are broken lexicographically with respect to some
predefined order >, of the candidates from C* N P. That is, F outputs
a committee consisting of all candidates from C* and the top k — |CT]
candidates from P with respect to >jex.

e Tie-breaking rule F belongs to the family F55' of optimistic tie-breaking
rules if and only if it always outputs some k-egroup S such that C*t C

164

8.2. Preliminaries

S C (C* U P) and there is no other k-egroup S’ with ¢t C 8’ C (C* U P)
and eval(S’) > eval(.9).

e Tie-breaking rule F belongs to the family fSZ;’SI of pessimistic tie-breaking
rules if and only if it always outputs some k-egroup S such that C* C
S C (€t U P) and there is no other k-egroup S’ with ¢t € 8’ C (C* U P)
and eval(S’) < eval(.9).

We remark that the definitions above come in two, substantially different
variants. For each lexicographic tie-breaking rule, there is always exactly one
egroup that will be returned by the rule for a particular set of pending candidates.
However, this is not the case for the families of pessimistic and optimistic rules.
In fact, there might be many possible egroups whose value, computed in terms
of a respective evaluation variant, is exactly the same. Such a feature seems to
contradict the idea of a tie-breaking rule that should not, by itself, introduce
ties again. However, we claim that choosing an arbitrary equally-valued (“tied”)
egroup is a proper way to circumvent this problem. Indeed, according to a
particular evaluation all egroups with the same value are indistinguishable from
each other.

8.2.3 Limits of Lexicographic Tie-Breaking

From Definition 8.5, we can immediately derive that lexicographic tie-breaking
is straightforward in the case of scoring-based multiwinner voting rules. For these
rules, extending the set of the confirmed candidates by any of all possible subsets
of the desired cardinality from the set of pending candidates yields a committee
that is tied for winning in a given election. Thus, to apply lexicographic tie-
breaking, it is enough to select the best pending candidates with respect to the
given order. We remark that applying lexicographic tie-breaking may be more
complicated for general multiwinner voting rules. The reason is that there might
be mutual dependencies between candidates in the set of pending candidates.
These can lead to a case when a committee composed of the confirmed candidates
and some subset of the pending candidates is not winning under a given rule.

It remains to be clarified whether one can find a reasonable order of the pending
candidates in order to model optimistic or pessimistic tie-breaking rules in a
simple way. We show that this is possible for every Fg2., eval € {util, candegal},
bhav € {opt, pess}, using the fact that in these cases we can safely assume that
there is a single utility function (see Observation 8.1). On the contrary, there is a
counterexample for eval = egal and bhav € {opt, pess}. On the way to prove these
claims we need to formally define what it means that one family of tie-breaking

165

8. Coalitional Manipulation for Multiwinner Elections

rules can be used to simulate another family of tie-breaking rules. To this end,
we first define the equivalence between tie-breaking perspectives.

Definition 8.6. Let {[C|[P],[K],[U]} be a set of attribute tags (treated exactly
as usual characters), C be a fixed set of candidates, X = (C*,P,k,U) and X =
(é+,’ﬁ, k,U) be tie-breaking perspectives over C, where C* ¢ C and P C C. Then,
X and X are:

e [T-equivalent if and only if ¢t =&

o [Pl-equivalent if and only if P = P,
o [Kl-equivalent if and only if k = k, and
o [U-equivalent if and only if U = (U).

Additionally, for a subset A of symbols {[C|,[P],[K],[U]}, we say that X and X’
are A-equivalent if and only if, for each symbol S € A, they are S-equivalent.

One can easily verify that the equivalence notions from Definition 8.6, demon-
strated in example Example 8.3, indeed meet the requirements of equivalence
relations; thus, we can speak of equivalence classes of tie-breaking perspectives
(with respect to a given equivalence notion).

Example 8.3. Consider a set C = {a,b,c,d,e, f} of candidates, some
fixed family U of utility functions evaluating the candidates, and two
tie-breaking perspectives X = {{a,b},{c,d},3,U}, Y = {{a},{b,¢c,d},3,U}.
Perspectives X and Y are [Klequivalent and [U}equivalent or, alternatively,
{,}—equivalent, but they are not equivalent with respect to other
notions. Every tie breaking perspective Z = {{a, b}, P, k, U’ }—for arbitrary
set P C C\ {a,b}, arbitrary size k of egroup, and arbitrary family U’ of
utility functions evaluating candidates in C—is [Cl-equivalent to X.

Intuitively, the equivalence notions from Definition 8.6 categorize different
tie-breaking perspectives according to their vital elements, like confirmed or
pending candidates. This allows us to formally describe when (i.e.,for each
families of tie-breaking perspectives) different rules coincide in the outcomes
they provide as shown in Example 8.4.

166

8.2. Preliminaries

Example 8.4. Let C = {a,b,c,d, e, f} be a set of candidates. The follow-
ing table defines a single utility function u, obtained from a family of
utility functions for a set (the detailed description of manipulators is not
important) as described in Observation 8.1.

u(-)‘a b ¢ d e f
\14 3 15 4 11 20

Let us consider two following sets of votes Vi, and Vs.

Votes in Vi: Votes in Vs:

a-e-cr-d=b>f a-e-cr-d=b>f
a>c>b>d>e>f a>c>b>d>e>f
a-b>=d>=b=c>f f>=b>=d>=e€e=c>a
b>=cr=a>=f>=b»d f=d=e>=a»>bc

Assuming election & = (C, V1) and & = (C, V2), let us analyze the out-
come of these two election applying Fiex and Faii' when seeking k-egroups
for different values of k but always using k-Approval (i.e., t--Approval where
the value of ¢ always coincides with the size of the desired egroup). We
define the order > according to which rule Fix breaks ties decreasingly
with respect to the values of candidates according to wu.

For election &, we seek an egroup of size two. Hence, candidate a is the
confirmed candidate and candidates b and c are the pending candidates.
Thus, we have a tie-breaking perspective X1 = ({a}, {b, c}, 2, {u}) for elec-
tion €1. Applying Fauii! to X1, we obtain the winning k-egroup {a, c} since
it clearly is superior to {a,b} with respect to the utilitarian value. Since
¢ > b according to >, rule Fiex also selects committee {a,c}.

Regarding election &, we look for an egroup of size three. Thus, we ob-
tain a tie-breaking perspective X» = (0, {a, b, c,d, e, f},3, {u}) (note, that X»
is [Ulequivalent to X1). Now, tie-breaking rule Fiii' clearly selects {a,c, f}.
In fact, since candidates ¢, a, and f are in front of all other candidates
in >, Fiex also selects {a,c, f}.

The coincidence of the outcomes of Fiex and Fiii' in Example 8.4 is not
accidental. In fact, because we chose = that “matched” the utility function u
and was independent of other features of tie-breaking perspectives (like pending

167

8. Coalitional Manipulation for Multiwinner Elections

candidates, confirmed candidates, and the egroup size), the outcomes of both tie-
breaking rules would be exactly the same for every other tie-breaking perspective
that is [UFequivalent to perspectives X; and X». Thus, we could actually use
them interchangeably for every tie-breaking perspective that consists of utility
function u. In order to formally state this claim in Proposition 8.3, in the
following definition we introduce the concept of simulating one family of rules
by another family of rules.

Definition 8.7. For a nonempty set .A C {[C},[P],[K],[U]} of attribute tags, and
for two tie-breaking families F and F’, we say that F can A-simulate F' if, for
every nonempty set of candidates C and for every tie-breaking perspective X
over C, there exists a rule F € F such that for each tie-breaking perspective in
the equivalence class of X according to A-equivalence there exists a rule F’ € F’
such that F and F’ yield the same output for this perspective. We call rule F
an A-simulator.

At first glance, Definition 8.7 might seem overcomplicated. However, it is
tailored to grasp different facets of simulation. On the one hand, one can
always find a lexicographic order and use it for breaking ties if all of the
following are known: confirmed candidates, pending candidates, utility functions,
and the size of an egroup; formally, the family of lexicographic tie-breaking
rules {[C],[P], K], [U]}-simulates every other family. Thus, one needs some flexibility
in the definition of simulation to keep the definition expressive enough. On the
other hand, it is somewhat clear that without fixing the utility functions, one
cannot simulate optimistic or pessimistic tie-breaking rules.

Observation 8.2. The family of lexicographic tie-breaking rules does not

{a 7 } -simulate ‘Fgﬁzlv .

Proof. Suppose k=1, Ct =, and P = {b1,b2}; that is, we are going to select
either b1 or b, who are tied. Let us fix a family U := {u} of utility functions such
that u(b1) == 1 and u(b2) == 0. For the family U of utility functions clearly Foy!
selects candidate b;. Now, consider a family U’ = {«'} of utility functions where
u assigns utility one to candidate b, and zero otherwise. For this family, Foy!
selects candidate by. This means that we cannot find a {[C,[P],[K]}-simulator F
from family Fiex of tie-breaking rules because in the first case F would have
to choose b; and in the second case b, would have to be chosen. This is
impossible using a single preference order over {b;,b2}. Similar families of
functions (obtained by redefining u by exchanging each returned value one with
value zero and vice versa) yield a proof for F52l as well. O

168

8.2. Preliminaries

Next, we show that for some cases it is sufficient to fix just the utility functions
in order to simulate optimistic or pessimistic tie-breaking rules (see Proposi-
tion 8.3). For other cases, however, one has to fix all of the following: confirmed
candidates, pending candidates, utility functions, and the size of an egroup (see
Proposition 8.4).

Proposition 8.3. For every eval € {util, candegal} and bhav € {opt, pess}, the
family Fiex can {[U]}-simulate F35, ; additionally, for m candidates and r utility
functions, a {[Ul}-simulator F € Fiex can be found in O(m - (r +logm)) time.

Proof. Recall from Observation 8.1 that if eval € {util,candegal}, then there
exists a single utility function «’ that is equivalent to the given family of utility
functions (with respect to the evaluation of egroup utilities). Hence, we compute
such a function v’ in O(m-r) time precisely following its definition as in the proof
of Observation 8.1. We say an order >.x of the candidates is consistent with
some utility function u if ¢ >1ex ¢’ implies u(c) > u(c’) for optimistic tie-breaking
and ¢ >1ex ¢ implies u(c) < u(c’) for pessimistic tie-breaking. Any lexicographic
tie-breaking rule defined by an order > that is consistent with the utility
function ' simulates F52. We compute a consistent order by sorting the
candidates according to v’ in O(m - logm) time. O

Proposition 8.3 describes an important feature of optimistic utilitarian and can-
didate-wise egalitarian tie-breaking and their pessimistic variants. Intuitively,
the proposition says that for these tie-breaking mechanisms one can compute
a respective linear order of candidates. Then one can forget all the details
of the initial tie-breaking mechanism and use the order to determine winners.
Importantly, the order can be computed a priori, without even knowing a
multiwinner voting rules to be used and the votes in an election. Unfortunately,
the simulation of pessimistic and optimistic egalitarian tie-breaking turns out
to be more complicated. As we show in Proposition 8.4, simulating these tie-
breaking rules by lexicographic tie-breaking always requires full information on
a tie-breaking perspective the tie-breaking needs to be applied to.

Proposition 8.4. For each nonempty set A C {[C|[P][K],[T]} of size at most
three, the lezicographic tie-breaking family of rules does not A-simulate Fy2*
assuming bhav € {opt, pess}.

Proof. From Observation 8.2 we already know that the family of lexicographic tie-
breaking rules cannot {[C],[P],[K]}-simulate the family of egalitarian pessimistic
tie-breaking rules or the family of egalitarian optimistic tie-breaking rules.

169

8. Coalitional Manipulation for Multiwinner Elections

Next, we build one counterexample for each of the remaining size-three subsets
of {[C],[P],[K],[U]} to show our claim. To this end, let us fix a set of candidates C =
{b1,b2, m1,m2, 01,02} and a family U = {u1,u2} of utility functions as depicted
in the table below.

u() [b by mi ma o1 o
w |10 5 4 0 0 0
ws [12 5 7T 0 0

First, we prove that the family Fiex cannot {[C],[P}[0]}-simulate Fg2 for
bhav € {opt, pess}. Let us fix Ct =0, P =C\ {01,02}. We consider the optimistic
variant of egalitarian tie-breaking for k£ = 1, so we are searching for a 1-egroup.
Looking at the values of U, we see that candidate m, gives the best possible
egalitarian evaluation value which is four. This means that a {[C|[P][U]}-
simulator F' € Fx has to use an order where m; precedes both b and ms.
However, it turns out that if we set k = 2, then the best 2-egroup consists
exactly of candidates b; and mo. This leads to a contradiction because now
candidates b1 and ms should precede m, in F’s lexicographic order. Consequently,
family Fiex does not {[C],[P],[U]}-simulate fgfjl. Using the same values of utility
functions and the same sequence of the values of k we get a proof for the
pessimistic variant of egalitarian evaluation.

Second, we prove that the family Fiex cannot {[P],[K],[U]}-simulate 52, for
bhav € {opt,pess}. This time, we fix P = C\ {o01,02}, k = 2. We construct
the first case by setting Ct = {01}. Using the fact that in both functions
candidate o; has utility zero, we choose exactly the same candidate as in the
proof of {[C],[P],[U]}-simulation for the case k = 1; that is, for the optimistic
variant, the winning 2-egroup is mi and o;. Consequently, m; precedes by
and m in the potential {[P],[K],[0]}-simulator’s lexicographic order. Towards a
contradiction, we set C* = (). The situation is exactly the same as in the proof
of the {[C],[P][U]}-simulation case. Now, the winning 2-egroup consists of by
and m2 which completes the proof for the optimistic case. By almost the same
argument, the result holds for the pessimistic variant.

Finally, we prove that the family Fiex cannot {[C] K], [U]}-simulate Foel
for bhav € {opt,pess}. We fix Ct = 0, k = 2. For the first case we pick P =
{b2, m1,m2}. The best egalitarian evaluation happens for the 2-egroup consisting
of by and ms. This imposes that, in the potential {[Cl,[K],[U]}-simulator’s order,
b2 and m; precede the remaining candidates (in particular, m; precedes ms).
However, for P = C the best 2-egroup changes to that consisting of b1 and mo

170

8.3. Complexity of Tie-Breaking

which gives a contradiction (m2 precedes mi). As in the previous cases, the
same argument provides a proof for the pessimistic variant. O

Proposition 8.4 implies that pessimistic and optimistic egalitarian tie-breaking
cannot be, in general, simulated by lexicographic tie-breaking with an order
precomputed in advance to an election. In terms of computational complex-
ity, however, finding winners for pessimistic egalitarian tie-breaking remains
tractable whereas the same task for optimistic egalitarian tie-breaking is in-
tractable. We devote the next section to show this dichotomy as well as to
establish computational hardness of computing winners for the other introduced
tie-breaking rules.

8.3 Complexity of Tie-Breaking

It is natural to ask whether the tie-breaking rules proposed in Section 8.2.2 are
practical in terms of their computational complexity. If not, then there is little
hope for effective and efficient coalitional manipulation because tie-breaking
might be an inevitable subtask to be solved by the manipulators. Indeed,
manipulators might not be “powerful” enough to secure victory of their desired
egroup completely avoiding tie-breaking.

Clearly, we can perform in linear time every lexicographic tie-breaking rule
that is defined through some predefined order of the candidates. Hence, we
focus on the rules that model optimistic or pessimistic manipulators. To this
end, we analyze the following computational problem.

Fval “TIE-BREAKING (Foyal-TB)

eval € {util, egal, candegal}, bhav € {opt, pess}

Input: A set C of candidates partitioned into a set P of pending
candidates and a set C* of confirmed candidates, the size k of the
excellence-group such that |C*| < k < |C|, a family of manipulator utility
functions U = {u1,us,...,u,} where u;: C — N, and an evaluation
threshold ¢ € N.

Question: Is there a size-k set S C C such that S is selected according
to Fyel, ¢t C 8, and eval(S) > ¢?

Naturally, we may assume that the number of candidates and the number
of utility functions are polynomially upper-bounded in the size of the input.
However, both the evaluation threshold and the utility function values are
encoded in binary.

171

8. Coalitional Manipulation for Multiwinner Elections

Note that an analogous problem has not been considered for single-winner
elections. The reason behind this is that, for single-winner elections, optimistic
and pessimistic tie-breaking rules can be easily simulated by lexicographic tie-
breaking rules. To obtain the appropriate lexicographic tie-breaking rules, it is
sufficient to order the candidates with respect to their value to manipulators.
However, one cannot simply apply this approach for egroups, because there might
be exponentially many different egroups to consider. Even if this exponential
blow-up were acceptable, it would still be unclear how to derive an order of
candidates from the computed values of egroups. Yet, using a different technique,
we can simulate tie-breaking in multiwinner elections with a lexicographic tie-
breaking rule for several variants of evaluation.

8.3.1 Utilitarian and Candidate-Wise Egalitarian Tie-Breaking

As a warm-up, we observe that tie-breaking can be applied and performed
efficiently if the k-egroups are evaluated according to the utilitarian or candidate-
wise egalitarian variant. The corresponding result follows almost directly from
Proposition 8.3.

Corollary 8.5. Let m denote the number of candidates and r denote the number
of manipulators. Then, one can solve Fy2l -TI1E-BREAKING in O(m - (r 4 logm))
time for eval € {util, candegal} and bhav € {opt, pess}.

Proof. The algorithm works in two steps. First, it computes a lexicographic tie-
breaking rule Fie. that simulates Foy2, (recall Example 8.4) in O(m - (r + logm))
time as described in Proposition 8.3. Second, it applies tie-breaking rule Fex,
and evaluates the resulting k-egroup in O(k - r) time. The running time of
applying Fiex is linear with respect to the input length (see Section 8.2.3). O

8.3.2 Egalitarian Tie-Breaking

In this section, we consider the optimistic and pessimistic tie-breaking rules
when applied to seeking a k-egroup evaluated according to the egalitarian variant.
First, we show that applying and evaluating egalitarian tie-breaking is compu-
tationally easy for pessimistic manipulators but computationally intractable for
optimistic manipulators even if the size of the egroup is small. Being pessimistic,
the main idea is to “guess” the manipulator that is least satisfied and select the
candidates appropriately. We show the computational worst-case hardness of
the optimistic case via a reduction from SET COVER.

172

8.3. Complexity of Tie-Breaking

Theorem 8.6. Let m denote the number of candidates, r denote the number
of manipulators, q denote the evaluation threshold, and k denote the size of
an egroup. Then, one can solve F2-TIE-BREAKING in O(r - mlogm) time,
but]-'fg?l—TIE—BREAKING is NP-hard and W[2]-hard when parameterized by k
even if ¢ =1 and every manipulator only gives either utility one or zero to each
candidate.

Proof. For the pessimistic case, it is sufficient to “guess” the least satisfied
manipulator z by iterating through r possibilities. Then, select k — [CT| pending
candidates with the smallest total utility for this manipulator in O(mlogm) time.
Finally, comparing the k-egroup with the worst minimum satisfaction over all
manipulators to the given lower bound ¢ on the satisfaction level solves the
problem.

We prove the hardness for the optimistic case giving a polynomial-time many-
one reduction from the SET COVER problem which, given a collection § =
{81, 852,...,Sm} of subsets of a universe X = {z1,72,...,z,} and an integer h,
asks whether there exists a family S’ C S of size at most h such that J csr S =X.
SET COVER is NP-hard and W[2]-hard with respect to parameter h [DF99]. Let us
fix an instance I = (X, S, h) of SET COVER. To construct an }"fjg?]-TIE—BREAK-
ING instance, we introduce pending candidates P = {c1,c2,...,cm} representing
subsets in § and manipulators u1,us, ..., u, representing elements of the universe.
Note that there are no confirmed and rejected candidates. Each manipulator u,
gives utility one to candidate c; if set S; contains element z; and zero otherwise.
We set the excellence-group size k := h and the threshold ¢ := 1.

Observe that if there is a size-k subset S C P such that min;c, ZSES ui(s) > 1,
then there exists a family §'—consisting of the sets represented by candidates
in S—such that each element of the universe belongs to the set (J5 g S. On
the contrary, if we cannot pick a group of candidates of size k for which every
manipulator’s utility is at least one, then instance I is a “no” instance. This
follows from the fact that for each size-k subset S C P there exists at least
one manipulator «* for whom) _cu"(s) = 0. This translates to the claim that
there exists no size-h subset S’ C S such that all elements in X belong to the
union of the sets in §'.

The reduction is executable in polynomial time, so we obtain the NP-hardness;
since we had k = h, .Ff,g?l—TIE—BREAKING is W[2]-hard when parameterized by
the size k of an excellence-group. O

From the W[2]-hardness proof of Theorem 8.6, we learn that a small egroup

size (alone) does not make F55¢'-TIE-BREAKING computationally tractable even

173

8. Coalitional Manipulation for Multiwinner Elections

for very simple utility functions. Next, using a parameterized reduction from the
W([1]-complete MULTICOLORED CLIQUE problem [Fel+09], we show that there
is still no hope for fixed-parameter tractability (under standard assumptions)
even for the combined parameter “number of manipulators and egroup size”;
intuitively, this parameter covers situations where few manipulators are going
to influence an election for a small egroup.

Theorem 8.7. Let k denote the size of an egroup and r denote the number of

manipulators. Then, parameterized by r + k, Fgﬁ?l—TIE—BREAKING is W[1]-hard.

Proof. We describe a parameterized reduction from the MULTICOLORED CLIQUE
problem, which is W[1]-complete with respect to the number of colors [Fel+09].
In this problem, given an undirected graph G = (V, E), a non-negative integer h,
and a vertex coloring ¢: V — {1,2,...,h}, we ask whether graph G admits a
colorful h-clique, that is, a size-h vertex subset @ C V such that the vertices
in @ are pairwise adjacent and have pairwise distinct colors. Without loss of
generality, we assume that the number of vertices of each color is the same; this
number is referred to as y in the following. Let (G, ¢), where G = (V, E), be a
MULTICOLORED CLIQUE instance. Let V(i) = {v},v5,...,v,} denote the set of
vertices of color i € [h], and let E(i,j) = {e\”,e5”,... e[, }, Where i,j € [h],
i < j, denote the set of edges that connect a vertex of color i to a vertex of
color j. We disregard possible edges between vertices of the same color as they
cannot be part of any clique.

Candidates We create one confirmed candidate ¢* and |V| + |E| pending
candidates. More precisely: for each ¢ € [y], we create one vertex candidate a}
for each vertex vf € v(i), i € [h] and, for each 4,j € [h] such that i < j, we create
one edge candidate b7 for each edge el € E(i,5), t € [E(i,7)]. We set the size k
of the egroup to h+ () +1 and set the evaluation threshold ¢ := y + 1. Next, we
describe the manipulators and explain the high-level idea of the construction.

Manipulators and the Main Idea Our construction will ensure that there
is a k-egroup X with ¢* € X and egal(X) > ¢ if and only if X contains h vertex
candidates and (Z) edge candidates that encode a colorful h-clique. To this end,
we introduce the following manipulators.

1. For each color i € [h], there is a color manipulator u; ensuring that the
k-egroup contains a vertex candidate aii corresponding to a vertex of

174

8.3. Complexity of Tie-Breaking

color i. Herein, variable z; denotes the id of the vertex candidate (resp.
vertex) that is selected for color i.

2. For each i,j € [h] such that i < j, there is one color pair manipulator p; ;
ensuring that the k-egroup contains an edge candidate b?? corresponding
to an edge connecting vertices of colors ¢ and j. Herein, variable z; ; denotes
the id of the edge candidate (resp. edge) that is selected for color pair {3, 5},
i<j.

3. For each 4,5 € [h] such that i # j, there are two verification manipula-
tors v, ;, vi; ensuring that vertex of, is incident to edge et/ if i < j or
incident to edge el otherwise.

It is easy to verify that if there exists a k-egroup in agreement with the
descriptions in the previous three points, then it consists of h selected vertex
candidates of different colors and (g) selected edge candidates that altogether
represent a colorful h-clique.

Utility Functions Let us now describe how we can guarantee the intended
roles of the manipulators introduced in Items 1 to 3 above using utility functions.

1. Color manipulator u;, i € [h], has utility y for the confirmed candidate c*,
utility one for each candidate corresponding to a vertex of color 4, and util-
ity zero for the remaining candidates.

2. Color pair manipulator p; ;, 4,5 € [h], i < j, has utility y for the confirmed
candidate c*, utility one for each candidate corresponding to an edge
connecting vertices of colors i and j, and utility zero for the remaining
candidates.

3. Verification manipulator v; ;, i, € [h], i # j, has utility ¢ for candidate a},
¢ € [y, utility ¢ — ¢ for each candidate corresponding to an edge that
connects vertex v} to a vertex of color j, and utility zero for the remaining
candidates.

4. Verification manipulator v} ;, i,j € [h], i # j, has utility ¢ — ¢ for candi-
date a}, £ € [y], utility ¢ for each candidate corresponding to an edge that
connects vertex vi, to a vertex of color j, and utility zero for the remaining
candidates.

175

8. Coalitional Manipulation for Multiwinner Elections

Correctness We argue that graph G admits a colorful clique of size h if
and only if there is a k-egroup X with ¢* € X and egal(X) > gq.

Suppose that there exists a colorful clique H of size h. Create the k-egroup X
as follows. Start with {c¢*} and add every vertex candidate that corresponds
to some vertex of H and every edge candidate that corresponds to some edge
connecting vertices of H. Each color manipulator and color pair manipulator
receives total utility y + 1, because H contains, by definition, one vertex of each
color and one edge connecting two vertices for each color pair. It is easy to
verify that the verification manipulator v; ; must receive utility ¢ from a vertex
candidate and utility ¢ — ¢ from an edge candidate and that the verification
manipulator v; ; must receive utility ¢ — ¢ from a vertex candidate and utility ¢
from an edge candidate. Thus, egal(X) =g =y + 1.

Suppose that there exists a k-egroup X C C such that egal(X) > ¢. Since no
color manipulator can achieve utility y + 1 unless ¢* belongs to the winning
k-egroup, it follows that ¢* € X. Because each color manipulator yu; receives total
utility at least y + 1, X must contain some vertex candidate a’, corresponding
to a vertex of color i for some z; € [y]; we say that X selects vertex vi,. Since
each color pair manipulator u, ; receives total utility at least y + 1, X must
contain some edge candidate b;jJ corresponding to an edge connecting a vertex
of color i and a vertex of color j for some z; ;; we say that X selects edge e/ .
We implicitly assumed that each color manipulator and color pair manipulator
contributes exactly one selected candidate to X. This assumption is true because
there are exactly k — 1 such manipulators and each needs to select at least one
candidate; hence, X is exactly of the desired size. In order to show that the
corresponding vertices and edges encode a colorful h-clique, it remains to show
that no selected edge is incident to a vertex that is not selected. Assume towards
a contradiction that X selects an edge e%7 and some vertex v, ¢ e%’ . However,
either verification manipulator v; ; or verification manipulator v; ; receives the
total utility at most ¢ — 1; a contradiction. O]

Finally, devising a simple ILP formulation, one can show that]—'jlftal—TB
becomes fixed-parameter tractable when parameterized by the combined param-
eter “number of manipulators and number of different utility values” [BKN21].
Fixed-parameter tractability for this parameterization covers scenarios with few
manipulators that have simple utility functions; in particular, when few voters
have 0/1 utility functions. The following Theorem 8.8 shows that, while neither
parameterization by the number of manipulators (Theorem 8.6) nor by the

number of different utility values (Theorem 8.7) makes F55¢'-TB fixed-parameter

176

8.4. Complexity of Coalitional Manipulation

tractable, this can be achieved by combining these two parameters.

Theorem 8.8 ([BKN21|). Let uaie denote the number of different utility values
and r denote the number of manipulators. Then, parameterized by r + uais,

]—'gg?l-TIE-BREAKING is fized-parameter tractable.

8.4 Complexity of Coalitional Manipulation

In the previous section, we have seen that breaking ties optimistically or
pessimistically—an essential subtask to be solved by the manipulators in gen-
eral—can become computationally challenging; in most cases, however, this
problem turned out to be computationally easy. In this section, we move on to
our full framework and analyze the computational difficulty of voting strate-
gically for a coalition of manipulators. To this end, we formalize our central
computational problem. Let M be a multiwinner voting rule and let F be a
multiwinner tie-breaking rule.

M-F-eval-COALITIONAL MANIPULATION (M-F-eval-CM)

eval € {util, egal, candegal }

Input: An election (C,V), an egroup size k < |C|, » manipulators
represented by their utility functions U = {u1,us, ..., u,} such that, for
all i € [r], u;: C — N, and an evaluation threshold ¢ € N.

Question: Is there a size-r multiset W of manipulative votes over C
such that a k-egroup S C C that wins the election (C,V U W) under M
and F results in eval(S) > ¢?

The M-F-eval-CM problem is defined very generally; namely, one can consider
any multiwinner voting rule M (in particular, any single-winner voting rule
is a multiwinner voting rule with k = 1). In this chapter, however, we focus
on t-Approval; hence, from now on, we narrow down our analysis of M-F-eval-
CM to the t-Approval-F-eval-CM problem.

In line with our intention to model optimistic and pessimistic attitudes
of manipulators, we require that the evaluation of an optimistic/pessimistic
tie-breaking rule F is the same as that of the manipulator’s. Indeed, only
when this is the case the tie-breaking rule reflects that the manipulator’s ex-
pect a certain (pessimistic or optimistic) outcome of an election in case of a
tie. More formally, for every eval € {util, egal, candegal}, we focus on variants
of t-Approval—F —eval-CM where F € {Fiex, Fone!, Fevid}. The excluded prob-
lem variants, such as breaking ties according to the utilitarian variant, but

177

8. Coalitional Manipulation for Multiwinner Elections

evaluating egroups by the manipulators in the egalitarian way, might indeed
be occasionally relevant; for example, when ties are broken by a third party.
However, it would be arguable to assume that the third party breaks ties in
an election according to private utility functions of the manipulators. Hence,
modeling such an external tie-breaking completely independent of the manipu-
lators would require another utility function (in addition to the manipulators’
utility functions) over the candidates used for tie-breaking; thus, we skip such
scenarios as they are incompatible with our model. However, we always allow
lexicographic tie-breaking which models scenarios where a tie-breaking rule is
fixed, known to all voters and irrelevant of the manipulators’ utility functions.

On the way to show our results, we use a restricted version of ¢-Approval-F-
eval-COALITIONAL MANIPULATION that we call t-Approval-F-eval-COALITIONAL
MANIPULATION with consistent manipulators. In this variant, the input stays
the same, but all manipulators must cast exactly the same vote to achieve the
objective.

To increase readability, we decided to represent manipulators by their utility
functions. As a consequence, we frequently use, for example, u; referring to the
manipulator itself, even if we do not care about the values of utility function wu,
at the moment of usage. In this section, we also stick to the term “voters”
meaning the set V of voters of an input election. We never call manipulators
“voters”; however, we speak about the manipulative votes they cast.

As for the encoding of the input of M-F-eval-CM, we use a standard assump-
tion; namely, that the number of candidates, the number of voters, and the
number of manipulators are polynomially upper-bounded in the size of the input.
Analogously to F* -TIE-BREAKING, both the evaluation threshold and the
utility function values are encoded in binary.

In the subsequent sections, we first focus on the (computationally simpler)
utilitarian and candidate-wise egalitarian evaluation variants (Section 8.4.1) and
then consider the egalitarian evaluation (Section 8.4.2).

8.4.1 Utilitarian & Candidate-Wise Egalitarian: Manipulation Is
Tractable

We show that t-Approval-F-eval-COALITIONAL MANIPULATION can be solved
in polynomial time for any constant ¢ € N, any eval € {util, candegal}, and any F €
{Frex, Foyil, Fevall. Whereas in general, for an instance Z with input size (Z), our
algorithm requires O((Z)*) steps, for k-Approval (i.e.,t = k), we give a better,
quadratic-time algorithm (with respect to (Z)).

In several proofs in Section 8.4.1 we use value of a candidate for manipulators

178

8.4. Complexity of Coalitional Manipulation

(coalition) and say that a candidate is more valuable or less valuable than another
candidate. Although we cannot directly measure the value of a candidate for
the whole manipulators’ coalition in general, thanks to Observation 8.1 we can
assume a single utility function when discussing the utilitarian and candidate-
wise egalitarian variants. Thus, assigning a single value to each candidate is
justified.

We start with an algorithm solving the general case of t-Approval-F-eval-CM,
eval € {util,candegal}, F € {Fiex, Fori!, Fovid}. The basic idea is to “guess” the
lowest final score z of a member of the winning k-egroup and the least pre-
ferred (according to some a fixed, given lexicographic order over the candidates)
candidate of the k-egroup that obtains final score z; there are at most polyno-
mially many (with respect to the input size) pairs to be guessed. Then, the
algorithm, in polynomial time (with respect to the input size), finds an optimal
manipulation leading to a k-egroup represented by the guessed pair. At first
glance it might seem that one can greedily find an optimal manipulation for a
guessed pair. However, as we will show in the proof of Theorem 8.9, this task
requires solving a small enough instance (i.e., with the total weight of items
polynomially upper-bounded in the input size of the manipulation problem
instance) a variant of the weakly NP-hard KNAPSACK problem [KPP04].

Theorem 8.9. Let m denote the number of candidates, n the number of voters,
k the size of a desired egroup, and r the number of manipulators. One can solve
t-Approval-F-eval-COALITIONAL MANIPULATION in O(k*m?r(n + 1)) time for
any eval € {util, candegal} and F € {Fiex, Fone!, Fovid}.

Proof. We prove the theorem for the lexicographic tie-breaking rule Fiex. This is
sufficient since, using Proposition 8.3, one can generalize the result to utilitarian
and candidate-wise egalitarian variants. The basic idea of our algorithm is to
fix certain parameters of a solution and then to reduce the resulting subproblem
to a variant of the KNAPSACK problem with polynomial-sized weights. The
algorithm iterates through all possible value combinations of the following two
parameters:

1. The lowest final score z < |V U W| of any member of the k-egroup and

2. the candidate ¢ with final score z such that c is the least preferred member
of the k-egroup with respect to tie-breaking rule Fx.

For each combination of the parameters, the algorithm computes an optimal
solution if it exists. In this case, an optimal solution is a manipulation leading

179

8. Coalitional Manipulation for Multiwinner Elections

to an egroup that maximizes the utility for the manipulation among all egroups
described by the parameters z and ¢. The algorithm outputs “yes” if, among
the solutions computed for all combinations of the parameters, there exists a
manipulation resulting in an egroup that has at least the utility requested by
the instance’s input. Otherwise, the algorithm outputs “no.”

To show how to compute an optimal manipulation for some combination of
the parameters, let us fix some z and ¢&. We denote by C* the set of candidates
who get at least 2z + 1 approvals from the non-manipulative votes or who are
preferred to ¢ according to Fix and get exactly z approvals from the non-
manipulative votes. Assuming that the combination of parameter values is
correct, all candidates from C™ U{¢} must belong to the k-egroup. Let k= |CT|.
For sanity, we check whether k% < k, that is, whether candidate ¢ can belong to
the k-egroup if the candidate obtains final score z. We discard the corresponding
combination of solution parameter values if the check fails. Next, we ensure that
¢ obtains the final score exactly z. If ¢ receives less than z — r or more than z
approvals from non-manipulative votes, then we discard this combination of
solution parameter values. Otherwise, let 3 := z — scorey(¢) denote the number
of additional approvals candidate ¢ needs in order to get final score 2. Let
k* == k — kT — 1 be the number of remaining (not yet fixed) members of the
k-egroup. Let s* :== r -t — 3 be the number of approvals to be distributed to
candidates in C \ {¢}.

Now, the manipulators have to influence k* further candidates to join the
k-egroup (so far only consisting of C* U {¢}) and distribute exactly s* approvals
in total to candidates in C \ {¢} but at most r approvals per candidate (as each
manipulator contributes at most one approval per candidate). To this end, let
C* denote the set of candidates which can possibly join the k-egroup. For each
candidate ¢ € C\ (C*t U {¢&}) it holds that ¢ € C* if and only if

1. 2 —r <scorey(c) < z — 1 if ¢ is preferred to ¢ with respect to Fiex, or
2. z—r+1 <scorey(c) < z if ¢ is preferred to ¢ with respect to Frex.

A straightforward idea is to select the k* elements from C* which have the
highest values (that is, utility) for the coalition. However, there are two issues:
First, s* might be too small; that is, there are too few approvals to ensure that
each of the k* best-valued candidates gets the final score at least 2 (resp. at
least z+1). Second, s* might be too large; that is, there are too many approvals
to be distributed so that there is no way to do this without causing unwanted
candidates to get final score at least z (resp. at least z + 1).

180

8.4. Complexity of Coalitional Manipulation

Fortunately, we can easily detect these cases and deal with them efficiently. In
the former scenario we reduce the remaining problem to an instance of EXACT
k-1TEM KNAPSACK—the problem in which, for a given set of items, their values
and weights, and a knapsack capacity, we search for k items that maximize the
overall value and do not exceed the knapsack capacity. In the latter case, we
show that we can discard the corresponding combination of solution parameters.

First, if s* <r-k*, then one can certainly distribute all s* approvals (e.g., to
the k* candidates that will finally join the k-egroup). Of course, it could still be
the case that there are too few approvals available to push the desired candidates
into the k-egroup in a greedy manner. To solve this problem, we build an EXACT
k*-ITEM KNAPSACK instance where each candidate ¢* € C* is mapped to an
item. We set the weight of ¢* to z — scorey(c*) if ¢* is preferred to ¢ with respect
to Flex and otherwise to (z + 1) — scorey(c*). We set the value of each ¢* € C*
to be equal to the utility that candidate ¢* contributes to the manipulators.
Now, an optimal solution (given the combinations of parameter values is correct)
must select exactly k* elements from C* such that the total weight is at most s*.
This corresponds to EXACT k-ITEM KNAPSACK if we set our knapsack capacity
to s*. Furthermore, finding any such set with maximum total value leads to
an optimal solution. Even if the final total weight s’ of the chosen elements is
smaller than s*, we can transfer the EXACT k-ITEM KNAPSACK solution to the
correct solution of our problem. The total weight corresponds to the number of
approvals used. Thus, with the EXACT k-1TEM KNAPSACK solution we spend
s’ approvals. Then, we use the surplus s* — s’ approvals to approve the chosen
candidates even more; this is always possible because we assumed that s* < r-k*.
Clearly, approving the chosen candidates even more cannot prevent them from
being selected to the winning egroup under t-Approval.

Second, if s* > r - k*, then one can certainly ensure that each of the k* most
valued candidates from C* achieves the final score at least z (resp. at least
z+1). In many cases, it will not be a problem to distribute the remaining
approvals; for example, one can safely spend up to r approvals for each candidate
from C\ C*, that is, to candidates that have no chance to get enough points
to join the k-egroup or to candidates which are already fixed to be in the
k-egroup. Furthermore, each candidate from C* that is not among the k* most
valued candidates can be safely approved z — scorey(c*) — 1 times (resp. z —
scorey (c*) times) without reaching final score z (resp. z + 1); we denote by s*
the total number of approvals distributed in this way. So, if s* < s +r-k* (note
that we also assume s* > r - k*), then we can greedily push the £* most valued
candidates from C* into the k-egroup (spending r - k* approvals) and then safely

181

8. Coalitional Manipulation for Multiwinner Elections

distribute the remaining approvals within C\ {&} as discussed. If s* > st +r-k*,
then there is no possibility of distributing approvals in a way that ¢ is part
of the k-egroup. Towards a contradiction let us assume that ¢ is part of the
k-egroup obtained after distributing s* +r - k* + 1 approvals. This means that
we spend all possible s™ approvals so that ¢ is not beaten and r - k* approvals
to push k* candidates to the winning k-egroup. Giving one more approval to
some candidate ¢’ from C* that is not yet in the k-egroup, by definition of C*
and s, means that the score of ¢’ is enough to push & out of the final k-egroup;
a contradiction. Consequently, for the case of s* > st +r - k*, we discard the
corresponding combination of solution parameters.

As for the running time, the first step is sorting the candidates according to
their values in O(m(r + log(m))) time. Then let us consider the running time
of two cases s* < r-k* and s* > r-k* separately. In the former case, we solve
EXACT k-ITEM KNAPSACK in O(k*mr) time by using dynamic programming
based on analyzing all possible total weights of the selected items until the
final value is reached [KPP04, Chapter 9.7.3]* (note that the maximum possible
total weight is upper-bounded by kr). If s* > r - k*, then we approve at most
m candidates which gives running time O(m). Thus, we can conclude that the
running time of the discussed cases is O(k*mr). Additionally, there are at most
n + r values of z and at most m choices of &. Summarizing, we get the running
time O(k*m?r(n +r)). O

Next, we show that k-Approval-F-eval-CM (i.e., the special case of t-Approval-
F-eval-CM where t = k) can be solved in quadratic time, that is, much faster than
the general variant of the problem. On our way to present this result, we first
give an algorithm for ¢-Approval-F-eval-CM with consistent manipulators. Then,
we argue that it also solves k-Approval-F-eval-CM. The algorithm “guesses” the
minimum score among all members of the winning egroup and then (according
to the tie-breaking method) selects the best candidates that can reach this score.

Proposition 8.10. Let m denote the number of candidates, n denote the
number of voters, and r denote the number of manipulators. Then one can solve
t-Approval-F-eval-COALITIONAL MANIPULATION with consistent manipulators
in O(m(m+r+n)) time for any eval € {util, candegal} and F € {Fiex, Fomi', Fovad}.

pt

3Kellerer, Pferschy, and Pisinger [KPP04] present dynamic programming based on all possible
total values of items. However (what they also remark), these can be exchanged with all
possible total weights of items leading to an algorithm with running time polynomial in
the maximum weight of items.

182

8.4. Complexity of Coalitional Manipulation

Proof. Consider an instance of ¢t-Approval-Fiex-eval-CM with consistent manipu-
lators with an election € = (C,V) where C is a candidate set and V is a collection
of non-manipulative votes, » manipulators, an egroup size k, and a lexicographic
order >jox used by Fiex to break ties. In essence, we introduce a constrained
solution form called a canonical solution and argue that it is sufficient to analyze
only this type of solutions. Then we provide an algorithm that efficiently seeks
for an optimal canonical solution.

At the beginning, we observe that when manipulators vote consistently, then
we can arrange the top ¢ candidates of a manipulative vote in any order. Hence,
the solution to our problem is a size-t subset (instead of an order) of candidates
which we call a set of supported candidates; we call each member of this set
a supported candidate. We now introduce a vital concept of the proof, the
“strength” of the candidates.

Strength Order of the Candidates Additionally, we introduce a new or-
der >, of the candidates. It sorts them descendingly with respect to the score
they receive from voters and, as a second criterion, according to the posi-
tion in >ex. Intuitively, the easier it is for some candidate to be a part of a
winning k-egroup, the higher is the candidate’s position in >,. As a consequence,
we state Claim 8.11.

Claim 8.11. Let us fix an instance of t-Approval-Fex-eval-CM with consistent
manipulators and a solution X which leads to a winning k-egroup S. For every
supported (resp. unsupported) candidate c, the following holds:

1. If ¢ is part of the winning k-egroup, then every supported (resp. unsup-
ported) predecessor of ¢, according to >,, belongs to S and

2. if ¢ is not part of the winning k-egroup, then every supported (resp. un-
supported) successor of ¢, according to >, does not belong to S.

Proof. Fix an instance of t-Approval-Fiex-eval-CM with consistent manipulators
and a solution X resulting in a winning k-egroup S. Let us consider the respective
order >4 over the candidates in the instance.

We first show that Statement 1 regarding supported candidates holds. Ac-
cording to the statement, fix some supported candidate ¢ € S and let p be a
predecessor of ¢ (according to >). Towards a contradiction, assume that p ¢ S.
This implies that either (i) the score of p is smaller than the score of ¢ or (ii)
their scores are the same but ¢ >1x p. Let us focus on case (i). Both considered

183

8. Coalitional Manipulation for Multiwinner Elections

candidates are supported by all manipulators (note that manipulators vote
consistently). Thus, as a consequence of p >, ¢, we have that the score of p is at
least as high as the score of ¢; a contradiction. Next, consider case (ii), where p
and ¢ have the same scores. Consequently, the mutual order of ¢ and p in >, is
the same as their order in >« (in other words, the order of ¢ and p in >, does
not depend on scores of ¢ and p because those must be the same prior to any
manipulation). Since ¢ > p, it follows that, by definition of >, it must hold
that ¢ > p; a contradiction again. Eventually, we obtain that p has to be part
of S which completes the argument.

An analogous approach leads to proofs for the remaining three cases stated
in the theorem. O (Claim 8.11)

Claim 8.11 justifies thinking about >, as a “strength order”; hence, in the
proof we use the terms stronger and weaker candidate. Using Claim 8.11, we
can fix some candidate ¢ as the weakest in the winning k-egroup and then
infer candidates that have to be and that cannot be part of this k-egroup. To
formalize this idea, we introduce the concept of a canonical solution.

Canonical Solutions Assuming the case where k < ¢, we call a solution X
leading to a winning k-egroup S canonical if all candidates of the winning egroup
are supported; that is, S C X. In the opposite case, k > ¢, solution X is canonical
if X ¢ S and X is a set of the ¢t weakest candidates in S. For the latter case, the
formulation describes the solution which favors supporting weaker candidates
first and ensures that no approval is given to a candidate outside the winning
k-egroup.

Canonical solutions are achievable from every solution without changing the
winning k-egroup. One cannot prevent a candidate from winning by supporting
the candidate more because this only increases the candidate’s score. Conse-
quently, we can always transfer approvals to all candidates from the winning
k-egroup. For the case k > ¢, we then have to rearrange the approvals in such
a way that only the weakest members of the k-egroup are supported. How-
ever, such a rearrangement cannot change the outcome because, according to
Claim 8.11, we can transfer an approval from some stronger candidate ¢ to a
weaker candidate ¢’ keeping both of them in the winning k-egroup.

Dropped and Kept Candidates By the assumption that k¥ < m, for ev-
ery solution (including canonical solutions) we can always find the strongest
candidate who is not part of the winning egroup. We call this candidate the

184

8.4. Complexity of Coalitional Manipulation

dropped candidate. Note that we use the strength order in the definition of the
dropped candidate; this order does not take manipulative votes into account.
Further applying the assumption that ¢ < m, without loss of generality, we
can assume that the dropped candidate is not a supported candidate. This
holds true because if the dropped candidate is not in the winning k-egroup
even if supported, then we can support any other candidate ¢ (which must exist
because t < k) without changing the winning k-egroup. Due to Claim 8.11,
if ¢ is not in the winning k-egroup, then, even after supporting, ¢ (which is
by definition weaker than the dropped candidate) cannot become a member
of the k-egroup. Otherwise, supporting c clearly cannot prevent it from being
a member of the winning k-egroup. Naturally, by definition of the dropped
candidate, all candidates stronger than the dropped candidate are members of
the winning k-egroup. We call these candidates kept candidates.

General Description of the Algorithm The algorithm for ¢-Approval-
Frex-eval-CM with consistent manipulators iteratively looks for an optimal
canonical solution for every possible (non-negative) number e of kept candidates
(alternatively, the algorithm checks all feasible possibilities of choosing the
dropped candidate). Then, the algorithm compares all solutions and picks one
that is resulting in an egroup liked the most by the manipulators. Observe that
k —t < e < k. The upper bound k is the consequence of the fact that each kept
candidate is (by definition) in the winning k-egroup. Since all candidates except
for kept candidates have to be supported to be part of the winning egroup, we
need at least k —t kept candidates in order to be able to complete the k-egroup.

Running Time To analyze the running time of the algorithm described in the
previous paragraph, several steps need to be considered. At the beginning we
have to compute values of candidates and then sort the candidates with respect
to their value. This step runs in O(rm + mlogm) time. Similarly, computing >
takes O(tn + mlogm) time. Then, Procedure 8.1 (described in detail later in
this proof) needs O(m) steps to find an optimal canonical solution for some
fixed number e of kept candidates. Finally, we have at most ¢+ 1 possible values
of e. Adding the times up, together with the fact that ¢t < m, we obtain the
running time O(m(m +r + n)).

What Remains to Be Done Procedure 8.1 describes how to look for an

optimal canonical solution for a fixed number ¢ of kept candidates. First,
partition the candidate set in the following way. By C* we denote the kept

185

8. Coalitional Manipulation for Multiwinner Elections

candidates (which are the top e candidates according to >,). Consequently, the
(e + 1)-st strongest candidate is the dropped candidate; say c*. For every value
of e, the corresponding dropped candidate, by definition, is not allowed to be
part of the winning egroup. Let

D :={ceC\ (C U{c"}) |(scorey(c) 4+ r > scorey(c*))V

(scorey(c) + 1 = scorey(c*) A c>1ex)}

be the set of distinguished candidates. Each distinguished candidate, if supported,
is preferred over ¢* to be selected into the winning k-egroup. Consequently, the
distinguished candidates are all candidates who can potentially be part of the
winning k-egroup. We remark that to fulfill our assumption that the dropped
candidate is not part of a winning egroup, it is obligatory to support at least k—e
distinguished candidates. Note that " U{c*} UD # C is possible. The remaining
candidates cannot be part of the winning k-egroup under any circumstances
assuming e kept candidates. Also, set D might consist of less than k — e required
candidates (which is the case when there are too few candidates that, after
supported, would outperform c*). If such a situation emerges, then we skip the
respective value of t. Making use of the described division into ¢*, D, and C~,
Procedure 8.1 incrementally builds the set X of supported candidates associated
with an optimal solution until all possible approvals are used. Observe that
since k < |C| and ¢t < |C|, it is guaranteed that for e = k Procedure 8.1 will return
a feasible solution for e; in fact, this solution will always result in a winning
egroup consisting of all e kept candidates (irrespective of D).

Detailed Description of the Algorithm Before studying Procedure 8.1
in detail, consider Figure 8.1 illustrating the procedure on example data. In
line 1, the procedure builds set X of supported candidates using the k — e best
valued distinguished candidates. Since only the distinguished candidates might
be a part of the winning k-egroup besides the kept candidates, there is no
better outcome achievable. Then, in line 2, the remaining approvals, if they
exist, are used to support kept candidates. This operation does not change the
resulting k-egroup. Then Procedure 8.1 checks whether all ¢ approvals were
used; that is, whether ¢t = | X|. If not, then there are exactly ¢ — | X| remaining
approvals to use. Note that at this stage set X contains k supported candidates
which correspond to the best possible k-egroup; however, without spending all
approvals. Let us call this k-egroup S. It is possible that there is no way to
spend the remaining ¢ — | X| approvals without changing the winning k-egroup S.

186

8.4. Complexity of Coalitional Manipulation

Procedure 8.1: A procedure for finding an optimal set of supported candidates.

Input: Election €& = (C,V); number ¢ of approvals in t-Approval rule; size k of
the winning k-egroup; a partition of C into kept candidates C* (such
that e := ’C*‘ and k —t < e < k), a dropped candidate c*,
and distinguished candidates D (such that |D| > k — e).

Output : Optimal supported candidates set X

1 X +— {k — e most valuable candidates from D}

2 X +— XU {min{e,t — | X|} arbitrary candidates from C"}
3 if t # e|X| then

4 A +— {t — | X| weakest candidates from C \ X}

5 B <— {top k strongest candidates from X U A}

6 p<+— |B\ X|

7 X «— X U{t — |X| — p weakest candidates from C \ X}
8 X <— X U {p most valuable candidates from D\ X}

9 return X

Then substitutions of candidates occur. The new candidates in the k-egroup
can be only those that are distinguished and so far unsupported whereas the
exchanged ones can be only so far supported distinguished candidates. This
means that each substitution lowers the overall value of the winning k-egroup.
So, the best what can be achieved is to find the minimal number of substitutions
and then pick the most valuable remaining candidates from D to be substituted.
The minimal number of substitutions can be found by analyzing how many
candidates would be exchanged in the winning k-egroup if the weakest ¢ — | X|
previously unsupported candidates were supported. The procedure makes such
a simulation and computes the number p of necessary substitutions, in lines 4-6.
Supporting the t — | X| — p weakest unsupported candidates and then the p most
valuable so far unsupported distinguished candidates gives the optimal k-egroup
for e kept candidates (when all approvals are spent). Note that the number ¢ of
approvals is strictly lower than the number of candidates, so one always avoids
supporting c*.

Due to Proposition 8.3, the algorithm we presented can be applied also for
pessimistic and optimistic evaluation because of the possibility of simulating
these evaluations by a lexicographic order in time O(m(r + log(m))). O

For k-Approval (i.e., where t = k), one can show that manipulators can always

187

8. Coalitional Manipulation for Multiwinner Elections

OO
®®
®

strength

value

oo OO

(a) The division of the candidates into
the kept candidates (dotted), the dropped
candidate (filled), the distinguished candi-
dates (vertical lines), and the others who
cannot be part of the winning egroup.

O
()
©)

value

@@. OO

strength

(¢) Supporting the weakest possible can-
didates to use all approvals. The winning
egroup changes. The winners are marked
with stars while the candidate which is
not any more in the winning egroup is
crossed out. Such a simulation is done
in lines 4-6. As a result, the minimum
number of substitutions in the k-egroup
is computed.

OO

O
)

value

@@. OO

strength

(b) An illustration of lines 1-2 of Proce-
dure 8.1. The double-edged candidates
form set X. The starred candidates would
form the winning k-egroup if the double-
edged candidates were supported.

S
value

@@.

strength

(d) An illustration of the solution of
the considered case computed by Pro-
cedure 8.1 in lines 7 to 8. One candi-
date from the k-egroup presented in Fig-
ure 8.1b has to be substituted; naturally,
it is optimal to pick the most valuable
possible candidate as a replacement for
the substituted one. Supported candi-
dates are double-edged and the winning
k-egroup is starred.

Figure 8.1.: An illustrative example of a run of Procedure 8.1 for e = 2, nine
candidates, 7-Approval, and 4-egroup. The horizontal position indicates the strength
of a candidate—with the strength decreasing from left to right—and the vertical

position indicates the value of a candidate.

Since the number r of manipulators

determines only the set of distinguished candidates, we do not specify r explicitly. We
indicate the set of distinguished candidates instead. Figures 8.1a to 8.1d step by step
present the execution of Procedure 8.1 on the way to find an optimal 4-egroup.

188

8.4. Complexity of Coalitional Manipulation

vote identically to achieve an optimal k-egroup [BKN21]. In a nutshell, for every
egroup the manipulators can only increase the scores of the egroup’s members
by voting exactly for them. This fact leads to the following theorem.

Theorem 8.12 ([BKN21|). Let m denote the number of candidates, n denote
the number of voters, and r denote the number of manipulators. One can solve
k-Approval-F-eval-COALITIONAL MANIPULATION in O(m(m +r + n)) time for
any eval € {util,candegal} and F € {Fiex, Fori', Fovil}.

8.4.2 Egalitarian: Hard Even for Simple Tie-Breaking

In Section 8.3.2, we showed that already breaking ties might be computa-
tionally intractable. These intractability results only hold with respect to the
egalitarian evaluation and optimistic manipulators. We now show that this
intractability of _Fjﬁ,‘?l—TIE—BREAKING extends to coalitional manipulation for
any tie-breaking rule and egalitarian evaluation. This includes the pessimistic
egalitarian case which we consider to be highly relevant as it naturally models

searching for a “safe” voting strategy.

Proposition 8.13. For any tie-breaking rule F, there is a polynomial-time
many-one reduction from fjﬁ?l—TIE—BREAKING to t-Approval-F-egal-COALITIO-
NAL MANIPULATION.

Proof. We give a polynomial-time many-one reduction from]-'(fgi‘l—TIE—BREAK—
ING to t-Approval-F-egal-COALITIONAL MANIPULATION; however, before we
describe the actual reduction, we present a useful observation concerning fﬁﬁ?l—
TIE-BREAKING in the next paragraph.

Let us fix an instance Z of }'ﬁﬁ?l—TIE—BREAKING with a confirmed set C*, a
pending set P, a size k of an egroup, a threshold ¢, and a set of manipulators
represented by a family U of utility functions. We construct a new equivalent
instance ' of fSﬁ?'—TIE—BREAKING with a larger set of manipulator utility
functions U’ D U. The construction is a polynomial-time many-one reduction
which proves that we can “pump” the number of manipulators arbitrarily for
instance Z. To add a manipulator, it is enough to set to ¢ the utility that the
manipulator gives to every candidate. Naturally, such a manipulator cannot have
the total utility smaller than ¢, so the correct solution for Z is also correct for 7.
Contrarily, when there is no solution for Z, it means that for every possible
k-egroup S’ there is some manipulator @ such that egal;(S’) < q. Consequently,
one cannot find a solution for Z’ as well, because the set of possible k-egroups

and their values of egalitarian utility do not change.

189

8. Coalitional Manipulation for Multiwinner Elections

Now we can phrase our reduction from ffﬁ?l—TIE—BREAKING to t-Approval-

F-egal-COALITIONAL MANIPULATION. Let us fix an instance Z of]—'§§§‘1—TIE-
BREAKING with a confirmed set C*, a pending set P, a size k of an egroup,
a threshold ¢, and a set U of r utility functions. Because of the observation
about “pumping” instances of]-'jﬁ?l—TIE—BREAKING, we can assume, without
loss of generality, that ¢t -7 > k —|C"| holds. In the constructed instance of
t-Approval-F-egal-CM equivalent to Z, we build an election that yields sets P
and CT and aim at an egroup of size k. However, it is likely that we need to add
a set of dummy candidates that we denote by D. It is important to ensure that
the dummy candidates cannot be the winners of the constructed election. To do
so, we keep the score of each dummy candidate to be at most one, the score of
each pending candidate to be r + 2, and the score of each confirmed candidate
to be at least 2r + 3. The construction starts from ensuring the scores of the
confirmed candidates. Observe that in this step we add at most (2r +3) -|C™|
voters (in case t = 1). If t > |CT|, then we have to add some dummy candidates
in this step. We can upper-bound the number of the added dummy candidates
by ((2r +3) - |[CT])(t — 1) (this bound is not tight). Analogously, we add new
voters such that each pending candidate has score exactly r + 2. At this step
we have the election where we are able to spend t-r > k — |CT| approvals. We
can select every possible subset of pending candidates to form the winning
k-egroup by approving candidates in this subset exactly once. However, to be
sure that we are able to distribute all approvals such that there is no tie, we
ensure that the remaining (t-r) — (k—|C™"|) approvals can be distributed to some
candidates without changing the outcome. To achieve this goal, we add exactly
(t-r) — (k—|C"]) dummy candidates with score zero. We set the evaluation
threshold of the newly constructed instance to q.

By our construction, we are always able to approve enough pending candidates
to form a k-egroup without considering ties, and we cannot make a dummy
candidate a winner under any circumstances. Thus, if ffﬁ?l—TIE—BREAKING
has a solution S, then we approve every candidate ¢ € S such that ¢ was in the
pending set P before, and we obtain a solution to the reduced instance. In the
opposite case, if there is no such a k-egroup whose egalitarian utility value is
at least ¢, then the corresponding instance of ¢-Approval-F-egal-COALITIONAL
MANIPULATION also has no solution since the possible k-egroups are exactly
the same. The reduction runs in polynomial time. O

Observe that the reduction proving Proposition 8.13 does not change the
egroup size k. Additionally, the increase of the number of manipulators in the

190

8.4. Complexity of Coalitional Manipulation

resulting instances is polynomially upper-bounded in the egroup size k of input
instances. This is due to the fact that even if we need to “pump” an initial

instance to achieve t-r > k—|C*|, then we add at most {%ﬁq < k manipulators.

Thus, together with Theorem 8.6 and Theorem 8.7, Proposition 8.13 leads to
the following theorem.

Theorem 8.14. Let F be an arbitrary tie-breaking rule. Then, t-Approval-
F-egal-COALITIONAL MANIPULATION is NP-hard. Let r denote the number
of manipulators, q denote the evaluation threshold and k denote the size of
an egroup. Then, parameterized by r + k, t-Approval-F-egal-CM is W[1]-hard.
Parameterized by k, t-Approval-F-egal-CM is W[2]-hard even if ¢ =1 and every
manipulator only gives either utility one or zero to each candidate.

Combining exhaustive enumeration of values describing essential properties
of solutions and an extension of the ILP formulation from Theorem 8.8, we
show that, for the combined parameter “number of manipulators and number
of different utility values,” fixed-parameter tractability of .Fjﬁ?l—TIE—BREAK—
ING extends to coalitional manipulation for both optimistic and pessimistic

egalitarian tie-breaking.

Theorem 8.15. Let r denote the number of manipulators and uag denote the
number of different utility values. Parameterized by r + uaig, t-Approval-F-
egal-COALITIONAL MANIPULATION with F € {]—';%:sl,f-g’ﬁil} 18 fixed-parameter
tractable.

Proof. In a nutshell, we divide t-Approval-F&2-egal-CM and t—Approval—]-'gg?l—
egal-CM into subproblems solvable efficiently in parameterized sense for the
parameter under investigation. Then, we show that is it sufficient to consider
only polynomially many subproblems to solve the problems.

The Main Idea We split the proof into two parts. In the first part, we define
subproblems and show how to find a solution assuming that the subproblems are
solvable in FPT time with respect to the parameter. In the second part, we show
that, indeed, the subproblems are fixed-parameter tractable by providing their
ILP formulations and applying Lenstra’s result (Proposition 2.1). The inputs
for t-Approval-Fg&l-egal-CM and t—Approval—fﬁﬁ?l—egal—CM are the same, so
let us consider an arbitrary input with an election & = (C,V) with n voters,
m candidates, a size k of an excellence-group, and r manipulators represented

191

8. Coalitional Manipulation for Multiwinner Elections

by a set U = {u1,us,...,u,} of their utility functions. Let uaiz be the number
of different utility values.

An election resulting from a manipulation and a corresponding k-egroup
emerging from the manipulation can be described by three non-negative integer
parameters:

1. The lowest final score z of any member of the k-egroup;

2. the number p of promoted candidates from the k-egroup with a score
higher than 2 which, at the same time, have score at most z without
taking manipulative votes into consideration; and

3. the number b of border candidates with score z.

Observe that if as a result of a manipulation the lowest final score of members
in a final k-egroup is z, then the promoted candidates are part of the k-egroup
regardless of the tie-breaking method used. For border candidates, however, it
might be necessary to run the tie-breaking rule to determine the k-egroup. In
other words, border candidates become pending candidates unless all of them
are part of the k-egroup. By definition, no candidate scoring lower than the
border candidates is a member of the k-egroup; which gives border candidates
their name. From now on, we refer to the election situation characterized by
parameters z,p,b as a(n) (input) state. Additionally, we call a set of manipulator
votes a manipulation.

Part 1: High-Level Description of the Algorithm For now, we assume
that there is a procedure Q which runs in FPT time with respect to the combined
parameter “number of manipulators and number of different utility values.’
Procedure Q takes values z, p, b and an instance of the problem as an input, and
it finds a manipulation which leads to a k-egroup maximizing the egalitarian
utility under either egalitarian optimistic or egalitarian pessimistic tie-breaking
with respect to the input state. If such a manipulation does not exist, then
procedure Q returns “no.” The algorithm solving ¢-Approval-F5&4-egal-CM and
t—Approval—]-'sgSI—egal—CM invokes Q for all possible combinations of values z, p,
and b. Eventually, it chooses the best manipulation returned by Q or returns
“no” if Q always returned so. Since the value of z is at most [V + W| and b
together with p are both upper-bounded by the number of candidates, we run
Q at most (n + r)m? times. Because the input size grows polynomially with
respect to the growth of the values r, m, and n, the overall algorithm runs in

9

192

8.4. Complexity of Coalitional Manipulation

FPT time with respect to the combined parameter “number of manipulators
and number of different utility values.”

Part 2: Basics and Preprocessing for the ILP To complete the proof,
we describe procedure Q used by the above algorithm. In short, the procedure
builds and solves an integer linear program that finds a manipulation leading to
the state described by the input values. Before we describe the procedure in
detail, we start with some notation. Fix some values of z, b, p and some election
E = (C,V) that altogether form the input of Q. For each candidate c € C, let a
size-r vector t = (u1(c),uz2(c),...,u-(c)), referred to as a type vector, define the
type of c. We denote the set of all possible type vectors by 7 = {t1,t2,...,¢7}.
Observe that |T| < ulg. With each type vector t;, i € [|T|], we associate a
set T; consisting of all candidates of type t;. We also distinguish the candidates
with respect to their initial score compared to z. A candidate of type t; € T,
i € |T|, with score z — j, j € [r]U{0}, belongs to group GJ. We denote all
candidates with a score (excluding manipulative votes) higher than z by C*,
whereas by C~ we denote the candidates with a score (excluding manipulative
votes) strictly lower than z — r. For each type t; € T of a candidate, we define
function obl(t;) = |CT N T3], which gives the number of candidates of type ¢; that
are obligatory part of the winning k-egroup.

At the beginning, procedure Q tests whether the input values z, b, and p
represent a correct state. From the fact that there has to be at least one
candidate with score z, we get the upper bound k — |C*| — 1 for value p. To
have enough candidates to complete the k-egroup, we need at least k — [CT| —p
candidates with score z after the manipulation which gives b6 > k — |CT| — p.
Finally, the state is incorrect if the corresponding set C* contains k& or more
candidates. If the input values are incorrect, then Q returns “no.” Otherwise,
Q continues with building a corresponding integer linear program. We give two
separate integer linear programs—one for the optimistic egalitarian tie-breaking
and the other one for the pessimistic egalitarian tie-breaking. Both programs
consist of two parts. The first part models all possible manipulations leading
to the state described by values z, p, and b. The second one is responsible for
selecting the best k-egroup assuming the particular tie-breaking and considering
all possible manipulations according to the first part. Although the whole
programs are different from each other, the first parts stay the same. Thus,
we postpone distinguishing between the programs until we describe the second
parts. For the sake of readability, we present the ILP formulation step by step,
describing each step in detail.

193

8. Coalitional Manipulation for Multiwinner Elections

ILP: Common Part For each group G?, i € [|T]], j € [r] U {0}, we introduce
variables 7 and z/ " indicating the numbers of, respectively, border and promoted
candidates from group G?. Additionally, we introduce variables o and 3. The
former represents the number of approvals used to get the obligatory numbers of
border and promoted candidates. The latter indicates the number of approvals
which are to be spent without changing the final k-egroup (thus, in some sense
a complement of the obligatory approvals) resulting from the manipulation
(e.g., approving candidates in C*, who are part of the winning k-egroup anyway,
cannot change the outcome). We begin our integer linear program with ensuring
that the values of 2/ and 27" are feasible:

Z ch' =p, (8.2)

t, €T ,j€[r]U{0}

) =b, (8.3)
t;€T,j€lrlu{0}

ot 4z} = |GY Yt €T, (8.4)

it =0 Vit € T. (8.5)

The constraints ensure that exactly p candidates are chosen to be promoted (8.2),
exactly b candidates are selected to be border ones (8.3), and that, for every
group, the sum of border and promoted candidates is not greater than the
cardinality of the group (8.1). The last two constraint sets ensure that candidates
who have score z are either promoted or border candidates (8.4) and that
candidates with initial score z — r cannot be promoted (i.e., get a score higher
than z) (8.5). Next, we add the constraints concerning the number of approvals
we need to use to perform the manipulation described by all variables =/ and =7 .
We start with ensuring that the manipulation does not exceed the number of
possible approvals. As mentioned earlier, we store the number of required
approvals using variable o.

0= > (zl-j+al™-(j+1), (8.6)
t, €T, je[rju{o}

o <tr. (8.7)

194

8.4. Complexity of Coalitional Manipulation

Then, we model spending the 5 remaining votes (if any) to use all approvals.

o<r(c uct)+ > Y (G-l —2l") (-1

L €T jElr]
+ Y (@ (r—j-1),
t; €T ,5€[r]
0+ o0=tr (8.9)

(8.8)

The upper bound on the number of votes one can spend without changing
the outcome presented in constraint (8.8) consists of three summands. The
first one indicates the number of approvals which can be spent for candidates
whose initial score was either too high or too low to make a difference in the
outcome of the election resulting from the manipulation. The second summand
counts the approvals we can spend for potential promoted and border candidates
that eventually are not part of the winning k-egroup; we can give them less
approvals than are needed to make them border candidates. The last summand
represents the number of additional approvals that we can spend on the promoted
candidates to reach the maximum of r approvals per candidate. This completes
the first part of the ILP formulation in which we modeled the possible variants
of promoted and border candidates for the fixed state (z,b,p).

ILP Extension for Optimistic Egalitarian Tie-Breaking In the second
part, we find the final k-egroup by completing it with the border candidates
according to the particular tie-breaking mechanism. Let us first focus on the
case of the optimistic egalitarian tie-breaking. We introduce constraints allowing
us to maximize the total egalitarian utility value of the final egroup; namely, for
each group G7, i € [|T]], j € [r] U {0}, we add a non-negative, integral variable z7*
indicating the number of border candidates of the given group chosen to be
in the final k-egroup. The following constraints ensure that we select exactly
k —|C*| — p border candidates to complete the winning egroup and that, for
each group G7, we do not select more candidates than available.

Yoo alt=k-ct-p, (8.10)

t, €T, je[rju{0}
xg' < xz vt; €T, j€rju{0}. (8.11)

195

8. Coalitional Manipulation for Multiwinner Elections

To complete the description of the ILP formulation, we add the following final
set of constraints defining the egalitarian utility s of the final k-excellence-group:

> tld- @+l +) tilg]obl(t) > s Vg € [r]. (8.12)

t, €T, je[r]u{0} t, €T

We set the goal of the program to maximize s and thus our program simulates
the egalitarian optimistic tie-breaking.

ILP Extension for Pessimistic Egalitarian Tie-Breaking To solve a
subproblem for the case of pessimistic egalitarian tie-breaking, we need a
different approach. We start with an additional notation. For each type of
candidate t; € T, let bi =37 11010y zJ denote the number of border candidates
of this type. For each type t; € T and manipulator ug, ¢ € [r], we introduce a new
integer variable d}. Its value corresponds to the number of border candidates
of type t; who are part of the worst possible winning k-egroup according to
manipulator u,’s preferences; we call these candidates the designated candidates
of type t; of manipulator u,. For each variable d}, we define a binary variable
used[d?] which has value one if at least one candidate of type ¢; is a designated
candidate of manipulator uq. Similarly, we define fullyused[d{] to indicate that all
candidates of type t; are designated by manipulator u,. To give a program which
solves the case of pessimistic egalitarian tie-breaking, we copy the first part of
the previous integer linear program (constraints from (8.1) to (8.9)) and add
new constraints. First of all, we ensure that each manipulator designates not
more than the number of available border candidates from each type and that
every manipulator designates exactly k — p — |C"| candidates:

0<d!<b; Vt; € T,q € [r], (8.13)
Y di=k-p-—|c*| Vg € [r]. (8.14)
t, €T

To force the semantics of the variables used—that is, a variable used[d]], i € [|T]],
q € [r], has value one if and only if variable df is at least one—we use the
following constraints:

used[d]] < d vt; € T,q € [r], (8.15)
used[d]]n > d} Vt; € T,q € [r]. (8.16)

196

8.4. Complexity of Coalitional Manipulation

Similarly, for the variables fullyused, we ensure that fullyused[d{], i € [|T|], ¢ € [r],
is one if and only if manipulator u, designates all available candidates of type ¢;
with the subsequent constraints:

fullyused[d{] > 1 — (b; — df) Vti € T,q € [r], (8.17)
bi — d? < n(1 — fullyused[d?]) Vt; € T,q € [r]. (8.18)

Since our task is to perform pessimistic tie-breaking, we have to ensure that
the designated candidates for each manipulator are the candidates whom the
manipulator gives the least utility. We impose this by forcing that the more
valuable candidates (for a particular manipulator) are used only when all
candidates of all less valuable types (for the manipulator) are used (i.e., they
are fully used). To achieve this we make use of the used and fullyused variables
in the following constraint:

used|[d]] < fullyused[d],] Vg € [r]U {0}, ti,tir € T: ti[g) > ti[q). (8.19)

Finally, we give the last set of constraints where s represents the pessimistic
egalitarian k-egroup’s utility, which our integer linear program wants to maxi-
mize:

> (d + obl(t:)) - tilg] > s Vg € [r]. (8.20)
t, €T

The ILP formulations, for both tie-breaking variants, use O(ruj;s) variables.
So, according to Proposition 2.1, we obtain fixed-parameter tractability with
respect to the combined parameter r + uqiz. Consequently, procedure Q is in
FPT with respect to the same parameter. O

Finally, applying the same technique as in Theorem 8.15 of solving a number of
integer linear programs, one can obtain the following fixed-parameter tractability
for t-Approval-Fiex-egal-CM with respect to the number of manipulators plus
the number of different utility values [BKN21].

Theorem 8.16 (Bredereck, Kaczmarczyk, and Niedermeier [BKN21]). Let r
denote the number of manipulators and vaig denote the number of different utility
values. Then, t-Approval-Fiex-egal-COALITIONAL MANIPULATION parameterized
by r + uaigr 18 fized-parameter tractable.

197

8. Coalitional Manipulation for Multiwinner Elections

8.5 Experimental Insights

Studying the computational complexity of F-TB and ¢t-Approval-F-eval-CM,
we devised several algorithms showing either polynomial-time computability
or fixed-parameter tractability. Our goal for this section is to verify whether
our algorithmic results dealing with t-Approval-F-eval-CM are applicable in
practice for small-sized and mid-sized elections (up to 40 candidates and up
to 100 voters) in which coalitional manipulation is probably the most likely to
happen in practice. Indeed, for a large election it might be hard to form and
coordinate a group of manipulators large enough to have an influence on the
outcome. Due to our focus on the running time and due to the preliminary
nature of our experiments, we decided to synthetically generate elections only
according to the Impartial Culture model.

For the sake of brevity, we do not present any running-time experiments
for the problem of tie-breaking. Observe that, in general, tie-breaking is an
unavoidable subtask of ¢-Approval-F-eval-CM. Thus, the positive results that
we obtained for coalitional manipulation (that are described further in this
section), already provide positive results for the algorithms for tie-breaking.

We especially focus on the algorithms presented in Theorems 8.9 and 8.15
for the following two reasons. First, both algorithms significantly differ in
terms of techniques they use—one of them is a purely combinatorial algorithm
while the other one heavily relies on solving integer linear programs. We
study how this difference, in practice, influences the running times of the
algorithms. Second, the theoretical running times of both algorithms suggest
that their practicality might be easily challenged by large instances. Consider an
instance Z of t-Approval-F-eval-CM with r manipulators, n voters, m candidates
and the number uqig of different utility values that the manipulators assign to
the candidates; let (Z) € O((n + rlog(uaig))m) be the (input) size of Z. Recall
that the (worst-case) running time of the algorithm from Theorem 8.9 is O((Z)*),
and the (worst-case) running time of the algorithm from Theorem 8.15 is
at least O(ulyg)?“air (Z)) (due to Proposition 2.1). Thus, even for very small
instances, say four manipulators that report four different values of the utility
values, the algorithm from Theorem 8.15 needs at least the enormous number
of roughly 2'%® steps. Obviously, in theory, the algorithm from Theorem 8.9
is undoubtedly more efficient with respect to the worst-case running time and
appears to have practically infeasible running times only when the input consists
rather of hundreds of candidates, manipulators and voters.

Conducting our experiments, we aim at verifying the practical applicability

198

8.5. Experimental Insights

of the analyzed algorithms and compare the running times they achieve. In our
experiments we primarily focused on the running times of the studied algorithms
with respect to the different quantities that, according to our theoretical analysis,
have an influence on the computational efficiency. We note that, in particular,
we did not conduct qualitative experiments on manipulation and that our
experiments should rather be treated as preliminary and exploratory tests
(we refer to the bachelor’s thesis of Kalkbrenner [Kall9] for more involved
experiments, including real-world data).

8.5.1 Experimental Setup

We conducted the experiments for two variants of the coalitional manipulation
problem. Specifically, we tested the algorithm from Theorem 8.9 for ¢-Approval-
Futll-util-CM and the algorithm from Theorem 8.15 for t—Approval—.Fjﬁfl—egal-
CM; both for two different values of ¢.

We generated two series of experiments. In the first series, which we call the
small series, we fixed the egroup size k = 5 and the 3-Approval election rule,
whereas in the second series, the big series, we chose k = 10 and 6-Approval.
We partitioned each series’ instances, all with elections consisting of 100 non-
manipulative voters, into two collections. In one collection we varied the number
of candidates from k+1 (k is the proper parameter value of the series) to 40 and
in the other one we swept through different values of the number of manipulators
between 10 and 40. When we were not changing the number of candidates we
fixed it to 20 and when we were not changing the number of manipulators we
fixed it to 10. We chose the rule and the size of the desired k-egroup in a way
to avoid the k-Approval rule (where the number of approvals coincides with
the k-egroup size) as it can be solved by the algorithm from Theorem 8.12. For
both tested algorithms, we repeated all experiments 30 times and averaged the
collected results.

To obtain a single instance of t-Approval-F-eval-CM, we first generated an
election according to the Impartial Culture model (Definition 6.7). To obtain the
desired number of manipulators, for each election, we then uniformly at random
drew the manipulators from the election voters. Then, for each manipulator, we
constructed the utility function that assigns each candidate its Borda score in the
ranking of the manipulator. Finally, we removed the votes of the manipulators
from the original election obtaining a new election that, together with the utility
functions constructed for the manipulators, formed a single instance.

Considering our choice of parameters, we decided to choose 100 voters, which is
a common assumption in the multiwinner election literature [Bre-+19a, Fal+18a,

199

8. Coalitional Manipulation for Multiwinner Elections

Szu-+20]. Considering up to 25 manipulators, we covered scenarios where the
ratio between the number of non-manipulative voters and the manipulators
varies from one to 25%. Cases in which there are more than 25% manipulators
(compared with the number of non-manipulators) seem to be unlikely in practice
due to a large number of manipulators. We chose the egroup size to be a half
and a quarter of the candidates (in the basic scenario, where the number of
candidates did not vary) to show different levels of “competitiveness.” We avoided
considering too many candidates and too high numbers of approvals because
in practice, for humans, selecting (and ordering) too many candidates quickly
becomes tedious as the number of possible options grows. At the same time,
we did not want to consider very small elections; thus, we chose 20 candidates
and rather a small numbers of approvals: three and six. However, we stress
that properly selecting the election parameter values, especially the number
of candidates, the size of a desired egroup, and the number of approvals ¢
in t-Approval, should be further investigated in more detail to draw meaningful
qualitative conclusions about manipulation. This applies also for the utility
functions of manipulators, which we generated using Borda scores. We decided
on Borda scores because of their simplicity and intuitiveness, but we believe that
other ways of generating utility functions should be considered. For example, we
expect that the running times could drop if one constrains the utility functions
to take only natural values between one and three.

For the specification of the machines on which we conducted our experiments
see Section 2.7. We used the Python Programming Language (specifically, the
standard interpreter in version 3.6.9). To solve integer linear programs we used
Gurobi Optimizer (version 8.1.1 build v8.1.1rc0). The code is publicly accessible
online on GitHub (https://github.com/kalkbrennerei/maniplib).

8.5.2 Results and Interpretation

The obtained running times—illustrated in Figure 8.2 for the algorithm
from Theorem 8.9 and in Figure 8.3 for the algorithm from Theorem 8.15—
revealed that our algorithms achieved practically feasible running times. For
the highest number 40 of candidates, we were able to solve all instances within
around 150 seconds. For 25 manipulators, however, the worst running time we
obtained was around 225 seconds. Thus, the results strongly suggest that we
provided practically applicable algorithms that can solve coalitional manipulation
problems for mid-sized elections.

Even though the theoretical upper bound of the running time of the algorithm
from Theorem 8.15 is much worse, the corresponding approach was significantly

200

https://github.com/kalkbrennerei/maniplib

8.5. Experimental Insights

250
—— big
—_ 11 150
& 200 = small
“S’ ©
150
2 190 £ 100
)
£ 100 2
= g
g = 50 -
2 50 z
0 «
T T T T T T T T T T T T T
0 5 10 15 20 25 10 15 20 25 30 35 40
value of r value of m

Figure 8.2.: Running times of the algorithm from Theorem 8.9 for different num-
bers r of manipulators and m of candidates. The marked lines depict the average
running times over 30 trials for the big series (the dot-marked solid line) and the small
series (the cross-marked dashed line). The lighter “bands” around the lines indicate
the maximum and the minimum running times observed.

faster (roughly two times for the series with varying number of manipulators
and up to 50 times for the series with varying number of candidates). This
observation does not come as a surprise as integer linear solvers are nowadays
highly optimized.

The experiments also clearly confirm the theoretical dependence on the
number of candidates of the running times of the studied algorithms; namely
the quadratic dependence for the algorithm from Theorem 8.9 and the linear
dependence of the algorithm from Theorem 8.15. Our results regarding the
algorithm from Theorem 8.15 also confirm our computational complexity analysis
of this algorithm with respect to the number of manipulators. Indeed, on the
right plot in Figure 8.3, we observe an exponential increase of the running time
for increasing numbers of manipulators. The observed behavior of the running
time with respect to the number of manipulators is also complaint with the
theoretical running time given in Theorem 8.9. Indeed, both the experiments
and the theoretical analysis suggest a quadratic dependence.

Last but not least, our preliminary experimental studies open up an avenue
for further research on manipulation in multiwinner elections. There is a broad
range of challenging open questions of at least two types.

First, what is the influence of the election structure on the running time?
Observe that, somehow counterintuitively, the right plot in Figure 8.3 shows

201

8. Coalitional Manipulation for Multiwinner Elections

—— big
- small

running time [s]
IS o
\ I

running time [s]

M
|

T T T T
10 20 30 40

value of r value of m

Figure 8.3.: Running times of the algorithm from Theorem 8.15 and m of candidates.
The marked lines depict the average running times over 30 trials for the big series
(the dot-marked solid line) and the small series (the cross-marked dashed line). The
lighter “bands” around the lines indicate the maximum and the minimum running
times observed.

that we obtained significantly worse running times when increasing the number
of candidates for the small series than we did for the big series. The differences
between these series were only in the size of the desired k-egroup and the
number of approvals, so they had the same number of manipulators. We
conjecture that the reason for these results is that it is “harder” to “satisfy” each
manipulator (note that in Figure 8.3 we considered the egalitarian variant) with
a smaller k-egroup. However, a more detailed study would be needed to confirm
our conjecture. A further, somewhat related question, concerns the influence of
the ratio between manipulators and the voters on the running time. Intuitively,
the more manipulators, the simpler it is to successfully manipulate but, on the
contrary, the harder it is to find a set of candidates satisfying the manipulators.

The second type of challenging open questions concerns the possible influence
the manipulators can achieve, or wish to achieve, depending, for example,
on their number. On the one hand, for many diverse manipulators, the most
satisfying outcome can be very “near” to the current one because many outcomes
can be similarly satisfying to a heterogeneous group of manipulators. On the
other hand, a small group of similarly-minded manipulators can have a precise
goal, yet be short of “power” to affect the outcome in a favorable way.

In summary, by devising practically efficient algorithms, we believe to have
provided algorithmic tools that allow for exploring these two mentioned paths of

202

8.6. Conclusion

open questions. In particular, further experiments should consider other models
of generating elections than Impartial Culture to simulate different levels of
similarity of the manipulators’ preferences. Looking from this perspective, the
Mallows model (Definition 6.8) is, for example, suitable to model similarly-
minded manipulators.

8.6 Conclusion

We developed a new model for and started a first systematic study of coali-
tional manipulation for multiwinner elections. Our analysis revealed that
multiwinner coalitional manipulation requires models which are significantly
more complex than those for single-winner coalitional manipulation or multiwin-
ner non-coalitional manipulation. As described in the introduction, our model
assumes that a given coalition of manipulators can compensate their (potential)
utility loss after a manipulation in some way. Thus, in particular, our model
does not analyze the dynamics of a coalition but rather it tries to assess its
potential and possible influence.

In our work, on the one hand, we generalized tractability results for coalitional
manipulation of ¢-Approval [CSL07, Lin11] and for non-coalitional manipulation
of k-Approval [Mei+08, OZE13] to tractability of coalitional manipulation of
t-Approval in case of utilitarian or candidate-wise egalitarian evaluation of
egroups. On the other hand, we showed that coalitional manipulation becomes
intractable in case of egalitarian evaluation of egroups.

Let us discuss a few findings in more detail (Table 8.1 surveys all our results).
We studied lexicographic, optimistic, and pessimistic tie-breaking and showed
that, with the exception of egalitarian group evaluation, winning excellence-
groups can be determined very efficiently. The intractability (NP-hardness,
parameterized hardness in form of W[1]- and W[2]-hardness) for the egalitarian
case, however, turns out to hold even for quite restricted scenarios. We also
demonstrated that numerous tie-breaking rules can be “simulated” by (carefully
chosen) lexicographic tie-breaking, again except for the egalitarian case. Ob-
serve that the hardness of egalitarian tie-breaking holds only for the optimistic
case while for the pessimistic case it is efficiently solvable. Hardness for the
egalitarian optimistic scenario, however, translates into hardness results for
coalitional manipulation regardless of the specific tie-breaking rule. On the con-
trary, coalitional manipulation becomes tractable for the other two evaluation
strategies—“candidate-wise” egalitarian and utilitarian. Additionally, for few
manipulators and few different utility values the manipulators assign to the

203

8. Coalitional Manipulation for Multiwinner Elections

Foyal _TIE-BREAKING, easy cases:

settings (evaluation, behavior) complexity reference

utilitarian or cand.wise egalitarian,

optimistic or pessimistic O(m - (r +logm)) Cor. 8.5 1

egalitarian, pessimistic O(r - mlogm) Th. 8.6

FoE-TIE-BREAKING (egalitarian, optimistic):

parameters, restrictions complexity reference

general NP-hard Th. 8.6
k, 0/1 utilities and ¢=1 W[2]-hard Th. 8.6
r+k W[1]-hard Th. 8.7
T+ Udif FPT Th. 8.8

t-Approval- F-eval-COALITIONAL MANIPULATION
utilitarian /cand.wise egalitarian, optimistic/pessimistic:

restrictions complexity reference
general O(K*m?r(n+r)) Th.89¢
consistent manipulators O(m(m +r+n)) Pr. 810 ¢
t=k O(m(m+r+n)) Th 812¢

t-Approval-F-eval-COALITIONAL MANIPULATION
egalitarian, optimistic/pessimistic:

parameters, restrictions complexity reference

general NP-hard Th. 8.14 ¢«
k, 0/1 utilities and g=1 W[2]-hard Th. 8.14 ¢
r+k WiJ1]-hard Th. 8.14 ¢
T+ udif FPT Th. 8.15 and Th. 8.16 ¢

Table 8.1.: Computational complexity of tie-breaking and coalitional manipulation.
Our results for ¢t-Approval hold for any ¢ > 1, and thus cover SNTV. The parameters
are the size k of the egroup, the number r of manipulators, and the number uq4ig of
different utility values. Furthermore, m is the number of candidates and n is the
number of voters. The result marked with { holds for all possible combinations of the

respective evaluation and behavior variants. The results marked with ¢ hold also for
F =]:lex‘

204

8.6. Conclusion

candidates, manipulation becomes tractable also for the egalitarian optimistic
scenario.

Our study provides a handful of efficient algorithms that, as we have shown
in Section 8.5, allow for further experimental study of coalitional manipulability.
Among many issues that such a study can address, there are a few particularly
remarkable ones like “Is finding a successful manipulation hard in practice?”,
“How likely is a successful manipulation?”, and “How much, in practice, can an
election outcome be affected by a coalition?” (see a book chapter by Conitzer
and Walsh [CW16] addressing these questions in the single-winner case in both
theory and practice). It appears to be interesting to apply the algorithms we
provided to experimentally answer the mentioned questions. Furthermore, we
believe that our algorithms may also serve for assessing different measures of
robustness of an election as discussed in Section 7.6.

In our study, we entirely focused on shortlisting as one of the simplest tasks
for multiwinner elections to analyze our evaluation functions. It is interesting
and demanding to develop models for multiwinner rules that aim for proportional
representation or diversity. For shortlisting, extending our studies to non-
approval-like scoring-based voting correspondences would be a natural next
step. In this context, already seeing what happens if one extends the set of
individual scores from being only zero or one to more (but few) numbers is
of interest. Moreover, we focused on deterministic tie-breaking mechanisms,
ignoring randomized tie-breaking—another issue for future research.

An analysis of the dynamics of manipulator coalitions directing towards
game theory seems promising as well. This is even more so since we identified
practically applicable algorithms for several variants of coalitional manipulation.
One interesting question is what would be a “best” coalition to create or join for
a manipulator when assuming that the manipulator knows the preferences of
all other voters. Another one is, for example, whether a particular coalition is
stable. Intuitively, the utility for every voter that is a part of the manipulating
coalition should not be below the utility the voter receives when voting sincerely.
This is of course only a necessary condition to ensure the stability of a coalition.
A deeper analysis of stability needs to consider game-theoretic aspects such as
Nash or core stability [Nis+07].

205

CHAPTER 9

Conclusion

For nearly all of the issues we studied, we successfully achieved all three
goals posed in the introduction (Chapter 1): bringing already studied con-
cepts closer to reality, providing algorithmic tools to tackle the then-emerging
computational problems, and conducting experimental studies based on the
outcome of the preceding two goals. More specifically, first, we stepped forward
towards capturing real-life scenarios better by coming up with new models or
by extending existing ones. Second, for each of the models we have depicted the
landscape of classical and parameterized computational complexity. According
to the second goal, we also identified several special cases allowing for efficient
solutions. Third, for all but one model, we performed a short, preliminary
experimental study. Doing so, we mainly provided more insights into practical
running times of our algorithms (Chapters 5 and 8). In one case (Chapter 7),
we experimented with freshly introduced concepts on real-world data. The
study of graph envy-freeness (Chapter 4) is the only exception, as we did not
provide any experimental study because of unavailability of suitable data. As
opposed to other considered models, for graph envy-freeness neither real-world
data nor established models for generating such data are available. Furthermore,
the inputs of the related problems are quite complex. They consist of a social
network and a list of resources together with the preferences of the agents over
the resources. Thus, coming up from scratch with a reasonable model for such
a complex input structure would require a very detailed and elaborate study by
itself.

In Part I of the thesis, we studied problems related to fairly and efficiently
allocating a collection of indivisible resources to a set of agents. We focused on
identifying particular features of reality whose exploitation lead to computation-
ally efficient solutions. However, for each topic in Part I the identified features
served us in a different manner. Introducing graph envy-freeness in Chapter 4,
we leveraged the fact that the classical notion of envy-freeness is too strong to
properly reflect requirements occurring in the real world. We achieved this by
incorporating information about social relations of the agents into the definition
of envy-freeness. As a result we proposed a seemingly more complicated variant

207

9. Conclusion

of envy-freeness that allowed us to relax the classical notion of envy-freeness.
Indeed, it is very unlikely in the real world that each agent compares itself to
every other agent. Instead, according to the social comparison theory proposed
by psychologist Leon Festinger [Fes54], agents rather compare themselves to
their “socially-close” peers. We took advantage of this fact by considering only
“local” comparisons between agents. Note that here the notion of locality is
imposed by some domain-related measure such as relationship, knowledge of
each other, physical proximity, or the like. In Chapter 5, we demonstrated quite
a different way of utilizing real-world properties of fair allocation problems.
Therein, we used two observations that led to further constraining the classical
notion of envy-freeness. First, we used the fact that the number of agents
might be rather limited in reality. Second, we exploited so-called bounded
rationality [Bot+04]. This phenomenon roughly says that the preferences of
human agents are not complicated (naturally, this does not apply to non-human
agents). As shown in the thesis, we succeeded in both approaches of modifying
the classical problem of finding envy-free and efficient allocations. Indeed, we
were able to show a number of polynomial-time algorithms and fixed-parameter
tractability results. Thus, our results in Part I form the following takeaway:
Once looking for islands of tractability, try both restricting and relaxing the
problem under investigation.

In Part II of the thesis, we focused on multiwinner voting problems emerging
from intentional and unintentional changes in the voter preferences. Precisely,
intentional changes were subject of our study in Chapter 8, while unintentional
changes were considered in Chapter 7. For both the ROBUSTNESS RADIUS
and the COALITIONAL MANIPULATION problems we analyzed what changes
in the voter preferences result in changing the outcome of an election. There
are, however, two important differences between the two problems: who tried
to alter an election outcome and what is the precise goal to achieve. In Ro-
BUSTNESS RADIUS, an organizer of an election was trying to find the smallest
number of votes alterations that ensure that the outcome is changed—in any
way. This is indeed different for COALITIONAL MANIPULATION, where a given
set of manipulators aims at changing the outcome to achieve the one that
satisfies them the most. Thus, compared to the model of ROBUSTNESS RADIUS,
in COALITIONAL MANIPULATION the manipulators not only had to change
the votes properly but also had to agree on what outcome satisfies them the
most. So, intuitively, studying how to achieve a satisfying manipulation in
the COALITIONAL MANIPULATION model should be harder than studying how
to change the election outcome in some arbitrary way in the ROBUSTNESS

208

9.1. Catching up with the Future

RADIUS problem. Indeed, our theoretical results from Part II reflect this in-
tuition for the case of k-Approval. While computing the robustness radius
for k-Approval is a computationally simple task, it is generally NP-hard to
even decide whether a group of manipulators can successfully manipulate an
election. Furthermore, our studies intuitively show that the general NP-hardness
of COALITIONAL MANIPULATION comes mainly from the hardness of deciding
which achievable outcome satisfies the manipulators the most (Proposition 8.13).
Remarkably, COALITIONAL MANIPULATION is polynomial-time solvable for most
cases for which the manipulators can easily agree on the most satisfying outcome
(see Table 8.1). Summarizing, our theoretical findings in Part II seem to say
that for a group of people agreeing on a common goal can be significantly harder
than achieving this goal itself.

In the next section, we present a desirable example application of the topics
studied in the thesis. By the example we illustrate several follow-up studies to
our work, addressing further challenges related to fair allocation, multiwinner
voting and, related issues.

9.1 Catching up with the Future

Coping with the SARS-CoV-2 pandemic, a vast majority of European countries
faces severe issues related to resource management and resource distribution.
This was especially evident in the first days of the outbreak when skyrocketing
demand frequently caused acute shortages of necessary equipment. Just to
mention few examples, lack of masks, ventilators, coronavirus tests, hand
sanitizers, and human resources had been repeatedly reported by numerous
institutions including hospitals, drug stores, firms and administrative units.
Could computational social choice and, in particular, the issues studied in the
thesis serve us in dealing with such cases?

Let us break down the aforementioned highly complex problem to address the
posed question. For the discussion, we narrow down our focus only to managing
different coronavirus tests and ventilators. We also assume that the supply of
these is very limited and far below the demand, which indeed was the case in
the early days of the pandemic. Thus, we neglect the supply at all and we
arrive at having a (fixed) collection of indivisible resources. Assuming that
managing hospitals is among the tasks of local governments (as, for example,
in Poland), we represent units of administrative divisions (counties) as agents.
Finally, asking the agents to report on their needs, we collect the data that form
the preferences of the agents over different available tests and ventilators; for

209

9. Conclusion

example, a county could prefer a particular test over another because the former
is quicker and thus more suitable to perform quick massive testing in some
region (such massive testing was conducted for example in Silesia in Poland,
where mines were identified to be hotspots for Covid-19 spread). And now the
important question emerges: “How to properly allocate the resources?”. Of
course, we aim at allocating them in an efficient, non-wasteful manner, at the
same time ensuring that all agents are treated fairly and thus feel well taken care
of. Furthermore, we would like to be as robust as possible against unavoidable
errors in reporting.

Despite the simplifications that we make, properly allocating the available
resources involves considering all concepts that we studied. For example, we
requested our allocation to be robust against possibly inaccurate data. Fur-
thermore, to increase utilization of ventilators, we probably should consider
“srouping” some counties and allocate them a shared bundle of ventilators. This
way, the grouped counties can further distribute them “on demand” on a smaller
and easier to manage scale. Additionally, it might be easier to aggregate prefer-
ences of all counties in a single group to decrease the amount and complexity
of the collected data. Moreover, shrinking the data would certainly reduce
the effort required to process the data in order to facilitate critical resources
management. Last but not least, it is natural that only some counties may
be grouped together. For example, counties that are far away from each other
would not be able to manage ventilators well. Below, we briefly discuss the
raised issues. In the discussion, we demonstrate possible high-level connections
and interactions between the topics that we studied in the thesis.

Robustness In our pandemic scenario, the preferences of the agents could
be susceptible to errors, perturbations and misreporting. It holds for various
reasons: people tend to be vulnerable to making small mistakes, the data itself
can be noisy, or agents could try to behave strategically. Hence, to achieve an
allocation that is resistant to possible errors, it seems natural to study robustness
in the context of fair allocation. The hope is that robust solutions would defend
us, at least to some extent, against possibly costly and time-consuming changes
of allocations. Studying the robustness of fair allocations was very recently
initiated by Menon and Larson [ML20]. Yet, they only focused on the case of
three agents, so many settings remain unstudied. Issues related to robustness
have also gained attention in several other areas such as in the contexts of stable
marriage [CSS19] and facility location [ML19].

210

9.1. Catching up with the Future

Sharing and Grouping Sharing frequently leads to more efficient utilization
of resources. The same rule applies to the case of ventilators in our scenario.
Hence, it might be beneficial to let some counties share a pool of ventilators and
use them on demand. This would prevent unnecessary idling which is extremely
undesirable in our outbreak scenario featuring very high demand but no supply.

Incorporating sharing poses a big challenge to the models considered in the
thesis. While, in the fair allocation scenario we assume private bundles and in
multiwinner voting we deal with a single, collective set of resources. There is,
however, a gap in modeling scenarios for indivisible resources between these two
extreme models. We are aware of two works Manurangsi and Suksompong [MS17]
and Sandomirskiy and Segal-Halevi [SS19| considering scenarios where agents
can share the resources that are allocated to them. However, in both of them
sharing the resources decreases the utility that is obtained by the agents who
share the resource, as compared to the utility that an agent gets when the
resource is not shared. This assumption contradicts our motivation, in which
sharing can increase utilization of a resource by decreasing its idling time.

To cover our idea of shareable (ventilators) and non-shareable (tests) resources,
we should probably apply lessons learned from both parts of the thesis. Even
more so, as we aim at achieving a model that allows for efficiently finding
desired allocations. Drawing from our conclusions from Part I, we should
rather focus on structuring agent relations in the input and simplify agent
preferences. Structuring agent relation appears relatively straightforward. For
example, it is clear that distant counties will not be able to share ventilators.
Simplifying agent preferences, however, requires more involved discussion. A
relatively simple way to achieve this is to force counties to already provide
simple preferences. We can do this by allowing them to choose only among such
two options for each resources: high demand and no demand. Yet, this still
may lead to harsh conflicts appearing within a single group that want to share
ventilators (see Table 8.1, which features the NP-hardness of breaking ties even
for this kind of utilities). Thus, to avoid the conflicts, it is probably beneficial
to utilize our observation from Part II and first develop clear, joint goals for
groups that want to share ventilators. We also expect the goals to be robust
against small changes in the demand reported by the counties. Otherwise, it is
questionable whether we can call the goals clear because a small perturbation in
the demand could invalidate the goals. One way of obtaining such high-quality
goals might be to run small multiwinner election within each group, treating
the resources as candidates and the counties as voters. Then, we should check
the robustness of the outcomes that the elections provide. If the outcomes turn

211

9. Conclusion

out to be robust, then they can be used as the clear goals of the groups and can
be reported as the preference of the whole groups over the desired resources.
Otherwise, the non-robust outcomes should be discussed more in the process
of developing the goals. All in all, we believe that our insights from the thesis
could indeed be useful to fill the gap between studying allocations of private
bundles and selecting collective sets of resources.

9.2 Epilogue

The discussion provided in the above section is just the tip of the iceberg
and a proper treatment of complex scenarios like this definitely requires very
broad, interdisciplinary investigations. In particular, it shows a strong need for
studying different kind of connections of multiwinner voting and fair allocation
with other areas of computer science. For example, to cover the dynamics of
the agents it would be beneficial to employ algorithmic game theory or theory
of distributed systems.

Hopefully, one day our understanding of fair allocation, multiwinner voting,
and their relations to other scientific disciplines will help us in dealing with such
issues as in the depicted SARS-CoV-2 scenario. Meanwhile, may we remember
that not all those who wander are lost [Tol12| when striving for this goal.

212

Bibliography

[ABM18]

[Acal9]

[AKP17]

[AS20]

[AW19]

[Azi+17]

[Azi+18]

[Azi+19)]

[BBN16]

G. Amanatidis, G. Birmpas, and V. Markakis. “Comparing approximate
relaxations of envy-freeness”. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI ’18). 2018, pp. 4248 (cited
on p. 68).

Academy of Motion Picture Arts and Sciences. 93rd oscars rules. https:
//www.oscars.org/sites/oscars/files/93aa_rules.pdf. Accessed: 2020-08-10.
2019 (cited on p. 106).

R. Abebe, J. Kleinberg, and D. C. Parkes. “Fair division via social compar-
ison”. In: Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’17). 2017, pp. 281-289 (cited
on p. 19).

H. Aziz and N. Shah. Participatory budgeting: models and approaches. 2020.
arXiv: 2003.00606 [cs.GT] (cited on p. 4).

M. Aleksandrov and T. Walsh. Greedy algorithms for fair division of mized
manna. 2019. arXiv: 1911.11005 [cs.AI] (cited on pp. 13, 101).

H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. “The
Condorcet principle for multiwinner elections: From shortlisting to propor-
tionality”. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI °17). 2017, pp. 84-90 (cited on pp. 116, 120).

H. Aziz, S. Bouveret, I. Caragiannis, I. Giagkousi, and J. Lang. “Knowledge,
fairness, and social constraints”. In: Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence (AAAI ’18). 2018, pp. 4638-4645 (cited
on pp. 20, 28).

H. Aziz, 1. Caragiannis, A. Igarashi, and T. Walsh. “Fair allocation of
indivisible goods and chores”. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI ’19). 2019, pp. 53-59
(cited on pp. 13, 89, 90, 92, 93, 101).

B. Bliem, R. Bredereck, and R. Niedermeier. “Complexity of efficient
and envy-free resource allocation: few agents, resources, or utility levels”.
In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI’ 16). 2016, pp. 102-108 (cited on pp. 13, 37, 38, 69, 78,
79).

213

https://www.oscars.org/sites/oscars/files/93aa_rules.pdf
https://www.oscars.org/sites/oscars/files/93aa_rules.pdf
http://arxiv.org/abs/2003.00606
http://arxiv.org/abs/1911.11005

Bibliography

[BCoS]

[BC10]

[BCM16]

[Bei+21]

[Ben+19)

[Ben+21]

[Bey+19]

[BFK20]

[BHS20]

[Bil +19]

[BKN17]

214

S. Barbera and D. Coelho. “How to choose a non-controversial list with
k names”. In: Social Choice and Welfare 31(1) (2008), pp. 79-96 (cited
on p. 155).

S. Barbera and D. Coelho. “On the rule of k names”. In: Games and
Economic Behavior 70(1) (2010), pp. 44-61 (cited on p. 120).

S. Bouveret, Y. Chevaleyre, and N. Maudet. “Fair allocation of indivisible
goods”. In: Handbook of Computational Social Choice. Ed. by F. Brandt, V.
Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Cambridge University
Press, 2016. Chap. 12, pp. 311-329 (cited on p. 13).

X. Bei, A. Igarashi, X. Lu, and W. Suksompong. “The price of connectivity
in fair division”. In: Proceedings of the 85th AAAI Conference on Artificial
Intelligence (AAAI ’21). To appear. 2021 (cited on p. 21).

M. Bentert, J. Chen, V. Froese, and G. J. Woeginger. Good things come to
those who swap objects on paths. 2019. arXiv: 1905.04219 [cs.DS] (cited
on p. 21).

M. Bentert, R. Bredereck, P. Gyorgyi, A. Kaczmarczyk, and R. Niedermeier.
“A multivariate complexity analysis of the material consumption schedul-
ing problem”. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI ’21). To appear. 2021 (cited on p. ix).

A. Beynier, Y. Chevaleyre, L. Gourveés, A. Harutyunyan, J. Lesca, N.
Maudet, and A. Wilczynski. “Local envy-freeness in house allocation prob-
lems”. In: Autonomous Agents and Multi-Agents Systems 33(5) (2019),
pp- 591-627 (cited on p. 20).

R. Bredereck, T. Fluschnik, and A. Kaczmarczyk. Multistage committee
election. 2020. arXiv: 2005.02300 [cs.GT] (cited on p. ix).

X. Bei, G. Huzhang, and W. Suksompong. “On the complexity of achieving
proportional representation”. In: Social Choice and Welfare 55(3) (2020),
pp- 523-545 (cited on p. 25).

V. Bilo, I. Caragiannis, M. Flammini, A. Igarashi, G. Monaco, D. Peters,
C. Vinci, and W. S. Zwicker. “Almost envy-free allocations with connected
bundles”. In: Proceedings of the 10th Innovations in Theoretical Computer
Science Conference (ICTS ’19). Vol. 124. 2019, 14:1-14:21 (cited on p. 21).

R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. “On coalitional ma-
nipulation for multiwinner elections: shortlisting”. In: Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI ’17).
2017, pp. 887-893 (cited on p. viii).

http://arxiv.org/abs/1905.04219
http://arxiv.org/abs/2005.02300

[BKN18]

[BKN20]

[BKN21]

[BKV18]

[BLOS]

[BL16]|

[BNW11]

[Boe+20]

[Bot+04]

[Bou+17]

R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. “Envy-free alloca-
tions respecting social networks”. In: Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’18).
2018, pp. 283-291 (cited on pp. vii, 65).

R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. “Electing successive
committees: complexity and algorithms”. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI ’20). 2020, pp. 1846-1853 (cited
on p. ix).

R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. “On coalitional ma-
nipulation for multiwinner elections: shortlisting”. In: Autonomous Agents
and Multi-Agents Systems 35 (2021), Article 38 (cited on pp. viii, 176, 177,
189, 197).

S. Barman, S. K. Krishnamurthy, and R. Vaish. “Finding fair and efficient
allocations”. In: Proceedings of the 19th ACM Conference on Economics
and Computation (EC ’18). 2018, pp. 557-574 (cited on pp. 13, 89, 92).

S. Bouveret and J. Lang. “Efficiency and envy-freeness in fair division of
indivisible goods: logical representation and complexity”. In: Journal of
Artificial Intelligence Research 32(1) (2008), pp. 525-564 (cited on pp. 13,
37,78, 97).

S. Bouveret and M. Lemaitre. “Characterizing conflicts in fair division of
indivisible goods using a scale of criteria”. In: Autonomous Agents and
Multi-Agents Systems 30(2) (2016), pp. 259290 (cited on p. 20).

N. Betzler, R. Niedermeier, and G. J. Woeginger. “Unweighted coalitional
manipulation under the Borda rule is NP-hard”. In: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI ’11). 2011,
pp. 55-60 (cited on p. 155).

N. Boehmer, R. Bredereck, P. Faliszewski, A. Kaczmarczyk, and R. Nie-
dermeier. “Line-up elections: parallel voting with shared candidate pool”.
In: Proceedings of the 13th International Symposium on Algorithmic Game
Theory (SAGT ’20). 2020, pp. 275-290 (cited on p. ix).

W. Bottom, T. Gilovich, D. Griffin, and D. Kahneman. “Heuristics and
biases: the psychology of intuitive judgment”. In: The Academy of Manage-
ment Review 29 (2004), p. 695 (cited on pp. 68, 208).

S. Bouveret, K. Cechlarova, E. Elkind, A. Igarashi, and D. Peters. “Fair
division of a graph”. In: Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI °17). 2017, pp. 135-141 (cited
on p. 21).

215

Bibliography

[BQZ17|

[BR15|

[BR16]

[Bra+16]

[Bre+16]

[Bre+17]

[Bre+19a|

[Bre+19b]

[Bre+20a]

[Bre-+20b]

216

X. Bei, Y. Qiao, and S. Zhang. “Networked fairness in cake cutting”. In: Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI ’17). 2017, pp. 3632-3638 (cited on p. 19).

D. Baumeister and J. Rothe. “Preference aggregation by voting”. In: Eco-
nomics and Computation: An Introduction to Algorithmic Game Theory,
Computational Social Choice, and Fair Division. Ed. by J. Rothe. Springer,
2015. Chap. 4, pp. 197-325 (cited on pp. 108, 154, 157).

C. Boutilier and J. S. Rosenschein. “Incomplete information and communi-
cation in voting”. In: Handbook of Computational Social Choice. Ed. by F.
Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Cambridge
University Press, 2016, pp. 223-257 (cited on p. 111).

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, eds.
Handbook of Computational Social Choice. Cambridge University Press,
2016 (cited on p. 108).

R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. “Complexity
of shift bribery in committee elections”. In: Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI ’16). Accepted for publication
in the ACM Transactions on Computation Theory. 2016, pp. 2452-2458
(cited on p. 136).

R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron,
and N. Talmon. “Robustness among multiwinner voting rules”. In: Proceed-
ings of the 10th International Symposium on Algorithmic Game Theory
(SAGT ’17). 2017, pp. 80-92 (cited on p. viii).

R. Bredereck, P. Faliszewski, A. Kaczmarczyk, and R. Niedermeier. “An
experimental view on committees providing justified representation”. In:
Proceedings of the 28th International Joint Conference on Artificial Intelli-
gence (IJCAI ’19). 2019, pp. 109-115 (cited on pp. ix, 199).

R. Bredereck, A. Kaczmarczyk, D. Knop, and R. Niedermeier. “High-
multiplicity fair allocation: lenstra empowered by IN-fold integer program-
ming”. In: Proceedings of the 2019 ACM Conference on Economics and
Computation (EC ’19). 2019, pp. 505-523 (cited on pp. viii, 89, 103).

R. Bredereck, P. Faliszewski, M. Furdyna, A. Kaczmarczyk, and M. Lackner.
“Strategic campaign management in apportionment elections”. In: Proceed-
ings of the 29th International Joint Conference on Artificial Intelligence
(IJCAI ’20). 2020, pp. 103-109 (cited on p. ix).

R. Bredereck, P. Faliszewski, A. Kaczmarczyk, D. Knop, and R. Niedermeier.
“Parameterized algorithms for finding a collective set of items”. In: The 34th
AAAT Conference on Artificial Intelligence (AAAT ’20. 2020, pp. 1838-1845
(cited on pp. ix, 4).

[Bre+20c] R. Bredereck, A. Kaczmarczyk, D. Knop, and R. Niedermeier. High-

multiplicity fair allocation using parametric integer linear programming.
2020. arXiv: 2005.04907 [cs.GT] (cited on p. ix).

[Bre+21a] R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron,

and N. Talmon. “Robustness among multiwinner voting rules”. In: Artificial
Intelligence 290 (2021), 103403 (cited on pp. viii, 148, 150).

[Bre+21b] R. Bredereck, A. Figiel, A. Kaczmarczyk, D. Knop, and R. Niedermeier.

[BST19]

[BSU13]

[BSZ91]
[BTY6]

[BTT89)

[Bur]

[Car+-16]

[Carl]]

[CCs3)

“High-multiplicity fair allocation made more practical”. In: Proceedings of
the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’21). 2021, pp. 260-268 (cited on p. ix).

M. Blom, P. J. Stuckey, and V. Teague. “Toward computing the margin
of victory in single transferable vote elections”. In: INFORMS Journal on
Computing 31(4) (2019), pp. 636653 (cited on pp. 114, 122).

N. Betzler, A. Slinko, and J. Uhlmann. “On the computation of fully
proportional representation”. In: Journal of Artificial Intelligence Research
47 (2013), pp. 475-519 (cited on pp. 116, 117).

S. Barbera, H. Sonnenschein, and L. Zhou. “Voting by committees”. In:
Econometrica 59(3) (1991), pp. 595-609 (cited on p. 108).

S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute
Resolution. Cambridge University Press, 1996 (cited on p. 13).

J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. “The computational
difficulty of manipulating an election”. In: Social Choice and Welfare 6(3)
(1989), pp. 227-241 (cited on p. 155).

Bureau of Labor Statistics, U.S. Department of Labor. Employer costs for
employee compensation—June 2017. https://www.bls.gov/news.release/
pdf /ecec.pdf. Accessed 2020-08-10 (cited on p. 17).

I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and
J. Wang. “The unreasonable fairness of maximum Nash welfare”. In: Pro-
ceedings of the 17th ACM Conference on Economics and Computation (EC
’16). 2016, pp. 305-322 (cited on pp. 68, 89, 90, 92).

D. Cary. “Estimating the margin of victory for instant-runoff voting”.
Presented at 2011 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections. 2011 (cited on pp. 114, 122).

J. Chamberlin and P. Courant. “Representative deliberations and repre-
sentative decisions: Proportional representation and the Borda rule”. In:
American Political Science Review 77(3) (1983), pp. 718-733 (cited on
p. 115).

217

http://arxiv.org/abs/2005.04907
https://www.bls.gov/news.release/pdf/ecec.pdf
https://www.bls.gov/news.release/pdf/ecec.pdf

Bibliography

[cCCo6]

[CEM17]

[CGM20]

[Cha+19)

[Coe04]

[CRX09)

[CS05]

[CSLO7]

[CSS19]

[CTO7]

[CW16]

218

L. Cai, S. M. Chan, and S. O. Chan. “Random separation: a new method
for solving fixed-cardinality optimization problems”. In: Proceedings of the
2nd International Workshop on Parameterized and Ezact Computation
(IWPEC ’06). 2006, pp. 239-250 (cited on p. 50).

Y. Chevaleyre, U. Endriss, and N. Maudet. “Distributed fair allocation of
indivisible goods”. In: Artificial Intelligence 242 (2017), pp. 1-22 (cited
on pp. 21, 22, 62).

B. R. Chaudhury, J. Garg, and K. Mehlhorn. “EFX exists for three agents”.
In: Proceedings of the 21st ACM Conference on Economics and Computation
(EC ’20). 2020, pp. 1-19 (cited on p. 92).

A. Chakraborty, G. K. Patro, N. Ganguly, K. P. Gummadi, and P. Loiseau.
“Equality of voice: towards fair representation in crowdsourced Top-K recom-
mendations”. In: Proceedings of the Conference on Fairness, Accountability,
and Transparency (FAT ’19). 2019, pp. 129-138 (cited on p. 1).

D. Coelho. “Understanding, Evaluating and Selecting Voting Rules Through
Games and Axioms”. PhD thesis. Universitat Autonoma de Barcelona, 2004
(cited on p. 118).

V. Conitzer, M. Rognlie, and L. Xia. “Preference functions that score
rankings and maximum likelihood estimation”. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI ’09). 2009,
pp- 109-115 (cited on pp. 116, 122, 136, 149).

V. Conitzer and T. Sandholm. “Common voting rules as maximum likeli-
hood estimators”. In: Proceedings of the 21st Conference in Uncertainty in
Artificial Intelligence (UAI ’05). 2005, pp. 145-152 (cited on p. 149).

V. Conitzer, T. Sandholm, and J. Lang. “When are elections with few
candidates hard to manipulate?” In: Journal of the ACM 54(3) (2007),
pp. 1-33 (cited on pp. 155, 203).

J. Chen, P. Skowron, and M. Sorge. “Matchings under preferences: strength
of stability and trade-offs”. In: Proceedings of the 2019 ACM Conference on
Economics and Computation (EC ’19). 2019, pp. 41-59 (cited on p. 210).

T. Coleman and V. Teague. “On the complexity of manipulating elections.”
In: Proceedings of Computing: The 13th Australasian Theory Symposium.
2007, pp. 25-33 (cited on p. 155).

V. Conitzer and T. Walsh. “Barriers to manipulation in voting”. In: Hand-
book of Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U.
Endriss, J. Lang, and A. D. Procaccia. Cambridge University Press, 2016.
Chap. 6, pp. 126-145 (cited on pp. 154, 157, 205).

[Cyg+15]

[Dav+14]

[DD16]

[Deb92]
[DF13]

[DF95)

[DF99]

[DN15]

[Dro81]

[DS12]

[Edu+20]

[EFS09]

[EHK18|

M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015
(cited on pp. 8, 130).

J. Davies, G. Katsirelos, N. Narodytska, T. Walsh, and L. Xia. “Complexity
of and algorithms for the manipulation of Borda, Nanson’s and Baldwin’s
voting rules”. In: Artificial Intelligence 217 (2014), pp. 2042 (cited on
p. 155).

M. Diss and A. Doghmi. “Multi-winner scoring election methods: Condorcet
consistency and paradoxes”. In: SSRN FElectronic Journal (2016), pp. 97-116
(cited on p. 110).

B. Debord. “An axiomatic characterization of Borda’s k-choice function”.
In: Social Choice and Welfare 9(4) (1992), pp. 337-343 (cited on p. 158).

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Springer, 2013 (cited on p. 8).

R. G. Downey and M. R. Fellows. “Fixed-parameter tractability and com-
pleteness ii: on completeness for W[1]”. In: Theoretical Computer Science
141(1) (1995), pp. 109-131 (cited on p. 8).

R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999 (cited on p. 173).

P. Dey and Y. Narahari. “Estimating the margin of victory of an election
using sampling”. In: Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI ’15). 2015, pp. 11201126 (cited on p. 122).

H. R. Droop. “On methods of electing representatives”. In: Journal of the
Statistical Society of London 44(2) (1881), pp. 141-202 (cited on p. 120).

B. Dorn and I. Schlotter. “Multivariate complexity analysis of swap bribery”.
In: Algorithmica 64(1) (2012), pp. 126-151 (cited on p. 137).

E. Eduard, G. Robert, H. Thekla, and O. Sebastian. “Parameterized com-
plexity of envy-free resource allocations in social networks”. In: Proceedings
of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20). 2020,
pp. 7135-7142 (cited on pp. 20, 62, 65).

E. Elkind, P. Faliszewski, and A. Slinko. “Swap bribery”. In: Proceedings of
the 2nd International Symposium on Algorithmic Game Theory (SAGT 09).
2009, pp. 299-310 (cited on pp. 114, 122).

F. Eisenbrand, C. Hunkenschréder, and K.-M. Klein. “Faster Algorithms for
Integer Programs with Block Structure”. In: Proceedings of the 45th Inter-
national Colloguium on Automata, Languages, and Programming (ICALP
’18). Vol. 107. 2018, 49:1-49:13 (cited on pp. 76, 77).

219

Bibliography

[Elk-+17]

[End17]

[Erd+15]

[ES16]

[Fal+17]

[Fal-+18a)

[Fal + 18b]

[Fal+19]

[Fel+09]

[Fes54]
[FGO6]

[FR15]

220

E. Elkind, P. Faliszewski, P. Skowron, and A. M. Slinko. “Properties of
multiwinner voting rules”. In: Social Choice and Welfare 48(3) (2017),
pp. 599-632 (cited on pp. 106, 111, 115, 154, 155).

U. Endriss, ed. Trends in Computational Social Choice. Al Access, 2017
(cited on p. 108).

G. Erdélyi, M. R. Fellows, J. Rothe, and L. Schend. “Control complexity
in Bucklin and fallback voting: an experimental analysis”. In: Journal of
Computer and System Sciences 81(4) (2015), pp. 661-670 (cited on p. 155).

E. Elkind and A. Slinko. “Rationalizations of voting rules”. In: Handbook
of Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia. Cambridge University Press, 2016. Chap. 8
(cited on p. 148).

P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. “Multiwinner voting:
a new challenge for social choice theory”. In: Trends in Computational
Social Choice. Ed. by U. Endriss. AT Access Foundation, 2017, pp. 27-47
(cited on p. 106).

P. Faliszewski, M. Lackner, D. Peters, and N. Talmon. “Effective heuristics
for committee scoring rules”. In: Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, (AAAI ’18). 2018, pp. 1023-1030 (cited on p. 199).

P. Faliszewski, A. Slinko, K. Stahl, and N. Talmon. “Achieving fully propor-
tional representation by clustering voters”. In: Journal of Heuristics 24(5)
(2018), pp. 725-756 (cited on p. 117).

P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. “Committee scoring
rules: Axiomatic characterization and hierarchy”. In: ACM Transactions
on Economics and Computation 6(1) (2019), Article 3 (cited on pp. 106,
111, 115).

M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. “On the param-
eterized complexity of multiple-interval graph problems”. In: Theoretical
Computer Science 410(1) (2009), pp. 5361 (cited on p. 174).

L. Festinger. “A theory of social comparison processes”. In: Human Relations
7(2) (1954), pp. 117140 (cited on pp. 18, 208).

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006
(cited on p. 8).

P. Faliszewski and J. Rothe. “Control and bribery in voting”. In: Handbook
of Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia. Cambridge University Press, 2015. Chap. 7
(cited on p. 106).

[FT17]

[FT87]

[Geh85]

[GF19]

[GF81]

[GJ79]

[Glo20]

[GLSS1]

[GLW17]

[GMT18]

[Gon85|

[GP15)]

A. Filtser and N. Talmon. “Distributed monitoring of election winners”. In:
Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS °17). 2017, pp. 1160-1168 (cited on
p. 122).

A. Frank and E. Tardos. “An application of simultaneous diophantine ap-
proximation in combinatorial optimization”. In: Combinatorica 7(1) (1987),
pp. 49-65 (cited on p. 11).

W. Gehrlein. “The Condorcet criterion and committee selection”. In: Math-
ematical Social Sciences 10(3) (1985), pp. 199209 (cited on p. 118).

G. Gawron and P. Faliszewski. “Robustness of approval-based multiwinner
voting rules”. In: Proceedings of the 6th International Conference on Algo-
rithmic Decision Theory (SAGT ’19). 2019, pp. 17-31 (cited on pp. 115,
150).

W. V. Gehrlein and P. C. Fishburn. “Constant scoring rules for choosing one
among many alternatives”. In: Quality and Quantity 15 (1981), pp. 203-210
(cited on p. 110).

M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979 (cited
on p. 126).

Global Media & Entertainment Ltd. Classic FM hall of fame 2020. https:
/ /halloffame.classicfm.com /2020. Accessed: 2020-08-10. 2020 (cited on
p. 154).

M. Grotschel, L. Lovéasz, and A. Schrijver. “The ellipsoid method and its
consequences in combinatorial optimization”. In: Combinatorica 1(2) (1981),
pp. 169-197 (cited on p. 97).

L. Gourves, J. Lesca, and A. Wilczynski. “Object allocation via swaps along
a social network”. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI ’17. 2017, pp. 213-219 (cited on p. 21).

L. Gourvés, J. Monnot, and L. Tlilane. “Subset sum problems with di-
graph constraints”. In: Journal of Combinatorial Optimization 36(3) (2018),
pp. 937-964 (cited on p. 21).

T. F. Gonzalez. “Clustering to minimize the maximum intercluster distance”.
In: Theoretical Computer Science 38 (1985), pp. 293-306 (cited on p. 126).

J. Goldman and A. D. Procaccia. “Spliddit: unleashing fair division algo-
rithms”. In: SIGecom Exchanges 13(2) (2015), pp. 41-46 (cited on pp. 3,
98).

221

https://halloffame.classicfm.com/2020
https://halloffame.classicfm.com/2020

Bibliography

[GraT5]

[Guo+16]

[Hai+15]

[HKW10]

[HOR13|

[HS07]

[Ide20]

[1P19)]

[Jan+13]

[Kal19]

[Kam03|

222

J. E. Graver. “On the foundations of linear and integer linear program-
ming 1”. In: Mathematical Programming 9(1) (1975), pp. 207-226 (cited
on pp. 75, 76).

C. Guo, Y. Zhang, M. Sheng, X. Wang, and Y. Li. “a-fair power alloca-
tion in spectrum-sharing networks”. In: IEEE Transactions on Vehicular
Technology 65(5) (2016), pp. 3771-3777 (cited on p. 1).

M. Haider, A. Aamir, A. Hamid, and M. Hashim. “A literature analysis
on the importance of non-financial rewards for employees’ job satisfaction”.
In: Abasyn University Journal of Social Sciences 8 (2015), pp. 341-354
(cited on p. 18).

R. Hemmecke, M. Képpe, and R. Weismantel. “A polynomial-time algorithm
for optimizing over N-fold 4-block decomposable integer programs”. In:
Proceedings of the 14th International Conference on Integer Programming
and Combinatorial Optimization (IPCO ’10). 2010, pp. 219-229 (cited
on pp. 67, 75).

R. Hemmecke, S. Onn, and L. Romanchuk. “ N-fold integer programming in
cubic time”. In: Mathematical Programming 137(1-2) (2013), pp. 325-341
(cited on pp. 67, 75, 76).

S. Hosten and S. Sullivant. “A finiteness theorem for Markov bases of
hierarchical models”. In: Journal of Combinatorial Theory, Series A 114(2)
(2007), pp. 311-321 (cited on p. 76).

Ideal. Shortlisting step-by-step guide for candidate recruitment. https://
ideal.com/shortlisting /. Accessed: 2020-08-08. 2020 (cited on pp. 106, 154).

A. Igarashi and D. Peters. “Pareto-optimal allocation of indivisible goods
with connectivity constraints”. In: The 33rd AAAI Conference on Artificial
Intelligence (AAAI ’19). 2019, pp. 2045-2052 (cited on p. 21).

K. Jansen, S. Kratsch, D. Marx, and 1. Schlotter. “Bin packing with fixed
number of bins revisited”. In: Journal of Computer and System Sciences
79(1) (2013), pp. 39-49 (cited on pp. 53, 61).

L. Kalkbrenner. “Coalitional Manipulation for Multiwinner Elections: Al-
gorithms and Experiments”. Bachelor Thesis. TU Berlin, 2019 (cited on
p. 199).

T. Kamishima. “Nantonac collaborative filtering: Recommendation based
on order responses”. In: Proceedings of the 9th International Conference
on Knowledge Discovery and Data Mining (KDD ’03). 2003, pp. 583-588
(cited on pp. 146, 148).

https://ideal.com/shortlisting/
https://ideal.com/shortlisting/

[Kan87]

[Kei+09)

[Ken38|

[KF19]

[KKM18|

R. Kannan. “Minkowski’s convex body theorem and integer programming”.
In: Mathematics of Operations Research 12(3) (1987), pp. 415-440 (cited
on p. 11).

B. de Keijzer, S. Bouveret, T. Klos, and Y. Zhang. “On the complexity
of efficiency and envy-freeness in fair division of indivisible goods with
additive preferences”. In: Proceedings of the 1st International Conference on
Algorithmic Decision Theory (ADT ’09). 2009, pp. 98-110 (cited on p. 13).

M. G. Kendall. “A new Measure of Rank Correlation”. In: Biometrika
30(1-2) (1938), pp. 81-93 (cited on p. 112).

A. Kaczmarczyk and P. Faliszewski. “Algorithms for destructive shift
bribery”. In: Autonomous Agents and Multi-Agent Systems 33(3) (2019),
pp. 275-297 (cited on pp. ix, 122, 129, 146).

D. Knop, M. Koutecky, and M. Mnich. “A unifying framework for manipu-
lation problems”. In: Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’18). 2018, pp. 256
264 (cited on p. 72).

[KKM20a] D. Knop, M. Koutecky, and M. Mnich. “Combinatorial n-fold integer

programming and applications”. In: Mathematical Programming 184(1)
(2020), pp. 1-34 (cited on pp. 75, 80).

[KKM20b] D. Knop, M. Koutecky, and M. Mnich. “Voting and bribing in single-

[KM15]

[KPP04]

[LB11]

[Len83|

[LHK13]

exponential time”. In: ACM Transactions on Economics and Computation
8(3) (2020), 12:1-12:28 (cited on p. 137).

E. Kamwa and V. Merlin. “Scoring rules over subsets of alternatives:
consistency and paradoxes”. In: Journal of Mathematical Economics 61
(2015), pp. 130-138 (cited on p. 110).

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
2004 (cited on pp. 179, 182).

T. Lu and C. Boutilier. “Budgeted social choice: From consensus to per-
sonalized decision making”. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI ’11). 2011, pp. 280-286 (cited
on pp. 116, 117).

H. W. Lenstra. “Integer programming with a fixed number of variables”.
In: Mathematics of Operations Research 8(4) (1983), pp. 538-548 (cited
on pp. 11, 36, 54, 55, 67, 80, 86, 137).

J. A. D. Loera, R. Hemmecke, and M. Koppe. Algebraic and Geometric
Ideas in the Theory of Discrete Optimization. Vol. 14. MOS-SIAM Series
on Optimization. 2013 (cited on p. 75).

223

Bibliography

[Lin11]

[Lip+04]

[LR19]

[Lu+12]

[LX15]

[Mag+11]

[Mar02]

[Marl7]

[Mei-+08]

[Min19]

224

A. Lin. “The complexity of manipulating k-approval elections”. In: Proceed-
ings of the 3rd International Conference on Agents and Artificial Intelligence
(ICAART ’11). 2011, pp. 212-218 (cited on pp. 157, 203).

R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. “On approximately fair
allocations of indivisible goods”. In: Proceedings of the 5th ACM Conference
on Electronic Commerce (EC ’04). 2004, pp. 125-131 (cited on pp. 68, 89,
92).

P. Lange and J. Rothe. “Optimizing social welfare in social networks”.
In: Proceedings of 6th International Conference on Algorithmic Decision
Theory (ADT ’19). 2019, pp. 81-96 (cited on p. 62).

T. Lu, P. Tang, A. D. Procaccia, and C. Boutilier. “Bayesian vote manipu-
lation: Optimal strategies and impact on welfare”. In: Proceedings of the
28th Conference on Uncertainty in Artificial Intelligence (UAI ’12). 2012,
pp. 543-553 (cited on p. 155).

J. Lang and L. Xia. “Voting in combinatorial domains”. In: Handbook of
Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia. Cambridge University Press, 2015. Chap. 9
(cited on p. 106).

T. Magrino, R. Rivest, E. Shen, and D. Wagner. “Computing the margin of
victory in IRV elections”. Presented at 2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections. 2011 (cited on pp. 114,
122).

T. Martino. “Fair chore division for climate change”. In: Social Theory and
Practice 28(1) (2002), pp. 101-134 (cited on p. 1).

E. Markakis. “Approximation algorithms and hardness results for fair
division with indivisible good”. In: Trends in Computational Social Choice.
Ed. by U. Endriss. ATl Access, 2017. Chap. 12, pp. 231-247 (cited on p. 13).

R. Meir, A. D. Procaccia, J. S. Rosenschein, and A. Zohar. “Complexity
of strategic behavior in multi-winner elections”. In: Journal of Artificial
Intelligence Research 33(1) (2008), pp. 149-178 (cited on pp. 110, 155159,
163, 203).

Ministry of Science and Higher Education of the Republic of Poland.
Informations on the election of The Board of Research Excellence (in
Polish). http://www.bip.nauka.gov.pl/g2/oryginal /2019 03/c435¢5061f0
aab7158eba2716553{240.pdf. Accessed: 2020-08-07. 2019 (cited on pp. 1,
155).

http://www.bip.nauka.gov.pl/g2/oryginal/2019_03/c435c5061f0aab7158eba2716553f240.pdf
http://www.bip.nauka.gov.pl/g2/oryginal/2019_03/c435c5061f0aab7158eba2716553f240.pdf

[ML19]

[ML20]
[Mou03)

[MP13]

[MP14]

[MS17]

[MS19]

[MW13]

[Nie06]
[Nis+07]
[Onn10]

[OZE13]

[Pap81]

V. Menon and K. Larson. “Mechanism design for locating a facility under
partial information”. In: Proceedings of the 12th International Symposium on
Algorithmic Game Theory (SAGT ’19). Ed. by D. Fotakis and E. Markakis.
2019, pp. 49-62 (cited on p. 210).

V. Menon and K. Larson. Algorithmic stability in fair allocation of indivisible
goods among two agents. 2020. arXiv: 2007.15203 [cs.GT] (cited on p. 210).

H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003 (cited
on p. 13).
D. Marx and M. Pilipczuk. Everything you always wanted to know about

the parameterized complexity of subgraph isomorphism (but were afraid to
ask). 2013. arXiv: 1307.2187 [cs.CC] (cited on pp. 46, 47).

D. Marx and M. Pilipczuk. “Everything you always wanted to know about
the parameterized complexity of Subgraph Isomorphism (but were afraid to
ask)”. In: Proceedings of the 81st International Symposium on Theoretical
Aspects of Computer Science (STACS ’14). 2014, pp. 542-553 (cited on
p. 46).

P. Manurangsi and W. Suksompong. “ Asymptotic existence of fair divisions
for groups”. In: Mathematical Social Sciences 89 (2017), pp. 100-108 (cited
on p. 211).

N. Misra and C. Sonar. “Robustness radius for Chamberlin-Courant on
restricted domains”. In: Proceedings of the 45th International Conference

on Current Trends in Theory and Practice of Computer Science. 2019,
pp. 341-353 (cited on pp. 114, 150).

N. Mattei and T. Walsh. “Preflib: a library for preferences”. In: Proceed-
ings of the 3nd International Conference on Algorithmic Decision Theory
(ADT °13). 2013, pp. 259-270 (cited on pp. 3, 112, 114, 146).

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Univer-
sity Press, 2006 (cited on p. 8).

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007 (cited on p. 205).

S. Onn. “Nonlinear discrete optimization”. In: Zurich Lectures in Advanced
Mathematics, European Mathematical Society (2010) (cited on pp. 75, 76).
S. Obraztsova, Y. Zick, and E. Elkind. “On manipulation in multi-winner
elections based on scoring rules”. In: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’13).
2013, pp. 359-366 (cited on pp. 108, 157, 163, 203).

C. H. Papadimitriou. “On the complexity of integer programming”. In:
Journal of the ACM 28(4) (1981), pp. 765768 (cited on p. 81).

225

http://arxiv.org/abs/2007.15203
http://arxiv.org/abs/1307.2187

Bibliography

[Pet18]

[PR18]

[Pre29]

[Pro+20]

[Prol3]

[Pro16]

[PRZ0S]

[PZ90]

[Rec20]

[RWOS]

[Sch+19]

[Schs6]

226

D. Peters. “Single-peakedness and total unimodularity: New polynomial-
time algorithms for multi-winner elections”. In: Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI ’18). 2018, pp. 1169—
1176 (cited on p. 117).

B. Plaut and T. Roughgarden. “Almost envy-freeness with general valu-
ations”. In: Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA °18). 2018, pp. 2584-2603 (cited on pp. 68, 89,
90).

M. Presburger. “Uber die Vollstandigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt”. In: Sprawozdanie z 1 kongresu matematykow krajow stowiariskich.
Comptes Rendus du I congrés de Mathématiciens des Pays Slaves. 1929,
pp- 92-101 (cited on p. 77).

A. Procaccia, N. Shah, J. Goldman, and D. Kurokawa. Fair Division of
Rent, Goods, Credit, Fare, and Tasks - Spliddit. http://www.spliddit.org/.
Accessed: 2020-08-07. 2020 (cited on pp. 3, 67, 98).

A. D. Procaccia. “Cake cutting: Not just child’s play”. In: Communications
of the ACM 56(7) (2013), pp. 78-87 (cited on p. 13).

A. D. Procaccia. “Cake cutting algorithms”. In: Handbook of Computational
Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. D. Procaccia. Cambridge University Press, 2016. Chap. 13, pp. 311-329
(cited on p. 13).

A. Procaccia, J. Rosenschein, and A. Zohar. “On the complexity of achieving
proportional representation”. In: Social Choice and Welfare 30(3) (2008),
pp. 353-362 (cited on pp. 116, 117).

J. W. Pratt and R. J. Zeckhauser. “The fair and efficient division of the
Windsor family silver”. In: Management Science 36(11) (1990), pp. 1293—
1301 (cited on p. 1).

Recording Academy. Grammy awards voting process. https://www.grammy.
com/grammys,/awards/voting-process. Accessed: 2020-08-07. 2020 (cited
on p. 1).

J. M. Robertson and W. A. Webb. Cake-Cutting Algorithms: Be Fair if
You Can. A K Peters, 1998 (cited on p. 13).

J. Scheuerman, J. L. Harman, N. Mattei, and K. B. Venable. Heuristics
in multi-winner approval voting. 2019. arXiv: 1905.12104 [cs.GT] (cited
on pp. 2, 155).

A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, Inc., 1986 (cited on pp. 11, 97).

http://www.spliddit.org/
https://www.grammy.com/grammys/awards/voting-process
https://www.grammy.com/grammys/awards/voting-process
http://arxiv.org/abs/1905.12104

[SFL16]

[SFS15]

[SFS19]

[Sko+15]

[SS19]

[SSX17]

[Sted8]

[Sti+10]

[Suk17]

[SW1§]

[SYE13]

P. Skowron, P. Faliszewski, and J. L. Lang. “Finding a collective set of
items: From proportional multirepresentation to group recommendation”.
In: Artificial Intelligence 241 (2016), pp. 191-216 (cited on pp. 4, 147).

P. Skowron, P. Faliszewski, and A. Slinko. “Achieving fully proportional
representation: Approximability results”. In: Artificial Intelligence 222
(2015), pp. 67-103 (cited on p. 117).

P. Skowron, P. Faliszewski, and A. Slinko. “Axiomatic characterization
of committee scoring rules”. In: Journal of Economic Theory 180 (2019),
pp. 244-273 (cited on pp. 111, 115).

P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. “The complexity of fully
proportional representation for single-crossing electorates”. In: Theoretical
Computer Science 569 (2015), pp. 43-57 (cited on p. 117).

F. Sandomirskiy and E. Segal-Halevi. Fair division with minimal sharing.
2019. arXiv: 1908.01669 [cs.GT] (cited on pp. 105, 211).

S. Sekar, S. Sikdar, and L. Xia. “Condorcet consistent bundling with social
choice”. In: Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’17). 2017, pp. 33—41 (cited on
p. 120).

H. Steinhaus. “The problem of fair division”. In: Econometrica 16 (1948),
pp- 101-104 (cited on p. 13).

M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. “Resource
allocation algorithms for virtualized service hosting platforms”. In: Journal
of Parallel and Distributed Computing 70(9) (2010), pp. 962-974 (cited
on p. 1).

W. Suksompong. “Fairly allocating contiguous blocks of indivisible items”.
In: Proceedings of the 10th International Symposium on Algorithmic Game
Theory (SAGT ’17). 2017, pp. 333-344 (cited on p. 21).

A. Saffidine and A. Wilczynski. “Constrained swap dynamics over a social
network in distributed resource reallocation”. In: Proceedings of the 11th
International Symposium on Algorithmic Game Theory (SAGT ’18). 2018,
pp. 213-225 (cited on p. 21).

D. Shiryaev, L. Yu, and E. Elkind. “On elections with robust winners”. In:
Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’18). 2013, pp. 415-422 (cited on pp. 114,
122, 129).

227

http://arxiv.org/abs/1908.01669

Bibliography

[Szu+20]

[Tol12]

[TRO0|

[Wall1]
[WS98]

[Xial2|

228

S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. “Drawing
a map of elections in the space of statistical cultures”. In: Proceedings of
the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’20). 2020, pp. 1341-1349 (cited on p. 200).

J. Tolkien. The Fellowship of the Ring. The Lord of the Rings. Orlando:
Houghton Mifflin Harcourt, 2012 (cited on p. 212). Repr. of The Fellowship
of the Ring. The Lord of the Rings. London: George Allen & Unwin, 1954.

T. Tideman and D. Richardson. “Better voting methods through technology:
the refinement-manageability trade-off in the single transferable vote”. In:
Public Choice 103 (2000), pp. 13-34 (cited on p. 139).

T. Walsh. “Where are the hard manipulation problems?” In: Journal of
Artificial Intelligence Research 44 (2011), pp. 1-29 (cited on p. 155).

D. J. Watts and S. H. Strogatz. “Collective dynamics of ‘small-world’
networks”. In: Nature 393(6684) (1998), pp. 440-442 (cited on p. 28).

L. Xia. “Computing the margin of victory for various voting rules”. In:
Proceedings of the 13th ACM Conference on FElectronic Commerce (EC ’12).
2012, pp. 982-999 (cited on pp. 114, 122).

Schriftenreihe Foundations of computing

Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter Linear-
Time Algorithms for NP-hard Graph and
Hypergraph Problems Arising in Industrial
Applications. - 2014. - 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained
Editing of Small-Degree Graphs. - 2015. -
xiv, 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.

ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of
Manipulation and Anonymization in Social
Choice and Social Networks. - 2016. -

xiv, 275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes
of Graphs. Characterisations and Algorithmic
Meta-Theorems. - 2016. - xxii, 149 S.

ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jichua: Exploiting Structure in
Computationally Hard Voting Problems. -
2016. - xxi, 255 S.

ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef: On the Foundations of
dynamic coalitions. Modeling changes and
evolution of workflows in healthcare scenarios -
2016. - xv, 171 S.

ISBN 978-3-7983-2856-3 (print) EUR 12,00
ISBN 978-3-7983-2857-0 (online)

08: Sorge, Manuel: Be sparse! Be dense! Be
robust! Elements of parameterized algorithm-
mics. - 2017. - xvi, 251 S.

ISBN 978-3-7983-2885-3 (print) EUR 13,00
ISBN 978-3-7983-2886-0 (online)

09: Dittmann, Christoph: Parity games,
separations, and the modal p-calculus. -
2017.-x,274 S.

ISBN 978-3-7983-2887-7 (print) EUR 13,00
ISBN 978-3-7983-2888-4 (online)

10: Karcher, David S.: Event Structures with
Higher-Order Dynamics. - 2019. - xix, 125 S.
ISBN 978-3-7983-2995-9 (print) EUR 11,00
ISBN 978-3-7983-2996-6 (online)

11: Jungnickel, Tim: On the Feasibility of
Multi-Leader Replication in the Early Tiers. -
2018. - xiv, 177 S.

ISBN 978-3-7983-3001-6 (print) EUR 13,00
ISBN 978-3-7983-3002-3 (online)

12: Froese, Vincent: Fine-grained complexity
analysis of some combinatorial data science
problems. - 2018. - xiv, 166 S.

ISBN 978-3-7983-3003-0 (print) EUR 11,00
ISBN 978-3-7983-3004-7 (online)

13: Molter, Hendrik: Classic graph problems
made temporal — a parameterized complexity
analysis. - 2020. - xii, 206 S.

ISBN 978-3-7983-3172-3 (print) EUR 12,00
ISBN 978-3-7983-3173-0 (online)

14: Bentert, Matthias: Elements of Dynamic
and 2-SAT Programming: Paths, Trees, and
Cuts. -2021. - xiv, 199 S.

ISBN 978-3-7983-3209-6 (print)

ISBN 978-3-7983-3210-2 (online)

Universitatsverlag der TU Berlin

Algorithmic Aspects of Resource Allocation and Multiwinner Voting:
Theory and Experiments

This thesis investigates elements of computational social choice in the light of re-
al-world applications. We propose several new notions and extensions of existing
models—among others, we augment the scenario of fair allocation of indivisible
resources with the social context and investigate the robustness of multiwinner
election outcomes. Then we analyze the complexity of answering the computatio-
nal questions raised by the notions we propose.

Our theoretical study reveals that the introduced concepts lead mostly to compu-
tationally hard problems. Yet, exploiting the toolbox of parameterized complexity,
we show several natural special cases admitting efficient algorithms. Our experi-
ments suggest that many of these algorithms are applicable in practice. Overall, we
contribute to a better understanding of fair allocation and multiwinner voting from
both theoretical and practical perspectives.

ISBN 978-3-7983-3215-7 (print)
ISBN 978-3-7983-3216-4 (online)

ISBN 978-3-7983-3215-7

https://verlag.tu-berlin.de

	Frontcover
	Title page
	Imprint
	Zusammenfassung
	Abstract
	Preface
	Contents
	Introduction
	Preliminaries and Notation
	Basics
	Vectors and Matrices
	Graph Theory
	Computational Complexity
	Parameterized Computational Complexity
	Integer Linear Programming
	Experimental Environment

	Resource Allocation. Dealing with Private Bundles
	Formalism of Resource Allocations
	Graph Envy-Freeness
	Introduction
	Basic Definitions
	Model and Discussion
	Finding Weakly Graph-Envy-Free Allocations
	Finding Strongly Graph-Envy-Free Allocations
	Conclusion

	High Multiplicity Allocations
	Introduction
	Preliminaries
	Seeking Envy-Free Pareto-Efficient Allocations
	Beyond Envy-Freeness
	Experimental Evaluation
	Conclusions

	Multiwinner Voting. Dealing with Collective Sets of Resources
	Elections, Multiwinner Voting Rules, and Election Generation
	Elections and Multiwinner Voting
	Generating Synthetic Election Data

	Robustness of Multiwinner Voting Rules
	Introduction
	Preliminaries
	Classical Computational Complexity
	Parameterized Computational Complexity
	Beyond the Worst Case: An Experimental Evaluation
	Conclusions

	Coalitional Manipulation for Multiwinner Elections
	Introduction
	Preliminaries
	Complexity of Tie-Breaking
	Complexity of Coalitional Manipulation
	Experimental Insights
	Conclusion

	Conclusion
	Catching up with the Future
	Epilogue

	Bibliography
	Backcover

