
Motion representation
with spiking neural networks

for grasping and manipulation

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc.-Ing. Juan Camilo Vásquez Tieck

aus Medellin, Kolumbien

Tag der mündlichen Prüfung: 22. Oktober 2021

Referent: Prof. Dr.-Ing. Rüdiger Dillmann

Korreferent: Prof. Dr. Rainer Goebel

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

Credits

"What motivated explorers?... What inspires an explorer to undertake a voyage
with no destination, to search with no objective, to travel with no itinerary other
than the uncharted, the unfathomed, the unexpected?... Every explorer I have
met has been driven – not coincidentally but quintessentially – by curiosity, by a
single-minded, insatiable, and even jubilant need to know."

— Jacques-Yves Cousteau (The Human, the Orchid, and the Octopus)

The research presented in this thesis was carried out at the FZI Research Center for
Information Technology in Karlsruhe and was funded by the Human Brain Project
(HBP). There are many who helped me and supported me along the way on this
crazy journey. I want to take a moment to thank them. This list of acknowledgements
can only capture a small fraction of the people I am thankful for. I send my deep
thanks to all.

I would like to thank my supervisor Prof. Rüdiger Dillmann for his support and
guidance during this research. He gave me enough freedom to explore the field, but
also showed me a clear direction to remain in focus. I would also like to thank Prof.
Rainer Goebel for his encouragement as well as his insightful feedback which helped
me widen my research.

Within the HBP I meet brilliant people and made some great friends. I thank Prof.
Wolfgang Maass and his group at Graz for showing me how to implement mean-
ingful Spiking Neural Networks (SNNs) and specially for organizing the Fürberg
workshops. I thank Prof. Walter Senn and his group at Bern for the great discussions
and for spending time with me modelling grasping networks. I thank Prof. Sander
Bohte for sharing his ideas on learning and for showing interest in my research. I
thank Prof. Karlheinz Meier and his group at Heidelberg for leading CDP5 and for
his inspiring talks. I thank Prof. Sacha van Albada for her mentoring and valuable
advice. I thank Prof. Jörg Conradt for organizing the neurocomputation workshop
where Jacques and I developed our first serious SNN models. I thank the INI group in
Zurich for the Capocaccia summer school, where I spent long nights discussing and
hacking SNNs. I would like to specially thank Terry Stewart for sharing his Nengo
knowledge, for receiving me in Canada for the summer school, and for our collabo-
ration over the years.

I am fortunate to be a part of the FZI. I want to thank my colleagues for the stimu-
lating discussions, for being critical and honest about my work and giving me great

i

feedback, for the sleepless nights we worked together before deadlines, and for all the
fun we had in the last years. I want to thank Arne R. for his leadership and support;
Stefan U. for bringing me to the HBP; Sebastian K. and Andreas H. for their advice on
science and collaboration; Georg H., Pascal B. and Marc E. for the good vibes; Felix M.
and Christian J. for being awesome officemates; Stefan S. for the nice conversations;
and the rest of the team for sharing your robotics knowledge. I’m extremely grate-
ful to the students who worked with me, especially those who worked in the motor
primitive framework. I want to acknowledge Lea S. and Tristan S. for their work with
the robot arm, Heiko D. and Katharina S. for their work with the anthropomorphic
hand, and Jacqueline R. for her work the six-legged robot.

Dr. Jacques Kaiser, thank you very much for your friendship and encouragement,
you rock caremonda! Your insightful feedback pushed me to sharpen my thinking and
brought my work to a higher level. It was an amazing journey together from day
one: we shared the office, we worked on hard projects, we went to conferences, we
traveled together, we wrote an insane amount of papers, we never gave up on SNNs
and the HBP, we did all the teaching, you even made it to our wedding, and we
always got each other’s back. I learned a lot from you, thank you again.

I wish to express my deepest gratitude to my friends and family for being there for me
despite me being distracted and not having much free time. I am forever grateful for
your patience and understanding. I hope to have time now to reconnect with each of
you. Dear Truji, Polit, Muerzo, Danilindo, Luis, Tati and Alex thanks for keeping me
sane, for climbing with me, for providing stimulating discussions, as well as happy
distractions to rest my mind outside of my research. I am always thankful to my
mother, my father and Alelo for being always there for me. Alex, thank you for the
visits and your unconditional company.

Eli Imaginaria, I want to express the immense gratitude I have for you for your pa-
tience and support. You are probably the only other person as invested in my research
as I am. These sentences in the acknowledgements will never do justice to your un-
derstanding and the sacrifices you have made. You gave up a lot for our family, and
I really appreciate it. Thank you for putting up with me being sat in the office for
hours, being busy for so long, and for sleeping next to me in the couch while I was
coding or writing at night. There where ups and downs, but you have always stood
by me through all my frustration, my absences, and my impatience. Thank you for
your help, support, and love. I am the luckiest person in the world to have you in
my life. But most of all, thank you for being my best friend. I love you. Maximo,
chiquilin, thank you for filling our life with joy and happiness.

It is time to celebrate!

ii

Abstract (English Version)

Nature takes advantage of millions of years of evolution to generate adaptive phys-
ical systems with efficient control strategies. In contrast to conventional robotics,
humans do not just plan a motion and execute it; there is instead a combination of
multiple control loops working together to move the arm and grasp an object with
the hand. With the research on humanoid and biologically-inspired robots, com-
plex kinematic structures and complicated actuator and sensor systems are being de-
veloped. These systems are difficult to control and program, and classical robotics
methods cannot fully take advantage of their capabilities. Neuroscience research has
made much progress towards understanding the different brain regions and their
corresponding functions. Nevertheless, most of the models are based on large-scale
simulations that focus on reproducing the connectivity and statistical neural activity.
This opens a gap in applying different paradigms to validate brain mechanisms and
learning principles, and develop functional models to control robots. One promis-
ing paradigm is event-based computation using SNNs. SNNs focus on the biologi-
cal aspects of neurons, replicating the way real neurons work. They are designed for
spike-based communication, enabling research on brain-like mechanisms for learning
using plasticity. Spike-based communication enables hardware optimizations that al-
low low energy consumption and fast local operations using neuromorphic chips.

This work proposes different SNNs to perform motion control for manipulation and
grasping tasks with a robotic arm and an anthropomorphic hand, based on biolo-
gically-inspired functional models of the human brain. A motor primitive is mod-
eled in a parametric way with an activation parameter and a mapping function to
the robot kinematics. The topology of the SNNs reflects the kinematic structure of
the robot. The robots are controlled using the joint position interface. In order to
model complex motions and behaviours, primitives are arranged in different layers
in a hierarchy. This allows the combination and parameterization of the primitives
and the reuse of low-level primitives for different motions. There are different acti-
vation mechanisms for the parameter that controls a motor primitive — voluntary,
rhythmic, and reflexes. There are different ways to learn new motor primitives, ei-
ther online or offline, and either modeling the motion as a function or learning from
human demonstration. The SNNs can be integrated with other control systems or
combined with other SNNs. Computation of the inverse kinematics or the validation
of configurations for planning is not required because the motor primitive space has
only feasable motions and contains no invalid configurations.

iii

The scenarios considered for the evaluation are: pointing at different targets, follow-
ing a trajectory, performing rhythmic or repetitive motions, performing reflexes, and
grasping simple objects. Additionally, the arm and hand modeling are combined and
extended to model multi-legged locomotion as a generalization use case of the motor
primitives control architecture. As applications for an arm (3 Degrees of Freedoms
(DoFs)), generating pointing motions and perception-driven target reaching were
modeled. To generate pointing motions, one base primitive to point to the center
of a plane was combined offline with a set of four correction primitives generating a
new trajectory. For perception-driven target reaching, three primitives are combined
online during the motion using a perception signal of a target. As applications for a
five-finger hand (9 DoFs), individual finger activations and soft-grasping with com-
pliant control were modeled. The grasping motions are modeled with motor primi-
tives in a hierarchy, with finger primitives representing synergies between joints and
hand primitives representing different affordances coordinating the fingers. Two re-
flexes are added for each finger: one to activate or stop the motion with contact and
one to activate the compliant controller.

This approach provides flexibility, as motor primitives can be reused, parameterized,
and combined in different ways. New primitives can be defined or learned. A key
aspect of this thesis is that in contrast to deep learning and end-to-end learning meth-
ods, the SNNs do not require huge datasets to learn new motions. Using motor prim-
itives, the same modeling approach can be used for different robots by redefining
the mapping of the primitives to the robot kinematics. The experiments showed
that by using motor primitives, the motor control could be simplified for manipu-
lation, grasping, and locomotion. The use of SNNs for robotics applications is still a
point of discussion. There is no state-of-the-art learning algorithm, there is no frame-
work similar to those for deep learning, and the parametrization of SNNs is an art.
Nevertheless, robotics applications – like manipulation and grasping – can provide
benchmarking tasks and realistic scenarios to validate neuroscience models. Addi-
tionally, robotics can take advantage of the capabilities of event-based computation
with SNNs and neuromorphic hardware. A physical imitation of a biological system
implemented entirely with SNNs and evaluated with real robots can provide new
insights into how humans perform motor control and sensor processing, and how it
can be applied to robotics. Model-free motion controllers, inspired by human brain
mechanisms, can improve the way robots are programmed by making the control
more adaptive and flexible.

iv

Abstract (German Version)

Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalis-
che Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur
konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt
sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusamme-
narbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit
der Forschung an humanoiden und biologisch inspirierten Robotern werden kom-
plexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwick-
elt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassis-
chen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen.
Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der
verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Den-
noch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die
Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzen-
trieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um
Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur
Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die
ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologis-
chen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike-
basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanis-
men des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kom-
munikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromor-
pher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen
ermöglichen.

In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss-
teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer
anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funk-
tionnalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parame-
trische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf
die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematis-
che Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint
Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu
können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeord-
net. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die
Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt
verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv

v

steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschie-
dene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die
Bewegung kann entweder als Funktion modelliert oder durch Imitation der men-
schlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssys-
teme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der
inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist
nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat
und keine ungültigen Konfigurationen enthält.

Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschie-
dene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder
sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von
einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kom-
biniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der
Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für
einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzep-
tionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun-
gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit
vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das
wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kom-
biniert unter Verwendung eines Zielsignals.

Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-
aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif-
bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die
Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die
unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden
Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewe-
gung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung.

Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, para-
metrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Prim-
itive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist,
dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfan-
greichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die
Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für ver-
schiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die
Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor-
primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomo-
tion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein
Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Fra-
mework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist
eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und
Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche

vi

Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis-
basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis-
che Nachbildung eines biologischen Systems, das vollständig mit SNNs implemen-
tiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber lie-
fern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und
wie diese in der Robotik angewendet werden können. Modellfreie Bewegungss-
teuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die
Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und
flexibler machen.

vii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem statement . 4
1.3. Research questions . 5
1.4. Key contributions . 5
1.5. Structure of this thesis . 7

2. Related Work: motion representation with SNNs 9
2.1. Motor control principles in biology and neuroscience 10

2.1.1. The role of the Motor Cortex . 10
2.1.2. The role of the Cerebellum . 11
2.1.3. Other brain areas relevant for motor control 13
2.1.4. Spinal cord . 14
2.1.5. Synergies between muscles . 14
2.1.6. Motor primitives and hierarchical motion representation 15
2.1.7. Rhythmic motion generation and central pattern generators . . 17

2.2. Motor control principles in robotics . 19
2.2.1. A short survey on basic control principles 19

Basic control . 19
Basic PID controller principle . 20
Adaptive control . 21

2.2.2. Dynamic movement primitives 21
2.2.3. Grasping motion analysis with PCA and eigengrasps 23
2.2.4. Reactive robot control using reflexes 24
2.2.5. Applications of Deep Learning for manipulation and grasping 25

2.3. Introduction to Spiking Neural Networks 26
2.3.1. Neuron models . 27
2.3.2. Neural coding . 29
2.3.3. Plasticity and learning . 31

2.4. Robot motor control using SNNs . 32
2.4.1. Coordinate transformation using STDP and learning of non-

linear functions . 32
2.4.2. Learning arm configurations by associative learning and STDP 33
2.4.3. Modeling the neural behavior of grasping 34
2.4.4. Cerebellum models for Arm motor control 36

ix

Contents

2.4.5. Multimodal activation, reflexes, and multi-layered multi-pattern
CPG . 39

2.5. Neurorobotics . 40
2.5.1. The Human Brain Project . 41
2.5.2. The Neurorobotics Platform . 41
2.5.3. Neurosimulators . 42

SNN simulators . 42
Deep learning tools for SNNs . 44

2.5.4. Neuromorphic hardware . 44
2.6. Summary . 46

3. Modeling and generating motion with motor primitives using SNNs 47
3.1. Concept overview and methodology . 48
3.2. Motor primitive formalization using SNNs 49

3.2.1. Modeling the activation function 50
3.2.2. Modeling the mapping to the robot kinematics 51
3.2.3. Generation of robot motion with motor primitives 52

3.3. Activation of motor primitives and contact detection 53
3.3.1. Voluntary motion activation . 53
3.3.2. Motion generation layer by modeling an oscillator for rhythmic

activation . 54
3.3.3. Reflex motion activation . 55
3.3.4. Contact detection intercircuit . 56

3.4. Motor primitive combination, parameterization and hierarchy 57
3.4.1. Combination of motor primitives 57
3.4.2. Parameterization of motor primitives 58
3.4.3. Hierarchical architecture to generate complex motions 58

3.5. Encoding and decoding spike activity for closed-loop robot control . . 60
3.5.1. Distributed representation for encoding and decoding 61
3.5.2. Stochastic Gaussian population position encoding 62
3.5.3. Data normalization . 64

3.6. Mechanisms to learn motor primitives with SNNs 64
3.6.1. Learning functions by optimizing the decoding weights 64
3.6.2. Learning sequences with associative supervised learning 66
3.6.3. Adapting motions with online learning 66

3.7. Summary . 68

4. Combination and activation of motor primitives to control robotic arms 69
4.1. Modeling the motion of a robot arm . 70
4.2. Activation modalities and combination of motor primitives 72

4.2.1. Methods . 74
4.2.2. Experiments . 75

Voluntary motion activation . 75
Rhythmic motion activation . 76

x

Contents

Activation of reflexes . 78
Combination of activation modalities 78

4.2.3. Discussion . 80
4.3. Generation of pointing motions for targets on a plane in 3D space . . . 81

4.3.1. Methods . 83
Motion generation layer by adjusting local connectivity 84
Base and correction motor primitives 86
Target representation . 87

4.3.2. Experiments . 88
Experiment setup . 88
Implementation details . 89
Learning in the motion generation layer 90
Pointing at targets on a plane in 3D space 90

4.3.3. Discussion . 94
4.4. Perception driven target reaching in 3D space combining motor prim-

itives . 94
4.4.1. Methods . 96

Motion representation . 96
Target representation . 97
Connect primitives with error signal 97

4.4.2. Experiments . 98
Implementation details . 100
Cover the working space returning to the start 101
Reach boundary targets and random points in sequence 101

4.4.3. Discussion . 102
4.5. Summary . 103

5. Coordination of motor primitives and compliant control for anthropo-
morphic robotic hands 105
5.1. Modeling the motion of a 5-finger robot hand 106
5.2. Learning grasping motions from human demonstration 107

5.2.1. Methods . 109
Finger networks . 110
Hand network . 110
Tactile feedback . 111

5.2.2. Experiments . 111
Implementation details . 112
Performing grasping motions . 113

5.2.3. Discussion . 114
5.3. Triggering finger reflexes using EMG signals 115

5.3.1. Methods . 117
Human EMG data interface and training data 118
Sub network for EMG classification 118
Sub-network for motion generation and mapping to the robot . 120

xi

Contents

Integration off all components 120
5.3.2. Experiments . 120

Implementation details . 121
Training data . 121
Processing of EMG data and classification 123
Motion generation and interface to the robot hand 123

5.3.3. Discussion . 126
5.4. Compliant control for soft-grasping with a hierarchy of motor primitives128

5.4.1. Methods . 130
Finger primitives and robot kinematics 130
Hand primitives and control hierarchy 131
Affordance activation mechanisms 132
Reflexes and contact detection 132
Compliant controller and adaptation 132

5.4.2. Experiments . 134
Motor primitives activation and affordance evaluation 134
Compliant control evaluation . 135
Adaptive control with online learning evaluation 137
SNN implementation and parameters 138

5.4.3. Discussion . 140
5.5. Summary . 141

6. Generalization and extension of the motor primitives control architec-
ture for multi-legged locomotion 143
6.1. Modeling the motion of a multi-legged robot 144
6.2. Synchronization and coordination of motor primitives for multi-legged

locomotion . 145
6.2.1. Methods . 146

Leg control with motor primitives 148
Leg local behaviours . 148
Multi-legged coordination patterns 149
Control interface and Braitenberg network 151

6.2.2. Experiments . 151
General experiment setup . 152
Walking forward . 152
Walking in circle . 153
Walking in zig-zag . 154
Walking over an obstacle . 155
Braitenberg vehicle with color detection 156

6.2.3. Discussion . 158
6.3. Summary . 159

7. Discussion of results and outlook 161
7.1. Summary of the contributions . 161

xii

Contents

7.2. Open problems . 165
7.2.1. Integration of visual information 165
7.2.2. Efficient execution of SNNs with neuromorphic hardware . . . 165

7.3. Outlook . 167
7.3.1. Challenges of using SNNs for neurorobotics 167
7.3.2. The role of neurorobotics for neuroscience 168

Appendix 169

A. The Neurorobotics Platform technical details 171
A.1. Getting and using the NRP . 172
A.2. Modeling and development with the NRP 173

xiii

1. Introduction

1.1. Motivation

Nature takes advantage of millions of years of evolution to generate efficient control
strategies, but they are difficult to understand and replicate. Humans developed ad-
vanced sensorimotor capabilities thanks to a combination of a flexible and adaptive
body with efficient control provided by the nervous system (Pfeifer et al. [169]). The
human body is very complex; it has kinematic redundancy, hands with haptic sens-
ing, advanced vision, and muscles with proprioception able to perform compliant
control. On top of it, the brain orchestrates the nervous system to control the body.
The human capabilities to perform coordinated motions and interact with objects re-
main unmatched by robots, for example: walking, grasping unknown objects, hitting
a tennis ball, playing the piano. In contrast to conventional robotics, humans do not
just plan a motion and execute it; there is instead a combination of multiple control
loops working together to move the arm and grasp an object with the hand. The arm
and hand motions can quickly be adapted if the object moves or deforms based on
sensory feedback. Humans can easily learn and remember motions already executed
to modify and reuse them during execution based on the context. For example, to
manipulate and grasp both known and unknown objects, perform in-hand manip-
ulation, and interact with objects in motion. Humans excel in terms of prediction,
adaptation, flexibility, and error tolerance while having very low energy consump-
tion compared to robots.

Today, robots are an essential part of the manufacturing industry, and robotics appli-
cations are increasing in almost every domain, providing new complex and challeng-
ing tasks. In such diverse scenarios, the ability to learn and to adapt efficiently and
robustly is required. This ability is fundamental for humanoid and service robots op-
erating in an environment shaped for humans and interacting with objects designed
for human ergonomics.

There is a wide variety of robotic systems with advanced hardware, redundant com-
ponents, and compliant control. Humanoids and other biologically-inspired robots
are some examples (see Figure 1.1a). Nevertheless, the programming of these robots
is complex, and classical robot programming methods are not always suitable to take
advantage of their capabilities. In classical robotics, the problem of motion control is
solved by calculating the Inverse Kinematics (IK) for the target point, then validating
the configuration, and finally planning the trajectory. The complexity of the problem

1

1. Introduction

increases with the number of joints and Degrees of Freedom (DoF), making com-
putational expensive the development of closed mathematical models and extensive
exploration methods. An anthropomorphic five-finger robotic hand (Schunk [194]
and ShadowRobot [197]) offers a great variety of grasping possibilities. Nevertheless,
in industry, most robotic applications are designed for simple vacuum, 2-finger, or
custom-made grippers (Wolf et al. [222]) which have few DoFs. These solutions are
suitable and affordable for production applications but lack adaptability in other en-
vironments where grasping novel objects without knowing their exact properties is
required. Deep Learning (DL) has the potential to solve most of these problems and
limitations. Nevertheless, despite recent success, DL also has some drawbacks which
can not be overlooked and are impractical for real robotics applications. To train a
system based on DL a lot of training data and simulation time is required. Depend-
ing on the learning method also complex fitness and reward functions are needed. In
Levine et al. [147], 800.000 samples were collected to train a robotic arm to perform
reaching and grasping, and in Andrychowicz et al. [45] almost 400 computers are
used to learn in-hand manipulation.

In contrast to that, how does biology solves these problems? How can the human
brain control a complex system as the human body in such an efficient and adaptive
way (see Figure 1.1b). The mechanism of how movement is represented and exe-
cuted in biology is an active field of research. Neuroscience research has made much
progress in understanding the different brain regions and their corresponding func-
tions. A widely accepted hypothesis is that the central nervous system uses a small
number of motor building blocks (Bernstein [54]) that are combined to produce mo-
tion (Bizzi et al. [55] and d’Avella et al. [84]). These building blocks are formed by
muscle synergies (d’Avella et al. [84]) and are called motor primitives (Chinellato et al.
[68]). In this context, the term synergy refers to the coupling of motor activation of
different joints. Neuroscientists have found that these motor primitives are organized
in a hierarchy and are combined by the Central Nervous System (CNS) to compose
complex motions (Bizzi et al. [55]). The activation of the motor primitives can be
made with different activation modalities, and it can change based on sensor feed-
back (Churchland et al. [70] and Byrne et al. [64]). There are studies on the evidence
of muscle synergies for reaching (d’Avella et al. [82] and Scott [195]) and for grasping
(Santello et al. [186] and Sburlea et al. [189]).

These insights from neuroscience have been successfully applied in robotics, for in-
stance with the concepts of the dynamic movement primitives (Ijspeert et al. [129]) and
the eigengrasps (Ciocarlie [72]). Nevertheless, robotics still relies mainly on the classi-
cal model-based methods. The existing models from neuroscience are not designed
with functionality in mind and can not control a robot. The problem is that the mod-
els (see Figure 1.1b) are very complex, require a lot of computational power, and
focus mainly on reproducing biological data or replicating the statistics of the neural
activity and connectivity of brain areas (Markram et al. [155]).

Neuroscience principles can be applied to control complex biological inspired robots,

2

1.1. Motivation

(a)

(b)

Figure 1.1.: Motivation. (a) Different biologically-inspired robots: Schunk SVH 5-
finger hand (Schunk [194]), HoLLiE (Hermann et al. [123]), LAURON V
(Roennau et al. [180]), ASIMO (Shigemi [200]), iCub (Metta et al. [158])
and ARMAR-4 (Asfour et al. [48]). (b) Digital reconstruction and simula-
tion of a part of a rat’s neocortex (Markram et al. [155]).

and robots can be used to validate and understand brain mechanisms and learning
processes. These models coming from neuroscience need to be simplified first and
then implemented in a way suitable for robotics. This opens a gap in using differ-
ent paradigms to validate brain mechanisms and learning principles and develop
functional models to control robots. One such paradigm is event-based computation
using Spiking Neural Networks (SNNs). SNNs are modeled closer to the biological
aspects of real neurons, replicating the way real neurons work (Maass [151]). They are
designed for spike-based communication, enabling research on the brain’s learning
mechanisms and information representation. SNNs can encode temporal informa-
tion in their signals and operate in continuous time. With the use of neuromorphic
hardware (Furber et al. [104], Pfeil et al. [171], and Höppner et al. [127]), SNNs can be
scaled up to take advantage of the characteristics of event-based computation with
great power efficiency (Zambrano et al. [228]).

This work focuses on the biological concepts for motion representation and genera-
tion using motor primitives representing synergies as building blocks. It incorporates
different motion activation modalities, reflexes, and adaptive control. Another key el-
ement is how motion is represented in a hierarchy in the nervous system that allows
the reuse and combination of different motions.

3

1. Introduction

1.2. Problem statement

The main goal of this thesis is to study SNNs to perform motion control for manipula-
tion and grasping tasks with a robotic arm and hand (see Figure 1.2). The approach is
based on bio-inspired functional models of the human brain. Five objectives describe
the main goal:

1. Model motions with brain-inspired mechanisms using SNNs.

2. Combine simple motions to generate complex motions.

3. Activate and adapt motions based on sensor feedback.

4. Coordinate the motion for robots with multiple kinematic chains.

5. Generalize and extend the modeling to different robots and combine it with
other control systems.

Accordingly, the motion representation is hierarchical and model-free. The motion
generation does not require calculating the IK and the validation of configurations for
planning. The methods proposed in this thesis are evaluated in simulation and with
real robots using an industrial robot arm with an anthropomorphic five-finger hand
in various manipulation and grasping scenarios. The evaluation experiments are:
pointing at different targets, following a trajectory, performing rhythmic or repetitive
motions, and grasping simple objects. Additionally, to demonstrate the potential of
the modeling approach, the mechanisms proposed to represent the motion of the
robot arm and the hand are combined and extended for multi-legged locomotion.

Figure 1.2.: Problem definition. Implement SNNs to control different robots in closed-
loop for manipulation and grasping using brain-inspired mechanisms.

4

1.3. Research questions

1.3. Research questions

This work builds on the research of the different processes involved in low-level
movement generation. In particular, the modeling of motion with motor primitives,
the parameterization and combination of motions, the different activation modalities,
the reflex mechanisms to activate or inhibit motions, and the adaptation of motions
according to sensor feedback. The key questions to develop a system for robot motion
control in the context of biologically motivated SNNs are:

• How does the central nervous system store, remember, and execute motions?

• Which types of network topologies and learning mechanisms with SNNs are
suitable to control robots?

• How can motions be modeled with motor primitives to represent joint synergies
using SNNs?

• How to reuse and parameterize existing motor primitives to generate complex
motions?

• How to activate and adapt motor primitives based on sensor feedback or re-
flexes?

• How to coordinate and synchronize the motion of multiple kinematic chains at
the same time?

1.4. Key contributions

The key contributions of this thesis are summarized in the following and they are
organized by chapter.

• Modeling and generating motion with SNNs using motor primitives: The
building blocks for modeling motion with motor primitives and robot motion
control with SNNs are introduced. This includes the schemas for encoding and
decoding spike information with the closed-loop control pipeline and the com-
munication interfaces.A motor primitive is modeled in a parametric way with
an activation parameter and a mapping function.The mapping of a motor prim-
itive to the robot kinematics is robot specific, and it can be modified. The topol-
ogy of the SNNs reflects the kinematic structure of the robot. There are different
activation mechanisms for the parameter that controls a motor primitive. It
can be activated either voluntary or intentional, rhythmic or repetitive, or as a
reflex.There are also neural circuits for contact detection and selective disinhibi-
tion.In order to model complex motions and behaviours, motor primitives are
arranged in different layers in a hierarchy.This structure allows the combination
and parameterization of different motor primitives. Thus, the reuse of low-level

5

1. Introduction

primitives for different motions is possible. There are different ways to learn
new motor primitives, either online or offline, and either modeling the motion
as a function or using human demonstrated motions.These building blocks are
combined and evaluated for robot grasping and manipulation and multi-legged
locomotion as a generalization use case.

• Combination and activation of motor primitives to control a robotic arm: The
motion of a robot arm is modeled with SNNs using motor primitives to control
three joints — two in the shoulder and one in the elbow. The experiments show
that by using motor primitives, the control can be simplified, and planning and
calculating the IK or the Jacobian is not necessary. A SNN that allows activa-
tion, combination, and parameterization of motor primitives is proposed.The
network is based on motor primitives in a hierarchy to generate complex arm
motions using different activation signals. This method shows interesting prop-
erties of biological systems as different primitives can be activated in different
ways simultaneously. Additionally, a neural intercircuit is proposed to detect
contact and trigger a reflex. A SNN is presented for pointing motions with a
target on a plane. The control architecture is based on recent theories about
motion generation in the motor cortex.The network is trained incrementally to
learn a base pointing motion and four correction primitives. The activation of
the correction primitives depends on the target’s position on the plane, and it
is performed with selective disinhibition. The network can pre-shape motions
and generate new pointing trajectories before execution. The motions are used
to control a real humanoid robot in real-time with predictive control in open-
loop. A SNN to perform online target reaching in 3D space is proposed ex-
tending the architecture for multimodal activation.Three motor primitives are
defined to move the robot arm in three different directions left-right, up-down
and far-near. The target is represented as a discrete error signal indicating the
corrective direction of the motion. The network can combine the motions online
using the error signal to drive the three motor primitives to provide continuous
control for the robot in a closed-loop. Experiments with a robot arm in simu-
lation are presented to cover the whole working space extensively by going to
different points and returning to the start point, and going to boundary targets
and random points in sequence.

• Coordination of motor primitives and compliant control for an anthropomor-

phic robotic hand: The motion of the 5-finger hand is modeled with SNNs
using motor primitives as a network that coordinates finger sub-networks. The
motion of each finger is modeled independently, in analogy to the robot arm.
It is possible to model grasping affordances by coordinating the activation of
the fingers and using reflex activations to detect contact and adapt the grasp-
ing motions to the object. A proof of concept of a biologically inspired SNN
control architecture for learning with Spike Time Dependent Plasticity (STDP)
different types of grasp motions is proposed.The finger motions reflect syner-
gies between the joints, and reflexes stop the motion of individual fingers if

6

1.5. Structure of this thesis

there is contact. With a hierarchy of a hand sub-network coordinating finger
sub-networks, it is possible to reuse and combine motor primitives of individ-
ual finger movements. A SNN that activates motion reflexes of a robotic hand
based on human EMG data extending the architecture for grasping motions is
presented.The network classifies the EMG signals to detect which finger was
activated. Based on the classification, single-finger reflexes are triggered. The
finger reflexes are modeled with motion primitives and control an anthropo-
morphic 5-finger robot hand. Finally, a SNN that organizes motor primitives
in a hierarchy of joints, fingers, reflexes, and grasping affordances to perform
soft-grasping is proposed.The compliant control is implemented in the same
SNN using a cascaded PI effort controller triggered by the contact detection in-
tercircuit. Soft-grasping is mainly made with mechanical features in the robot
hardware, but not all robots are hardware compliant and do not have force
sensors, like the hand used in the experiment. This experiment combines the
elements for grasping motions and triggering finger reflexes, and implements
online learning for adaptive control in closed-loop.

• Generalization and extension use case for multi-legged locomotion: The mod-
eling of legs is similar to that of fingers but with more active joints. Multi-legged
locomotion is modeled in analogy to grasping with the robot hand. The legs
are coordinated with walking behaviours similar to affordances. These exper-
iments show that the modeling approaches with motor primitives for the arm
and the hand can be generalized and extended for other motor control tasks
with different robots.A system is proposed that combines classical behaviour-
based control with motor primitives implemented with SNN for multi-legged
locomotion. The walking behaviours are modeled with rhythmic or repetitive
activations and controlled by different pattern generators. This approach al-
lows flexibility because motions can be reused and combined in different ways.
Different walking behaviours and experiments on a 6-legged walking robot are
demonstrated and discussed.

1.5. Structure of this thesis

This thesis is organized in the following way. An overview of related work and its
relation to this thesis is presented in Chapter 2. This chapter describes principles for
biological motor control, robot motor control, fundamentals for SNN, neurorobotics,
approaches with SNN, the Neurorobotics Platform (NRP) from the Human Brain
Project (HBP), and an overview on neurosimulators and neuromorphic hardware.
The model-free methods for representing motion with SNNs using motor primitives
are described in Chapter 3. This chapter presents the coding schemas, the primitive
formalization, the different activation modalities, the combination and parameteri-
zation of motor primitives, the mechanisms for learning new primitives, the imple-

7

1. Introduction

mentation details, and other building blocks. After that, there are three chapters with
experiments to apply the methods to arm, hand, and multi-legged motion. The mod-
eling and experiments for robot arm motion are described in Chapter 4. This chapter
presents the modeling of the motion of the arm, an experiment for multimodal mo-
tion activation, and an experiment for target reaching, and an experiment for motion
adaption. The modeling and experiments for hand motion are described in Chap-
ter 5. This chapter presents the modeling of the motion of the hand, an experiment
to generate grasping motions, an experiment for triggering finger reflexes, and an
experiment for soft-grasping. The modeling and experiments for multi-leg motion
as a generalization use case are described in Chapter 6. This chapter presents the
modeling of the motion of multiple legs and an experiment for multi-legged locomo-
tion. Finally, the discussion in Chapter 7 presents a summary of the contributions and
limitations, the open problems, and the outlook with final considerations.

8

2. Related Work: motion
representation with SNNs

There are many studies on biologically inspired motion control mechanisms and their
possible applications to robotics. In this section, research is presented that either de-
tails or presents evidence of biological control mechanisms, its successful implemen-
tation in robotics, or explores the field of neurorobotics using SNNs.

Motion represen-
tation with SNNs

Motor
control in
biology and
neuroscience

Motor

cortex

Cerebellum

Spinal cord

Muscles

Motor

primitives

Motor control
in robotics

Control

principles

Dynamic

movement

primitives

Eigengrasps

Reflexes

Deep

learning

Spiking
neural

networks

Neuron

models

Neural

coding

Plasticity

and

learning

Robot control
with SNNs

Coordinate

transfor-

mation

Associative

learning

Grasping
Cerebellum

models

Multimodal

activation

Neurorobotics
Human

Brain

Project

Neuro-

robotics

Platform

Neuro-

simulators

Neuro-

morphic

hardware

9

2. Related Work: motion representation with SNNs

2.1. Motor control principles in biology and
neuroscience

The representation and execution of motion activities are an ongoing research subject
in biology and neuroscience (see Figure 2.1. The control of a rich repertoire of mo-
tor behaviors like humans and animals is a significant accomplishment of evolution.
Mastering the activity of one arm for interactions like target reaching or grasping is
already complex due to the number of muscles and joints that have to be coordinated.
One important principle of the muscle-motor system is that the control mechanisms
require sensory input to predict and execute movements accurately. This control
principle applies to low levels of the hierarchy, such as spinal reflexes, and higher
levels, such as the cerebellum and the cortex. Motor control shows a considerable
increase in complexity with the number of DoF, non-linear dynamics, and sensory
delays (d’Avella et al. [81]). The animal and human nervous systems provide effi-
cient methods to overcome such problems enabling a versatile execution of motions
adaptive to external circumstances. Thus, neuroscience and robotics can learn in a bi-
directional way to understand these complex motor control mechanisms. This section
presents principles from biology and neuroscience relevant to robot control.

(a) (b)

Figure 2.1.: Motor control in biology. (a) Motor control anatomy and connectivity in
the brain (D’Angelo et al. [80]). (b) Motor control functional diagram.
Schematic representation of different levels and basic signal flow within
the motor system hierarchy (Byrne et al. [64]).

2.1.1. The role of the Motor Cortex

The Motor Cortex is the functional center for voluntary (intentional) movement, gen-
erating complex movements out of simple motor primitives (Bernstein [54] and Scott
[195]). The motor cortex is subdivided into three areas: the primary motor cortex, the

10

2.1. Motor control principles in biology and neuroscience

premotor cortex, and the supplementary motor area. The primary motor cortex is in-
volved in the execution of voluntary movements. It sends signals down to the spinal
cord and encodes the force, direction, and speed of movement (Byrne et al. [64]). The
premotor cortex is involved in the selection and preparation of appropriate motor
plans for voluntary movements. It sends signals to the primary motor cortex and
the spinal cord and performs sensory prediction, context representation, and evalu-
ates motor actions (Byrne et al. [64]). The supplementary motor area is involved in
planning complex sequences of movements and coordinating bilateral movements.
It selects movements based on remembered sequences of movements and transforms
kinematic to dynamic information (Byrne et al. [64]).

Recent studies provide insights into the mechanisms for motion generation in the
motor cortex. During motions reaching a target with the arm, the activity in the mo-
tor cortex as a whole shows a short but strong rotational component, see Figure 2.2
(Churchland et al. [70] and Russo et al. [184]). Instead of encoding parameters of
movement in single neurons, the motor cortex as a whole behaves like a dynamical
control system that drives motion (Shenoy et al. [198]). An initial state is produced
externally in higher brain areas. The system naturally relaxes while producing motor
activity, projected down the spinal cord to inter-neurons and motor-neurons (Church-
land et al. [70] and Russo et al. [184]). Neural activity in the motor cortex shows a
strong and amplified but stable response to initial activation (Hennequin et al. [119]).
There are different hypotheses on the role of the motor cortex in generating volun-
tary movements. Nevertheless, neural correlations during many different types of
arm movements have been found in the motor cortex (Kalaska [134]).

This behavior can be replicated by an Artificial Neural Networks (ANN) with strong
recurrent connections balanced by strong inhibitory connections (Hennequin et al.
[119]). Neural activity in the resulting network closely resembles activity in the motor
cortex and can be used as an engine for complex transient motions (Hennequin et
al. [119]). For example, in Ayaso [49] an architecture is proposed to generate motor
commands for arm motions and show how learning and adaptation can be achieved
by changing the gain.

2.1.2. The role of the Cerebellum

The cerebellum is located directly under the cerebrum on the backside of the head
(see Figure 2.3a), and it is involved in the coordination of movement and its fine-
tuning, unconscious planning and visualization of movements, and learning motion
sequences (Byrne et al. [64]). The cerebellum of humans contains around 69 billion
neurons which are about 80% of all neurons in the brain, and its weight is only 154g
which is only about 10% of the brain (Gray [114]). The cerebellum has always been as-
sociated with the body’s motor functions since people with injured cerebellum suffer
from motoric and posture dysfunctionalities.

11

2. Related Work: motion representation with SNNs

]

Figure 2.2.: Motor cortex activity for arm movements in monkeys (Russo et al. [184]).
(A) Principal Component Analysis (PCA) operates on a population of
neuron responses, then the activity is (B) projected onto the principal com-
ponents to generate (C) a corresponding neural trajectory. For two sub-
jects, the (D) muscle trajectories with the corresponding (E) neural trajec-
tories and (F) hand-velocity trajectories.

The cerebellum does not initiate movements but instead performs corrections and
adapts the movement to achieve higher accuracy. The cerebellum is involved in
maintaining the balance and posture of the body and the coordination of voluntary
movements. It synchronizes the activation timing and the required forces for all con-
tributing muscle groups to accomplish smooth and natural movements (Byrne et al.
[64]). Body schema and motion learning are also essential functions of the cerebel-
lum, which allows the body to fine-tune and adapt to previously unknown body
movements. The cerebellum behaves like an adaptive feed-forward controller since
it can predict the fast movement control of the different body parts (D’Angelo et al.
[80]). A classical feedback controller would fail in this task because of its considerable

12

2.1. Motor control principles in biology and neuroscience

(a)

(b)

Figure 2.3.: The cerebellum. (a) Anatomy (Gray [114]). (b) Modular cerebellar micro-
circuit model (D’Angelo et al. [80]).

sensory delays. Many experiments have shown that the cerebellum learns to adapt
in previously unknown scenarios, where new muscle group configurations and their
exact activation timing are learned by experience.

There are multiple studies on the cerebellum, but a generally accepted theory shows
a modular structure containing multiple instances of the same neural micro-circuit,
see Figure 2.3b (D’Angelo et al. [80]). The cerebellum has two main regions, the deep
cerebellar nuclei (DCN), where all outputs originate, and the cerebellar cortex, where
most of its neurons are. In each layer of the cerebellar cortex, there are different
types of neural and interneural cells, but the most distinct ones are the Granule (GrC),
Golgi (GoC), and the Purkinje (PC) cells. The cortex connectivity is relatively simple
since there are two major input channels in the cerebellum: Mossy fibers (MF) and
Climbing fibers (CF).

2.1.3. Other brain areas relevant for motor control

The Somatosensory Cortex is located next to the motor cortex. It is the center for
sensory information processing and responds to changes in the body’s sensory sys-
tem. The cortex is topologically subdivided into interconnected regions representing

13

2. Related Work: motion representation with SNNs

different sensory-motor areas of the body (Penfield et al. [168] and Lorente de No
[148]). The Basal Ganglia is responsible for reinforcing successful movements and
supports different functions like action selection, initiative, intentional drive, sequen-
tial activity planning, and anticipation. Additionally, studies have shown that the hu-
man brain combines feedback information from vision and proprioception to control
reaching and grasping movements (Saunders et al. [188] and Filimon et al. [102]).

2.1.4. Spinal cord

The Spinal Cord connects the periphery of the body with the brain, and it is located
within the vertebral canal (see Figure 2.4). Besides forwarding signals, the spinal cord
contains small neural circuits that trigger and execute reflexes. Reflexes are involun-
tary actions, either purposeful motoric or vegetative, executed as the response to sen-
sorial stimulation. They are controlled by specific neural pathways, the reflex arcs,
which have very short reaction times. This is because the response time to external
stimuli is directly related to the number of neurons involved, and reflex arcs consist
of a sensory neuron and a motor neuron connected to an interneuron in the spinal
cord for local processing. A reflex is a non-intentional response to sensor stimulation
and can execute or inhibit a motion immediately. An overview of spinal reflexes is
given in Byrne et al. [64].

Of interest and relevance to this thesis are the withdrawal and the inhibitory reflexes.
The withdrawal or flexor reflex initiates a withdrawal of one arm or leg when trig-
gered by cutaneous and pain receptors (see Figure 2.4). The inhibitory reflex triggers
a sudden autogenic inhibition of motor activation that causes muscle relaxation and
stops the motion.

The Reflexxes Motion Library (Kröger [143]) is a reactive framework based on reflexes,
which is a successful example of applying reflexes for robotic motor control. An ex-
tended mathematical model for central pattern generators in the spinal cord, gener-
ating different motion patterns by changing key parameters, is presented in Nassour
et al. [161]. The architecture has separate layers for pattern formation, rhythmic acti-
vation generation, and motor neurons.

2.1.5. Synergies between muscles

It is still an open question whether muscles are controlled by the cortical motor sys-
tem individually or collectively. An indication for the latter is the absence of a natural
movement performed by only one muscle (Bizzi et al. [55]). Based on this evidence,
the concept of muscle synergies was proposed to understand and model motor con-
trol systems. Muscle synergies refer to the temporal or spatial coherent neural activa-
tion of a group of muscles (d’Avella et al. [84]). In other words, there is a mechanism

14

2.1. Motor control principles in biology and neuroscience

Figure 2.4.: Illustration of the flexor reflex of one leg and the micro-circuit in the spinal
cord (Byrne et al. [64]).

for coordinated recruitment of several muscles, sharing the same activation profile.
Muscle synergies contribute to a simpler understanding of the motor control system.
In particular, the work in Rückert et al. [182] showed that using shared knowledge
for related tasks with muscle synergies reduces the dimensionality of motor control.
To underline this hypothesis, the works of Saltiel et al. [185] and Bizzi et al. [55] pro-
vides evidence of a modular organization of the spinal cord based on muscle syner-
gies. The experiments compare screenings of healthy individuals before and after be-
ing detached from the central nervous system (CNS). There is a distinction between
time-invariant and time-varying muscle synergies (d’Avella et al. [82]). In general,
synergies represent muscle patterns and store the coordination between them. In
spatial terms, across muscles, a synergy concerns the mutual activation of a group of
muscles (see Figure 2.5). In temporal terms, this concerns either the time-varying or
time-invariant relationship between muscles. Thus, synergies with a temporal com-
ponent capture temporal regularities, and synergies without a temporal component
capture spatial regularities in the motor output (d’Avella et al. [82]).

2.1.6. Motor primitives and hierarchical motion representation

One main problem in motor control is how to initiate a sufficient and flexible reper-
toire of actions combining muscle activity patterns initiated and supported by the

15

2. Related Work: motion representation with SNNs

Figure 2.5.: Time-varying synergies model (d’Avella et al. [84]). In this simulated ex-
ample, two time-varying synergies (a) are scaled in amplitude and shifted
in time (b) and then combined to construct two different patterns (c).

CNS. This originates the three major challenges of motor control: dimensionality,
caused by many joints and muscles; versatility, due to the multiple motor skills re-
quired; and optimality, to ensure minimal energy consumption and performance with
low effort and error (d’Avella et al. [84]). A widely accepted hypothesis is that the
CNS of vertebrates use a small number of movement modules as motor building
blocks (Bernstein [54]). These building blocks are formed by the muscle synergies that
are active during a movement and are called motor primitives (Chinellato et al. [68]).
These motor primitives are organized in a hierarchy (d’Avella et al. [81]) and are com-
bined to produce complex motions (Bizzi et al. [55]). Additionally, different modali-
ties can activate the synergies and use sensor feedback to produce adaptive motions
(Churchland et al. [70] and Byrne et al. [64]). Therefore, a small set of time-varying
muscle synergies can be combined, adjusted in amplitude and timing to enable flexi-
ble control of direction and speed (d’Avella et al. [82]).

In Bizzi et al. [55] experiments are presented, indicating that a wide range of differ-
ent movements can be generated by combining these fundamental building blocks.
The experiments extracted five time-varying muscle synergies from muscle patterns
in frogs. Different combinations of these synergies are presented to generate different
behaviors – jumping, swimming, and walking (Figure 2.6). Konczak [141] reviews
the difference between reflexes and primitives and states that motor primitives can
descend from primitive reflexes. Evidence of motor primitives in the spinal cord of
vertebrates is presented in Flash et al. [103], Hart et al. [118], and Bizzi et al. [55] with
neural data from a range of methods and species. The neuron activity in the inter-
mediate zone of the spinal cord resembles motor primitives rather than individual
muscle activations (Hart et al. [118]). There are also studies on the evidence of mus-
cle synergies for reaching (d’Avella et al. [82, 83] and Scott [195]) and for grasping
(Santello et al. [186], Sburlea et al. [189], and Castellini et al. [67]).

The concepts of motor primitives have been applied in robotics with the dynamic
movement primitives (Ijspeert et al. [129]) and eigengrasps (Ciocarlie et al. [71]).

16

2.1. Motor control principles in biology and neuroscience

Figure 2.6.: Scaling of synergy recruitment in different frog behaviors (Bizzi et al.
[55]). Each panel represents the recruitment of five synergies during a
jump (A–C), a walking cycle (D to G), or a swimming cycle (H and I).

2.1.7. Rhythmic motion generation and central pattern
generators

Many human motions originate from rhythmically generated patterns and are re-
ferred to as rhythmic or repetitive movements. Examples of this are walking, cycling,
swiping, but also vegetative motions, like breathing and chewing, At the beginning of
the last century, two theories existed about the origin of rhythmic motions. Sherring-
ton [199] suggested a chain of reflexes triggered by sensory feedback as the source.
Brown [60], on the other hand, identified local circuits in the spinal cord as contribut-
ing to locomotion. He proposed that rhythmic movements are generated centrally
through neural circuits without direct feedback control. He introduced the half-center
oscillator model, where two inhibitory coupled neural populations produce rhythmic
output (Ijspeert [128]). While voluntary or intentional motions are primarily initiated
by the brain, the spinal cord is directly involved in coordination and motor control
for rhythmic motion generation.

Evidence for rhythmic or oscillating circuits independent of feedback control has been

17

2. Related Work: motion representation with SNNs

extensively shown in literature for invertebrates and vertebrates. For example, Cohen
et al. [74] showed that a spinal cord isolated from the brain of lamprey could produce
rhythmic patterns when stimulated electrically. Similar results were achieved in sala-
manders, frogs, and embryos (Ijspeert [128]). In Churchland et al. [70], the generation
of rhythmic and oscillatory activity has been observed in monkeys, whereby repeti-
tive cortical responses could be mapped on limb motions (see Figure 2.7).

The local circuits first identified by Brown [60] are also known as Central Pattern
Generators (CPGs). The term central means that sensory feedback from the periph-
eral nervous system is not required (Ijspeert [128]). CPGs are a set of inter and motor
neurons able to create patterns of rhythmic output signals without rhythmic input
through sensory feedback. Descending signals from the the motor cortex, the cerebel-
lum, and the basal ganglia, use sensory feedback to coordinate and synchronize these
patterns. This initiates and stops rhythmic motions (Nassour et al. [161]). In short,
the spinal cord is responsible for generating basic rhythmic patterns, and higher-level
centers shape these patterns according to external conditions.

]

Figure 2.7.: Oscillation of neural firing rates during three movement types (Church-
land et al. [70]). (a-c) Recorded response of a population of neurons for
different movements. (d-f) Projection of the neural population response
into the two-dimensional PCA space. The two dimensions are first plot-
ted against each other and then versus time.

18

2.2. Motor control principles in robotics

2.2. Motor control principles in robotics

Control in robotics is based on system theory and the concept of basic building blocks
for motion, dynamic control, and interaction. In the early stages, robot mechanisms
were designed to be as stiff as possible to maintain the linearity of the system. This
enables the control of simple tasks, such as material transfer. However, the execution
of more advanced and complex tasks requires a different control approach, such as
force and torque control, and different hardware designs to provide more flexibility.
This requires a deeper understanding and modeling of the non-linear dynamics of
the robots, which led to the development of more advanced control models, such as
non-linear and adaptive. In classical robotics, the problem of motion generation is
solved by calculating the IK for the target point, then validating the configuration,
and finally planning the trajectory — observe, plan, act.

2.2.1. A short survey on basic control principles

This section presents a survey on basic control models. The main goal of controlling a
system with input is to ensure the stability of the system’s behavior and output. There
are many concepts developed for different control tasks, but they can be classified into
three control principles: open-loop, closed-loop, and feed-forward.

Basic control

Open-loop control represents an established control mechanism for controlling a sys-
tem (see Figure 2.8). The controller receives information about the desired outcome
of the system, but its internal state is independent of the process output. Such con-
trollers require complete model knowledge and predictive capabilities.

Figure 2.8.: Open-loop control model. The controller receives the desired output as
a reference signal r(t). Depending on the system input u(t), the system
generates an output y(t).

Closed-loop control mechanisms are in systems theory and in robotics the standard
approach to solve a control problem in general. It requires the desired system be-
havior, model knowledge about the plant, observations to identify the state of the
plant, and a controller processing sensor feedback. The system dynamics are to be
processed continuously or in discrete intervals. The most typical controller for this
approach is the PID controller (see Figure 2.9).

19

2. Related Work: motion representation with SNNs

Figure 2.9.: Closed-loop or feedback control model. The error e(t) calculated as a dif-
ference between the desired output r(t) and over the feedback loop with
the real system output y(t). The controller minimizes the error e(t) until
the system meets the desired output.

Feed-forward control model combines the advantage of open-loop and closed-loop
control strategies (see Figure 2.10). Feed-forward control is an open-loop control strat-
egy, and it improves the tracking of reference points with the help of feedback con-
trollers. It is used to compensate for noise and suppress unmeasured disturbances
present in the real system. The feed-forward control can be used to predict the sys-
tem’s behavior, so a feed-forward controller can react before an error may occur. Usu-
ally, this requires an inverse model of the control plant. This shows its limitation since
it will not be stable if the control plant changes its parameters or its structure. How-
ever, a solution for this issue has been found by using adaptive control concepts.

Figure 2.10.: Feed-forward control loop model. The feed-forward control loop is an
open-loop control model, which is used together with the closed-loop
model. The feedback controller tracks the referent point r(t) by con-
stantly reducing the error e(t). In contrast, the feed-forward controller
improves the performance of the control loop by summing the feed-
forward uff (t) with the feedback ufb(t) control signals together.

Basic PID controller principle

The goal of a PID controller (see Figure 2.11) is to minimize the difference of the error
value e(t), between the desired set-point r(t) and the feedback value y(t). The PID
controller is the most commonly used in the industry and robotics. The controller
is part of a feedback control system and consists of three terms: P proportional, I
integral, and D derivative. Each of these three terms is defined in Equation (2.1) and
contributes to the error correction.

20

2.2. Motor control principles in robotics

u(t) = Kpe(t)| {z }
P

+Ki

tZ

0| {z }
I

+Kd
�e(t)

�t| {z }
D

(2.1)

Depending on the application, it is possible to set one or two of the K factors to zero
and obtain P , PI , PD, P , or I controllers.

Figure 2.11.: A block diagram of PID Controller in a feedback loop.

Adaptive control

The conventional way of compensating the effects of disturbances and any uncer-
tainty in the system is using a closed-loop control model. However, suppose there
are changes in the system dynamics or any non-linear disturbances. In that case, the
feedback loop is not enough to deal with these changes since the parametrization
of the controller is for specific dynamics only. In contrast, an adaptive control sys-
tem has two control loops. One represents the feedback loop with the controller and
the control plant. Another one represents the adaptive mechanism for adjusting the
controller’s parameters. It can perform stable control if the control plant changes its
parameters, dynamics, or structure (Landau et al. [144]). It has been applied in the
control of autopilot systems for planes and ships, and in robotics to consider the dy-
namics of actuators, joint flexibility, and time-varying uncertainties of the system.

The advances in machine learning provide a new dimension to adaptive control. The
use of ANNs has proven to be suitable for learning the non-linearities of a system
(Suykens et al. [210]). The feed-forward control model is the most common approach
for using an ANN for adaptive control (see Figure 2.12). Based on sensory informa-
tion, the feed-forward controller learns the behavior of the system and predicts the
correction in advance. Through the learning mechanism, the parameters of the con-
troller are constantly improved over time.

2.2.2. Dynamic movement primitives

The modular organization in the spinal cord allows to support motor activities by
combining muscle synergies simplifies the movement generation by reducing the re-

21

2. Related Work: motion representation with SNNs

Figure 2.12.: Adaptive feed-forward control model. The feed-forward controller
adapts its parameters according to the sensory inputs and the desired
output r(t), while the error e(t) to the system output y(t) is reduced and
improved by summing the feed-forward uff (t) with the feedback ufb(t)
control signals to get u(t).

quired DoFs (Bizzi et al. [55]). The hypotheses that the CNS hierarchically combines
motor primitives to generate complex motions are applied in robotics with the Dy-
namic Movement Primitivess (DMPs). DMPs were introduced by Schiess et al. [193]
and updated by Ijspeert et al. [129]. There is an implementation of DMPs for SNNs
using Neuro Engineering Framework (NEF) and Nengo (Nengo) called neural DMPs
(NDMPs) (DeWolf et al. [90]). DMPs introduces a representation of movement as
a spring-damping dynamical system in which the goal state is an attractor that al-
lows for easily adaptable complex motor behaviors, both for rhythmic and discrete
motion. A unique characteristic, distinguishing DMPs from previously introduced
frameworks, is that each primitive is a non-linear system. They represent a math-
ematical formalization of basic units for actions and are well suited for trajectory
control and planning. The motivation is to represent adaptive motor actions in a sta-
ble and generalized form without manual parameter tuning. This is complex due
to parameter sensitivity and phase transitions by changes that imply unpredictable
long-term behavior. The main concept behind a DMPs consists of two components
(see Figure 2.13). First, a dynamical system with a precisely defined and stable be-
havior is defined as a linear differential equation. Second, a function to follow a
trajectory is defined as a forcing term that can be learned. DMPs either use point at-
tractors as the base system, which results in discrete, point-to-point movements, or
they rely on limit cycles leading to rhythmic motions (Schaal [191] and Ijspeert et al.
[129]). Additionally, to the first two components, a DMPs has a transformation sys-
tem (see Figure 2.13). These properties mean that DMPs are more than just a series
of activation of muscles. As dynamic attractors, they can guide a system considering
noise and perturbations. DMPs have considerable advantages, like straight-forward
learning through a stable attractor system, and they can be successfully applied in
high-dimensional continuous spaces. There are approaches to learn DMPs, for ex-

22

2.2. Motor control principles in robotics

ample, with imitation and reinforcement learning (Kober et al. [140]) or with a DMP
representation employing parametrized basis functions (Rückert et al. [182]). How-
ever, they are not suited for reusing shared knowledge, so each new task implies
learning a new set of parameters.

Figure 2.13.: Three components are required to create a DMP (Ijspeert et al. [129]). A
canonical system, either point attractive or periodic, generating a behav-
ioral phase variable. A non-linear function approximator, generating the
forcing term. And a transformation system, a dynamical system easy to
analyze and manipulate.

2.2.3. Grasping motion analysis with PCA and eigengrasps

The concepts of synergies and motor primitives have also been applied for grasping
with the development of eigengrasps (Ciocarlie et al. [71] and Ciocarlie [72]). San-
tello et al. [186] observed several human subjects shaping their hand as if they were
grasping different known objects. A principal component analysis was applied to
the recorded data, and they discovered that the first two components represented
about 80 percent of the observed variance of the movements. The other components
provided additional information about the object to fine-tune the movements. This
implies that the 24 DoF of the human hand can be significantly reduced for grasp
planning (Cobos et al. [73]). Thus, a few postural synergies and local motor controls
for small adjustments can be determined by the control of the hand posture. Ciocarlie
et al. [71] and Ciocarlie [72] applied these results to directly reduce the configurations
space of the hand and calculate pre-grasp poses by searching in the sub-space for sta-
ble grasps. This approach is an eigenvalue decomposition of a data set of pre-grasp,

23

2. Related Work: motion representation with SNNs

which reduces the search problem to two eigenvectors. An example of this param-
eterization generated with the GraspIt! Simulator1 (Miller et al. [159]) is presented in
Figure 2.14.

Figure 2.14.: Three examples of eigengrasps. The sliders on the right represent the
values of the first two eigenvalues of the pre-grasp data.

2.2.4. Reactive robot control using reflexes

The Reflexxes Motion Libraries, developed by Kröger [143], are based on the con-
cept of natural reflexes in robotic motion generation. The approach considers sensor-
guided and sensor-guarded motions calculated online during motion execution to
complement predefined trajectories and combines both as shown in Figure 2.15. This
method models deterministic, instantaneous reactions to sensor input and calcula-
tion of motions from any initial state, even during another movement. The underly-
ing concepts for online motion generation within every control cycle, requiring only
about a millisecond computation time, are outlined in Kroger et al. [142].

1https://graspit-simulator.github.io

24

https://graspit-simulator.github.io

2.2. Motor control principles in robotics

Figure 2.15.: The interface for the Reflexxes Motion Libraries (Kröger [143]). Based on
the current state of motion and the kinematic motion constraints, a new
state of motion is calculated, which lies precisely on the time-optimal
trajectory to reach the desired target state of motion.

2.2.5. Applications of Deep Learning for manipulation and
grasping

Different approaches apply DL to learn human-like manipulation and grasping skills
for robots. Starke et al. [204] propose a constrained autoencoder model to gener-
ate and learn grasp representations based on observed human grasping data. In
Andrychowicz et al. [45], domain randomization is performed in simulation to learn
in-hand manipulation skills from visual information using Reinforcement Learning
(RL). The learned model was successfully transferred to control a physical Shadow
Dexterous Hand. For this work, extensive computation is performed with almost 400
computers, each with 16 CPU cores, generating about two years of experience per
hour. In Santina et al. [187], a combination of an object classifier with reactive and
anticipatory motor primitives are implemented. A human demonstration is used for
classification to select the corresponding primitive, and the motion is executed with
a soft-gripper. In Levine et al. [147], a convolutional network was trained to perform
hand-eye coordination for reaching and grasping. The network estimates the success
probability for a grasp and then controls the physical manipulator. For this work,
about 800.000 samples were collected using 14 robotic manipulators.

25

2. Related Work: motion representation with SNNs

(a) (b)

Figure 2.16.: Two different approaches to learn stable grasping skills. (a) The ap-
proach from Google, is based on a large-scale data collection setup for
real robot experiments, consisting of 14 robotic manipulators (Levine
et al. [147]). (b) The approach from OpenAI is based on a large distri-
bution of simulations with randomized parameters and appearances to
collect data for both the control policy and vision-based pose estimation
(Andrychowicz et al. [45]).

DL has the potential to solve most robotics problems and limitations. Nevertheless,
despite recent success, DL also has some important drawbacks which can not be over-
looked for real robotics applications. A large amount of training data and computa-
tional time for simulation is required to train a robot controller with the help of DL,
which is in many cases impractical. Depending on the learning method also complex
fitness, as well as reward functions, are needed.

2.3. Introduction to Spiking Neural Networks

In this section, the fundamentals for SNNs are summarized, covering the concepts of
neuron models, neural coding, and plasticity. For more details about SNNs see Maass
[151], Vreeken [220], Grüning et al. [115], Gerstner et al. [109], and Abbott [40]. SNNs
is seen as the third generation of ANNs and model closer to biology the behavior of
neurons. Artificial SNN models focus on replicating the way real neurons work and
attempt to replicate their biological characteristics ranging from high dimensional
models to reduced approximating models. Exploring the capabilities of SNN enables

26

2.3. Introduction to Spiking Neural Networks

research on the modeling of spike-based communication, understanding of learn-
ing mechanisms, and information representation in the brain. Figure 2.17 shows the
structure of a real neuron, a spiking neuron model with event-based communication
using spikes, and the membrane potential affected by the spike activity.

Figure 2.17.: Principles of SNNs (Grüning et al. [115]). (a) A real neuron. (b) Point
neuron model, synapses, and spike-based communication. (c) Mem-
brane potential over time.

Before introducing the concepts of SNNs, a few considerations of working with SNNs
are presented. To train a SNN to perform a specific function is a big challenge. Frame-
works like TensorFlow or PyTorch supporting the programming of DL models are
not available for SNN yet. Nengo and NEF are probably the most mature technology
to program functional SNNs. However, the recent advances on biologically plausi-
ble Error Backpropagation (backpropagation) alternative learning rules with spiking
neurons offer a new dimension for applications using SNNs (Neftci et al. [162], Kaiser
et al. [5], Bellec et al. [53], and Schiess et al. [193]). Additionally, the parametrization
of SNNs is complex. A deep understanding of neuroscience is required to model
functional networks, and the validation of these models is hard. Existing models
from neuroscience focus on replicating spike activity and neural connectivity, but
they are not functional for complex systems like robots. These models are related to
specific problems and brain mechanisms. However, they are not generalized, and the
functionality does not scale up. Finally, SNNs simulations can also be executed on
neuromorphic hardware like BrainScales or SpiNNaker.

2.3.1. Neuron models

Classical spiking neuron models are defined with differential equations with respect
to time. The models describe how the membrane potential of the neuron behaves.

27

2. Related Work: motion representation with SNNs

Figure 2.18 shows the membrane potential changing over time. The resting potential
is where the neuron stabilizes given enough time and if there are no input spikes.
When spikes arrive, the membrane potential increases by a certain amount, and then
it "leaks" energy and falls back to the resting potential. If there is enough incoming
spike activity, the membrane potential increases and crosses the firing threshold, in
which case the neuron produces a spike. After spiking, the neuron remains quiet
during a refractory period.

Figure 2.18.: The membrane potential of a Leaky-Integrate-and-Fire (LIF) spiking
neuron changing over time. The characteristic parameters are the mem-
brane time constant, refractory period, resting potential, and firing
threshold. Adapted from Masquelier et al. [156].

Spiking neuron models range from simple functions up to complex high-dimensional
and biologically realistic models. The four most popular neuron models are LIF,
Hodgkin-Huxley, Izhikevich, and Spike Response. The LIF model can be represented
as a simple electric circuit and it focuses on precise spike-time (Abbott [40]). The
Hodgkin-Huxley model is a biologically realistic model that incorporates complex
physiologic characteristics, which requires extensive computation time (Hodgkin et
al. [125]). The Izhikevich model has a good compromise between biological plausi-
bility and computation time, and it can produce several spike patterns (Izhikevich
[130]). The Spike Response model is a powerful yet simple and general model that
can reproduce neuron activity with a purely mathematical basis (Gerstner [108]).

The LIF is the most popular model for neuro-engineering because it provides great
performance and can be implemented in software and hardware. This work uses the
LIF or variants of LIF neuron model for all approaches. As a simple electronic circuit
can represent it (see Figure 2.19a), it can be implemented very easily on the available
neuromorphic hardware. The standard form of the LIF model is described in Gerstner

28

2.3. Introduction to Spiking Neural Networks

(a)

(b)

Figure 2.19.: LIF spiking neuron model. (a) Circuit representation (Paugam-Moisy et
al. [167]). (b) Membrane potential driven by continuous current input
(top) and by spike activity (bottom) (Ponulak et al. [173]).

et al. [109], and it is defined as

⌧m
du

dt
= �[u(t)� urest] +RI(t). (2.2)

Where R is the cell membrane resistance, I the driving current, u is the membrane
potential, and ⌧m is the membrane time constant of the neuron. The LIF model is
fast and straightforward to compute. However, it does not model the shape of action
potentials. For more details about the LIF model see (Gerstner et al. [109] and Abbott
[40]). The behaviour of the LIF model can be seen in Figure 2.19b.

2.3.2. Neural coding

With classical ANNs, encoding and decoding of information are solved problems
compared to SNNs. Usually, an input vector is mapped to another vector, whereas
for SNNs a schema needs to be defined to make sense of spike-trains. The brain uses
spikes to encode stimuli, process information, and activate muscles to produce be-
havior. Neural coding can be done with individual neurons or with groups neurons.
The most used coding schemas are rate, binary, and time (see Figure 2.20). A tool for
analyzing Spatio-temporal patterns in spike trains is elephant (Yegenoglu et al. [227]).
The details on the coding schemas used in this thesis are presented in Section 3.5.

Rate coding works by processing the firing rate of a neuron to represent values by
fixing the input current (see Figure 2.20a). The spike rate is computed over discrete
intervals. Computing the spike rates is slow and inefficient. This schema is applied
to convert traditional networks to spiking. Because of this, SNNs can be seen as a

29

2. Related Work: motion representation with SNNs

(a) (b)

(c)

Figure 2.20.: Classical spike coding schemes. (a) Rate coding. (b) Binary coding. (c)
Precise time coding (Paugam-Moisy et al. [167]).

super-set to traditional networks. It is mainly used for image processing and cogni-
tive operations. An interesting variant of rate coding is to use Poisson generators to
represent the inputs, using the mean as the desired firing rate.

Binary coding works by sampling the spike trains and observing which neurons are
active (see Figure 2.20b). When a neuron fires, a filter is applied to set it active for a
period of time. A similar principle for values 2 R, using an exponential filter instead
of binary (simulates PSPs). It is mainly used for stochastic inference.

Spike time coding is a synchronous coding scheme (see Figure 2.20c). The problem-
atic aspect is that a reference time has to be defined, and the information is coded with
respect to it. There are different variations based on how time is measured — time to
first spike, temporal coding, rank order coding, or correlation coding. This schema
supports complex computations with few neurons, and communication is very effi-
cient. There are analog computing principles that operate directly on the signal level
implementing the circuits. They operate in parallel and are extremely fast, but they
are difficult to program.

30

2.3. Introduction to Spiking Neural Networks

2.3.3. Plasticity and learning

What happens to neurons and synapses during learning? The most important el-
ements are illustrated in Figure 2.21a. The strength of post-synaptic potential (PSP)
depends on the number of neurotransmitters in the axon and the number of ion chan-
nels (receptors) in the dendrites (see Figure 2.21b). In simulators, this is represented
by the synaptic strength — the weight of the connection. Plasticity is the change in
one of these quantities. The details on the learning mechanisms used in this thesis are
presented in Section 3.6.

(a)

(b)

Figure 2.21.: Learning and synapses. (a) Synapse elements (adapted from Grüning
et al. [115]). (b) Schema of synaptic transmission (Gerstner et al. [109]).

Everything people know, everything people can do, everything people remember,
is encoded in the synaptic strength —- according to neuroscience. Synaptic plastic-
ity enables learning. With plasticity, learning is local and incremental; it is a form
of Hebbian learning that can be understood as "neurons that fire together are wired to-
gether". STDP depends on the precise timing of the spikes coming in and going out
of a neuron. Different STDP curves are presented in Figure 2.22.

Figure 2.22.: Different STDP curves (adapted from Markram et al. [154]).

The question if backpropagation is biologically plausible or not is still open, and var-
ious hypotheses are under discussion. There are many papers, which train a tradi-
tional ANN with backpropagation and then convert it to a SNN. Nevertheless, there
are still significant problems with the biological plausibility of backpropagation. The
computation would need to be precisely clocked to alternate between feed-forward

31

2. Related Work: motion representation with SNNs

and backward phases. The information (error) does not travel backward in biological
synapses. If the error is propagated in recurrent connections, these connections need
to know about the feed-forward weights. Additionally, the gradient of spike activity
is discontinuous.

However, there have been several promising papers on backpropagation-like learn-
ing rules to train SNNs. For example the works in Neftci et al. [162] using surrogate
gradient, in Kaiser et al. [5] using the principles from feedback alignment, in Bellec
et al. [53] and Subramoney et al. [209] using eligibility traces, in Schiess et al. [193]
and Brea et al. [59] learning with multi-compartment neurons using dendritic spikes,
or in Pozzi et al. [174] learning with reward-based using BrainProp.

2.4. Robot motor control using SNNs

The field of neurorobotics focuses on developing and analyzing robots using con-
trol principles of biological nervous systems. It follows the paradigm of embodied
cognition that an intelligent agent needs a body to understand its environment to de-
velop higher cognitive skills. Various computational models have been proposed to
understand the sensorimotor system, which mimics the behavior of brain regions or
replicate simple brain functionalities. The basis of those models is data from in vivo
experiments and results from experiments with animals.

2.4.1. Coordinate transformation using STDP and learning of
non-linear functions

Davison et al. [87] show that spatiotemporal data can be learned frame by frame with
a two-layer network with plastic connections. The network is trained via association
to perform a coordinate transformation from a reference frame to another. With this,
a potential use of STDP was shown, together with an analysis about how different
learning rules apply best to different training data.

Another example for a SNN learning spatiotemporal data is proposed in Srinivasa
et al. [203]. They extend the idea of associative learning with a complex network.
The model aims to associate joint configurations with spatial changes, which imply
a feed-forward kinematic. The model is shown in Figure 2.23. The network consists
of five layers connected in a feed-forward way using other emergent properties to
improve learning, like lateral inhibition.

The first layer encodes the input data, and each encoded activation signal is sparsely
projected on a second input layer. The second layer is connected to a Winner-Takes-
All (WTA) circuit and a third layer. Each neuron in the second layer is laterally con-
nected with its neighbors. This results in a fault-tolerance of the network towards

32

2.4. Robot motor control using SNNs

missing input signals. The third layer is two-dimensional, and the neurons of the sec-
ond layer are connected one-to-one so that the angular change ✓0 is connected to the
rows, and angular change ✓1 is connected to the columns. The third layer is sparsely
connected to the fourth layer, which represents the output layer. The output layer is
connected with the teaching layer and the third layer.

Figure 2.23.: Associative learning model by Srinivasa et al. [203].

2.4.2. Learning arm configurations by associative learning and
STDP

Bullock et al. [63] present the Direction-to-Rotation Effector Control Transform model
DIRECT which trains a neural network to associate data of arm positions and joint
configurations. The data is generated via motor babbling, which can be observed in
the behavior of babies. The result is a network that learns to control the robot arm
without knowing the underlying arm model. Such approaches are also called model-
free learning.

Bouganis et al. [57] proposed a model inspired by DIRECT that autonomously learns
to control a robotic arm through motor babbling. They use a feed-forward network
with spike-time-dependent plasticity to learn an approximation of the inverse kine-
matic of a robot arm by association. The network is implemented with Izhicevich
spiking neurons. The network architecture consists of seven input layers, four en-
code the actual joint configuration, and three encode a movement of the Tool Center
Point (TCP) of the arm. The layers are connected all to all by inhibitory and excitatory

33

2. Related Work: motion representation with SNNs

connections, which provides a balanced weight development. The input layers are
connected to four output layers, which encode angular changes in the joints. All con-
nections are plastic and use a symmetric STDP learning rule. A gaussian population
coding encodes input and teaching signals. There are two different phases for train-
ing and testing (see Figure 2.24). The training phase consists of random movements
or motor babbling of the arm from a given start position. The changes in direction
and the angular joint configuration, together with the joint configuration before the
movement, build a single data sample. After 300 iterations, the network connections
learn one sample. In the test phase, the network was presented with the actual joint
configuration and a direction of the tool, which resulted in a movement of the arm.

2.4.3. Modeling the neural behavior of grasping

For grasping, Fagg et al. [100] propose a detailed computational model for visual
grasping of primates with the FARS model. It describes the Ventral Pre-Motor Cor-
tex(F5) models and the Anterior Intraparietal Sulcus (AIP) and simulates their inter-
action. The model uses a simple neuron model and combines several of them to a
so-called p-unit that mimics a biological neuron’s behavior. The main achievement of
the model is the qualitative reproduction of cell behavior in the F5 and the AIP area.
Oztop et al. [164] propose an extension to the FARS model to model mirror neurons.
Motor neurons play an essential part in learning movements. They are active when
actions are executed and fire if a primate observes another primate performing the
same task.

Another model by Oztop et al. [165] describes the learning of reaching and grasping
of infants. The model is called Infant Grasp Learning and it is illustrated in Figure 2.25.
First, the affordance of an object is classified by an affordance input layer. Three
kinds of layers receive the signals produced. They incorporate the concept of the
virtual finger, a concept explained in the book of Chinellato et al. [68]. The concept
of the virtual finger describes a physical finger acting together to apply an opposing
force to an object or other fingers. This enables a reduction of the required DoFs
for grasping. The virtual finger layers coordinate single virtual fingers The hand
position layer calculates the movement of the arm. The wrist rotation layer computes
the orientation of the hand. Suppose all layers have sent an output signal. In that
case, the results are transmitted for further calculation in a simplified model of the
motor cortex and spinal cord, resulting in the movement of the hand and fingers. The
resulting grasp is evaluated, and a reward signal sends the updated connections of
the model, leading to either synaptic potentiation or depression. The reward signal is
interpreted as the joy that infants experience while interacting with the world.

34

2.4. Robot motor control using SNNs

Figure 2.24.: Schematic of training and evaluation phases (Bouganis et al. [57]). For
the training phase, a random movement generator was used to control
the arm. Movements have been recorded and trained by the network.
In the evaluation phase, only the current angle configuration and the
movement intention is presented to the network.

35

2. Related Work: motion representation with SNNs

Figure 2.25.: Infant Grasp Learning model (Oztop et al. [165]). The model learns to
grasp using reinforcement learning. The model is divided into an af-
fordance layer, a layer for the virtual fingers, a hand position layer, a
wrist rotation layer, and motor cortex and spinal cord model. With the
division of the model, they could show that finger movement and hand
movement can be modeled and trained independently.

2.4.4. Cerebellum models for Arm motor control

An overview is presented about approaches using functional models of the cerebel-
lum applied to robotics in the following. Basic principles modeling cerebellar mech-
anisms for robots were first presented by Albus [44]. After that, several other mod-
els have been developed. The most relevant for this thesis are those implemented
with SNN presented by D’Angelo (D’Angelo et al. [80] and Antonietti et al. [46]),
Ros (Luque et al. [149] and Luque et al. [150]) and Tolu (Tolu et al. [215, 214]). The
key characteristics of these models are the adaptation of the motion with regard to
changes in the dynamics of the robot and the online learning capabilities. The cere-
bellum integrates the sensory input to fine-tune the motor activity, approximating its
functionality and characteristics similar to the robust PID controller.

The work from Albus introduced the CMAC model to design a memory-driven con-
trol system capable of locally generalizing by associative mapping and weighing all of
its inputs (Albus [44]). This means that similar inputs are mapped close to each other
or even overlap in the conceptual memory since similar input values should pro-
duce similar outputs and distant input values produce independent outputs. They
are then superpositioned by randomly connecting them over weights stored in the
actual memory (see Figure 2.26a). CMACs can handle systems with a high number of

36

2.4. Robot motor control using SNNs

inputs, that must not be linear nor free of hysteresis, but they need to be repeatable. It
can learn a wide variety of functions with no explicit mathematical equations for the
control. The local generalization offers less learning interference in comparison to the
globally generalized multilayer neural networks. The model continuously improves
by training incrementally and allows the acquisition and recall of new models. A
life-long learning strategy is proposed for robots on this basis.

The work from D’Angelo et al. proposed various mechanisms for different func-
tions and provided methods to consolidate the different models of the cerebellum
(D’Angelo et al. [79] and Antonietti et al. [46]). Especially, this thesis explains how
embodied neurorobotic models using spiking cerebellar networks can be used to ex-
plain the role and interplay of different learning rules and computation mechanisms
in the brain. They propose a model implemented with a closed-loop robotic cerebellar
controller from the point of neuroscience, which is illustrated (see Figure 2.26b). This
control model shows how different brain regions responsible for motor control can
be modeled and integrated. Three bidirectional long-term plasticity rules are imple-
mented for different connections to approximate and compare learning behaviours
similar to experimentally measured with humans. The controller was evaluated with
a small humanoid NAO robot controlling three joints to execute different trajectories
multiple times while the model was learning.

The work from Ros et al. proposed a feed-forward control loop with SNNs using
synaptic plasticity (long-term potentiation and long-term depression) to adapt and
cope with changes in dynamics and kinematics of a simulated robot (Luque et al. [149]
and Luque et al. [150]). The desired trajectory in cartesian coordinates is generated
to the target and transformed by the inverse kinematic module into joint coordinates
(see Figure 2.27a). At each time step the target joint states (Qd, Q̇d, Q̈d) are processed
to compute a crude torque command ⌧desired) and to update the predictive corrective
command ⌧desired). A teaching signal is then computed by the IO neurons from the
feedback error ✏ value, which is later forwarded to the PC over the CF. The controller
was evaluated with a simulated light-weight robot (LWR) arm using three active DoF
executing three-joint periodic trajectories with different dynamics and kinematics,
providing corrective actions for more accurate movements.

Tolu et al. show two main differences regarding the three presented approaches (Tolu
et al. [215, 214]). First, the main control structure includes feedback and feed-forward
control loops. It can predict the next desired state or error correction and provides the
possibility to implement additional motor controllers (see Figure 2.27b). Second, the
functional cerebellum model has a hybrid architecture consisting of two modules: a
locally weighted projection regression module (LWPR) and a cerebellum module (C).
The LWPR represents the input module, substituting the following cell’s connections:
MF-GrC and MF-DNC. The LWPR module without any prior knowledge can cope
with highly redundant and irrelevant data input by generalizing it locally. It increases
its knowledge of the inverse internal model, allowing faster adaptation and predic-
tion of the model’s non-linearities. The LWPR shares a lot of functional similarities

37

2. Related Work: motion representation with SNNs

(a)

(b)

Figure 2.26.: (a) Model from Albus. A block diagram of the CMAC system for a single
joint (Albus [44]). (b) Models from D’Angelo et al. The cerebellar model
implemented with SNNs embedded into the controller of the NAO robot
(Antonietti et al. [46]).

38

2.4. Robot motor control using SNNs

(a)

(b)

Figure 2.27.: (a) Model from Ros et al. The adaptive cerebellar module outputs correc-
tive torque values (⌧corrective) to compensate for deviations in the crude
inverse dynamic module when manipulating an object of significant
weight (Luque et al. [150]). (b) Model from Tolu et al. Block diagram
model for the recurrent adaptive feedback error learning (RAFEL) archi-
tecture (Tolu et al. [214]).

with the CMAC model. This functional cerebellum model with hybrid architecture
was implemented in two ways: in AFEL (Tolu et al. [215]) using the error between
the current and target states, but this is difficult to determine; in RAFEL (Tolu et al.
[214]) avoiding the distal error problem by using only sensory error data.

2.4.5. Multimodal activation, reflexes, and multi-layered
multi-pattern CPG

Two studies provide the theoretical foundation for this approach. The first one, con-
cerning the architecture of CPGs, states that pattern formation and rhythm generation
are generated on different levels (see Figure 2.28). This is derived from discovering
a neural circuitry, embodying a two-layered CPG that implements these processes
disjunct. A biological motivation for this structure is that one-layered CPG lacks ro-
bustness since motor neurons and interneurons are connected directly. The second
study is about a neural model with the ability to generate various patterns, even os-
cillations. This means that rhythmic and non-rhythmic patterns originate within one
neural model. In this approach, the CPG of each joint is divided into three layers,
rhythm generator, pattern-formation, and a motor neuron layer. The rhythm genera-
tor produces various sorts of patterns, like oscillation, almost oscillation, or plateau,
depending on the tonic drive received from a locomotion control center. Propriocep-
tion, exteroception, and the output of the rhythm generator are the input for pattern
formation. Here the generated patterns are shaped, and a balance between exten-

39

2. Related Work: motion representation with SNNs

sion and flexion dominance is provided. An extension has been implemented for
upper body motions, like reaching and writing (Debnath et al. [89]). They proposed
a unique pattern generator controlling the upper as well as lower limbs of robots.
According to regulations from Descending Control, the component Rhythm Genera-
tion produces different patterns that are subsequently shaped by the element Pattern
Formation. The resulting output is forwarded to motor neurons, causing flexion or
extension of muscles. A circuit is formed by Ascending Afferent, which provides
higher control levels with feedback, influencing Descending Control.

Figure 2.28.: Overview of a multi-layered multi-pattern CPG controlling a single joint
(Nassour et al. [161]). The model embodies three layers, a rhythm gen-
erator, a pattern formation, and a motor neuron layer. Concept sketch il-
lustrating how the integration of feedback and descending motor control
influence the motion generation of the rhythm generator and pattern-
formation layers.

2.5. Neurorobotics

Neurorobotics studies the application and validation of brain-inspired computational
principles and neural control models for robots. Simulated functional brain models
are connected to robotic embodiments to model closed-loop control systems. The
ability of the robots to interact with the environment – either in the real world or
in simulation – allows the study of brain models in a system where a brain model
is directly coupled to an embodiment in real-time and where the actions generate
sensor feedback. Such closed-loop experiments enable a bidirectional comparison
and exchange of knowledge between robotics and neuroscience to understand the
underlying principles better. In robotics, findings from neuroscience can be applied
to overcome the limitations of standard control architectures and implement neuro-
morphic hardware for robot control tasks. In neuroscience, robots are applied as a

40

2.5. Neurorobotics

tool for verifying hypotheses, as brain models can be fully observable during the
robot’s interaction with the environment. Thus, findings about the human brain can
be applied to develop adaptive and learning robot controllers, and neuroscientists
can test their theories about the brain and validate their models. There are global ef-
forts to understand the human brain with initiatives such as the Allen Brain Atlas, the
Human Brain Project in Europe, the Brain Research through Advancing Innovative
Neurotechnologies (BRAIN) in the USA, the Brain Mapping by Integrated Neurotech-
nologies for Disease Studies (Brain/MINDS) in Japan, and the PRISM Brain Mapping
in Australia.

2.5.1. The Human Brain Project

This work was developed under the research scope of HBP2 as part of the neuro-
robotics sub-project. The HBP is part of the European Commission Future and Emerg-
ing Technologies (FET) flagship programme. It aims to accelerate the fundamen-
tal understanding of the human brain, make advances in defining and diagnosing
brain disorders, develop and test new therapies for brain diseases, and develop in-
novative brain-inspired computing technologies. The HBP enables collaboration be-
tween scientists from different nations and research areas by creating a collaborative
research infrastructure. The idea is to combine neuro-scientific data and interdisci-
plinary methods from neuroscience and medicine with information technologies and
robotics.

Within the HBP, six platforms are developed as part of a shared digital brain research
infrastructure called EBRAINS3. The neuroinformatics platform provides searchable
atlases and analysis tools for brain data. The brain simulation platform allows build-
ing and simulating multi-level models of brain circuits and functions. The medical in-
formatics platform allows analysis of clinical data to understand brain diseases better.
The neuromorphic computing platform develops hardware implementing brain-like
functions. The NRP is developed to test brain models and simulations with an em-
bodiment in a virtual environment. High-performance platform computing provides
the necessary infrastructure and computing power.

2.5.2. The Neurorobotics Platform

The Neurorobotics Platform (NRP)4 (Falotico et al. [2]) is a research infrastructure for
virtual neurorobotics developed as part of the HBP.The NRP is an open-source fra-
mework supporting neuroscientists and roboticists, offering a collection of different
tools and technologies for defining and performing neurorobotics experiments. The

2https://www.humanbrainproject.eu
3https://ebrains.eu/
4http://www.neurorobotics.net/

41

https://www.humanbrainproject.eu
https://ebrains.eu/
http://www.neurorobotics.net/

2. Related Work: motion representation with SNNs

Figure 2.29.: General schema of the NRP with the main components illustrates how
they interact in closed-loop (Tieck et al. [17]).

NRP integrates a neural simulator and a physics simulation by defining transfer func-
tions to pass information between the brain model and the robot model within an ex-
periment (see Figure 2.29). Sensor data from the robot, such as camera images or joint
information, can be translated into neural stimuli for the brain simulation, and neural
activity observed at a specified part of the brain can be used to control the actuators
of a robot (Tieck et al. [17]). For more details about the NRP see Appendix A.

2.5.3. Neurosimulators

There are different ways of implementing and simulating SNNs depending on the
neural models, the data available, and the desired functionality. In the following, the
neurosimulators that were used for this thesis are presented, and other related simu-
lators with relevant features for neurorobotics are discussed. Most of the experiments
in this thesis were implemented using Nengo. Only the experiments in Sections 4.3
and 5.2 were implemented with NEST (NEST).

SNN simulators

Nengo5 (Bekolay et al. [51]) is a tool based on the Neuro Engineering Framework
(NEF) (Eliasmith et al. [99] and Stewart [207]) that is specialized for functional net-
works. It is implemented in Python to build and simulate large-scale neural models
(e.g., SPAUN presented in Eliasmith et al. [97]) abstracts the definition of the network
from the parameterization and from the backend it runs. It can use different back-
ends such as CPU, GPU, neuromorphic hardware, or FPGA. It is fully scriptable and
has an interactive GUI with live visualizations that are very useful for debugging
and understanding how the network works. It is possible to define different neuron

5https://www.nengo.ai/documentation/

42

https://www.nengo.ai/documentation/

2.5. Neurorobotics

types, learning rules, optimization methods, reusable sub-networks, and use both
spiking or traditional non-spiking models. It is also possible to process input directly
from the hardware, build and run deep neural networks, drive robots, and integrate
models running on other neural simulators or neuromorphic hardware. Nengo has
libraries to accelerate and improve the development process, such as cognitive mod-
eling, deep learning, adaptive control, and accurate dynamics. Nengo was used to
implement most of the experiments in Chapter 4, Chapters 5 and 6.

NEST is a tool that focuses on the dynamics, size, and structure of neural systems.
It is specialized for large-scale simulations on multi-core computers or clusters. It is
possible to define and connect large networks using algorithmically determined con-
nections or data-driven connectivity. The state of each neuron and each connection at
any time during a simulation can be inspected or modified. NEST was first released
in 1994, and it has one of the largest and most experienced developer communities of
all neural simulators. NEST was used for the experiments in Sections 4.3 and 5.2.

PyNN (PyNN) offers a simulator-independent language to implement networks in
a portable way for building neuronal network models. With PyNN it is possible to
work with either NEST, Brian, NEURON, or specific neuromorphic hardware. The
code for a model is written in Python using the PyNN API, and then it can be com-
puted with few modifications on a different backend.

GeNN6 (Knight et al. [139]) is a tool that focuses on performance using GPU enhanced
neuronal network simulation. Models are defined in a C-style API, and the code for
running them on either GPU or CPU hardware is auto-generated. There are interfaces
for SpineML and SpineCreator, a Python interface (PyGeNN), and a Brian interface
via Brian2GeNN.

Brian7 (Goodman [113]) is a tool written in Python that is widely used in compu-
tational neuroscience focusing on single-compartment neurons. It is designed to be
easy to learn and use, highly flexible, and extensible. It is possible to define models by
writing arbitrary differential equations in ordinary mathematical notation, and it is
especially valuable for working on non-standard neuron models. It is an alternative
to using Matlab or C for simulations.

NEURON8 (Hines et al. [124]) is a tool for computational neuroscience to create biolo-
gically realistic quantitative models of brain mechanisms. It is used for cross-valida-
ting data, estimating experimentally inaccessible parameters, testing hypotheses, and
determining the smallest subset of anatomical and biophysical properties necessary
to account for particular neural phenomena, and exploring the operation of brain
mechanisms in a simplified form.

6http://genn-team.github.io/genn/
7https://briansimulator.org/
8https://neuron.yale.edu/neuron/

43

http://genn-team.github.io/genn/
https://briansimulator.org/
https://neuron.yale.edu/neuron/

2. Related Work: motion representation with SNNs

Deep learning tools for SNNs

Recent studies have modified and extended current state-of-the-art deep learning
frameworks to simulate SNNs to take advantage of the tools and interfaces, espe-
cially for gradient calculations. The simulation of an ANN can be adapted to model
spiking neurons using very short simulation times and a binary activation function.
This is the case for SpyTorch (Neftci et al. [162]) using PyTorch (PyTorch) and e-prop
(Bellec et al. [53]) using TensorFlow (TensorFlow). PyTorch and TensorFlow are deep
learning tools that can be modified or adapted to simulate spikes.

The work from Neftci et al. [162] on surrogate gradient learning for SNNs is imple-
mented with PyTorch. Surrogate gradient approaches can train SNNs to perform at
unprecedented performance levels on a range of real-world problems. The imple-
mentation of SpyTorch is available online 9. PyTorch was also used in combination
with Nengo in Tieck et al. [18].

The work from Bellec et al. [53] on biologically plausible online network learning
through gradient descent for SNNs is implemented with TensorFlow. The method is
called e-prop, and it approaches the performance of Backpropagation Through Time
(BPTT), which is the best-known method for training recurrent neural networks in
machine learning. Parts of the implementation of e-prop are available online 10.

2.5.4. Neuromorphic hardware

Most advantages of SNNs can only be exploited with special hardware. Spike-based
communication enables hardware optimizations that allow low energy consumption
and fast local operations. Grapihcs Processing Units (GPUs) are appropriate for par-
allel computations but can not take advantage of sparse communication. Neuromor-
phic hardware (see Figure 2.30) is developed to take advantage of the sparse commu-
nication and efficient event-based computation of SNNs (Rhodes et al. [178]).

Research on neuromorphic hardware has been made mainly at universities. This is
the case for the developments of SpiNNaker from the universities of Manchester and
Dresden (Furber et al. [104] and Höppner et al. [127]), Brainscales from the university
of Heidelberg (Pfeil et al. [171]), and DYNAPs from the University of Zurich (Moradi
et al. [160]). Nevertheless, leading chip manufactures are entering this field, for ex-
ample, Loihi from Intel (Davies et al. [85]) and Truenorth from IBM (Akopyan et al.
[42]). Neurorobotics can benefit from the use of neuromorphic hardware directly on
the robot, as SNNs can be scaled up to take advantage of the characteristics of event-
based computation with great power efficiency (Zambrano et al. [228]).

9https://github.com/fzenke/spytorch
10https://github.com/IGITUGraz/eligibility_propagation

44

https://github.com/fzenke/spytorch
https://github.com/IGITUGraz/eligibility_propagation

2.5. Neurorobotics

Neuromorphic hardware can be divided into two main categories: digital and analog.
SNNs can either be simulated with digital processors or be implemented as analog
circuits. Digital neuromorphic hardware uses traditional processors and memory,
on which the execution of neurons is distributed. This type of hardware provides
an abstraction layer between the SNN execution and the execution of instructions
in the actual processor. All neurons are equal and can be parameterized as desired.
SpiNNaker, Loihi, and Truenorth are examples of digital neuromorphic hardware.
Analog neuromorphic hardware implement each neuron as an individual circuit, and
the execution of the SNNs is made in parallel. This type of hardware can have high
power efficiency and fast processing speeds, as it computes on the analog signal level.
All the neurons are different, and there is intrinsic noise due to the electric signals.
BrainScaleS and DYNAPs are examples of analog neuromorphic hardware.

Currently, there are significant synergies between neuroscience and neuromorphic
engineering (Zenke et al. [229]). New systems and frameworks are being developed
to benchmark and scale-up biologically plausible spiking neural models. There are
performance comparisons between different systems, for example, between SpiN-
Naker and NEST (van Albada et al. [218]), and between Loihi and SpiNNaker 2 (Yan
et al. [225]). A method to account for chip variations due to the manufacturing pro-
cess is presented in (Büchel et al. [61]). A survey of applications and results with Loihi
is presented in (Davies et al. [86]).

(a) (b) (c)

(d) (e)

Figure 2.30.: Different neuromorphic hardware systems. (a) SpiNNaker from the uni-
versity of Manchester (Furber et al. [104]). (b) BrainScales from the uni-
versity of Heidelberg (Pfeil et al. [171]). (c) DYNAPs from the university
of Zurich (Moradi et al. [160]) . (d) TrueNorth from IBM (Akopyan et al.
[42]). (e) Loihi from Intel (Davies et al. [85]).

45

2. Related Work: motion representation with SNNs

2.6. Summary

This chapter presented the link between biological motor control principles, compu-
tational neuroscience, and robotics on the subject of motor control.

The mechanism of how movement is represented and executed in biology is an active
field of research. A widely accepted hypothesis is that the CNS uses a small number
of motor building blocks that are combined to produce motion. These building blocks
are formed by muscle synergies and are called motor primitives. Neuroscientists have
found that motor primitives are organized hierarchically and are combined by the
CNS to compose complex motions. There are studies on the evidence of muscle syn-
ergies for reaching and grasping. These insights from neuroscience have been suc-
cessfully applied in robotics, for instance, with the concepts of the dynamic movement
primitives and the eigengrasps. Nevertheless, robotics still relies mainly on classical
methods. The existing models from neuroscience are not designed with functionality
in mind and can not be used to control a robot. They require a lot of computational
power and focus mainly on reproducing biological data or replicating the statistics of
brain areas’ neural activity and connectivity.

In classical robotics, the problem of motion control is solved by calculating the IK for
the target point, then validating the configuration, and finally planning the trajectory.
The complexity of the problem increases with the number of joints and DoF. Which
makes computational expensive the development of closed mathematical models and
extensive exploration methods. These solutions are suitable and affordable for pro-
duction applications but lack adaptability for humanoid and service robots operat-
ing in an environment shaped for humans and interacting with objects designed for
human ergonomics. DL has the potential to solve most of these problems and limita-
tions. Nevertheless, despite recent success, DL also has some drawbacks which can
not be overlooked and are impractical for real robotics applications. To train a system
based on DL a lot of training data and simulation time is required. Depending on the
learning method also complex fitness, as well as reward functions, are needed.

Neuroscience principles can be used to control complex biological inspired robots,
and robots can be used to validate and understand brain mechanisms and learning
processes. This opens a gap to use different paradigms to validate brain mechanisms
and learning principles and develop functional models to control robots. One such
paradigm is event-based computation using SNNs. SNNs are modeled closer to the
biological aspects of real neurons, replicating the way real neurons work. With the
use of neuromorphic hardware, SNNs can be scaled up to take advantage of the char-
acteristics of event-based computation with great power efficiency.

46

3. Modeling and generating motion
with motor primitives using SNNs

This chapter presents the motion representation principles based on motor primitives
implemented with SNNs. The hypothesis that SNNs are a promising technology for
controlling robot motion is based on the fact that nature has examples of sophisti-
cated motor control mechanisms with great potential for adaptation and flexibility.
Generating motor commands to solve a robotic task is complex, and therefore it re-
quires an abstraction model. The approach proposed in this thesis is based on motor
primitives as a parametric modeling approach that simplifies control, and it is biolo-
gically plausible as shown in Section 2.1. Such motion models can produce a variety
of movements and be activated in different ways.

The concepts of muscle synergies, motor primitives, reflexes, circular activation in the
motor cortex, central pattern generators, inter-neurons in the spinal cord, and motion
adaptation motivate this thesis and are applied to model motions with SNNs. The
details of the underlying principles from biology for motor control were presented in
Section 2.1. The parametric modeling for motor primitives, its formalization, and its
mapping to robot kinematics is presented in Section 3.2. This model allows a dimen-
sion reduction of the control parameters. It provides a simplification of the search
space for valid configurations as the primitives provide a set of "correct" or "opti-
mized" motions. Different activation modalities for motor primitives are presented in
Section 3.3. The activation mechanisms for voluntary (intentional), rhythmic (repeti-
tive), and reflex motion activations are described and a mechanism for contact detec-
tion. The way motion primitives are organized in a hierarchical structure and how
they are combined to generate more complex motions are presented in Section 3.4.
The parameterization of motor primitives is possible by changing the way the activa-
tion parameter is generated and changing the mapping to the robot kinematics. The
encoding and decoding schemas are presented with the closed-loop control schema
with the robot control interfaces in Section 3.5. The methods to learn new primitives
and adapt the network are presented in Section 3.6. Motions can be learned using
examples from demonstration, from a mathematical function, or minimizing an error
signal. Motions can also be adapted with online learning.

47

3. Modeling and generating motion with motor primitives using SNNs

3.1. Concept overview and methodology

A general view of the closed-loop architecture with all the components of the SNNs
is presented in Figure 3.1. From right to left, the layers are arranged in increasing
order of abstraction, going from motor control of the joints and base motor primitives,
followed by low-level and high-level control representations.

Figure 3.1.: General architecture for motion representation using SNNs. From right to
left, the layers are arranged in increasing order of abstraction, going from
motor control of the joints and base motor primitives, followed by low-level
and high-level control representations.

In the motor control layer, there are motor primitives that control the joints directly.
Join positions are used to control the robot. Each joint has a corresponding output
population. In the low-level control layer, there are motor primitives and activation
modalities. These motor primitives coordinate other motor primitives from the motor
control layer, for example, for grasping or locomotion. The activation modalities in
this layer provide the mechanisms for rhythmic or repetitive activations and reflexes.
The reflexes provide mechanisms to activate or inhibit motions and the adaptation
of motions according to sensor feedback. In the high-level control layer, there are ac-
tivation modalities and task representation mechanisms. These activation modalities
parameterize the activation modalities in the low-level control layer and allow the com-
bination of motions. In the higher brain areas there are interfaces and mechanisms for
signals coming from other networks or other control systems. It is possible to inte-
grate non-spiking components or integrate SNNs for other brain functions such as
action selection or vision. Processing the information for input and output of the

48

3.2. Motor primitive formalization using SNNs

SNNs requires schemas for encoding and decoding. The proprioception provides
feedback about the joint positions, tactile sensors, and the efforts of the motors.

This work is based on the principles of the NEF (Eliasmith et al. [99]) to define and
generate the spiking neuron models. The software package Nengo (Bekolay et al.
[51]) implements NEF and allows the creation of large-scale SNNs by breaking the
networks down into smaller sub-networks. To define a SNN model using NEF, the
control algorithm has to be broken down into vectors, functions, and differential
equations. The activity of a population (group of neurons) is considered to be a dis-
tributed representation of a vector, for example, 100 spiking neurons representing a
2-dimensional vector. The connections between populations compute functions on
those vectors. The connection weights ensure that if the first population represents x,
then the second population will represent y = f(x). The connection weights for each
sub-network are optimized separately, and then they are combined into one large
neural network. Performing this optimization (i.e., finding connection weights) lo-
cally means that large SNN systems can be generated without using the traditional
neural network approach of optimizing over vast amounts of training data. How-
ever, the trade-off is that explicit claims must be made about the function of each
sub-network of the model. By changing the connection weights, the function being
computed is modified. The functionality of each sub-network can be defined as a
mathematical function or as a set of input and target output data. Finally, recurrent
connections can be added to implement differential equations. These principles are
applied in this thesis to implement motor primitives.

3.2. Motor primitive formalization using SNNs

The modeling and formalization of motor primitives with SNNs is presented in this
section. The concepts of motor primitives as building blocks (Bernstein [54], Flash et
al. [103], and Hart et al. [118]) and the hierarchical organization of the motor system
combining motor primitives (Bizzi et al. [55] and d’Avella et al. [81]) are applied.

Considerations about the modeling of coordinated motions are formulated in the fol-
lowing. A motion is independent of the task it can perform in terms of its execution
and coordination of the actuators involved and their relation to each other (Tieck et al.
[16]). For example, take the swing motion of an arm, the motion of the arm to point at
something, or the flexion of individual fingers. In this sense, a motion is a sequence of
joint activations, representing the synergies between the joints. A motion is defined
by its start and end positions, and it is executed within a finite period. A motor prim-
itive represents the joint activations during the execution of a motion. This can be de-
scribed by a function defining a time sequence of the state of all active joints (Tieck et
al. [24, 25]). Nevertheless, a model depending on time is inconvenient because this re-
quires the system to provide a time variable to evaluate the function. Instead, a model
of a motor primitive is proposed with an activation parameter u 2 [0, 1], an activation

49

3. Modeling and generating motion with motor primitives using SNNs

function f : [0, 1] ! [0, 1] and a mapping to the robot kinematics g : [0, 1] ! Rn. This
modeling is parametric, normalized time independent (see Figure 3.2).

Therefore, by modeling motions with motor primitives, the problem of generating
motor commands for specific motions is mapped to the problem of how to activate
the primitives (Tieck et al. [24]). This method provides a dimension reduction of
the control parameters because the activation parameter is controlled to generate a
specific motion instead of controlling all the joints individually. The resulting motions
are flexible and adaptive instead of being rigid.

Figure 3.2.: Block diagram of the modeling of a motor primitive. The functions f(u)
and g(f(u)) are defined in Equations (3.1) and (3.2) respectively.

3.2.1. Modeling the activation function

A motor primitive is modeled as a mapping of an activation parameter u to a se-
quence of joint activations (Tieck et al. [24, 25]). The activation signal is normalized
u 2 [0, 1], and it can be mapped to one or multiple joints. The start and end of a mo-
tion are represented with 0 and 1 respectively. This modeling provides a reduction of
the control parameters of multiple joints to one control parameter (see Figure 3.3).

The activation parameter u does not represent any particular motion by itself; it is the
input for the joint activation function. In theory, the activation function can be any
arbitrary function as long as it is continuous. A parametric and normalized activation
function f(u) is proposed to represent a motor primitive with the parameter u 2 [0, 1],
so that it is time-independent. Then, f : [0, 1] ! [0, 1] can be described as

f(u) =
sin(u · ⇡ � ⇡

2
)

2
+

1

2
, (3.1)

a sinusoidal function with smooth initial and final phases, as shown in Figure 3.3a.
With these properties, consecutive activations of the same function generate a contin-
uous curve with smooth transitions. Additionally, the derivative is continuous and
has smooth initial and final phases. This is appropriate to control real robots in both
position and speed while preventing unnecessary wear in the motors and transmis-
sions. This type of function is commonly used in robotics for interpolation. Sinusoidal
activations yield to better energy characteristics and suppress structural vibrations.

50

3.2. Motor primitive formalization using SNNs

(a) (b)

Figure 3.3.: Motor primitive modeling (Tieck et al. [25]). (a) Mapping of u to the ac-
tivation function f(u), Equation (3.1). (b) Complete mapping of u to the
robot kinematics g(f(u)), Equation (3.2).

Joint name Primitive ✓min ✓max

joint1 1 0 0.4
joint2 1 0 0.8

Figure 3.4.: Table for the joint mapping schema. The joints are defined with a name, the
associated primitive, and the interval of the joint ✓min and ✓max. A primitive can
be mapped to one or more joints.

3.2.2. Modeling the mapping to the robot kinematics

Finally, to control a robot, the primitives have to be mapped to its kinematics (Tieck
et al. [24, 25]). The activation function f(u) needs to be translated to motor commands
to generate motions. For this purpose g : [0, 1] ! Rn is defined as

g(f(u)) = ~✓, (3.2)

where ~✓ 2 Rn is the vector of joint values for the robot. The function g maps f(u) to
a set of joints by scaling it to the respective joint angle interval and using an offset
to the minimum of each joint. Thus, g is robot-specific, but f is general and can be
reused. In other words, this mapping scales the activation function to the motion
interval (✓max � ✓min) with an offset ✓min of the joint ✓. For this purpose g : [0, 1] ! Rn

is defined as a function for each joint as

g(f(u)) = f(u) · (✓max � ✓min) + ✓min (3.3)

to generate appropriate motor commands. A schema for the mapping g is illustrated
in Figure 3.3b and it is defined in the table in Figure 3.4.

51

3. Modeling and generating motion with motor primitives using SNNs

3.2.3. Generation of robot motion with motor primitives

To illustrate how all components work together, Figure 3.5 shows how a motor primi-
tive is used to control the shoulder and elbow joints of a two-link robotic arm. Changes
in the activation parameter u generate different values of the activation function,
which are mapped to the joints involved in the motion (Tieck et al. [24]).

Motor primitives can be parameterized by changing the way u is generated and can
be combined by using the same u to activate different primitives at the same time.
There is no inverse coordinate transformation nor a trajectory planner in cartesian
space. The generation of the trajectories is done in joint space using the motor prim-
itives. Thus, the problem of joint motor control can be reduced to the definition and
generation of the parameter u to activate a primitive.

(a)

A B C

(b)

Figure 3.5.: Generating motor commands using motor primitives (Tieck et al. [24]). (a)
From left to right, the activation parameter u, the joint activation function
f(u), and the mapping g(f(u)) for two different joints. (b) Motion frame
sequence of a robotic arm controlled by a motor primitive. The frames
correspond to the three red vertical lines in (a).

52

3.3. Activation of motor primitives and contact detection

3.3. Activation of motor primitives and contact
detection

Different mechanisms to activate motor primitives as well as a contact detection mech-
anism are presented in the following. A voluntary or intentional activation controls
the motion constantly and can start or stop at any point of it, for example, moving
the arm to point to an object. A rhythmic or repetitive activation goes from the be-
ginning to the end of the motion and repeats it multiple times, for example, moving
the legs for walking. A reflex activation is a complete one-time execution of a motion,
for example, the retract reflex of the arm. The different activation modalities (vol-
untary, rhythmic and reflex) are used to activate, combine and parameterize motions
in Section 4.2. There are different ways of modeling a motion generation layer that
produces rotational neural activity similar to the motor cortex. This layer generates a
relatively constant or normalized amount of spikes in a time interval. The activity of
the motion generation layer is used to drive either one or multiple complete activa-
tions of a motor primitive. The first mechanism is to model a function that produces
this type of activity and then having a network learn the function, e.g., a neural os-
cillator. Another mechanism to achieve this is by gradually tuning the network by
locally adjusting the synaptic weights to match the desired activity (see Section 4.3.1).
Additionally, a mechanism based on reflex circuits of interneurons in the spinal cord
is proposed. This mechanism considers the joint efforts and proprioception to detect
contact and trigger a reflex.

3.3.1. Voluntary motion activation

A voluntary or intentional motion activation controls the motor primitive continu-
ously (Tieck et al. [24]). The execution of a voluntary motion is represented as a one-
dimensional input. It defines the value of u, and thus, the position in the trajectory
of the given primitive. The process of generating motor commands based on motor
primitives is illustrated in Figure 3.5. In Figure 3.5a, the relation between u, f(u) and
g(f(u)) is illustrated. The vertical lines in the first plot labeled as "A, B, C" correspond
to the frames of Figure 3.5b showing the robot motion for different values of u. Notice
that a motor primitive can be mapped to one or multiple joints.

This activation mechanism is applied in the experiments presented in Sections 4.2
and 4.4. In general, there is no principal difference between voluntary and reflex
motions regarding the coordination synergies. The difference is the activation mode.
For voluntary motions, it is discrete over time, and for reflexes, it is immediate.

53

3. Modeling and generating motion with motor primitives using SNNs

3.3.2. Motion generation layer by modeling an oscillator for
rhythmic activation

The first mechanism to implement a motion generation layer requires modeling a
function that generates the required activity and have a SNN learn it (Tieck et al.
[25, 24]). In this case, the function is modeled as an oscillator. This modeling al-
lows further parameterization of the motion, because the frequency and amplitude
of the oscillator can be adjusted continuously to modify the generated activity. This
activation mechanism is used in the experiments discussed in Sections 4.2 and 6.2 to
generate rhythmic motions.

In contrast to voluntary motions, rhythmic or repetitive motions (e.g., waving with
one arm) consist of consecutive executions of the same set of primitives. Pattern gen-
erators control rhythmic motions in the spinal cord of vertebrates. They are formed
by an interneuron connected to a set of nerves and motor neurons, generating os-
cillatory patterns. In Churchland et al. [70] evidence is provided, rhythmic muscle
contractions come along with neurons displaying firing rate oscillations at a similar
frequency. A hierarchy of pattern generators was proposed in Nassour et al. [161] to
generate joint activations for locomotion.

The generation of u has to be continuous and repetitive until interrupted by higher
control layers to achieve a rhythmic activation. It is modeled as an oscillator

h(!) = a · sin(b!⇡
2
), (3.4)

with ! a recurrent connection and a and b the parameters for the amplitude and fre-
quency, respectively. To change the parameters of rhythmic motions, a set of popula-
tions in a higher layer of the network was added to control the parameters a and b.
By changing a, the amplitude of the movement is modified, and by changing b, the
frequency of the movement is modified.

The oscillator is implemented with a population of spiking neurons organized in a
grid (see Figure 3.6a). By indexing the neurons in the oscillator population, the ac-
tivity can be mapped to a 2D plane. To extract u from this circular activity, the mean
activation of this population of neurons is decomposed in the X and Y components.
This components represent the activation of the population it the XY plane as shown
in Figure 3.6b. The X and Y components can be represented as a vector (x, y) rotating
around the origin, as illustrated in Figure 3.6c. From this representation a continuous
and normalized signal u 2 [�1, 1] is extracted as

u = sin(arctan(
y

x
)), (3.5)

where arctan(yx) is the angle of the vector represented by (x, y). The function sin is
applied to smooth and normalize the trajectory between [�1, 1]. One oscillation acti-
vates a whole primitive once, as both the oscillation and the primitive are normalized.
Consequently, multiple oscillations activate the motor primitive multiple times.

54

3.3. Activation of motor primitives and contact detection

(a) (b) (c)

Figure 3.6.: Circular activation is modeled as an oscillator by a population of spiking
neurons (Tieck et al. [24]). (a) The population is represented as a 2D grid,
and the intensity represents the amount of spikes. (b) The activity is de-
composed in the X and Y components. (c) These components represent a
vector rotating. The angle of the vector (different colors) is used to generate
the activation parameter u.

3.3.3. Reflex motion activation

In biology, reflexes are neural circuits that mediate specific actions depending on the
sensor input and the desired motor activation. There are different types of reflexes:
e.g., pupil dilatation, pain reactions, and inhibitory (Byrne et al. [64]). In this work,
two different reflexes are modeled — the withdrawal reflex and the inhibitory reflex.
The first one activates the retraction of the arm, e.g., when there is a collision or when
touching a hot surface. The second one stops the motion in case of contact, e.g.,
when grasping an object. In nature, the activation of the reflexes is implemented with
interneurons in the spinal cord. They receive the current motor activation and the
sensory input from the body at the same time. The Reflexxes Motion Libraries (Kröger
[143]), a reactive framework based on reflexes, is a successful example of applying
reflexes for robotic motor control.

The reflex activation mechanism was introduced in Tieck et al. [25] and later refined
in Tieck et al. [24]. The weights of the synapses for the activation of a reflex have to
be very strong. This way, it provides either a single immediate execution of one or
more primitives or the inhibition of the current motion. Both reflexes affect the motor
output for the current executed motion. This activation mechanism is applied in the
experiments presented in Sections 4.2, 5.3 and 5.4.

To achieve this activation, the generation of u has to be continuous and have a finite
duration. The reflex activation mechanism is similar to the rhythmic motion activa-
tion (see Section 3.3.2), but with two recurrent connections. One excitatory connection
prompts the reflex, starting the oscillator in the same way. An additional inhibitory
connection forces the oscillator back to zero after one oscillation.

55

3. Modeling and generating motion with motor primitives using SNNs

3.3.4. Contact detection intercircuit

The following mechanism to detect contact and trigger the reflex is inspired by the
circuits of spinal interneurons combining inhibitory and excitatory connections. The
contact detection circuit is modeled as an alternative selection mechanism of the net-
works with interneurons in the spinal cord (Jankowska [131]). This activation mech-
anism is used in the experiments presented in Sections 4.2, 5.4 and 6.2.

The basic idea is to use only the motor currents to calculate the joint efforts and use
the signal to detect contact (Tieck et al. [16]). The problem with this is that both the
movement of the arm and an external force cause changes in the joint efforts. This
means that high efforts do not always indicate a contact. In addition to external forces,
high efforts can be generated from a fast movement due to the robot’s dynamics and
inertia. This is inconvenient because reflexes should only be triggered when there
is contact and not whenever a motion is performed. To overcome this problem, a
neural circuit is proposed to provide the interneurons with proprioception to detect
if the joint is moving (Tieck et al. [24, 21]).

The contact detection mechanism is illustrated in Figure 3.7. The effort in the joints
is connected excitatory to the corresponding reflex interneuron. The proprioception
(joint angle ✓) signal is used to get the motion (joint speed �✓), and the interneuron is
inhibited proportionally to it. Accordingly, if the joint moves (meaning �✓ > 0), the
population excited by the effort is also inhibited by the motion. This ensures that the
interneuron can only detect contact if the effort in the joint is increasing, but the joint
is not moving. Thus, solving the problem that the moving arm also generates efforts
because of the dynamics and the inertia.

Figure 3.7.: Contact detection mechanism (Tieck et al. [21]). The proprioception deter-
mines the velocity of the joint �✓. The current angle position ✓t is com-
pared with the previous ✓t-1, provided by a delayed, recurrent connection.
The interneuron, is excited by the effort feedback from the motors and in-
hibited by the current �✓. This ensures that the interneuron only detects
contact if the effort increases and the corresponding joint is not moving.

56

3.4. Motor primitive combination, parameterization and hierarchy

3.4. Motor primitive combination, parameterization
and hierarchy

This section presents the principles to combine multiple motor primitives, parameter-
ize them, and build a hierarchy of motor primitives. These three principles are fun-
damental to reuse motor primitives to represent complex motions and behaviours.

Two biological concepts inspire the mechanisms to combine motor primitives. The
first one is the evidence of motor primitives as motion building blocks (Bernstein
[54]). The second one is how motion is represented, combining these fundamental
building blocks to generate different movements (Bizzi et al. [55]). The parameteriza-
tion of motion is based on the works from Ayaso [49] and Nassour et al. [161]. Ayaso
[49] proposes an architecture to generate motor commands for arm motions and de-
scribes how learning and adaptation can be achieved by changing the gain. Nassour
et al. [161] presents a hierarchy of pattern generators that are dynamically parame-
terized to generate joint activations for locomotion. The hierarchical architecture is
based on the research from d’Avella et al. [81], which shows how the different parts
of the CNS and the body form a motion hierarchy based on motor primitives.

3.4.1. Combination of motor primitives

Motor primitives are combined by activating multiple primitives at the same time.
The output of the different primitives is merged in one single motor command for
each actuated joint (Tieck et al. [16, 24, 20, 23]). It is clear that if the primitives activate
different joints from each other, this combination is trivial. If different primitives
activate the same joints, then various combination scenarios are possible, as shown in
Figure 3.8. For each case, a specific combination mechanism is proposed.

In Figure 3.8a two primitives activate one common joint — joint 2. The mechanism
averages all activations for that joint as a weighted mean. The influence of one single
primitive depends on the number of active primitives. This combination mechanism
is applied in the experiments presented in Sections 4.2 and 4.4.

In Figure 3.8b two primitives activate the same set of joints. Imagine two primitives
controlling different motions of the same arm. For this case, the activation of both
primitives is proportional, and it is considered to have different weights. The influ-
ence of one single primitive depends on a feedback signal or a signal coming from
higher brain areas. This happens when there are different control loops in the net-
work with different priorities. This happens especially in two situations. One, when
there is a base motion being performed, and other motions are adjusting it. The ex-
periments in Section 4.3 make use of this mechanism. The other one is when another
motion interrupts or overtakes the control with a strong activation, as a reflex, for

57

3. Modeling and generating motion with motor primitives using SNNs

example. This combination mechanism is applied in the experiments presented in
Sections 4.2, 5.2, 5.4 and 6.2.

In Figure 3.8c, two primitives activate the same set of joints, but their activation is
exclusive. In this case, the activation of one of the primitives inhibits the other one.
Thus, only one is active at a given time. This combination mechanism is applied in
the experiments presented in Sections 5.4 and 6.2.

Figure 3.8.: Combination of motor primitives. Different combination cases for activa-
tion of the same joints by different motor primitives.

3.4.2. Parameterization of motor primitives

The way to parameterize a motor primitive, is by controlling the generation of the
activation parameter u (see Section 3.2). There are different mechanisms to achieve
this. The speed of a motion can be changed by changing the activation function f(u).
The range of movement of a primitive can be controlled by changing the min and
max values of the mapping function g(f(u)). For the motion generation generation
(circular activity) or for the oscillators, the amplitude and frequency can be controlled
(see Section 3.3). For the combination of primitives, the weighting factor of the active
primitives can be controlled. In Section 6.2, the leg primitives were controlled by
changing the behavior parameters.

3.4.3. Hierarchical architecture to generate complex motions

To model complex motions based on SNN motor primitives, a control hierarchy is
proposed. Motor primitives can be combined and organized in different layers, start-
ing with simple joint movements, forming complex arm motions, and integrating
signals from higher brain areas. A detailed view of the hierarchical control archi-
tecture with all layers and populations of the SNN is presented in Figure 3.9. The
layers are organized in increasing order of abstraction from right to left, starting with
the motor control of the joints and base motor primitives, followed by low-level and
high-level control representations. There are many functional layers in the brain, but

58

3.4. Motor primitive combination, parameterization and hierarchy

these four conceptual layers can represent the main motoric functions in the human
motor system. These hierarchical architecture principles are used in the experiments
presented in Chapters 4 to 6.

Figure 3.9.: Detailed view of the hierarchical control architecture with all layers and
populations of the SNN. The layers are organized in increasing order of
abstraction from right to left.

The feedback signals represent proprioception, which provides joint states, tactile
information, and joint motor efforts. The feedback data is available to all the layers.

The motor control layer consists of motor primitives, motor neurons, and the map-
ping to motor commands. The robot receives commands from the motor control layer,
where the primitives and output populations for each joint are processed. This layer
is sub-divided into three sub-layers. The first sub-layer represents the joints and the
mapping to the robot kinematics. The second sub-layer represents motor neurons
that in biological systems activate the muscles, but with physical robots, the motor
commands have to control motors. In this case, the robot requires joint position com-
mands. The third sub-layer defines base or elementary primitives that activate mul-
tiple joints and mirrors the topology of the kinematics of an arm, finger, or leg.

For example, there is a hand coordination layer representing grasping affordances
(see Chapter 5). The low-level control layer has the oscillators for rhythmic motion
activation, interneurons, neural circuits for reflexes, pattern generators, and motor
primitives. For the representation and generation of complex motions, motor primi-
tives can be defined in higher layers to control other primitives instead of controlling
joints directly. Additionally, other functional components can be modeled within the

59

3. Modeling and generating motion with motor primitives using SNNs

hierarchy. For example, to control the motor primitives as behaviours for synchro-
nization and generate activation patterns (see Chapter 6).

The high-level control layer represents voluntary or intentional activations, the pa-
rameters for the oscillators, pattern activations, other pattern generators, and other
motor primitives. The error signals are calculated using the TCP position and the de-
sired target in the high-level control layer. The target representation can be done in
the configuration space or polar coordinates.

A high-level control interface controls the activations patterns, providing an interface
to other networks or control systems. This is necessary to integrate other SNNs and
to perform experiment control. With higher-brain areas and vision, different func-
tions coming from other networks are represented. These are included greyed out
for completeness, but they are out of the scope of this thesis. SNN-based closed-loop
control systems can be seen in analogy to PFM controls (Pulse Frequency Modulated
controls), which has been successfully applied for stepper motor drivers and pulsed
satellite control systems (Dillmann [95] and Dillmann et al. [94]).

3.5. Encoding and decoding spike activity for
closed-loop robot control

Integrating SNNs into robot control requires the translation of spike trains into real-
time-robot control commands and vice versa. Two aspects have to be considered,
robots operate in closed-loop and in real-time. This imposes restrictions and limi-
tations on how the network operates and how it can be trained. The encoding and
decoding schemas need to be compatible with the standard robot control interfaces
(Kaiser et al. [9]). The encoding schema allows the conversion from a vector of input
data of sensor information into neural activity as spike trains. The decoding schema
allows the conversion in the other direction, from neural activity as spike trains into
robot motor commands. The closed-loop control schema integrating SNNs with the
control interfaces for robots or simulation platforms is shown in Figure 3.10. For the
experiments, the neurosimulators Nengo and NEST, have been connected with robot
simulators and real robots with the help of Robot Operating System (ROS). ROS offers
a standardized interface to most of today’s robots and simulators.

The proposed encoding and decoding mechanisms are based on population repre-
sentations. This means that a single value is represented by a set of neurons and
not by individual neurons. Two mechanisms for encoding and decoding are pre-
sented. First, a mechanism for distributed encoding and decoding information using
the principles from NEF is introduced. Second, a mechanism to encode and decode
spike activity using Gaussian curves is proposed. An essential aspect for representing
data with ANNs and especially SNNs is the normalization of the data.

60

3.5. Encoding and decoding spike activity for closed-loop robot control

Figure 3.10.: Closed-loop control schema with SNNs. Schemas for encoding and de-
coding spike trains are incorporated for communication between the
neurosimulator and the robot control interface.

3.5.1. Distributed representation for encoding and decoding

One mechanism to represent sensor or control values with spikes is to use the activity
of a population of spiking neurons as a distributed representation (Tieck et al. [25,
24]). Thus, different values correspond to different activity patterns of the whole
population and not of individual neurons. This method is based on the principles of
the NEF (Eliasmith et al. [99] and Stewart [207]).

For encoding, the parameters of neurons in a population — for example, the bias cur-
rents — are initialized with a random distribution. Neurons can be driven by indi-
vidual spikes or by the input current (see Figure 2.19b). In biology and neuromorphic
hardware, all neurons have different physical properties; thus, this initialization re-
sembles this process. Once the neurons are initialized, an encoder vector is generated
for the population. There are many methods of doing this initialization. The encoder
is calculated once when the population is initialized. A general approach to generate
the encoder vector is to use a uniform random distribution with regular intercepts
in the input signal interval. The input signal is translated to current, and it is multi-
plied by the encoder vector to activate the neurons. The relation between changes of
the input signal with the neuron’s firing rate can be seen with the tuning curves (see
Figure 3.11a). The tuning curves are generated by changing the input current of each
neuron and recording its firing rate. Changes in the neuron parameters, e.g., bias cur-
rent or refractory period, and changes in the encoder vector affect the tuning curves.
Finally, the spike activity of the population encodes the input signal. The spike plot
in Figure 3.11b shows spike trains for different input signal values.

For decoding, the spike activity of the neurons is filtered with an exponential decay
temporal filter (see Figure 3.11c). A constant linear decoder vector weights the re-
sponse of each neuron. The estimated decoded value is calculated by multiplying
the filtered spike trains with the decoder vector and adding them (see Figure 3.11d).
The decoder vector is optimized to find a set of weights that minimize the difference

61

3. Modeling and generating motion with motor primitives using SNNs

between the function to be represented and its estimate. In this case, the function is si-
nusoidal. The decoder vector is calculated when the network is initialized, but it can
be modified online using learning rules like Prescribed Error Sensitivity (PES) (see
Section 3.6). A detailed explanation about the encoding and decoding mechanisms of
the NEF are provided by Eliasmith et al. [99] and Stewart [207].

(a) (b)

(c)
(d)

Figure 3.11.: Encoding and decoding with the NEF, different colors indicate differ-
ent populations’ neurons. (a) Tuning curves define the firing rate with
respect to the input signal (Stewart [207]). (b) Spike trains for different
values of the input signal. (c) The spikes trains are filtered with a tempo-
ral filter (exponential decay) (Nengo [163]). (d) Approximated output is
calculated by multiplying the filtered spike trains with the decoder vec-
tor and adding them together.

3.5.2. Stochastic Gaussian population position encoding

An alternative mechanism is proposed to represent a value with spikes applying
stochastic Gaussian curves for encoding and decoding (Tieck et al. [16]). This mecha-

62

3.5. Encoding and decoding spike activity for closed-loop robot control

nism is based on the proprioception of muscles with receptive fields (Arbib [47] and
Wu et al. [224]). A stochastic population encoding with Gaussian receptive fields en-
codes the robot’s joint positions into neural input. Indeed, it is possible to apply this
method for both encoding and decoding with the same schema. However, this is
reasonable and efficient because the robot kinematics are represented in joint space.
In contrast to this, biological muscles proprioceptors react to local forces, and in the
brain, different representations can be observed.

This mechanism is called stochastic population position Gaussian coding. For the en-
coding, values are converted into spike trains using a mixture of Gaussian kernels to
tune the firing rate of Poisson generators for the neurons in a population. A popula-
tion of neurons maps the joint interval to a Gaussian activation curve centered on the
actual joint angle. This Gaussian receptive field is applied to define the activation fre-
quency of the neurons. An illustration for encoding an arbitrary angle is presented in
Figure 3.12a. This scheme is mapping values of consecutive states by sharing part of
the activation. Different receptive fields encode values in a normalized interval. The
populations are sub-divided to quantize the interval with an overlap of the Gaussian
curves. For decoding, a voting schema is applied to determine the central activation
of the Gaussian spike distribution (Figure 3.12b).

min

max

spike activation

po
si

tio
n

in
 d

eg
re

es

tneurons

(a) (b)

Figure 3.12.: Neural encoding and decoding schemas. (a) For encoding, joint posi-
tions are converted into spikes by having each of the neurons on the left
represent an equal share of the possible joint interval, and the Gaussian
curve defines the activation frequencies (Tieck et al. [24]). (b) For de-
coding, a voting schema F (x) determines the central neuron xi of the
activation to center the Gaussian curve (Tieck et al. [16]).

63

3. Modeling and generating motion with motor primitives using SNNs

3.5.3. Data normalization

An important consideration for representing information with ANNs and especially
SNNs is to normalize the data. Normalization ensures that the values are bounded
to an interval represented by the network, which makes learning more flexible and
that the network’s learning considers all input features to a similar extent (LeCun et
al. [146]). A spiking neuron has a limited firing rate, which limits the values it can
represent. This is critical for multi-layer networks as consecutive layers will saturate
the firing rate. Additionally, if the inputs have different scales, the weights associ-
ated with some inputs will be updated much faster than others (Eliasmith [98]). A
standard approach is to scale the inputs to have a mean 0 and a variance of 1 into
the interval [�1, 1]. Another approach is to scale the inputs with a scaling factor and
transforms all the values into the interval [0, 1].

3.6. Mechanisms to learn motor primitives with SNNs

In the following, the different learning mechanisms to learn motor primitives with the
concepts from Section 2.3 are presented. A method to learn function representations
offline by optimizing the decoders using NEF is presented in Section 3.6.1. A method
for learning human demonstrated motions offline by using associative learning and
a teaching signal is proposed in Section 3.6.2. Finally, a method for learning online by
modifying previously learned motor primitives is proposed in Section 3.6.3.

3.6.1. Learning functions by optimizing the decoding weights

A mechanism to represent motions with SNNs, is to learn a motion offline optimiz-
ing the weights of the network as described in NEF (Eliasmith et al. [99] and Stewart
[207]). The motion can be defined as a function or as a set of waypoints in the trajec-
tory (Tieck et al. [25]). A complex function has to be broken down into vectors, func-
tions, and differential equations, which are learned in different sub-networks. The
connection weights for each sub-network are optimized separately, and then they are
combined into one large neural network. This approach has two advantages. First,
the definition of what the sub-network does is explicit and understandable. Second,
finding the connection weights locally using optimization enables the generation of
large complex systems without using the traditional neural network approach of op-
timizing over huge amounts of training data. However, the trade-off is that explicit
claims must be made about what each sub-part of the model is doing.

For any non-linear neuron model G, assuming that the input current x of a neuron is
proportional to the value it represents, the activity a can be defined as

ai = G(↵iei · x+ bi) (3.6)

64

3.6. Mechanisms to learn motor primitives with SNNs

with ↵i a gain parameter and bi is a constant bias current for the neuron (Stewart
[207]). Based on the principles described in Section 3.5.1 for encoding and decoding
information into a SNN, the learning problem is to find a linear decoder ~di that rep-
resents the desired output ~x. This decoder maps the activity of the network to an
estimate x̂ of the desired output x as:

X̂ =
X

ai
~di (3.7)

Here, ~d can be solved as a least-squares minimization problem. According to Stewart
[207], the solution for ~d is defined as

~d = ��1⌥, �ij =
X

x

aiaj, ⌥j =
X

x

aj~x. (3.8)

Now, with Equation (3.8) the activity of a sub-network or group of neurons can be de-
coded to represent the desired output. To build complex systems, the output of a sub-
network is connected to the input of another sub-network with a different function,
and this process can be repeated multiple times. In order to create this connections,
an intermediate layer of ideal linear neurons is defined (see Figure 3.13a). The first
part ~d is what is needed to compute ~x given the activity of a sub-network A. Then the
second part ~e is what is needed to compute f(x) given ~x. This abstraction is the ideal
representation, and there is no intermediate layer. However, they can be removed by
connecting A and B directly with !ij = ~di · ~ej as shown in Figure 3.13.

Figure 3.13.: Learning with NEF (Stewart [207]). Circles are any neuron model G with
gain ↵i and bias bi. Squares are idealized perfectly linear components. a)
Shows how Equation (3.7) computes x from ai using weights d and how
Equation (3.6) combines x with e to compute the input current to the
next layer of neurons. b) Eliminates these idealized components, giving
a realistic neuron model functionally identical to a).

Equation (3.8) can be generalized for any function (Eliasmith et al. [99] and Stewart
[207]). The precision of the function’s representation depends on the number of neu-
rons and the characteristics of the function. This method is used to represent motions
by modeling the function that describes a specific trajectory or by a sampling of the
trajectory in joint space.

65

3. Modeling and generating motion with motor primitives using SNNs

3.6.2. Learning sequences with associative supervised learning

A supervised associative learning mechanism based on STDP is proposed to learn
sequences (Tieck et al. [16, 20]). During learning, a teaching signal is connected one-
to-one to the output layer. For noise reduction in the output layer, a winner-takes-all
circuit is incorporated. Sub-networks like the ones for the arm, hand, fingers, or
legs can be independently trained. The plastic synapses are initialized with random
weights 2 (0, 1]. This method is inspired by the work of Bouganis et al. [57].

With the training data, the direction vector of the motion is calculated for each finger-
tip and the desired motor commands to feed the hand and finger networks, respec-
tively. The teaching signal encodes the desired activation. It raises the membrane
potential of specific output neurons just below the firing threshold and inhibits all
others. Thus, the activation of input neurons triggers STDP for the desired activation.
This approach is called selective disinhibition (Sridharan et al. [202]) and is used to pre-
vent input and teaching signals from competing. After learning, the SNN associates
the input with the desired output and reproduces the teaching signal.

To regulate STDP, each neuron in the output layer has incoming synapses from two
corresponding neurons in the input layer, one excitatory and inhibitory. These two
neurons work as one having complementary activations (the sum of their firing rates
is constant). For excitatory synapses, an anti-symmetric STDP learning rule and a
weight-dependence rule are used (Gütig et al. [116]). The inhibitory synapses use an
anti-symmetric anti-Hebbian STDP rule using additive weight-dependence. Jointly
tuned excitatory and inhibitory STDP in feed-forward SNNs lead to a local synaptic
balance to make the network sensitive for learning new synapses and prevent fast
increase of the weights (Kleberg et al. [138]).

3.6.3. Adapting motions with online learning

Motions are represented as primitives modeled as g(f(u)) (see Section 3.2). The differ-
ent activation modalities were modeled as different mechanisms to generate u (Sec-
tion 3.3). The joint activation function f is always the same for all joints. In this sec-
tion, a mechanism is presented to learn new motor primitives by learning the function
g based on existing primitives, thus reusing previous knowledge (Tieck et al. [24]).

The principle is illustrated in Figure 3.14a. A motor primitive (continuous line) is used
as base, and a target trajectory (dashed line) represents the desired motor primitive to
learn. The target trajectory is generated in another brain area but is modeled as an
arbitrary function. The network learns to move the TCP along the target trajectory
using the distance from the TCP to the base trajectory as the error signal. Two ex-
amples illustrate the process in Figure 3.14b. A linear motion is selected as the base
(see first row of Figure 3.14b). The error signal ⇠ is calculated in spherical coordinates

66

3.6. Mechanisms to learn motor primitives with SNNs

with reference to the shoulder. The desired motion (see second and third row in Fig-
ure 3.14b) is implicitly encoded in the error signal. Thus, the initial motor primitive
is reshaped by learning, according to the target trajectory. Finally, the network learns
to move the TCP along that trajectory.

(a)

A

B

C

(b)

Figure 3.14.: Learning new motor primitives (Tieck et al. [24]). (a) The continuous line
is the base primitive. The dashed line is the target primitive. The error sig-
nal ⇠ is defined as the distance between TCPtarget and TCPbase, in spherical
coordinates to the shoulder. (b) Using an already learned motor primi-
tive A as a base motion to learn two different target trajectories B and C
as new motor primitives.

For learning, the Prescribed Error Sensitivity (PES) rule is used. PES was first intro-
duced by MacNeil et al. [153]. The weight updates performed by PES during learn-
ing, resemble skipped Back-propagation. PES modifies the decoders of a connection

67

3. Modeling and generating motion with motor primitives using SNNs

to minimize an error signal. The change in weights wij, is given by

�wij = · ↵j · ej · ⇠ · ai, (3.9)

where ↵ is the gain, the learning rate, ⇠ the error, e the encoder of the neuron and
a the presynaptic activity. The pre-synaptic population is indexed by i and j indexes
the post-synaptic population.

3.7. Summary

The taking points of this chapter are the following. It has been shown that there is
a parametric way of modeling a motor primitive with an activation parameter and
a mapping function. This modeling reduces the control parameters of the controlled
joints to one activation parameter for each motor primitive. The mapping to the robot
kinematics is the only part that is robot specific, and it can be modified to another tar-
get system. There are different activation mechanisms for the parameter that controls
a motor primitive. It can be activated with different modalities — voluntary or in-
tentional, rhythmic or repetitive, or reflex. There are also mechanisms for contact
detection and selective disinhibition. In order to model complex motions and be-
haviours, motor primitives can be organized in different layers in a hierarchy. This
structure allows the combination and parameterization of primitives. This allows the
reuse of low-level primitives for different motions. The schemas for encoding and
decoding spike information are presented with a closed-loop control schema. There
are different mechanisms to learn new motor primitives, either online or offline, and
either modeling the motion or using human demonstrated motions.

In the following chapters, SNNs are systematically studied to develop building blocks
for different control problems. After modeling and formalizing the building blocks to
work with motor primitives using SNN, the next step is to apply these principles with
applications in different problems. With the help of robot experiments, different SNN
based control modes are discussed and evaluated regarding the underlying learning
strategies, complexity, and robustness. The next chapters present three types of ap-
plications: arm (Chapter 4), hand motion (Chapter 5), and multi-legged locomotion
(Chapter 6)). In all cases, biological plausibility is discussed.

68

4. Combination and activation of
motor primitives to control robotic
arms

In robotics, manipulation is a fundamental task that is performed before and after
grasping. Recent studies provide insights into the neural mechanisms for motion
generation in the motor cortex. During reaching, neural activity in the motor cortex
shows a short but strong rotational component (Churchland et al. [70] and Russo et al.
[184]) and a strong and amplified but stable response to initial activation (Hennequin
et al. [119]). Additionally, neural correlates of many different types of parameters of
arm movements have been found in the motor cortex (Kalaska [134]). Studies have
shown that the human brain incorporates feedback information from vision and pro-
prioception to execute reaching movements (Saunders et al. [188] and Filimon et al.
[102]). The link between these two systems implies that other important components
are involved in the generation of motion. Humans can quickly determine which ob-
ject is in front/back or on the left/right of another one, which of two angles is wider,
and then move the arm accordingly (Pfeifer et al. [169]).

This chapter presents methods and experiments to discuss and evaluate control prin-
ciples for different motions of a robotic arm using motor primitives and SNNs. The
arm motion is modeled by defining primitives to perform simple motions — moving
left-right, for example — and combining them with different mechanisms. In the fol-
lowing, three scenarios are considered: multimodal activation, target reaching, and
motion adaption.

Multimodal activation represents the mechanisms to activate, combine, and param-
eterize motor primitives directly. Three mechanisms for motion activation are mod-
eled: voluntary, rhythmic, and reflex. A voluntary or intentional activation controls
the motion continuously and can start or stop at any point in it — for example, mov-
ing the arm to point to an object. A rhythmic activation goes from the beginning to
the end of the motion and repeats it multiple times — for example, moving the legs
for walking. A reflex activation is a complete one-time execution of the motion — for
example, the retract reflex of the arm. Additionally to the different activation modali-
ties, combining different motor primitives and parameterizing them is a challenge.

Motion adaption is modeled by combining a base motion with a set of correction
motor primitives offline using a proportional target representation. It is defined as

69

4. Combination and activation of motor primitives to control robotic arms

the pre-shaping of pointing motions in a plane. Offline means that the motion is
generated in predictive feed-forward mode before the movement. The purpose is to
generate new motions offline by adapting a given set of motions to point at different
targets in a plane.

Target reaching is modeled with three correction primitives — left-right, up-down,
far-near — and the target is represented as discrete negative feedback to activate the
motion. It is defined by an initial state of the robot arm and a target position in space,
move the TCP of the arm to the target. The idea is to control the arm to reach specific
targets combining the motions online using sensor feedback. The challenges are how
to model this control problem with motor primitives and how to incorporate target
information into the network.

4.1. Modeling the motion of a robot arm

The experiments are performed with commercially available robotic arms and a hu-
manoid robot with two arms. The control interface is based on ROS, which allows
communication between the SNNs and both the simulation and the real robots. With
all robotic systems, the same abstraction of the arm kinematics is applied, and the
control is made with the joint position. For the experiments, the arm is considered to
have three active DoF — two in the shoulder and one in the elbow (see Figure 4.1).

Figure 4.1.: Arm motion modeling. The robotic arm is controlled with the joint po-
sition interface. It has three active DoF, and it has no force or contact
sensors. Primitives are defined for different groups of joints. There are
different representations of the target. Different modalities are integrated
to activate the primitives.

An output population is defined for each of the joints to control the arm with SNNs.
Each primitive represents the synergies between the joints during a simple motion of
the arm. A primitive can activate one, two, or all three joints. The base motions are
represented by sampling the joint states of the robot while moving it manually in a

70

4.1. Modeling the motion of a robot arm

similar way to the corresponding human motion. Then, the primitive sub-networks
are trained to generate the sequences. The targets are represented in different ways to
create different behaviours. Different primitives are activated with different modali-
ties and combined to generate complex motions. There is a contact detection mecha-
nism to trigger reflexes.

The robotic arm is an industrial Schunk Powerball Lightweight Arm LWA 4P (see
Figure 4.2a). It is developed by Schunk for industrial and research tasks, such as
manipulation and human-robot collaboration. All the electronics are integrated into
the joints and the base. This robot offers a standard platform that resembles many
industrial arms. To control the robot arm, the official ROS CANopen driver is used
(Heppner [120]). The arm has two DoF per joint for a total of 6-DoF.

The humanoid robot HoLLiE (Hermann et al. [123]) is a mobile service robot with two
industrial arms and two humanoid hands (see Figure 4.2b). The robot is developed at
FZI Research Center for Information Technology (FZI) for service tasks, such as guid-
ing visitors and mobile manipulation (FZI [105]). With a wide range of sensors and
an articulated body, HoLLiE can manipulate everyday objects, interact with humans,
and be employed in service robotic scenarios. For these characteristics, HoLLiE was
chosen to achieve human-like pointing motions, as the arms are mounted on an up-
per body with similar kinematics to a human arm. The control interface is based on
ROS control. Each arm has 6 DoF, each hand has 9 DoF, and the head and torso are
also articulated.

(a) (b)

Figure 4.2.: Robots used for the arm experiments. (a) Robotic arm Schunk Powerball
Lightweight Arm LWA 4P (Memar et al. [157]) (b) Humanoid robot HoL-
LiE (FZI [105]).

71

4. Combination and activation of motor primitives to control robotic arms

4.2. Activation modalities and combination of motor
primitives

By modeling motion with motor primitives, the problem of generating a specific mo-
tion is mapped to the problem of how to activate the primitives. Humans and animals
can change their motions efficiently and intelligently to adapt to changes in the en-
vironment, react to unforeseen events, or learn new skills. In nature, there are three
main activation modalities: voluntary, rhythmic, and reflex (Churchland et al. [70]
and Byrne et al. [64]).

A voluntary or intentional activation controls the motion constantly and can start or
stop at any point of it, for example, moving the arm to point to an object. A rhythmic
activation goes from the beginning to the end of the motion and repeats it multiple
times, for example, waving the arm. A reflex activation is an immediate and complete
one-time execution of a motion, for example, the retract reflex of the arm. Addition-
ally to the different activation modalities, there is the challenge of how to combine
different motor primitives and how to parameterize them. In this sense, multimodal
activation represents the mechanisms to activate, combine and parameterize motor
primitives directly. An illustration of the problem is presented in Figure 4.3.

Figure 4.3.: Multimodal activation problem definition. Given a set of primitives, ac-
tivate them in a voluntary or intentional way, or with many repetitions
in a rhythmic way, or with a one-time execution as a reflex. Additionally,
parameterize the activation and combine different activation modalities.

Biology provides two specific aspects that can be exploited for robotic systems. First,
motion is represented in a hierarchical and distributed way in the body and the ner-
vous system (Pfeifer et al. [169]). Several areas are involved in performing different
parts of the motor control — e.g., the brain, the cerebellum, the spinal cord, and the
muscles. Second, motions can be activated in different modalities. Multiple control
processes are operating in parallel that alternate operation with time-variant priori-
ties and switch the motion activation (Churchland et al. [70] and Bernstein [54]).

72

4.2. Activation modalities and combination of motor primitives

In Ijspeert et al. [129] a mathematical model was proposed to combine and parame-
terize different primitives. An extended mathematical model for central pattern gen-
erators in the spinal cord, generating several different motion patterns by changing a
small set of parameters, was introduced in Nassour et al. [161]. The architecture has
separate layers for pattern formation, rhythm generation, and motor neurons.

In the following, a framework to perform multimodal motion activation is presented,
integrating a mechanism to learn new motions using the principles described in Chap-
ter 3. The general architecture of this approach is presented in Figure 4.4. This section
incorporates findings and methods from Tieck et al. [24].

Figure 4.4.: General view of the closed-loop architecture with SNNs for multimodal
motion activation (Tieck et al. [24]). From right to left, the layers have an
increasing level of abstraction. In motor control there are the base motions
and joint control, followed by low-level and high-level control representa-
tions with three activation mechanisms — voluntary, rhythmic and reflex.
Higher brain areas and vision are included greyed out for completeness.

Low-level motor primitives are combined as base building blocks to represent mo-
tions. The neural output of a primitive is translated to robot motor commands. Com-
plex motions are represented as combinations of primitives. Three types of modalities
to activate the motions are modeled: voluntary (also called intentional), rhythmic,
and reflexes. The method was successfully tested in several scenarios in simulation.
Motions can be reused, combined, and parameterized. SNN are especially interest-
ing for multimodal motion activation because modeling the problem with spikes pro-
vides an intuitive way of combining different control signals, switching between ac-
tivation modalities, and parameterizing motions.

73

4. Combination and activation of motor primitives to control robotic arms

4.2.1. Methods

To illustrate the idea, imagine a person in front of a table stretching the arm above the
table parallel to the surface without touching it and then retracting it back. These two
motions represent simple primitives for the arm. The brain will reuse motions for
other similar tasks, as they represent common patterns of motor activation. They can
be used to point at an object or reach a target as a voluntary or intentional activation.
They can also be alternated and repeated to clean a table or waive as a rhythmic
activation. The retract motion is also used if the arm hits an obstacle while moving,
activated as the withdrawal reflex.

In Figure 4.4 the different layers, the main components, and the information flow are
shown. Complex motions are represented in a hierarchy combining motor primitives.
The motor primitives are modeled as in Section 3.2. Three different motion activation
modalities are modeled: voluntary, rhythmic, and reflexes. The individual activa-
tion modalities are presented in Section 3.3. The layers are arranged in increasingly
abstraction, starting with motor control of the joints and base motions, followed by
low-level and high-level representations. The encoding and decoding schemas used
to get information in and out of the SNNs are presented in Section 3.5.

A detailed view of the architecture showing the neural populations in all layers is pre-
sented in Figure 4.5. The populations are defined individually with specific functions.
The motor control layer provides the representation including motor primitives, mo-
tor activation through motor neurons, and the mapping to the target robot system.
This layer receives excitatory and inhibitory input from other layers. Depending on
this input, the different motor primitives are parameterized and combined.

The low-level control layer takes input from higher layers and provides two acti-
vation mechanisms. First, rhythmic activation (Section 3.3.2) to generate a continu-
ous and repetitive activation of the primitives. Second, the activation with reflexes
(Section 3.3.3) incorporates proprioception and either inhibits a currently executed
primitive or triggers an immediate one-time execution of another primitive. To de-
tect contact and trigger the retract reflex, the mechanism described in Section 3.3.4 is
incorporated using the joint efforts and joint states.

The high-level control layer provides the voluntary activation (Section 3.3.1) for the
primitives and another layer of rhythmic activation to provide parametrization for
the previous layer. On top of that, different activation signals are provided by higher
layers to combine, parameterize and select the motions. The higher brain areas layer
represents action selection, motion planning, visual input processing, and other sen-
sory stimuli processing tasks required for motor control.

74

4.2. Activation modalities and combination of motor primitives

Figure 4.5.: Detailed view of the SNN in closed-loop showing the motor control hier-
archy (Tieck et al. [24]). The motor neurons generate motor commands. The
motor primitives are activated by three activation modalities — voluntary,
rhythmic, and reflexes. For the rhythmic activation, there are oscillators
and their parameters — amplitude and frequency. For the excitatory and
inhibitory reflexes there are interneurons and neural circuits. The proprio-
ception includes joint states and joint efforts. Higher brain areas and vision
are included greyed out for completeness.

4.2.2. Experiments

Different scenarios were defined to combine and test the different activation modal-
ities to evaluate the SNN architecture. First, the three modalities were evaluated in-
dividually. After that, several combinations were evaluated: voluntary and reflex,
voluntary and rhythmic, rhythmic and reflex, and finally, a combination of all three
modalities. The SNN is implemented in the Nengo1. A Schunk LWA 4P robot arm is
simulated with the Gazebo Simulator2. The communication between the components
and both simulators is implemented using ROS.

Voluntary motion activation

A voluntary or intentional motion is used to extend the robot arm and retract it. This
type of motion is used to point at given targets. The motion is performed on-demand
controlling a parameter to change the value of u manually. The activity recorded
during the execution is presented in Figure 4.6. In segment A the changes in the
shoulder ✓shoulder and elbow ✓elbow joints correspond to changes in u and f(u). After

1http://nengo.ca/
2http://gazebosim.org/

75

http://nengo.ca/
http://gazebosim.org/

4. Combination and activation of motor primitives to control robotic arms

Figure 4.6.: Voluntary activated motion, interrupted by a reflex (Tieck et al. [24]).
Rows 1 and 2 show the activation u and the motor primitive g(f(u)). Rows
3 and 4 show the angles of the shoulder ✓shoulder and elbow ✓elbow joints in
degrees. Rows 4 and 5 display the position of the TCP in the Y Z plane.
In row 7, the efforts on the wrist, elbow, and shoulder joint are plotted. In
row 8, the activity of the population that activates the reflex. In rows 9 and
10, the raw spike output, and the filter motor output.

that, the arm is fully extended, and it collides with an object. The contact triggers
the a reflex activation to retract the arm as shown in segment B, notice how the effort
increases and a reflex is triggered.

Rhythmic motion activation

A rhythmic or cyclic motion is used to move the arm back and forth to generate wav-
ing motions.For the rhythmic motion activation, instead of activating the motor prim-
itive through a discrete signal, an oscillatory input is used to generate a continuous
activation (see Section 3.3.2). In Figure 4.7 a rhythmic activation is used to control
the shoulder joint of the arm. The motion is parameterized by having populations
control the amplitude a and the frequency b of the oscillation. Observe how the acti-
vation of u changes with different values of a and b, which generates corresponding
motor commands for the ✓shoulder joint. The rhythmic behavior is also observed in the
TCP positions in the Y Z plane.

So far, the experiments have shown that both rhythmic and voluntary modalities can
be activated independently. Another experiment combined a voluntary activation

76

4.2. Activation modalities and combination of motor primitives

Figure 4.7.: Rhythmic activated motion with different parameters (Tieck et al. [24]).
Rows 1 and 2 show the parameters a and b that control the amplitude
and frequency of the motion. Rows 3 and 4 show the activation u and the
motor primitive g(f(u)). Rows 5 shows the angles of the shoulder ✓shoulder
joint in degrees. Rows 6 and 7 display the position of the TCP in the Y Z

plane. In rows 9 and 10, the raw spike output, and the filter motor output.

77

4. Combination and activation of motor primitives to control robotic arms

with a rhythmic activated motion for a two-fold activated movement. An actual ap-
plication for such a combination is a task like wiping a table. The rhythmic part per-
forms the basic wiping motion, and the voluntary part makes sure that the desired
table area is covered.

Activation of reflexes

Two different reflexes were implemented to initiate an alternative withdrawal motion
and inhibit the motion being executed. The contact detection intercicuit described in
Section 3.3.3 that incorporates dynamic proprioception (motion) and the effort in the
joint is used to detect contact. When a threshold is reached in the interneuron, the
oscillator is triggered, and a reflex is activated.

The withdrawal reflex is evaluated while performing voluntary or rhythmic motions.
In Figure 4.6 in segment B a voluntary motion is interrupted because the arm hits an
obstacle. In Figure 4.9 the reflex activation can be seen multiple times in the sectors
marked with C.

The inhibitory reflex is evaluated during a rhythmic motion. In Figure 4.8 an in-
hibitory reflex is triggered (see segment B row 3)) during a rhythmically activated
motion when an obstacle is hit. The input of the motor primitives is inhibited, and
the motion is stopped (see segment B rows 4 and 5). The spike plot (rawrhythmic , the
decoded value filterrhythmic) and the joint angles (✓E and ✓W) show how the motion be-
ing executed is inhibited. The output spike train stops, and the joint angles maintain
their values after inhibition.

Combination of activation modalities

An experiment was made with complex motions activated by all three modalities to
show the interplay of the activation modalities with a hierarchy of motor primitives.
A rhythmic motion controlling the wrist and the elbow joints performs a waving
motion. A voluntary motion is activated after a while, controlling the shoulder joint
to move the arm right and left. An obstacle is placed in the motion trajectory, and
when the arm hits it, a reflex is triggered. Plots of this scenario are presented in
Figure 4.9. During the segment A only voluntary activated motions are performed.
During the segment B a rhythmic motion with varying parameters is performed. The
segment marked with C represent a motion interrupted by an excitatory reflex.

78

4.2. Activation modalities and combination of motor primitives

Figure 4.8.: Inhibition reflex during rhythmic motion (Tieck et al. [24]). Row 1 shows
the rhythmic activation ur. Row 2 displays the effort on the elbow joint,
which is used to trigger the reflex. Row 3 shows the activity of the popu-
lation that activates the reflex. Rows 4 and 5 show the angles of the elbow
✓elbow and wrist ✓wrist joints in degrees. Rows 6 and 7 display the position
of the TCP in the Y Z plane. In rows 8 and 9, the raw spike output, and
the filter motor output.

79

4. Combination and activation of motor primitives to control robotic arms

Figure 4.9.: Combination of all activation modalities (Tieck et al. [24]). Rows 1,2 and
3 show the joint angles of the shoulder, elbow, and wrist joints. In rows
4 and 5, the activation of the primitive for the voluntary (controlling the
shoulder) and the rhythmic (controlling elbow and wrist) parts are plot-
ted. Row 6 displays the effort on the joints, which is used to trigger the
reflex. Rows 7 and 8 show the delta (motion) of the shoulder and the el-
bow joints; if the delta value is 1, the corresponding joint is moving. Row
9 shows the activity of the population that activates the reflex.

4.2.3. Discussion

The proposed framework for motor control with SNNs allows activation, combina-
tion, and parameterization of motor primitives to control a robot arm. The represen-
tation of the motions is hierarchical, going from simple joint movements to complex
arm motions and integrating signals from other higher brain areas. Motions are rep-
resented with SNNs using motor primitives as fundamental building blocks and can
be activated by different modalities. This representation allows the combination and
parameterization of motions. A mechanism using the efforts in the joints and the joint
position changes was integrated to detect contact and trigger a retract reflex.

Multimodal activation was implemented and used to perform different complex move-
ments and control a robot arm in simulation. The three modalities — voluntary (in-
tentional), rhythmic, and reflexes — were implemented and evaluated individually
and combined in different scenarios. An experiment combining all the components
was presented (see Figure 4.9). A single motor primitive activated as a rhythmic mo-

80

4.3. Generation of pointing motions for targets on a plane in 3D space

tion was combined with a voluntary motion, and contact was generated with a col-
lision that triggered a retract reflex on the arm. A framework with these capabilities
can be extended to perform complex behaviors as in Nassour et al. [161].

For these experiments, the raw output of the network was used to control the robot. A
muscle model could be integrated to smooth the control signals by damping irregular
spike trains from the output populations. Although a mechanism for learning new
primitives was integrated (see Section 3.6.3), there are open questions on extending
the network for the new motions and also on how and when to enable and disable
learning. One alternative to modulate learning could be implementing the hPES-rule
in Nengo, or alternatively, PES could be combined with the triplet-based STDP rule
as introduced in Pfister et al. [172].

4.3. Generation of pointing motions for targets on a
plane in 3D space

In Section 4.4 a method to combine motions online was presented. In contrast, this
section presents a method for offline motion adaption that combines the motions as a
whole before their execution. The human motor system is a topic of multidisciplinary
research for a considerable period. However, robots lack robust, flexible, and adap-
tive controllers comparable to the human sensorimotor system (Pfeifer et al. [169]).
One specific example is the capability to generate and pre-shape motions before its
execution (Shenoy et al. [198]).

Motion adaption in this context is defined as the pre-shaping of pointing motions
on a plane in 3D space. Offline means that the motion is generated before its execu-
tion. The challenge is to generate a new motion offline by adapting a set of already
learned motions to reach different points on the plane. In this sense, motion adaption
is modeled by combining a base motion with a set of correction primitives using a
proportional target representation. The problem is presented in Figure 4.10.

Recent studies provide insights into the mechanisms for motion generation in the
human motor cortex. During reaching, activity in the motor cortex as a whole shows
a brief but strong rotational component (Churchland et al. [70] and Russo et al. [184]).
Instead of encoding parameters of movement in single neurons, the motor cortex
as a whole can be understood as a dynamical system that drives the motion. An
initial state is produced externally, and the system naturally relaxes while producing
motor activity. This activity is then projected down the spinal cord to inter-neurons
and motor-neurons (Churchland et al. [70] and Russo et al. [184]). Neural activity
in the motor cortex shows a strong amplified but stable response to initial activation
(Hennequin et al. [119]). There is no broad consensus on the role of the motor cortex
in voluntary movement. Nevertheless, neural correlates of many different types of
parameters of arm movements have been found in the motor cortex (Kalaska [134]).

81

4. Combination and activation of motor primitives to control robotic arms

Figure 4.10.: Motion adaption problem definition. Given a fixed initial state of the
robot, move the TCP to a specific target point in a plane in 3D space.
A base primitive (continuous line) is defined to reach the center of the
considered working space (circle), and four correction primitives (dotted
lines) are defined to reach the boundaries.

Artificial neurons can replicate this behavior with strong recurrent connections bal-
anced by strong inhibitory connections (Hennequin et al. [119]). Activity in the re-
sulting network closely resembles activity in the motor cortex and can be used as
an engine for complex transient motions (Hennequin et al. [119]). For example, in
Ayaso [49] an architecture is proposed detailing how to generate motor commands
for arm motions, which also models how learning and adaptation can be achieved by
changing the gain.

In the following, a model for pre-shaping of pointing motions for a humanoid robot
is presented combining motor primitives with the mechanisms for motion generation
of the motor cortex (Hennequin et al. [119] and Ayaso [49]) using SNNs. The general
architecture of this approach is presented in Figure 4.11. This section incorporates
findings and methods from Tieck et al. [20].

A simplified model of the motor cortex is presented to generate pointing motions
combining motor primitives to control a humanoid robot arm. The motion genera-
tion layer produces circular activity that creates the activation patterns for the prim-
itives. The motor control layer has one base primitive for the pointing motion and
four correction primitives that point to targets — left, right, up, and down — from
the base motion target point. The target representation layer takes the target posi-
tion, and based on the relative distance to the base motion target point, uses selective
disinhibition to activate the correction primitives. The approach was tested with a
humanoid robot using three active joints by defining different targets on a plane in
3D and control the robot to point at them. An extension of this approach, from point-
ing to a given target to performing a grasping or tool manipulation task, has many
applications for engineering and industry involving real robots.

82

4.3. Generation of pointing motions for targets on a plane in 3D space

Figure 4.11.: General view of the closed-loop architecture with SNNs using predictive
feed-forward control for motion adaption (Tieck et al. [20]). From right
to left the layers have an increasing level of abstraction. In motor control
a base and four correction motor primitives, in low-level control selective
disinhibition as activation mechanism, in high-level control the target rep-
resentation, and in higher brain areas a motion generation mechanism that
generates the activation patterns.

4.3.1. Methods

The problem of motion adaption is formalized as follows: given an initial state of
the robot and a set of primitives, move its TCP to a target point on a plane in 3D
space. In classical robotics, a system calculates the IK and then validates the con-
figuration to generate a motion trajectory. In contrast, this approach can solve this
without calculating the IK and without validating the resulting configurations. The
motor primitives for the arm are defined as valid possible motions in the working
space. The robot arm is considered to have three active joints. The way new motions
are generated is by using a base primitive combined with full or partial activations
of the correction primitives. By using motor primitives to represent motions, the tra-
jectory generation is solved in the "motor primitive space". The resulting motions are
combinations of the primitives, which have only valid configurations.

A go-cue in one neuron initiates circular activity in the motor generation layer repre-
senting the motor cortex (Russo et al. [184], Kalaska [134], and Ayaso [49]). The activ-
ity of this layer is used to activate the base and correction motor primitives. Based on
an error signal representing the target, the correction primitives are disinhibited and
combined with the base (Richter et al. [179] and Sridharan et al. [202]). The resulting
spike activation is decoded into motor commands for the robot joints. The learned
weights are the distance-based inhibitory connections in the motion generation layer,
the connections to the base motor primitive, and the connections to the correction
primitives. The general architecture with the main components is presented in Fig-

83

4. Combination and activation of motor primitives to control robotic arms

ure 4.11. It has three main components: a motion generation layer, a motor control
layer with motor primitives, and a target representation layer.

The motion generation layer produces circular activity that creates the activation pat-
terns for the primitives. A population generates neural activity over a certain period.
The first step is to normalize spike activation by changing the weights of active neu-
rons to obtain a similar number of spikes from the whole population. Then, to obtain
heterogeneity, an inhibitory population with random connections is added. In the
motion generation layer MG, there is a group of two recurrent populations repre-
senting the motor cortex; one is a 2D grid MG

G and the other is an inhibitory MG
I

to obtain heterogeneity. This layer generates circular neural activity over a period of
time (Russo et al. [184] and Churchland et al. [70]).

The motor control layer provides the low-level motor representation based on motor
primitives. There is one base motion primitive for pointing to the center and four cor-
rection primitives that point to targets left, right, up, and down from the center target
point. The base primitive is activated, and, depending on the target representation
signal, the correction primitives are disinhibited.

The target representation layer takes the actual target position and, based on the rela-
tive distance to the base motion, uses selective disinhibition to activate the correction
primitives. The target signal is the relative position to the base primitive final posi-
tion, and it is used to control the activation of the correction primitives.

Motion generation layer by adjusting local connectivity

Another mechanism to implement a motion generation layer consists of defining the
connectivity of a population of spiking neurons and locally changing the synaptic
weights to match the desired neural activity. In analogy to the motor cortex, it re-
quires a relatively constant (normalized) amount of spikes being generated at a given
time (see Section 2.1.1). The output of this motion generation layer is used as an
activation parameter for the motor primitives.

The motion generation layer MG consists of a group of two recurrent populations of
spiking neurons representing the functionality of the motor cortex. One is a 2D grid
MG

G and the other is an inhibitory MG
I to obtain heterogeneity (see Figure 4.12).

This layer generates circular neural activity over a period of time (Russo et al. [184]
and Churchland et al. [70]).

There are two steps to initialize a motion generation layer. First, the spike activity
in MG

G is stabilized, and second, the inhibitory connections from and to MG
I are

added. Then, a process goes over all neurons with a "go-cue" to activate each one and
record how long the activity propagates. The "go-cue" is a continuous input of spikes
to one neuron for 10ms. For each motion, the "go-neuron" is selected as the neuron
that produces activity with a similar time to the desired motion.

84

4.3. Generation of pointing motions for targets on a plane in 3D space

Figure 4.12.: Motion generation layer with circular activation (Tieck et al. [20]). A grid
MG

G of neurons (circles) is connected with directed static excitatory con-
nections depending on the quadrant. There are inhibitory plastic con-
nections based on the distance. A hidden layer MG

I is connected with
input excitatory and output inhibitory connections to disturb the regu-
lar activity of the MG

G. The generated activity from is connected to an
output population.

MG
G is a square grid of 20x20 spiking neurons with recurrent connections (see Fig-

ure 4.12). There are two types of connections, the directed excitatory to generate the
circular activity and the local inhibitory to stabilize the activity. The excitatory con-
nections (blue connections in Figure 4.12) are static and have specific directed con-
nectivity depending on the quadrant the neurons are. This amplifies the activity and
forces the rotational activation. The distance based local inhibitory connections (black
dotted circular lines in Figure 4.12) stabilize the activity.

To normalize the spike activity of MG
G, the inhibitory weights are increased or de-

creased to achieve a specific total activity MG
G
norm with the following learning pro-

cedure. A spike recorder is connected to all MG
G neurons. A "go-cue" (pink dot-

ted arrow in in Figure 4.12) is given as short burst of 10ms of spikes into one sin-
gle neuron. This initial neuron is selected randomly every time so that there are no
"dark" spots in MG

G without spike activity. Every 100ms �t (nest.sim(100ms)) the
simulation is stopped. The total spikes of MG

G in �t are counted as MG
G
spikes. If

MG
G
spikes > MG

G
norm, then the weights of the inhibitory connections coming out from

all active neurons are increased by �w. Else, if MG
G
spikes < MG

G
norm, then the weights

are decreased. �w must be small so that a weight update does not stop the activity.
This normalizes the total global activity of the MG

G population.

After training, once the propagation of circular activity of MG
G is stable, a small pop-

ulation MG
I is added with input and output connections with the 2D grid MG

G to

85

4. Combination and activation of motor primitives to control robotic arms

obtain heterogeneity. Both input and output connections are static and random. The
output connections — from MG

I to MG
G — are strong inhibitory (red connections

in Figure 4.12). The input connections — from MG
G to MG

I — are excitatory (green
connections in Figure 4.12). A fixed amount of input and output connections are de-
fined to set the connections, then random neurons are sampled from both populations
and are connected.

With MG
I and MG

G connected, a process goes over all neurons in MG
G to record

the resulting activity. A "go-cue" is given again as a short burst of spikes for 10ms

into each single neuron "go-neuron" (pink circle in Figure 4.12), and the duration of
how long the activity propagates is measured. The time is measured until no more
spikes occur or the execution is interrupted after a maximum time limit. The activity
duration for each "go-neuron" is stored in a lookup table. Then, one with a similar
time to the desired motion is selected to be the "go-neuron" for that primitive.

Base and correction motor primitives

The motor primitive layer MP is a layer for low level motor representation using
motor primitives (see Figure 4.13). The primitives are combined to generate a specific
motion based on the activation by the motion generation layer MG (see Section 4.3.1).
In MP , there are populations, one for the base primitive and one for each of the cor-
rection primitives. During the execution of a motion, the base primitive is activated,
and depending on the actual target representation signal (error), the correction prim-
itives are activated respectively.

The following motion representation is proposed to generate pointing motions in the
considered working space. First, a base primitive MP

B is defined (see Figure 4.13),
which is a motion to point at the center of the working space. Then, four correction
primitives MP

C are defined to point at points to the left, right, up and down of the
center (see Figure 4.13). These four points define a circle on a plane in 3D as the
boundary of the working space.

For each primitive, a different population is connected to MG. Each primitive has
two motor neurons per joint in the robot. Each output spike causes a small change in
the corresponding robot joint, defined as a fixed gain factor regulating the speed. A
detailed view of the primitive population for the base motion is shown in Figure 4.13.
The training is done one primitive at a time using an exemplary motion. Supervised
learning is applied to minimize the error and adapt the weights to learn a specific
motion (see Section 3.6).

86

4.3. Generation of pointing motions for targets on a plane in 3D space

Figure 4.13.: Motor primitives layer (Tieck et al. [20]). The small circles represent indi-
vidual neurons. The base primitive MP

B is detailed for three joints, and
the same structure applies to each of the correction primitives. There are
four correction primitives MP

C — left, right, up, and down. All primi-
tives receive activation input from the motion generation layer MG. The
motion generation layer is detailed in Section 4.3.1.

Target representation

The target representation layer is connected to the correction primitives with inhibitory
synapses as shown in Figure 4.14. The correction primitives are inhibited by default,
and they are disinhibited according to the signal provided by this layer. This mech-
anism is called selective disinhibition, and it is used for attention mechanisms, de-
cisions, and mechanisms for target selection (Richter et al. [179] and Sridharan et al.
[202]). For example, if no correction to the right is necessary, then the right primitive
remains fully inhibited. In Kawato [135] and Wolpert et al. [223], they see the cerebel-
lum as an internal model that can predict how the end outcome of a known motion
will be. This prediction can be compared to the desired target to make the respective
corrections before execution.

In this approach, a relative representation of the target is used with reference to the
final position of the base primitive. This signal is applied to regulate the activation
of the neurons in this layer. By decreasing the input current proportionally, this layer
activates the correction primitives using selective disinhibition. This signal translates
to the amount or percentage of activation, between 0 and 1, of the respective correc-
tion primitives, with 1 being total inhibition and 0 full activation. This adaptation or
pre-shaping happens before executing the motion.

87

4. Combination and activation of motor primitives to control robotic arms

Figure 4.14.: Target representation (Tieck et al. [20]). This layer projects with strong
inhibitory connections (red) to the correction primitives MP

C . The target
is represented as a relative error signal to the target from the base prim-
itive. This signal is used to disinhibit the primitives and adapt the base
motion. The output from the base primitive and the active correction
primitives are combined to generate the motor commands for the robot.

4.3.2. Experiments

In complex robotic applications, motions have to be dynamically generated according
to variable targets or constraints. A major component of many robot tasks is reaching
specific dynamic targets, usually followed by manipulating an object. Reaching of
goal state with a robot manipulator can be understood as a pointing motion. For this
reason, pointing towards different goal-points on a plane is 3D used as a benchmark
task to evaluate how well the robot generates adaptive motions.

Experiment setup

Initially, the base motor primitive has to be learned. A base motion pointing towards
a central target is either manually defined, generated with a motion capture system,
or teach-in. The robot arm is considered to have three active joints — two in the
shoulder and one in the elbow. The network is then trained to generate this specific
pointing motion with all correction primitives fully inhibited. Afterward, the base
motion is manually adapted towards 4 points in the boundary of the working space,
each with a distance of 25 cm from the center to the left, right, top, and bottom (red
points in Figure 4.15). The correction primitives are trained to produce the difference
from the base motion towards these adapted motions. The network generates them

88

4.3. Generation of pointing motions for targets on a plane in 3D space

when their corresponding correction primitive is disinhibited. In order to cover a
different workspace, new primitives have to be defined.

This modeling allows the network to create different motions by partially inhibiting
the corrections primitives and combining them. The quality of the resulting point-
ing motions is measured by having the SNN point at different targets in the planar
working space. The reference points are used as a coordinate system, with the posi-
tive x-axis representing the inverse inhibition of the right primitive and the negative
axis the left primitive, respectively. In the same way, the y-axis represents the up and
down primitives. This allows a mapping from every point on the board to specific
inhibitions of the correction neurons. A pointing motion is generated by setting these
inhibitions manually and comparing the final position of the end-effector of the robot
with the intended goal. The distance between actual and target position is used to
measure the error in the following experiments.

Figure 4.15.: Basic experiment setup (Tieck et al. [20]). The starting position of the
robot is in front of a board representing the plane in 3D. The SNN gen-
erates a motion to reach a target point (green dot) with the TCP. The red
dots show the end points for the base and correction primitives that are
already learned.

Implementation details

The pointing motions are generated by a SNN implemented in NEST using the PyNN
API. ROS is used as a communication layer to connect NEST with the robot driver.
The SNN was simulated in steps of 100 milliseconds, and the spikes in this time frame
were accumulated before being sent to the robot. This frequency allows the genera-
tion of smooth real-time robot movements; a complete pointing motion takes about
10 seconds. The generated spikes from the motor neurons were directly decoded into
changes of joint values for the robot. The neuron activity is decoded by changing

89

4. Combination and activation of motor primitives to control robotic arms

joint position by a fixed value for each spike. The resulting joint values are then used
as goals for the joint trajectory controller in ROS.

During the training of MG
G, the weights of one iteration are stored in a dictionary

data structure where all the required weight updates are performed. Only after all
updates have been calculated, the "set weights" function in NEST is called, as constant
weight changes can significantly reduce the simulation time. Thus, the total training
time is reduced to about one hour on a single processor.

The network is implemented with basic LIF neurons. The layer MG is a population
organized in a grid of 20x20 neurons MG

G and an inhibitory population of 20 neurons
MG

I . For each of the five motor primitives MP (one base and four correction), two
neurons are used per joint. The robot arm is considered to have three active joints for
a total of 30 neurons. The SNN has a total of 450 neurons and about 20000 synapses.

Learning in the motion generation layer

The first evaluation was about how the learning in the SNN network work, especially
in the motion generation layer. In Figure 4.16 the spike activity of all the neurons was
recorded before and after learning. Without learning (left), the go-cue propagates in
the neurons and then saturates, producing chaotic activation. After learning (right),
the activation of the population is periodic (circular) and stable.

(a) (b)

Figure 4.16.: Spike plots for the motion generation population, time is in milliseconds
(Tieck et al. [20]). A: Before learning. B: After learning.

Pointing at targets on a plane in 3D space

The experiments consisted of reaching different targets on the board with the robot
and evaluate the sensibility of the TCP over the working space. The distance from the

90

Juan Camilo VT

4.3. Generation of pointing motions for targets on a plane in 3D space

Figure 4.17.: Samples of different pointing motions (Tieck et al. [20]). The robot is
pointing at different types of targets on the board (Figure 4.18A).

A

y

x

B x

y

er
ro

r

error
base points

20
18
16
14
12
10
8
6
4
2
0

35
30
25
20
20
15
10
5
0

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

Figure 4.18.: Target points and error visualization (Tieck et al. [20]). A: Different target
points are evaluated in a planar working space in 3D. B: Visualization of
the error values over the working space with the error values for primi-
tive base points (red) as reference.

target in millimeters to the final TCP position is used as an error for the evaluation.
Sample images of the robot pointing at different targets are presented in Figure 4.17.

Figure 4.18 shows different targets with different colors. The target point of the base
motion is the red dot in the center. The targets for the correction primitives are the red
dots around the center. The black dots are obtained by activating only one correction
primitive at a time. The green and blue dots are a combination of multiple correction
primitives. The blue dots are outside of the working space but still in the primitive
space. The yellow dots on the right are extrapolations of one primitive. A visualiza-
tion of the error values over the working space in the board is shown in Figure 4.18B.
The error values for primitives (red dos) are included as reference.

First, the performance of single primitives is evaluated. The red dots (in Figure 4.18)
are the base points, and represent the targets for the base and the correction prim-

91

4. Combination and activation of motor primitives to control robotic arms

% of activation

error in mm

(a)

% of activation

error in mm

(b)

Figure 4.19.: Evaluation of single primitives (Tieck et al. [20]). (a) Error by distance to
center for reaching the base points (red in Figure 4.18A). (b) Error by dis-
tance to center for different correction primitives (black in Figure 4.18A).
Right is the most accurately primitive, down is the least accurate.

itives. They are reached by fully inhibiting all the correction primitives or all but
one correction primitive. The plot in Figure 4.19a shows the errors for the different
primitives. It can be seen that they are not reached perfectly. This results from the
relatively high impact that single spikes have on the joint position. The black dots (in
Figure 4.18) represent motions using only a single but partially inhibited correction
primitive. The plot in Figure 4.19b shows that there is no additional error created by
partially inhibiting the primitives.

Second, the performance of the combination of primitives is evaluated. The green
dots (in Figure 4.18) are motions combining two correction primitives, but with a dis-
tance from the base motion not greater than one correction primitive. The plot in
Figure 4.20a shows the error of the green dots. Except for one point directly on the
circular test area, all motions produced a smaller error than the most inaccurate base
motion. This suggests that no additional error is added through the combination of
two correction primitives. The blue dots (in Figure 4.18) are motions combining two
correction primitives, but with a target at a distance greater than one correction prim-
itive. The plot in (Figure 4.20b) shows the error of the blue dots. In some cases, there
is a more significant error than the combination of the errors of the primitives. The
upper right point, using two fully activated primitives, has an error of 14 millimeters,
while the sum of the errors of the primitives is only 12 millimeters.

Finally, the performance of the extrapolation of primitives is evaluated. The yel-
low dots (in Figure 4.18) are extrapolations of the right primitive. The plot in (Fig-
ure 4.20b) shows the error of the yellow dots. They are not reachable with the defined
primitive, meaning that an activation of 1 (100%) is not enough to go outside of the
bounds defined by the primitives (red dots). The right primitive is not only disin-

92

4.3. Generation of pointing motions for targets on a plane in 3D space

% of activation

error in mm

(a)

% of activation

error in mm

(b)

Figure 4.20.: Evaluation of primitive combinations (Tieck et al. [20]). For compari-
son, the error of the most inaccurate correction primitive is noted. (a)
Error by distance to center for points in the different quarters (green in
Figure 4.18A), they are inside the space defined by the primitives (red
circle). (b) Error by distance to center for points in the different quarters
(blue in Figure 4.18A), they are outside the space defined by the primi-
tives (red circle).

hibited o accomplish the extrapolation but additional spikes are added to generate
more activity. The error increases proportionally to the percentage of extra activation,
which increases the extrapolation distance.

% of activation

error in mm

Figure 4.21.: Evaluation of primitive extrapolation (Tieck et al. [20]). Error by distance
to center for motions using more than one full primitive (yellow in Fig-
ure 4.18A), these are extrapolation of the primitives. Points after 1.5% of
activation show a significant increase in the error.

93

4. Combination and activation of motor primitives to control robotic arms

4.3.3. Discussion

A SNN was implemented and evaluated to generate adaptive motions using an ar-
chitecture based on the motion generation mechanisms in the motor cortex. The net-
work could pre-shape motions and generate new trajectories before its execution by
combining primitives using selective disinhibition. The SNN was able to control the
arm of a real humanoid robot in real-time in a predictive feed-forward scenario. The
approach can be used with different robot arms and is not dependent on a specific
kinematic structure.

Based on the results and the evaluation of the experiments, the following conclusions
can be made. If the target distance is of one correction primitive or less (inside the
circular working space), no significant error is added through adaptation. If there is
a greater distance the error increases. Single spikes have a significant impact on the
precision of the motions. This could be overcomed by using larger populations to
increase precision and using a population encoding technique (as in Section 3.5.1) to
reduce the impact of single spikes. This issue is a low-level control problem, and cur-
rent work focuses on a spike-based controller for ROS to achieve smooth control.

With the recent advances in backpropagation-like learning rules for SNN, as in Kaiser
et al. [5], different motion types for different tasks could be learned in the same net-
work and start them with different go-cues. Another important aspect is integrating
event-based vision to this system to get the target and drive the adaptation as in
Kaiser et al. [9] or as in DeWolf et al. [91]. The association of this information with
predictive motion selection yields to learning sensorimotor representations from hu-
man demonstration as in Kaiser et al. [8].

4.4. Perception driven target reaching in 3D space
combining motor primitives

After experimenting with different activation modalities and the parameterization of
motor primitives, the idea is to take advantage of these mechanisms to control the arm
to reach targets combining the motor primitives online using perception information.
Target reaching is one of the most important problems in robotics. Object interaction,
manipulation, and grasping tasks require reaching a specific target (Latombe [145]).

Target reaching is defined as given an initial state of the robot arm and a target posi-
tion in space, move the TCP of the arm to the target. The challenges are how to model
this control problem with motor primitives and how to incorporate target information
into the network. In this sense, target reaching is modeled with three correction prim-
itives — left-right, up-down, far-near. The target is represented as a discrete negative
feedback signal. An illustration of the problem is presented in Figure 4.22.

94

4.4. Perception driven target reaching in 3D space combining motor primitives

Figure 4.22.: Target reaching problem definition (Tieck et al. [23]). Given an initial
state of the robot arm, move the tool center point (TCP) to a specific tar-
get point in space. Three motor primitives — left� right, up�down and
far � near — are defined to move the robot TCP in different directions.
They are denoted with the letters [L,R, U,D, F,N] and double head ar-
rows, respectively.

This approach is motivated by the hypothesis that human beings estimate positions
and distances relative to the head. Humans can quickly determine which object is
in front/back or on the left/right of another one, and which of two angles is wider
(Pfeifer et al. [169]). Studies have shown that the human brain processes feedback
from vision and proprioception to execute reaching movements (Saunders et al. [188]
and Filimon et al. [102]). A coupling between these two systems suggests that other
important components are involved in the generation of motion.

Although there have been advances in biologically inspired mechanisms for motor
control, robotics still depends mainly on the classical methods. In classical model-
driven robotics, the problem of reaching a target is solved by calculating the inverse
kinematics (IK) for the target point, then validating the configuration, and finally
planning the trajectory. These steps are computational expensive (see Section 2.2).

In the following, a model to perform target reaching with a robot arm without plan-
ning is presented, building on previous work using motor primitives for grasping and
manipulation. The general architecture of this approach is presented in Figure 4.23.
This section incorporates findings and methods from Tieck et al. [23, 22].

Different correction primitives are combined using an error signal to control a robot
arm in a closed-loop scenario. The network can combine motions online and pro-
vide continuous control for the robot. Experiments with a simulated robot arm are
presented to extensively cover the working space by reaching different target points
returning to the start point, and test boundary targets and random points in sequence.
The complexity of calculating the inverse kinematics and model-driven motion plan-

95

4. Combination and activation of motor primitives to control robotic arms

Figure 4.23.: General view of the closed-loop architecture with SNNs for perception-
driven target reaching. From right to left, the layers have an increasing
level of abstraction. In motor control there are the arm motor primitives,
in low-level control the error activation, in high-level control a discrete error
signal that represents the target relative to the robot, and higher brain
areas and vision are included greyed out for completeness.

ning is avoided, and instead, a combination of motor primitives is used. The target is
represented as a discrete error signal used as a negative signal to drive the correction
primitives. Robotics applications, like target reaching, can provide benchmarking
tasks and realistic scenarios for the validation of neuroscience models.

4.4.1. Methods

The problem definition is that given an initial state of the robot arm, move the tool
center point (TCP) to a specific target point in space. The problem is split into three
main parts. The SNN that represents the motions and controls the robot arm. The
error calculation and discrete error signal that represents the target. Finally, the com-
plete architecture connecting the error signal to drive the motor primitives.

Motion representation

Three motor primitives are defined to move the robot arm in three different directions
left � right, up � down and far � near, as illustrated in Figure 4.22. For a simple
motion, a motor primitive represents the synergies between the active joints. The
principles to represent motor primitives with SNN and to convert the spike activity
to motor commands were introduced in Sections 3.2 and 3.5.1.

96

4.4. Perception driven target reaching in 3D space combining motor primitives

Target representation

Humans do not calculate a precise model and the error for moving the arm around.
Instead, the brain perceives a predictive decision or signal on how the motion should
be (Filimon et al. [102] and Saunders et al. [188]). Humans have multiple control loops
that overlap and change activation depending on the current action and the sensory
feedback. The human sensori-motor system is highly adaptive in terms of parameter
variance. Thus, a precise target and error representation is not required. The target is
represented as an error signal in a discrete scale to determine the direction of motion.
An error ⇠ between the current TCP position and the target is calculated in polar
coordinates [', ✓, r] (see Figure 4.24) as

⇠' = 'B � 'A, (4.1)

⇠✓ = ✓B � ✓A, (4.2)
⇠r = rB � rA. (4.3)

The error signal ✏ is generated based on the error ⇠. It is defined as {✏↵, ✏�, ✏r} 2
[�1,�0.5, 0, 0.5, 1]. In other words, it is a signal to indicate the direction and distance
— if the target is far away [1,�1], close [0.5,�0.5], or on target [0]. This error signal
represents the visual feedback about the target.

Figure 4.24.: Target representation as an error signal (Tieck et al. [23]). To represent
the target as a discrete error signal, the distance between the TCP and
the target is determined in polar coordinates (', ✓, r). The sub-indexes A

and B represent the TCP and the target, respectively. The error in each
component is discretised with values [�1,�0.5, 0, 0.5, 1].

Connect primitives with error signal

Three primitives are defined, one for each direction. The different primitives are com-
bined using the error signal. The motion representation with SNN and a hierarchical

97

4. Combination and activation of motor primitives to control robotic arms

architecture is used as presented in Chapter 3. The error signal is encoded into spike
trains by three different input populations. Instead of planing a trajectory, the error
components are used to activate and drive the different primitives. The primitive
left � right is connected to ✏↵, up � down to ✏� , and ✏r to far � near. The complete
SNN architecture in closed-loop is presented in Figure 4.25.

Figure 4.25.: Detailed view of the SNN in closed-loop showing the motor control hier-
archy (Tieck et al. [23]). The motor neurons generate motor commands. The
motor primitives — left�right, up�down and far�near — are activated
by the discrete error signals. The error signals are calculated using the
TCP proprioception and the target representation in polar coordinates.
Higher brain areas and vision are included greyed out for completeness.

To illustrate how the system works a sample run is shown in Figure 4.26. From top
to bottom, the TCP positions, the error encoded in spikes and the spike activation of
the output population for the primitives.

4.4.2. Experiments

The experiment setup to evaluate the approach is shown in Figure 4.27. A simulated
robot arm is fixed on a base. For the experiments, the robot has three active degrees
of freedom — two in the shoulder and one in the elbow. A target is always a point in
space, and the center of a sphere represents it. The radius of the sphere represents the
threshold for the desired precision/error while reaching the target. The simulation
provides the position of the TCP of the robot arm and the center of the sphere. The
SNN has to control the arm to reach the target with the TCP. A motion is considered
successful if the TCP is stable positioned inside the sphere. Figure 4.27 presents an
illustration of different targets and the robot motion.

98

4.4. Perception driven target reaching in 3D space combining motor primitives

Figure 4.26.: Spike activation, error signals and TCP position (Tieck et al. [23]). To
illustrate how the system works, a sample run of the system is presented.
The first three rows show the current TCP position x, y, and z in blue
vs. the target’s location in orange. The next thee rows show the spike
activation of the error signals ✏', ✏✓ and ✏r. In row seven raw✏ shows the
spike pattern of the error-related population. The spike patterns of the
neuron populations, representing the motor primitives, are respectively
plotted by rawLR, rawUD, and rawNF .

A B C

Figure 4.27.: Experiment setup. A frame sequence of one of the experiments (Tieck
et al. [23]). The images show the robotic arm in simulation following a
ball in space, controlled by the SNN. The robot arm is fixed on a table.
It has three active joints. The center of the sphere represents the target
point, and the radius represents the threshold for the allowed precision.

99

4. Combination and activation of motor primitives to control robotic arms

Implementation details

ROS is used as a communication framework to integrate the neurosimulator, the
physics simulator, the robot controller, and the experiment scripts. A robot model
of a Schunk LWA 4P robotic arm with three active joints is used for the experiments.
The environment and the robot were simulated in Gazebo.

The SNN is implemented in Nengo. For each joint, an output population of 200 spik-
ing neurons is used. All neurons are LIF. There are three primitives — left � right,
up � down and far � near — implemented as sub-networks of about 1000 neurons.
The primitives are trained offline. For the inputs, populations of 200 neurons encode
the signals for the TCP proprioception, and the target is represented as a discrete error
signal. The implemented SNN is presented in Figure 4.28

Figure 4.28.: SNN implemented in Nengo for target reaching driven by the error sig-
nal (Tieck et al. [23]). The three sub-networks left represent the proprio-
ception of the TCP. The node lower left represents the target error signal.
There are three sub-networks, each responsible for one motor primitive.
Two ensembles, g(f(u)) and g(f(u))blended generate motor control out-
put for the robot simulation, via the "ros out" node.

100

4.4. Perception driven target reaching in 3D space combining motor primitives

Cover the working space returning to the start

An interesting aspect is the activation of motion primitives to move the TCP to a
target point in space and then return to the starting position. This task can be executed
in two ways: in systematic sequence and random.

First, different targets are selected in sequence by systematically changing in fixed
increments one of the coordinates at a time. This is repeated until the working space is
covered, see Figure 4.30a. In total, there were 6426 target points. The intervals for each
primitive and the step size for the sampling are summarized in table in Figure 4.29.

Primitive Min Max Step size

left� right (') 3.0 6.3 0.1
up� down (✓) 0.5 2.5 0.1
far � near (r) 0.2 0.6 0.05

Figure 4.29.: Table with primitive parameters (Tieck et al. [23]). Each "Primitive" has
a minimum "Min" and maximum "Max" value to move the TCP with
respect to the origin shown in Figure 4.22. To cover the working space
of the robot arm, the intervals were sampled with "Step size".

The SNN was able to reach all points. The threshold used was 0.1m. See that the error
is lower than the threshold on average, which indicates a successful motion. This is
an exhaustive evaluation of the approach in the working space.

After that, random target points are selected within the working space, see Figure 4.30b.
A set of random points are selected from the point cloud in Figure 4.30a. Notice that
for most of the points, the robot reached the target, but for some points, there are
oscillations. After reaching a target, the robot returns to the initial position so that all
trajectories start from there. These two experiments show that the network can drive
a robot arm to any point in the spherical sector representing the working space. This
shows that the method is robust and does not depend on previous motions.

Reach boundary targets and random points in sequence

For the evaluation of the network, target points are defined in the boundary points
that define the working space as shown in Figure 4.31a. The robot has to move se-
quentially through all the points. Random points are selected within the working
space. The movements are in sequence without returning to the base point. The pro-
cess can be observed in Figure 4.31b. This shows the reaching of different points in
an arbitrary order and that the error does not accumulate.

101

4. Combination and activation of motor primitives to control robotic arms

(a)
(b)

Figure 4.30.: Experiments: covering the working space returning to start (Tieck et al.
[23]). (a) Point cloud of targets to sample the working space of the robot
arm according to the parameter table in Figure 4.29. (b) Performance
plot and primitive activation. In x, y and z the TCP position in blue and
the target position in green. The last three rows show the activation of
the primitives — "L/R", "U/D", and "N/F" — based on the error signal.

4.4.3. Discussion

Using a combination of motor primitives and a discrete error signal, the network was
able to perform online target reaching without model-driven planning and avoiding
the complexity of calculating the IK. Motions can be modeled in a parametric way
with motor primitives simplifying the motor control and allowing combination with
simple activation signals. This approach can also be used with different robot arms by
just redefining the mapping of the primitives to the robot kinematic. This approach
uses the principles for motion representation using motor primitives and SNN and
extends the motion architecture presented in Chapter 3 for online target reaching in
closed-loop scenarios.

Benchmark experiments in simulation with a robot arm were presented to extensively
cover the working space by reaching different points and returning to the start point,
and test boundary targets and random points in sequence. As mentioned in Sec-
tion 4.2.2, there are oscillations in some cases while reaching the target point. This is
caused because the raw output spike activity is used to decode motor commands, and
it is noisy. Whereas in the human body, there are muscles that integrate the activation
signals to smooth the motions.

In this experiment, the TCP position and the position of the target are obtained from
the simulation. However, reaching involves visual feedback for online motion (Fil-
imon et al. [102] and Saunders et al. [188]). In order to test in a real robot, perception

102

4.5. Summary

(a)
(b)

Figure 4.31.: Experiments: limits and random targets in sequence (Tieck et al. [23]).
Random targets are generated within the working space of the robot.
After reaching, a new target is set without returning to the start position.
(a) Trajectory of the TCP position in 3D space. (b) Performance plot and
primitive activation. In x, y and z the TCP position in blue and the target
position in green. The last three rows show the primitive activation —
"L/R", "U/D", and "N/F" — based on the error signal.

has to be integrated with an event-based camera to get TCP and target "relative posi-
tions" or better, just an indication of the direction and the magnitude of the error as
[�1,�0.5, 0, 0.5, 1]. The vision system proposed in Kaiser et al. [9] could be integrated
to perform motion prediction and determine the error signal (Kaiser et al. [133] and
Probst et al. [175]). Event-driven systems being controlled in the robot joint space
using motor primitives can take advantage of the unique characteristics of SNNs.

4.5. Summary

The modeling of the arm motion as a combination of motor primitives simplifies the
control. Low-level primitives represent the motion of each joint, two in the shoul-
der and one in the elbow. There is a reduction of the control parameters, allowing
different activations and combinations of the primitives. It is possible to combine
the primitives offline before the motion or online during the motion to generate new
adaptive motion trajectories. Three benchmarking experiments were presented to
model and control the motion of a robot arm.

The first one, multimodal activation, presented a framework for motor control that al-
lows activation, combination, and parameterization of motor primitives. This method

103

4. Combination and activation of motor primitives to control robotic arms

shows interesting properties of biological systems. On the one hand, the representa-
tion of the motions is hierarchical, going from simple joint movements to complex
arm motions and integrating signals from other higher brain areas. On the other
hand, motions can be activated by different modalities. Motions are represented with
SNN using motor primitives as fundamental building blocks (see Section 3.2). This
representation allows the combination and parameterization of the motions. A mech-
anism using the efforts in the joints and the proprioception was integrated to detect
contact and trigger a retract reflex.

The second one, motion adaption, presented a network for adaptive motions using
an architecture based on the principles of motion generation in the central nervous
system. The network could pre-shape motions and generate new trajectories before
its execution by combining primitives using selective disinhibition. The SNN was
able to control a real humanoid robot in real-time in a closed-loop scenario. This
approach can be used with different robot arms and is not dependent on a specific
kinematic structure.

The third one, target reaching, presented how a combination of motor primitives and
a discrete error signal, the network could perform online target reaching without
planning and avoiding the complexity of calculating the IK. The experiments showed
that motor control could be simplified by using motor primitives for a robot arm.
Especially for target reaching, it has been shown that they can reduce the number of
controlled parameters and the amount of information to process (Yang et al. [226]).
Motions can be modeled in a parametric way with motor primitives and combined
with simple activation signals. By using motor primitives, this approach can also be
used with different robot arms by just redefining the mapping of the primitives to the
robot kinematic. This experiment extends the architecture for multimodal activation
presented in Section 4.2 for online target reaching in closed-loop scenarios.

104

5. Coordination of motor primitives
and compliant control for
anthropomorphic robotic hands

Humans learn grasping motions and adapt them during execution based on the shape
and the intended interaction with objects. There are studies on human motor control
providing insights into the mechanisms involved in grasping. For example, there
is work on the evidence of muscle synergies for grasping (Sburlea et al. [189]), the
relation between human responses and the stiffness regulation in the hand (Crago
et al. [75]), and the generalization of muscle patterns as building blocks for grasp-
ing (Scano et al. [190]). Besides, the work in Cutkosky [78] shows that only a small
grasp repertoire is used. Furthermore, a principal component analysis revealed that
the first two components determine 80% of the variance of all grasps (Santello et al.
[186]). An anthropomorphic robotic hand offers many possibilities to investigate fur-
ther the neural response of grasping motions (Kim et al. [137]), to evaluate different
affordances (Ruehl et al. [183]), and to use the synergies from human demonstration
for grasping control (Ficuciello et al. [101]).

In the following, a framework is presented to perform different grasping motions
with a robotic hand with SNN based motor primitives. The hand modeling is made
considering single finger motions independent of other fingers in analogy to the mo-
tions of an arm. Additionally, another layer of primitives is added on top to coor-
dinate the fingers for different grasp motions. In the following, three scenarios are
considered: grasping motions, triggering finger reflexes, and soft-grasping.

Grasping motions are modeled with motor primitives on different layers in a hierar-
chy of joints, controlled by the fingers and coordinated by the hand. Affordances are
motions that humans perform to grasp different objects — pinch and cylinder, for ex-
ample, (Cutkosky [78]). The challenges to generate grasping motions are to develop a
suitable SNN network architecture to represent grasping motions and an appropriate
learning mechanism.

It is possible to enhance the grasping behavior making it more adaptive by adding
finger reflexes to the hand control. Additionally, by incorporating human signals in
real-time, the training and programming of the robot are more flexible. A reflex is an
involuntary and direct response to sensor stimulation and can be either a complete

105

5. Coordination of motor primitives and compliant control for robotic hands

execution or inhibition of a motion (Byrne et al. [64]). The challenge is how to apply
this principle to execute finger primitives fully.

Soft-grasping is modeled with two control loops combined. One is based on motor
primitives, and the other is a compliant controller activated as a reflex when contact
is detected. The human brain is driven by events and goal-oriented behavior with
no explicit planer for grasping. From the view of neuroscience and bio-cybernetics,
there is a combination of multiple control loops working together to grasp an object.
Based on the sensor feedback, humans can quickly adapt the hand motion if the ob-
ject moves or deforms. This process is called soft-grasping (Caldwell et al. [65] and
Bonilla et al. [56]). The challenges are how to detect contact with the object and how
to adapt the motions accordingly.

5.1. Modeling the motion of a 5-finger robot hand

The experiments for demonstrating grasping with SNNs are performed with a 5-
finger robotic hand. The control interface is based on ROS to communicate the SNNs
with both the simulation and the real robot. The hand has 9 active DoF as illustrated
in Figure 5.1 — 7 in the fingers, finger spread and thumb opposition.

Figure 5.1.: Hand motion modeling. The robotic hand is controlled with the joint po-
sition interface. It has five fingers with nine active DoF, and it has no force
or contact sensors. Primitives are defined for each finger and for the hand
to coordinate the fingers. A grasp type signal is used to activate specific
object grasps.

In order to control the hand with SNN, there is an output population for each of the
joints. The individual fingers are modeled as open kinematic chains, similar to the
modeling of the robot arm (Section 4.1). There are motion primitives for each finger
that represent the synergies between the joints involved during the motion. The base
finger motions are represented by sampling the joint states of one finger while closing
it. Then the primitive sub-networks are trained to represent the sequences. In this

106

5.2. Learning grasping motions from human demonstration

way, the motion of each finger is independent of all others. On top of that, there
is a layer that represents the hand to coordinate the fingers. The hand network is
also a motion primitive that controls the activation of the finger primitives instead of
controlling joints. There is a contact detection mechanism to trigger finger reflexes
and to activate compliant control.

For the experiments an anthropomorphic 5-finger hand Schunk SVH is used (see Fig-
ure 5.2). The hand is developed for tasks such as human-like grasping, human-robot
collaboration, and service robotics (Schunk [194]). The electronics are integrated into
the wrist. Due to its characteristics, the hand targets a different level of manipulation
and grasping tasks. To control the robot hand, the official ROS SVH driver is used
(Heppner [121]). The robotic hand has 9 active DoF as shown in Figure 5.2a.

(a)
(b)

Figure 5.2.: Robotic 5-finger hand Schunk SVH (Heppner [121]). (a) Joint description.
(b) Schematics and dimensions.

5.2. Learning grasping motions from human
demonstration

A hierarchical control model is proposed to control a robot hand with motor primi-
tives using human motion data as a demonstration. It consists of a layer representing
the motion of individual fingers and a higher-level layer to represent different grasp-
ing motions and coordinate the fingers. The human hand is a complex system that
can perform a wide range of motions with great flexibility and adaptation, for ex-
ample, playing piano or grasping unknown objects. Humans can remember grasp

107

5. Coordination of motor primitives and compliant control for robotic hands

motions and modify them during execution based on the shape and the interaction
with objects.

Grasping motions are defined as affordances that humans can perform to grasp differ-
ent objects. To model grasping, the challenge is to find a proper network architecture
to represent grasping motions and a learning mechanism to train them. In this sense,
grasping motions are modeled with motor primitives in different layers in a joint hi-
erarchy, controlled by the fingers and coordinated by the hand. An illustration of the
problem is presented in Figure 5.3.

Figure 5.3.: Grasping motions problem definition. Given a set of human demonstra-
tions for grasping motions, learn a SNN model based on motor primitives
to control a robot hand in simulation. Then use the SNN to control a real
anthropomorphic robot hand.

The way movement is represented and executed in biology is an active field of re-
search, especially concerning hand movements. However, studies show that only a
small grasp repertoire is used (Cutkosky [78]). Furthermore, a principal component
analysis of a set of human grasps revealed that the first two components determine
80% of the variance of all grasps (Santello et al. [186]).

In SNNs, plasticity is used for learning by changing the synaptic weights. There are
approaches using STDP as a learning mechanism in a neurorobotics context. For in-
stance, to learn transformations of spatio-temporal data between coordinate systems
(Davison et al. [87] and Song et al. [201]). Approaches for learning robot kinematics
in simulation (Srinivasa et al. [203]) and with a real robotic arm (Bouganis et al. [57])
have been proposed.

In the following, a hierarchical SNN is presented to learn and perform different grasp-
ing motions. The SNN combines two different network types, one for the fingers and
one for the hand. The general architecture of this approach is presented in Figure 5.4.
This section incorporates findings and methods from Tieck et al. [16].

The finger networks learn different motor primitives as the synergies between the
joints. The hand network represents different grasping affordances coordinating the

108

5.2. Learning grasping motions from human demonstration

Figure 5.4.: General view of the closed-loop architecture with SNNs for grasping mo-
tions. From right to left the layers have an increasing level of abstraction.
In motor control there are the finger primitives, in low-level control the hand
primitives and the inhibitory reflex, in high-level control the grasp type sig-
nal, and in higher brain areas the activation signal.

finger networks, thus reusing the learned motor primitives. Both the hand and the
finger networks are trained independently using STDP. After learning from human
demonstration, the SNN is evaluated in simulation and with a real anthropomorphic
robot hand. The network exposes the ability to learn finger coordination and syner-
gies between joints to grasp real objects.

5.2.1. Methods

This SNN approach is inspired by the biological concepts of hierarchical motion rep-
resentation (Bizzi et al. [55]) and motor primitives (Bernstein [54]) for grasping using
muscle synergies (d’Avella et al. [84]). The following assumptions are made for the
fingers and the hand. The hand makes different types of grasp motions when picking
different objects, such as picking a pen from a table (pinch) or holding a tennis racket
(cylinder). In these examples, the motion of a single finger is defined by a motor
primitive that represents its joint synergies during the motion.

The motion representation and control are modeled using two types of networks, one
for the fingers and one for the hand (see Figure 5.5). The finger networks control the
movements of single fingers independent of the task, while the hand network coor-
dinates the activation of the finger networks for a specific grasp motion. The network
receives as proprioception (sensor data) the joint positions of the robot. Grasping
motions are recorded from human demonstration to train the SNN.

109

5. Coordination of motor primitives and compliant control for robotic hands

Figure 5.5.: General view of the SNN (Tieck et al. [16]). The hand network (left) re-
ceives the proprioception (joint positions) of all fingers and a grasp type
signal to generate fingertip targets. The hand network coordinates the
finger networks. Each finger network (middle) receives its proprioception
(joint positions) and a fingertip target to generate motor commands.

Finger networks

A single finger motion is abstracted to be planar (2D) and performed by two joints,
proximal and distal. A finger network (see Figure 5.6a) learns the synergies between
the joints to represent a motor primitive. The network has an input and an output
layer connected all-to-all with plastic synapses that are learned with associative learn-
ing (see Section 3.6.2). The input layer is divided into four populations. Two encode
the joint angles ✓1 and ✓2 from the finger proprioception (joint positions), and two
represent the fingertip target as a normalized direction vector of the spatial changes
with �d̄1 and �d̄2 in finger tip coordinates (Cartesian). The output layer is divided
into two populations �✓1 and �✓2, for the angular changes of each joint.

Hand network

The hand network (see Figure 5.6b) represents the different grasp types as the coor-
dination of the individual finger networks and thus, reusing the learned primitives.
The network learns to associate the proprioception of all fingers and the grasp type
with the corresponding fingertip targets. A signal coming from higher brain areas
is introduced to determine the grasp type. This signal could be generated in an-
other network to represent grasp affordances from vision (Kaiser et al. [11]). As in
the finger networks, a simple two-layer architecture was not suited to learn multiple
grasping motions due to the number of input and output populations with high cor-
relations. This caused the creation of local attractors by the STDP learning rule. A
higher dimensional hidden layer was added to reduce correlations and get a sparse
representation of the input to overcome this problem. Each input population is pro-
jected with static synapses to the hidden layer with a small out-degree creating only

110

5.2. Learning grasping motions from human demonstration

(a)
(b)

Figure 5.6.: Detailed view of the SNN sub-networks (Tieck et al. [16]). Input and out-
put layers are divided into populations. For learning, a teaching signal
is connected to the output layer. (a) The Finger networks associate the
proprioception (✓1, ✓2) and the fingertip target (�d̄1,�d̄2), with the joint
changes (�✓̄1,�✓̄2). Each finger network receives tactile feedback (dotted).
(b) The hand network generates the fingertip targets �d̄ to coordinate the
finger networks. The inputs, proprioception ✓ and the grasp type, are
sparsely projected to the hidden layer (middle).

a few static synapses between the input and the hidden layers. The hidden and the
output layer are connected all-to-all with plastic synapses that are learned with asso-
ciative learning (see Section 3.6.2).

Tactile feedback

A signal to represent tactile feedback is added to stop the motion when there is contact
with an object. Each finger network has a single tactile neuron connected with very
strong inhibitory synapses to the output layer (see Figure 5.6a). The firing frequency
of this neuron is higher than the maximal activation frequency of the output neurons.
Once active, it will maintain the membrane potential of the output neurons below the
threshold to prevent them from firing and stop the motion.

5.2.2. Experiments

The capabilities of the SNN are evaluated with two different grasp motion types —
pinch and cylinder. The experiment setup is presented in Figure 5.7. The control
schema is shown in Figure 5.7a. The SNN was implemented with NEST 2.10. The

111

5. Coordination of motor primitives and compliant control for robotic hands

world simulation is made with the Gazebo physics simulator using a model of the
robot hand. ROS is used as middleware for modular design and inter-component
communication. To control the hand, the schunk_svh_driver (Heppner [121]) is used.
This architecture allows the transition from simulation to the real robot. A motion
capture system (LeapMotion) is used to record training data from human demonstra-
tion using a 3D visualization tool (Figure 5.7b). The SNN is evaluated in simulation
and on the real robot hand (Figure 5.7c).

ROS

NEST
(SNN Simulation)

Motor commands

SVH hand
(Real robot)Proprioception

Tactile Feedback

Motion capture
(Data service)

Encoder

Decoder
Gazebo

(World simulation)

Embodiment

(a) (b) (c)

Figure 5.7.: Experiment setup (Tieck et al. [16]). (a) Control schema. The commu-
nication between the components is implemented with ROS. The spike
encoder and decoder are described in Section 3.5.2. (b) Motion capture
system to record human hand demonstrations. (c) 5-finger Schunk SVH
robot hand.

Implementation details

The SNN is implemented with a total of 5100 neurons. Each input or output popula-
tion has 100 neurons. Each finger network has 7 input and output populations (see
Figure 5.6a), for a total of 700 neurons. The hand network has 12 input and output
populations (see Figure 5.6b), and a hidden layer that is larger than all the input layers
together, with 1400 neurons, for of a total of 2600 neurons. The Leaky-Integrate-and-
Fire (LIF) neuron model is used with alpha-function shaped post-synaptic currents.
For the grasp type input population, a variant of LIF with spike-time adaptive neuron
model is used to stabilize the constant spiking activity. The mean squared error (MSE)
of the SNN output with and without adaptive neurons in the grasp type population
is shown in Figure 5.8.

A data service selects the samples from human demonstration to train the SNN. Two
types of grasps were recorded, cylinder and pinch. Each grasp type has 2 different
examples. The sensor operates at 115Hz, and the signal was down-sampled to 22Hz

to increase the differences between consecutive samples. Each sample is presented to
the network for 40ms, followed by 50ms of pause to relax the neuron potentials and
stabilize the output.

112

5.2. Learning grasping motions from human demonstration

(a) (b)

Figure 5.8.: Adaptive neurons in the grasp type population (Tieck et al. [16]). (a) The
membrane potential adapts to continuous input. (b) The mean squared
error shows that the SNN learns faster and more stable with adaptation.

(a) (b)

Figure 5.9.: Frame sequences for different grasp motions generated by the SNN (Tieck
et al. [16]). Evaluation in simulation (row 1) and the real robot (row 2). (a)
Pinch. (b) Cylinder.

Performing grasping motions

During the experiments, the network activity was recorded during the execution of
two different grasp motions (pinch and cylinder). A frame sequence presenting the
generated grasp motions is shown in Figure 5.9. The simulated model and real robot
performed similar grasp motions, demonstrating the transfer from the simulation to
the real robot.

The training data (joint values) are compared with the proprioception (sensor data)
obtained from the simulation and the real robot (see Figure 5.10a). Both the simula-
tion and real robot showed a similar behavior as the demonstrated data, which means
that the generated motions have similar joint synergies. A segment of the SNN acti-
vation for the proximal joint of the index finger is shown in Figure 5.10b. The spike
trains from the SNN and the decoded values are compared against the training data.
Notice that the SNN output has the structure of the training data.

Figure 5.11a) shows an example of the weight development with and without adap-
tion. Adaption leads to a more stable weight development. While performing a

113

5. Coordination of motor primitives and compliant control for robotic hands

(a)

(b)

Figure 5.10.: Joint control evaluation and network activation (Tieck et al. [16]). (a)
Comparison of training data, simulation, and robot for the proximal joint
(thumb, index, and middle fingers) during a cylinder grasp motion. The
SNN can generate similar synergies for the motion trajectory. (b) A seg-
ment activation for the proximal joint of the index finger. On the left the
spike trains, and on the right the decoded output values of the SNN, blue
vs. training data green.

cylinder grasp motion, tactile feedback was simulated in two fingers to trigger the in-
hibitory mechanism to stop the motion.In Figure 5.11b the SNN activity is presented,
showing only the spike activity of the most active neuron in one of the output popu-
lations for the index and thumb fingers.

5.2.3. Discussion

These experiments are a proof of concept of a biologically inspired control architec-
ture with SNNs for a robot hand to perform grasping motions. The network is capable
of learning motor primitives using STDP and execute different types of grasping mo-
tions. The grasping motions are represented by the synergies between the joints of the
fingers. With the hierarchy of a hand sub-network coordinating finger sub-networks,
it is possible to reuse and combine motor primitives (individual finger movements).

All sub-networks learn with the same supervised associative learning mechanism
using STDP on human demonstrated grasp motions. The experiments showed that

114

5.3. Triggering finger reflexes using EMG signals

(a) (b)

Figure 5.11.: Weight development and tactile feedback (Tieck et al. [16]). (a) Weight
development of the index finger network during learning, row 1 with
adaption and row 2 without adaption. (b) The tactile feedback signal
inhibits the activation of two fingers at different times.

the finger networks learn motion synergies by associating the proprioception and the
fingertip target with joint changes. The hand network learns to coordinate the fingers,
generating the fingertip targets for each finger network given the proprioception and
the grasp type signal. After learning, the SNN was able to control both the simulation
and the real robot hand. By using a sparse projection to high-dimensional space in
the hand network and using a winner-takes-all readout mechanism, notable noise
reduction and stable control are achieved. Tactile feedback was incorporated into the
finger networks to stop the motion in the case of contact. This behavior can be used
to adapt grasping motions to the shape of an object.

A muscle model for the SNN activation instead of the joint position could be incor-
porated for smooth control. The grasp type used in the hand network is currently an
arbitrary representation without semantic information, which could be extended to
signals coming from other networks. For example, visual signals coming from higher
brain areas can be incorporated to represent grasp affordances (Kaiser et al. [9]) and
learn from demonstration as the mirror system (Reithler et al. [177]).

5.3. Triggering finger reflexes using EMG signals

For human robot interaction, the approach presented in Section 5.2 is extended incor-
porating signals from an Electromyography (EMG) sensor to activate the finger prim-
itives as a reflex in realtime. The interaction of humans and robots (HRI) is of great
relevance for the field of neurorobotics. It provides insights on motor control and sen-
sor processing mechanisms in humans that can be applied to robots. Nevertheless,
there are different hypothesis explaining how the human motor system work.

Motor primitives can be activated in different ways, for example, as a reflex. A re-
flex is an involuntary response to sensor stimulation and can be either an immediate
complete execution or inhibition of a motion (Byrne et al. [64]). The challenge is how

115

5. Coordination of motor primitives and compliant control for robotic hands

to apply this principle to execute a finger primitive. It is possible to make the grasp-
ing behavior more adaptive with finger reflexes incorporated into the hand control.
Additionally, by incorporating human signals in real-time, the training and program-
ming of the robot are more flexible. The problem is illustrated in Figure 5.12.

Figure 5.12.: Finger reflexes problem definition (Tieck et al. [25]). Human muscle sig-
nals are used to trigger finger motions for an anthropomorphic robot
hand. A Myo EMG armband sensor is placed on the forearm, the SNN
detects which finger was flexed and triggers a reflex activation of the
corresponding finger primitive to control the robotic hand.

EMG is a common tool in medicine and biomechanics. It is used to monitor and
study the electrical activity of the muscles. There are different methods to record
EMG signals, and they can be either invasive or non-invasive. Research is focusing
on processing and classification of EMG signals for clinical diagnoses (Chowdhury
et al. [69]) or prosthetic applications (Johannes et al. [132]).

An essential aspect of this approach is the fact that the classification and the motion
generation are implemented using a SNN. There are two reasons for doing this. First,
the real biological system must do something similar to this using real neurons. Cer-
tainly, in biology, the classification would not be based on EMG sensors but would
rather be based on neural activity somewhere in the brain, but the classification and
generation of movement over time would still need to occur. This means that this sys-
tem can be seen as an initial model of that biological process. Second, there is a prag-
matic/engineering reason to implement this system using artificial spiking neurons.
Prosthetic applications benefit from low-power hardware implementations with neu-
romorphic hardware, which require the model to be implemented with SNNs.

In the following, a system is proposed to control a robot hand using muscle signals
from a human. The EMG is recorded with a non-invasive sensor, and the classifi-
cation is used to trigger the activation of single finger motor primitives as reflexes.
The general architecture of this approach is presented in Figure 5.13. This section
incorporates findings and methods from Tieck et al. [25, 26].

116

5.3. Triggering finger reflexes using EMG signals

Figure 5.13.: General view of the SNN for triggering finger reflexes using motor prim-
itives. From right to left the layers have an increasing level of abstraction.
In motor control the finger primitives, in low-level control the hand primi-
tives and the reflex activation, in high-level control the EMG classification,
and in higher brain areas the EMG interface for human data.

A SNN was implemented to classify EMG data and trigger the generation of motion
as a reflex. An EMG sensor with eight channels was used to record human muscle
activity while moving different fingers. First, EMG data was encoded to spikes, and
the signals were classified to identify the active finger. After that, the activation sig-
nal triggered a neural oscillator to generate motion using a motor primitive. Then,
the primitive is mapped to the robot kinematics. Finally, the spikes are decoded to
motor commands for the robot. The mapping of myoelectric activity to motor control
functions for a task provides an interface for robotic applications with human inter-
action and a platform to study brain functioning. SNNs provide a challenging but
interesting framework to interact with human data.

5.3.1. Methods

The goal is to control a robotic hand with human muscle signals processed by a SNN.
For this purpose, specific characteristics for the components are defined. The EMG
sensor has to be non-invasive, the finger motions are represented with motor primi-
tives triggered at once to resemble reflexes, and the robot hand has to be controllable
with a ROS interface. The SNN is divided into two sub-networks. The first sub-
network provides the EMG data interface and classification. The second sub-network
provides motion generation and robot control. Human muscle signals are captured
with a surface EMG sensor. The first sub-network classifies the EMG signals to detect
which finger was active. An activation signal is generated and passed to the second
sub-network to trigger single finger reflexes on the real robot. Finger reflexes are

117

5. Coordination of motor primitives and compliant control for robotic hands

modeled according to the robot kinematics. They are implemented with an oscillator
that activates a motor primitive, which is mapped to motor commands. In Figure 5.14
an overview of the main components is presented.

Figure 5.14.: Concept pipeline with main components (Tieck et al. [25]). Human mus-
cle activity is recorded with a non-invasive EMG sensor, and the data
is encoded to spikes. The first sub-network performs a classification to
detect which finger was active, and the second sub-network generates
motion and maps it to motor commands using motor primitives.

Human EMG data interface and training data

To record EMG data, a Myo (ThalmicLabs [212]) armband is used. It has eight equally
spaced segments with non-invasive EMG sensors and operates with a sampling rate
of 200Hz. The armband is positioned around the middle of the forearm (see Fig-
ure 5.12). When a finger is flexed, the muscle’s electric activity is recorded. To record
consistent data with the sensor, the segment with the LED light has to be placed ap-
proximately at the same forearm position. After wearing the Myo on and off, slight
variations did not influence the recordings to make the trained network unusable.
Each channel encodes the individual measurement as int8 values.

For each user, a training dataset is required with multiple samples. A sample consists
of a continuous sequence of finger flexion in one hand. Each finger has to be flexed
down and then extended again. This procedure is repeated starting from the thumb
to the pinky. The training data is recorded as a time-continuous EMG stream of all
eight channels with appropriate labels for the time windows during which a finger
was pressed. A sample recording is shown in Figure 5.15.

Notice that individual channels of the EMG sensor have similar activation for differ-
ent fingers. Thus, the signal of one channel is not enough to identify the motion of a
finger. Therefore, the classification network uses a combination of all eight channels,
which provides a unique representation for each finger.

Sub network for EMG classification

After recording training data, the first sub-network is trained for classification. The
detailed architecture for EMG classification is presented in Figure 5.16. The raw EMG
data from the sensor is feed to the SNN. A population of neurons encodes the signal

118

5.3. Triggering finger reflexes using EMG signals

Figure 5.15.: A sample recording for the training of all five fingers in sequence (Tieck
et al. [25]). From left to right, the peaks are the EMG activations with the
corresponding labels. Each finger is fully flexed and then extended.

stream of EMG input into spikes using stochastic population encoding. A second
population of neurons is then trained offline with the whole training dataset for a
user as described above.

Figure 5.16.: Detailed view for the EMG classification sub-network (Tieck et al. [25]).
Each circle represents a population of spiking neurons. Raw EMG data
is recorded from the user and is encoded into spikes. The signals are
classified to determine which finger was activated. The classification
signal is refined and amplified to obtain a clear hand activation signal
for the motion generation sub-network.

The learning rule for offline training the classification population is PES using the
labels from the training data as error signals E. PES is implemented in Bekolay et al.
[52], and was first presented in MacNeil et al. [153]. For the weights wij from pre-
synaptic population i to post-synaptic population j, the update rule is defined as

�wij = ↵jej · Eai, (5.1)

with a scalar learning rate, ↵ the gain or scaling factor, e the encoder for the neuron,
E the error to minimize, and a the desired activation.

After the classification by the second population, the signals are low in amplitude
and close to each other. Therefore, a population is added to refine the classification by

119

5. Coordination of motor primitives and compliant control for robotic hands

amplifying the signals above a threshold and generating the hand activation signal.
The resulting activation signal is passed over to the motion generation sub-network.
All populations are connected all to all. Examples for classification of all the fingers
are provided in Figure 5.21.

Sub-network for motion generation and mapping to the robot

A population processes the hand activation signal from the previous classification to
trigger the appropriate finger reflex. A reflex is a single execution of a motor primi-
tive based on specific stimuli. Accordingly, the motion generation sub-network of the
SNN is divided into reflex activation and motor primitive layers. The motor primi-
tives are modeled according to Section 3.2, and the reflex activation as in Section 3.3.3.
The whole architecture for the representation of reflexes is presented in Figure 5.17.

Figure 5.17.: Detailed view for the motion generation sub-network (Tieck et al. [25]).
Each circle represents a population of spiking neurons. The hand ab-
straction population processes the hand activation signal to extract in-
dividual finger activations. Reflexes are modeled as oscillators that os-
cillate only once to activate a motor primitive. The neural activity is
decoded to motor commands for each finger.

Integration off all components

A detailed architecture of the full SNN is presented in Figure 5.18. Notice that the
primitives for the thumb, ring, and pinky are mapped to one actuated joint, whereas
the index and middle finger primitives are mapped to two joints.

5.3.2. Experiments

The experiment setup is shown in Figure 5.19, and consists of a human user, an EMG
sensor, a robot hand, and the simulation of the SNN. A user wears the EMG sensor
(Myo armband) in the forearm, and the signals are sent via Bluetooth to the computer.
The computer receives the EMG data and inputs it to the SNN simulation running in
Nengo (Bekolay et al. [51]). The computer communicates at the same time with the

120

5.3. Triggering finger reflexes using EMG signals

Figure 5.18.: Detailed architecture of the SNN with EMG classification and motion
generation sub-networks (Tieck et al. [25]). Each circle represents a pop-
ulation of spiking neurons. The dotted lines divide the conceptual com-
ponents, named on the bottom according to Figure 5.14.

robot hand (Schunk SVH) via ROS (Quigley et al. [176]). To control the robot hand,
the official Schunk ROS driver is used (Heppner [121]).

Implementation details

The SNN was implemented with Nengo using LIF neurons. An sample of the whole
network running is shown in Figure 5.20. The structure corresponds with Figure 5.18.
The eight EMG channels are encoded by a population as stochastic spike rates based
on their values. After training the network offline with different datasets from the
same user, the EMG classification is performed. The classification signal is then
passed over to trigger the motion generation. The reflexes are implemented as oscil-
lators that activate motor primitives. The motor primitives are mapped to the robot
kinematics as defined in the methods section.

Training data

For each user, a set of training data is required to train the SNN. Training data for
the classification network was recorded in one session of 60 seconds. During that
time, individual fingers were pressed against the palm and subsequently returned to
a resting pose. The fingers are flexed in sequence from thumb to index finger, with
each flexion lasting between 300ms and 500ms. Together with the resting time, one

121

5. Coordination of motor primitives and compliant control for robotic hands

Figure 5.19.: Experiment setup (Tieck et al. [25]). (left) The EMG sensor (Myo) is
placed in the forearm of the user. (right) The SNN is simulated in Nengo.
(middle) The robot hand is a Schunk SVH 5-finger hand. All components
are connected using ROS.

Figure 5.20.: Full SNN implemented in Nengo (Tieck et al. [25]). There are four main
components: human EMG data capture and manipulation, EMG classi-
fication, motion generation, and finally, the mapping to the robot. The
structure corresponds to Figure 5.18.

122

5.3. Triggering finger reflexes using EMG signals

cycle takes around 7.5s, and a total of 8 cycles are performed. A sample recording
with all 5 fingers is presented in Figure 5.15. The data is labeled during recording for
each finger, and all eight EMG channels are active.

Processing of EMG data and classification

The EMG classification sub-network is presented in Figure 5.16. The first group of
800 neurons (EMG input) was activated with the raw EMG data. The second group
of 500 neurons (classification) was trained with pre-recorded training data to classify
the fingers. Then, the third group of 500 neurons (classification refined) was used to
separate and amplify the signals. A final group of 500 neurons (Hand activation signal)
was trained to generate one single signal for a specific finger and was connected to 5
groups representing the different fingers for the robot hand.

In Figure 5.21, samples of the SNN are presented showing the activation of the dif-
ferent fingers. As it can be seen, the eight channels of EMG have different data for
each finger. The signals are processed with the SNN, and the activation of the differ-
ent populations can also be observed. The output of the classification is a dominant
activation of one of the populations representing each finger.

Motion generation and interface to the robot hand

The data presented corresponds to a reflex motion of the index finger. The corre-
sponding activity of the SNN for a reflex motion of the index finger is presented in
Figure 5.22. The signal that triggers motion generation comes from the classification
sub-network. An oscillator is activated for each finger. Observe the circular activation
of the oscillator population when decoded in a plane XY . u is decoded and mapped
to one or more joints in the robot hand from this circular activation. Observe that the
mapping is performed to two joints of the index finger. Finally, the neural activity is
decoded and send over ROS to the robot hand. The resulting motion of the robot is
presented in Figure 5.23.

In order to evaluate the accuracy of the classification, one random user was selected.
Then he was asked to perform a sample of 50 trials with each finger. The EMG
data was feed to the trained network, and the classification output for each trial was
recorded. The results are summarized in Figure 5.24. Only the pinky finger had a 1.0
accuracy for this user, which means that all the trials were classified correctly. For the
other fingers, there are either false detections or no classification at all.

The table in Figure 5.25 shows the mapping schema for the robot hand. The "Joint
name" column corresponds to the ROS topics described in Heppner [121] to control
the joints. A primitive is used for each finger, indexed in column "Primitive". Note

123

5. Coordination of motor primitives and compliant control for robotic hands

Thumb

Index

Middle

Ring

Pinky

Figure 5.21.: Classification of EMG for the different fingers (Tieck et al. [25]). From left
to right, the plots show the EMG encoded into spikes, the classification
output, the refined classification, and hand activation signals.

124

5.3. Triggering finger reflexes using EMG signals

Index at t0

Index at t1

Index at t2

Index at t3

Index at t4

Figure 5.22.: Motion generation for the index finger (Tieck et al. [25]). (left) Finger acti-
vation signal from the EMG classification. (middle left, group of three plots)
Spike train of activity in the oscillator, decoded activity in the plane XY ,
and a raster plot color-coded by the neuron’s activity. (middle right, group
of three plots) Decoding of u and mapping g(f(u)) to the robot kinematics.
(right) Motor commands for the robot.

125

5. Coordination of motor primitives and compliant control for robotic hands

A B C D E

Figure 5.23.: Frame sequence of the index finger motion generated by the SNN (Tieck
et al. [25]). The motion corresponds to the activation in Figure 5.22.

Finger

moved

Number

of trials

Thumb

class

Index

class

Middle

class

Ring

class

Pinky

class

None

class
Accuracy

Thumb 50 46 0 0 1 0 3 0.92
Index 50 0 43 1 0 2 4 0.86
Middle 50 0 3 40 0 0 7 0.80
Ring 50 0 1 2 44 0 3 0.88
Pinky 50 0 0 0 0 50 0 1.00

Figure 5.24.: Table of classification accuracy (Tieck et al. [25]). For one random user,
50 trials for each finger were performed recording which finger was de-
tected by the SNN.

that the two joints in the index and middle fingers are mapped to the same primitive.
The "min" and "max" values for each joint complete the table.

5.3.3. Discussion

The proposed SNN activates motion reflexes on a robotic hand based on human EMG
data. The network classifies the EMG signals to detect finger activation. Based on
it, single-finger reflexes are triggered. The finger reflexes are modeled with motion
primitives and mapped to the robot kinematics.

As can be seen in Figures 5.15 and 5.21, the index finger showed almost no discernable
signal in the raw EMG data. For the index finger, the signal is not clear, and the output
is sometimes ambiguous. As a consequence, the classification sub-network generates
a weak and low activation signal for the index finger that is propagated through the
following populations and leads to a fake classification of other fingers. This ap-
proach focused on single finger movements, so data with multiple fingers were not
considered, only movements in quick succession of single fingers. The EMG signals
were used to trigger the execution of the reflexes. Additional research is required to
use EMG signals to perform discrete control of the finger positions.

Using a second Myo EMG sensor can provide additional input from different muscle
areas of the arm and improve classification results. Ideally, the second EMG sensor

126

5.3. Triggering finger reflexes using EMG signals

Joint name Primitive ✓min ✓max

Thumb_Flexion 0 0 0.3
Thumb_Opposition - - -
Index_Finger_Distal 1 0 0.9
Index_Finger_Proximal 1 0 0.7
Middle_Finger_Distal 2 0 0.9
Middle_Finger_Proximal 2 0 0.7
Ring_Finger 3 0 0.7
Pinky 4 0 0.7
Finger_Spread - - -

Figure 5.25.: Table for the robot mapping schema (Tieck et al. [25]). The mapping is
defined with the joint name, the primitive used for each finger, and the
joint angle intervals for each joint. The joints "Thumb_Opposition" and
"Finger_Spread" remained constant.

could be located close to the wrist, closer to the fingers, and the hand (Tenore et al.
[211]). A more extensive set of training data could improve the classification.

127

5. Coordination of motor primitives and compliant control for robotic hands

5.4. Compliant control for soft-grasping with a
hierarchy of motor primitives

In order to control the whole hand, the principles to model finger primitives in Sec-
tion 5.3 are extended with two additional degrees of freedom — thumb opposition
and finger spread. The contact detection circuit presented in Section 3.3.4 is incorpo-
rated to trigger reflexes and activate a compliant controller to perform soft-grasping.
Humans developed advanced and flexible grasping capabilities with evolution thanks
to a combination of an adaptive hand and efficient control. Nevertheless, most robotic
applications use a vacuum, 2-finger, or custom-made grippers (Wolf et al. [222]) which
are acceptable for production applications. However, these methods lack adaptabil-
ity in other environments where grasping novel objects without knowing their exact
geometric and physical properties is required.

Humans do not just plan a grasping motion and then execute it. There is actually
a combination of control loops working together to grasp an object. The hand can
adapt its motion and force based on sensor feedback from the object if it moves or
deforms. This capability is called soft-grasping (Caldwell et al. [65] and Bonilla et al.
[56]). The challenges are how to detect contact and force with the object and how
to adapt the motions accordingly. In this sense, soft-grasping is modeled with two
combined control loops, one is based on motor primitives, and the other is a com-
pliant controller activated by a reflex mechanism. An illustration of the problem is
presented in Figure 5.26.

Figure 5.26.: Soft-grasping problem definition. Given a limited number of hand prim-
itives, adapt them to grasp objects with different shapes, stiffness and
sizes without knowing their exact geometric and physical properties.
Use compliant control without force sensors to control a real anthropo-
morphic robot hand.

This approach is motivated by the biological principles for motion representation
with motor primitives, the concepts of adaptive and compliant control (DeWolf et

128

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

al. [91]), and the characteristics of event-based computation (Zambrano et al. [228])
with SNNs. There are studies that show evidence of muscle synergies for grasping
(Sburlea et al. [189]), the relation between human responses (Abler et al. [41]) and
the stiffness regulation in the hand (Crago et al. [75]), the classification of grasping
types (Cutkosky [78]), and the generalization of muscle patterns as building blocks
for grasping (Scano et al. [190]).

Compliant control with a robotic hand can be performed with soft (Thuruthel et al.
[213]) or flexible hardware (Bonilla et al. [56]), or with software using sensor feedback
(Caldwell et al. [65]). Different approaches combine software compliant control with
a torque sensor and robust modeling (Scherzinger et al. [192]), or with online learning
for adaptive control (DeWolf et al. [92]), or with cerebellar principles (Capolei et al.
[66]), or with reflexes and predictive control (Urbain et al. [217]).

In the following, a system is presented for soft-grasping with an anthropomorphic
robotic hand. The approach takes inspiration from biology and integrates the prin-
ciples of motor primitives with SNNs to model the hand with a hierarchy, to model
finger reflexes, to coordinate multiple primitives, and to combine different activation
modalities. The general architecture of this approach is presented in Figure 5.27. This
section incorporates findings and methods from Tieck et al. [21].

Figure 5.27.: General view of the closed-loop control architecture with SNN for soft-
grasping using motor primitives and reflexes (Tieck et al. [21]). From
right to left the layers have an increasing level of abstraction. In motor
control there are the finger primitives, in low-level control the hand primi-
tives and the reflexes, in high-level control the affordance activation mech-
anisms, and in higher brain areas the activation signals.

Grasping is modeled with motor primitives in a hierarchy, with finger primitives
representing synergies between joints and hand primitives representing different af-
fordances coordinating the fingers. This modeling simplifies the control of the hand
and allows to generalize each grasp for different objects. The compliant controller is
triggered by a contact detection mechanism modeled as the circuits of interneurons
in the spinal cord. Objects with different shapes, stiffness, and sizes are graspable

129

5. Coordination of motor primitives and compliant control for robotic hands

without knowing their exact geometric and physical properties. It is not necessary to
compute the inverse kinematics or to calculate complex contact point planning. The
approach can represent the adaptive grasping capabilities of a human hand, and it
can be used on different robots. Soft-grasping with anthropomorphic hands is a key
capability for robots interacting in an environment with objects shaped for humans
(Pfeifer et al. [170]).

5.4.1. Methods

An approach for soft-grasping with an anthropomorphic robotic hand is proposed
to grasp objects with different shapes, stiffness, and sizes using SNNs. Grasping
motions are represented with a hierarchy of motor primitives extending the methods
in Sections 5.2 and 5.3. The network combines two control loops to generate complex
grasping motions. The first one is fast and reactive, generated by the trajectory control
from the motor primitives, to close the hand using human affordances (Cutkosky
[78]). The second one is precise and adaptive, generated by the compliant controller,
triggered with a reflex using the motor currents.

The detailed architecture for the SNN is presented in Figure 5.28 with four main com-
ponents: finger primitives, hand primitives, affordance activation and reflexes. Each
oval is a sub-network. The connection between compliance and the joints is sim-
plified in the diagram; it is also all to all. The finger primitives represent the joint
synergies for a hand closing motion. The hand primitives represent different affor-
dances coordinating the fingers. The affordance activation mechanism generates the
activation patterns for the hand primitives. There are two types of reflexes activated
by contact, one inhibits the movement of the fingers, and the other activates the com-
pliant controller. Contact detection is modeled as the circuits of interneurons in the
spinal cord. The compliant controller uses the efforts from the motors to control the
force the fingers can apply. The effort is an indirect measurement of the torque.

Finger primitives and robot kinematics

The finger motion is modeled with a motor primitive representing the joint synergies
between the finger joints during a closing motion. The principles to model the finger
motor primitives are based on Section 3.2. Additionally to the five fingers, the model-
ing was extended with two more degrees of freedom — thumb opposition and finger
spread. Thus, there are seven finger primitives — thumb, thumb opposition, index,
middle, ring, pinky, and finger spread — as shown in Figure 5.28.

130

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

Figure 5.28.: Detailed view of the closed-loop architecture for soft-grasping with SNN
(Tieck et al. [21]). The motor neurons generate motor commands. The finger
primitives represent joint synergies. The hand primitives represent differ-
ent grasping motions. In reflexes, contact triggers reflexes to inhibit the
motion of the fingers and activate the compliant controller. The affor-
dance activation provides continuous activation signals using oscillators.

Hand primitives and control hierarchy

The hand motion is also modeled with a motor primitive, but instead of mapping
to joints, it maps to the activation parameters of the finger primitives. The hand
primitives are organized in a hierarchy coordinating the finger primitives. An initial
hierarchical modeling of the hand was presented in Section 5.2, and a similar idea was
also used to coordinate multiple legs in Section 6.2. The hand primitives represent
grasping affordances for sphere, cylinder, and pinch according to (Cutkosky [78])
and the rest position. By using motor primitives for grasping, the complexity of the
hand control is reduced to one activation parameter for each affordance. This type of
activation reflects the muscle synergies of human grasping (Scano et al. [190]).

A hand primitive is modeled as a mapping of the activation parameter u to a se-
quence of activations of the finger primitives during the execution of a grasp. The
initial grasping pose (pre-shaping) and the final pose with the hand closed, define
the primitive as the min open and max closed parameters (see Figure 5.34). Each
hand primitive is connected to all finger primitives. There are four hand primitives
as shown in Figure 5.28. A sub-network in hand primitives and the initial and final
configurations for all the joints are required to define a primitive to represent a new
grasping motion for a different affordance. The rest of the SNN can be reused, and
the compliant controller adapts the motions online to the shape of the objects.

131

5. Coordination of motor primitives and compliant control for robotic hands

Affordance activation mechanisms

The affordance activation mechanisms create the activation patterns for the hand
primitives. An external activation signal is used to activate the hand primitives. A
population of neurons generates neural activity for the duration of the grasping mo-
tion. It is an oscillator that oscillates only once (see Section 3.3.2), and the activity is
decoded for the activation parameter u as

u = �1

2
cos(t · 2⇡

T
) +

1

2
. (5.2)

Reflexes and contact detection

The reflexes (see Section 3.3.3) and the circuit for contact detection (see Section 3.3.4)
are the components which provide the adaptation and flexibility to the grasping mo-
tions required for soft-grasping. These mechanisms are extended to activate the com-
pliant controller and to change the activation parameters from the SNN. �⇥ is calcu-
lated as the change over time of the joint position, using the actual ⇥t and the previ-
ous ⇥t�1, provided by a delayed recurrent connection. The interneuron is excited by
the effort feedback from the motor and inhibited by �⇥. This way, the interneuron
only detects contact if the effort increases and the corresponding joint is not moving.
Therefore, changes in the effort caused by the non-linearity of the robot dynamics are
ignored. The effort is an indirect measurement of the torque. Two types of reflexes
are triggered with contact. The first type provides inhibition and stops the motion.
When contact is detected in one finger, the reflex inhibits the respective primitive,
and the joint position is mapped as the new target position. The second type of reflex
mechanism activates a compliant controller for that finger.

Compliant controller and adaptation

The control schema is a cascaded setup of two controllers, the motor primitives and
the compliant controller (see Figure 5.29). The two controllers are combined using
the feedback from the motors. With the measurement of the motor current, an effort
of each joint can be estimated. The effort is an indirect measurement of the torque.
The compliant controller uses the effort feedback to control the force a finger can
apply. It is a PI effort controller, extended with online learning for adaptation It is
activated with contact, and it is inhibited if no contact is detected or if the hand is
opening. Target efforts can be set to each joint individually to determine the force
and sensitivity of the grasp. The target values for the effort controller can be changed
for each finger on the fly by the network. This characteristic provides even more
flexibility and another degree of freedom for the control.

132

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

position control
PID

u

motor
primitives

reflex
PI

(a)

P control

context

(b)

Figure 5.29.: Compliant controller schema (Tieck et al. [21]). The effort is an indirect
measurement of the motor torque. (a) Cascaded compliant controller for
each finger. (b) Adaptive part with online learning, corresponding to
reflex PI in (a).

The controller was initially modeled as a classical PI controller implemented with
SNN. The I part was divided into two parts with different parameters to reduce oscil-
lation. A fast-reacting I part with an offset compensates the delayed system answer,
preventing the system from overshooting while the system recovers from a delayed
response. A slow reacting I part is adjusted by the system delay and produces less
oscillation. No D part was used because the effort measurements from the motors are
very noisy. The digital I part can be described as

I(k) = kI ·
X

ediff,(k·�t) ·�t (5.3)

where kI is the factor of the I part and ediff is the control error between the tar-
get value and the actual measured value. This can be converted into the differential
equation with the additional P component

yk = yk�1 + kI · uk ·�t (5.4)

with the controller output yk.

The initial contact points must change if the object moves or deforms due to the in-
teraction between the fingers and the object. Ideally, a part in the controller can learn
online to compensate for these changes without calculating the exact contact points

133

5. Coordination of motor primitives and compliant control for robotic hands

or the inverse kinematics. For this, an adaptive control schema is proposed (see Fig-
ure 5.29b). The adaptive part works as an additional I part of the controller with
dynamic parameters (DeWolf et al. [91]). For the online adaptive part (green connec-
tions), the PES rule is used as implemented in NEF (MacNeil et al. [153]). The number
of neurons and the learning rate determine the factor of the adaptive control, and de-
fine how fast the adjustments are made. PES adjusts the decoders �di of a connection
to minimize an error signal. The change in weights wij , is given by

�wij = �di · ej↵j (5.5)

�di = �

n
· ⇠ai, (5.6)

where ↵j is the gain, the global learning rate, n the number of neurons, ⇠ the error
signal, ej the encoder of the postsynaptic neuron and ai the presynaptic activity. The
pre-synaptic population is indexed by i and j indexes the post-synaptic population.
The resulting connection �u is added to control signal and it is defined as

�u(t) =
nX

i=0

di · ai(x(t)), (5.7)

where ai(x(t)) is the activity of neuron i given the input x(t). The error signal ⇠ is
given by the classical PI part and the correction provided by �u is affected by the
learning rule adapting di.

5.4.2. Experiments

An anthropomorphic Schunk SVH 5-finger hand was used to evaluate the perfor-
mance of the SNN for soft-grasping. For the experiments, the hand was mounted
in a test base and a robotic arm. Three types of grasping motions were modeled —
sphere, pinch, and cylinder. The affordances were activated with an external signal to
trigger the motion. First, the activation of the different motor primitives and how the
affordances adapted to different objects were evaluated. Then, the sensitivity of the
compliant controller and its activation was evaluated. Finally, it was evaluated how
the adaptive controller can learn online and how it compares to the PI controller.

Motor primitives activation and affordance evaluation

A grasping motion showing the activation of the motor primitives is presented in
Figure 5.30a. The plots show the activation signal and the activations of the hand
and finger layers. Observe in output finger layer that the network generates a smooth
and continuous trajectory that reaches stable final states for each finger joint. The
hierarchical structure of the primitives is illustrated on the right as a tree. It is color-
coded with the plot lines, and the resulting grasping motion as a frame sequence is

134

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

shown on the bottom. Several objects were selected to evaluate how the different
affordances adapt, with different shapes, stiffness, and sizes. Among them: a plastic
bottle, a softball, a tennis ball, a sponge, a rubber duck, different balloons, a pen, and
a tissue pack (see Figure 5.30b).

(a)

(b)

Figure 5.30.: Activation of different affordances (Tieck et al. [21]). (a) Affordance ac-
tivation, network output of the hand and finger primitives, and a frame
sequence of a grasp. (a) Experiments with different objects.

Compliant control evaluation

The effort threshold controls the force that a finger can apply to the object being
grasped. The motor drivers of the robots usually have the option to set a safety max-

135

5. Coordination of motor primitives and compliant control for robotic hands

(a) (b)

(c)

Figure 5.31.: Compliant control with different threshold parameters (Tieck et al. [21]).
Using (a) high and (b) low effort thresholds. (c) Effort plot for the thumb
flexion for both cases.

imum value for the allowed effort. The motor driver clips the control to protect the
robot, which causes deviations of the control error and results in delays at the start
of the control. Changing this on the fly is problematic as the configuration of the
motor driver has to be reloaded. With this SNN, it is possible to change the effort
threshold on the fly by the network, which provides flexibility and another degree
of freedom for the control. The compliant controller proved to be very sensitive, and
the threshold could be set to be very low, allowing even the manipulation of balloons
(see Figure 5.31). In Figure 5.31a the hand is pressing hard using the maximum ef-
fort threshold, whereas in Figure 5.31b it is pressing soft using the effort threshold.
In Figure 5.31c the effort plot for the thumb finger for the maximum and minimum
effort. Notice that the motor driver clips the maximum. This maximum value is ac-
tually the lower value that the motor driver can control because the effort caused by
the non-linearities of the robot dynamics will be higher, and the motor driver will not
move the robot. The internal motor driver defines maximum efforts for each joint
in as: thumb flexion 6N; index proximal 5.5N; index distal 4.1N; middle distal 4.1N;
middle proximal 5.5N; ring 2N; and pinky 1.6N. The controller can go below these
values and maintain the effort between -0.5N and +0.5N around the target value. The
minimum effort that can be achieved depends on the joint, and it is between -1.5N
and 1.0N thanks to the contact detection mechanism (see Section 5.4.1).

136

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

A detailed grasp with the adjusted parameters is shown in Figure 5.32. The output
of the effort control is converted to a joint position and is added to the finger layer
output. When contact is detected the reflex network switch activates the controller
and the measured position is affected by the effort controller.

Figure 5.32.: Activation of the effort controller (Tieck et al. [21]). From top to bottom,
output of the reflex network switch, the position measured, the effort feed-
back effort-control and the control error.

Adaptive control with online learning evaluation

The network for the classical PI control is larger than the one for the adaptive con-
troller. The parameters for the PI controller are presented in Figure 5.34 (bottom). The
initial controller parameters are calculated with the Ziegler Nichols method (Ziegler
et al. [230]). Then they are manually tuned to the system to avoid noise and oscil-
lations. An offset was added to the controller to compensate for the delay between
contact detection and reflex activation. The learning rate and the number of neurons
were adjusted with a manual parameter search to tune the adaptive control loop.

137

5. Coordination of motor primitives and compliant control for robotic hands

With higher learning rates, the system reached the desired efforts faster but also os-
cillated. This effect was caused by the system’s latency, caused through the filters to
reduce the noise of the spiking neurons. With the addition of an adaptive I part, the
controller is reduced to a P controller, which is easier to parameterize.

With online learning, the controller can adapt and learn over multiple grasps. In
Figure 5.33, four consecutive grasps of the same object are shown. The first diagram
shows the activation of the control triggered by the contact detection. If a contact
is detected, the inhibitory neurons are inhibited (selective disinhibition (Sridharan et
al. [202])) and the control is activated. The plot u_correction is the signal added by
the adaptive control to the PI control. The plot control_error shows the control error
of four joints that are related by synergies – distal and proximal joints of the index
and middle finger. In the fourth attempt, the control error is controlled faster than at
the beginning. The delay is compensated, and the gripping force is maintained to a
constant value. The PI controller needs 5s on average to minimize the control error
into a range of 0.05. With the adaptive controller, this effect can be minimized to a
delay of 3s, after five grasps on average. As the repetition of a grasp with the robot
can not be the same every time, some joints need more grasps to be adapted. The
middle finger proximal (dark blue) signal is overshooting in the second and fourth
grasps. This effect is caused by the adjustment of the middle finger distal (light blue);
nevertheless, after a while, it stabilizes.

SNN implementation and parameters

The SNN is implemented with the neurosimulator Nengo (Bekolay et al. [51]) with
LIF spiking neurons. The motor primitives are represented with 22 ensembles and
4400 spiking neurons, based on the modeling of Section 5.3. The reflexes with the clas-
sical PI compliant controller are represented with 36 ensembles and 20700 neurons,
and with the adaptive compliant controller with 21 ensembles and 7350 neurons. ROS
(Quigley et al. [176]) is used as a communication layer. The hand is controlled using
the official ROS driver (Heppner [121]). The Schunk SVH 5-finger hand has nine
active degrees of freedom — thumb distal, thumb opposition, index distal and prox-
imal, middle distal and proximal, ring distal, pinky distal, and finger spread.

The selected affordances are based on (Cutkosky [78]) with the parameters based
on (Scano et al. [190]). The parameters for the finger and hand primitives and the
compliant controller are presented in Figure 5.34. In the top the corresponding ⇥min

and ⇥max of each joint to define the finger primitives. In the middle the corresponding
min and max values for the cylinder, pinch and sphere primitives — for the rest primitive
the min and max values are set to zero. In the bottom the parameters for the PI, offset,
and adaptive P parts for each finger.

138

5.4. Compliant control for soft-grasping with a hierarchy of motor primitives

Figure 5.33.: Learning in the adaptive controller after four consecutive grasps (Tieck
et al. [21]). switch is the activation of the control triggered by contact
detection. u_correction is the signal added by the adaptive control to the
PI control. control_error shows the control error of four joints — distal
and proximal joints of the index and middle fingers.

139

5. Coordination of motor primitives and compliant control for robotic hands

Parameters finger primitives:

Finger proximal distal
⇥min ⇥max ⇥min ⇥max

thumb 0,1 0,9
thumb opposition 0,25 0,9
index finger 0,1 0,8 0,1 1,33
middle finger 0,1 0,8 0,1 1,33
ring finger 0,1 0,9
pinky 0,1 0,9
finger spread 0,2 0,5

Parameters hand primitives:

Finger cylinder pinch sphere
min max min max min max

thumb 0 0,4 0 0,6 0 0,4
thumb opposition 0,5 0,5 1 1 0,2 0,8
index finger 0 0,9 0 0,9 0 0,9
middle finger 0 0,9 1 1 0 0,9
ring finger 0 0,9 1 1 0 0,4
pinky 0 0,9 1 1 0 0,9
finger spread 0,4 0,5 0,3 0,3 0,5 0,5

Parameters PI control:

thumb index finger middle finger ring pinky
finger

flexion distal prox prox distal
P part: 0.3 0.6 0.2 0.2 0.6 0.6 0.6
I part: 0.1 5 1.5 1.5 5 4.5 4.5
I part with offset:
factor: 1 1 1 1 1 1 1
offset: -0.1 -1.1 -0.5 -0.5 -1.1 -0.8 -1.1
adaptive P part: 0.2 1.8 1 1 2.5 2.0 1.3

Figure 5.34.: Parameter tables (Tieck et al. [21]). From top to bottom, the finger prim-
itives, the hand primitives, and the compliant controller parameters.

5.4.3. Discussion

A system was presented using motor primitives organized in a hierarchy of joints,
fingers, reflexes, and grasping affordances to perform soft-grasping with an anthro-
pomorphic robot hand. The compliant control is implemented in the same SNN us-
ing a cascaded PI effort controller that was extended with online learning for adap-
tive control. Soft-grasping is mainly made with mechanical features and compliant
hardware. Indeed, most robots are not hardware compliant and do not have force
sensors (i.g. the Schunk SVH hand). Nevertheless, the experiments showed that with
the combined control loops and using the current of the motors, it was possible to
perform soft-grasping without calculating the inverse kinematics or complex contact
point planning.

140

5.5. Summary

The controller adapted the grasping motions to objects with different shapes, stiff-
ness, and sizes without knowing their exact properties. Three main grasping types
were modeled — sphere, cylinder, and pinch — but there is no limitation, and the
SNN can be extended with more motions. The compliant controller shows high sen-
sitivity, and the threshold could be set as low as to allow the manipulation of balloons
(see Figure 5.31). Even with the intrinsic inaccuracy of the current measurements and
necessary filters, the efforts could always be maintained below the maximum limits,
which means that the compliant controller was actively controlling the joints. The
plot in Figure 5.33 shows the online adaption of the controller with every repetition
of the same grasping motion.

An adjustment of the network parameters can be made to fine-tune the controller
using pre-training with domain randomization in simulation as in Vandesompele et
al. [219] and Andrychowicz et al. [45].

5.5. Summary

The modeling of the hand motion as a network that coordinates finger sub-networks
with motor primitives simplifies the control. The motion of each finger is modeled
independently in a similar way to a robot arm (see Section 4.1). By coordinating the
activation of the fingers, it is possible to model grasping affordances. An adaptive
behavior for soft-grasping was modeled and implemented using reflex activations to
detect contact. Three experiments were presented to model and control the motion of
the hand.

The first experiment, towards grasping motions, presented a proof of concept for a
biologically inspired SNN control architecture for grasping motions capable of learn-
ing and executing different types of grasp motions. The network is capable of learn-
ing STDP and execute different types of grasp motions. The grasping motions are
represented as synergies between the joints. With the hierarchy of a hand network
coordinating finger networks, it is possible to reuse and combine motor primitives
(individual finger movements).

The second experiment, triggering finger reflexes, presented a SNN that activates mo-
tion reflexes on a robot hand, classifying human EMG data. The network classifies the
EMG signals to detect which finger was activated. Based on the classification, single-
finger reflexes are triggered. The finger reflexes are modeled with motion primitives
and mapped to the robot kinematic. This experiment extends the architecture for
grasping motions presented in Section 5.2.

The third experiment, soft-grasping, presented a system based on motor primitives
organized in a hierarchy of joints, fingers, reflexes, and grasping affordances to per-
form soft-grasping with an anthropomorphic robotic hand. The compliant control is

141

5. Coordination of motor primitives and compliant control for robotic hands

implemented in the same SNN using a cascaded PI effort controller extended with on-
line learning for adaptive control. Soft-grasping is often implemented with mechan-
ical features in the robot hardware, but not all robots are hardware compliant and
do not have torque sensors as the hand that was used. This experiment extends the
architecture and combines all the elements of towards grasping motions presented in
Section 5.2 and triggering finger reflexes presented in Section 5.3.

142

6. Generalization and extension of
the motor primitives control
architecture for multi-legged
locomotion

Locomotion is one of the most diverse and flexible capabilities in nature. There are
many studies on the flexibility of multi-legged locomotion in mammals and insects.
Specific Spatio-temporal relations between different legs and between the joints have
to be considered to generate walking movements (Bässler et al. [50]). In the case of
insects, these relations can be modeled with the Cruse rules (Cruse et al. [77]). A
biologically-inspired walking system needs to consider the aspects of error tolerance
and the capability of self-organization (Cruse et al. [76] and Pfeifer et al. [169]). There
are different mathematical models for walking using central pattern generators and
proprioceptive sensor feedback (Holmes et al. [126] and Ijspeert [128]). Additionally,
the parametrization and generation of the patterns can be modeled as behaviors. The
principles for behavior-based networks (Albiez [43]) can be used for behavior-based
and adaptive control (Kerscher et al. [136]).

This chapter presents methods and experiments to control different motions for a
multi-legged robot driven by motor primitives with SNNs. The modeling of a multi-
legged robot follows the same approach outlined in previous chapters, mapping the
kinematic structure of the robot to a hierarchy of motor primitives. A multi-legged
robot is similar to the hand in terms of kinematic structure but with multiple legs
instead of five fingers and using a different coordination layer to generate walking
behaviours. The previously presented approaches to represent hand and arm motion
using motor primitives are extended to model multiple legs. In the following, a six-
legged robot is considered in different walking situations.

Multi-leg locomotion represents the mechanisms to control single-leg movements,
coordinate multiple legs, and generate complex walking behaviours. The locomotion
problem is defined as the control of the legs together of a robot in a way that enables it
to move in different directions effectively. The challenge is how to model the motion
of individual legs and how to coordinate them.

143

6. Generalization and extension of motor primitives for multi-legged locomotion

6.1. Modeling the motion of a multi-legged robot

The experiments are performed in simulation with the six-legged robot LAURON V
(Roennau et al. [180]). The control interface is based on ROS, and the simulation for
training is compatible with the NRP. The multi-legged robot has a total of 24 active
DoF, 4 on each leg as illustrated in Figure 6.1.

Figure 6.1.: Modeling the motion of multiple legs. The multi-legged robot is con-
trolled using the joint position interface. It has six legs with 24 active
DoF, and it has ground contact sensors. Primitives are defined for each
leg. A behavior-based architecture is integrated to coordinate the legs and
generate different walking patterns.

There is an output population for each of the joints to control a multi-legged robot
with SNNs. The legs are modeled similar to the fingers in Section 5.1 mapping the
kinematic structure of the robot. There are two primitives for each leg, one for each
of the swing and stance phases. The leg trajectories are generated in simulation using
the existing controller for the robot by sampling the joint states. Then, the primitive
sub-networks for each leg are trained to represent the sequences. In this way, the mo-
tion of one leg is similar but independent to all others. The swing and stance phases
are modeled as complementary behaviors (Albiez [43]) that alternate with only one
active at a time. The legs are coordinated by a behaviour based architecture that gen-
erates different activation patterns to control the activation of the leg primitives.

LAURON V (Roennau et al. [180]) is a six-legged robot inspired by the stick insect
(see Figure 6.2). The robot is developed for different field tasks, such as mobile ma-
nipulation and space exploration missions (Heppner et al. [122]). Because of its ro-
bust hardware, adaptable behavior-based control, and numerous sensor systems, the
robot is well equipped for inspection and service tasks in rugged terrain and areas in-
accessible or dangerous to humans (FZI [106]). The robot has 4 DoF on each leg, and
the head can move in two directions for a total of 26 DoF. The control of LAURON V
uses MCA2 (Uhl et al. [216]) with a behaviour-based control (Kerscher et al. [136]) to
generate walking gaits and control the posture.

144

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

6.2. Synchronization and coordination of motor
primitives for multi-legged locomotion

In order to demonstrate the generalization capabilities of the modeling approach with
motor primitives, the mechanisms used to represent the motion of the arm (Chap-
ter 4), and the hand (Chapter 5) are combined and extended to model the motion of
multiple legs for locomotion. Biologically-inspired robots have attractive hardware
solutions, but they often have challenging kinematics, and classical robotics control
mechanisms are not always able to take advantage of them (Pfeifer et al. [169]). These
systems have high-dimensional configuration spaces caused by their complex mor-
phologies. A human hand, a musculoskeletal or tendon-driven system, and multi-
legged robots are good examples.

The problem of robot locomotion is defined as the control of multiple legs to move a
body in different directions. The challenge is to model the motion of individual legs
and to coordinate them. In this sense, multi-legged locomotion represents the mech-
anisms to control single-leg movements, coordinate the legs, and generate complex
walking behaviours. An illustration of the problem is presented in Figure 6.2.

Figure 6.2.: Multi-legged locomotion problem definition. Define leg motor primitives
and generate a set of base walking behaviours that can be combined and
parameterized — forward, right, left and backward.

This approach is inspired by the biological concepts of motor primitives (Bernstein
[54]) as motion building blocks, and the way motion is represented as a hierarchy
(Bizzi et al. [55]) that allows reuse and combination of motions. Pfeifer et al. [169] ex-
plains how complex behaviors emerge from multiple, parallel, loosely coupled pro-
cesses that are combined, mainly via the interaction with the environment.

LAURON V (Roennau et al. [181]) is a six-legged robot for space exploration missions.
This environment is not predictable, has rugged terrain, and presents unexpected sit-
uations that require flexible and adaptive control. The control of LAURON V is based
on MCA2 (Uhl et al. [216]) with a behaviour-based control architecture (Kerscher et al.

145

6. Generalization and extension of motor primitives for multi-legged locomotion

[136]) that implements walking gaits and posture control. Behavior-based networks
for adaptive control for a bio-inspired robot are introduced in Albiez [43].

In the following, an architecture is presented combining classical behaviour-based
control (Kerscher et al. [136] and Albiez [43]) with motor primitives implemented
with SNNs. It has a high-level control interface to integrate control signals from other
control systems or networks. The main components of the approach are presented in
Figure 6.3. This section incorporates findings and methods from Tieck et al. [19].

Figure 6.3.: General view of the closed-loop architecture for multi-legged locomotion
(Tieck et al. [19]). From right to left the layers have an increasing level
of abstraction. In motor control there are the individual leg motor control
with motor primitives, in low-level control the local behaviours for each leg,
in high-level control the activation patterns for multi-legged coordination
and in higher brain areas a high level control interface.

A six-legged robot is somehow similar to the hand in its kinematic structure but with
six legs instead of five fingers. The modeling of the hand (Section 5.3) is extended
with an additional coordination layer for locomotion. The individual motion of the
legs is modeled with motor primitives with SNNs. On top of the motor primitives,
a behaviour-based control architecture is added to coordinate the legs. By using dif-
ferent control patterns, it is possible to activate the primitives to generate different
walking gaits. A high-level control interface enables external control or input from
other networks to activate the patterns. Five different experiments in the simulation
are presented for the evaluation– walking forward, in a circle, in zig-zag, over an
obstacle, and with a Braitenberg network. These experiments show the flexibility of
modeling motions using motor primitives with SNNs.

6.2.1. Methods

An approach for locomotion with a multi-legged robot is proposed to model and
control different gait patterns by combining SNNs and behaviour-based control. The

146

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

motions of the legs are generated with motor primitives extending the methods pre-
sented in Sections 4.2 and 5.3. A behaviour-based architecture is added on top of the
SNN to coordinate the legs and generate different gait patterns. The robot LAURON
V (Roennau et al. [180]) is used for the evaluation.

A detailed view of the architecture with the networks expanded for one leg is pre-
sented in Figure 6.4. Each oval is a sub-network. The kinematics of a robot hand
is similar to LAURON V but with six legs instead of five fingers. Accordingly, the
leg modeling is similar to that of a finger but with more active joints. The motion of
the legs is synchronized using ground contact. A behaviour-based network is imple-
mented to generate smooth transitions between swing and stance phases, combine
the motor primitives and change their parameters. Different activation patterns are
used to coordinate the six legs and generate different walking gaits. A high-level
control interface is added to input the desired motion direction and integrate con-
trol signals from other sources. With this interface, it is possible to model walking
forward, in a circle, in zig-zag, over an obstacle and incorporate signals from a Brait-
enberg network.

Figure 6.4.: Detailed view of the closed-loop architecture for multi-legged locomotion
(Tieck et al. [19]). The networks in leg control and leg local behaviour are
expanded for one leg. The motor neurons generate motor commands. Two
motor primitives control the stance and swing phases. The local behaviors
correspond to the phases and activation patterns, and are activated by
the multi-legged coordination patterns. A high-level control interface allows
experiment control and integration of signals from a Braitenberg network.

147

6. Generalization and extension of motor primitives for multi-legged locomotion

Leg control with motor primitives

Each leg has four joints — ↵, �, �, � — and the respective kinematic structure is
presented in Figure 6.5a. Joint motor commands are used to control the legs. In the
simulated model, bumpers sensors are added at the end of each leg to detect ground
contact. Contact is used to modulate the changes of phases, inhibit the motion, and
adapt the movement. A leg movement cycle has two phases: a swing phase with no
ground contact and a stance phase with ground contact (see Figure 6.5b). The ↵ joint
is used to move forward and backward. The � joint is used to move down to the
ground and lift the legs. The min and max values of the � and � joints are the same
for both the swing and the stance primitives.

The swing and stance movements are modeled with motor primitives (see Section 3.2).
Both primitives control all four joints of a leg. Each joint has a base trajectory defined
with an activation function and a minimum and a maximum value. For the ↵ joint,
the base trajectory is a sinusoidal function defined between 0 to 1. For the � joint, the
function is defined from 0 to 1 and back to 0. Two primitives are defined with inverse
trajectories to walk backward by swapping the minimum and maximum values for
the ↵ joint.

The SNN for the swing and stance primitives is presented in Figure 6.5c. The in-
verted reflection value between swing or stance is used as input between 0 and 1 for
the neuron population u of the motor primitive. The population f(u) represents the
activation function for the motor primitive. The population g(f(u)) outputs the mo-
tor commands scaled and weighted for the joints [↵, �, �, �]. The motor commands
are forwarded with the output node to the goal_out node that checks which behavior
is active and inhibits the values from the other behavior. For turning left and right,
the step width of the inner legs is changed for both the swing and the stance primi-
tives. Activation values change dynamically to generate a smooth transition between
phases and to move in different directions.

Leg local behaviours

For each leg there is a swing and a stance behaviour (see Figure 6.6a). The patterns are
the actual leg coordination, and there is a corresponding behaviour for each pattern
(see Figure 6.4). The formalization and the definition of a single behavior and the
interplay between behaviors are taken from Albiez [43]. They are adapted to interact
with SNNs. A behaviour is defined as a three-tuple B = (r, a, F), where r is the
reflection or target evaluation function, a is the activity function, and F is the transfer
function. Additionally, a behavior also receives sensor input ~e and the motivation ◆

from higher layers. The actuator output ~u of a behaviour is defined as F (~e) = ~u.

The swing and the stance behaviours are complementary, so only one behavior is
motivated at a time. The exact mechanism is used to make sure that only one walk-

148

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

(a) (b)

(c)

Figure 6.5.: Modeling leg motion with motor primitives (Tieck et al. [19]). (a) Kine-
matic structure of one leg with four active joints. (b) Main phases of leg
motion of stick insects — swing and stance (adapted from Wilson [221]).
(c) The SNN for the swing and stance phases.

ing pattern is active at a time. The motivation, activity and reflection of swing and
stance are always alternating as shown in Figure 6.6b. The swing and stance behav-
iors can be influenced from the outside in two ways: by changing the motivation or
by changes in the system state represented by the sensor input ~e. Both mechanisms
can extend or inhibit the activity of a single behavior.

The Cruse, CPG and CPG-Local behaviors in "leg local behavior" (see Figure 6.4)
handle the actual leg coordination and activate the underlying swing and stance be-
haviors that activate the motor primitives. These behaviours are motivated by the
corresponding patterns in "multi-legged coordination patterns".

Multi-legged coordination patterns

The patterns coordinate the legs, determine which leg is in the swing or stance phase,
and motivate the corresponding behavior. The patterns are also implemented as com-

149

6. Generalization and extension of motor primitives for multi-legged locomotion

(a)

(b)

Figure 6.6.: Leg local behaviors (Tieck et al. [19]). (a) Modeling of the swing and
stance phases as complementary behaviours (adapted from Albiez [43]).
(b) Complementary behaviour of swing (orange) and stance (blue). From
top to bottom, the plots show the motivation, the activity, and the reflec-
tion, alternating because only one behavior is active at a time.

plementary behaviors so that only one pattern is active at a time. A pattern class con-
trols the motivation, activity, and reflection for each pattern. The pattern class also
detects if the robot is walking if a direction is given and a pattern is active. The motor
commands are only sent to the joints only if the robot is walking. Two leg groups are
defined for a tripod gait — group 0 with legs [0, 3, 4]; and group 1 with legs [1, 2, 5]
(see Figure 6.7b. For the tripod gait, the swing and the stance phase will alternate for
each leg group.

The Cruse pattern (see Figure 6.7a) implements the first three Cruse rules (Cruse et al.
[77]) using the states of the legs to evaluate the rules and switch between phases. The
swing phase of one leg inhibits the start of the swing phase of the next leg. The start
of the stance phase excites the start of the swing phase of the next leg. The position
of the previous leg excites the start of the stance phase. The Cruse rules support the
stability of the tripod walk and adaptation to the ground.

The CPG pattern (see Figure 6.7b) implements tripod walking and synchronizes the

150

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

activity of both leg groups. This pattern uses the reflections of both groups’ underly-
ing swing and stance behaviors, and they wait for each other to be finished with the
swing or stance phases.

The CPG-Local pattern (see Figure 6.7c) also implements tripod walking but with no
outer synchronization mechanism. This pattern does not consider in which state the
other legs are and controls each leg independently. In the beginning, a leg group
will be motivated to swing and the other to stance, and after that, each leg will take
into account its swing and stance reflection to determine if it will swing or stance
next. Since no information from the other legs is used, the generated pattern will be
asynchronous after some time, and the generated gait is unstable.

(a) (b) (c)

Figure 6.7.: Multi-legged coordination patterns (Tieck et al. [19]). Schematics to vi-
sualize the different activation patterns: (a) Cruse rules, (b) central CPGs
and leg numbering, and (c) local CPGs.

Control interface and Braitenberg network

A high-level control interface is added to integrate control signals from other sources.
The control interface provides high-level control signals for each movement — turn
left, turn right, walk forward, and backward. The experiments presented are im-
plemented by using this interface in the NRP, either sending commands from the
experiment control state machine or integrating another network.

To generate a complete goal-oriented behaviour, a Braitenberg vehicle (Braitenberg
[58]) implemented with SNNs is integrated to control the pattern activation layer. The
sensor input of a Braitenberg vehicle controls the motion directly. Different behaviors
can be generated depending on how the sensors are connected to the actuators. For
the experiments, the Braitenberg vehicle spins around until the color red is detected,
and when red is detected, it walks straight towards it (see Figure 6.8).

6.2.2. Experiments

Five different experiments were defined in simulation using the NRP — walking for-
ward, in a circle, in zig-zag, over an obstacle, and with a Braitenberg network. All the

151

6. Generalization and extension of motor primitives for multi-legged locomotion

Figure 6.8.: A Braitenberg vehicle with attractive behaviour implemented with SNN
(Falotico et al. [2]). Input neurons [0, 1, 2, 3] (orange) detect red. Neuron 4 is
a bias, using other colors as input to rotate. When red is detected, neuron
5 (blue) inhibits the bias and both output neurons (green) are activated.

experiments were conducted with each walking pattern — Cruse, CPG, CPG-Local.

General experiment setup

The general setup is an experiment in the NRP with the robot model of LAURON V.
For the experiment control, the state machine sends the desired walking direction to
the control interface in the first four experiments. In the fifth experiment, the Brait-
enberg network sends the desired walking direction directly to the control interface.
The simulation time is used as a reference to compare different experiments.

The SNN control architecture is implemented in Nengo (Bekolay et al. [51]) and it
is based ROS as communication interface with the NRP. The motor control layer and
the Braitenberg network from Figure 6.4 are implemented with SNN. The parameters
that adapt the motor primitives for the different motions are presented in Figure 6.9.
The following aspects were evaluated: the taken path, the generated walking gait,
the distance covered in the given time, and the differences among walking patterns.
For the experiments, the following variables were recorded: the real-time timestamp,
the trajectory of the movement of LAURON V, the motivation signal, the activity,
and reflection of the pattern. Additionally, for each leg, it was recorded: the ground
contact, the generated joint values in swing and stance phases, the motivation signal,
the activity and reflection of each behavior, the direction, and the active phase.

Walking forward

The first experiment is to walk forward in a straight line in an empty world with
flat ground. The experiment setup is presented in Figure 6.10a. The experiment con-
trol sends the direction "walk forward" for 40 seconds. This experiment serves as a
baseline to compare the three walking patterns in a simple scenario.

152

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

Figure 6.9.: Table with a summary of the experiment parameters (Tieck et al. [19]).
The sides of the robot are 0 for left and 1 for right. The values (min, max)
of the joints (↵, �, �, �) for each primitive (swing, stance) are changed for
the different motions (left, right, forward, backward).

The resulting path for each walking pattern is shown in Figure 6.10c, each line repre-
sents 40 seconds. The x and the y axes are the coordinates of LAURON V in the world
reference frame of the simulation. At the same time, the CPG pattern was the fastest,
covering about 2.5m, the CPG-Local covered about 1.9m, and the Cruse pattern was
the slowest covering about 1.5m. Figure 6.10b shows on top the gait diagram and
on the bottom the values of the � joint of the Cruse pattern. The general shape of
the ↵ and � join trajectories are very similar for all patterns. The � joint trajectory
is highlighted to indicate that the leg is swinging, and it is complementary to the ↵

joint. Since the robot is walking in a straight line and the min and the max values of
the alpha trajectories are not changing, the amplitude does not change. The tripod
gait can be recognized in the beta trajectories and the gait diagram as three legs are
always in the swing phase, and the other three legs are in the stance phase.

Walking in circle

The second experiment is to walk in circles in an empty world with flat ground. The
experiment setup is presented in Figure 6.11a. The experiment control sends the di-
rection "turn right" for 3 minutes. After the robot walked a complete circle, the exper-
iment is stopped, and the collected data is analyzed.

The resulting path for each walking pattern is shown in Figure 6.11b, each line repre-
sents 3 minutes of movement. The x and the y axes are the coordinates of LAURON
V in the world reference frame of the simulation. The ideal path was walking on a
circle turning to the right. The radius of the circle can be changed by modifying the
parameters of the behavior.

153

6. Generalization and extension of motor primitives for multi-legged locomotion

(a) (b)

(c)

Figure 6.10.: Experiment 1: walking forward (Tieck et al. [19]). (a) Simulation setup.
(b) On top the gait diagram and on the bottom the values of the � joint of
the Cruse pattern. (c) The resulting path for each walking pattern. The
different trajectories are caused by the execution time of the patterns.

Walking in zig-zag

The third experiment combines the two previous experiments and includes moving
left and backward in an empty world with flat ground. LAURON V has to walk in
zig-zag: which is defined as walk forward, then turn left, then walk backward, and
finally turn right. The experiment setup is presented in Figure 6.12a. The experiment
control will trigger the different directions — walk forward, turn left, walk backward
and turn right — each for a specific time to create a zig-zag path. Overall, the simula-
tion time is 2 minutes and 30 seconds. In this complex experiment, all directions can
be tested. It can be observed how each pattern manages the changes in direction and
if the transitions between the directions are smooth.

154

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

(a)

(b)

Figure 6.11.: Experiment 2: walking in circle (Tieck et al. [19]). (a) Simulation setup.
(b) The resulting path for each walking pattern. The different leg coordi-
nation in the patterns is evident in the trajectories while turning.

The resulting path for each walking pattern is shown in Figure 6.12b, each line repre-
sents 2 minutes and 30 seconds of movement. The x and the y axes are the coordinates
of LAURON V in the world reference frame of the simulation. The CPG pattern was
able to start the right turn earlier because of the leg positioning. Since the CPG pat-
tern is faster for walking forward, the front right leg was already in front when the
turn came, and therefore it could be taken faster. For the CPG-Local and the Cruse
patterns, which are slower, the left front leg was in front when the turn was started.

Walking over an obstacle

The fourth experiment is to walk forward and overcome an obstacle. In this exper-
iment, an obstacle is placed in the walking path of the robot. A 5cm high box was
added to the experiment of walking straight. The experiment setup is presented in
Figure 6.13a. The physical properties of the box are defined to keep it static, even if
the robot hits or steps on it. Accordingly, the friction between the box and the ground
was changed to be very high. Since the real robot was designed for exploration, this
experiment will test how the implemented patterns respond to uneven terrain. The
swing motion has to be stopped when ground contact is detected to overcome an ob-
stacle, and the stance motion has to be extended. The experiment control sends the
direction "walk forward" for 40 seconds.

A frame sequence from the experiment of CPG pattern is presented in Figure 6.13c.
Figure 6.13b shows on top the gait diagram and on the bottom the values of the ↵ and

155

6. Generalization and extension of motor primitives for multi-legged locomotion

(a)

(b)

Figure 6.12.: Experiment 3: doing a zig-zag (Tieck et al. [19]). (a) Simulation setup.
The zig-zag path is defined as walk forward, turn left, walk backward
and turn right. (b) The resulting path for each walking pattern.

� joints of the CPG pattern. The darker bars indicate ground contact in the stance
phase and the brighter ones air time of the swing phase. Similar to experiment 1:
Walking forward, the CPG pattern was faster than the CPG-Local pattern. The first
circle shows that leg 1 hits the obstacle before moving over it. This behavior is un-
desired because the leg should not be sliding over the obstacle like that. It is caused
by the simulation not being accurate and the models not being perfectly calibrated.
The following two circles for leg 1 and leg 5 show when those legs were in the air
because LAURON V stepped on the obstacle. However, the diagrams show that the
CPG pattern can re-establish ground contact after being on top of the obstacle — this
was also the case for the CPG-Local. The Cruse pattern (a) cannot re-establish con-
tact, and it is stuck on the obstacle with legs 1 and 5 in the air. The circles mark the
interesting parts of the trajectories. The orange circles mark the unwanted behavior
of leg 1 sliding along the obstacle. The green circle marks the stance phases with the
changed values to re-establish ground contact.

Braitenberg vehicle with color detection

In the fifth experiment, LAURON V is placed inside a virtual room with two dis-
plays (see Figure 6.14a). The displays are blue, and after 100 seconds, the experiment
control changes the colors to red. After 140 seconds of simulation, the experiment is
stopped. With this experiment, the high-level control interface is tested by interfacing
it with a Braitenberg SNN implemented in NEST in the NRP. To start, both screens
are blue, the Braitenberg network controls the robot to walk in a circle, and once the
red color is detected, it sends the direction "walk forward".

156

6.2. Synchronization and coordination of motor primitives for multi-legged locomotion

(a) (b)

(c)

Figure 6.13.: Experiment 4: walking over obstacles (Tieck et al. [19]). (a) Simulation
setup. (b) On top, the gait diagram and on the bottom the values of the �

joint of the CPG pattern. The contact with the object can be recognized in
both. (c) A frame sequence from the experiment with the CPG pattern.

The path for each walking pattern is shown in Figure 6.14b, each line represents 2
minutes and 20 seconds of movement. The x and y axes are the robot’s coordinates
in the world reference frame of the simulation. The stars indicate when the display
switched red, and the arrows indicate when the direction switched to forward. The
displays are marked as red horizontal bars on the edges. The path of the Cruse and
the CPG pattern are almost identical. As soon as the displays switched red, both
started to move forward as the display was visible for the robot. The CPG-Local
pattern is faster than the other two, and therefore, the robot already passed the first
display when it switched red. The experiment was stopped after 140 seconds, and this

157

6. Generalization and extension of motor primitives for multi-legged locomotion

time is not enough for the CPG-Local pattern to turn the robot towards the display.

(a)

(b)

Figure 6.14.: Experiment 5: a Braitenberg vehicle with color detection (Tieck et al.
[19]). (a) Simulation setup. (b) The resulting path for each walking pat-
tern. The stars mark when the displays are switched red, and the arrows
mark when the direction is changed to forward. The red bars represent
the screens.

6.2.3. Discussion

The main contribution of this work is to show that classical behaviour-based control
can be combined with motor primitives implemented with SNNs for motion repre-
sentation. This approach provides flexibility for multi-legged locomotion because
motions can be reused and combined in different ways, which can be seen with the
different walking behaviours and implemented experiments. This approach shows
that the basic SNNs building blocks for motion modeling can be adapted to different
robot morphologies like arms, hands, and legs.

The proposed network was able to control a six-legged robot (LAURON V) with
SNNs for locomotion behaviors in a simulated environment to walk in all directions
— forward in a straight line, backward, left, right. Individual leg motion was mod-
eled with motor primitives to realize the swing and stance phase using SNNs. Multi-
legged coordination with different activation patterns using the Cruse rules, CPG and
CPG-Local, is implemented as a behaviour-based network. A complete evaluation of
the different behaviors was performed, and a high-level control interface to integrate
control signals from other sources was developed. Everything is implemented and
developed as experiments within the NRP.

158

6.3. Summary

For future work, it would be interesting to improve the contact detection and model
calibration in the simulation. This facilitates transfer learning from simulation to real
robots. It is fundamental to work with realistic and calibrated parameters for inertia
and friction to avoid sliding and simulation glitches. It would be interesting to in-
tegrate additional sensory feedback. Until now, only the bumper sensor for ground
contact detection was used. Also, it would be beneficial to refine the transitions dur-
ing changes in direction to be very smooth. Other sensor information could be used
to have better synchronization between the behaviors. The approach could also be ex-
tended to robots with unknown body parameters and the generation of stable control
and walking patterns for them (Buettner et al. [62]).

6.3. Summary

The modeling of the leg is similar to that of a finger in Section 5.1, but it uses more
active joints. Locomotion is modeled similar to the hand to coordinate the legs simi-
lar to affordances. The walking behaviours are modeled with rhythmic or repetitive
activations and controlled by different pattern generators.

The experiment in leg locomotion presented a system that combines classical beha-
viour-based control with motor primitives implemented with SNN. This approach
provides flexibility by using motor primitives as motions can be reused and com-
bined in different ways. Different experiments with different walking behaviours and
environments were implemented. Additionally, the system can be used on different
robots by learning the base low-level motor primitives and implementing a new be-
havior. The experiment shows that the modeling approaches with motor primitives
for the arm (Chapter 4) and the hand (Chapter 5) can be generalized and extended
for other motor control tasks with different robot morphologies.

159

7. Discussion of results and outlook

This chapter provides the final considerations for this thesis. A summary of the
achieved results, contributions, and insights is presented, followed by the open prob-
lems and follow-up directions to this work. Finally, the outlook presents a discussion
about the challenges of using SNNs for neurorobotics and the role of neurorobotics
for neuroscience.

7.1. Summary of the contributions

The main goal of this thesis is to design and implement SNN-based motion control
schemas for manipulation and grasping tasks. The approach is based on motor prim-
itives implemented with SNNs.

The experiments for manipulation showed how a human-sized robot arm could be
controlled using motor primitives with SNNs. An important aspect is demonstrating
how to combine and parameterize motor primitives using different activation modal-
ities to generate waving and reaching motions as a benchmark for SNNs. Combining
a base motor primitive with a set of correction motor primitives for open-loop control
allows the generation of pointing motions to different targets on a given plane in 3D
space. Target reaching of arbitrary points in 3D space is achieved by using a set of
motor primitives driven by the target’s position as error feedback in closed-loop.

The experiments for grasping showed how an anthropomorphic 5-finger robot hand
could be controlled using motor primitives with SNNs. Grasping motions are mod-
eled by adding an extra layer of motor primitives to coordinate the finger motor prim-
itives. The generation and execution of finger motor primitives as a reflex triggered
by human EMG signal classification is discussed. The adaption of grasping motions
to different objects is modeled using a cascaded force-torque controller to perform
soft grasping.

This thesis proposes principles for model free-motion representation exploring the
potential of SNNs. The methods do not require extensive learning, calculating the
IK and validating configurations for planning. In the following, a summary of the
contributions and limitations of this thesis is presented.

161

7. Discussion of results and outlook

• Motions are modeled with brain-inspired mechanisms using SNNs: In biol-
ogy, motor primitives represent the synergies between different muscles during
a motion (d’Avella et al. [84] and Chinellato et al. [68]). This thesis proposes
a generic modeling approach applying spiking motor primitives as building
blocks. In biology, motion is represented in a hierarchical and distributed way
in the body and the nervous system (Pfeifer et al. [169]). In this thesis, spiking
motor primitives are arranged in different layers in a hierarchy to model com-
plex motions and behaviours, allowing the reuse and combination of different
motions. The combination is achieved using multimodal activations, using per-
ceptual information about the target, or defining motor primitives to coordinate
other motor primitives. In the brain, the cortex has a topological sensor and mo-
tor representation that match the body (Penfield et al. [168] and Lorente de No
[148]). In this thesis, the topology of the proposed SNNs reflects the robot’s
kinematic structure as demonstrated with a robot arm, a 5-finger anthropomor-
phic hand, and a multi-legged robot. Studies have shown that the activity in the
motor cortex as a whole presents a brief but strong rotational component that
can be understood as a dynamical system that drives motion, producing mo-
tor activity (Churchland et al. [70] and Russo et al. [184]). This thesis presents
different mechanisms for motion activation by modeling a motion generation
layer that produces rotational neural activity with a relatively constant and nor-
malized amount of spikes over time. There are circuits of interneurons in the
spinal cord combining inhibitory and excitatory connections that activate dif-
ferent reflexes (Jankowska [131]). In this thesis, a contact detection circuit is
modeled as an alternative selection mechanism with inter-neurons considering
the force-torque feedback and the changes in velocity in the joint.

• Motor primitives can be combined to generate complex motions: There are
two mechanisms to generate complex motions using motor primitives. The first
mechanism is to have different activation modalities to activate the motor prim-
itives. Examples of this are voluntary, rhythmic, and reflex activations to ac-
tivate the same motor primitive and generate complex waving and reaching
motions. In one experiment, a target representation signal was used to acti-
vate a base motor primitive and different correction motor primitives to point
at different targets on a plane in 3D space. In another experiment, a target rep-
resentation signal was decomposed to activate three motor primitives to reach
different targets in 3D space. The second mechanism is to have a motor primi-
tive activating multiple motor primitives at the same time. In one experiment,
motor primitives were defined for different affordances to coordinate the mo-
tion of the fingers. In another experiment, various walking behaviours act as
motor primitives to activate different legs at a time to obtain the tripod gait.
Additionally, the activation of motor primitives can also be parameterized in
terms of speed and amplitude. This parameterization was used to change the
arm-waving motion and applied to change the relative amplitude of the mo-
tion of the legs on one side of the robot to make it turn or change the gait. An

162

7.1. Summary of the contributions

important point to mention is that the precision of the SNN increases with the
number of neurons. This fact implies that a balance needs to be made between
the application requirements and the computing resources available.

• Motions can be activated and adapted based on sensor feedback: Sensor feed-
back is integrated with different ways to drive the activation of motor primi-
tives. For the arm, a contact detection intercircuit is used to trigger a retract
reflex. A discrete feedback signal based on the target error was incorporated to
activate the motor primitives and move the arm around in analogy to visual-
servoing. For the hand, contact sensors in the fingers were tested in simula-
tion to stop the motion of the fingers, and the joint states were used to gener-
ate the motor commands. A contact detection intercircuit stops the motion of
the fingers as a reflex and triggers the compliant control for soft-grasping. The
controller processes the joint states feedback and the current from the motors
for closed-loop compliant control without a force-torque control interface to the
robot and without compliant hardware. For the legs, the joint states and ground
contact sensors were used in simulation to couple the individual motion of the
legs with the ground contact. The experiments were limited to the available
sensors and interfaces in the robots. The use of haptic and force-torque sensors
can further enhance the activation modalities and feedback representations.

• The motions of multiple kinematic chains can be coordinated: The experi-
ments with a 5-finger anthropomorphic hand and a multi-legged robot showed
different mechanisms to coordinate multiple kinematic chains. For the hand, a
set of motor primitives were defined to represent different affordances and coor-
dinate the fingers. The output of these motor primitives is not mapped to motor
commands for the joints; instead, it is mapped to the activation parameters of
the finger motor primitives. These motor primitives create a higher level in the
hierarchy to model grasp motions — sphere, pinch, and cylinder affordances. A
non-spiking behaviour-based control architecture is added on top of the motor
primitives to coordinate the six legs of the robot. Different behaviours model
different activation patterns by using CPG based control or applying the Cruse
rules (Cruse et al. [77]). With this architecture, it is possible to change the speed
of the legs in one side of the robot to turn or to define a gait pattern.The trade-
off of this approach is that by adding more kinematic chains to the system, the
model becomes more complex, and the runtime of the SNN is affected. In this
sense, the use of neuromorphic hardware can solve this issue.

• The SNNs approach can be adapted to different robots and combined with

other control systems: The experiments demonstrate that the modeling princi-
ples with SNNs can be applied to control industrial robot arms, anthropomor-
phic 5-finger hands, and multi-legged robots. The experiments also showed
that the SNNs could be integrated with other non-spiking control systems or
combined with other SNNs. The proposed approach has a generic control in-
terface based on ROS to communicate with different robot drivers and interact

163

7. Discussion of results and outlook

with the simulators, such as Gazebo and the NRP. One experiment introduced
a sub-network to classify EMG signals to trigger reflexes and activate the motor
primitives of the fingers. Integrating human signals opens up new possibilities
because prosthetic applications benefit from low-power hardware implementa-
tions such as neuromorphic hardware. In another experiment, a classical con-
troller was integrated to move an arm and place the hand close to the objects to
perform soft-grasping with SNNs. In a further experiment, the individual leg
motion was implemented with a SNN. On top of it, a non-spiking behaviour
based architecture was integrated for the activation patterns. On top of it, an-
other SNN of a Braitenberg vehicle was integrated to provide high-level control
signals. These experiments show the flexibility of the SNN-based modeling ap-
proach for motion representation using motor primitives. The approach can
also be used with different robot arms and hands by redefining the mapping
of the motor primitives to the robot kinematics. However, the integration of
other non-spiking control systems requires additional encoding and decoding
steps for the input and output signals of the SNN, which adds further delays to
the control loop. Besides, the control interfaces for the robots are not designed
for event-based computation, and the tools and interfaces for SNNs are not op-
timized for robot control. This factor requires additional computation, which
yields further delays in communication.

• Learning: The methods presented in this thesis are based on two learning strate-
gies, one to generate and pre-train the network offline in a supervised way and
one to adapt the weights online using an error signal. To generate the SNN
models, the methods from the NEF (Eliasmith et al. [99]) are applied with the
software package Nengo (Bekolay et al. [51]). This software allows the genera-
tion of large-scale SNNs by breaking the networks down into smaller parts. The
connection weights for each sub-part are optimized separately, and then they
are combined into one large neural network. Performing this optimization (i.e.,
finding connection weights) locally means that large systems can be generated
without following the traditional neural network approach of optimizing over
huge amounts of training data. However, the trade-off is that explicit claims
must be made about what each sub-part of the model is doing, which requires
expert knowledge. For a robot arm, the motions are defined as functions or as
teach-in examples. For the robot hand, the motions are defined from human
demonstration or as teach-in examples. For the multi-legged robot, the individ-
ual leg motor primitives are defined as functions. For online learning, the PES
rule is used. PES was first introduced in MacNeil et al. [153]. This learning rule
modifies the decoder of a connection to minimize an error signal. A mechanism
using PES was presented to adapt an existing motor primitive using an error
signal based on the desired new trajectory. Besides this, the adaptive PI con-
troller of the fingers used PES to adapt the output of the controller and learn
over multiple grasping attempts. This mechanism compensates for differences
in the dynamics of unknown objects. An essential characteristic of this approach

164

7.2. Open problems

is that the SNN requires only one example or mathematical description of each
motion to train the motor primitives. After learning, the SNN adapts the mo-
tion to the different objects. This capability is a real advantage compared to
other biologically-inspired grasping and manipulation approaches based on DL
(Starke et al. [204] and Andrychowicz et al. [45]), because training data and large
datasets are expensive and not easily generated with real robots. The training
of a single DL model on a GPU produces more CO2 than an average car during
its whole lifetime (Strubell et al. [208]).

7.2. Open problems

The open problems and future research to this thesis can be summarized in two cate-
gories: integration of visual information and efficient SNN execution with neuromor-
phic hardware.

7.2.1. Integration of visual information

In order to incorporate visual information, event-based cameras (Gallego et al. [107]
and Steffen et al. [205]) are a natural match for SNN. A visuomotor control loop can
be achieved using visual signals as feedback or as a trigger to activate the motor
primitives. The methods proposed in this thesis for arm and hand control with SNNs
respond to the question, how? Visual information can be used to respond to the ques-
tions where? and what? — where to move the arm, what to grasp. An initial setup of
such a system is presented in Figure 7.1 (Kaiser et al. [3]). A setup with event-based
stereo cameras is mounted on a robot head performing microsaccadic eye movements
to perceive the objects (Kaiser et al. [10]). This setup can determine target points is
3D space (Steffen et al. [206]) for reaching. Microsaccades (Kaiser et al. [3]) can be
used to detect and classify the type of object and identify which grasping affordance
to use. Another aspect is the integration of visual input to drive the motions and to
learn tasks by demonstration (Reithler et al. [177]). The flexibility of the proposed hi-
erarchy of SNNs allows the integration of visual feedback from event-based cameras
for motor activation (Kaiser et al. [9]). A promising strategy for efficient learning of
new motions by demonstration can be achieved by minimizing the visual prediction
error (Kaiser et al. [8]). Visual information can also be used to explore new motions
and learn the direct and inverse dynamics models (Gilra et al. [111, 112]).

7.2.2. Efficient execution of SNNs with neuromorphic hardware

Brain-inspired technologies attract interest from research, engineering, and the in-
dustry, especially neuromorphic hardware and event-based computation. Leading

165

7. Discussion of results and outlook

(a) (b)

Figure 7.1.: Visuomotor integration on a real robot demonstrator for arm and hand
motion with event-based cameras for embodied learning using SNN
(Kaiser et al. [3]).

chip manufactures are entering this field, for example, Loihi from Intel (Davies et al.
[85]) and Truenorth from IBM (Akopyan et al. [42]). They are following the devel-
opments of SpiNNaker from the universities of Manchester and Dresden (Furber et
al. [104] and Höppner et al. [127]) and Brainscales from the university of Heidelberg
(Pfeil et al. [171]) from the HBP. Nevertheless, there is only a small number of in-
dustrial applications for neuromorphic hardware. New paradigms are required to
program SNNs to take advantage of the efficient real-time execution of event-based
computation (Rhodes et al. [178]). Spike-based communication enables hardware op-
timizations that allow low energy consumption, and due to the sparse communica-
tion, it can also speed up the computation. Neuromorphic hardware is not yet mature
(Knight et al. [139]), but the advantage of low energy consumption is of particular
interest for mobile robots. In this sense, robotics can take advantage of the character-
istics of SNNs and neuromorphic hardware to embed and execute SNNs directly on
the robot. Neuromorphic hardware can be used to directly process the spike activity
of the network to control motors (Donati et al. [96]) or to integrate event-based touch
sensors (Haessig et al. [117]) to further exploit the characteristics of SNNs in terms of
energy consumption and information processing (Zambrano et al. [228]). One of the
most mature technologies to program SNNs on hardware is the Nengo simulator of
the University of Waterloo (Bekolay et al. [51]). Nengo provides a rigorous way of
defining SNN models and learning rules. Furthermore, there is also the possibility to
run the models on different hardware backends like Loihi, SpiNNaker, and GPUs.

166

7.3. Outlook

7.3. Outlook

Finally, a discussion about the challenges and the potential of using SNNs for neuro-
robotics and the role of neurorobotics for neuroscience is presented. Neurorobotics is
a challenging field in the intersection between neuroscience, informatics, and robotics.
As a result, it is difficult to implement models that can operate in a meaningful way in
the different domains. In each of the fields, we have seen considerable progress in the
last years: huge complex models of brain regions based on biological data, advances
in AI and especially in DL to solve a multitude of tasks, and the design of advanced
robot systems with complex kinematics.

7.3.1. Challenges of using SNNs for neurorobotics

The application of SNNs for engineering is still an open field of research. SNNs focus
on the biological characteristics of neurons to model more closely the functionality of
real neurons. SNNs are designed for spike-based communication, enabling research
on brain-like learning and plasticity mechanisms. Experiments have shown that in-
dividual spikes are relevant for the brain, not just rates. SNNs can encode temporal
information in their signals, making a network of spiking neurons with its synapses a
dynamical system evolving in time. SNNs are computationally more powerful than
traditional neural networks because they have a higher VC-dimension, as proved
in Maass et al. [152]. In theory, any function that a sigmoidal neural network can
compute can also be computed by a network of spiking neurons (Maass [151] and
Maass et al. [152]). Nevertheless, the implementation of spiking neuron models is
very challenging because there is no state-of-the-art learning algorithm, and there is
no framework like those for DL (Paugam-Moisy et al. [167]). Additionally, the pa-
rameterization of SNNs is an art. Thus, new methods and paradigms are required to
program SNNs and to be able to exploit their unique characteristics with the help of
neuromorphic hardware (Zenke et al. [229]).

However, recent advances on biologically plausible backpropagation learning rules
with spiking neurons offer a new dimension for applications using SNNs. The work
in Neftci et al. [162] uses surrogate gradient mechanisms to learn with a performance
similar to that of DL. The work in Kaiser et al. [5] uses the principles from feedback
alignment to learn visual event streams in a robotics scenario efficiently. The work
in Bellec et al. [53] uses eligibility traces as a biologically inspired mechanism reach-
ing similar performance to BPTT. Finally, the work in Schiess et al. [193] presents a
mechanism for learning with multi-compartment neurons using dendritic spikes as a
biological substrate for backpropagation.

In the current state of maturity, the use of SNNs for robotics applications is a topic
primarily for research, but it has great potential for industrial applications. However,
the contribution of this thesis and similar works is worthwhile with the potential of

167

7. Discussion of results and outlook

obtaining insights about the brain and replicating them. The synergies and collab-
orations resulting from working in this interdisciplinary research field are a strong
motivation for this research.

7.3.2. The role of neurorobotics for neuroscience

Robotics applications — like target reaching or grasping — provide benchmarking
tasks and realistic scenarios to validate neuroscience models. These tasks require in-
tegrated sensorimotor interactions with dynamic environments (Senden et al. [196]).
Anthropomorphic robot hands, such as the Schunk SVH 5-finger hand, provide a
kinematic structure similar to that of humans. Thus, it is possible to use a motion
representation based on human demonstrations so that the robot can interact with
the same objects and in a similar way as humans.

The combination of visual information, arm motion, and soft-grasping capabilities
can achieve a more natural grasping process, from recognizing the object to position-
ing the arm for grasping. The whole system implemented entirely with SNNs as a
physical imitation of a biological system, together with an anthropomorphic hand,
can be compared to brain neural responses (Abler et al. [41]) of the grasping process
as shown by (Kim et al. [137]) and provide new insights into its sub-processes.

Neuroscience principles can be implemented to control complex biological inspired
robots, and robots can be used to validate and understand brain mechanisms and
learning processes. Intelligence and the human brain did not evolve independently
from the body. Cognitive capabilities can emerge from a physically embodied system
(Pfeifer et al. [169]). Robotics provides an embodiment to develop learning mecha-
nisms and to test functional models of the brain.

168

Appendix

169

A. The Neurorobotics Platform
technical details

The NRP is an open-source project that provides a collection of different tools and
technologies for defining and performing neurorobotics experiments. The main fea-
ture of the NRP is that it combines a robot simulator (body and environment) with
a neural simulator (brain) (Tieck et al. [17]). The robot simulator is Gazebo, while
the neural simulator can be NEST, Nengo or TensorFlow. The middleware of the
NRP that synchronizes and communicates both simulators is the closed-loop engine
(CLE). The communication between the brain and the body is implemented using the
Robot Operating System (ROS)1. The NRP is a client server application that can be used
in an interactive or non-interactive mode (see Figure A.1). The interactive mode uses
a web frontend, and it is mainly used to develop experiments. The non-interactive
mode uses the virtual coach, a scripting python API, to run simulations in batch pri-
marily for learning and optimizations.

1http://www.ros.org/

171

http://www.ros.org/

A. The Neurorobotics Platform technical details

Figure A.1.: Web interface to the NRP (Tieck et al. [17]). In this experiment, a Husky
robot solves a maze by following the red lamps. The user can visualize
the camera images (top right) and brain activity as a spike-train (bottom
right) while the experiment is running.

A.1. Getting and using the NRP

The NRP can be used online or as a local installation. The online deployed platform
runs on the high-performance computing (HPC) infrastructure of the HBP. The main
benefit of using the online NRP is that it is easier to get started (no installation, no
maintenance), and the simulations are running on powerful remote clusters.

The local installation can be done using a USB stick live boot, a docker container, or
downloading the sources and compiling. The main benefit of using a local installation
is that it provides more freedom for development as it provides access to all files and
folders, using version control, and using any library or ROS component. The NRP is
a web platform, and internally, the NRP communicates with ROS. With a local install,
any ros-node can connect to a simulation. The most important folders for the user are
the Models, GazeboRosPackages, and Experiments. The Models folder contains the
template robot models (SDF and URDF), environments, and brain scripts PyNN. The
GazeboRosPackages folder contains ROS-nodes and plugins for Gazebo — such as
the Gazebo DVS plugin (Kaiser et al. [9]). In the Experiments folder, each sub-folder is
a template experiment containing transfer functions and state machines. User storage
containing user experiments and models resides in $HOME/.opt by default. Users
can add any experiment there, either by cloning a template from the web interface or
copying an experiment folder.

172

A.2. Modeling and development with the NRP

A.2. Modeling and development with the NRP

In order to model a problem to be solved with the NRP, which also applies to general
neurorobotics problems, different aspects need to be considered for the brain, the
embodiment (robot), the actions, and the perception (Tieck et al. [17]). For the brain,
usually, a SNN or an external controller, the network topology has to be defined,
the neuron model to use, the learning mechanism, and the encoding and decoding
schemas. For the embodiment, usually a robot or an agent, it is important to define
the encoding and decoding schemas according to the interfaces available, considering
that robots already have hardware constraints and multiple sensors and actuators.
For the actions, the actuators have to be defined, which motors or muscles will be
used and what type of object interaction will happen, and how is the interaction with
the environment. Finally, for the sensor perception, it is required to define how it is
represented, what type of sensors are available (tactile, haptic, force, torque, position),
which type of cameras to use (for example, event-based) and other sensors.

In the following, it is described how all this maps to the NRP components (Tieck et al.
[17]). To interact with the NRP as a user, you either use the interactive web frontend
or the virtual coach for batch processing. Both modes communicate with the NRP
backend using REST calls. In the backend, the CLE synchronizes and communicates
the neurosimulator with the physics simulator. A brain script, a robot model file, an
environment model, and a state machine are needed to define an experiment. The
interaction with the environment is represented with a state machine that defines the
experiment protocol and controls the simulation. The brain script defines the network
or the controller and the interfaces it will have for input and output signals. The robot
model file defines the robot kinematics, the inertia, and the sensors and actuators.
The communication between the robot and the brain is made using transfer functions
provided by the user. Transfer functions can be robot to neuron, neuron to robot, or
communicate with an external component. A complete yet straightforward example
of developing a brain controller with SNNs for the iCub robot in the NRP is presented
in the baseball tutorial experiment2.

2https://url.fzi.de/baseballtutorial

173

https://url.fzi.de/baseballtutorial

Acronyms

ANN Artificial Neural Networks vii, 11, 21, 26, 29, 31, 44, 60, 64

backpropagation Error Backpropagation vii, 27, 31, 32, 167

BPTT Backpropagation Through Time vii, 44, 167

CNS Central Nervous System vii, 2, 16, 22, 46, 57

CPG Central Pattern Generator vii, 18, 149–153, 155–158, 163

DL Deep Learning vii, 2, 25–27, 46, 165, 167

DMP Dynamic Movement Primitives vii, 22, 23

DoF Degrees of Freedom iv, vi, vii, 2, 10, 22, 23, 34, 37, 46, 70, 106, 107, 144

EMG Electromyography vii, 115–126, 141, 161, 164, 179

FZI FZI Research Center for Information Technology (https://www.fzi.de/). i,
vii, 71

GPU Grapihcs Processing Unit vii, 44, 165

HBP Human Brain Project i, ii, vii, 7, 41, 166, 172

IK Inverse Kinematics vii, 1, 4, 6, 19, 46, 83, 102, 161

L2L Learning to Learn vii

LIF Leaky-Integrate-and-Fire vii, 28, 29, 90, 100, 112, 121, 138, 177

LSM Liquid State Machine vii

NEF Neuro Engineering Framework presented in Eliasmith et al. [99] and Stewart
[207] (https://www.nengo.ai/nengo/examples/advanced/nef-summary.
html). vii, 22, 42, 49, 60–62, 64, 164, 178

175

https://www.fzi.de/
https://www.nengo.ai/nengo/examples/advanced/nef-summary.html
https://www.nengo.ai/nengo/examples/advanced/nef-summary.html

Acronyms

Nengo Nengo neurosimulator, a Python tool for building large-scale functional brain
models presented in Bekolay et al. [51]. vii, 22, 43, 44, 49, 60, 75, 81, 100, 120–122,
138, 152, 164, 166, 171, 178

NEST Spiking Neural Network Simulator presented in Diesmann et al. [93] and Gewaltig
et al. [110]. vii, 42, 43, 60, 89, 90, 111, 156, 171, 176

NRP Neurorobotics Platform presented in Falotico et al. [2] and Tieck et al. [17]
(https://bitbucket.org/hbpneurorobotics). vii, 7, 41, 42, 144, 151,
152, 156, 158, 164, 171–173

PCA Principal Component Analysis vii, 12, 18

PES Prescribed Error Sensitivity proposed in MacNeil et al. [153]. vii, 62, 67, 119,
134, 164

PyNN Python library offering a common wrapper over different SNN simulators
(backends) such as NEST, SpiNNaker and others, introduced in Davison [88].
vii, 43, 89, 172

PyTorch Generic deep learning framework presented in Paszke et al. [166]. vii, 44

RL Reinforcement Learning vii, 25

ROS Robot Operating System presented in Quigley et al. [176] (http://www.ros.
org/). vii, 60, 70, 71, 75, 89, 90, 94, 100, 106, 107, 112, 117, 121–123, 138, 144, 152,
163, 172

SNN Spiking Neural Network i–vii, 3–7, 9, 22, 26, 27, 29, 31, 32, 36–38, 42, 44–49,
54, 58–61, 64–66, 68–70, 73–75, 80, 82, 83, 89, 90, 94, 96–106, 108–118, 120–123,
126, 129–132, 134, 138, 140–144, 146–149, 151, 152, 156, 158, 159, 161–168, 173,
176–179

STDP Spike Time Dependent Plasticity vii, 6, 31, 32, 108–110, 114, 141

TCP Tool Center Point vii, 33, 60, 66, 67, 70, 76, 77, 79, 82, 83, 89–91, 94, 95, 97–103,
178

TensorFlow Generic deep learning framework presented in Abadi et al. [39]. vii, 44

WTA Winner-Takes-All vii, 32

176

https://bitbucket.org/hbpneurorobotics
http://www.ros.org/
http://www.ros.org/

List of Figures

1.1. Motivation . 3
1.2. Problem definition . 4

2.1. Motor control in biology . 10
2.2. Motor cortex activity for arm movements in monkeys 12
2.3. The cerebellum . 13
2.4. Flexor reflex . 15
2.5. Time-varying synergies model . 16
2.6. Scaling of synergy recruitment . 17
2.7. Oscillation of neural firing rates . 18
2.8. Open-loop control model . 19
2.9. Closed-loop or feedback control model 20
2.10. Feed-forward control loop model . 20
2.11. PID Controller in a feedback loop . 21
2.12. Adaptive feed-forward control model 22
2.13. Dynamic Movement Primitives . 23
2.14. Eigengrasps . 24
2.15. Reflexxes Motion Libraries . 25
2.16. Grasping with deep learning . 26
2.17. Principles of SNNs . 27
2.18. The membrane potential . 28
2.19. LIF spiking neuron model . 29
2.20. Classical spike coding schemes . 30
2.21. Learning and synapses . 31
2.22. Different STDP curves . 31
2.23. Associative learning model . 33
2.24. Training and evaluation phases . 35
2.25. Infant Grasp Learning model . 36
2.26. Cerebellum models 1 . 38
2.27. Cerebellum models 2 . 39
2.28. Multi-layered multi-pattern CPG . 40
2.29. General schema of the NRP . 42
2.30. Different neuromorphic hardware systems 45

3.1. General architecture . 48
3.2. Motor primitive block diagram . 50

177

List of Figures

3.3. Motor primitive modeling . 51
3.4. Table for the joint mapping schema . 51
3.5. Generating motor commands using motor primitives 52
3.6. Circular activation is modeled as an oscillator 55
3.7. Contact detection mechanism . 56
3.8. Combination of motor primitives . 58
3.9. Detailed view . 59
3.10. Closed-loop control schema with SNNs 61
3.11. Encoding and decoding with the NEF 62
3.12. Neural encoding and decoding schemas 63
3.13. Learning with NEF . 65
3.14. Learning new motor primitives . 67

4.1. Arm motion modeling . 70
4.2. Robots used for the arm experiments . 71
4.3. Multimodal activation problem definition 72
4.4. General view . 73
4.5. Detailed view of the SNN . 75
4.6. Voluntary activated motion . 76
4.7. Rhythmic activated motion . 77
4.8. Inhibition reflex during rhythmic motion 79
4.9. Combination of all activation modalities 80
4.10. Motion adaption problem definition . 82
4.11. General view . 83
4.12. Motion generation layer with circular activation 85
4.13. Motor primitives layer . 87
4.14. Target representation . 88
4.15. Basic experiment setup . 89
4.16. Spike plots for the motion generation population 90
4.17. Samples of different pointing motions 91
4.18. Target points and error visualization . 91
4.19. Evaluation of single primitives . 92
4.20. Evaluation of primitive combinations 93
4.21. Evaluation of primitive extrapolation 93
4.22. Target reaching problem definition . 95
4.23. General view . 96
4.24. Target representation as an error signal 97
4.25. Detailed view . 98
4.26. Spike activation, error signals and TCP position 99
4.27. Experiment setup . 99
4.28. SNN implemented in Nengo . 100
4.29. Table with primitive parameters . 101
4.30. Experiments: covering the working space returning to start 102
4.31. Experiments: limits and random targets in sequence 103

178

List of Figures

5.1. Hand motion modeling . 106
5.2. Robotic 5-finger hand Schunk SVH . 107
5.3. Grasping motions problem definition 108
5.4. General view . 109
5.5. General view of the SNN . 110
5.6. Detailed view . 111
5.7. Experiment setup . 112
5.8. Adaptive neurons in the grasp type population 113
5.9. Frame sequences for different grasp motion 113
5.10. Joint control evaluation and network activation 114
5.11. Weight development and tactile feedback 115
5.12. Finger reflexes problem definition . 116
5.13. General view . 117
5.14. Concept pipeline . 118
5.15. A sample recording for the training . 119
5.16. Detailed view for the EMG classification 119
5.17. Detailed view for the motion generation 120
5.18. Detailed architecture . 121
5.19. Experiment setup . 122
5.20. Full SNN implemented in Nengo . 122
5.21. Classification of EMG . 124
5.22. Motion generation for the index finger 125
5.23. Frame sequence of the index finger . 126
5.24. Table of classification accuracy . 126
5.25. Table for the robot mapping schema . 127
5.26. Soft-grasping problem definition . 128
5.27. General view . 129
5.28. Detailed view . 131
5.29. Compliant controller schema . 133
5.30. Activation of different affordances . 135
5.31. Compliant control with different threshold parameters 136
5.32. Activation of the effort controller . 137
5.33. Learning in the adaptive controller . 139
5.34. Parameter tables . 140

6.1. Modeling the motion of multiple legs 144
6.2. Multi-legged locomotion problem definition. 145
6.3. General view . 146
6.4. Detailed view . 147
6.5. Modeling leg motion with motor primitives 149
6.6. Leg local behaviors . 150
6.7. Multi-legged coordination patterns . 151
6.8. A Braitenberg vehicle . 152
6.9. Table with a summary of the experiment parameters 153

179

List of Figures

6.10. Experiment 1: walking forward . 154
6.11. Experiment 2: walking in circle . 155
6.12. Experiment 3: doing a zig-zag . 156
6.13. Experiment 4: walking over obstacles 157
6.14. Experiment 5: a Braitenberg vehicle . 158

7.1. Visuomotor integration . 166

A.1. Web interface to the NRP . 172

180

Bibliography

Own publications

This section lists all publications in which the author of this dissertation is either the
first author or has contributed significantly to the publication as a co-author (in the
form of problem definition, solution, discussion or experimental evaluation).

[1] Tobi Delbruck, Ibrahim Abe M. Elfadel, Shahzad Muzaffar, Germain Haessig,
Bo Wang, Amine Bermak, Rui Graca, Luis Camunas-Mesa, Bathiya Senevi-
rathna, Pamela Abshire, Bernabe Linares-Barranco, Saeed Afshar, Shih-Chii
Liu, Runchun Mark Wang, Piotr Dudek, Stephen Carey, Jose de la Rosa, Marc
Dandin, Sheung Lu, Vincent Frick, Teresa Serrano-Gotarredona, Paula Lopez,
Melika Payvand, Advait Madhavan, Eric Fossum, J. Camilo Vasquez Tieck, Ian
Williams, Yan Liu, Timothy Constandinou, Alexander Serb, Ricardo Carmona-
Galan, Robert Nawrocki, and Walter D. Leon-Salas. “Lessons Learned the Hard
Way”. In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS).
2020 IEEE International Symposium on Circuits and Systems (ISCAS). Sevilla:
IEEE, Oct. 2020, pp. 1–18. ISBN: 978-1-72813-320-1. DOI: 10.1109/ISCAS45731.
2020.9180983.

[2] Egidio Falotico, Lorenzo Vannucci, Alessandro Ambrosano, Ugo Albanese,
Stefan Ulbrich, J. Camilo Vasquez Tieck, Georg Hinkel, Jacques Kaiser, Igor
Peric, Oliver Denninger, Nino Cauli, Murat Kirtay, Arne Roennau, Gudrun
Klinker, Axel Von Arnim, Luc Guyot, Daniel Peppicelli, Pablo Mactinaz-Cañada,
Eduardo Ros, Patrick Maier, Sandro Weber, Manuei Huber, David Plecher, Flo-
rian Röhrbein, Stefan Deser, Alina Roitberg, Patrick Van Der Smagt, Rüdiger
Dillman, Paul Levi, Cecilia Laschi, Alois C. Knoll, and Marc Oliver Gewaltig.
“Connecting Artificial Brains to Robots in a Comprehensive Simulation Fra-
mework: The Neurorobotics Platform”. In: Frontiers in Neurorobotics 11 (JAN
2017). ISSN: 16625218. DOI: 10.3389/fnbot.2017.00002.

[3] Jacques Kaiser, Alexander Friedrich, J. Camilo Vasquez Tieck, Daniel Reichard,
Arne Roennau, Emre Neftci, and Rüdiger Dillmann. Embodied Event-Driven
Random Backpropagation. 2019. URL: https://arxiv.org/abs/1904.
04805.

181

https://doi.org/10.1109/ISCAS45731.2020.9180983
https://doi.org/10.1109/ISCAS45731.2020.9180983
https://doi.org/10.3389/fnbot.2017.00002
https://arxiv.org/abs/1904.04805
https://arxiv.org/abs/1904.04805

Bibliography

[4] Jacques Kaiser, Alexander Friedrich, J. Camilo Vasquez Tieck, Daniel Reichard,
Arne Roennau, Emre Neftci, and Rüdiger Dillmann. “Embodied Neuromor-
phic Vision with Continuous Random Backpropagation”. In: 2020 8th IEEE
RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics
(BioRob). 2020, pp. 1202–1209.

[5] Jacques Kaiser, Alexander Friedrich, J. Camilo Vasquez Tieck, Daniel Reichard,
Arne Roennau, Emre Neftci, and Rüdiger Dillmann. Embodied Neuromorphic
Vision with Event-Driven Random Backpropagation. 2019.

[6] Jacques Kaiser, Michael Hoff, Andreas Konle, J. Camilo Vasquez Tieck, David
Kappel, Daniel Reichard, Anand Subramoney, Robert Legenstein, Arne Roen-
nau, Wolfgang Maass, and Rüediger Dillmann. “Embodied Synaptic Plasticity
with Online Reinforcement Learning”. In: Frontiers in Neurorobotics (2019).

[7] Jacques Kaiser, Gerd Lindner, J. Camilo Vasquez Tieck, Martin Schulze, Michael
Hoff, Arne Roennau, and Rüdiger Dillmann. “Microsaccades for Asynchronous
Feature Extraction with Spiking Networks”. In: International Conference on De-
velopment and Learning and Epigenetic Robotics (ICDL-EPIROB). 2018.

[8] Jacques Kaiser, Svenja Melbaum, J. Camilo Vasquez Tieck, Arne Roennau,
Martin V Butz, and Rüdiger Dillmann. “Learning to Reproduce Visually Sim-
ilar Movements by Minimizing Event-Based Prediction Error”. In: 2018 7th
IEEE International Conference on Biomedical Robotics and Biomechatronics (BIOROB).
2018, pp. 260–267.

[9] Jacques Kaiser, J. Camilo Vasquez Tieck, Christian Hubschneider, Peter Wolf,
Michael Weber, Michael Hoff, Alexander Friedrich, Konrad Wojtasik, Arne
Roennau, Ralf Kohlhaas, Rüdiger Dillmann, and J. Marius Zollner. “Towards a
Framework for End-to-End Control of a Simulated Vehicle with Spiking Neu-
ral Networks”. In: IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, SIMPAR 2016. 2016, pp. 127–134. ISBN:
978-1-5090-4616-4. DOI: 10.1109/SIMPAR.2016.7862386.

[10] Jacques Kaiser, Jakob Weinland, Philip Keller, Lea Steffen, J. Camilo Vasquez
Tieck, Daniel Reichard, Arne Roennau, Jörg Conradt, and Rüdiger Dillmann.
“Microsaccades for Neuromorphic Stereo Vision”. In: 2018 7th IEEE Interna-
tional Conference on Biomedical Robotics and Biomechatronics (BIOROB). 2018,
pp. 244–252.

[11] Jacques Kaiser, David Zimmerer, J. Camilo Vasquez Tieck, Stefan Ulbrich, Arne
Roennau, and Rüdiger Dillmann. “Spiking Convolutional Deep Belief Net-
works”. In: International Conference on Artificial Neural Networks ICANN 2017.
Vol. 10614 LNCS. 2017, pp. 3–11. ISBN: 978-3-319-68611-0. DOI: 10.1007/
978-3-319-68612-7_1.

182

https://doi.org/10.1109/SIMPAR.2016.7862386
https://doi.org/10.1007/978-3-319-68612-7_1
https://doi.org/10.1007/978-3-319-68612-7_1

Bibliography

[12] Lea Steffen, Rafael Kübler da Silva, Stefan Ulbrich, J. Camilo Vasquez Tieck,
Arne Roennau, and Rüdiger Dillmann. “Networks of Place Cells for Repre-
senting 3D Environments and Path Planning”. In: 2020 8th IEEE RAS/EMBS In-
ternational Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020,
pp. 1158–1165.

[13] Lea Steffen, J. Camilo Vasquez Tieck, and Rüdiger Dillman. “A Framework for
Robot Control with Multi-Modal Motion Activation Using Spiking Neurons
(Abstract)”. In: 2nd HBP Student Conference : Transdisciplinary Research Linking
Neuroscience, Brain Medicine and Computer Science : Book of Abstracts. Ed. by An-
drea Santuy. Ljubjana, Slovenia: Frontiers Event Abstracts, 2019, pp. 53–55.

[14] J. Camilo Vasquez Tieck, Pascal Becker, Jacques Kaiser, Igor Peric, Mahmoud
Akl, Daniel Reichard, Arne Roennau, and Rüdiger Dillmann. “Learning Tar-
get Reaching Motions with a Robotic Arm Using Brain-Inspired Dopamine
Modulated STDP”. In: 2019 IEEE 19th International Conference on Cognitive In-
formatics & Cognitive Computing (ICCI* CC). 2019.

[15] J. Camilo Vasquez Tieck, Heiko Donat, Jacques Kaiser, Igor Peric, Stefan Ul-
brich, Arne Roennau, Marius Zoellner, and Rüdiger Dillman. “Towards Grasp-
ing with Spiking Neural Networks for Anthropomorphic Robot Hands (Ab-
stract)”. In: 2nd HBP Student Conference : Transdisciplinary Research Linking Neu-
roscience, Brain Medicine and Computer Science : Book of Abstracts. Ed. by Andrea
Santuy. Ljubjana, Slovenia: Frontiers Event Abstracts, 2019, pp. 73–75.

[16] J. Camilo Vasquez Tieck, Heiko Donat, Jacques Kaiser, Igor Peric, Stefan Ul-
brich, Arne Roennau, Marius Zöllner, and Rüdiger Dillmann. “Towards Grasp-
ing with Spiking Neural Networks for Anthropomorphic Robot Hands”. In:
International Conference on Artificial Neural Networks ICANN. Vol. 10613 LNCS.
2017, pp. 43–51. ISBN: 9783319685991. DOI: 10.1007/978-3-319-68600-
4_6.

[17] J. Camilo Vasquez Tieck, Jacques Kaiser, Lea Steffen, Martin Schulze, Axel Von
Arnim, Daniel Reichard, Arne Roennau, and Rüdiger Dillmann. “The Neuro-
robotics Platform for Teaching – Embodiment Experiments with Spiking Neu-
ral Networks and Virtual Robots”. In: 2019 IEEE International Conference on
Cyborg and Bionic Systems (CBS). 2019.

[18] J. Camilo Vasquez Tieck, Marin Vlastelica Pogančić, Jacques Kaiser, Arne Roen-
nau, Marc-Oliver Gewaltig, and Rüdiger Dillmann. “Learning Continuous Mus-
cle Control for a Multi-Joint Arm by Extending Proximal Policy Optimization
with a Liquid State Machine”. In: International Conference on Artificial Neural
Networks ICANN 2018. Vol. 11139 LNCS. 2018, pp. 211–221. ISBN: 978-3-030-
01417-9. DOI: 10.1007/978-3-030-01418-6_21.

[19] J. Camilo Vasquez Tieck, Jacqueline Rutschke, Jacques Kaiser, Martin Schulze,
Timothee Buettner, Daniel Reichard, Arne Roennau, and Rüdiger Dillmann.
“Combining Spiking Motor Primitives with a Behavior-Based Architecture to

183

https://doi.org/10.1007/978-3-319-68600-4_6
https://doi.org/10.1007/978-3-319-68600-4_6
https://doi.org/10.1007/978-3-030-01418-6_21

Bibliography

Model Locomotion for Six-Legged Robots”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2019.

[20] J. Camilo Vasquez Tieck, Tristan Schnell, Jacques Kaiser, Felix Mauch, Arne
Roennau, and Rüdiger Dillmann. “Generating Pointing Motions for a Hu-
manoid Robot by Combining Motor Primitives”. In: Frontiers in Neurorobotics
13 (2019), p. 77.

[21] J. Camilo Vasquez Tieck, Katharina Secker, Jacques Kaiser, Arne Roennau, and
Rüdiger Dillmann. “Soft-Grasping with an Anthropomorphic Robotic Hand
Using Spiking Neurons”. In: IEEE Robotics and Automation Letters (Oct. 26,
2020). DOI: 10.1109/LRA.2020.3034067.

[22] J. Camilo Vasquez Tieck, Lea Steffen, Jacques Kaiser, Daniel Reichard, Arne
Roennau, and Rüdiger Dillmann. “Combining Motor Primitives for Percep-
tion Driven Target Reaching with Spiking Neurons”. In: Cognitive Informatics
and Natural Intelligence (IJCINI) 13.1 (2019), p. 12. ISSN: 15573966. DOI: 10.
4018/IJCINI.2019010101.

[23] J. Camilo Vasquez Tieck, Lea Steffen, Jacques Kaiser, Daniel Reichard, Arne
Roennau, and Rüdiger Dillmann. “Controlling a Robot Arm for Target Reach-
ing without Planning Using Spiking Neurons”. In: 2018 IEEE 17th Interna-
tional Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC).
2018, pp. 111–116. ISBN: 978-1-5386-3360-1. DOI: 10.1109/ICCI-CC.2018.
8482049.

[24] J. Camilo Vasquez Tieck, Lea Steffen, Jacques Kaiser, Arne Roennau, and Rüdi-
ger Dillmann. “Multi-Modal Motion Activation for Robot Control Using Spik-
ing Neurons”. In: 2018 IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob). Vol. 2018-August. 2018, pp. 291–298. ISBN: 9781538681831.
DOI: 10.1109/BIOROB.2018.8487786.

[25] J. Camilo Vasquez Tieck, Sandro Weber, Terrence C Stewart, Arne Roennau,
and Rüdiger Dillmann. “Triggering Robot Hand Reflexes with Human EMG
Data Using Spiking Neurons”. In: International Conference on Intelligent Au-
tonomous Systems IAS-15. Vol. 867. Springer, Cham, 2018, pp. 902–916. ISBN:
978-3-030-01369-1. DOI: 10.1007/978-3-030-01370-7_70.

[26] J. Camilo Vasquez Tieck, Sandro Weber, Terrence C. Stewart, Jacques Kaiser,
Arne Roennau, and Rüdiger Dillmann. “A Spiking Network Classifies Human
sEMG Signals and Triggers Finger Reflexes on a Robotic Hand”. In: Robotics
and Autonomous Systems 131 (2020), p. 103566. ISSN: 09218890. DOI: 10.1016/
j.robot.2020.103566.

184

https://doi.org/10.1109/LRA.2020.3034067
https://doi.org/10.4018/IJCINI.2019010101
https://doi.org/10.4018/IJCINI.2019010101
https://doi.org/10.1109/ICCI-CC.2018.8482049
https://doi.org/10.1109/ICCI-CC.2018.8482049
https://doi.org/10.1109/BIOROB.2018.8487786
https://doi.org/10.1007/978-3-030-01370-7_70
https://doi.org/10.1016/j.robot.2020.103566
https://doi.org/10.1016/j.robot.2020.103566

Bibliography

Student works

This section lists all student theses that were developed and supervised by the author
of this dissertation during his research. This includes the main idea and key details
for the specification of the problem, discussion of the work, as well as boundary re-
quirements for solution, visualization and experimental evaluation.

[27] Heiko Donat and J. Camilo Vasquez Tieck. “Towards Grasping with Spiking
Neural Networks for an Anthropomorphic Robot Hand”. Master Thesis. Karl-
sruhe, Germany: KIT Karlsruhe Institute of Technology, July 31, 2016.

[28] Michael Hoff, Jacques Kaiser, and J. Camilo Vasquez Tieck. “Learning Closed-
Loop Robot Control with Spiking Neurons and Event-Based Vision”. Master
Thesis. Karlsruhe, Germany: KIT Karlsruhe Institute of Technology, July 31,
2017.

[29] Sebastian Jahr and J. Camilo Vasquez Tieck. “A Biological Inspired Compliant
Controller for a Robotic Arm Driven by Spiking Neurons”. Bachelor Thesis.
Karlsruhe, Germany: KIT Karlsruhe Institute of Technology, May 31, 2018.

[30] Benjamin Kaufmann, J. Camilo Vasquez Tieck, and Jacques Kaiser. “A Fra-
mework for Closed-Loop Sensori-Motor Robot Ex- Periments in the Neuro-
robotics Platform”. Master Thesis. Karlsruhe, Germany: KIT Karlsruhe Insti-
tute of Technology, Feb. 28, 2018.

[31] Marin Vlastelica Pogančić and J. Camilo Vasquez Tieck. “Learning Multi-Joint
Continuous Control with Spiking Neural Networks”. Master Thesis. Karlsruhe,
Germany: KIT Karlsruhe Institute of Technology, July 31, 2017.

[32] Jacqueline Rutschke and J. Camilo Vasquez Tieck. “Controlling LAURON with
Spiking Neural Networks”. Master Thesis. Karlsruhe, Germany: KIT Karl-
sruhe Institute of Technology, Oct. 31, 2018.

[33] Tristan Schnell and J. Camilo Vasquez Tieck. “A Spiking Neural Network for
Arm Motion Adaptation Using Motor Primitives”. Master Thesis. Karlsruhe,
Germany: KIT Karlsruhe Institute of Technology, Sept. 30, 2017.

[34] Katharina Secker and J. Camilo Vasquez Tieck. “"Soft Grasping" einer Fünffin-
ger Roboterhand mittels Gepulsten Neuronalen Netzen”. Master Thesis. Karl-
sruhe, Germany: KIT Karlsruhe Institute of Technology, Sept. 11, 2019.

[35] Lea Steffen and J. Camilo Vasquez Tieck. “Multi-Modal Motion Activation for
Robot Control Using Spiking Neurons”. Master Thesis. Karlsruhe, Germany:
KIT Karlsruhe Institute of Technology, July 31, 2017.

[36] Atanas Tanev and J. Camilo Vasquez Tieck. “A Spiking Network for Adaptive
Control of a Robotic Arm Using a Model of the Cerebellum”. Master Thesis.
Karlsruhe, Germany: KIT Karlsruhe Institute of Technology, Mar. 26, 2017.

185

Bibliography

[37] Christian Telpl, J. Camilo Vasquez TIeck, and Lea Steffen. “Controlling A Real
Robot Arm With Spiking Neurons Using Motor Primitives For Target Reach-
ing”. Master Thesis. Karlsruhe, Germany: KIT Karlsruhe Institute of Technol-
ogy, Feb. 1, 2020.

[38] Konrad Wojtasik, Jacques Kaiser, and J. Camilo Vasquez Tieck. “Spiking Neu-
ral Networks for Arm Pose Estimation Using a Dynamic Vision Sensor”. Bach-
elor Thesis. Karlsruhe, Germany: KIT Karlsruhe Institute of Technology, Apr. 30,
2017.

186

Bibliography

General references
[39] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
“Tensorflow: A System for Large-Scale Machine Learning”. In: 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016,
pp. 265–283.

[40] Larry F Abbott. “Lapicque’s Introduction of the Integrate-and-Fire Model Neu-
ron (1907)”. In: Brain Research Bulletin 50.5-6 (1999), pp. 303–304. ISSN: 03619230.
DOI: 10.1016/S0361-9230(99)00161-6.

[41] Birgit Abler, Alard Roebroeck, Rainer Goebel, Anett Höse, Carlos Schönfeldt-
Lecuona, Günter Hole, and Henrik Walter. “Investigating Directed Influences
between Activated Brain Areas in a Motor-Response Task Using fMRI”. In:
Magnetic Resonance Imaging 24.2 (Feb. 2006), pp. 181–185. ISSN: 0730725X. DOI:
10.1016/j.mri.2005.10.022.

[42] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John
Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon
Nam, Brian Taba, Michael Beakes, Bernard Brezzo, Jente B. Kuang, Rajit Manohar,
William P. Risk, Bryan Jackson, and Dharmendra S. Modha. “TrueNorth: De-
sign and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosy-
naptic Chip”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 34.10 (2015), pp. 1537–1557. ISSN: 0278-0070, 1937-4151. DOI:
10.1109/TCAD.2015.2474396.

[43] Jan Albiez. Verhaltensnetzwerke Zur Adaptiven Steuerung Biologisch Motivierter
Laufmaschinen. Forschen Und Wissen - Robotik. GCA-Verl., Waabs, 2007. ISBN:
978-3-89863-229-4.

[44] James S Albus. “A New Approach to Manipulator Control: The Cerebellar
Model Articulation Controller (CMAC)”. In: (1975).

[45] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. “Learning Dexterous In-Hand Manipu-
lation”. In: The International Journal of Robotics Research 39.1 (2020), pp. 3–20.
ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364919887447.

[46] Alberto Antonietti, Dario Martina, Claudia Casellato, Egidio D’Angelo, and
Alessandra Pedrocchi. “Control of a Humanoid NAO Robot by an Adaptive
Bioinspired Cerebellar Module in 3D Motion Tasks”. In: Computational Intelli-
gence and Neuroscience 2019 (2019), pp. 1–15. ISSN: 1687-5265, 1687-5273. DOI:
10.1155/2019/4862157.

[47] Michael A. Arbib, ed. The Handbook of Brain Theory and Neural Networks. 2nd
ed. Cambridge, Mass: MIT Press, 2003. 1290 pp. ISBN: 978-0-262-01197-6.

187

https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1016/j.mri.2005.10.022
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1155/2019/4862157

Bibliography

[48] Tamim Asfour, Julian Schill, Heiner Peters, Cornelius Klas, Jens Bucker, Chris-
tian Sander, Stefan Schulz, Artem Kargov, Tino Werner, and Volker Barten-
bach. “ARMAR-4: A 63 DOF Torque Controlled Humanoid Robot”. In: 2013
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). 2013
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids
2013). Atlanta, GA: IEEE, 2013, pp. 390–396. ISBN: 978-1-4799-2617-6 978-1-
4799-2619-0. DOI: 10.1109/HUMANOIDS.2013.7030004.

[49] Ola Ayaso. “A Model for Command Generation in Motor Cortex”. Massachusetts
Institute of Technology, 2001.

[50] Ulrich Bässler and Ansgar Büschges. “Pattern Generation for Stick Insect Walk-
ing Movements—Multisensory Control of a Locomotor Program”. In: Brain
Research Reviews 27.1 (1998), pp. 65–88. ISSN: 01650173. DOI: 10.1016/S0165-
0173(98)00006-X.

[51] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C.
Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith.
“Nengo: A Python Tool for Building Large-Scale Functional Brain Models”.
In: Frontiers in Neuroinformatics 7.48 (2014), pp. 1–13. ISSN: 1662-5196. DOI: 10.
3389/fninf.2013.00048.

[52] Trevor Bekolay, Carter Kolbeck, and Chris Eliasmith. “Simultaneous Unsuper-
vised and Supervised Learning of Cognitive Functions in Biologically Plau-
sible Spiking Neural Networks”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society (CogSci). Vol. 35. 35. 2013.

[53] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj,
Robert Legenstein, and Wolfgang Maass. A Solution to the Learning Dilemma
for Recurrent Networks of Spiking Neurons. preprint. Neuroscience, 2019. DOI:
10.1101/738385.

[54] Nikolai Bernstein. The Co-Ordination and Regulation of Movements. Pergamon
Press Ltd., 1967. 196 pp. DOI: 0022510X68901664.

[55] E. Bizzi, V.C.K. Cheung, A. d’Avella, P. Saltiel, and M. Tresch. “Combining
Modules for Movement”. In: Brain Research Reviews 57.1 (2008), pp. 125–133.
ISSN: 01650173. DOI: 10.1016/j.brainresrev.2007.08.004.

[56] M. Bonilla, E. Farnioli, C. Piazza, M. Catalano, G. Grioli, M. Garabini, M.
Gabiccini, and A. Bicchi. “Grasping with Soft Hands”. In: 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots. 2014 IEEE-RAS 14th International Con-
ference on Humanoid Robots (Humanoids 2014). Madrid, Spain: IEEE, 2014,
pp. 581–587. ISBN: 978-1-4799-7174-9. DOI: 10.1109/HUMANOIDS.2014.
7041421.

188

https://doi.org/10.1109/HUMANOIDS.2013.7030004
https://doi.org/10.1016/S0165-0173(98)00006-X
https://doi.org/10.1016/S0165-0173(98)00006-X
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1101/738385
https://doi.org/0022510X68901664
https://doi.org/10.1016/j.brainresrev.2007.08.004
https://doi.org/10.1109/HUMANOIDS.2014.7041421
https://doi.org/10.1109/HUMANOIDS.2014.7041421

Bibliography

[57] Alexandros Bouganis and Murray Shanahan. “Training a Spiking Neural Net-
work to Control a 4-DoF Robotic Arm Based on Spike Timing-Dependent Plas-
ticity”. In: The 2010 International Joint Conference on Neural Networks (IJCNN).
2010 International Joint Conference on Neural Networks (IJCNN). Barcelona,
Spain: IEEE, 2010, pp. 18–23. ISBN: 9781424469178. DOI: 10.1109/IJCNN.
2010.5596525.

[58] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. Vol. 95. 1.
MIT press, 1986. ISBN: 0-262-02208-7 0-262-52112-1. DOI: 10.2307/2185146.

[59] Johanni Brea, Alexisz Tamás Gaál, Robert Urbanczik, and Walter Senn. “Prospec-
tive Coding by Spiking Neurons”. In: PLOS Computational Biology 12.6 (June 24,
2016). Ed. by Peter E. Latham, e1005003. ISSN: 1553-7358. DOI: 10.1371/
journal.pcbi.1005003.

[60] T Graham Brown. “On the Nature of the Fundamental Activity of the Nervous
Centres; Together with an Analysis of the Conditioning of Rhythmic Activity
in Progression, and a Theory of the Evolution of Function in the Nervous Sys-
tem”. In: The Journal of physiology 48.1 (1914), p. 18.

[61] Julian Büchel, Dmitrii Zendrikov, Sergio Solinas, Giacomo Indiveri, and Dylan
R. Muir. Supervised Training of Spiking Neural Networks for Robust Deployment
on Mixed-Signal Neuromorphic Processors. Feb. 17, 2021. URL: http://arxiv.
org/abs/2102.06408 (visited on 04/27/2021).

[62] Timothee Buettner, Georg Heppner, Arne Roennau, and Rüdiger Dillmann.
“Nimble Limbs - Make Anything Walk with Intelligent Attachable Legs”. In:
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM2019.
2019.

[63] Daniel Bullock, Stephen Grossberg, and Prank H Guenther. “A Self-Oorganizing
Neural Model of Motor Equivalent Reaching and Tool Use by a Multijoint
Arm”. In: Journal of Cognitive Neuroscience 5.4 (1993), pp. 408–435.

[64] JH Byrne and N Dafny. Neuroscience Online: An Electronic Textbook for the Neu-
rosciences. Department of Neurobiology and Anatomy, The University of Texas
Medical School at Houston, 1997. URL: http : / / nba . uth . tmc . edu /
neuroscience/.

[65] D.G. Caldwell and N. Tsagarakis. “"Soft" Grasping Using a Dextrous Hand”.
In: Industrial Robot 27.3 (2000), pp. 194–199. ISSN: 0143-991X. DOI: 10.1108/
01439910010323941.

[66] Marie Claire Capolei, Emmanouil Angelidis, Egidio Falotico, Henrik Hautop
Lund, and Silvia Tolu. “A Biomimetic Control Method Increases the Adapt-
ability of a Humanoid Robot Acting in a Dynamic Environment”. In: Frontiers
in neurorobotics 13 (2019), p. 70.

[67] Claudio Castellini and Patrick van der Smagt. “Evidence of Muscle Synergies
during Human Grasping”. In: Biological Cybernetics 107.2 (2013), pp. 233–245.
ISSN: 0340-1200, 1432-0770. DOI: 10.1007/s00422-013-0548-4.

189

https://doi.org/10.1109/IJCNN.2010.5596525
https://doi.org/10.1109/IJCNN.2010.5596525
https://doi.org/10.2307/2185146
https://doi.org/10.1371/journal.pcbi.1005003
https://doi.org/10.1371/journal.pcbi.1005003
http://arxiv.org/abs/2102.06408
http://arxiv.org/abs/2102.06408
http://nba.uth.tmc.edu/neuroscience/
http://nba.uth.tmc.edu/neuroscience/
https://doi.org/10.1108/01439910010323941
https://doi.org/10.1108/01439910010323941
https://doi.org/10.1007/s00422-013-0548-4

Bibliography

[68] E. Chinellato and A.P. Pobil. The Visual Neuroscience of Robotic Grasping. Cogni-
tive Systems Monographs. Springer International Publishing, 2016. ISBN: 978-
3-319-20303-4. DOI: 10.1007/978-3-319-20303-4.

[69] Rubana H Chowdhury, Mamun BI Reaz, Mohd Alauddin Bin Mohd Ali, Ashrif
AA Bakar, Kalaivani Chellappan, and Tae G Chang. “Surface Electromyogra-
phy Signal Processing and Classification Techniques”. In: Sensors (2013).

[70] Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D.
Foster, Paul Nuyujukian, Stephen I. Ryu, Krishna V. Shenoy, and Krishna V.
Shenoy. “Neural Population Dynamics during Reaching”. In: Nature 487.7405
(2012), pp. 51–56. ISSN: 00280836. DOI: 10.1038/nature11129.

[71] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. “Dexterous Grasping via
Eigengrasps: A Low-Dimensional Approach to a High-Complexity Problem”.
In: Robotics: Science and Systems Manipulation Workshop-Sensing and Adapting to
the Real World. 2007.

[72] Matei Th Ciocarlie. “Low-Dimensional Robotic Grasping: Eigengrasp Sub-
spaces and Optimized Underactuation”. In: ProQuest Dissertations and Theses
(2010).

[73] S Cobos, M Ferre, and R Aracil. “Simplified Human Hand Models Based on
Grasping Analysis”. In: 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2010). Taipei: IEEE, 2010, pp. 610–615. ISBN: 978-1-4244-
6674-0. DOI: 10.1109/IROS.2010.5651479.

[74] A.H. Cohen and P. Wallén. “The Neuronal Correlate of Locomotion in Fish:
"Fictive Swimming" Induced in an in Vitro Preparation of the Lamprey Spinal
Cord”. In: Experimental Brain Research 41.1 (1980). ISSN: 0014-4819, 1432-1106.
DOI: 10.1007/BF00236674.

[75] Patrick E Crago, Richard J Nakai, and Howard J Chizeck. “Feedback Regula-
tion of Hand Grasp Opening and Contact Force during Stimulation of Par-
alyzed Muscle”. In: IEEE Transactions on Biomedical Engineering 38.1 (1991),
pp. 17–28.

[76] H. Cruse, V. Dürr, M. Schilling, and J. Schmitz. “Principles of Insect Loco-
motion”. In: Spatial Temporal Patterns for Action-Oriented Perception in Roving
Robots. Ed. by Paolo Arena and Luca Patanè. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 43–96. ISBN: 978-3-540-88464-4. DOI: 10.1007/978-3-
540-88464-4âĆĆ.

[77] Holk Cruse, Thomas Kindermann, Michael Schumm, Jeffrey Dean, and Josef
Schmitz. “Walknet - A Biologically Inspired Network to Control Six-Legged
Walking”. In: Neural Networks 11.7-8 (1998), pp. 1435–1447. ISSN: 08936080.
DOI: 10.1016/S0893-6080(98)00067-7.

190

https://doi.org/10.1007/978-3-319-20303-4
https://doi.org/10.1038/nature11129
https://doi.org/10.1109/IROS.2010.5651479
https://doi.org/10.1007/BF00236674
https://doi.org/10.1016/S0893-6080(98)00067-7

Bibliography

[78] Mark R Cutkosky. “On Grasp Choice, Grasp Models, and the Design of Hands
for Manufacturing Tasks”. In: IEEE Transactions on Robotics and Automation 5.3
(1989), pp. 269–279.

[79] Egidio D’Angelo, Alberto Antonietti, Stefano Casali, Claudia Casellato, Je-
sus A. Garrido, Niceto Rafael Luque, Lisa Mapelli, Stefano Masoli, Alessan-
dra Pedrocchi, Francesca Prestori, Martina Francesca Rizza, and Eduardo Ros.
“Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing
Issue”. In: Frontiers in Cellular Neuroscience 10 (July 2016), pp. 1–29. ISSN: 1662-
5102. DOI: 10.3389/fncel.2016.00176.

[80] Egidio D’Angelo and Stefano Casali. “Seeking a Unified Framework for Cere-
bellar Function and Dysfunction: From Circuit Operations to Cognition”. In:
Frontiers in Neural Circuits 6 (2013). ISSN: 1662-5110. DOI: 10.3389/fncir.
2012.00116.

[81] Andrea d’Avella, Martin Giese, Yuri P. Ivanenko, Thomas Schack, and Tamar
Flash. “Editorial: Modularity in Motor Control: From Muscle Synergies to Cog-
nitive Action Representation”. In: Frontiers in Computational Neuroscience 9 (2015).
ISSN: 1662-5188. DOI: 10.3389/fncom.2015.00126.

[82] Andrea d’Avella and Francesco Lacquaniti. “Control of Reaching Movements
by Muscle Synergy Combinations”. In: Frontiers in Computational Neuroscience
7 (April 2013), pp. 1–7. ISSN: 1662-5188. DOI: 10.3389/fncom.2013.00042.

[83] Andrea d’Avella, Alessandro Portone, and Francesco Lacquaniti. “Superpo-
sition and Modulation of Muscle Synergies for Reaching in Response to a
Change in Target Location”. In: Journal of Neurophysiology 106.6 (2011), pp. 2796–
2812. ISSN: 0022-3077, 1522-1598. DOI: 10.1152/jn.00675.2010.

[84] Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. “Combinations of Muscle
Synergies in the Construction of a Natural Motor Behavior”. In: Nature Neuro-
science 6.3 (2003), pp. 300–308.

[85] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta
Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Math-
aikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkatara-
manan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. “Loihi:
A Neuromorphic Manycore Processor with On-Chip Learning”. In: IEEE Micro
38.1 (2018), pp. 82–99. ISSN: 0272-1732. DOI: 10.1109/MM.2018.112130359.

[86] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. “Ad-
vancing Neuromorphic Computing With Loihi: A Survey of Results and Out-
look”. In: Proceedings of the IEEE (2021), pp. 1–24. ISSN: 0018-9219, 1558-2256.
DOI: 10.1109/JPROC.2021.3067593.

191

https://doi.org/10.3389/fncel.2016.00176
https://doi.org/10.3389/fncir.2012.00116
https://doi.org/10.3389/fncir.2012.00116
https://doi.org/10.3389/fncom.2015.00126
https://doi.org/10.3389/fncom.2013.00042
https://doi.org/10.1152/jn.00675.2010
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593

Bibliography

[87] A. P. Davison and Y. Frégnac. “Learning Cross-Modal Spatial Transformations
through Spike Timing-Dependent Plasticity”. In: Journal of Neuroscience 26.21
(2006), pp. 5604–5615. ISSN: 0270-6474, 1529-2401. DOI: 10.1523/JNEUROSCI.
5263-05.2006.

[88] Andrew P Davison. “PyNN: A Common Interface for Neuronal Network Sim-
ulators”. In: Frontiers in Neuroinformatics 2 (January 2008), p. 11. ISSN: 16625196.
DOI: 10.3389/neuro.11.011.2008.

[89] Shoubhik Debnath, John Nassour, and Gordon Cheng. “Learning Diverse Mo-
tor Patterns with a Single Multi-Layered Multi-Pattern CPG for a Humanoid
Robot”. In: 2014 IEEE-RAS International Conference on Humanoid Robots. 2014
IEEE-RAS 14th International Conference on Humanoid Robots (Humanoids
2014). Madrid, Spain: IEEE, Nov. 2014, pp. 1016–1021. ISBN: 978-1-4799-7174-
9. DOI: 10.1109/HUMANOIDS.2014.7041489.

[90] T DeWolf and C Eliasmith. “Trajectory Generation Using a Spiking Neuron
Implementation of Dynamic Movement Primitives”. In: 27th Annual Meeting
for the Society for the Neural Control of Movement. 2017.

[91] Travis DeWolf, Pawel Jaworski, and Chris Eliasmith. “Nengo and Low-Power
AI Hardware for Robust, Embedded Neurorobotics”. In: Frontiers in Neuro-
robotics 14 (Oct. 9, 2020), p. 568359. ISSN: 1662-5218. DOI: 10.3389/fnbot.
2020.568359.

[92] Travis DeWolf, Terrence C. Stewart, Jean-Jacques Slotine, and Chris Eliasmith.
“A Spiking Neural Model of Adaptive Arm Control”. In: Proceedings of the
Royal Society B: Biological Sciences 283.1843 (2016), p. 20162134. ISSN: 0962-8452.
DOI: 10.1098/rspb.2016.2134.

[93] Markus Diesmann and Marc-Oliver Gewaltig. “NEST: An Environment for
Neural Systems Simulations”. In: Forschung und wissenschaftliches Rechnen. Beiträge
zum Heinz-Billing-Preis 2001 58 (2002), pp. 43–70.

[94] R Dillmann and PM Frank. “A New Approach to Pulse Frequency Modulated
Control”. In: IFAC Proceedings Volumes 14.2 (1981), pp. 405–410.

[95] Rüdiger Dillmann. “Ein Geschlossenes Mathematisches Modell Für Regelkreise
Mit Pulsfrequenzmodulation”. Dissertation. Karlsruhe, Germany: University
of Karlsruhe, 1981.

[96] Elisa Donati, Fernando Perez-Pena, Chiara Bartolozzi, Giacomo Indiveri, and
Elisabetta Chicca. “Open-Loop Neuromorphic Controller Implemented on VLSI
Devices”. In: 2018 7th IEEE International Conference on Biomedical Robotics and
Biomechatronics (Biorob). 2018 7th IEEE International Conference on Biomedi-
cal Robotics and Biomechatronics (Biorob). Enschede: IEEE, 2018, pp. 827–832.
ISBN: 978-1-5386-8183-1. DOI: 10.1109/BIOROB.2018.8487937.

192

https://doi.org/10.1523/JNEUROSCI.5263-05.2006
https://doi.org/10.1523/JNEUROSCI.5263-05.2006
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/HUMANOIDS.2014.7041489
https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.1109/BIOROB.2018.8487937

Bibliography

[97] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Ras-
mussen. “A Large-Scale Model of the Functioning Brain”. In: Science 338.6111
(2012), pp. 1202–1205. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.
1225266.

[98] Chris Eliasmith. How to Build a Brain: A Neural Architecture for Biological Cogni-
tion. Oxford University Press, 2013.

[99] Chris Eliasmith and Charles H. Anderson. Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge, MA: MIT
Press, 2003.

[100] Andrew H Fagg and Michael A Arbib. “Modeling Parietal–Premotor Inter-
actions in Primate Control of Grasping”. In: Neural Networks 11.7-8 (1998),
pp. 1277–1303. ISSN: 08936080. DOI: 10.1016/S0893-6080(98)00047-1.

[101] Fanny Ficuciello, Alba Federico, Vincenzo Lippiello, and Bruno Siciliano. “Syn-
ergies Evaluation of the SCHUNK S5FH for Grasping Control”. In: Advances
in Robot Kinematics 2016. Springer, 2018, pp. 225–233.

[102] Flavia Filimon, Jonathan D Nelson, Ruey-Song Huang, and Martin I Sereno.
“Multiple Parietal Reach Regions in Humans: Cortical Representations for Vi-
sual and Proprioceptive Feedback during On-Line Reaching”. In: Journal of
Neuroscience 29.9 (2009), pp. 2961–2971. DOI: 10.1523/JNEUROSCI.3211-
08.2009.

[103] Tamar Flash and Binyamin Hochner. “Motor Primitives in Vertebrates and In-
vertebrates”. In: Current Opinion in Neurobiology 15.6 (2005), pp. 660–666. ISSN:
09594388. DOI: 10.1016/j.conb.2005.10.011.

[104] Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eustace Painkras,
Steve Temple, and Andrew D. Brown. “Overview of the SpiNNaker System
Architecture”. In: IEEE Transactions on Computers 62.12 (2013), pp. 2454–2467.
ISSN: 0018-9340. DOI: 10.1109/TC.2012.142.

[105] Forschungszentrum Informatik FZI. HoLLiE – The Assistance Robot. 2020. URL:
https://www.fzi.de/en/research/projekt-details/hollie/
(visited on 04/21/2020).

[106] Forschungszentrum Informatik FZI. LAURON. 2020. URL: https://www.
fzi.de/en/research/projekt-details/lauron/ (visited on 04/20/2020).

[107] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jörg Conradt,
Kostas Daniilidis, and Davide Scaramuzza. “Event-Based Vision: A Survey”.
In: CoRR abs/1904.08405 (2019). URL: http://arxiv.org/abs/1904.
08405.

[108] Wulfram Gerstner. “Time Structure of the Activity in Neural Network Mod-
els”. In: Physical review E 51.1 (1995), p. 738.

193

https://doi.org/10.1126/science.1225266
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/S0893-6080(98)00047-1
https://doi.org/10.1523/JNEUROSCI.3211-08.2009
https://doi.org/10.1523/JNEUROSCI.3211-08.2009
https://doi.org/10.1016/j.conb.2005.10.011
https://doi.org/10.1109/TC.2012.142
https://www.fzi.de/en/research/projekt-details/hollie/
https://www.fzi.de/en/research/projekt-details/lauron/
https://www.fzi.de/en/research/projekt-details/lauron/
http://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1904.08405

Bibliography

[109] Wulfram. Gerstner, Werner M. Kistler, Richard. Naud, and Liam. Paninski.
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition.
Cambridge: Cambridge University Press, 2014, p. 577. ISBN: 1-107-63519-5.
DOI: 10.1017/CBO9781107447615.

[110] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (NEural Simulation Tool)”.
In: Scholarpedia 2.4 (2007), p. 1430.

[111] Aditya Gilra and Wulfram Gerstner. “Non-Linear Motor Control by Local
Learning in Spiking Neural Networks”. In: arXiv preprint (2017). URL: http:
//arxiv.org/abs/1712.10158.

[112] Aditya Gilra and Wulfram Gerstner. “Predicting Non-Linear Dynamics by Sta-
ble Local Learning in a Recurrent Spiking Neural Network”. In: eLife 6 (2017),
e28295. ISSN: 2050-084X. DOI: 10.7554/eLife.28295.

[113] Dan Goodman. “Brian: A Simulator for Spiking Neural Networks in Python”.
In: Frontiers in Neuroinformatics 2 (2008). ISSN: 16625196. DOI: 10.3389/neuro.
11.005.2008.

[114] Henry Gray. Anatomy of the Human Body. 20th ed., thoroughly rev. and re-
edited by Warren H. Lewis. Philadelphia: Lea & Febiger, 1918. 1396 pp. ISBN:
1-58734-102-6. URL: https://www.bartleby.com/107/.

[115] André Grüning and Sander M Bohte. “Spiking Neural Networks: Principles
and Challenges”. In: European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning – ESANN. Vol. 44. April. 2014, pp. 23–
25. ISBN: 9782874190957. URL: https://www.elen.ucl.ac.be/Proceedings/
esann/esannpdf/es2014-13.pdf.

[116] R Gütig et al. “Learning Input Correlations through Nonlinear Temporally
Asymmetric Hebbian Plasticity”. In: Journal of Neuroscience 23.9 (2003), pp. 3697–
3714. ISSN: 1529-2401.

[117] Germain Haessig, Moritz B. Milde, Pau Vilimelis Aceituno, Omar Oubari, James
C. Knight, André van Schaik, Ryad B. Benosman, and Giacomo Indiveri. “Event-
Based Computation for Touch Localization Based on Precise Spike Timing”.
In: Frontiers in Neuroscience 14 (2020), p. 420. ISSN: 1662-453X. DOI: 10.3389/
fnins.2020.00420.

[118] C. B. Hart and S. F. Giszter. “A Neural Basis for Motor Primitives in the Spinal
Cord”. In: Journal of Neuroscience 30.4 (2010), pp. 1322–1336. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.5894-08.2010.

[119] Guillaume Hennequin, Tim P. Vogels, and Wulfram Gerstner. “Optimal Con-
trol of Transient Dynamics in Balanced Networks Supports Generation of Com-
plex Movements”. In: Neuron 82.6 (2014), pp. 1394–1406. ISSN: 08966273. DOI:
10.1016/j.neuron.2014.04.045.

[120] Georg Heppner. Schunk_canopen_driver - ROS Wiki. 2016. URL: http://wiki.
ros.org/schunk_canopen_driver (visited on 04/24/2020).

194

https://doi.org/10.1017/CBO9781107447615
http://arxiv.org/abs/1712.10158
http://arxiv.org/abs/1712.10158
https://doi.org/10.7554/eLife.28295
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.11.005.2008
https://www.bartleby.com/107/
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2014-13.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2014-13.pdf
https://doi.org/10.3389/fnins.2020.00420
https://doi.org/10.3389/fnins.2020.00420
https://doi.org/10.1523/JNEUROSCI.5894-08.2010
https://doi.org/10.1016/j.neuron.2014.04.045
http://wiki.ros.org/schunk_canopen_driver
http://wiki.ros.org/schunk_canopen_driver

Bibliography

[121] Georg Heppner. Schunk_svh_driver - ROS Wiki. 2017. URL: http://wiki.
ros.org/schunk_svh_driver (visited on 04/24/2020).

[122] Georg Heppner, Arne Roennau, Jan Oberländer, Sebastian Klemm, and Rüdi-
ger Dillman. “LAUROPE - Six Legged Walking Robot for Planetary Explo-
ration Participating in the SpaceBot Cup”. In: 13th Symposium on Advanced
Space Technologies in Robotics and Automation (2015). URL: http://robotics.
estec.esa.int/ASTRA/Astra2015/Papers/Session%205B/96035%
5C%7B_%5C%7DHeppner.pdf.

[123] A. Hermann, J. Sun, Z. Xue, S. W. Ruehl, J. Oberlaender, A. Roennau, J. M.
Zoellner, and R. Dillmann. “Hardware and Software Architecture of the Bi-
manual Mobile Manipulation Robot HoLLiE and Its Actuated Upper Body”.
In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatron-
ics. 2013 IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics (AIM). Wollongong, NSW: IEEE, 2013, pp. 286–292. ISBN: 978-1-4673-
5320-5 978-1-4673-5319-9. DOI: 10.1109/AIM.2013.6584106.

[124] M. L. Hines and N. T. Carnevale. “The NEURON Simulation Environment”.
In: Neural Computation 9.6 (1997), pp. 1179–1209. ISSN: 0899-7667, 1530-888X.
DOI: 10.1162/neco.1997.9.6.1179.

[125] Alan L Hodgkin and Andrew F Huxley. “A Quantitative Description of Mem-
brane Current and Its Application to Conduction and Excitation in Nerve”. In:
The Journal of physiology 117.4 (1952), pp. 500–544.

[126] Philip Holmes, Robert J. Full, Dan Koditschek, and John Guckenheimer. “The
Dynamics of Legged Locomotion: Models, Analyses, and Challenges”. In: SIAM
Review 48.2 (2006), pp. 207–304. ISSN: 0036-1445, 1095-7200. DOI: 10.1137/
S0036144504445133.

[127] Sebastian Höppner, Yexin Yan, Andreas Dixius, Stefan Scholze, Johannes Partzsch,
Marco Stolba, Florian Kelber, Bernhard Vogginger, Felix Neumärker, Georg
Ellguth, Stephan Hartmann, Stefan Schiefer, Thomas Hocker, Dennis Walter,
Genting Liu, Jim Garside, Steve Furber, and Christian Mayr. The SpiNNaker
2 Processing Element Architecture for Hybrid Digital Neuromorphic Computing.
Mar. 15, 2021. URL: http://arxiv.org/abs/2103.08392 (visited on
04/27/2021).

[128] Auke Jan Ijspeert. “Central Pattern Generators for Locomotion Control in An-
imals and Robots: A Review”. In: Neural Networks 21.4 (2008), pp. 642–653.
ISSN: 08936080. DOI: 10.1016/j.neunet.2008.03.014.

[129] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. “Dynamical Movement Primitives: Learning Attractor Models for Mo-
tor Behaviors”. In: Neural Computation 25.2 (2013), pp. 328–373. ISSN: 0899-
7667. DOI: 10.1162/NECO_a_00393.

195

http://wiki.ros.org/schunk_svh_driver
http://wiki.ros.org/schunk_svh_driver
http://robotics.estec.esa.int/ASTRA/Astra2015/Papers/Session%205B/96035%5C%7B_%5C%7DHeppner.pdf
http://robotics.estec.esa.int/ASTRA/Astra2015/Papers/Session%205B/96035%5C%7B_%5C%7DHeppner.pdf
http://robotics.estec.esa.int/ASTRA/Astra2015/Papers/Session%205B/96035%5C%7B_%5C%7DHeppner.pdf
https://doi.org/10.1109/AIM.2013.6584106
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1137/S0036144504445133
https://doi.org/10.1137/S0036144504445133
http://arxiv.org/abs/2103.08392
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1162/NECO_a_00393

Bibliography

[130] E.M. Izhikevich. “Simple Model of Spiking Neurons”. In: IEEE Transactions on
Neural Networks 14.6 (2003), pp. 1569–1572. ISSN: 1045-9227. DOI: 10.1109/
TNN.2003.820440.

[131] E. Jankowska. “Spinal Interneuronal Systems: Identification, Multifunctional
Character and Reconfigurations in Mammals”. In: The Journal of Physiology
533.1 (2001), pp. 31–40. ISSN: 00223751. DOI: 10.1111/j.1469-7793.2001.
0031b.x.

[132] Matthew S Johannes, John D Bigelow, James M Burck, Stuart D Harshbarger,
Matthew V Kozlowski, and Thomas Van Doren. “An Overview of the Devel-
opmental Process for the Modular Prosthetic Limb”. In: Johns Hopkins APL
Technical Digest (2011).

[133] Jacques Kaiser, Rainer Stal, Anand Subramoney, Arne Roennau, and Rüdiger
Dillmann. “Scaling up Liquid State Machines to Predict over Address Events
from Dynamic Vision Sensors”. In: Bioinspiration & Biomimetics 12.5 (2017),
p. 055001. ISSN: 1748-3190. DOI: 10.1088/1748-3190/aa7663.

[134] John F Kalaska. “From Intention to Action : Motor Cortex and the Control of
Reaching Movements”. In: Progress in Motor Control. Springer, 2009, pp. 139–
178. ISBN: 978-0-387-77064-2. DOI: 10.1007/978-0-387-77064-2.

[135] Mitsuo Kawato. “Internal Models for Motor Control and Trajectory Planning”.
In: Current opinion in neurobiology 9.6 (1999), pp. 718–727.

[136] T. Kerscher, A. Roennau, M. Ziegenmeyer, B. Gassmann, J. M. Zoellner, and R.
Dillmann. “Behaviour-Based Control of the Six-Legged Walking Machine Lau-
ron IVc”. In: 11th International Conference on Climbing and Walking Robots and
the Support Technologies for Mobile Machines. 11th International Conference on
Climbing and Walking Robots and the Support Technologies for Mobile Ma-
chines. Coimbra, Portugal: WORLD SCIENTIFIC, 2008, pp. 736–743. ISBN: 978-
981-283-576-5 978-981-283-577-2. DOI: 10.1142/9789812835772_0089.

[137] Seong-Min Kim, Sung-Yong Hyun, Jeong-woo Sohn, Soyong Chae, and Sung-
Phil Kim. “Neural Response to Grasp of Robot Hand from M1 Area of Rhesus
Monkey”. In: 2019 7th International Winter Conference on Brain-Computer Inter-
face (BCI). 2019, pp. 1–4.

[138] Florence I. Kleberg, Tomoki Fukai, and Matthieu Gilson. “Excitatory and In-
hibitory STDP Jointly Tune Feedforward Neural Circuits to Selectively Propa-
gate Correlated Spiking Activity”. In: Frontiers in Computational Neuroscience 8
(2014). ISSN: 1662-5188. DOI: 10.3389/fncom.2014.00053.

[139] James C. Knight and Thomas Nowotny. “GPUs Outperform Current HPC
and Neuromorphic Solutions in Terms of Speed and Energy When Simulating
a Highly-Connected Cortical Model”. In: Frontiers in Neuroscience 12 (2018),
p. 941. ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00941.

196

https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1111/j.1469-7793.2001.0031b.x
https://doi.org/10.1111/j.1469-7793.2001.0031b.x
https://doi.org/10.1088/1748-3190/aa7663
https://doi.org/10.1007/978-0-387-77064-2
https://doi.org/10.1142/9789812835772_0089
https://doi.org/10.3389/fncom.2014.00053
https://doi.org/10.3389/fnins.2018.00941

Bibliography

[140] Jens Kober and Jan Peters. “Learning Motor Primitives for Robotics”. In: 2009
IEEE International Conference on Robotics and Automation. 2009 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Kobe: IEEE, May 2009,
pp. 2112–2118. ISBN: 978-1-4244-2788-8. DOI: 10.1109/ROBOT.2009.5152577.

[141] Jürgen Konczak. “On the Notion of Motor Primitives in Humans and Robots”.
In: Fifth International Workshop on Epigenetic Robotics. Fifth International Work-
shop on Epigenetic Robotics. Lund University Cognitive Studies, 2005, p. 7.

[142] T. Kroger and F.M. Wahl. “Online Trajectory Generation: Basic Concepts for In-
stantaneous Reactions to Unforeseen Events”. In: IEEE Transactions on Robotics
26.1 (2010), pp. 94–111. ISSN: 1552-3098, 1941-0468. DOI: 10 . 1109 / TRO .
2009.2035744.

[143] Torsten Kröger. “Opening the Door to New Sensor-Based Robot Applications
— The Reflexxes Motion Libraries”. In: 2011 IEEE International Conference on
Robotics and Automation. 2011 IEEE International Conference on Robotics and
Automation (ICRA). Shanghai, China: IEEE, 2011, pp. 1–4. ISBN: 978-1-61284-
386-5. DOI: 10.1109/ICRA.2011.5980578.

[144] Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, and Alireza Karimi.
Adaptive Control: Algorithms, Analysis and Applications. Springer Science & Busi-
ness Media, 2011.

[145] Jean-Claude Latombe. Robot Motion Planning. Springer Science & Business Me-
dia, 2012.

[146] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. “Ef-
ficient Backprop”. In: Neural Networks: Tricks of the Trade. Springer, 2012, pp. 9–
48.

[147] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
“Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection”. In: The International Journal of Robotics Re-
search 37.4-5 (2018), pp. 421–436. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/
0278364917710318.

[148] Rafael Lorente de No. “Cerebral Cortex: Architecture, Intracortical Connec-
tions, Motor Projections”. In: Physiology of the nervous system (1938), pp. 288–
313.

[149] N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, and E. Ros. “ADAPTIVE
CEREBELLAR SPIKING MODEL EMBEDDED IN THE CONTROL LOOP:
CONTEXT SWITCHING AND ROBUSTNESS AGAINST NOISE”. In: Inter-
national Journal of Neural Systems 21.05 (2011), pp. 385–401. ISSN: 0129-0657,
1793-6462. DOI: 10.1142/S0129065711002900.

197

https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1109/TRO.2009.2035744
https://doi.org/10.1109/TRO.2009.2035744
https://doi.org/10.1109/ICRA.2011.5980578
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1142/S0129065711002900

Bibliography

[150] Niceto R. Luque, JesÃºs A. Garrido, Richard R. Carrillo, Egidio D’Angelo, and
Eduardo Ros. “Fast Convergence of Learning Requires Plasticity between In-
ferior Olive and Deep Cerebellar Nuclei in a Manipulation Task: A Closed-
Loop Robotic Simulation”. In: Frontiers in Computational Neuroscience 8 (Au-
gust 2014), pp. 1–16. ISSN: 1662-5188. DOI: 10.3389/fncom.2014.00097.

[151] Wolfgang Maass. “Networks of Spiking Neurons: The Third Generation of
Neural Network Models”. In: Neural Networks 10.9 (1997), pp. 1659–1671. ISSN:
08936080. DOI: 10.1016/S0893-6080(97)00011-7.

[152] Wolfgang Maass and Michael Schmitt. “On the Complexity of Learning for
Spiking Neurons with Temporal Coding”. In: Information and Computation 153.1
(1999), pp. 26–46. ISSN: 08905401. DOI: 10.1006/inco.1999.2806.

[153] David MacNeil and Chris Eliasmith. “Fine-Tuning and the Stability of Recur-
rent Neural Networks”. In: PLoS ONE 6.9 (2011). Ed. by Eleni Vasilaki, e22885.
ISSN: 1932-6203. DOI: 10.1371/journal.pone.0022885.

[154] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. “A History of
Spike-Timing-Dependent Plasticity”. In: Frontiers in synaptic neuroscience 3 (2011),
p. 4.

[155] Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann,
Marwan Abdellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-
Nanclares, Nicolas Antille, Selim Arsever, Guy Antoine Atenekeng Kahou,
Thomas K. Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda,
Giuseppe Chindemi, Jean-Denis Courcol, Fabien Delalondre, Vincent Delat-
tre, Shaul Druckmann, Raphael Dumusc, James Dynes, Stefan Eilemann, Eyal
Gal, Michael Emiel Gevaert, Jean-Pierre Ghobril, Albert Gidon, Joe W. Gra-
ham, Anirudh Gupta, Valentin Haenel, Etay Hay, Thomas Heinis, Juan B.
Hernando, Michael Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges
Khazen, Yihwa Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien
Lasserre, Jean-Vincent Le Bé, Bruno R.C. Magalhães, Angel Merchán-Pérez,
Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto Muñoz-Céspedes,
Shruti Muralidhar, Keerthan Muthurasa, Daniel Nachbaur, Taylor H. Newton,
Max Nolte, Aleksandr Ovcharenko, Juan Palacios, Luis Pastor, Rodrigo Perin,
Rajnish Ranjan, Imad Riachi, José-Rodrigo Rodríguez, Juan Luis Riquelme,
Christian Rössert, Konstantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad
Silberberg, Ricardo Silva, Farhan Tauheed, Martin Telefont, Maria Toledo-Rodriguez,
Thomas Tränkler, Werner Van Geit, Jafet Villafranca Díaz, Richard Walker,
Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev,
and Felix Schürmann. “Reconstruction and Simulation of Neocortical Micro-
circuitry”. In: Cell 163.2 (2015), pp. 456–492. ISSN: 00928674. DOI: 10.1016/
j.cell.2015.09.029.

[156] Timothée Masquelier, Rudy Guyonneau, and Simon J. Thorpe. “Spike Tim-
ing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous

198

https://doi.org/10.3389/fncom.2014.00097
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1006/inco.1999.2806
https://doi.org/10.1371/journal.pone.0022885
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029

Bibliography

Spike Trains”. In: PLoS ONE 3.1 (2008). Ed. by Olaf Sporns, e1377. ISSN: 1932-
6203. DOI: 10.1371/journal.pone.0001377.

[157] Amirhossein H Memar and Ehsan T Esfahani. “Modeling and Dynamic Pa-
rameter Identification of the Schunk Powerball Robotic Arm”. In: ASME 2015
International Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. 2015.

[158] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Ver-
non, Luciano Fadiga, Claes von Hofsten, Kerstin Rosander, Manuel Lopes,
José Santos-Victor, Alexandre Bernardino, and Luis Montesano. “The iCub
Humanoid Robot: An Open-Systems Platform for Research in Cognitive De-
velopment”. In: Neural Networks 23.8-9 (2010), pp. 1125–1134. ISSN: 08936080.
DOI: 10.1016/j.neunet.2010.08.010.

[159] Andrew T Miller and Peter K Allen. “Graspit! A Versatile Simulator for Robotic
Grasping”. In: IEEE Robotics & Automation Magazine 11.4 (2004), pp. 110–122.

[160] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. “A Scalable
Multicore Architecture With Heterogeneous Memory Structures for Dynamic
Neuromorphic Asynchronous Processors (DYNAPs)”. In: IEEE Transactions on
Biomedical Circuits and Systems 12.1 (Feb. 2018), pp. 106–122. ISSN: 1932-4545,
1940-9990. DOI: 10.1109/TBCAS.2017.2759700.

[161] John Nassour, Patrick Hénaff, Fethi Benouezdou, and Gordon Cheng. “Multi-
Layered Multi-Pattern CPG for Adaptive Locomotion of Humanoid Robots”.
In: Biological Cybernetics 108.3 (2014), pp. 291–303. ISSN: 0340-1200, 1432-0770.
DOI: 10.1007/s00422-014-0592-8.

[162] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradi-
ent Learning in Spiking Neural Networks: Bringing the Power of Gradient-
Based Optimization to Spiking Neural Networks”. In: IEEE Signal Processing
Magazine 36.6 (2019), pp. 51–63. ISSN: 1053-5888, 1558-0792. DOI: 10.1109/
MSP.2019.2931595.

[163] Nengo. NEF Summary - Nengo.Ai. 2020. URL: https://www.nengo.ai/
nengo/examples/advanced/nef-summary.html (visited on 04/27/2020).

[164] Erhan Oztop and Michael A. Arbib. “Schema Design and Implementation
of the Grasp-Related Mirror Neuron System”. In: Biological Cybernetics 87.2
(2002), pp. 116–140. ISSN: 03401200. DOI: 10.1007/s00422-002-0318-1.

[165] Erhan Oztop, Nina S. Bradley, and Michael A. Arbib. “Infant Grasp Learning:
A Computational Model”. In: Experimental Brain Research 158.4 (2004), pp. 480–
503. ISSN: 00144819. DOI: 10.1007/s00221-004-1914-1.

[166] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. “Pytorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems. 2019, pp. 8026–
8037.

199

https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1007/s00422-014-0592-8
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/MSP.2019.2931595
https://www.nengo.ai/nengo/examples/advanced/nef-summary.html
https://www.nengo.ai/nengo/examples/advanced/nef-summary.html
https://doi.org/10.1007/s00422-002-0318-1
https://doi.org/10.1007/s00221-004-1914-1

Bibliography

[167] Hélène Paugam-Moisy and Sander Bohte. “Computing with Spiking Neuron
Networks”. In: Handbook of Natural Computing. Ed. by Grzegorz Rozenberg,
Thomas Bäck, and Joost N. Kok. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 335–376. ISBN: 978-3-540-92909-3. DOI: 10.1007/978- 3-
540-92910-9_10.

[168] Wilder Penfield and Edwin Boldrey. “SOMATIC MOTOR AND SENSORY
REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED
BY ELECTRICAL STIMULATION”. In: Brain 60.4 (1937), pp. 389–443. ISSN:
0006-8950, 1460-2156. DOI: 10.1093/brain/60.4.389.

[169] Rolf Pfeifer and Josh Bongard. How the Body Shapes the Way We Think: A New
View of Intelligence. MIT press, 2006.

[170] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. “The Challenges Ahead for
Bio-Inspired ’soft’ Robotics”. In: Communications of the ACM 55.11 (Nov. 2012),
pp. 76–87. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/2366316.2366335.

[171] Thomas Pfeil, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul Müller, Mi-
hai A. Petrovici, Michael Schmuker, Daniel Brüderle, Johannes Schemmel, and
Karlheinz Meier. “Six Networks on a Universal Neuromorphic Computing
Substrate”. In: Frontiers in Neuroscience 7 (2013). ISSN: 1662-4548. DOI: 10 .
3389/fnins.2013.00011.

[172] J.-P. Pfister and Wulfram Gerstner. “Triplets of Spikes in a Model of Spike
Timing-Dependent Plasticity”. In: Journal of Neuroscience (2006). DOI: 10.1523/
JNEUROSCI.1425-06.2006.

[173] Filip Ponulak and Andrzej Kasinski. “Introduction to Spiking Neural Net-
works: Information Processing, Learning and Applications.” In: Acta neuro-
biologiae experimentalis 71.4 (2011), pp. 409–433.

[174] Isabella Pozzi, Sander M Bohté, and Pieter R Roelfsema. “Attention-Gated
Brain Propagation: How the Brain Can Implement Reward-Based Error Back-
propagation”. In: (2020), p. 11.

[175] Dimitri Probst, Wolfgang Maass, Henry Markram, and Marc-Oliver Gewaltig.
“Liquid Computing in a Simplified Model of Cortical Layer IV: Learning to
Balance a Ball”. In: International Conference on Artificial Neural Networks ICANN.
2012, pp. 209–216.

[176] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. “ROS: An Open-Source Robot Op-
erating System”. In: ICRA Workshop on Open Source Software. Vol. 3. 3.2. 2009,
p. 5.

[177] Joel Reithler, Hanneke I. van Mier, Judith C. Peters, and Rainer Goebel. “Non-
visual Motor Learning Influences Abstract Action Observation”. In: Current
Biology 17.14 (July 2007), pp. 1201–1207. ISSN: 09609822. DOI: 10.1016/j.
cub.2007.06.019.

200

https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1145/2366316.2366335
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1016/j.cub.2007.06.019
https://doi.org/10.1016/j.cub.2007.06.019

Bibliography

[178] Oliver Rhodes, Luca Peres, Andrew GD Rowley, Andrew Gait, Luis A Plana,
Christian Brenninkmeijer, and Steve B Furber. “Real-Time Cortical Simulation
on Neuromorphic Hardware”. In: Philosophical Transactions of the Royal Society
A 378.2164 (2020), p. 20190160.

[179] Mathis Richter, Yulia Sandamirskaya, and Gregor Schoner. “A Robotic Archi-
tecture for Action Selection and Behavioral Organization Inspired by Human
Cognition”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2012). Vilamoura-Algarve, Portugal: IEEE, 2012, pp. 2457–2464.
ISBN: 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1. DOI: 10.1109/
IROS.2012.6386153.

[180] A. Roennau, G. Heppner, M. Nowicki, and R. Dillmann. “LAURON V: A Ver-
satile Six-Legged Walking Robot with Advanced Maneuverability”. In: 2014
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
2014 IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics (AIM). Besacon: IEEE, 2014, pp. 82–87. ISBN: 978-1-4799-5736-1. DOI:
10.1109/AIM.2014.6878051.

[181] A. Roennau, G. Heppner, L. Pfotzer, and R. Dillmann. “Lauron v: Optimized
Leg Configuration for the Design of a Bio-Inspired Walking Robot”. In: Nature-
Inspired Mobile Robotics. World Scientific, 2013, pp. 563–570. DOI: 10.1142/
9789814525534_0071.

[182] Elmar Rückert and Andrea D’Avella. “Learned Parametrized Dynamic Move-
ment Primitives with Shared Synergies for Controlling Robotic and Muscu-
loskeletal Systems”. In: Frontiers in Computational Neuroscience 7 (October 2013),
pp. 1–18. ISSN: 1662-5188. DOI: 10.3389/fncom.2013.00138.

[183] Steffen W. Ruehl, Christoper Parlitz, Georg Heppner, Andreas Hermann, Arne
Roennau, and Ruediger Dillmann. “Experimental Evaluation of the Schunk 5-
Finger Gripping Hand for Grasping Tasks”. In: 2014 IEEE International Confer-
ence on Robotics and Biomimetics (ROBIO 2014). 2014 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO). Bali, Indonesia: IEEE, 2014,
pp. 2465–2470. ISBN: 978-1-4799-7397-2. DOI: 10.1109/ROBIO.2014.7090710.

[184] Abigail A. Russo, Sean R. Bittner, Sean M. Perkins, Jeffrey S. Seely, Brian M.
London, Antonio H. Lara, Andrew Miri, Najja J. Marshall, Adam Kohn, Thomas
M. Jessell, Laurence F. Abbott, John P. Cunningham, and Mark M. Church-
land. “Motor Cortex Embeds Muscle-like Commands in an Untangled Pop-
ulation Response”. In: Neuron 97.4 (2018), pp. 953–966. ISSN: 08966273. DOI:
10.1016/j.neuron.2018.01.004.

[185] Philippe Saltiel, Matthew C. Tresch, and Emilio Bizzi. “Spinal Cord Modular
Organization and Rhythm Generation: An NMDA Iontophoretic Study in the
Frog”. In: Journal of Neurophysiology 80.5 (1998), pp. 2323–2339. ISSN: 0022-3077,
1522-1598. DOI: 10.1152/jn.1998.80.5.2323.

201

https://doi.org/10.1109/IROS.2012.6386153
https://doi.org/10.1109/IROS.2012.6386153
https://doi.org/10.1109/AIM.2014.6878051
https://doi.org/10.1142/9789814525534_0071
https://doi.org/10.1142/9789814525534_0071
https://doi.org/10.3389/fncom.2013.00138
https://doi.org/10.1109/ROBIO.2014.7090710
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1152/jn.1998.80.5.2323

Bibliography

[186] M Santello, M Flanders, and J F Soechting. “Postural Hand Synergies for Tool
Use”. In: Journal of Neuroscience 18.23 (1998), pp. 10105–10115. ISSN: 0270-6474.
DOI: citeulike-article-id:423192.

[187] Cosimo Della Santina, Visar Arapi, Giuseppe Averta, Francesca Damiani, Gaia
Fiore, Alessandro Settimi, Manuel G. Catalano, Davide Bacciu, Antonio Bicchi,
and Matteo Bianchi. “Learning From Humans How to Grasp: A Data-Driven
Architecture for Autonomous Grasping With Anthropomorphic Soft Hands”.
In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 1533–1540. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/LRA.2019.2896485.

[188] Jeffrey A. Saunders and David C. Knill. “Humans Use Continuous Visual
Feedback from the Hand to Control Fast Reaching Movements”. In: Exper-
imental Brain Research 152.3 (2003), pp. 341–352. ISSN: 0014-4819, 1432-1106.
DOI: 10.1007/s00221-003-1525-2.

[189] Andreea I Sburlea and Gernot R Müller-Putz. “Exploring Representations of
Human Grasping in Neural, Muscle and Kinematic Signals”. In: Scientific re-
ports 8.1 (2018), pp. 1–14.

[190] Alessandro Scano, Andrea Chiavenna, Lorenzo Molinari Tosatti, Henning Müller,
and Manfredo Atzori. “Muscle Synergy Analysis of a Hand-Grasp Dataset: A
Limited Subset of Motor Modules May Underlie a Large Variety of Grasps”.
In: Frontiers in neurorobotics 12 (2018), p. 57.

[191] Stefan Schaal. “Dynamic Movement Primitives -A Framework for Motor Con-
trol in Humans and Humanoid Robotics”. In: Adaptive Motion of Animals and
Machines. Ed. by Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, and Hart-
mut Witte. Tokyo: Springer-Verlag, 2006, pp. 261–280. ISBN: 978-4-431-24164-5.
DOI: 10.1007/4-431-31381-8_23.

[192] Stefan Scherzinger, Arne Roennau, and Rudiger Dillmann. “Forward Dynam-
ics Compliance Control (FDCC): A New Approach to Cartesian Compliance
for Robotic Manipulators”. In: 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, 2017, pp. 4568–
4575. ISBN: 9781538626818. DOI: 10.1109/IROS.2017.8206325.

[193] Mathieu Schiess, Robert Urbanczik, and Walter Senn. “Somato-Dendritic Synap-
tic Plasticity and Error-Backpropagation in Active Dendrites”. In: PLOS Com-
putational Biology 12.2 (2016). Ed. by Boris S. Gutkin, e1004638. ISSN: 1553-7358.
DOI: 10.1371/journal.pcbi.1004638.

[194] Schunk. Schunk SVH 5-Finger Anthropomorphic Hand. 2020. URL: https://
schunk.com/de_en/gripping-systems/series/svh/.

[195] Stephen H. Scott. “The Computational and Neural Basis of Voluntary Motor
Control and Planning”. In: Trends in Cognitive Sciences 16.11 (2012), pp. 541–
549. ISSN: 13646613. DOI: 10.1016/j.tics.2012.09.008.

202

https://doi.org/citeulike-article-id:423192
https://doi.org/10.1109/LRA.2019.2896485
https://doi.org/10.1007/s00221-003-1525-2
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1109/IROS.2017.8206325
https://doi.org/10.1371/journal.pcbi.1004638
https://schunk.com/de_en/gripping-systems/series/svh/
https://schunk.com/de_en/gripping-systems/series/svh/
https://doi.org/10.1016/j.tics.2012.09.008

Bibliography

[196] Mario Senden, Judith Peters, Florian Röhrbein, Gustavo Deco, and Rainer Goebel.
“Editorial: The Embodied Brain: Computational Mechanisms of Integrated
Sensorimotor Interactions With a Dynamic Environment”. In: Frontiers in Com-
putational Neuroscience 14 (June 18, 2020), p. 53. ISSN: 1662-5188. DOI: 10 .
3389/fncom.2020.00053.

[197] ShadowRobot. ShadowRobot Dextereous Hand. 2020. URL: https : / / www .
shadowrobot.com/products/dexterous-hand/.

[198] Krishna V. Shenoy, Maneesh Sahani, and Mark M. Churchland. “Cortical Con-
trol of Arm Movements: A Dynamical Systems Perspective”. In: Annual Re-
view of Neuroscience 36.1 (2013), pp. 337–359. ISSN: 0147-006X, 1545-4126. DOI:
10.1146/annurev-neuro-062111-150509.

[199] Charles Scott Sherrington. “Flexion-Reflex of the Limb, Crossed Extension-
Reflex, and Reflex Stepping and Standing”. In: The Journal of physiology 40.1-2
(1910), p. 28.

[200] Satoshi Shigemi. “ASIMO and Humanoid Robot Research at Honda”. In: Hu-
manoid Robotics: A Reference. Ed. by Ambarish Goswami and Prahlad Vadakkepat.
Dordrecht: Springer Netherlands, 2019, pp. 55–90. ISBN: 978-94-007-6046-2.
DOI: 10.1007/978-94-007-6046-2_9.

[201] S Song, K D Miller, and L F Abbott. “Competitive Hebbian Learning through
Spike-Timing-Dependent Synaptic Plasticity.” In: Nature neuroscience 3.9 (2000),
pp. 919–926. DOI: 10.1038/78829.

[202] Devarajan Sridharan and Eric I. Knudsen. “Selective Disinhibition: A Uni-
fied Neural Mechanism for Predictive and Post Hoc Attentional Selection”.
In: Vision Research 116 (2015), pp. 194–209. ISSN: 00426989. DOI: 10.1016/j.
visres.2014.12.010.

[203] N. Srinivasa and Youngkwan Cho. “Self-Organizing Spiking Neural Model
for Learning Fault-Tolerant Spatio-Motor Transformations”. In: IEEE Transac-
tions on Neural Networks and Learning Systems 23.10 (2012), pp. 1526–1538. ISSN:
2162-237X, 2162-2388. DOI: 10.1109/TNNLS.2012.2207738.

[204] Julia Starke, Christian Eichmann, Simon Ottenhaus, and Tamim Asfour. “Human-
Inspired Representation of Object-Specific Grasps for Anthropomorphic Hands”.
In: International Journal of Humanoid Robotics 17.2 (2020), p. 2050008. ISSN: 0219-
8436, 1793-6942. DOI: 10.1142/S0219843620500085.

[205] Lea Steffen, Daniel Reichard, Jakob Weinland, Jacques Kaiser, Arne Roennau,
and Rüdiger Dillmann. “Neuromorphic Stereo Vision: A Survey of Bio-Inspired
Sensors and Algorithms”. In: Frontiers in Neurorobotics 13 (2019), p. 28. ISSN:
1662-5218. DOI: 10.3389/fnbot.2019.00028.

[206] Lea Steffen, Stefan Ulbrich, Arne Roennau, and Rüdiger Dillmann. “Multi-
View 3D Reconstruction with Self-Organizing Maps on Event-Based Data”. In:
2019 19th International Conference on Advanced Robotics (ICAR). 2019, pp. 501–
508.

203

https://doi.org/10.3389/fncom.2020.00053
https://doi.org/10.3389/fncom.2020.00053
https://www.shadowrobot.com/products/dexterous-hand/
https://www.shadowrobot.com/products/dexterous-hand/
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1007/978-94-007-6046-2_9
https://doi.org/10.1038/78829
https://doi.org/10.1016/j.visres.2014.12.010
https://doi.org/10.1016/j.visres.2014.12.010
https://doi.org/10.1109/TNNLS.2012.2207738
https://doi.org/10.1142/S0219843620500085
https://doi.org/10.3389/fnbot.2019.00028

Bibliography

[207] Terrence C Stewart. “A Technical Overview of the Neural Engineering Frame-
work”. In: Centre for Theoretical Neuroscience technical report (2012).

[208] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy
Considerations for Deep Learning in NLP. 2019.

[209] Anand Subramoney, Guillaume Bellec, Franz Scherr, Robert Legenstein, and
Wolfgang Maass. Revisiting the Role of Synaptic Plasticity and Network Dynamics
for Fast Learning in Spiking Neural Networks. preprint. Neuroscience, Jan. 27,
2021. DOI: 10.1101/2021.01.25.428153.

[210] Johan AK Suykens, Joos PL Vandewalle, and Bart L de Moor. Artificial Neural
Networks for Modelling and Control of Non-Linear Systems. Springer Science &
Business Media, 2012.

[211] Francesco Tenore, Ander Ramos, Amir Fahmy, Soumyadipta Acharya, Ralph
Etienne-Cummings, and Nitish V Thakor. “Towards the Control of Individual
Fingers of a Prosthetic Hand Using Surface EMG Signals”. In: EMBC. 2007.

[212] ThalmicLabs. Myo Diagnostics. 2019. URL: http://diagnostics.myo.
com/.

[213] Thomas George Thuruthel, Syed Haider Abidi, Matteo Cianchetti, Cecilia Laschi,
and Egidio Falotico. A Bistable Soft Gripper with Mechanically Embedded Sensing
and Actuation for Fast Closed-Loop Grasping. 2019. DOI: 10.13140/RG.2.2.
22701.13280.

[214] Silvia Tolu, Mauricio Vanegas, Jesus A. Garrido, Niceto R. Luque, and Ed-
uardo Ros. “Adaptive and Predictive Control of a Simulated Robot Arm”. In:
International Journal of Neural Systems 23.3 (2013). ISSN: 0129-0657. DOI: 10.
1142/S012906571350010X.

[215] Silvia Tolu, Mauricio Vanegas, Niceto R. Luque, Jesús A. Garrido, and Ed-
uardo Ros. “Bio-Inspired Adaptive Feedback Error Learning Architecture for
Motor Control”. In: Biological Cybernetics 106.8-9 (2012), pp. 507–522. ISSN: 0340-
1200, 1432-0770. DOI: 10.1007/s00422-012-0515-5.

[216] Klaus Uhl and Marco Ziegenmeyer. “Mca2 - an Extensible Modular Frame-
work for Robot Control Applications”. In: Advances in Climbing and Walking
Robots. World Scientific, 2008, pp. 680–689. DOI: 10.1142/9789812770189_
0078.

[217] Gabriel Urbain, Victor Barasuol, Claudio Semini, Joni Dambre, et al. Stance
Control Inspired by Cerebellum Stabilizes Reflex-Based Locomotion on HyQ Robot.
2020.

204

https://doi.org/10.1101/2021.01.25.428153
http://diagnostics.myo.com/
http://diagnostics.myo.com/
https://doi.org/10.13140/RG.2.2.22701.13280
https://doi.org/10.13140/RG.2.2.22701.13280
https://doi.org/10.1142/S012906571350010X
https://doi.org/10.1142/S012906571350010X
https://doi.org/10.1007/s00422-012-0515-5
https://doi.org/10.1142/9789812770189_0078
https://doi.org/10.1142/9789812770189_0078

Bibliography

[218] Sacha J. van Albada, Andrew G. Rowley, Johanna Senk, Michael Hopkins,
Maximilian Schmidt, Alan B. Stokes, David R. Lester, Markus Diesmann, and
Steve B. Furber. “Performance Comparison of the Digital Neuromorphic Hard-
ware SpiNNaker and the Neural Network Simulation Software NEST for a
Full-Scale Cortical Microcircuit Model”. In: Frontiers in Neuroscience 12 (May 23,
2018), p. 291. ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00291.

[219] Alexander Vandesompele, Gabriel Urbain, Hossain Mahmud, Joni Dambre, et
al. “Body Randomization Reduces the Sim-to-Real Gap for Compliant Quadruped
Locomotion”. In: Frontiers in neurorobotics 13 (2019), p. 9.

[220] Jilles Vreeken. “Spiking Neural Networks, an Introduction”. In: Utrecht Uni-
versity: Information and Computing Sciences 7.3 (2003), pp. 1–5. URL: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.
7093%5C%7B&%5C%7Drep=rep1%5C%7B&%5C%7Dtype=pdf.

[221] Donald M. Wilson. “Insect Walking”. In: Annual Review of Entomology 11.1
(1966), pp. 103–122. ISSN: 0066-4170. DOI: 10 . 1146 / annurev . en . 11 .
010166.000535.

[222] Andreas Wolf and Henrik A Schunk. Grippers in Motion: The Fascination of Au-
tomated Handling Tasks. Carl Hanser Verlag GmbH Co KG, 2018.

[223] Daniel M Wolpert, R Chris Miall, and Mitsuo Kawato. “Internal Models in
the Cerebellum”. In: Trends in cognitive sciences 2.9 (1998), pp. 338–347. URL:
http://discovery.ucl.ac.uk/189113/.

[224] Si Wu, Shun-ichi Amari, and Hiroyuki Nakahara. “Population Coding and
Decoding in a Neural Field: A Computational Study”. In: Neural Computa-
tion 14.5 (2002), pp. 999–1026. ISSN: 0899-7667, 1530-888X. DOI: 10.1162/
089976602753633367.

[225] Yexin Yan, Terrence Stewart, Xuan Choo, Bernhard Vogginger, Johannes Partzsch,
Sebastian Hoeppner, Florian Kelber, Chris Eliasmith, Steve Furber, and Chris-
tian Mayr. “Comparing Loihi with a SpiNNaker 2 Prototype on Low-Latency
Keyword Spotting and Adaptive Robotic Control”. In: Neuromorphic Comput-
ing and Engineering (Mar. 24, 2021). ISSN: 2634-4386. DOI: 10.1088/2634-
4386/abf150.

[226] Nianfeng Yang, Ming Zhang, Changhua Huang, and Dewen Jin. “Synergic
Analysis of Upper Limb Target-Reaching Movements”. In: Journal of Biome-
chanics 35.6 (2002), pp. 739–746. ISSN: 00219290. DOI: 10 . 1016 / S0021 -
9290(02)00018-0.

[227] Alper Yegenoglu, Detlef Holstein, Long Duc Phan, Michael Denker, Andrew
Davison, and Sonja Grün. Elephant–Open-Source Tool for the Analysis of Electro-
physiological Data Sets. Computational and Systems Neuroscience, 2015.

[228] Davide Zambrano, Roeland Nusselder, H. Steven Scholte, and Sander Bohte.
Efficient Computation in Adaptive Artificial Spiking Neural Networks. 2017. URL:
http://arxiv.org/abs/1710.04838 (visited on 05/31/2020).

205

https://doi.org/10.3389/fnins.2018.00291
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7093%5C%7B&%5C%7Drep=rep1%5C%7B&%5C%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7093%5C%7B&%5C%7Drep=rep1%5C%7B&%5C%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7093%5C%7B&%5C%7Drep=rep1%5C%7B&%5C%7Dtype=pdf
https://doi.org/10.1146/annurev.en.11.010166.000535
https://doi.org/10.1146/annurev.en.11.010166.000535
http://discovery.ucl.ac.uk/189113/
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1016/S0021-9290(02)00018-0
https://doi.org/10.1016/S0021-9290(02)00018-0
http://arxiv.org/abs/1710.04838

Bibliography

[229] Friedemann Zenke, Sander M. Bohté, Claudia Clopath, Iulia M. Comşa, Ju-
lian Göltz, Wolfgang Maass, Timothée Masquelier, Richard Naud, Emre O.
Neftci, Mihai A. Petrovici, Franz Scherr, and Dan F.M. Goodman. “Visualiz-
ing a Joint Future of Neuroscience and Neuromorphic Engineering”. In: Neu-
ron 109.4 (Feb. 2021), pp. 571–575. ISSN: 08966273. DOI: 10.1016/j.neuron.
2021.01.009.

[230] John G Ziegler and Nathaniel B Nichols. “Optimum Settings for Automatic
Controllers”. In: trans. ASME 64.11 (1942).

206

https://doi.org/10.1016/j.neuron.2021.01.009
https://doi.org/10.1016/j.neuron.2021.01.009

	Introduction
	Motivation
	Problem statement
	Research questions
	Key contributions
	Structure of this thesis

	Related Work: motion representation with SNNs
	Motor control principles in biology and neuroscience
	The role of the Motor Cortex
	The role of the Cerebellum
	Other brain areas relevant for motor control
	Spinal cord
	Synergies between muscles
	Motor primitives and hierarchical motion representation
	Rhythmic motion generation and central pattern generators

	Motor control principles in robotics
	A short survey on basic control principles
	Basic control
	Basic PID controller principle
	Adaptive control

	Dynamic movement primitives
	Grasping motion analysis with PCA and eigengrasps
	Reactive robot control using reflexes
	Applications of Deep Learning for manipulation and grasping

	Introduction to Spiking Neural Networks
	Neuron models
	Neural coding
	Plasticity and learning

	Robot motor control using SNNs
	Coordinate transformation using STDP and learning of non-linear functions
	Learning arm configurations by associative learning and STDP
	Modeling the neural behavior of grasping
	Cerebellum models for Arm motor control
	Multimodal activation, reflexes, and multi-layered multi-pattern CPG

	Neurorobotics
	The Human Brain Project
	The Neurorobotics Platform
	Neurosimulators
	SNN simulators
	Deep learning tools for SNNs

	Neuromorphic hardware

	Summary

	Modeling and generating motion with motor primitives using SNNs
	Concept overview and methodology
	Motor primitive formalization using SNNs
	Modeling the activation function
	Modeling the mapping to the robot kinematics
	Generation of robot motion with motor primitives

	Activation of motor primitives and contact detection
	Voluntary motion activation
	Motion generation layer by modeling an oscillator for rhythmic activation
	Reflex motion activation
	Contact detection intercircuit

	Motor primitive combination, parameterization and hierarchy
	Combination of motor primitives
	Parameterization of motor primitives
	Hierarchical architecture to generate complex motions

	Encoding and decoding spike activity for closed-loop robot control
	Distributed representation for encoding and decoding
	Stochastic Gaussian population position encoding
	Data normalization

	Mechanisms to learn motor primitives with SNNs
	Learning functions by optimizing the decoding weights
	Learning sequences with associative supervised learning
	Adapting motions with online learning

	Summary

	Combination and activation of motor primitives to control robotic arms
	Modeling the motion of a robot arm
	Activation modalities and combination of motor primitives
	Methods
	Experiments
	Voluntary motion activation
	Rhythmic motion activation
	Activation of reflexes
	Combination of activation modalities

	Discussion

	Generation of pointing motions for targets on a plane in 3D space
	Methods
	Motion generation layer by adjusting local connectivity
	Base and correction motor primitives
	Target representation

	Experiments
	Experiment setup
	Implementation details
	Learning in the motion generation layer
	Pointing at targets on a plane in 3D space

	Discussion

	Perception driven target reaching in 3D space combining motor primitives
	Methods
	Motion representation
	Target representation
	Connect primitives with error signal

	Experiments
	Implementation details
	Cover the working space returning to the start
	Reach boundary targets and random points in sequence

	Discussion

	Summary

	Coordination of motor primitives and compliant control for anthropomorphic robotic hands
	Modeling the motion of a 5-finger robot hand
	Learning grasping motions from human demonstration
	Methods
	Finger networks
	Hand network
	Tactile feedback

	Experiments
	Implementation details
	Performing grasping motions

	Discussion

	Triggering finger reflexes using EMG signals
	Methods
	Human EMG data interface and training data
	Sub network for EMG classification
	Sub-network for motion generation and mapping to the robot
	Integration off all components

	Experiments
	Implementation details
	Training data
	Processing of EMG data and classification
	Motion generation and interface to the robot hand

	Discussion

	Compliant control for soft-grasping with a hierarchy of motor primitives
	Methods
	Finger primitives and robot kinematics
	Hand primitives and control hierarchy
	Affordance activation mechanisms
	Reflexes and contact detection
	Compliant controller and adaptation

	Experiments
	Motor primitives activation and affordance evaluation
	Compliant control evaluation
	Adaptive control with online learning evaluation
	SNN implementation and parameters

	Discussion

	Summary

	Generalization and extension of the motor primitives control architecture for multi-legged locomotion
	Modeling the motion of a multi-legged robot
	Synchronization and coordination of motor primitives for multi-legged locomotion
	Methods
	Leg control with motor primitives
	Leg local behaviours
	Multi-legged coordination patterns
	Control interface and Braitenberg network

	Experiments
	General experiment setup
	Walking forward
	Walking in circle
	Walking in zig-zag
	Walking over an obstacle
	Braitenberg vehicle with color detection

	Discussion

	Summary

	Discussion of results and outlook
	Summary of the contributions
	Open problems
	Integration of visual information
	Efficient execution of SNNs with neuromorphic hardware

	Outlook
	Challenges of using SNNs for neurorobotics
	The role of neurorobotics for neuroscience

	Appendix
	The Neurorobotics Platform technical details
	Getting and using the NRP
	Modeling and development with the NRP

