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Abstract

a subsequent modeling of the phase.

Measurements of the directivity of acoustic sound sources must be interpolated in almost all cases, either for spatial
upsampling to higher resolution representations of the data, for spatial resampling to another sampling grid, or for
use in simulations of sound propagation. The performance of different interpolation techniques applied to sparsely
sampled directivity measurements depends on the sampling grid used but also on the radiation pattern of the
sources themselves. Therefore, we evaluated three established approaches for interpolation from a low-resolution
sampling grid using high-resolution measurements of a representative sample of musical instruments as a reference.
The smallest global error on average occurs for thin plate pseudo-spline interpolation. For interpolation based on
spherical harmonics (SH) decomposition, the SH order and the spatial sampling scheme applied have a strong and
difficult to predict influence on the quality of the interpolation. The piece-wise linear, spherical triangular interpolation
provides almost as good results as the first-order spline approach, albeit with on average 20 times higher
computational effort. Therefore, for spatial interpolation of sparsely sampled directivity measurements of musical
instruments, the thin plate pseudo-spline method applied to absolute-valued data is recommended and, if necessary,
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1 Introduction

The first studies on the specific sound radiation charac-
teristics of the human voice were conducted as early as
the late 1930s [1], while systematic investigations of the
directivity of musical instruments began 30 years later [2].
The radiation patterns of acoustic sound sources such as
speakers, singers or musical instruments are commonly
measured in anechoic environments with the source cen-
tered in an enclosing spherical microphone array.

For a comprehensive analysis of the directivity of 40
human speakers a nearly full spherical array was used,
measured sequentially at 253 positions [3]. With respect
to the singing voice, the radiation characteristics of 8

*Correspondence: david.ackermann@tu-berlin.de

' Audio Communication Group, Technische Universitit Berlin, Einsteinufer 17¢,
10587 Berlin, Germany

Full list of author information is available at the end of the article

@ Springer Open

opera singers [4] and 15 trained singers [5] were deter-
mined in the horizontal plane, measured at 9 and 13
positions, respectively. A higher spatial resolution was
used for measurements of a professional male singer using
an adjustable semi-circular microphone array with 24
receivers [6]. For a recent review of research on the sound
radiation of singing voices, see [7].

The directivities of eight musical instruments were
measured using 64 microphones [8], 22 microphones
were used for a measurement of 22 instruments [9]. A
recently generated database for 14 instruments and a
speaker contains radiation patterns measured at 2522
positions on a sphere [10]. However, these data contain
only (third-)octave band directivities, which limits their
use for research purposes. The most comprehensive pub-
lic database was collected for 41 modern and historic
instruments measured with 32 microphones and contains
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single tones within the playable range of each instrument
and directivities computed from the stationary parts of
these tones [11, 12].

The spatial resolutions of the available directivity mea-
surements of acoustic sound sources thus depend on the
technology used and differs greatly from each other. At
the same time, many source directivity based applica-
tions such as room acoustical simulations require either
continuous or higher resolution data. And even if the
application uses a discrete spatial representation, the sam-
pling grid required is usually different from that used in
the measurement. The measured data must therefore be
interpolated or resampled.

In the common polar representation, the measured val-
ues are usually linearly interpolated (cf. [9]) and occasion-
ally also smoothed in addition (cf. [5]). For 3D balloon
plots showing the spherical radiation pattern for single
frequencies or frequency bands, a common method is to
decompose the sound pressure measurements into spher-
ical harmonic (SH) basis functions followed by spatial
oversampling on the surface of a sphere. The resampled
grid is sometimes linearly interpolated at the end for visual
display (cf. [8]).

The accuracy of room acoustical simulations was shown
to strongly depend on the directivity of the sound source
and thus also on the quality of the chosen interpolation
method. The angular resolution of the directivity affects
the simulated room impulse response (RIR) and several
other room acoustic parameters up to a spherical harmon-
ics (SH) order of N = 10 [13] even if the information
incorporated in higher order components may no longer
be perceptually relevant, at least at larger distances from
the source [14].

Not only the required resolution and the required sam-
pling scheme, but also the required physical information
inherent in the radiation pattern depends on the subse-
quent application. In wave-based simulations, such as the
Boundary Element Method (BEM) and the Finite Element
Method (FEM), it appears beneficial to have both, a con-
tinuous magnitude and phase response of the source [15].
In simulations based on geometrical acoustics [16] that
combine image sources and stochastic ray tracing to com-
pute early reflections and the late reverberation [17, 18],
a complex-valued description of the source directivity
might be beneficial for the image source part, while the
phase response is spurious in an energy-histogram-based
ray tracing approach.

Moreover, if directivities are calculated from the steady
part of played tones, the phase spectrum may be subject
to fluctuations, especially if the source in the center of
the measurement system is not completely spatially fixed,
causing a fluctuating excess phase that renders phase
information practically useless (Fig. 1). To account for
this, Zagala & Zotter [19] suggested to iteratively optimize
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Fig. 1 Excerpt of the spectrogram for the signal of a trumpet playing
note A4 (440 Hz) at fortissimo, recorded with microphone 4 from [12],
separated in amplitude in dB (top) and phase in degree (bottom)

the sign of the absolute magnitude response prior to SH
interpolation to minimize the mean squared error (MSE)
between the input and interpolated data. Ahrens & Bil-
bao [20] chose to make the magnitude response minimum
phase to avoid excess phase and to get directivity more
easily decomposed into SH impulse responses applicable
to time domain room acoustical simulations. However,
both studies did not investigate the general suitability
of SH for interpolating the magnitude response of the
directivity.

The question about whether and how to interpolate
directivities with phase has been successfully addressed
for head-related transfer functions. A variety of tech-
niques either pre-align the entire or a high-frequency
portion of the impulse responses, or manipulate the cor-
responding phase to improve magnitude interpolation (cf.
[21] and ([22], Chapter 4.11) for an overview). These
methods either reconstruct the phase after interpolation
or are justified by the irrelevance of inter-aural phase
at high frequencies [23] and rely on the relation of the
frequency-domain directivity to a short, impulse-shaped
time-domain representation. Hereby, they do not apply to
the directional spectra of musical instruments, as exem-
plified in Fig. 1.

The aim of this study is thus to evaluate the suitabil-
ity of established methods for interpolating the magni-
tude response of sparsely sampled directivities of musical
instruments. For this purpose, high-resolution measure-
ments of four different musical instruments, whose tech-
nical construction and radiation characteristics cover a
wide range of natural sound sources, were selected. The
data were sub-sampled at 32 sparse grid points, interpo-
lated to a high-resolution grid, and evaluated against the
measured reference.
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Note that in this paper we use the term “interpolation”
for any kind of continuous approximation of discrete spa-
tial radiation patterns, no matter whether the grid points
are precisely reproduced by this approximation or not.

2 Background

A plethora of interpolation techniques for real-valued
scattered data exist that make different assumptions about
the distribution of the discrete set of known data points
[24]. Because the quality of the interpolation depends
on how well these assumptions are fulfilled, the perfor-
mance of the interpolation methods considerably depends
on the specific application. Simple techniques include dis-
continuous nearest-neighbor interpolation, as well as con-
tinuous linear and natural neighbor interpolation. More
commonly used are advanced concepts such as deter-
ministic inverse distance weighted or spline interpolation
[25], as well as kriging [26]—a stochastic technique from
the field of geostatistics that minimizes the spatial vari-
ance between the value to be estimated and the ambient
measurements. An essential tool for data fitting and inter-
polation in the field of computer aided geometric design
(CAGD) are barycentric coordinates defined on spheri-
cal triangles, which can be used to define the associated
spherical Bernstein-Bézier polynomials for constructing
piece-wise functional and parametric surfaces [27]. For
acoustical sound sources, a decomposition into SH basis
functions has become particularly popular [28-30], since
it not only allows for a synthesis of the radiation pattern
in virtual acoustic reality [31], but also for a decomposi-
tion of the room impulse response into SH-based spatial
components [32]. In case of an order-limited directivity,
SH interpolation is physically correct.

Based on the above review, we selected three interpola-
tion approaches for the detailed evaluation. SH interpola-
tion was included because of its widespread use in musical
acoustics. Spline interpolation was chosen because it is
superior to inverse distance weighting and kriging if only a
small number of sample points are available [33, 34]. The
spherical triangular interpolation technique corresponds
to a piece-wise degree-1 barycentric spherical Bernstein-
Bézier polynomial interpolation; in audio technology it is
commonly employed in three-dimensional vector based
amplitude panning (VBAP) as introduced by Pulkki [35]
for robust virtual sound source positioning [22].

2.1 Spherical harmonics interpolation

If the sound pressure on the surface of a sphere is sampled
with a finite number of microphones, spherical Fourier
coefficients can be calculated from the measured values,
which can then be used to estimate the sound pressure
function on the entire measuring surface [36]. The lim-
ited number of sample points results in an order-limited
sound pressure function on the measurement surface.
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Thus, the spherical function f(6,¢) (0 = azimuth,¢ =
colatitude) is represented by a weighted sum of a finite set
of orthogonal base functions:

N n
fO0) =) D" fm¥0,), (1)

n=0m=—n
where N € N indicates the spherical harmonics order
and f,,, are the considered weights of the corresponding
spherical harmonics

2 1(n—m)! ;
n+ Mp;" (cos g)etWKb,
47 (n+ m)!

Y70, ¢) = 2)
where PJ'(-) are the associated Legendre functions, (-)!
represents the factorial function, m € Z specifies the
function degree, and n € N the order of the function.
Consequently, the Fourier coefficients f;,,, completely
describe the order-constrained function f(6,¢) on the
entire sphere and their determination is yet sufficient for
a correct SH interpolation.

By sampling the sound pressure function f (0, ¢) with a
Q channel spherical microphone array, the samples p, =
f (64, ¢4) are given at the positions (6, ¢,) of the respec-
tive microphones for g € {1, 2,.., Q} = Ng. In matrix form
Eq. 1 can be written as

f=Yf,,, (3)

where the matrix Y of dimensions Q x (N +1)? is given by

Y61, 01) Y761, 01) - YN (61, 1)
Y962, ¢2) Y;HO2¢2) -+ YN (62 62)

Y360 ¢Q) Y1 (60, 9Q) -+ YN (6o, Q)

and the vector f =[py,. ..,pQ]T contains the Q sound
pressure measurements at position (6, ¢,) for g € No.

For the rare scenario, when the number of microphones
Q matches the spherical harmonics order N, i.e. Q =
(N+1)2, under consideration of perfectly distributed mea-
suring points [37] and thus a well-conditioned full-rank
matrix Y, Eq. 3 can be solved with the inverse of matrix Y:

£, =Y 'f. (5)

For Q > (N + 1) an over-determined system of lin-
ear equations results which can be solved through best fit,
in the least-squares sense, by taking the Moore-Penrose
inverse of Y and thus seeking a solution f,;,, that mini-
mizes the energy of the error:

min [ = Yeu> = € =Y'f 6)
with YT = (Y”Y)"1Y" and || - || denoting the Euclidean
norm. For functions that are not order-limited, errors
occur due to spatial aliasing and f # Yf,,, and conse-

quently f (64, ¢4) # pq [38].
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For Q < (N + 1)2, the system of equations is under-
determined and Eq. 3 provides infinitely many solutions.
In this case the Moore-Penrose inverse of the matrix Y
seeks a solution f,,,, with minimum Euclidean norm, i.e.
with minimal wave-spectral power ||f,,, (% ([29], p. 79):

f = Y£,,,, £ =Y'E  (7)

min ||f,,]% st
f,

nm

=

To interpolate samples of the sound pressure measure-
ments on a sphere, the calculated weights of the spherical
harmonics can be used in the inverse spherical Fourier
transform from Eq. 1 and arbitrary points between the
samples can be estimated. The values at the sampling
positions (6, ¢4) for g € Ng can be reproduced exactly
if the order N is sufficiently high. In the case of under-
determined systems, however, notches occur between the
sample points due to the chosen constraint of minimum
wave-spectral power and therefore even order-limited
functions can no longer be represented accurately.

An indication for the numerical accuracy of SH interpo-
lation based on matrix inversion (Eq. 5) is the condition
number k of Yy. A large condition number indicates that
small changes in the measured sound pressures f could
lead to large changes in the Fourier coefficient matrix
f,m. The solution of the linear system of equations is thus
highly sensitive to errors and noise in the input data.
While « = 1 is ideal, a system with « > 3.5 is considered
as ill-conditioned [39]. The condition number depends on
the chosen spatial sampling scheme and the SH order N.

2.2 Thin plate pseudo-spline interpolation

The thin plate pseudo-spline solution [40, 41] allows the
regularized interpolation of sparsely distributed measure-
ments on the sphere with closed-form expressions that
make this approach well suited for numerical computa-
tion. The aim is to find a smooth function f(6, ¢), where
the values for f (6, ¢,) should be as close as possible to the
measured values p, while containing minimum bending
energy on the surface of the sphere S. An interpolating (A)
or smoothing (B) thin plate pseudo-spline can therefore
be obtained by seeking the solution to one of the following
problems:

min/i(f) st fOp¢0) =Py (8)
for (A) or with the option of regularization
1 Q
min Y pq =@ $))” + Mi(f) ©)

q=1

for (B), where A > 0 denotes the tuning parameter and
Jx(f) is defined by

0 n ]‘32
]k(f)=z Z nm’

n=1m=—n

(10)
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A solution of the two problems given by Egs. 8 and 9 is
obtained with

Q
Jun(0,8) = cqR(O, 364, bg) + d. (13)

q=1

R(8, ¢; 04, ¢g) is the reproducing kernel for the Hilbert
space L%ﬁ(o (S) with norm ],1/2(~):

RO, $300, ) =Y D Eam¥y0,0) Y, Og bg)
n=1m=—n
1 1

:E;(n+1)(n+2)---(n+2k—1)

o]

Py(2),
(14)

where P, are the associated Legendre polynomials and z
denotes the cosine of the spherical angle y between the
two arguments of the kernel function with

z = cosy = sin(¢) sin(¢y) + cos(¢) cos(pg) cos(d — Oy).
(15)

The spline order M € N determines the derivability of
the solution from Eq. 13. We define the spline order as
M = 2k — 2, and corresponding splines are continuous
up to the (M — 1)th derivative, so they are called CM~!
smooth.

A closed-form expression for the reproducing ker-
nel R(9, ¢; 04, ¢4), suitable for numerical computation, is
given by

1

1
R0, ¢;04, ¢q) = Py Qok—2(2) — :| ,

1
|:(2k—2)! (2k — 1)!
(16)

with
1
Go—2(2) = / (1= 221 = 2hz + K3~ V2dn (17)
0

and 2k — 2 = M.
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A recursive evaluation of go;_o(z) for k = {%, 2, %, v 6}
can be found in ([40, 41], Tab. 1), as well as the determi-
nation of the coefficients ¢ and d from Eq. 13 in matrix
form!:

[G]=["s] 6]

where R is the Q x Q matrix with the element i, j defined
as (RQ)ij = R(6;, ¢i;0j, ¢j), Lis the Q x Q identity matrix,
the vector f =[p1, ..., pq] T contains the Q sound pressure
measurements at position (6, ¢4) for g € Ngand T =
(L...,17.

If the measured values are noisy, it can be advanta-
geous to regularize the interpolation in order to suppress
outliers; the tuning parameter A > 0 will smooth the
estimated function f on the surface of the sphere. Due
to the low noise measurement data used for this study,
smoothing of the estimation function did not improve
the quality of the interpolation (c.f. Section 5), there-
fore the thin plate pseudo-splines were performed without
regularization (A = 0).

(18)

2.3 Piece-wise linear, spherical triangular interpolation
The entire set of Q microphone positions (6, ¢4) can be
equivalently expressed as a 3 x Q matrix containing its
three-dimensional unit direction vectors

Cos ¢y sin b,
singy sint, |,
cos b,

U=[uy,... (19)

ug ], Uy =
Using the Quickhull algorithm [42] vertex index triplets
v; =[vyy, vay, v31] are obtained to describe a set of triangu-
lar facets that span the convex hull of the vertices stored
inU.

Any arbitrary unit direction vector u can be represented
by the non-negative spherical barycentric/area coordi-
nates g =[ g1,2,¢3]” of the vertices U of the /th triangle,

(20)
(21)

where g; > 0 and ) ;g > 1. Note that the required all-
positive spherical barycentric coordinates are only found
if a suitable spherical triangle / is selected from the con-
vex hull, which will then contain u. While the spheri-
cal barycentric coordinates g reproduce the direction u,
spherical triangular interpolation uses the corresponding
planar barycentric coordinates g; = ig;g; [27] to linearly

u= Ul g) Ul =[ uVll’ qul: uV3l] ’

g= Ul_l u,

interpolate the values measured at the microphones of the
triangle / by their weighted average,

f) =g1py, + @ Pvy + 23 Pvy- (22)

n ([40], p. 14, THEOREM 2), the formula for determining c and d is printed
with a sign error.

(2021) 2021:36 Page 5 of 14

At the boundaries, this interpolation exactly repro-
duces the values at the triangle vertices and linearly
interpolates the value pairs along any edge of the /th tri-
angle. Because neighboring triangles share edges and ver-
tices, interpolation across triangles is continuous. There is
no condition for the first-order derivatives, therefore this
interpolation is C° smooth.

2.4 Robustness and bias
Robustness is often measured by observing the range
of amplifications that stochastic perturbations linearly
superimposed with the input data can undergo. Due to
linearity, it is insightful and common practice to observe
changes that uncorrelated Gaussian noise as the only
input f = A undergoes, which we adopt to analyze the
robustness of the three above-mentioned interpolation
methods. We consider the 32 nodes of a pentakis dodeca-
hedron as directional sampling for the input data f, which
is interpolated using the 2520 nodes of a Chebyshev-type
quadrature [43], yielding the 2520 output values f.

Figure 2 shows a statistical analysis of the two ratios
RMS({f}

rus( and ﬁzﬁg , analyzing these ratios for 1000 indepen-

dent instances of a random input vector f.

Regarding changes between RMS values from input to
output, we observe that SH methods for N = {7,8},
Spline for all M = {1,2,3}, and Trl produce a bias
towards smaller output RMS values of 2 dB or more for
stochastic input. For Trl, it is understandable that within
any triangle, three uncorrelated inputs get averaged lin-
early, therefore the output RMS gets reduced by stochastic
instead of additive interference. For SH interpolation with
N = 4, this reduction only happens sparsely. The implicit
minimization of the Euclidian norm for N > 5 mini-
mizes the output RMS value, and therefore causes the
observable bias towards lower RMS. This minimization
might be optimistically regarded as an increase in robust-
ness between the sampling nodes for N < 6, but it
also implies a general decrease in magnitude there, a bias
causing dips between the observed samples when interpo-
lating omnidirectional directivities. Spline methods pro-
cess constant inputs separately, therefore, it is reasonable
to assume that the observed reduction in output RMS
rather displays increased robustness to stochastic pertur-
bation. For the chosen spatial sampling scheme, all meth-
ods appear robust enough to avoid enlarged output RMS
values.

As a more critical test, SH-based interpolation exhibits
the largest differences between maxima in the interpo-
lated output compared to those in the input, with around
43 dB for N = {4,5,6,7}, while the settings SH 8 and
Spline 3 behave reasonably. Rigorously, Trl as a linear
interpolation is capable of precisely avoiding enlarged
output maxima, and the same benefit is observed for
Spline 1.
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3 Method

3.1 High-resolution reference directivities

For an objective evaluation of the estimation accuracy of
a spatial interpolation method based on finite samples
on a measurement surface, a high-resolution reference is
required. This could theoretically be an analytical func-
tion sampled at the evaluation points. However, since the
quality of the interpolation also depends significantly on
the properties of the pattern to be interpolated, a diverse
sample of musical instruments was chosen for which
high-resolution measurements were made. The sample
included a trombone, a violin, a flue pipe and a bassoon,
and thus different types of sound production, different
physical principles of sound radiation, and different sizes
and geometries of the radiator. To achieve high relia-
bility, the excitation of the instruments was automated,
the instruments were rotated by a computer-controlled
3D loudspeaker measurement system ELF, and the sound
pressure measurements were obtained on a dense spa-
tial sampling grid. The measurements were conducted in
the anechoic chamber of the OWL University of Applied
Sciences and Arts in Lemgo. A 1/2" free-field equalized
BK4190 cartridge was used as measurement microphone,
placed 2 m from the sound source.

The trombone, a member of the brass family, is a rel-
atively small and straightforward sound source, with the
bell being the only port from which sound energy is emit-
ted. The directional dependence of sound radiation of
brass instruments is rotationally largely symmetric with
respect to the center axis of the bell, which is also the main
radiation direction. With increasing frequency the main
lobe of the directivity constricts, resulting in a more direc-
tional sound radiation. To determine the directivity of the
trombone, the shortened instrument (without slide) was
artificially excited with a sine sweep signal of the order 16
(21¢ samples ~ 1.4s @48 kHz sampling rate), emitted by
a horn driver directly attached to the small end of the bell
[44]. An equal angle sampling grid with an angular resolu-

tion of 5° in azimuth and colatitude was chosen and thus
2522 unique positions were measured.

The sound radiation for a violin, a string instrument, is
partially determined by the parallel plates of the instru-
ments’ body which vibrate locally in different amplitudes
and phases. Particularly at low frequencies the sound is
additionally radiated through the characteristic open f-
holes that build a Helmholtz resonator in connection with
the air cavity of the body. With a source extension of about
40 cm it is a medium-sized instrument. However, the two
vibrating plates with a different local phasing cause inter-
ferences and therefore a distinct directional characteristic
in the far-field. The directivity of a violin was measured
exemplarily for the open A string (fy = 440 Hz), applying
a repeatable bowing machine for excitation [45] and uti-
lizing an equal angle grid with an angular resolution of 6°
for azimuth and colatitude, yielding the sound pressure at
1742 positions on a sphere.

The sound of a flue pipe of an organ is radiated through
the mouth as well as through the open end of the res-
onator. The two spatially separated partial sound sources
thus produce frequency-dependent directional character-
istics, which get more complex with increasing frequency
following the characteristics of a dipole and correspond-
ing to the sound radiation behavior of a flute [2]. To
measure the directivity of the flue pipe, a horn driver has
been attached directly to its toe hole which was artificially
excited, again with a sine sweep of order 16. An equal
angle sampling grid within an angular resolution of 5°
was chosen, again yielding 2522 positions. The pipe used
has a length of 51.3 cm with a diameter of 4.8 cm and a
fundamental frequency of fy = 280 Hz [46].

The bassoon, a woodwind instrument of the double
reed family, has a bell and numerous extended tone holes
distributed irregularly across a long, bent corpus. The
openings act as secondary sound sources depending on
the fingering. The superposition of their radiated sound
fields can cause a relatively complex directivity in the far-
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field. The sound radiation of a bassoon, fingered for the
note Eb3 (fy = 156 Hz), was measured with an equal
angle sampling distribution within a horizontal and verti-
cal angular resolution of 5°, applying a repeatable artificial
excitation [47]. Accordingly, the data was acquired at 2522
positions on a sphere.

3.2 Interpolation of microphone array measurements
In the first step, the high-resolution reference data was
sub-sampled at 32 microphone positions used in the
Berlin-Aachen database of musical instruments [12]. The
32 sampling points are located at the vertices of a pentakis
dodecahedron (Fig. 3) and were chosen as one possible
sampling scheme to evaluate the interpolation techniques
under realistic conditions. Except at the two poles, the
32 positions of the sparse grid are not contained in the
reference grids. To account for this, the final sparse grid
was generated from the closest positions of the high-
resolution reference grids. The resulting grid is called
sample grid in the following and diverges from ideal sparse
grid by 1.7°/1.0° on average, with a maximum deviation of
2.4°/2.6°.

For the SH orders examined in this paper, the condi-
tion numbers of the ideal sparse grid are small due to the
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equal distribution of the sampling points (k = 1.0 for
N < 4;k < 2.0 for N > 6). The large condition num-
ber of k = 1.24 x 10® for N = 5, however, indicates that
this SH order should not be used for the selected grid. The
condition numbers increased only slightly due to using the
nearest neighbors for the sample grid, i.e., x < 2.0 for
N < 4 and N > 6 still holds.

In a second step, SH interpolation for orders
N = {1,2,..,8}, the closed-form spherical spline inter-
polation for orders M = {1,2,3} (with M = 2k — 2,
cf. Eq. 16) and the spherical triangular interpola-
tion was realized with AKtools using the functions
AKsht (), AKisht (), AKsphSplineInterp (), and
AKsphTriInterp () [48].

The interpolation functions were sampled at the corre-
sponding high-resolution reference grid points, allowing
a direct comparison between the interpolation result and
the reference, i.e., the measured directivity.

The interpolation was done on the magnitude
responses, i.e., the phase information was neglected for
two reasons. First, interpolation of the phase spectrum
is very susceptible to noisy data and errors can occur,
particularly at high frequencies [49]. Second, natural
sound sources, in contrast to artificial sound sources,
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do not have a stationary phase response neither for a
certain frequency nor for a certain radiation direction
[20], which could be used for room acoustics simulation
without further ado. Figure 1 shows a spectrogram for the
note A4 (440 Hz) played by a trumpet (recording taken
from [12]). While the amplitude of the fundamental and
the overtones are almost constant during the observed
time window, the phase of the trumpet signal fluctuates
strongly and cannot be determined unambiguously. A
proposal on how absolute-valued interpolated directivity
patterns can be used for wave-based simulation methods
is presented in Section 5.

3.3 Global error measure ¥

For the evaluation of the interpolation algorithms, a global
single-number error measure is proposed. To describe the
mathematical accuracy of the interpolation, the difference
of the sound pressure levels of interpolated directivity and
reference directivity averaged over all directions could be
used, in the way Arend et al. have done to describe the
accuracy in interpolation of head-related transfer func-
tions (HRTFs) [21]. However, to describe the acoustic
effect of erroneous excitation of the sound field caused by
an incorrect directivity, it seems important to consider the
sound power radiated (incorrectly or correctly) and not
level differences, which correspond to larger differences
in power at high levels than at low levels. As a physically
meaningful measure we therefore propose to calculate
the sound power erroneously radiated with respect to the
direction due to the interpolation error and to relate this
to the total radiated sound power. To obtain such as mea-
sure, the relative error in radiated sound power W can
be calculated as the summed area weighted relative dif-
ferences of the squared sound pressures of interpolation
D% (6, ¢,) and reference p? (6,, ¢,) over the R directions
(6, ¢r) of the reference grid for r € {1,2, ..., R}, related to
the summed area weighted squared sound pressure of the
reference:

R 1B 6 ) — P* (61 0)| W, (61, 61

R P2 6,00 W, 6y, 1)

U= (23)

where w/, are the normalized area weights of the reference
grid with

R
> W, (0r¢r) = 1. (24)

r=1

Note that an error of ¥ = 0.5 states that the interpo-
lated directivity emits 50% of the sound power in incorrect
directions, whereas a value of ¥ = 0 shows that the
radiation pattern of the interpolated fully matches the
reference.
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4 Results

Since we investigated tonal instruments, we restricted the
analysis to fundamentals and overtones. In addition, we
discarded tones whose spatially averaged energy was more
than — 40 dB below the tone with the maximum aver-
age energy separately for each instrument and played note.
Thus, only the radiation pattern of the fundamental at
fo = 280 Hz and the first five overtones fi, ..., f5 of the
flue pipe were examined. For the violin the fundamental
fo = 440 Hz and the nine first overtones fi, ..., fo were eval-
uated, and for the bassoon the fundamental at fp = 156 Hz
and the first five overtones fi, ..., fs. The trombone was a
special case exhibiting an unnatural overtone series due
to the shortened instrument and the artificial excitation
with a horn driver. Therefore only the first five resonance
frequencies at 966 Hz, 2280 Hz, 4882 Hz, 7212 Hz, and
9179 Hz are considered in the following.

The results of the spatial interpolations of the bassoon’s
directivity for the second overtone at f, = 468 Hz are
shown in Fig. 3, along with the related global error mea-
sures W. Distinct differences emerge between the inter-
polation methods. The spherical triangular interpolation
approach (Trl) shows the lowest reproduction error for
this directivity with ¥ = 0.36, with the two distinctive
indentations in the 6 = 90°%¢ = 90° and 270°; 90°
radiation directions estimated quite accurately despite the
small number of sample points.

For the spline interpolation, the global error ¥ ~ 0.4 is
almost constant across the order M. Differences between
the orders can be seen mainly in the 90°;90° radiation
direction, where the notch is well reproduced by the spline
interpolation of order M = 1, however at the expense of
larger errors in the transition areas between high and low
radiation, which are better interpolated with order M = 2.

For SH interpolation of orders N = {4,5}, the largest
errors occur in the notch regions at 90°; 90° and 270°; 90°.
As the SH order increases, these errors disappear, but
indentations between the sample points become visible,
most pronounced at N = 8. The lowest global error is
obtained with order N = 7 and ¥ = 0.37, whereas
the maximum error of ¥ = 0.49 occurs when interpo-
lating with the theoretical optimal SH order of N = 4,
considering the 32 points of the sample grid.

For other radiation patterns such as the bassoon’s third
overtone at f3 = 624 Hz (Fig. 4), the interpolation meth-
ods used behave somewhat differently. At this slightly
higher frequency, the spline interpolation of order M =1
is superior with W = 0.49. SH interpolations of orders
N = {6,7} again perform better than the reproduction
with N = {4,5} as well as N = 8, where indentations
between the sample points become again visible. While
for the second overtone triangular interpolation was supe-
rior to all other methods investigated, it now performs
slightly worse than spline interpolation.



Ackermann et al. EURASIP Journal on Audio, Speech, and Music Processing

(2021) 2021:36

Page 9 of 14

Trl

Bassoon 624 Hz
Reference

M=1

¥ = 0.50

Colatitude

M\
@

indB

90 180

0
45
90
135
180
0 360

Azimuth

27

180
Azimuth

270

180

Azimuth

harmonics Interpolation (SH) for N =

in this figure, but is shown in Fig. 6

N =4 N=T7 N =38
v = 0.62 = 0.62 =0.58 ¥ = 0.50 = 0.61
0 = 0 = 10
- -
45 45 ) 8
3 ' " “t N
el A ’ ’ ” » |’ :
8 . .
135 ‘& 1 \ . ‘ @ 2
- — < \_"
1800 90 180 270 360 90 180 270 90 180 270 360 8 920 180 270 90 180 270 360 0
Azimuth Azimuth Azimuth Azimuth Azimuth

Fig. 4 The high-resolution reference of the bassoon directivety for the third overtone at f3 = 624 Hz is shown with the 32 sampling points in the
upper left. The triangular interpolation (Trl) and spline interpolation estimate for M = {1, 2} is shown at the top and the results of the spherical

{4,5, .., 8} at the bottom. The difference of sound pressure level in dB between reference and interpolation is
shown over azimuth and colatitude, the gray crosses indicate the sampling points. The result for the spline interpolation with M = 3 is not included

An overview of global errors for all examined orders
and musical instruments is shown in Fig. 5, where the
individual error distributions contain between 5 and 10
partials, depending on the instrument. To assess the ben-
efit of using musical instrument directivities from small
sample grids, W was additionally calculated for the triv-
ial assumption of an omnidirectional directivity using the
mean radiated energy over all directions.

Taking the median of the distribution over all 27 par-
tial tones of the examined instruments analyzed as a
measure of quality of the interpolation methods, the
spline approach with order M = 1 shows the best result,
closely followed by the triangular interpolation and the
spline interpolations with orders M = {2, 3}.

The largest reproduction errors occur at the lowest and
the highest examined SH order, i.e., at N = {1, 8}, whereas
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Fig. 5 Distribution of the global error measure W for the examined interpolation methods triangular (T), spline (Spl, for M = {1, 2,3}), spherical
harmonics (SH, for N = {1, 2,..,8} ), and ordinary omnidirectional assumptions of the directivity (O) for each instrument individually and across all 27
analyzed partial tones. On each box, the central mark indicates the median, and the bottom and top edges of the box show the 25th and 75th
percentiles, respectively. The whiskers extend from minimum to maximum
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Table 1 Distribution of the global error measure W for the examined interpolation methods triangular (Trl), spline (for M = {1,2,3}),
spherical harmonics (SH, for N = {1, 2,..,8} ), and ordinary omnidirectional assumptions of the directivity (Omni) across all 27 analyzed

partial tones

Global error measure ¥

Spline order M

Spherical harmonics order N

Trl Omni
1 2 3 4 5 6 7 8
Max 129 1.28 1.37 142 145 149 146 141 1.30 1.67
Q3 60 60 60 60 67 65 64 65 75 134
Median .50 49 .52 .55 .58 .59 .57 55 .56 72
Q 26 29 18 A7 24 21 28 30 A4 58
Min 03 03 03 02 03 04 A7 19 37 16

Qy indicating the 25th and Qs the 75th percentiles, respectively

the best SH interpolation is achieved with order N = 7.
A detailed list of results is shown in Table 1.

5 Discussion

The directivities of four different tonal musical instru-
ments were sub-sampled at 32 almost equally distributed
points and interpolated using spherical triangulation,
spherical splines and spherical harmonics. A global error
measure was proposed to assess the quality of the various
interpolation techniques.

5.1 Comparison of interpolation algorithms

It is obvious that the absolute quality of all interpola-
tion methods strongly depends on the acoustic size of the
sound source and the resulting complexity of the radiation
pattern. Acoustically small sound sources like the trom-
bone bell can be relatively precisely interpolated already
with 32 measuring points. With a median value for the
difference between interpolation and reference of < 0.3
for the spline and the triangulation approach and for the
SH interpolation with N = {5, 6, 7}, more than 70% of the
sound power is radiated in exactly the right direction on
average using the interpolated directivities.

For extended sources with more complex radiation pat-
terns, however, the far-field directivities can be increas-
ingly poorly estimated with a sparse sampling grid.

Since the spatial frequencies of acoustic sound sources
can generally be assumed not to be limited, SH decom-
position based on a finite number of microphones on the
surface of a sphere allows a correct reproduction of this
function only up to a cutoff frequency of kr < N, where
k denotes the wave number and r the radius of the micro-
phone array. Above this frequency errors occur due to
spatial aliasing [50] (depending on the SH order of the
function and the sampling grid) and series truncation [39].
The almost equally distributed Q = 32 points of the
applied sampling grid support a maximum SH order of
N = 4 to solve the linear system of equation through best
fit in the least-squares sense (Eq. 6). Taking into account
the measuring distance of 2 m between the microphone

and the sound source, the reference directivity can be cor-
rectly reconstructed up to a cutoff frequency of only f; ~
108 Hz without aliasing and truncation errors. All partial
tones investigated in this study, and all musical frequency
components in general, are above this frequency. Clos-
est to this frequency is the fundamental of the bassoon at
Jfo = 156 Hz, which can be reconstructed most accurately
with SH order N = 4, and a global error of ¥ = 0.03. In
this case, the interpolation error increases with SH order
because the system of equations becomes increasingly
under-determined. As a consequence, the minimization
of the wave-spectral power associated with the Moore-
Penrose inversion of the SH transformation (Eq. 7) entails
an increasingly poor interpolation between the sampling
points.

Radiation patterns for frequencies well above the cutoff
frequency of the microphone array, such as for the second
harmonic of the bassoon at f, = 468 Hz, not only show
larger errors in general, but can provide smaller errors for
orders N > 5. In these cases, the minimization of the
wave-spectral power between the 32 sample points (c.f.
Fig. 3), can lead to smaller errors due to a better trade-
off between truncation and aliasing errors. Figure 6 shows
the global error for all six investigated directivities of the
bassoon across frequency.

At this point it seems worthwhile to take a closer
look at the chosen sampling grid. An analysis showed
that an exact reproduction of the 32 magnitude val-
ues at the sampling points can only be achieved with
SH orders of N > 6 for all radiation patterns inves-
tigated in this study and contained in [12]. Finding the
best SH order for interpolating sparsely sampled direc-
tivities can thus also be interpreted as optimizing the
trade-off between the desired exact reproduction of the
magnitude values at the sampling points and the unde-
sired minimization of the wave-spectral energy which
causes notches between the sampling points and increases
with increasing SH order. For the selected sampling
grid, the optimum appears on average at an SH order
of N=7.
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Fig. 6 The global error measure W of all six examined directivities of
the bassoon plotted individually. The black dashed line represents the
triangular interpolation (Trl) error. The solid lines show the
reproduction error when interpolating the radiation patterns with the
spline approach for M = {1, 2, 3}; the gray dashed lines indicate the
error of SH interpolations for N = {4,5, .., 8}

The triangular and spline interpolation, however, both
show not only smaller median errors but also smaller
25th and 75th percentiles than SH interpolation. Since
the spline technique was applied without regularization
(A = 0), the 32 sample points are always correctly recon-
structed regardless of the order M. The same applies
to triangular interpolation, where all sample points are
reproduced correctly as well. Even at low frequencies,
where SH interpolation with N = 4 estimates the refer-
ence almost physically correct, the triangular and spline
interpolation perform comparably well (Fig. 6). Interest-
ingly, the errors for the spline interpolation increase with
increasing order. This may be explained by the fact that
splines are piece-wise defined functions f that are contin-
uous at the sampling points up to the (M — 1)th derivative,
ie.fis CM~D smooth. The smoothness of the splines thus
increases with increasing order M, whereas the smooth-
ness of SH increases with decreasing order. In both cases
some degree of non-smoothness increases the accuracy of
the interpolation for the selected sample grid.

5.2 Generalization to different sample grids

In the first instance, the results of this study only hold
for the selected sample grid with almost equally dis-
tributed 32 points. Even though this is likely to be a typical
design and close to designs used for other measurements
(Section 1), we provide a way to check the error for other
designs as well. For finding the best interpolation algo-
rithm for a specific sample grid, we provide the Matlab
tool SourceInterp.m[51]. It calculates the global error
W for all interpolation methods evaluated in this paper,
based on the publicly available high-resolution Bassoon
radiation patterns [52] for the note F3 (fy = 175 Hz) and
will be extended for other instrument directivities once
they are made publicly available.
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5.3 Comparison to SH interpolation with iterative sign
retrieval

As detailed earlier, only the absolute magnitude response
was interpolated due to the stochastic nature of the phase
information of measured natural sound sources. In case
of SH interpolation, however, this approach increases the
required SH order. To counteract this, iterative semidefi-
nite relaxation methods to find a suitable real-valued sign
to an absolute-valued radiation pattern prior to SH inter-
polation were proposed by Zagala and Zotter [19]. To
assess the quality of the triangular and spline interpola-
tion with respect to the proposed sign-retrieval algorithm,
we replicated the benchmark from [19]. Therefore, 50
radiation patterns were created with randomly generated
standard normally distributed real-valued SH coefficients
fam € R up to SH order N = 3. The absolute unsigned
values of these radiation patterns were evaluated at Q =
64 extremal sampling points (cf. [37]) according to Eq. 3
and used as input for triangular interpolation, the first-
order spline interpolation and third order SH interpola-
tion. Finally, the area weighted Mean Square Error (MSE)
between the analytical reference f and the interpolation
result f

R
MSE = Y (f6r¢) —F(6r, 80 W, 6rbr)  (25)
r=1
was calculated for 2522 sampling points of the reference
grid used above.
The distribution of the MSE across the 50 radiation

patterns is shown in Fig. 7.
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Fig. 7 Distribution of the Mean Square Error MSE (top) and
reconstruction time in s (bottom) for interpolation with the (zero
phase) SH approach (left), the sign-retrieval algorithm SDR rgn+dbl,
the spline method and the triangular technique (right). On each box,
the center indicates the median, and the bottom and top edges of
the box show the 25th and 75th percentiles, respectively
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On average, the spline interpolation and the triangu-
lar method reconstruct the random directivity patterns
only slightly better than the SDR-based sign retrieval with
common-sign regions algorithm (median of 0.05 vs. 0.07).
However, the dispersion of the error is considerably lower
for the spline approach, with a 75th percentile of 0.06
compared to 0.12 for SDR rgn+dbl. It should also be noted
that the spline method reconstructs one radiation pattern
on average 30 faster than the SDR rgn+dbl algorithm and
26 times faster than triangular interpolation (using Mat-
lab on a PC with Intel Core i5-6400 CPU @ 2.70 GHz and
16 GB RAM, Fig. 7). Note that the triangular interpolation
AKsphTrilInterp () is already optimized by searching
only sub-lists of triangles extending into the octant of any
regarded interpolated coordinate. The potential speed-up
factor has an upper limit of 8 and practically reached 6
with the required control flow and overlap of the sub-lists.

5.4 Combination with models for the phase response

Time domain acoustical simulations and low-order SH
decompositions may benefit from complex-valued direc-
tivities with both magnitude and phase information. In
this regard, the interpolation methods discussed up to
this point might not be optimal, yet. The unsigned (zero
phase) SH interpolation causes acausal impulse responses
that are symmetrical around ¢ = 0 and the sign-retrieval
algorithm generates an non-continuous phase response
that might also deteriorate the corresponding time signals.
In addition, due to treating each frequency separately, it
remains to be clarified based on which criteria to smooth
the phase responses across frequencies. A direct integra-
tion of a numerically derived absolute-value directivity
into time domain simulations such as the finite difference
time domain (FDTD) method was presented by Ahrens &
Bilbao using an analytical point source phase response
and SH interpolation [49]. However, our results suggest
that spline interpolation is more suitable for interpolat-
ing sparsely sampled magnitude responses regardless of
the phase. Therefore, for interpolating sparsely resolved
directivity measurements of musical instruments for the
use in time domain simulations, we recommend to first
interpolate the magnitude response to a high-resolution
grid using first-order splines, followed by a subsequent SH
expansion according to [49]. Note, however, that a phys-
ically correct extrapolation of the sound field within the
near field of the sound source is not possible even with this
approach, despite subsequently added phase information.

5.5 Generalization to different musical instruments

The results of the current study first only apply to the
four instruments studied, and cannot simply be gener-
alized to all musical instruments or acoustical sound
sources in general. Considering the instruments of the
classical orchestra, however, all fundamental radiation
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mechanisms such as the vibrating soundboard (violin), the
piston-like air vibration in the bell of brass instruments
(trombone), the complex multi-source radiation of wood-
wind instruments (bassoon), and the air jet excitation of
flute instruments (flue pipe) are represented, at least those
with stationary excitation, i.e., not including percussion
instruments.

It is noticeable that piece-wise interpolation meth-
ods such as the spherical spline and spherical triangular
interpolation seem to provide a better reconstruction of
complex radiation patterns in cases where the sampling
theorem (kr < N) is not met. This behavior is largely
consistent for the 27 patterns analyzed, all of them at
frequencies violating the spatial sampling theorem and
representing different source types and different degrees
of complexity.

We thus expect that a similar result would also be
obtained also for directional characteristics measured in
the presence of a player. Players as reflecting or diffract-
ing object next to the instrument have an influence on
the directivity of a musical instrument [11]. For largely
omnidirectional sources they make the radiation pattern
more complex, in specific cases, one could imagine it to
be smoothened, for highly directional sources such as the
trombone at high frequencies, the influence will be negli-
gible. We thus see no reason why interpolation methods
for radiation patterns with players should behave funda-
mentally differently from those without players observed
in the current study.

6 Conclusion

The performance of different interpolation techniques
applied to sparsely sampled directivity measurements of
acoustic sound sources depends on the sampling grid
used but also on the radiation pattern of the sources
themselves. Therefore, we evaluated three established
approaches for interpolation from a low-resolution sam-
pling grid using high-resolution measurements of a rep-
resentative sample of musical instruments as a reference.
The smallest global error on average occurs for thin
plate pseudo-spline interpolation, with order 1 perform-
ing slightly better than orders 2 and 3. For interpolation
based on spherical harmonics (SH) decomposition, the
SH order and the spatial sampling scheme applied have a
strong influence on the quality of the interpolation that
is difficult to predict in individual cases. The piece-wise
linear, spherical triangular interpolation finally provides
almost as good results as the first-order spline approach,
albeit with on average 20 times higher computational
effort. Therefore, for spatial interpolation of sparsely sam-
pled directivity measurements of musical instruments,
the thin plate pseudo-spline method applied to absolute-
valued data with order M = 1 is recommended and, if
necessary, a subsequent modeling of the phase.
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