Skip to main content
Log in

Effects of Dietary Lactiplantibacillus plantarum subsp. plantarum L7, Alone or in Combination with Limosilactobacillus reuteri P16, on Growth, Mucosal Immune Responses, and Disease Resistance of Cyprinus carpio

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Skin mucosal lymphoid tissues of fish are the first line of defence against pathogen invasion. We investigated the effects of Lactiplantibacillus plantarum subsp. plantarum L7, singularly or in combination with Limosilactobacillus reuteri P16, on mucosal immunity and diseases resistance of carp Cyprinus carpio. C. carpio (average weight: 26.28 ± 1.02 g) were divided into five experimental groups. Fish in each group were fed with one of the following potential probiotic-supplemented diets: control (0 – basal diet), D1 (107 CFU/g L7), D2 (108 CFU/g L7), D3 (109 CFU/g L7), and D4 (108 CFU/g L7 + 108 CFU/g P16). Eight weeks post-feeding, growth performance was higher in D4, with a final weight gain of 67.18 ± 1.47 g. Results showed a significantly higher skin mucosal lysozyme, alkaline phosphatase, mucus protein level, superoxide dismutase, and catalase activities in D2 and D4 compared to the control. However, potential probiotics had no significant effect on skin mucosal immunoglobulin level. Skin mucus of D4 exhibited stronger inhibition zones against pathogenic bacterial strains. Moreover, digestive enzyme activities (protease, lipase) were highest in D4. Intesinal lactic acid bacterial counts of fish fed combind probiotics (i.e. D4) was significantly higher than the control. Further, supplementation of potential probiotics altered the expression of IL-1β, TNF-α, and IL-10 cytokines. Fish from D4 exhibited significantly higher relative post-challenge survival (69.7%) against Aeromonas hydrophila, followed by D2 (66.67%). Therefore, the inclusion of L. plantarum subsp. plantarum L7 at 108 CFU/g or in combination with L. reuteri P16 could enhance the growth performance, mucosal immune responses, and disease resistance of C. carpio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data analyzed during this study are included within this article. Any other data are available from the corresponding author upon reasonable request.

References

  1. Lazado CC, Caipang CMA (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39:78–89. https://doi.org/10.1016/j.fsi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  2. Salinas I, Zhang Y-A, Sunyer JO (2011) Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35:1346–1365. https://doi.org/10.1016/j.dci.2011.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Streilein JW (1983) Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol 80:12–16. https://doi.org/10.1111/1523-1747.ep12536743

    Article  Google Scholar 

  4. Esteban MÁ (2012) An overview of the immunological defenses in fish skin. ISRN Immunol 2012:29. https://doi.org/10.5402/2012/853470

    Article  Google Scholar 

  5. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruijn Id, Liu Y, Wiegertjes GF, Raaijmakers JM (2018) Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 94(1):fix161. https://doi.org/10.1093/femsec/fix161

  7. Santos L, Ramos F (2018) Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents 52:135–143. https://doi.org/10.1016/j.ijantimicag.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  8. Hoseinifar SH, Khalilim M, Rufchaei R, Raeisi M, Attar M et al (2015) Effects of date plam fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. Fish Shellfish Immunol 47:706–711. https://doi.org/10.1016/j.fsi.2015.09.046

    Article  CAS  PubMed  Google Scholar 

  9. Dadar M, Dhama K, Vakharia VN, Hoseinifar SH, Karthik K, Tiwari R et al (2017) Advances in aquaculture vaccines against fish pathogens: global status and current trends. Rev Fish Sci Aquacult 25:184–217. https://doi.org/10.1080/23308249.2016.1261277

    Article  Google Scholar 

  10. Tarkhani R, Imani A, Hoseinifar SH, Ashayerizadeh O, Moghanlou KS, Manaffar R, Doan HV, Reverter M (2020) Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus caspicus) fingerlings. Fish Shellfish Immunol 98:661–669. https://doi.org/10.1016/j.fsi.2019.10.063

    Article  CAS  PubMed  Google Scholar 

  11. Das A, Kakhro K, Chowdhury S, Kamilya D (2013) Effects of potential probiotics Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol 35:1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  12. Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Kim VV, Srichaiyo S (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of nile tilapia (Oreochromis niloticus). Aquaculture 491:94–100. https://doi.org/10.1016/j.aquaculture.2018.03.019

    Article  Google Scholar 

  13. Meidong R, Nakao M, Sakai K, Tongpim S (2021) Lactobacillus paraplantarum L34b–2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture 531:735878. https://doi.org/10.1016/j.aquaculture.2020.735878

    Article  CAS  Google Scholar 

  14. Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol Lett 148:23–33. https://doi.org/10.1016/j.imlet.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  15. Gobi N, Vaseeharan B, Chen J-C, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  16. Giri SS, Sen SS, Saha S, Sukumaran V, Park SC (2018) Use of a potential probiotic, Lactobacillus plantarum L7, for the preparation of a rice-based fermented beverage. Front Microbiol 9:473. https://doi.org/10.3389/fmicb.2018.00473

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC (2018) Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front Immunol 9:1824. https://doi.org/10.3389/fimmu.2018.01824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giri SS, Jun JW, Yun S et al (2019) Characterisation of lactic acid bacteria isolated from the gut of Cyprinus carpio that may be effective against lead toxicity. Probiotics Antimicrob Proteins 11:65–73. https://doi.org/10.1007/s12602-017-9367-6

    Article  CAS  PubMed  Google Scholar 

  19. Sukumaran V, Park SC, Giri SS (2016) Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. Fish Shellfish Immunol 57:362–370. https://doi.org/10.1016/j.fsi.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  20. Use of Fishes in Research Committee (joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists, and the American Society of Ichthyologists and Herpetologists). 2014. Guidelines for the use of fishes in research. American Fisheries Society, Bethesda, Maryland. https://www.fws.gov/fisheries/aadap/PDF/Guidelines-for-Use-of-Fishes.pdf

  21. Subramanian S, MacKinnon SL, Ross NW (2017) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B 148:256–263. https://doi.org/10.1016/j.cbpb.2007.06.003

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  23. Hoseinifar SH, Mirvaghefi A, Mojazi Amiri B, Rostami HK, Merrifield DL (2011) The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquaculture Nutr 17:498–504. https://doi.org/10.1111/j.1365-2095.2010.00828.x

    Article  CAS  Google Scholar 

  24. Giri SS, Sukumaran V, Park SC (2019) Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish Shellfish Immunol 92:612–620. https://doi.org/10.1016/j.fsi.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime Quantitative PCR and the 2−∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Ganguly S, Prasad A (2012) Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev Fish Biol Fish 22(1):11–16. https://doi.org/10.1007/s11160-011-9214-x

    Article  Google Scholar 

  27. Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. https://doi.org/10.1016/j.fsi.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  28. Guardiola FA, Bahi A, Bakhrouf A, Esteban MA (2017) Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics on gilthead seabream (Sparus aurata L.) skin mucosal immunity. Fish Shellfish Immunol 65:169–178. https://doi.org/10.1016/j.fsi.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  29. Zhang CN, Zhang JL, Guan WC, Zhang XF, Guan SH, Zeng QH, Cheng GF, Cui W (2017) Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish Shellfish Immunol 68:84–89. https://doi.org/10.1016/j.fsi.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadi G, Rafiee G, Abdelrahman HA (2020) Effects of dietary Lactobacillus plantarum (KC426951) in biofloc and stagnant-renewal culture systems on growth performance, mucosal parameters, and serum innate responses of Nile tilapia Oreochromis niloticus. Fish Physiol Biochem 46:1167–1181. https://doi.org/10.1007/s10695-020-00777-w

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y-Z, Yang H-L, Ma R-L, Lin W-Y (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29:803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  PubMed  Google Scholar 

  32. Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish. Labeo rohita Fish Shellfish Immunol 34(2):660–666. https://doi.org/10.1016/j.fsi.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  33. Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MA (2017) Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 64:165–175. https://doi.org/10.1016/j.fsi.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  34. Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Xie CX (2020) Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol 97:83–95. https://doi.org/10.1016/j.fsi.2019.12.046

    Article  CAS  PubMed  Google Scholar 

  35. Abarike ED, Cai J, Lu Y, Yu H, Chen L, Jian J, Tang J, Jun L, Kuebutornye FKA (2018) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 82:229–238. https://doi.org/10.1016/j.fsi.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  36. Wang M, Yi M, Lu M, Gao F, Liu Z, Huang Q, Li Q, Zhu D (2020) Effects of probiotics Bacillus cereus NY5 and Alcaligenes faecalis Y311 used as water additives on the microbiota and immune enzyme activities in three mucosal tissues in Nile tilapia Oreochromis niloticus reared in outdoor tanks. Aquaculture Rep 17:100309. https://doi.org/10.1016/j.aqrep.2020.100309

    Article  Google Scholar 

  37. Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol Part B 150:85–92. https://doi.org/10.1016/j.cbpb.2008.01.011

    Article  CAS  Google Scholar 

  38. Jiang Y, Zhou S, Sarodie EK, Chu W (2020) The effects of Bacillus cereus QS-1 on intestinal barrier function and mucosal gene transcription in Crucian carp (Carassius Auratus gibelio). Aquaculture Rep 17:100356. https://doi.org/10.1016/j.fsi.2019.04.014

    Article  CAS  Google Scholar 

  39. Nikoskelainen S, Ouwehand A, Salminen S (2001) Bylund G (2001) Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 198:229–236. https://doi.org/10.1016/S0044-8486(01)00593-2

    Article  Google Scholar 

  40. Denis F, Archambault D (2001) Molecular cloning and characterization of beluga whale (Delphinapterus leucas) interleukin-1β and tumor necrosis factor-α. Canadian J Vet Res 65:233−240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189685/pdf/cjvetres00004-0035.pdf

  41. Low C, Wadsworth S, Burrells C, Secombes CJ (2003) Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture 221:23–40. https://doi.org/10.1016/S0044-8486(03)00022-X

    Article  CAS  Google Scholar 

  42. Mahdhi A, Chakroun I, Espinosa-Ruiz C, Messina CM et al (2020) Dietary administration effects of exopolysaccharide from potential probiotic strains on immune and antioxidant status and nutritional value of European sea bass (Dicentrarchus labrax L.). Res Vet Sci 131:51–58. https://doi.org/10.1016/j.rvsc.2020.04.008

    Article  CAS  PubMed  Google Scholar 

  43. Vazirzadeh A, Roosta H, Masoumi H, Farhadi A, Jeffs A (2020) Long-term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow-out. Fish Shellfish Immunol 98:748–757. https://doi.org/10.1016/j.fsi.2019.11.023

    Article  CAS  PubMed  Google Scholar 

  44. Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M et al (2018) Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia. Oreochromis niloticus Fish Shellfish Immunol 76:368–379. https://doi.org/10.1016/j.fsi.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  45. Wei H, Yin L, Feng S, Wang X, Yang K, Zhang A, Zhou H (2015) Dual-parallel inhibition of IL-10 and TGF-b1 controls LPS-induced inflammatory response via NF-κB signaling in grass carp monocytes/macrophages. Fish Shellfish Immunol 44:445–452. https://doi.org/10.1016/j.fsi.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  46. Qiao G, Lv T, Zhang M, Chen P, Sun Q, Zhang J, Li Q (2020) β-hydroxybutyrate (β-HB) exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated macrophages in Liza haematocheila. Fish Shellfish Immunol 107:444–451. https://doi.org/10.1016/j.fsi.2020.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Brain Pool program of the National Research Foundation of Korea, Ministry of Science and ICT (KRF: 2016H1D3A1909005) and the Cooperative Research Program of the Centre for Companion Animal Research of the Rural Development Administration, Republic of Korea (PJ0139852020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkatachalam Sukumaran or Se Chang Park.

Ethics declarations

Ethical Approval

The experiments with fish were performed following national and international guidelines. This study does not contain any studies with human participants.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S.S., Kim, H.J., Kim, S.G. et al. Effects of Dietary Lactiplantibacillus plantarum subsp. plantarum L7, Alone or in Combination with Limosilactobacillus reuteri P16, on Growth, Mucosal Immune Responses, and Disease Resistance of Cyprinus carpio. Probiotics & Antimicro. Prot. 13, 1747–1758 (2021). https://doi.org/10.1007/s12602-021-09820-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09820-5

Keywords

Navigation