Skip to main content
Log in

Insights on the Effect of Applied Potential on the Properties of Electrodeposited p-Type Cuprous Oxide (Cu2O) Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the effect of the applied cathodic potential on properties of electrodeposited p-type Cu2O thin films was investigated. Electrochemical deposition was carried out on indium tin oxide (ITO) substrate from alkaline Cu(II) lactate-based solution at different cathodic potentials (− 0.60 to − 0.80 V vs. Ag/AgCl) without subsequent annealing. It was shown that changing the electrodeposition applied potential could tune both the phase structure and band gap energy of the Cu2O thin films. The morphological, optical, and structural characterizations of the deposits were carried out using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-VIS spectroscopy, respectively. FESEM observations of the as-prepared deposits revealed uniform, rough and desert rose-like crystallites composed of square or triangular pyramidal and truncated polyhedral morphologies. The XRD investigation showed that the films were crystalline and revealed the presence of two other sub-stoichiometric copper oxide phases (Cu4O3 and Cu64O), depending on the applied potential. The crystallite size, evaluated using the Scherer formula, varied tightly with the cathode potential and increased in the − 0.65 to − 0.75 V potential range, indicating that the films are of better crystallization. The optical band gaps, deduced from experimental Tauc plots, were found to be 2.33, 1.98, 2.25, 2.27 and 2.50 eV for thin films deposited at − 0.60, − 0.65, − 0.70, − 0.75 and − 0.8 V vs Ag/AgCl, respectively. A mechanism of the phase formation is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. W. Ismail, N.M. El-Shafai, A. El-Shaer, and M. Abdelfatah, Mater. Sci. Semicond. Process. 120, 105335 (2020).

    Article  CAS  Google Scholar 

  2. Y. Yang, M. Pritzker, and Y. Li, Thin Solid Films 676, 42 (2019).

    Article  CAS  Google Scholar 

  3. Y. Qu, J. Qian, J. Liu, L. Yao, L. Zhao, X. Song, P. Zhang, and L. Gao, J. Electrochem. Soc. 166, H452 (2019).

    Article  CAS  Google Scholar 

  4. R. Akbari, G. Godeau, M. Mohammadizadeh, F. Guittard, and T. Darmanin, Appl. Surf. Sci. 503, 144094 (2020).

    Article  CAS  Google Scholar 

  5. W. Zhang, C. Xu, Y. Hu, S. Yang, L. Ma, L. Wang, P. Zhao, C. Wang, J. Ma, and Z. Jin, Nano Energy 73, 104796 (2020).

    Article  CAS  Google Scholar 

  6. V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C. Hu, P. Singh, P. Raizada, W. Peng, and S.S. Lam, Chem. Eng. J. 402, 126184 (2020).

    Article  CAS  Google Scholar 

  7. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, Adv. Sci. 5, 1700275 (2018).

    Article  Google Scholar 

  8. T. Özdal, and H. Kavak, Superlattice. Microst. 146, 106679 (2020).

    Article  Google Scholar 

  9. M.A. Hossain, R. Al-Gaashani, H. Hamoudi, M.J. Al Marri, I.A. Hussein, A. Belaidi, B.A. Merzougui, F.H. Alharbi, and N. Tabet, Mater. Sci. Semicond. Process. 63, 203 (2017).

    Article  CAS  Google Scholar 

  10. A.A. Hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar, and K. Bouabid, Mater. Today: Proc. 22, 89 (2020).

    Google Scholar 

  11. D.S. Zimbovskii, and B.R. Churagulov, Inorg. Mater. 54, 660 (2018).

    Article  CAS  Google Scholar 

  12. S. Choudhary, J. V. N. Sarma, and S. Gangopadhyay, Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films, in (ETMN, Baroda, India, 1724 020116 (2016).

  13. T. Ikenoue, T. Kawai, R. Wakashima, M. Miyake, and T. Hirato, Appl. Phys. Express 12, 055509 (2019).

    Article  CAS  Google Scholar 

  14. M.A. Badillo-Ávila, R. Castanedo-Pérez, G. Torres-Delgado, J. Márquez-Marín, and O. Zelaya-Ángel, Mater. Sci. Semicond. Process. 74, 203 (2018).

    Article  Google Scholar 

  15. L. Yuan-Gee, J.-R. Wang, M.-J. Chuang, D.-W. Chen, and K.-H. Hou, Int. J. Electrochem. Sci. 12, 507 (2017).

    Google Scholar 

  16. X. Yu, X. Tang, J. Li, J. Zhang, S. Kou, J. Zhao, and B. Yao, J. Electrochem. Soc. 164, D999 (2017).

    Article  CAS  Google Scholar 

  17. M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, and J. Heo, Thin Solid Films 661, 132 (2018).

    Article  CAS  Google Scholar 

  18. T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, and J.A. Switzer, Chem. Mater. 8, 2499 (1996).

    Article  CAS  Google Scholar 

  19. M. Abdelfatah, W. Ismail, and A. El-Shaer, Mater. Sci. Semicond. Process. 81, 44 (2018).

    Article  CAS  Google Scholar 

  20. M.M. Moharam, E.M. Elsayed, J.C. Nino, R.M. Abou-Shahba, and M.M. Rashad, Thin Solid Films 616, 760 (2016).

    Article  CAS  Google Scholar 

  21. X. Jiang, M. Zhang, S. Shi, G. He, X. Song, and Z. Sun, J. Electrochem. Soc. 161, D640 (2014).

    Article  Google Scholar 

  22. S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia, Semicond. Sci. Tech. 28, 115005 (2013).

    Article  Google Scholar 

  23. K.D. Singh, S.C. Jain, T.D. Sakore, and A.B. Biswas, Z. Kristallogr. 141, 473 (1975).

    Article  CAS  Google Scholar 

  24. J. Lee, and Y. Tak, Electrochem. Solid-State Lett. 2, 559 (1999).

    Article  CAS  Google Scholar 

  25. S. Bijani, R. Schrebler, E.A. Dalchiele, M. Gabas, L. Martínez, and J.R. Ramos-Barrado, J. Phys. Chem. C 115, 21373 (2011).

    Article  CAS  Google Scholar 

  26. L.I. Bendavid, and E.A. Carter, J. Phys. Chem. B 117, 15750 (2013).

    Article  CAS  Google Scholar 

  27. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed (Pearson Education Limited, UK, 2014, p. 104).

  28. M.A. Awad, and N.M.A. Hadia, Optik 142, 334 (2017).

    Article  CAS  Google Scholar 

  29. M.S. Alqahtani, N.M.A. Hadia, and S.H. Mohamed, Optik 173, 101 (2018).

    Article  CAS  Google Scholar 

  30. S. Lee, D.H. Kim, and T.W. Kim, J. Sol-Gel Sci. Technol. 67, 105 (2013).

    Article  CAS  Google Scholar 

  31. Y. Gu, X. Su, Y. Du, and C. Wang, Appl. Surf. Sci. 256, 5862 (2010).

    Article  CAS  Google Scholar 

  32. S. Rühle, H.N. Barad, Y. Bouhadana, D.A. Keller, A. Ginsburg, K. Shimanovich, K. Majhi, R. Lovrincic, A.Y. Anderson, and A. Zaban, Phys. Chem. Chem. Phys. 16, 7066 (2014).

    Article  Google Scholar 

  33. Y. Zhou, J. Zhao, Y. Liu, R.J.H. Ng, and J.K.W. Yang, Mater. Sci. Semicond. Process. 121, 105444 (2021).

    Article  CAS  Google Scholar 

  34. M. Benaicha, M. Hamla, and S. Derbal, Int. J. Electrochem. Sci. 11, 4909 (2016).

    Article  CAS  Google Scholar 

  35. M. Fox, Optical Properties of Solids, 2nd ed., (N.Y.: Oxford University Press, 2010).

    Google Scholar 

  36. N.F. Mott, and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., (Oxford: Clarendon Press, 2012).

    Google Scholar 

  37. S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors (US, Boston, MA: Springer, 1999).

    Book  Google Scholar 

  38. D.S. Murali, and A. Subrahmanyam, J. Phys. D: Appl. Phys. 49, 375102 (2016).

    Article  Google Scholar 

  39. J.P. Zhang, L.D. Zhang, L.Q. Zhu, Y. Zhang, M. Liu, and X.J. Wang, J. Appl. Phys. 102, 114903 (2007).

    Article  Google Scholar 

  40. R. Nathawat, A.K. Kumawat, S.S. Rathore, A.K. Mukhopadhyay, and K. Kabra, J. Nano- Electron. Phys. 13, 01030 (2021).

    Article  Google Scholar 

  41. P.M. Diehm, P. Agoston, and K. Albe, ChemPhysChem 13, 2443 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Algerian Ministry of Higher Education and Scientific Research through Project PRFU (code: A16N01UN190120190001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Benaicha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbal, S., Benaicha, M. Insights on the Effect of Applied Potential on the Properties of Electrodeposited p-Type Cuprous Oxide (Cu2O) Thin Films. J. Electron. Mater. 50, 5134–5140 (2021). https://doi.org/10.1007/s11664-021-09057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09057-6

Keywords

Navigation