Skip to main content
Log in

Does a combined screw and dowel construct improve tibial fixation during anterior cruciate ligament reconstruction?

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

The aims of the present study were to compare the biomechanical properties of tibial fixation in hamstring-graft ACL reconstruction using interference screw and a novel combination interference screw and dowel construct.

Material and Methods

We compared the fixation of 30 (2- and 4-stranded gracilis and semitendinosis tendons) in 15 fresh-frozen porcine tibiae with a biocomposite resorbable interference screw (Group 1) and a screw and dowel construct (Group 2). Each graft was subjected to load-to-failure testing (50 mm/min) to determine maximum load, displacement at failure and pullout strength.

Results

There were no significant differences between the biomechanical properties of the constructs. Multivariate analysis demonstrated that combination constructs (β = 140.20, p = 0.043), screw diameter (β = 185, p = 0.006) and 4-strand grafts (β = 51, p = 0.050) were associated with a significant increase in load at failure. Larger screw diameter was associated with increased construct stiffness (β = 20.15, p = 0.020).

Conclusion

The screw and dowel construct led to significantly increased fixation properties compared to interference screws alone in a porcine model. Increased screw diameter and utilization of 4-strand ACL grafts also led to improvement in load-to-failure of the construct. However, this is an in vitro study and additional investigations are needed to determine whether the results are reproducible in vivo.

Level of evidence

Level V; Biomechanical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

BMD:

Bone mineral density

References

  1. Aga C, Rasmussen MT, Smith SD, Jansson KS, LaPrade RF, Engebretsen L, Wijdicks CA (2013) Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 41:841–848

    Article  Google Scholar 

  2. Bach BR Jr (2003) Revision anterior cruciate ligament surgery. Arthroscopy 19(Suppl 1):14–29

    Article  Google Scholar 

  3. Bailey SB, Grover DM, Howell SM, Hull ML (2004) Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia: a study of the structural properties of three soft tissue fixation devices. Am J Sports Med 32:755–764

    Article  Google Scholar 

  4. Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of Hamstring Graft Diameter on Tendon Strength: A Biomechanical Study. Arthroscopy 31:1084–1090

    Article  Google Scholar 

  5. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    Article  Google Scholar 

  6. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    Article  Google Scholar 

  7. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation–the effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524–529

    Article  CAS  Google Scholar 

  8. Cain EL, Phillips BB, Charlebois SJ, Azar FM (2005) Effect of tibial tunnel dilation on pullout strength of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction. Orthopedics 28:779–783

    Article  Google Scholar 

  9. .Coleridge SD, Amis AA, (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:391–397

    Google Scholar 

  10. Dunkin BS, Nyland J, Duffee AR, Brunelli JA, Burden R, Caborn D (2007) Soft tissue tendon graft fixation in serially dilated or extraction-drilled tibial tunnels: a porcine model study using high-resolution quantitative computerized tomography. Am J Sports Med 35:448–457

    Article  Google Scholar 

  11. Ferretti A, Conteduca F, Labianca L, Monaco E, De Carli A (2005) Evolgate fixation of doubled flexor graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic loading. Am J Sports Med 33:574–582

    Article  Google Scholar 

  12. Gadikota HR, Seon JK, Kozanek M, Oh LS, Gill TJ, Montgomery KD, Li G (2009) Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 37:962–969

    Article  Google Scholar 

  13. Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625

    Article  CAS  Google Scholar 

  14. Gobbi A, Mahajan V, Karnatzikos G, Nakamura N (2012) Single- versus double-bundle ACL reconstruction: is there any difference in stability and function at 3-year followup? Clin Orthop Relat Res 470:824–834

    Article  Google Scholar 

  15. Gokce A, Beyzadeoglu T, Ozyer F, Bekler H, Erdogan F (2009) Does bone impaction technique reduce tunnel enlargement in ACL reconstruction? Int Orthop 33:407–412

    Article  Google Scholar 

  16. Hamada M, Shino K, Horibe S, Mitsuoka T, Miyama T, Shiozaki Y, Mae T (2001) Single- versus bi-socket anterior cruciate ligament reconstruction using autogenous multiple-stranded hamstring tendons with endoButton femoral fixation: A prospective study. Arthroscopy 17:801–807

    Article  CAS  Google Scholar 

  17. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    Article  CAS  Google Scholar 

  18. Han DL, Nyland J, Kendzior M, Nawab A, Caborn DN (2012) Intratunnel versus extratunnel fixation of hamstring autograft for anterior cruciate ligament reconstruction. Arthroscopy 28:1555–1566

    Article  Google Scholar 

  19. Harner CD, Fu FH, Irrgang JJ, Vogrin TM (2001) Anterior and posterior cruciate ligament reconstruction in the new millennium: a global perspective. Knee Surg Sports Traumatol Arthrosc 99:330–336

    Article  Google Scholar 

  20. Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    Article  Google Scholar 

  21. Kurosaka M, Yoshiya S, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229

    Article  CAS  Google Scholar 

  22. Lubowitz JH, Ahmad CS, Anderson K (2011) All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 27:717–727

    Article  Google Scholar 

  23. Lubowitz JH, Guttmann D (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: parts I and II. Am J Sports Med 31:811–812

    Article  Google Scholar 

  24. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    Article  CAS  Google Scholar 

  25. Mayr R, Heinrichs CH, Eichinger M, Coppola C, Schmoelz W, Attal R (2015) Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw. Am J Sports Med 43:1380–1385

    Article  Google Scholar 

  26. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71

    Article  CAS  Google Scholar 

  27. Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TL (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771

    Article  Google Scholar 

  28. Rittmeister ME, Noble PC, Bocell JR Jr, Alexander JW, Conditt MA, Kohl HW 3rd (2001) Interactive effects of tunnel dilation on the mechanical properties of hamstring grafts fixed in the tibia with interference screws. Knee Surg Sports Traumatol Arthrosc 9:267–271

    Article  CAS  Google Scholar 

  29. Scheffler SU, Südkamp NP, Göckenjan A, Hoffmann RFG, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–331

    Article  Google Scholar 

  30. Simonian PT, Sussmann PS, Baldini TH, Crockett HC, Wickiewicz TL (1998) Interference screw position and hamstring graft location for anterior cruciate ligament reconstruction. Arthroscopy 14:459–464

    Article  CAS  Google Scholar 

  31. Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37:160–167

    Article  Google Scholar 

  32. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Südkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    Article  CAS  Google Scholar 

  33. Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. Am J Sports Med 19:217–225

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PL contributed to data analysis and interpretation, critical revisions, manuscript review, statistical analysis. MET was involved in data analysis and interpretation, critical revisions, manuscript review. GL and DB contributed to data acquisition. PA was involved in data acquisition, study design, data analysis and interpretation, critical revisions, manuscript review, administration, technical and material support. PS and FA contributed to study design, data analysis and interpretation, critical revisions, manuscript review, administration, technical and material support, study supervision.

Corresponding author

Correspondence to Pierre Laumonerie.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest with respect the materials or methods used in this study or the findings specified herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

None of the authors, or any member of their family, have received any financial remuneration related to the subject of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laumonerie, P., Tibbo, M.E., Laumond, G. et al. Does a combined screw and dowel construct improve tibial fixation during anterior cruciate ligament reconstruction?. Eur J Orthop Surg Traumatol 32, 759–765 (2022). https://doi.org/10.1007/s00590-021-03049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-03049-2

Keywords

Navigation