Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften
(Dr. rer. pol.)

von der KIT-Fakultat fur Wirtschaftswissenschaften
des Karlsruher Instituts fur Technologie (KIT)

genehmigte

Dissertation

von

Patrick S. Kummler

1. Gutachter ~ Prof. Dr. Hansjérg Fromm

2. Gutachter ~ Prof. Dr. Harald Sack

Tag der mundlichen Prufung: 17. August 2021

Karlsruhe, 2021

Abstract

High demands on quality and increasing complexity are major challenges in the
development of industrial software in general. The development of automotive
software in particular is subject to additional safety, security, and legal demands.
In such software projects, the specification of requirements is the first concrete
output of the development process and usually the basis for communication between
manufacturers and development partners. The quality of this output is therefore
decisive for the success of a software development project.

In recent years, many efforts in academia and practice have been targeted towards
securing and improving the quality of requirement specifications. Early improve-
ment approaches concentrated on the assistance of developers in formulating their
requirements. Other approaches focus on the use of formal methods; but despite
several advantages, these are not widely applied in practice today. Most software
requirements today are informal and still specified in natural language.

Current and previous research mainly focuses on quality characteristics agreed
upon by the software engineering community. They are described in the standard
ISO/IEC/IEEE 29148:2011, which offers nine essential characteristics for require-
ments quality. Several approaches focus additionally on measurable indicators that
can be derived from text. More recent publications target the automated analysis
of requirements by assessing their quality characteristics and by utilizing methods
from natural language processing and techniques from machine learning.

This thesis focuses in particular on the reliability and accuracy in the assessment of
requirements and addresses the relationships between textual indicators and quality
characteristics as defined by global standards. In addition, an automated quality
assessment of natural language requirements is implemented by using machine
learning techniques. For this purpose, labeled data is captured through assessment
sessions. In these sessions, experts from the automotive industry manually assess
the quality characteristics of natural language requirements.

The research is carried out in cooperation with an international engineering and
consulting company and enables us to access requirements from automotive soft-
ware development projects of safety and comfort functions. We demonstrate the
applicability of our approach for real requirements and present promising results for
an industry-wide application.

Acknowledgement

Normally, the content of a research thesis and its successful completion are also
elementarily based on the cooperation of several people. Therefore, from a personal
view, I would like to thank the relevant people who contributed to the success and
execution of my research.

Reasonably, I would like to sincerely thank Prof. Hansjorg Fromm, who not only
qualitatively supported the work with his excellent supervision, but also contributed
unconditionally to the success of the thesis by providing scientific guidance and
important advice. In particular, the detailed discussions and the exciting explana-
tions of his personal experiences from industrial practice have provided important
necessary impulses for my research.

Essentially, Prof. Gerhard Satzger and the many colleagues at the Karlsruhe Ser-
vice Research Institute also contributed to my success. They introduced me to
elementary methods of machine learning and natural language processing and gave
research advice and valuable hints for which I am very grateful for.

Quite unquestionably, without the commitment of my employer, it would have been
unfeasible to conduct my research in parallel with my job as a competence manager.
I would therefore like to express my deep gratitude to Emmanuel Chronakis for his
true support and for providing me with the necessary space for my research.

Finally, this work would not have been possible without the support of my
entire family. My special gratitude goes to my wife Verena, who not only reviewed the
vast amount of references, but also supported and encouraged me unconditionally.
At the end, our daughter Amilia motivated me to finally finish this work.

Contents

1 Introduction
1.1 Motivation o e e e e e e e e e e e e e e e e
1.2 Researchdesign.,
1.3 Structureofthesis

2 Foundations and related work
2.1 Requirement foundations
2.1.1 Requirement definition
2.1.2 Requirements in the development process
2.1.3 Requirements engineering
2.2 Quality assessment of requirements
2.2.1 Requirementsquality
2.2.2 Relatedwork
2.2.3 Researchgap,
2.2.4 Researchissues

2.3 Conclusion e e e e

3 Manual assessment of requirements quality
3.1 Datahandling
3.1.1 Dataacquisition oo oo
3.1.2 Dataselection
3.2 Requirements assesSMeNt« v v v vt et
3.2.1 Assessmenttooldesign.
3.2.2 Assessmentresults
3.2.3 ASSesSmentiSSueS. ¢ v v v v v et e e e e e e e
3.3 Agreement On asSESSIMENLS v v v v v v v v v v v v e e e
3.3.1 Intra-rater agreement v et
3.3.2 Inter-rater agreement
3.3.3 Determination of agreement
3.3.4 Agreementanalysis

3.4 Conclusion i e e e

10
13

17
17
17
21
23
30
31
36
45
47
50

53
54
54
56
58
58
63
67
68
69
70
70
75
81

vii

viii

4 Automated assessment of requirements quality

4.1 Methodological foundations

4.1.1 Natural language processing

4.1.2 Machinelearning

4.1.3 Text mining
4.2 Implementation . .

4.2.1 Natural language processing

4.2.2 Machinelearning

4.3 Evaluation

4.3.1 Model optimization.

4.3.2 Featureimportance oo

4.4 Conclusion

5 Conclusion
5.1 Summary
5.2 Limitations
5.3 Implications
5.4 Future research . .

A Appendix
A.1 Assessment sessions

References

85
86
86
90
100
101
102
113
115
118
126
128

131
131
134
136
136

141
141

143

Introduction

In short, software is eating the world.

— Marc Andreessen

In most areas of life, a total pervasion of software and digital services can be
observed. "Before long, we can expect increasing public concern about the perva-
siveness of software, not only in public services but also in consumer products like
automobiles, washing machines, telephones, and electric shavers" (Kitchenham &
Pfleeger, 1996, p. 1). This is referred to as the megatrend "digital transformation"
and permeates areas and industries such as healthcare, railway services, and finance
equally (Brennen & Kreiss, 2014; Collin, 2015; Kane et al., 2017). The phenomenon
of digital transformation is the "employment of new digital technologies to foster
major business improvements in organizations" (Hanelt et al., 2015, p. 1315).

Marc Andreessen stated in 2011, that “we are in the middle of a dramatic and
broad technological and economic shift in which software companies are poised
to take over large swathes of the economy” (Andreessen, 2011, p. 2). Software is
everywhere. Large companies and entire industries focus on developing software
and implementing enhanced digital services for their customers. This change is
particularly noticeable as many new software-based companies have emerged in a
short period and are growing rapidly. Today, Amazon, as a software-based company,
is (not only) the largest book retailer in the world. Netflix is a software company
known as the world’s largest video service. Spotify and iTunes, both software
companies, are the most dominant music companies (Goodwin, 2015). Hardly an
area of life is skipped in this transformation process.

These companies do not manufacture physical products or procure production
materials. Their product is based on software and the ability to manage the thin
layer between cost-intensive supply systems of others on the one hand and the access
to potential consumer classes on the other. “The value is in the software interface,
not the products” (Goodwin, 2015). Nearly all industries that are affected by this
trend, and the automotive industry makes no exception, were mainly considered in
the physical world. However, software is now taking over an increasing part of the
value-added chains here as well.

1.1

The digital transformation faces manufacturers in the automotive industry with new
and unknown competitive challenges (Berman & Bell, 2011; Hanelt et al., 2015).
“The global automotive industry is at the vanguard of a digital revolution” (Duncan
et al., 2015, p. 1) and the value creation is increasingly shifting from hardware to
software and services (Reidel, 2016).

Car manufacturers are faced with the "general trend of servitisation, which moves
customers from being vehicle owners to using sharing services instead" (Moravek,
2020). They are evolving from product manufacturers to providers of integrated
mobility services (Seiberth, 2015). Industrial boundaries are becoming blurred,
value chains are being reconfigured, and new competitors from different industries
are appearing. The transition to open digital ecosystems is taking place. The vehicle
as a product is not at the center of value creation anymore, but rather provides
access to a world of services. Digital platforms are the focus of vehicle development
and the car will be part of an open and huge system.

Hardly any other industry is growing as fast and setting as many trends as the
automotive industry. Yet electronics is the most important innovation and growth
factor. Software-based services and functions have a significant influence on the
customers’ purchasing decisions and, accordingly, have become a main differentiator
in the market. Nowadays, customers no longer decide to buy a vehicle based on
design and technical performance alone. The decision is largely driven by the
user experience that is based on electronic functions and services provided to the
customer (Ebert & Lederer, 2012). As a result, "the vehicle is also referred to as a
third place in which people work, communicate and consume alongside their home
and workplace" (de Buhr, 2015, p. 1).

Today, automotive manufacturers are offering numerous digital services for their
customers. As one of many examples, the app-based service "Porsche Passport"
allows subscribers to drive a new vehicle model of their choice on demand (Korosec,
2019). Another example is an over-the-air service which makes it possible to
analyze problems that occur in the vehicle. The car owner does not have to go to
a dealer’s workshop for analysis and even minor problems can be solved remotely
(Volkswagen, 2020). In addition to digital services, customer functions are also
a decisive criterion and contribute significantly to the success of today’s vehicles.
Driving should be comfortable and safe. This leads to a high pressure to innovate
on car manufacturers and poses extensive challenges in the development of such

Chapter 1

systems. The manufacturer with the first system assumes market leadership in a
technological area that is only just emerging.

"The quick increase of software and the traditional structures of the car industry
make it difficult for this old economy to adapt fast enough to the quite different
requirements of software-intensive system, which cars become more and more"
(Broy, 2006, p. 34). However, the automotive industry will have to continue to
adapt, as the days of traditional car manufacturers are over (Diess, 2020). The car
as a product is in the middle of the "transition from a hardware-driven machine to a
software-driven electronics device" (Burkacky et al., 2018). An entire industry with
a history of more than 100 years, originally focused on the production of physical
goods, is forced to transform into a software-based industry with a multitude of new
potential suppliers and competitors. Consequently, “the car will become a software
product” (Diess, 2019).

More than 90 percent of automotive innovations are driven by mechatronic systems,
in which software has developed as an essential differentiating factor (Lan et al.,
2008; Seiberth, 2015). Software engineering is therefore becoming increasingly im-
portant for the automotive industry to meet current and future challenges. "Software
and IT are the major drivers of modern cars—both literally and from a marketing
perspective" (Ebert & Favaro, 2017). Additional demands for quality, cost efficiency,
and compliance with norms and standards are rapidly increasing the complexity of
a vehicle.

In figure 1.1, we! show how complexity has changed in the automotive industry,
mainly due to the increase in software-driven innovations. Three complexity drivers
can be identified that have a major influence on automotive development (Ebert
& Favaro, 2017). First, the pervasion of software and digital services results in
increasing liability risks and additional security and legal requirements. Second, the
increasing complexity of software functions causes a significantly higher number
of requirements in development projects. Third, distributed development leads
to additional communication efforts. These drivers are briefly described in the
following.

For stylistic reasons, the generally accepted "we" is used in this thesis. The use increases the
readability and involves the reader more on the topic. In addition, it draws attention to the fact that
the successful completion of the thesis and the content of the research were based on the participation
of more than one person. To further increase readability, we also use the third person in the masculine
form "he". For this thesis, this usage should be considered independent and equally valid for all
genders.

1.1

Complexity drivers - .
« Increasing complexity of functions Mobility services
* More and more distributed development Autonomous driving

o Rising liability risks, such as security and safety g’::::-l:):-v‘\'l\;irf

Connectivity, Vehicle2X
Cloud computing
.;\'GSG mobile communication
((\Q\ Fuel-cell technology
Electric powertrain ¢ Laser-sourced lighting

Adaptive cruise control 3D displays
Lane assistant Gesture HMI
Automatic stop and start Ethernet/IP backbone
Hybrid powertrain Emergency braking assistance Electric powertrain
Electronic stability control Head-up display Adaptive cruise control
Active body control Electronic brake control Lane assistant
Emergency calling Remote diagnostics Automatic stop and start
Electric power steering Online software updates Emergency braking assistance
Gearbox control FlexRay AUTOSAR Head-up display
Traction control Gearbox control Hybrid powertrain Electronic braking control
Electronic fuel CAN Traction control Electronic stability control Remote diagnostics
injection Antilock brakes CAN bus Active body control AUTOSAR
Antilock brakes Electronic fuel injection ces -
1975 1985 1995 2005 2015

2025

Software innovations and complexity drivers in the automotive development
(Ebert & Favaro, 2017).

Demands.

Over the last decades, many electronic systems have become established in the
automotive industry and their use is now also sometimes prescribed by law. This
applies, for example, to systems such as the anti-lock braking system (ABS). The
increasing demands on the safety of developed functions, on the availability of
systems, and on the general information security can be observed generally in the
automotive industry. To meet these demands, quality assurance measures must
be taken into account during the entire development process and industry-specific
standards must be considered and complied with.

One of the essential standards in the field of functional safety is represented by
the ISO standard 26262 (Road vehicles - Functional safety; ISO 26262, 2011),
which must be applied as a basis for the development of safety-critical functions
and systems in the car. Technical and functional safety concepts ensure that the
safety requirements are taken into account during development, thus considerably
reducing the risk or danger of a faulty and insufficiently secured function (Ebert &
Lederer, 2012).

Additional demands are also based on the requirements of rating companies. Euro
NCAP is a European company that assesses the safety of vehicles. For the launch
of a new vehicle, the automotive manufacturers strive for a high rating from Euro
NCAP as a quality characteristic for potential customers: , Achieving a maximum

Chapter 1

five star award has proven to be a strong selling point for auto manufacturers. Its
achievement relies on complex and sophisticated assisted driving systems“ (Chitkara
et al., 2013, p. 12). Thus, when developing software-based functions, automotive
manufacturers focus as well on the requirements of Euro NCAP to achieve a good
assessment for new cars (Seiniger & Weitzel, 2015).

Besides, legal requirements have a major influence on the development of automotive
software as well. As an example, to shorten the time it takes to get help in an accident,
a software-based function called "eCall" has been mandatory in every new vehicle in
Europe since 2018. According to Singh (2015), human error is responsible for more
than 90 percent of car accidents. Advanced driver assistance systems (ADAS) help
to improve passenger safety and to reduce the number of accidents. Although this
number has been declining for years, accidents cannot be completely avoided today.
The eCall function automatically detects an accident, provides improved assistance
to the driver, and sends relevant data to the next emergency station.

Automotive development is faced with extensive and interdisciplinary challenges
of software development and is characterized by increasing external factors. Legal
requirements and global standards contribute to the increase of additional require-
ments in the development of software, particularly for software that is critical to
safety. Besides, the increasing complexity of software and functions must also be
taken into account when developing software. Thus, we briefly describe the second
driver in the next section.

Complexity.

The automobile is one of the most complex products today. Whereas in the past,
systems like engine control units (ECUs), airbag systems, and ABS were responsible
for the increasing complexity, today electronic systems for autonomous driving,
connectivity functions, and electric mobility are the main drivers for complex and
challenging development (Ebert & Lederer, 2012). However, the complexity some-
times increases so quickly that it is hardly controllable. "As the importance of
electronics and software has grown, so has complexity" (Burkacky et al., 2018). New
security incidents involving automotive software are uncovered almost weekly.

If the number of software lines of code (LOC) is considered as a criterion for the
complexity of automotive software, it is already apparent in 2009 how complex
software can be in premium vehicles?. At that time, the software of a Mercedes

2We are aware that LOC (= lines of code) is not a reliable measure of software complexity.
Nevertheless, complexity and volume of software are often used synonymously.

1.1

S-Class contained about 100 million LOC and up to 100 microprocessors (Charette,
2009). This figure is even more surprising as a Boeing 787 Dreamliner from the
same year required about 6.5 million LOC to operate the avionics and on-board
systems (Desjardins, 2017; MacDuffie & Fujimoto, 2010). The radio and navigation
systems of the Mercedes alone required more than 20 million LOC (Charette, 2009).
The number of ECUs required in the S-Class is comparable to the number that is
installed in an Airbus A380.

Moreover, an immense increase can be observed between 2010 and 2016. While an
average car contained around 10 million LOC in 2010, this number has increased
to 150 million LOC only 6 years later (Burkacky et al., 2018). The trend is further
reinforced by the increase in electric mobility, as the technology for electric vehicles
is largely based on software®. Some even assume that the number will rise to over
one billion LOC in the next ten years (Antinyan, 2020). Therefore it does not seem
unreasonable to refer to cars as "computer on wheels" (Meissner et al., 2020).

In addition to extensive possibilities for improving safety, comfort, and entertainment
in a vehicle, this development also poses a major challenge for the automotive
industry. "Complexity, I would assert, is the biggest factor involved in anything
having to do with the software field. It is explosive, far reaching, and massive in its
scope” (R. Glass, 2002, p. 20). Industrial practice mostly shows a relation between
the complexity of a system and its size, which can be supplemented based on further
characteristics (Burkacky et al., 2018; MacDuffie & Fujimoto, 2010). Therefore, the
number of LOC in a vehicle rises with growing complexity, which in turn is based
on increased interconnections and underlying software requirements in automotive
development projects. "As software grows so [do] the requirements" (Huertas &
Juarez-Ramirez, 2013, p. 234).

With the discussion about the increasing complexity of automotive software func-
tions, we presented the second driver. The complexity driver usually complements
the previous driver, since, with additional demands from different areas, the com-
plexity can also increase. The last driver considers the approach of distributed
development and is shortly presented in the next section.

3The increasing development of electric cars is also justified by the fact that with the EU regulation
2019/631 defined limit values for CO, emissions are given. Otherwise, automotive manufacturers are
threatened with severe fines. Therefore, the development of electric vehicles is currently the only way
to meet the requirements of this regulation, which sets an average emission level for the entire vehicle
fleet of an automotive manufacturer.

Chapter 1

Distributed development.

The different challenges of software development force the automotive manufactur-
ers to question even well-known and established processes and approaches to adapt
them to current conditions and trends in the market. Starting points for this can be
uncovered throughout the entire development process and be optimized through a
distributed development approach.

In general, it is hardly possible to meet the challenges arising in the automotive
industry on one’s own. Therefore, new alliances are emerging between previous
competitors, such as between the BMW Group and Daimler AG (Borgmann, 2019).
"Ford and Volkswagen enter self-driving car joint venture" (Tobin, 2019) and invest
together in the autonomous vehicle technology platform Argo Al. The automotive
groups PSA and FCA are planning to join forces "to build a world-leading company"
and to jointly master the challenges that lie ahead (Press Release, 2019). "Marking
the beginning of a new era, past competitors now join forces and work together on
highly strategic projects" (Klein & Ferres, 2019).

These partnerships are only some of many announcements to strengthen the market
position of car manufacturers and to face new competitors, for example in the
field of autonomous driving. "An extensive network of partnerships, alliances and
joint ventures looking to shape the future of autonomous mobility" (Klein & Ferres,
2019). Figure 1.2 provides an extract of this network and shows the partnerships,
collaborations, and participations between car manufacturers (red circle), traditional
automotive suppliers (blue circle), and technology companies (green circle).

Besides direct partnerships and collaborations, larger alliances between companies
are increasingly emerging. Figure 1.2 also shows the joint venture MONET, which
defines the cooperation for the development of autonomous driving technology
between several Asian car manufacturers (e.g. Toyota, Suzuki, and Mazda). Other
examples are PAVE (Partners for Automated Vehicle Education) and NAV (Network-
ing for Autonomous Vehicles), two approaches that define alliances between global
automobile manufacturers and suppliers.

"Traditionally the car industry is highly vertically organized. In software engineering
we would say it is modular" (Broy, 2006, p. 34). The major part of a car is developed
by a number of different development partners and then integrated into the car by
the manufacturer. This share is growing as more and more partners are involved
due to the increasing software development. Such an approach, referred to as
distributed development, has some decisive advantages (Weber & Weisbrod, 2002).
In addition to an optimal allocation of costs and resources, e.g. through the support

1.1

Overview of autonomous driving partnerships (Klein & Ferres, 2019).

of external engineering companies, it also enables the use of relevant knowledge
and competencies from other industries.

Therefore, development is often carried out in cooperation with several partners
(e.g. manufacturers, suppliers, engineering companies, mobility providers). An
essential prerequisite for successful realization is reliable communication between
the partners during the entire product life cycle, but especially in the phases in which
the requirements are defined and communicated. However, "the communication
between OEMs* and suppliers has to be organized via the requirements documents,
which nowadays are often not precise and not complete enough" (Broy, 2006, p.
37).

We have identified three factors that have a major influence on the development
of automotive software and its requirements: First, additional safety and legal
requirements are a challenge for automotive manufacturers, which also results in
an increase of software requirements in the development process. Second, due
to increasingly complex functions, additional software requirements are necessary.
Third, collaborative and distributed development in automotive software projects
requires not only additional communication effort but also the assurance of reliable
information exchange. For all three factors, software requirements play a decisive
role and are crucial for the successful implementation and realization of automotive
development projects.

4OEM (= Original Equipment Manufacturer) is synonymous with car manufacturer.

Chapter 1

Conclusion.

In the beginning, the automotive industry had little to do with software development.
Meanwhile, software is the most important innovation driver and with each new
generation of a vehicle, the software volume almost doubles (Ebert & Lederer, 2007).
At the same time, automotive development is shifting from a component-based
approach to a software function approach. "Development will become a continuous
process that fully decouples cars‘ rather stable hardware from their functionality
driven by software upgrades" (Ebert & Favaro, 2017). Ensuring software quality
is therefore becoming increasingly complex, time-consuming, and cost-intensive,
which leads to growing attention to quality assurance methods in the software
development process.

It has long been recognized that the success of a software development project
strongly depends on the quality of the underlying requirements (Curtis et al., 1988;
Kamata & Tamai, 2007; Knauss et al., 2009) and “requires fluid collaboration and
communication between clients and software engineers” (Génova et al., 2013, p. 2).
Failures in any development phase can often be traced back to miscommunication in
the requirements phase. "The serious problems that have happened with software
have to do with requirements, not coding errors" (Somers, 2017).

Car manufacturers are faced with the challenge of writing "good" software require-
ments. Failures in the requirement specification account for 70 to 85 percent of all
the rework costs in the development process (Wiegers, 2003, cited by Kiritani and
Ohashi, 2015). Consequently, the quality of requirements is in a new focus. "Given
this central role of requirements as a mean to communicate intention, assuring
their quality is essential to reduce misunderstandings that lead to potential waste"
(Unterkalmsteiner & Gorschek, 2017, p. 77).

Improving requirements quality has been a concern of software engineering from
the beginning on. Early improvement approaches concentrated on the management
and discipline of the development process and on the assistance of developers in
formulating software requirements. Several established approaches, such as formal
specification methods to describe and specify software requirements, already exist.
But, “despite the significant advantages attributed to the use of formal specification
languages, their use has not become common practice” (Wilson et al., 1997, p.
1) and they have not been widely accepted. Requirements are still organized in
text documents and used as the basis for the communication between stakeholders.
“Natural language is key in requirements engineering” (Berry, 2007, p. 1).

1.1

1.2

10

As the majority of software requirements are still written in natural language, most
discussions focus on the quality of natural language requirements. Consequently,
methods from natural language processing have been used to analyze requirements.
Besides, textual indicators were identified that are believed to be determinants
of certain quality characteristics. In a first generation of requirements analysis
tools, these textual indicators were analyzed and visualized to the developer for the
purpose of quality improvement.

Due to the massive increase in requirements, new, reliable, and automated ap-
proaches are necessary to tackle the problem of requirements quality and to enable
quality assurance for software development. "Such (semi-)automatic assessment can
reduce the time needed for requirements analysis and validation in the requirements
specification phase, and ultimately increase the quality" (Ormandjieva et al., 2007,
p. 39). Therefore, a new generation of tools aims at quantitatively assessing the
quality of requirements by the degree of fulfillment of its quality characteristics.
For this purpose, machine learning algorithms are well suited. A single research
study is known that uses classification algorithms to assess the quality of software
requirements (Parra et al., 2015). The assessment, however, relates to a rather
unspecific quality definition and only distinguishes "good quality" from "bad quality".
What is missing so far is an attempt to quantitatively assess software requirements
with respect to standardized quality characteristics on a finer scale. This is exactly
the objective of our research, which we present in more detail in the following
section.

In this thesis, we focus on the quality assessment of natural language requirements
through characteristics. We identify such approaches that cope with the current
challenges of the industry and that enable an automated quality assessment of
requirements (e.g. Fabbrini et al., 2001; Fantechi et al., 2003; Génova et al., 2013;
Huertas & Juarez-Ramirez, 2013; Ormandjieva et al., 2007; Wilson et al., 1997,
H. Yang et al., 2012). Frameworks to measure and improve the quality of natural
language requirements already exist (e.g. Parra et al., 2015).

Our research follows the idea to use machine learning techniques for the assessment
of text quality. For this purpose, we use indicators for properties in natural language
requirements that an expert takes into consideration when manually assessing a
requirement. We draw upon the groundwork on requirements quality that has

Chapter 1

emerged from various standardization efforts within the software engineering com-
munity. The standard ISO/IEC/IEEE 29148:2011 (ISO 29148, 2011) provides a
set of characteristics that are believed to determine the quality of an individual
requirement. We consider these quality characteristics in our research.

In our first research question, we ask about the possibility to automatically assess
requirements according to these quality characteristics by using machine learning
techniques.

Can machine learning algorithms be used to accurately assess quality
characteristics of a natural language software requirement?

The question is not only whether a machine learning algorithm can be used, but
also whether the algorithm delivers sufficiently accurate results. In our research,
the accuracy is related to the correct assessment of five discrete quality classes (1 =
"very bad" till 5 = "very good"), which are defined for a classification problem.

In general, discrete values describe a limited number of intervals in a continuous
range of values, while continuous values can be infinite. The former is more closely
oriented to a representation on the knowledge level (Simon, 1981). Besides, data is
reduced and simplified by a discrete approach, which is easier to understand and
explain, not only for experts (Liu et al., 2002). Finally, discrete values can influence
the speed and accuracy of some learning algorithms (Dougherty et al., 1995). Thus,
for our research, we decide to use discrete class values.

As our machine learning approach is based on supervised learning and our first
research question is similar to tasks known in the area of text analysis, some
prerequisites should be taken into account. One of the most important preconditions
is a certain amount of assessed requirements—so-called labeled data—to train and
build a machine learning model and to enable an automated assessment of non-
labeled requirements. We gather labeled data through the quality assessment of
requirements by experts.

However, we can not be sure if and how well the experts can assess the quality
characteristics of a natural language requirement. The analysis and the assurance of
the reliability of the assessments are crucial for the accuracy of our machine learning
model. Therefore, in a second research question, we ask whether such a manual
assessment can be carried out reliably by experts at all.

1.2

11

12

Can experts reliably assess quality characteristics of a natural language
software requirement?

We work out in this thesis how reliability is measured and when we consider the
experts’ assessments to be reliable. In our research, the second research question
needs to be answered before the first research question can be addressed. This
leads us to the overall outline of our research that distinguishes two consecutive
research parts in the thesis. Both parts focus on requirements assessment in two
ways: First, we let experts manually assess software requirements from our data set
using defined quality characteristics; second, we use the labeled data as input to our
machine learning model to implement an automated assessment of requirements.

For the first part, we have requirements assessed by experts based on the quality
characteristics and present results from the assessment sessions. These sessions
are conducted with experts from industrial practice that are working in automotive
software development projects and are sensitized to questions of requirements
quality. The results can be used to determine not only a reliable assessment of
requirements between experts but also a reliable requirements assessment of a
single expert. We also derive whether experts are at all capable of assessing each
quality characteristic of a single natural language requirement. Further analyses
ensure that the labeled data are appropriate for the implementation of an automated
approach.

In the second part, we use the labeled data—i.e. assessed requirements from
experts—to train a classifier by applying machine learning techniques and follow a
classical method widely used for text mining tasks. We are able to identify textual
indicators proposed from literature and industrial practice, that can be extracted
from requirements text. Based on the textual indicators and the labeled data we
implement supervised learning and demonstrate the feasibility of our approach.

With the proof of an accurate quality assessment based on quality characteristics
that even experts can reliably assess, both research parts are covered. To the best of
our knowledge, there is no comparable approach that fully incorporates the quality
characteristics of the standard ISO/IEC/IEEE 29148:2011 for the assessment of
requirements quality. In addition, we did not find any other research that analyzes
whether the characteristics can be assessed by experts and, by means of indicators,
that implements an automated assessment approach for these.

Chapter 1

1.3

The research is done in cooperation with an international automotive engineering
and consulting company and enables us to have access to software requirements
from the automotive industry. Our approach is applied and evaluated on data from
different automotive manufacturers. The use of industrial requirements and an
assessment by experts from the automotive industry ensure reliable results.

The subsequent benefit of our research can be described from different points of
view. A general increase in requirements quality leads to clear communication and
understanding of requirements between manufacturer, supplier, and development
partner. At the same time, the costs for testing and validation based on requirements
that fulfill the quality characteristics can be reduced to such an extent that reliable
test concepts can already be developed during the initial development phases. A
prior analysis and assurance of requirements quality allow the identification and opti-
mization of poorly specified requirements at an early stage of a development project.
This ultimately leads to the early detection of errors and inaccurate requirements.

With our research, we contribute to different parts of relevant scientific areas. We
analyze existing approaches that assess the communication quality based on informal
text. We use input from experts’ perspectives to enhance these and aim at creating
an approach that automatically assesses text according to indicators. Finally, through
the assessment, we also support practitioners in specifying "well-written" natural
language requirements to improve requirements quality.

In this section, we describe the structure of the thesis that is also depicted in figure
1.3. The thesis is divided into five chapters, which are described in detail in the
following.

Chapter 1

The first chapter of the thesis focuses on the introduction and motivation for our
research. We identify three drivers that have an influence on the current software
development particularly in the automotive industry. In this chapter, we also present
the research design of the thesis and introduce our two research questions.

Chapter 2

Relevant foundations for our research and contributions to the quality assessment of
natural language requirements are presented in chapter two. We analyze different
quality characteristics and discuss the standard ISO/IEC/IEEE 29148:2011. Also,

1.3

13

14

Chapter 1: Chapter 2:

INTRODUCTION FOUNDATIONS AND RELATED WORK
Motivation Requwement ReqU|rements
foundations quality

Requirements

Research design quality model Research gap
Chapter 3:
MANUAL ASSESSMENT OF REQUIREMENTS QUALITY
Data acquisition Assessment sessions Agreement analysis
and selection g 4
Chapter 4:
AUTOMATED ASSESSMENT OF REQUIREMENTS QUALITY
NEEIE] Ianguage Machine learning Implementation Evaluation
processing
Chapter 5:
CONCLUSION
Summary Limitations Implications Future research

Structure of the thesis.

we present our requirements quality model, which is used for the requirements
assessment. This chapter discusses approaches and contributions from related work
that enable us to identify the research gap. Finally, we address existing challenges
and issues for our research topic.

Chapter 3

In this chapter, we focus on our second research question. Based on the research
gap and our requirements quality model from the previous chapter, we reveal the
approach for the assessment of requirements quality by experts. In addition, the
assessment framework is shown and our requirements data basis is presented. We
describe in detail how the expert sessions are conducted and evaluate the results.
The chapter is divided into three activities: Data handling, requirements assessment,
and agreement analysis.

Chapter 1

Chapter 4

The fourth chapter addresses our first research question and describes our approach
to automatically assess the quality of natural language requirements. We present and
discuss the development of features for measuring requirements quality, activities
for data preprocessing, and statistical analyses. This chapter also describes the
implementation of the machine learning models that enable an automatic assessment
of requirements quality. It concludes with a performance evaluation, a model
optimization, and the determination of the feature importance.

Chapter 5

Finally, this chapter contains a summary of the work and discusses the limitations
and implications of our research. We also provide an outlook on future research
activities.

1.3

15

2.1

211

Foundations and related work'

If you don’t know where you're going,
any road will take you there.

— George Harrison

In this chapter, we lay the foundations of the thesis and present definitions for
a common understanding of relevant terms. In the first part, we explain why
requirements engineering plays a decisive role in today’s software development and
describe the relevance of requirements quality for the success of a project.

In the second part, we focus on the question, how requirements can be assessed
from a quality point of view. Different contributions dealing with the definition and
measurement of requirements quality are presented and discussed. We identify a

relevant research gap and highlight our approach of a requirements quality model.

Finally, we describe existing research issues and conclude with a summary of the
chapter.

In the following section, we define the term "requirement" in the context of our
research. We present the concept of requirements engineering and discuss techniques
for the formulation of requirements. The section concludes with how requirements
quality affects the processes and results of a development project.

The term "requirement" is widely common in different areas. Generally it is used to
call for and to urge for something in a defined context. When we talk about minimum
requirements, we specify technical or non-technical requirements that have to be
fulfilled at least to realize pre-defined minimum targets. For example, for a new

Parts of this chapter have already been published in Kummler (2017) and Kummler et al. (2018).

17

18

job, potential candidates have to fulfill requirements regarding skills and experience.
A requirement can also be seen for regulations and rules. Legal requirements can
serve as human protection. The same applies to hygienic requirements for a hospital,
a supermarket, and a public swimming pool that includes the fulfillment of relevant
standards. Thus, a requirement mostly "requires" something to be fulfilled.

If we take a closer look in the context of software development, a requirement is
defined as what is expected of a software system as property by stakeholders (Balzert,
2010). Stakeholders, in general, are persons and organizations with a direct interest
in the development of the software and its subsequent use. "The term stakeholder
generalizes the traditional notion of customer or user in requirements engineering
to all parties involved in a system’s requirements" (Glinz & Wieringa, 2007, p. 18).
Ebert (2019) extends the definition of a requirement and considers properties as
conditions, attributes, and goals of the product. Consequently, requirements are the
"wish list" of the customer (Ebert, 2019). In many, even current, literature, a more
specific definition provided by the Institute of Electrical and Electronics Engineers
(IEEE 610, 1990) is used to define a requirement as:

(a) A condition or capability needed by a user to solve a problem or achieve an
objective;

(b) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally
imposed document;

(c) A documented representation of a condition or capability of the previous two
arguments.

Since our research refers to software requirements that are written in natural
language, we partly refer to the approach from the IEEE and define a software
requirement as follows:

Definition of a software requirement

A software requirement is a natural language representation of a condition or a

capability of software that complies with defined quality characteristics and that
is appropriately specified to enable developers to design software that meets that
requirement.

Chapter 2

In most cases, software requirements are further divided into different types, such as
functional requirements, quality requirements, and basic conditions (Pohl & Rupp,
2015). For our research focus, however, such a distinction is not relevant. Usually;
requirements are summarized in documents called specifications. This specification
particularly refers to the standard ISO/IEC/IEEE 29148 (ISO 29148, 2011)2, which
contains a description for a software requirements specification (SRS). According to
ISO 29148, an SRS is described as follows:

Definition of a software requirements specification (SRS)

The SRS defines all of the required capabilities of the specified software product
to which it applies, as well as documenting the conditions and constraints under
which the software has to perform, and the intended verification approaches for

the requirements.

The standard also provides a predefined structure that includes the chapters "In-
troduction", "References", "Specific requirements", "Verification" and "Appendices"
(see figure 2.1). The chapter "Introduction” contains the purpose and scope of the
software as well as the product overview, which lists all relevant interfaces to other
systems. Definitions are provided, where specific words or phrases in the context of
the software are explained. In "References" relevant documents for the software are
included, which are not part of the SRS.

The chapter "Specific Requirements" describes "every input (stimulus) into the
software system, every output (response) from the software system, and all functions
performed by the software system in response to an input or in support of an output"
(ISO 29148, 2011, p. 58). The requirements are assigned to different categories (e.g.
functions, performance requirements). An example of a performance requirement is
provided by the standard ISO 29148: "95% of the transactions shall be processed in
less than 1 second" (ISO 29148, 2011, p. 59). This chapter contains the software
requirements on which we focus our research.

In "Verification", approaches and methods for the verification of the software require-
ments are described. Lastly, "Appendices" contains assumptions and dependencies
for software development as well as acronyms and abbreviations used in the context
of the software development project.

2We apply the ISO/IEC/IEEE 29148:2011 standard as a basis for the definition of requirements
quality. In the following, we refer to the standard as ISO 29148.

2.1

19

20

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Product overview
1.3.1 Product perspective
1.3.2 Product functions
1.3.3 User characteristics
1.3.4 Limitations
1.4 Definitions
2. References
3. Specific requirements
3.1 External interfaces
3.2 Functions
3.3 Usability Requirements
3.4 Performance requirements
3.5 Logical database requirements
3.6 Design constraints
3.7 Software system attributes
3.8 Supporting information
4. Verification
(parallel to subsections in Section 3)
5. Appendices
5.1 Assumptions and dependencies
5.2 Acronyms and abbreviations

Structure of an SRS according to ISO 29148.

The requirements in an SRS document are the basis for a development project and
necessary for the estimation, planning, and implementation of activities. "Good
requirements are essential if we are to be sure that we are building the system the
users want, and that we are not doing more than is needed" (Hall, 1997, p. 3).
Requirements also form a legal basis for contracts "between the customer and the
developer or as a source of information for the project managers" (Berry et al., 2006,
p. 1). Furthermore, the exchange of requirements between all relevant stakeholders
makes it possible to ensure that each participant has the same level of information.
Even after the successful completion of a project, requirements are used as a basis
for the operation and maintenance of the software.

In this section, we have defined the term "requirement" and assigned it in the
context of a software requirements specification (SRS). Requirements are of great
importance for the development process and the subsequent product life cycle of
software. We describe the relevance of requirements, particularly for the former, in
the following section.

Chapter 2

2.1.2

In general, the high complexity in the development of a software system forces
the division into subsystems as well as into different development phases. For
this purpose, systematic approaches were created early on and are still developing
further today (Benington, 1983). Such approaches are generally reflected in process
models. These models consider the development process from the beginning, which
usually starts with the analysis of requirements (Ebert, 2014; Rupp, 2014). Most
of today’s process models are based on the waterfall model from Royce (1987). It
describes individual development phases that follow a flow-oriented process. At the
end of each phase, specific documents are generated.

For the development of software, the V-model is usually used, which has established
itself as a further development from the waterfall model. The V-model, which was
originally published in 1992, defines activities along a chronological development
process (Hakuli & Krug, 2015; IABG, 1993). The main difference to the waterfall
model is the consideration and integration of quality assurance in the development
process, as well as the parallel definition and synchronization of tests (Balzert, 2008).
This enables the creation of suitable test cases for requirements already during the
first phases of a project.

To take into account all the different characteristics of projects, the V-model com-
prises a total of four submodels: software development (SWD), quality assurance
(QA), configuration management (CM), and project management (PM). In the
submodel SWD, several fields of activity that are required for the development of
software are described. In addition to a requirements analysis for a system, software,
and hardware, a subdivision into a rough and detailed design on the software and
hardware level is mandatory. Only afterward activities for implementation and
integration take place. Each of the activity fields describes defined results by creating
specific documents (e.g. software requirements specification), which are necessary
for the implementation of subsequent activities.

Mostly, requirements are derived from specification documents, which become more
concrete and detailed as the development process progresses. Figure 2.2 shows
the simplified V-model and the individual phases and documents of a development
project according to ISO 29148. Initially, based on stakeholder requirements, specifi-
cations (StRS = stakeholder requirements specification) are generated from which
system requirements are derived and summarized in system requirements specifi-
cations (SyRS). The SyRS in turn form the basis for the specification of software
requirements and serve as an information source for the creation of one or more

2.1

21

22

software requirements specifications (SRS). Already in the development phase be-
tween the system and software specification, requirement documents are forwarded
to different departments of a company. In industrial practice, it is also common that
external engineering companies support the specification of requirements in these

phases as well.

Stakeholder User acceptance
requirements tests
SRS '
System System/

requirements

SYRS

integration tests

Software
requirements

Unit / module
tests

SRS

Software
implementation

Simplified V-model according to ISO 29148.

Prior to the software implementation, the SRS is available in the most precise level
of detail, in which, for example, specific signals, relevant parameters, and detailed
specifications for function performance are specified. "Software requirements speci-
fication (SRS) documents are the medium used to communicate user requirements
to the technical people responsible for developing the software" (Ormandjieva et al.,
2007, p. 39). Nowadays the implementation of the software is often carried out by
external development partners that use the SRS as a basis for communication with
the client.

Therefore, between the software requirements phase and implementation phase,
some sort of review or inspection should take place, since the concrete implementa-
tion is based on the SRS (Kassab et al., 2014). "Software requirements specification
is a critical activity of the software process, as errors at this stage inevitably lead
to problems later on in [...] implementation" (Ilieva & Ormandjieva, 2005, p. 1).
Mostly, such a review can be very time-consuming for reasons we have presented in
the motivation of our thesis (see section 1.1). However, the software requirements
determine the basis on which the development partner implements the software.
Besides other characteristics, that we present later in this chapter, an "SRS should be
unambiguous both to those who create it and to those who use it. However, these
groups often do not have the same background and therefore do not tend to describe
software requirements the same way" (IEEE 830, 1998, p. 5). For that reason, we

Chapter 2

2.1.3

focus on requirements from the SRS and the assessment of requirements quality in
our research.

There are further requirement activities that are reflected in the concept of require-
ments engineering. In general, the differences between software engineering and
requirements engineering are based on respective disciplines for the product to be
developed. Software engineering focuses on the creation of software systems based
on methods and processes from a quality perspective. In contrast, requirements
engineering, as a subtask of software engineering, is an important part of project
planning and the fundament for every software development. In the following sec-
tion, we provide a brief overview of requirements engineering, describe techniques
for the specification of software requirements, and explore the question of why
requirements engineering has a crucial influence on the success of a project.

It is now more than 40 years since "Requirements Engineering" was introduced as an
independent discipline in an edition of the "Transactions of Software Engineering"
(see D. Fernandez, 2018). Due to its enormous relevance and impact on the success
of a software project, it has received much international attention in research and
practice. "Requirements engineering is a discipline which has emerged over the last
few years in response to the realization that too many systems were being built
which worked, in some sense, but did not do what their users wanted" (Moffett,
1999, p. 1). Many decisions in the course of a software project are based on the
activities and the output of requirements engineering. Requirements are the basis
for the success of a project. And at the same time the basis for problems.

The increasing relevance of industrial software and the aspiration for innovative
and comprehensive systems necessitates effective requirements engineering. It
ensures to reveal and prevent potential risks and to detect substantial gaps in
requirements specifications. Nowadays, due to the increasing demands of a software
product, companies must focus even more on requirements engineering and its
core activities. "Requirements Engineering is a subtask of Software Engineering
which deals with the discovering of that purpose by identifying stakeholders and
their needs, and documenting them for their future analysis, communication, and
subsequent implementation" (Saavedra et al., 2013, p. 240).

A general approach defines requirements engineering as "the part of development in
which people attempt to discover what is desired" (Gause & Weinberg, 1989, p. XV).

2.1

23

24

Pohl and Rupp (2015) enhance this approach and describe requirements engineering
as a systematic and disciplined approach for the specification and management of
requirements. Also, requirements engineering focuses on understanding stakeholder
needs, reducing relevant project risks, and ensuring reliable documentation. Ebert
(2019) extends this definition by activities such as identification, documentation,
analysis, testing, coordination, and management, taking particular account of cus-
tomer orientation and economic and technical objectives. Requirements engineering
is a construction kit to map the existing needs of different stakeholders to technical
and economical solutions and is both problem- and solution-oriented.

In the literature and practice, the term is defined in many different ways (Balzert,
2010; Kotonya & Sommerville, 1998). However, all these definitions have in common
that certain required activities are mentioned (Pohl & Rupp, 2015):

* Elicitation: Different techniques (e.g. interviews, brainstorming) are used
to capture and detail information from stakeholders and other sources about
potential requirements.

* Specification and Documentation: Identified requirements from elicitation
are specified and documented. Several techniques to specify requirements,
such as natural language and model-based approaches, are available and used

in practice.

* Validation and Agreement: After the successful validation of specified re-
quirements, the agreement phase with stakeholders is conducted.

* Management: The requirements management is an overall activity and in-
cludes tasks regarding the structure, the preparation, and the change process
of requirements.

Since the focus of this work is on natural language requirements, we mainly concen-
trate on the activity "Specification and Documentation". For a better understanding
of the overall context of requirements engineering, we give a short introduction to
the elicitation of requirements.

Requirements are elicited from different sources. In most cases, stakeholders are
the preferred source of information. The identification of relevant stakeholders is
therefore a central task of requirements engineering in the beginning. However, there
is no general approach for the collection of requirements (Hickey & Davis, 2003).
The use of a particular technique (e.g. interviews, questionnaires, brainstorming,
observation) correlates strongly with the requirement type, level of detail, and the
experience of the involved persons (Pohl & Rupp, 2015). "Gathering correct and

Chapter 2

accurate requirements from customers requires a deep understanding of both the
customer’s business needs and the technical issues involved, which are often not
communicated clearly or at all. These challenges often result in poorly written
requirements that are unclear, verbose, and even inconsistent" (Verma & Kass, 2008,
p. 751).

With the completion of the requirements elicitation, the activity "Specification and
Documentation" is carried out®. Pohl and Rupp (2015) define the specification
as a systematic collection of requirements that fulfills prescribed criteria. Several
subsequent phases of a development project, such as implementation and testing,
are based on the results from the specification phase. There are various techniques
to specify requirements ranging from informal to formal languages (Fabbrini et al.,
2000; Pohl & Rupp, 2015):

* Natural language: Requirements are specified without any restrictions. The
statements are written like spoken language.

* Structured natural language: The terminology is limited and restricted and
templates are often used for the specification.

* Semi-formal language: Special-purpose graphical notations are used with
precise syntax and a non-rigorous semantic.

* Formal languages: Based on mathematics this language includes formally
defined vocabulary, syntax, and semantics.

In industrial practice, natural language is often used for the specification of require-
ments (Berry et al., 2006; Fabbrini et al., 2001; Fantechi et al., 2003; Kamsties
et al., 2001; Kassab et al., 2014; Kasser et al., 2006; Nikora et al., 2010; Pohl, 2008;
Sikora et al., 2012; Wilson et al., 1997). A survey revealed that 79 percent of all
requirements documents are written in natural language and only 21 percent use
some form of formalism (e.g. requirement templates, formalized language) for the
specification of requirements (Mich et al., 2004). Therefore, "when it comes to
software requirements, natural language is the common means to communicate
among stakeholders effectively" (Naeem et al., 2019, p. 1).

In general, natural language is inherently imprecise, incomplete and ambiguous
(Fuchs & Schwitter, 1995; Ghosh et al., 2016; Macias & Pulman, 1995; Mich
& Garigliano, 2000; H. Yang et al., 2012). Thus, the use of natural language
could result in a subjective interpretation of the requirements content (Pohl, 2008).

3To improve readability and since it makes no difference in our research context, we use the terms
"specification" and "documentation" synonymously.

2.1

25

26

It is also challenging to objectively validate that the requirements specified in
natural language meet the needs of the customer (Ambriola & Gervasi, 1997;
Unterkalmsteiner & Gorschek, 2017).

The more formality a language contains, the fewer the problems appear. Therefore,
one way to reduce and avoid these problems is to increase the degree of formalization
in the requirements. Besides removing ambiguity, this also allows the automatic
detection of lexical, syntactic, and semantic errors. However, the use of formal
languages can be very difficult and cost-intensive (Pohl & Rupp, 2015). Learning
such a language takes a lot of time and lack of expertise makes it difficult to
understand (Fantechi et al., 2003; IEEE 830, 1984).

Mich and Garigliano remind us, that "good linguistic competence is based on the
adjustment of language to pragmatic purposes in order to minimize the effort of
communication" (Mich & Garigliano, 2000, p. 3). Hence, requirements specified in
natural language have decisive advantages despite the lack of formality. As natural
language is based on the fundamental aspects of communication between people,
specific training is not necessary to read the requirements* (Carew et al., 2005; Pohl,
2008). "Two advantages of this are: there is no limitation on the concepts that can
be expressed; and sentences and grammatical structure provide means of tracing
meaningful elements" (Parra et al., 2015, p. 181). Requirements specified in natural
language can be used for different development areas, challenges, and domains
and can represent various levels of abstraction and detail (Fabbrini et al., 2001;
Ormandjieva et al., 2007). Despite numerous formal and semi-formal methods
that are proposed by the research, natural language has therefore established itself
as the most common technique for specifying requirements in industrial practice
(Unterkalmsteiner & Gorschek, 2017).

At the same time, the specification of requirements is one of the most critical parts of
a development project as requirements are the major source of errors for subsequent
activities (Alshazly et al., 2014; Naeem et al., 2019; Sabriye & Zainon, 2018). "Where
there is a failure, requirements problems are usually found at the heart of the matter"
(R. Glass, 1998, p.21). Developers often interpret missing, incomprehensible, and
inconsistent requirements in such a way that it would make sense from their point
of view. However, the subjective interpretation of a requirement is a problem and
the key to failure.

For that reason, a "key capability is the identification and management of require-
ments during the early phases of the system design process, where errors are cheapest
and easiest to correct" (Arellano et al., 2015, p. 231). Poorly specified requirements

4Of course, this does not refer to the understanding of the content of requirements.

Chapter 2

that are discovered late in the development process are the most expensive and most
complicated to remove and handle. They are also cited as the main reason for project
failure and cost overruns for more than 35 years (Abernethy et al., 2000; Belfo,
2012; Braude, 2000; Brooks & Kugler, 1987; Carson, 2001; A. Davis et al., 1993;
Femmer, 2013; R. Glass & Becker, 2003; Gross & Doerr, 2012; Heck & Parviainen,
2008; Hooks, 1994; Ibanez & Rempp, 1996; Jacobs, 1999; Kasser & Schermerhorn,
1994; Lindquist, 2005; Parra et al., 2015; Polpinij, 2009; Saito et al., 2013; Salger
et al., 2009; Scheffczyk et al., 2005; Wilson et al., 1997).

Boehm (1984) explored this phenomenon a while ago and linked the identification
of requirement defects over the life cycle of software with error removal costs.
Based on his analysis, defects that are already detected during the specification
of requirements have a much lower cost factor than requirement defects that are
detected in the production phase (factor of x10.000). A requirement defect identified
in the coding phase requires ten times more effort to solve than a defect identified in
the design phase. Thus, he claims that defects made during the requirements phase
are the most expensive ones in the entire software development cycle if these are
not discovered early (Ambler, 2004; McConnell, 1996). Figure 2.3 shows the costs
for error correction according to the phase of the software life cycle in which the
requirement defect is identified.

Cost of change

Requirements Analysis and Coding Testing Production
Design

I Time >

Own representation of the cost of change curve (inspired by Ambler, 2004).

2.1

27

28

Various studies prove that requirements defects are responsible for 50 to 70 percent
of all software errors (Marasco, 2007; RTI, 2002; Suma & Gopalakrishnan Nair,
2009; Terzakis, 2013). In addition to purely financial aspects, such as cost overruns
and extended project duration, these defects can also lead to worse consequences:
"In an investigation of failed safety-critical systems, one study found nearly 1,100
deaths attributable to computer error. Many of these errors stemmed from poor
or no specifications, not an incorrect implementation" (Hinchey & Coyle, 2012, p.
246).

In today’s industrial practice, however, it is not uncommon for the requirement
phase to be reduced significantly or even skipped completely. The effort is often not
recognized, the result is not perceived as such, and engineers are allegedly deprived
of too much of their creativity. Werner Gruhl revealed already in 1980 that this is
a deceptive assumption. During his time as head of the analysis center of NASA,
he was responsible for estimating project costs for new spacecraft and analyzed
programs in comparison to cost overruns (Bowen & Hinchey, 2006). He observed
that the amount of effort spent during the initial cost and planning phase of a space
mission (Phase A and B) correlated with the cost overruns of a project. Figure
2.4 shows this correlation. In summary, projects, where requirements engineering
accounts for less than five percent of the total cost of a project, have approximately
80 to 200 percent cost overruns. An increase of requirements engineering effort to
eight to 14 percent of the total cost could result in projects with less than 60 percent
cost overrun (Ebert, 2019). Today, between two and five percent of a project effort
is spent on requirements engineering. Yet, errors resulting from requirements still
have the greatest impact on a project and its successful completion (Mann et al.,
2017 in Ebert, 2019).

A research study by the Standish Group has addressed these findings and tries to
answer the question "Why software projects fail?". The results of the study, which are
based on surveys and personal interviews of IT executives, are summarized in the
"Chaos Report" (The Standish Group, 2006). The study identifies user involvement,
management support, and clear requirements as essential elements for the success
of a project. It also questions reasons for the cancellation of a project and detects
insufficient involvement of the management and unclear requirements as main
factors. According to the study, the number of failed software projects changed
for the better between 1994 and 2006: whereas 30 percent of software projects
were unsuccessful in 1994, the number decreased to 20 percent in 2006. Projects
with increasing time and/or budget overruns and unsatisfied customers decreased
from 53 percent to 46 percent (The Standish Group, 2006, cited in Pohl and Rupp,
2015).

Chapter 2

GRO 78

- n
180 " oMV

| ¥ TDRSS
160

|

|m\GALL IRAS
1404 HSTm
120 m TETH

Actual - Target
Target

HEAC
|

ISEE

| |
DE EUVE"EP VOYAGER

W ULYSSES
] PIO.NVEN IUE

T ™] T T T 1

) 5 10 15 20 25

Phase A & B Cost
Total Cost

Percentage investment for requirements engineering (Phase A & B; x-axis) in
relation to percentage cost overruns (y-axis) according to Hooks (2001).

The results from this report are repeatedly quoted when discussing the success and
failure of software projects (Cerpa & Verner, 2009; A. Hussain et al., 2016). Even
though there are some concerns, which are supported by scientific evidence (R.
Glass, 2006; Jprgensen & Molgkken-@stvold, 2006), the effect on the publication
was extensive: according to the report, the majority of software projects are not suc-
cessful. In particular, the report identified that incomplete and unclear requirements
have a decisive influence on the success of a project.

Summarized, the implementation of requirements engineering necessitates effort in
different areas and is usually regarded as a time-consuming activity. Nevertheless,
the advantages are obvious and it is considered as an essential prerequisite for the
success of a project (Bucchiarone et al., 2005; Hu et al., 2010; Ormandjieva et al.,
2007; Scheffczyk et al., 2005; Tjong et al., 2006). In particular, the specification of
requirements is an important activity that must be considered with great attention

2.1

29

2.2

30

in a software project. Challenges exist primarily due to the use of non-formal
specification techniques like natural language (Chillarege et al., 1991; Juarez-
Ramirez et al., 2011).

In general, companies still have difficulties and are usually not satisfied with the
outcome of the requirements specification phase (Gross & Doerr, 2012). Therefore,
"it is of major importance to provide this field with engineering discipline, particularly
by means of quality controls since the very beginning of the process" (Génova et al.,
2013, p. 25). Today, quality assurance processes often rely on manual reviews in
which individual requirements are analyzed (Antinyan & Staron, 2017a; Salger,
2013). The success of a review depends heavily on the expertise and knowledge of
the reviewer. Besides, a review can be very time-consuming and costly, especially if
the reviewer is dealing with poorly specified requirements.

For that reason, quality controls should be reflected in methods and tools that take a
particular account of the analysis of natural language requirements (Krogstie et al.,
1995; Lehner, 1993; Macias & Pulman, 1995). In our research, we consider the
assessment of requirements quality as a preliminary stage of a review to reduce
the effort. This allows the reviewer to concentrate on the essential content of the
requirements without being distracted by a poorly specified requirement (Femmer
et al., 2017). In the following section, we address the main question of our research
and answer how the quality of natural language requirements can be assessed.

In this section, a set of characteristics for requirements quality is introduced. This set
originates from the literature and is based on international standards. We present a
requirements quality model, which is structured similarly to existing quality models
from other domains. According to Heinrich et al. (2014), a quality model generally
describes a system of quality characteristics and their relationships for specifying
requirements and assessing the quality of an object.

In the further course, related work is presented that is dealing with the quality
assessment of natural language requirements. We identify different approaches,
which include rule-based and formalization methods as well as techniques from
machine learning. Finally, a relevant research gap can be identified, which we aim
to close with our research. We conclude the section with a discussion about existing
research issues.

Chapter 2

2.2.1

Before we present our quality model, it is necessary to have a common understanding
of the term "quality" in the context of requirements. In general, the quality of a
product or a service always depends on the perception and expectations of the
recipient. Traditional quality definitions use the term "fitness for use" and thus mainly
consider attributes of functionality without concentrating on customer-relevant
characteristics (Juran et al., 1974). In Haist and Fromm (1991), such characteristics
are placed in the forefront when defining the term "quality". It is described as
conformity with customer requirements, such as price, delivery time, safety, and
reliability. Drucker (2014) also regards the concept of quality primarily from the
customer’s point of view: "Quality in a product or service is not what the supplier
puts in. It is what the customer gets out and is willing to pay for" (Drucker, 2014, p.
280).

In the international standard ISO 9000, quality is defined as the "degree to which a
set of inherent characteristics fulfills requirements" (ISO 9000, 2005, p. 18). The
definition focuses on inherent characteristics that are required for quality measure-
ment. If these characteristics are in "conformance to requirements" (Crosby, 1979),
i.e. fulfilling the corresponding requirements®, then high quality is achieved. If these
characteristics do not fully meet all requirements, i.e. "there lies nonconformity
or partial conformity between characteristics and requirements" (Sarkar, 2016, p.
33), then a low quality is present. The quality of requirements thus indicates the
degree to which a requirement corresponds to measurable and defined quality char-
acteristics (Rupp, 2014). Consequently, it is not possible to measure something as
undefined as quality directly. "But even though Quality cannot be defined, you know
what Quality is!" (Pirsig, 1999, p. 91).

If we take a look at other domains, we can identify the use of characteristics to
describe quality. For SERVQUAL, a method for measuring service quality and cus-
tomer satisfaction, five dimensions for the assessment are introduced (Parasuraman
et al., 1988): reliability, assurance, tangibles, empathy, and responsiveness. The
standard ISO 25010 (2010) defines eight criteria for determining software qual-
ity: functional suitability, performance efficiency, compatibility, usability, reliability,
security, maintainability, and portability. For requirements quality, we present a
model that describes the quality by means of standardized and agreed characteristics.
We identify the standard ISO 29148 as relevant source that defines a well-written

°In this context, the term "requirement" is not considered from the perspective of a software
development project.

2.2

31

32

requirement based on the following characteristics: Complete, Consistent, Feasible,
Implementation Free, Necessary, Singular, Traceable, Unambiguous, Verifiable.®

Our decision is based on several reasons. First, the ISO 29148 standard is the
result of the harmonization of a large number of existing standards in the software
field (including IEEE 830, 1998 and IEEE 1233, 1998). The standard provides an
overview of different project phases as well as standard documents and structures.
Second, characteristics are defined that describe the quality of an individual require-
ment. The broad acceptance of this standard confirms our decision to use these
characteristics as the basis for our quality model. Related research with a similar
objective comes to the same conclusion and refers to this standard (Femmer et al.,
2017). Third, in Schneider and Berenbach (2013), the standard is described as
"mother of all requirements standards", which contains basic principles of require-
ments engineering and criteria for requirements language (e.g. avoidance of vague
pronouns). It is the standard "that every requirements engineer should be familiar
with" (Schneider & Berenbach, 2013, p. 803). Therefore, we use the characteristics
from ISO 29148 for the quality assessment of natural language requirements in our
research. In the following, we present the description of each characteristic from
ISO 29148 (2011).

The stated requirement needs no further amplification because it is measur-
able and sufficiently describes the capability and characteristics to meet the
stakeholder’s need.

The requirement is free of conflicts with other requirements.

The requirement is technically achievable, does not require major technology
advances, and fits within system constraints (e.g., cost, schedule, technical,
legal, regulatory) with acceptable risk.

The requirement, while addressing what is necessary and sufficient in the
system, avoids placing unnecessary constraints on the architectural design.
The objective is to be implementation-independent. The requirement states
what is required, not how the requirement should be met.

®To improve the readability, characteristics for requirements quality start with a capital letter and
are in italics.

Chapter 2

The requirement defines an essential capability, characteristic, constraint,
and/or quality factor. If it is removed or deleted, a deficiency will exist,
which cannot be fulfilled by other capabilities of the product or process. The
requirement is currently applicable and has not been made obsolete by the
passage of time. Requirements with planned expiration dates or applicability
dates are clearly identified.

The requirement statement includes only one requirement with no use of
conjunctions.

The requirement is upwards traceable to specific documented stakeholder
statement(s) of need, higher tier requirement, or other source (e.g., a trade or
design study). The requirement is also downwards traceable to the specific
requirements in the lower tier requirements specification or other system
definition artefacts. That is, all parent-child relationships for the requirement
are identified in tracing such that the requirement traces to its source and
implementation.

The requirement is stated in such a way so that it can be interpreted in only
one way. The requirement is stated simply and is easy to understand.

The requirement has the means to prove that the system satisfies the specified
requirement. Evidence may be collected that proves that the system can satisfy
the specified requirement. Verifiability is enhanced when the requirement is
measurable.

Based on the characteristics, we define the requirements quality model which we
use in the further course of the thesis. Figure 2.5 shows the quality model and
its characteristics from ISO 29148. However, the software engineering community
struggled in the last decades to find appropriate characteristics. In a brief review, we
show how the scope has changed over time.

One of the first references that provide characteristics for requirements can be found
in ANSI/IEEE Std. 830 from 1984 (IEEE 830, 1984). The standard proposes seven
characteristics to be considered when specifying requirements: Complete, Consistent,
Modifiable, Traceable, Unambiguous, Usable and Verifiable.

2.2

33

34

Requirements Quality

A

Complete

Consistent

Feasible

Impl. Free

Necessary

Singular

Traceable

Unambiguous

Verifiable

Our requirements quality model based on characteristics from ISO 29148.

In 1993, the standard ANSI/IEEE Std. 830-1984 was revised and supplemented
with additional characteristics: Correct and Ranked for importance and/or stability
(IEEE 830, 1993). The characteristic Correct refers to requirements that the software
should fulfill, though there is "no tool or procedure that assures correctness" (IEEE
830, 1993, p. 5). Therefore, to verify this characteristic, the requirement and the
related specification should be compared with higher-level specifications to ensure
relevance and appropriateness. The characteristic Ranked for importance and/or
stability demands that each requirement has a label of importance or stability. The
previously introduced characteristic Usable has been removed.

One of the most comprehensive quality models is described by A. Davis et al. (1993).
The authors propose 24 characteristics that result from a combination of different
approaches’. Wilson et al. (1997) apply the characteristics of the standard IEEE
830 (1993) and add further characteristics: Testable and Valid. For the additional
characteristic Testable it is necessary that quantitative or pass/fail evaluations can be
derived from the specification. To fulfill the characteristic Valid, it is important that
all project members (e.g. managers, engineers, and customers) have understood,
accepted, and confirmed the requirements. "This is the primary reason that most
specifications are expressed in natural language" (Wilson et al., 1997, p. 3).

Wiegers (2003) proposes a quality model for single requirements based on seven
characteristics: Complete, Correct, Feasible, Necessary, Prioritized, Unambiguous, and
Verifiable. Pohl (2008) provides a similar quality model and adds some charac-
teristics: Atomic, Complete, Comprehensible, Consistent, Correct, Rated, Traceable,
Unambiguous, Up to date, and Verifiable (extracted from Saavedra et al., 2013).

” Achievable, Annotated by relative importance, Annotated by relative stability, Annotated by version,
At right level of detail, Complete, Concise, Correct, Cross-referenced, Design independent, Electronically
stored, Executable/interpretable, Externally consistent, Internally consistent, Modifiable, Not redundant,
Organized, Precise, Reusable, Traceable, Traced, Unambiguous, Understandable, Verifiable.

Chapter 2

In Génova et al. (2013), a framework is presented with the aim to measure and
improve the quality of natural language requirements. For this framework, char-
acteristics from Wilson et al. (1997) are used and further are added. They are
listed as "desirable properties of requirements": Abstraction, Atomicity, Completeness,
Consistency, Modifiability, Precision, Traceability, Unambiguity, Understandability,
Validability, and Verifiability. The characteristic Abstraction specifies that the require-
ment "tells what the application must do without telling how it must do it" (Génova
et al., 2013, p. 28). The characteristic Atomicity demands that each requirement is
clearly defined and that multiple requirements are not combined. The characteristic
Precision describes that "all used terms are concrete and well defined" (Génova et al.,
2013, p. 28). Finally, Understandability is defined as when "the requirements are
correctly understood without difficulty” (Génova et al., 2013, p. 27).

In literature, there is a large number of further quality models that suggest various
characteristics for the quality of a requirement. Based on exploratory analysis,
Saavedra et al. (2013) have examined the multitude of existing quality models for
requirements and identified similarities and differences. According to this study,
the characteristics Complete, Consistent, Unambiguous and Verifiable appear most
frequently in quality models. These characteristics are also reflected in the ISO
29148 standard, on which we have built the requirements quality model for our
research.

Over the last decades, new characteristics have been established while others have
been discarded or combined with existing characteristics. Even today people are
still searching for the right terms. Some of the characteristics are persistent and
appear in almost every approach that deals with the quality of requirements (e.g.
Complete, Consistent, Traceable, Unambiguous, Verifiable). Other characteristics were
introduced and shortly discarded afterwards (e.g. Correct, Ranked for importance
and/or stability).

Thus, the quality aspect of requirements is a variable that adapts to changing needs,
trends, and market situations over time. This may lead to the introduction of new
characteristics in the future or the discarding of previous ones. Due to this continuous
development of the characteristics, we are only able to refer to the standard (i.e.
ISO 29148, 2011) that was valid at the time when we laid the foundations for our
research.

2.2

35

2.2.2

36

A large part of industrial practice and research on the quality of requirements
is dominated by wisdom and convictions rather than empirical evidence. This
results in research on the one hand and practices in the industry on the other hand,
which show only a low degree of congruence and lead to a constantly increasing
separation between research and practice. For that reason, our contribution is
based on personal experiences made during the interaction and collaboration while
supporting industrial partners and enhanced by analyzing relevant research. Webster
and Watson (2002) remind us, that such experiences help to justify and support a
research topic.

We conduct a literature review as described by Webster and Watson (2002). The
systematic approach ensures a comprehensive search to find relevant and current
literature about the assessment of requirements quality. For our review, we primarily
use "Google Scholar" as database. The identification of relevant approaches for
the assessment of requirements quality is based on the selection of appropriate
publications. We assess the relevance of the publications by the content, but we
also take into account the number of citations. As there are many handbooks
and seminal literature about requirements engineering, we start with analyzing
this content. In a further step, we conduct searches for "requirements quality",
"natural language requirements" and "textual requirements". With extensive forward
and backward searches, we look for more detailed input for the identification of
research methods and strategies that are used for the quality assessment of natural
language requirements. In addition, we focus on publications including tools that
also describe characteristics and indicators. The identification of key persons (e.g.
Rupp, Ebert, Pohl) and organizations (e.g. INCOSE, IREB, Sophisten) in the domain
of requirements engineering also ensures the consideration of practical literature to
identify current approaches and contributions.

A systematic analysis of requirements quality must necessarily concentrate on the
requirement text itself or on measurable indicators that can be derived from the text.
Many efforts have been targeted at modeling, assessing, and measuring the quality of
natural language requirements. Rather, there is a multitude of different approaches,
all aiming in a similar direction: Determination of relevant quality characteristics
and/or definition of indicators. This also enables the transfer of characteristics to
the level of quantitative approaches. Furthermore, a strong emphasis has also been
placed on natural language processing in recent decades to extract ontologies from
requirements or to check the consistency of a specification (Ambriola & Gervasi,
1997; Rolland & Proix, 1992; Ryan, 1993).

Chapter 2

In Femmer et al. (2017), the authors differentiate related research for the quality as-
sessment of natural language requirements into manual and automated approaches.
The former considers the application of manual techniques for the assessment of
requirements quality by providing "analytical and constructive methods, as well as
(varying) lists for defects" (Femmer et al., 2017, p. 191). The latter is assigned
to the development of tools for the recognition and assessment of quality. In our
research, we separate related work somewhat more distinctly from each other.

As a result of our review, the literature on requirements quality assessment largely
falls into three research categories:

* Rule-based systems. The first category describes tools that are designed to
support the requirements engineer in the specification of requirements. These
tools identify weaknesses and give indications of how the requirements can
be improved in quality. Examples are ARM - Automated Requirement Mea-
surement (Wilson et al., 1997), QuARS - Quality Analyzer for Requirements
Specifications (Fabbrini et al., 2001; Fantechi et al., 2003), and RQA - Re-
quirements Quality Analyzer (Génova et al., 2013). Mostly, these tools follow
a defined and static set of metrics for quality determination. Some of these
systems are described as "spell or grammar checker" (Femmer et al., 2017;
Génova et al., 2013; Verma & Kass, 2008) that refer to guidelines (Huertas
& Judrez-Ramirez, 2013; Soeken et al., 2014; Tjong et al., 2006) or provide
comprehensive checklists (Anda & Sjgberg, 2002; Berry et al., 2006; Kamsties
et al., 2001; Kamsties & Peach, 2000; Van Lamsweerde, 2009).

* Formalization and modeling systems. The second category of research is
devoted to the transformation of natural language requirements into formal
models and logic specifications. This is typically done by a thorough linguistic
analysis of the requirements language. Ontologies are used to transfer nat-
ural language requirements. Examples are Ilieva and Ormandjieva (2005),
Holtmann et al. (2011) and Arellano et al. (2015).

* Automated classification systems. A third category is aiming at the auto-
mated classification of requirements into good or bad quality by using machine
learning techniques and methods from natural language processing. Examples
can be found in Ormandjieva et al. (2007), Soeken et al. (2014), H. Yang et al.
(2012) and Parra et al. (2015).

A major part of the related work uses a quality model as starting point and applies
methods and techniques which are typical for the corresponding research category.

2.2

37

38

Most of the papers in each category, but not all, know the concept of quality char-
acteristics. Some papers address a complete set of quality characteristics (Gallego
et al., 2016; Génova et al., 2013; Wilson et al., 1997), other papers focus on selected
characteristics like Ambiguity (Berry, 2007; Ormandjieva et al., 2007; Shah & Jin-
wala, 2015), Atomicity (Huertas & Juarez-Ramirez, 2013), Certainty (H. Yang et al.,
2012), Correctness (Parra et al., 2015), Completeness and Consistency (Arellano et al.,
2015), and Readability (Holtmann et al., 2011).

Most of the latest papers can be assigned to the categories "Formalization and
modeling systems" and "Automated classification systems". Especially the use of
machine learning techniques to analyze and assess the quality of natural language
requirements is a common topic. Mostly, these papers build upon the research of
tools from the category "Rule-based systems" and enhance these approaches with
methods from different disciplines. There is a trend towards developing algorithms
and models that automatically assess the quality of natural language requirements
by using characteristics and indicators to classify good or bad requirements. In the
following, we briefly discuss some of the related work for each category, which we
consider to be relevant for our research.

Rule-based systems.

Related work in the category "Rule-based systems" is intended to support the re-
quirements engineer in the specification process. These approaches focus on the
measurement of different characteristics by static indicators and the identification of
defects in natural language requirements. Some of the publications use the term
"spell checker", which not only provides evaluations but also points out concrete

deficiencies to improve requirements quality.

In Wilson et al. (1997), the authors describe an approach for the quality analysis of
natural language software requirements and present a tool "Automated Requirements
Measurement" (ARM) to support the requirement specification process. Quality is
defined by "desirable characteristics” (shown in section 2.2.1) based on the standard
IEEE 830 (1993)—one of the predecessors of the ISO 29148. The authors introduce
different categories and indicators to assess the quality of requirements (imperatives,
continuances, directives, options, weak phrases, size, and readability statistics). The
tool counts potential defects based on the indicators. Simple dictionaries and lists of
terms are used for this purpose. This research paper serves as groundwork and is
mentioned in many other approaches as a starting point.

Chapter 2

In Fabbrini et al. (2001), a tool called "QuARS" (Quality Analyzer of Requirements
Specification) displays requirements together with automatically detected indicators.
QUuARS is a linguistic language tool that analyses the requirements for lexical, syntac-
tic, structural, and semantic defects. The tool offers early detection and correction
of costly errors by capturing the most common classes of defects. Four high-level
quality properties are introduced: Consistency, Non-ambiguity, Specification comple-
tion, and Understandability. Nine text indicators are proposed, which are assigned
to the properties and are largely based on specific keywords. Accordingly, words
such as "clear", "easy" and "strong" are assigned to a vagueness indicator, which in
turn partly affects the attribute Non-ambiguity. However, it is not possible to identify
where this assignment comes from. Berry et al. (2006) extend the quality model and
take into account further ambiguities that were not considered before. A total of
23 indicators are defined and additional keywords are presented. Both tools, ARM
and QuARS, work in a similar way with a different abstraction and definition of the
quality characteristics.

Kasser et al. (2006) propose five categories of requirement defects: Multiple require-
ments in a requirement, Not verifiable, Possible multiple requirement, Use of wrong
word, and User defined poor word. A list of "poor words" gathered from experience
and literature is presented. The presence of poor words in a requirement indicates a
potential defect according to one of the five categories. The poor word "adequate"
for example is linked to the category Not verifiable. The authors measure the quality
by counting the number of defects, i.e. the occurrence of poor words, to the number
of requirements examined.

Verma and Kass (2008) present the tool "RAT" (Requirements Analysis Tool) to
detect and flag requirements that violate best practices. The tool builds upon
"common requirements problems" like ambiguous terms, inconsistent and incomplete
requirements. It highlights the recognized problem type, describes the problem in
the requirement, and also offers suggestions for elimination. Figure 2.6 shows the
tool that reminds of well-known spell and grammar checkers.

In Génova et al. (2013), the authors aim to answer the question "What should we
measure?". They present desirable characteristics (see section 2.2.1) and indicators
for assessing the quality of natural language requirements. A tool called "RQA"
(Requirements Quality Analyzer) displays requirements together with automatically
recognized indicators and an overall perceived quality assessment. The indicators are
assigned to four categories: morphological, lexical, analytical, and relational. The
analysis is carried out by statistical methods for morphological indicators, defined
dictionaries or lists of terms for lexical indicators, approaches and tools from natural

2.2

39

40

Do)\ d2-00 = Demo.docx - Microsoft Word - 5 X
o _
) Home Insert Page Layout References Mailings Review View Developer Add-Ins Requirements Analysis Tool @
22| il < » (4 @ a0 < A
Za DO & 4 & =1 | JA
Run |Generate Remove Critic Label Insert Glossary Open Logging Upload Export About
Critic | Reports Markup Requirements Label | Configuration Glossary~ | Options Now ™ Requirements ~
Requirements Analysis Requirements Labeling Glossary Management Logging Requisite-Pro Integration About
= P PRI 2 3o I | critic Launchpad v x
20%. Releases (as shall be discussed later) shall include only (a] - select Probiems to Check for
portions of entire vision. Problem Phrases
Missing Constituents
BB Release #2 shall reduce requirement-related defects by an Malformed Conditionals
additional 10%

E Select Critic Mode

Fix Problems Interactivel
BB Release #3 shall reduce requirements-related defects by an

additional 10%

Mark Up Selected Text

.MM reports) -----1 Comment [NoAgent1]: This rgg Iacks an agentr‘
before ‘'must’. It can be confusing to leave the Summary Statistics
agent implicit.
Bl Report shall be generated each Thursday) £ 4 9
"""""""""""""" -=-1 Comment [NonAgentE2]: This rgg contains 79
— ‘Report’ where an agant is & eport' is in
BFTREE Order Report must always have the following fieds: 1) ey SR o 2
Order id 2) Order quantity. agent. This is potentially 2 pas 3
2
KB0TH WOBARC must always be feasy to use} _...--{ comment [PrbImPhra3]: \'gasy to use" is Definitions: 1
S —— often ambiguous; consider replacing with a specific = a
. The Critic shall allow users to generate reports. description of the expected user profile, and —
expected time to competence or completion. _ 3
GG The Critic shall only tag requirements, if the requirements .
Issue #Found Freq.
have problems.
[v] Problem phrases: 19 20%
. Only an Accenture person may use the Critic. 2 | Missing Constituents: 31 34%
@ | Malformed Conditionals: 1 1%
D1: Accenture person is defined as any member of an Accenture ¥ | Total No. of Problems: 51 56%

Requirements spell and grammar checker from Verma and Kass (2008).

language processing for analytical indicators, and the analysis of further properties of
the requirement (e.g. Number of versions of a requirement) for relational indicators.

Huertas and Judrez-Ramirez (2013) examine functional requirements based on three
quality attributes: Atomic, Complete and Unambiguous. Sentence and word tokenizer
and associated tagging are applied to analyze the natural language requirements.
For each attribute, indicators are proposed to identify, for example, each conjunction
as a violation of the attribute Atomic.

Femmer et al. (2017) describe "Requirements Smells" as indicators "of a quality
violation, which may lead to a defect, with a concrete location and a concrete
detection mechanism" (Femmer et al., 2017, p. 194). Requirements smells are
based on the concept of so-called code smells, which are intended to indicate poor
code quality (Fowler et al., 1999). Nine requirement smells are defined, which are
derived from the language criteria in the ISO 29148 standard. The authors present
SMELLA, a tool for an automatic quality assessment based on requirements smells
by using part-of-speech tagging, lemmatization, and dictionaries.

Chapter 2

Formalization and modeling systems.

The second research category describes approaches that increase the degree of
formalization of natural language requirements and transform them into logical
models. The transformation aims to avoid problems that are typically encountered
with natural language requirements (see section 2.1.3). We consider related work,
that focuses on "checking for requirements quality criteria, and generating derived
requirements specifications and models” (De Almeida Ferreira & Da Silva, 2012, p.
217).

Ilieva and Ormandjieva (2005) present an approach for the automatic transition of
natural language software requirements into formal presentation and focus on "the
automated extraction of semantics from [natural language]" (Ilieva & Ormandjieva,
2005, p. 1). The authors dissect each requirement sentence in its constituents
subject, predicate, and object and arrange word groups in tabular form. An entity-
relationship diagram is constructed from the tabular presentation using nouns as
entities and verbs and prepositions as relationships. Characteristics are not used at
all for the transition into the formal specification from a quality point of view.

Arellano et al. (2015) focus on consistent and complete natural language require-
ments by using "application-specific ontologies and natural language processing"
(Arellano et al., 2015, p. 230). The authors analyze requirements by using natural
language processing and extract objects and properties from the text. The proper-
ties are matched against a predefined ontology® (UML model). A property that is
defined in the ontology should also appear in the requirement. A missing relation
between entities could therefore indicate a completeness issue. Also, requirements
that are redundant or have mutual conflicts could be identified. Since this approach
requires a predefined ontology as input, it is considered as a semi-automatic solution
(Kocerka et al., 2018).

A similar approach is presented by Bhatia et al. (2013). The authors use a part-of-
speech tagger and a parser to perform lexical and syntactical analysis of natural
language requirements (De Marneffe et al., 2006; Toutanova et al., 2003). The iden-
tification of requirement text, however, is limited to seven "grammatical knowledge
patterns”, which are defined by the authors. Based on these patterns, parameters of
the requirement text are assigned (e.g. actor, action, object). If a defined parameter
does not exist or is not recognizable, the requirement is evaluated as incomplete. In

8In general, an ontology is a "formal explicit specification of shared conceptualization" (Gruber,
1995, cited in Gawich et al., 2012, p. 1). The word "formal" in this context describes the possibility
that the ontology is machine-readable, whereas the word "shared" aims at the acceptance of a group or
community (Gawich et al., 2012).

2.2

41

42

cases where a requirement does not correspond to one of the predefined patterns,
the assignment can also lead to incorrect results.

An "Automatic Requirements Specification Extraction from Natural Language" (ARSE-
NAL) is implemented by Ghosh et al. (2016). The tool transforms natural language
requirements into formal models and logic specifications for automated analysis. In
the formal analysis, the authors focus on Completeness and Correctness of a require-
ment by performing various checks (consistency checks, satisfiability checks, and
realizability checks). With the help of logical specifications in linear temporal logic,
formalized requirements are used to check whether a suitable model is available. In
the case of a match, the satisfiability check, for example, is successful.

In Kaiya and Saeki (2006), four quality characteristics are considered (Complete-
ness, Consistency, Correctness, and Unambiguity) by applying semantic processing
of natural language requirements and analysis through a domain ontology. The
approach uses the ontology as a representation of domain knowledge and analyzes
the relations between the mapped requirements into the ontology and the remaining
requirements. In this paper, the use of an ontology allows semantic processing of
requirements even without the use of natural language processing.

Automated classification systems.

Several contributions in the previous category build on text analysis and natural
language processing. Techniques such as tagger, parser, and entity relations are used,
which produce remarkable results. This shows us that these are generally applicable
to natural language requirements. Some of the techniques can also be found in
related work of our last category. The difference, however, is that algorithms from
machine learning are additionally applied.

Ormandjieva et al. (2007) use 18 indicators that are fed into a decision tree to
classify a natural language requirement into Ambiguous or Non-ambiguous. The
indicators are selected by an analysis of different studies and are assumed to reflect
ambiguity in requirements. Four experts assess a corpus of 168 requirement passages.
A "gold standard" is created by the majority decision of all experts. The analysis of
the pairwise inter-annotator agreement (kappa index from Cohen, 1960) reveals a
"substantial" level of agreement between the experts and the gold standard.

A similar approach is provided by Parra et al. (2015), in which the authors use
25 textual indicators to classify requirements into "good or bad quality". Desirable
properties of a good requirement are listed: Complete, Consistent, and Correct;

Chapter 2

however, the first two properties are neglected in the further course of the paper.
The tool developed by Génova et al. (2013) is used to extract metrics for each
requirement. The method is composed of two tasks. In the first task, they let experts
assess requirements and use a set of metrics to build a classifier. In the second task,
they assess the quality of new requirements based on the same set of metrics.

The contributions from Ormandjieva et al. (2007) and Parra et al. (2015) describe
an approach for the classification of requirements quality by using machine-learning
techniques. Both compare the performance of the algorithm (i.e. a decision tree)
against expert assessments (ambiguous/non-ambiguous, good/bad) on single re-
quirements and present good results. This reinforces the idea to use machine
learning techniques for our research scope since both papers also deal well with
insufficient data or errors when predicting class values.

Soeken et al. (2014) present an approach for the "syntactic and semantic quality of
a sentence" based on natural language processing techniques. For syntactic quality,
the authors describe a phrase structure tree and a parser that uses probabilistic
context-free grammars for tree computation. Isomorphic subtrees and "sentence
length penalty" are considered, which take into account the number of words used
for the sentences. For semantic quality, ambiguities are determined using WordNet.
WordNet is a lexical database that contains semantic relationships of words and that
offers synonyms, hyponyms, and meronyms. If a word in the WordNet dictionary
has several meanings (i.e. synsets), it is considered to be ambiguous. In the first
part, they let people assess a test set of 103 requirements. This results in a "matching
percentage" between the algorithm and the human assessment of around 65 percent.
In the second part, the authors present an approach to validate guidelines by
proposing ten rules. For example, the first rule is described as "Define a requirement
at a time" (Soeken et al., 2014, p. 3). These rules are then somehow transformed
into features that are not explicitly described in the work. For rule three, which
requires to "Use simple direct sentences", the authors only suggest checking for
active or passive voice in the requirement sentences. Hence, if the requirement is
written in the passive voice, this rule is violated. For the second part, accuracy values
of over 80 percent are presented.

An approach for the detection of uncertainty in requirements is proposed by H. Yang
et al. (2012). Uncertainty is characterized by an intended ambiguous specification
compared to Ambiguity, which defines an unintended behavior. The authors present
uncertainty cues (auxiliary verbs, conjunctions, epistemic verbs/adjectives/adverbs/-
nouns) that are assumed to reflect uncertainty. With a supervised machine learning
algorithm based on a conditional random field, they detect such clues at the term

2.2

43

44

level and extract lexical and syntactic features from requirements. For the evaluation,
a corpus is manually annotated based on the uncertainty cues and is used as a gold
standard for developing and evaluating their system. The authors present promising
results based on various performance measures.

Summary of related work.

Most of the related work focus on the characteristics Complete, Consistent, and
Unambiguous. Many of the authors consider at least one of these. The characteristics
Feasible, Implementation Free, and Necessary are not investigated at all. Other
characteristics—like Correctness, Modifiability, Testability, Validability (Wilson et al.,
1997), Understandability (Berry et al., 2006; Fabbrini et al., 2001), and Abstraction
(Génova et al., 2013)—are used as well to determine the quality of requirements.
The characteristics Traceable and Verifiable are focused mostly in research that deals
with assisting tools in the category "Rule-based systems".

Some of the publications indicate that the quality attributes Atomic, Complete,
and Unambiguous cause the "most problems" when specifying natural language
requirements (Berry et al., 2003; Boyd et al., 2005; Gause & Weinberg, 1989; Goldin
& Berry, 1997; Huertas & Juarez-Ramirez, 2013). Other researchers, however,
claim that the quality of requirements is determined by the so-called three C’s
(Completeness, Consistency, and Correctness) and offer approaches to improve the
characteristics (Kamalrudin et al., 2011; Parra et al., 2018).

In our literature review, we identify a strong focus on the characteristic Unambiguous
(Berry, 2007; Denger et al., 2003; I. Hussain et al., 2007; Kamsties et al., 2001;
Kiyavitskaya et al., 2008; Mich & Garigliano, 2000; Ormandjieva et al., 2007;
Sabriye & Zainon, 2018; Shah & Jinwala, 2015; H. Yang et al., 2010). An extensive
study by Pekar et al. (2014), which addresses the question of "what SRS problems
are most frequently researched?", confirms this. The authors reveal that about one-
third of all related research focuses on the study of Ambiguity®. The characteristics
Completeness and Consistent are considered as the second and third most important
challenges of natural language requirements with about 25 percent of publications.
The characteristic Correctness is considered in every tenth research paper. The
results of the study reveal that "ambiguity and the three C’s are the most frequently
researched issues" (Pekar et al., 2014, p. 244).

There is a widely used test for an unambiguous requirement: "Imagine a sentence that is extracted
from an SRS, given to ten people who are asked for an interpretation. If there is more than one
interpretation, then that sentence is probably ambiguous" (A. Davis, 1993, cited in Berry, 2007.)

Chapter 2

2.2.3

In our research, we do not exclude characteristics from the ISO 29148 standard for
the quality assessment of natural language requirements, although the assessment of
some characteristics for a single requirement does not seem to be conducive at first
glance. For some of the characteristics, additional and context-related information
would be helpful. A further discussion of this issue can be found in section 2.2.4.
In addition, we analyze in chapter 3, whether experts are even able to assess all
quality characteristics of a single natural language requirement. At first, in the
following section, we present the research gap that results from the summary of
related work.

To the best of our knowledge, we do not find approaches that take into consideration
all characteristics from the ISO 29148 for a quality assessment of natural language
requirements. In addition, there are a number of proprietary quality models, some
of which are either derived from the experience of individuals or are constructed in
such a way that they can be directly quantified.

Even though characteristics have been further developed and refined over the last
decades, quantification for the quality assessment of a requirement is a complex
task. Several approaches describe textual indicators that are believed to relate to
the quality of requirements. These indicators can be lexical, syntactic, or semantic
(Antinyan & Staron, 2017b; Fantechi et al., 2003; Génova et al., 2013; Wilson et al.,
1997).

Some papers even suppose a direct relationship between the indicators and the
overall requirements quality (Femmer et al., 2017). In no case, these relationships
are proven by empirical research. Mostly, "quantitative indicators [...] are more or
less directly related to qualitative properties, so that the indicators can be used as
an objective measure of subjective quality”" (Génova et al., 2013, p. 27). An example
of this is illustrated in figure 2.7.

Besides, we particularly identify a lack of empirical evidence under real-world
conditions. Only some of the researchers validate their research on industrial data
and those who had access to real requirements only present an overview of their
results.

To address this research gap, we describe an approach to first analyze whether quality
characteristics of requirements can be assessed by experts. Based on these findings,
we implement an automated quality assessment of natural language requirements.

2.2

45

46

INDICATORS OF QUALITY ATTRIBUTES
Quality Attributes

2

Categories of 318
li ol = 2 [21222
Quality -1 g1 5| 2| |e|2|2| 5|22
Indicators || 2| 3 |E|c|=|S g 15| &
slalel|l=|E ERIH I R =
s|le|lal8|E|b|E|l=s|lE|l=]|0
olo|o|la|ele|lE]|lD|D]|>|>
Imperatives | X X X X|X[X[X
Continuances | X X|X[X|[X]|X]|X]|X|X
Directives X X X X[X]X]|X

Qptions X X X[X|X

Weak Phrases | X X X X X|X|X
Size X X X|X|X]|X
Text Structure | X | X X| X X X X
Spec. Depth | X | X X X X X
Readability X X X[X]|X]|X[X

Relationship between quality attributes (i.e. characteristics) and quality indicators
according to Wilson et al. (1997).

From a technical perspective, our approach is not fundamentally different from ex-
isting contributions. We use techniques from natural language processing, including
dictionaries and part-of-speech tagging, to process the requirements. But, we take
the knowledge of requirements quality from domain experts into account, as "one
of the most decisive factors for the quality of requirement" (Parra et al., 2015, p.
191). This enables an implementation that is aligned with the needs of industrial
practice. For our research we build upon the approach from Parra et al. (2015)
and use results from several studies (e.g. Génova et al., 2013). We create a list of
textual indicators extracted from related work and enhanced by guidelines and best
practices from industrial practice for the automated quality assessment of natural
language requirements.

In summary, we complement the current state of the discussed evidence on automatic
quality measurement for natural language requirements by conducting a systematic
assessment under realistic conditions with practitioners. We define a requirements
quality model based on the characteristics of the ISO 29148 standard, let experts
assess real-world requirements, and implement an automated assessment of require-
ments quality by applying natural language processing and machine learning. Thus,
our approach enables a quality assessment of unlabeled requirements in the same
way an expert would classify them.

However, our research is also accompanied by issues related to the expert assessment

of requirements and our automated approach. We take these challenges into account

in the following section.

Chapter 2

224

Based on the analysis of related work and the examination of the characteristics from
ISO 29148, we identify research issues that we discuss in the following. The issues
are of different nature and range from challenges with the use of natural language to
possible interdependencies of individual characteristics in our requirements quality
model. Also, general assumptions for the assessment of requirements quality are
discussed.

Vagueness. The descriptions of the characteristics from ISO 29148 (and previous
approaches) can be interpreted as vague. Our requirements quality model therefore
already contains a certain fuzziness and allows a possible subjective interpretation.
Also, the assessment of requirements based on these characteristics could lead to
such fuzziness. This can be described by two influencing factors. First, experts
can not understand the characteristics and are therefore not able to reliably assess
requirements quality. Second, experts interpret these characteristics identically or at
least similarly. Due to the different professional experiences of the experts, however,
requirements are assessed differently. We consider this issue in our research as far
as possible by analyzing the reliability of the experts’ assessments and by ensuring a
reasonable distribution of experts with regard to their professional experience.

Requirements context. Besides the vagueness of the descriptions, we recognize
another issue related to the context of the requirements assessment through the
experts. According to the ISO 29148 standard, the characteristics of our requirements
quality model can be applied to an individual requirement. However, with the
given descriptions, a distinction between characteristics that apply to individual
requirements and characteristics that probably require further context-relevant
requirements for the assessment is necessary. Characteristics of the first group can
be applied to individual requirements where no further information is needed. We
estimate Feasible, Implementation Free, Singular, Unambiguous, and Verifiable in this
group. The characteristics Necessary and Traceable are estimated to relate to the
second group. When assessing these characteristics, additional relevant requirements
would be beneficial. For Traceable, information about linked requirements would be
most helpful. The same applies to Necessary where the necessity of a requirement can
be assessed when the whole requirements specification and all additional information
and relevant documents are available. In the standard ISO 29148, the characteristics
Complete and Consistent have a special role and relate to both groups. Complete,
for example, can be applied to individual requirements and considers, whether
the requirement "needs no further amplification" (ISO 29148, 2011, p. 11). Also,
Complete can be assessed for a set of requirements where "it contains everything

2.2

47

48

pertinent to the definition of the system or system element being specified" (ISO
29148, 2011, p. 11). Same applies for the characteristic Consistent. In our research,
we estimate both characteristics for the first group since we use the description of the
characteristics for an individual requirement. We are aware of these two groups and
realize that additional contextual requirements would be helpful for the assessment
of some of the quality characteristics of an individual requirement. Thus, we analyze
in chapter 3 whether the experts are able to assess these characteristics at all.

Surface and concept understanding. The characteristic Unambiguous is described
as the "Achilles‘ heel" (Berry et al., 2003) of software requirements specifications. Or-
mandjieva et al. (2007) also claim that Unambiguous is mainly responsible to enable
the determination of the remaining quality characteristics. Hence, if a requirement is
not Unambiguous, there is a reason for misunderstanding and misinterpretation. But,
moreovet, if a requirement is not Unambiguous, it can hardly be assessed to which
degree it fulfills the other characteristics. This is an assumption that the authors
describe with "surface understanding" vs. "concept understanding”" (Ormandjieva
et al., 2007). The surface level is concerned with the language of the requirement, or
"what is stated", and the concept level with "what is meant or implied" (Ormandjieva
et al., 2007). It is obvious that an assessment of the latter requires a much deeper
insight into the structure of the requirement—both for a human and for a machine
algorithm. The surface level has been often addressed by research. In particular, the
tools from the category "Rule-based systems" to support the requirements engineer
in writing good requirements work largely on this level. The hypothesis might be
that an author who puts much effort into writing a requirement unambiguously, has
put the same effort into assuring that the requirement is complete, consistent, and
verifiable and fulfills the remaining quality characteristics as well. This would also
imply, that the assessment of the characteristics can only be done if the requirement
is Unambiguous. Therefore, in the context of expert assessments, we investigate to
what extent the characteristics can be assessed in general, but we refrain from the
analysis of mutual dependencies of characteristics.

Mutual influences. Besides the distinction between surface understanding and
concept understanding, some researchers claim that there are further mutual depen-
dencies between the quality characteristics (Génova et al., 2013). Saavedra et al.
(2013) synthesize several lists of desirable properties and present assumptions about
how the characteristics influence each other. The authors determine which of the
characteristics "are most important to the project" (Saavedra et al., 2013, p. 254).
However, empirical evidence for these results is not given. Some studies even extend
this approach by asking experts to prioritize the characteristics (Unterkalmsteiner &
Gorschek, 2017). We consider these results to be difficult to prove, as the priorities

Chapter 2

of the characteristics can particularly vary depending on different stakeholders. A
software tester would presumably prioritize the characteristics Unambiguous and
Verifiable in a different way than a stakeholder who does not have to cope with the
verification of natural language requirements. In chapter 3, we apply an approach
of prioritizing characteristics in our assessment sessions with the experts, although
we do not use the results for our research. With the prioritization of characteristics
at the beginning of an assessment session, we only want to establish a common
understanding among experts for the description of the ISO 29148 characteristics.
The prioritization task makes it necessary for the experts to deal with the descriptions
of the characteristics before the assessment of requirements.

Practical contribution. Our research topic is located in an area where informal
approaches are used to describe software requirements. Berry (2007) reminds us,
that "in order to write software, ideas, which are inherently informal, have to be
converted somehow to code, which is inherently formal" (Berry, 2007, p. 1). In
general, it is not possible to fully describe and exactly specify ideas solely by text.
However, we want to exactly assess requirements quality by using characteristics
and textual indicators. Therefore, we must expect uncertainties in the assessment
and strive for good results despite this inaccuracy. In addition, our research is based
on several hypotheses: first, quality can be made objective and measurable; second,
indicators can represent the manual quality assessment of experts; third, indicators
are sufficient to interpret natural language. In later parts of this thesis, we provide
empirical results to confirm these hypotheses. Besides, the analysis of natural lan-
guage requirements can generally be an "aid for writing the requirements right, but
not for writing the right requirements" (Génova et al., 2013, p. 26). An assessment
can be an approach to improve the correct understanding of requirements. However,
an overall challenge in the assessment of natural language requirements is to define
indicators for content quality. A quantitative measurement does not necessarily give
insights about this as the text is only the carrier of the content. Nevertheless, we are
convinced that well-specified requirements improve the communication between
stakeholders in a development project and lead to a higher quality of software
products.

We conclude section 2.2 with the discussion of the research issues. We are aware
of these issues and take them into account as much as possible in the manual and
automated assessment of requirements quality. In a final section, we summarize
chapter 2 of this thesis.

2.2

49

2.3

50

Research about requirements engineering is an old topic and a lot of literature is
available. It is also a well-known concept that is described in numerous textbooks
and articles. However, it took more than 40 years to establish it as an independent
discipline in an edition of the "Transactions of Software Engineering". Although
nowadays people are fully aware of the relevance and importance of requirements
engineering for the success of a software project, the actual percentage of projects
in which sufficient requirements engineering is included is still low (Ebert, 2019).

With an increase in the number of software projects and additional challenges
(demands, complexity, distributed development), the focus on the quality of software
requirements also became increasingly important. As "there is little excuse for
specification errors" (A. Davis et al., 1993, p. 142), initial improvement approaches
concentrated on supporting developers in the formulation and specification of good
software requirements. Therefore, the question quickly arose as to what describes a
"good" requirement.

Today, international standards for requirements engineering contain sections on the
quality of requirements, although there is still no uniform definition. In general,
quality can be described as the sum of individual characteristics, as can be seen from
approaches in the context of software quality and service quality. Consequently, we
define a requirements quality model based on nine characteristics from the standard
ISO 29148 that describes a well-written requirement. In our research, we refer to
this standard as it was valid at the time of the development of our quality model.

We further analyze the literature on requirements quality, which falls largely into
three categories. "Rule-based systems" include research about static tools to support
requirements engineers in writing good requirements; "Formalization and modeling
systems" describe research on the transformation of natural language requirements
into formal models and logic specifications; "Automated classification systems"
focus on automated approaches to classify requirements quality by applying natural
language processing in combination with machine learning techniques. Several
researchers describe textual indicators that relate to the quality characteristics or
even to the overall quality of a requirement. The relationship between textual
indicators and characteristics has been suggested but not evidenced so far.

Consequently, two research gaps need to be investigated: first, we do not find
assessment approaches that consider all quality characteristics from ISO 29148;
second, no empirical research has been conducted on the relationship between

Chapter 2

indicators and characteristics. To address these gaps, we first analyze which of
the characteristics can be assessed by experts at all. Based on these findings,
we implement the automated assessment of natural language requirements and
provide evidence on the relationship between indicators and characteristics. The
identification of indicators from various studies dealing with a similar research
problem enables us to perform linguistic analyses of natural language requirements.
We create classification models to assess natural language requirements in terms of
quality in the way an expert would do. Also, we do not only provide binary results
for the "good" or "bad" quality of a requirement but allow a detailed analysis of
(some of) the characteristics.

In chapter 3, we present our approach and results from the manual assessment of
requirements quality with experts. We use these results for the automated assessment
that is introduced in chapter 4.

23

51

Manual assessment of
requirements quality

But how do we know what’s good?
You just see it.

— Robert Pirsig
In: Zen and the Art of Motorcycle Maintenance

In this thesis, we apply a requirements quality model that we introduced in chapter
2. The model consists of nine quality characteristics described in the ISO 29148
standard. Our main target is to enable an automated assessment of these charac-
teristics for natural language requirements by using supervised machine learning.
An essential prerequisite for training and evaluating such machine learning models
is labeled data, also called "gold standard" (Femmer et al., 2017; I. Hussain et al.,
2007; Krisch et al., 2016; Rosenberg, 2008; Velupillai et al., 2009). For our research,
we can obtain labeled data only by human judgment. Therefore, we ask experts
to assess natural language requirements based on the characteristics of our quality
model. The results of the assessments are then used as input for the implementation
of an automated approach in chapter 4.

This chapter describes the expert assessments of requirements quality and the cre-
ation of a labeled data set. It consists of three sections: data handling, requirements
assessment, and agreement analysis. In the first section, we examine the data set
with more than 57,000 items (called "objects" in the following) from automotive
development projects and create a subset for the assessment sessions. In the second
section, an approach for the quality assessment of natural language requirements
that allows simple and effective collection of labeled data is presented. The last
section focuses in particular on the definition and determination of agreement re-
garding the experts’ assessments. Finally, a summary and conclusion of the chapter
are provided.

53

3.1

3.1.1

54

In the first section, we describe how requirements are gathered for the assessment
sessions with experts and examine the industrial data set consisting of natural
language requirements. Additionally, we present the data selection process with
which the data set for the requirement assessments is generated.

In our research, we work together with an international consulting and engineering
company. The cooperation is complemented by the execution of customer projects in
the area of requirements engineering and provides us insights into the development
departments of different automotive manufacturers. We also have access to software
requirements specifications from industrial practice, which we can use for our
research purpose. This allows us to gain real-world insights and also to derive
reliable results for practical application.

We gather requirements of different automotive software development projects
through exports from proprietary requirements management tools (mostly IBM
Engineering Requirements Management DOORS!). These projects aim at function
development, such as lane-keeping assist, collision avoidance, and the development
of other safety and comfort functions?. A majority of the projects are implemented
jointly with several external development partners. This makes the use of natural
language in the software requirements specifications (SRS) the most reasonable
option.

Typically, an SRS is written by different engineers, most of whom are domain experts
in their field, and the content is formulated in natural language. An SRS generally
describes (parts of) a software function and consists of a number of so-called
"objects" in DOORS. An object can be thought of as an entry in the specification that
is described by several attributes. In our data export, the objects in each software
requirements specification contain at least the following attributes: "Module Name",
"Object ID", "Object Type", and "Object Text". Each object results in one row in a
spreadsheet with the attributes as columns.

The attribute "Module Name" contains the name of the software requirements
specification to which an object belongs to. Our data set includes a total of 83

!DOORS = Dynamic Object Oriented Requirements System
2For reasons of confidentiality, we are not allowed to give detailed information about the projects.

Chapter 3

different specifications that vary in size between 100 and 2,600 objects. Each object
is also assigned to an "Object ID" that uniquely identifies an object. In total, our data
set contains 57,801 objects.

The attribute "Object Type" further describes the type of an object. In a software re-
quirement specification, a distinction is typically made between the types "Heading",
"Information" and "Requirement”. The types "Heading" and "Information" are used
for structuring or providing additional information. A "Heading" delineates or sum-
marizes the thematic areas of an SRS. Objects of the type "Information" supplement
the context of a development project or parts of it without including requirement-
relevant contents. The type "Requirement" therefore indicates requirement-relevant
content. Our data set includes 9,365 "Heading" objects, 10,775 objects attributed as
"Information" and 37,661 objects attributed to the type "Requirement".

Finally, the attribute "Object Text" includes textual content for each object. Table 3.1
exemplarily shows the structure and the attributes of the exported requirements. The
"Object Text" may be of different lengths and can also consist of several sentences.
This is because the attribute typically allows text to be inserted without proper
formal checks. Based on this data set we proceed with the selection process in the
next section.

Objects in an SRS with a defined set of attributes.

Module Object Object Object

Name ID Type Text

Spec_01 ID 01 Heading Header text
(e.g. "Functional requirements")

Spec 01 ID 02 Information Here you will find textual information.

Spec_01 ID 03 Requirement Here you will find requirement-related content in textual
form.

Spec 01 ID 04 Requirement Another text for a requirement. This requirement object
consists of two sentences.

Spec 01 ID_05 Information This object contains more textual information.

Spec_02 ID 01 Heading Header text
(e.g. "Performance requirements")

Spec_02 ID 02 Information Here you will find more textual information. An infor-
mation object can also consist of several sentences.

Spec_02 ID 03 Requirement More textual content for a requirement.

Spec_03 ID 01 Heading Header text
(e.g. "Quality requirements")

Spec_03 ID 02 Information Another text for an information object.

3.1

55

3.1.2

The export contains a lot of data, not all of which is relevant for our research.
Therefore, we perform a four-step process for the selection of the data set. The
process is illustrated in figure 3.1 and the steps are described in the following.

Data set
(57,801 objects)

1. Type reduction

Data set
(37,661 objects)

2. Language reduction

Data set
(17,353 objects)

3. Requirement reduction

Data set
(14,326 objects)

4. Outlier reduction

Data set
(14,256 objects)

Selection process for the data set.

1. Type reduction. Our research focuses on the assessment of natural language
requirements. Thus, in the first step, we start selecting objects which are
attributed as such (Object Type = "Requirement"). This step reduces our data
set from 57,801 to 37,661 objects>.

2. Language reduction. We add the attribute "Module Language" to our data set
and manually assign the language in which each specification is written. This
attribute helps us to differentiate between English and German requirements.
As our experts have German as their native language, we reduce the data set
by English content®. This results in a reduction to 17,353 requirement objects.

®Each remaining object is assigned the type "Requirement". Therefore, we further speak of
requirement objects, although a wrong assignment of the type could still be present.

“With the demonstration of the feasibility for German requirements, the approach can (and should)
be adapted to English requirements as well.

56 Chapter 3

3. Requirement reduction. We do not consider requirement objects in the data
set that contain tables or that are part of enumerations, as the grammatical
structure of a sentence is usually not given (Krisch & Houdek, 2015). We also
identify and remove duplicates that can occur due to requirements included
by default in any specification such as those prescribed by company policies.
This step reduces the data set to 14,326 requirement objects.

4. Outlier reduction. The remaining objects are analyzed with regard to the
number of words in the attribute "Object Text". We apply different ranges for
the number of words to identify outliers in the data set. The analysis reveals
that requirement objects with more than 84 words have no relevant content
for our research. Some of these contain, for example, only a sequence of signal
parameters or describe pseudo code. Figure 3.2 illustrates the frequency of
the number of words per requirement object. Table 3.2 shows in detail that
99.50 percent of the requirement objects contain between five and 84 words.
Therefore, in the final step, we reduce the requirement objects in the data set
that contain more than 84 words. This applies to 70 objects.

2 1000 2
o
g
()
g
8
5
g
g s00| 2
o
s
z
0 | | o : : — -0-0-0——0——00-0—0—— o
0 20 40 60 80 100 120 140 160 180

No. of words

Analysis of the number of words in a requirement to identify outliers in the data
set.

As a result, the final data set consists of 14,256 unique German requirement objects
in natural language. The selection process can be seen as opportunistic. However, we
assured that the most possible variety of relevant data is available for the assessment
of requirements. In the next section, we use the selected data set as input for the
assessment sessions with experts.

3.1

57

3.2

3.2.1

58

Detailed analysis of the distribution of the number of words.

No. of words No. of objects Percentage

5-24 11,546 80,59%
25-44 2,265 15,81%
45 - 64 340 2,37%
65 -84 105 0,73%
85-104 43 0,31%

105 -124 17 0,12%
125 -144 6 0,04%
145 - 164 3 0,02%
165 - 184 1 0,01%

In this section, we focus on the labeling process based on expert assessments. Since
there is no established methodology for assessing natural language requirements,
we use methods from survey research for the design of our assessment tool. The tool
facilitates the requirements assessment for the experts and collects relevant data for
our "gold standard". We also provide an overview of the results before we finally
discuss assessment issues.

In general, the quality assessment of requirements is a sophisticated and challenging
task. If there are uncertainties in the assessment, this may be due to the different
competencies of the experts, for example. The expert’s background and level of ex-
perience could lead to different forms of implicit knowledge and the ability to assess
requirements despite less information value. However, it is also crucial whether the
characteristics of a requirement can be assessed based on the descriptions from ISO
29148. Therefore, a central question is whether these descriptions are appropriate
to allow an assessment of the requirements. Besides, it is necessary to consider
whether a single natural language requirement can provide enough information to
enable the assessment of all these characteristics. These are further questions we
discuss in this section.

Labeling is a complex process and often represents the major part of a machine
learning project. Therefore, it should be done as competent and efficient as possible.
We achieve competent execution by asking experts who already have professional
experience in requirements engineering. To ensure that the labeling is also carried
out efficiently, an assessment tool is required. This raises questions regarding the

Chapter 3

design of such a tool and the selection of a suitable scale for the assessment of the
characteristics. These are all questions for which we can receive suggestions from
the disciplines of survey research.

In general, survey research is a preferred approach for researchers (Palvia et al.,
2004). "It is a quantitative research method that is commonly used in both empirical
software engineering and information systems research" (Wohlin & Aurum, 2015,
p. 1441). We take into account the use of a predefined and structured set of ques-
tions for data collection and aim to gather data that we can analyze quantitatively
afterward (Palvia et al., 2004; Saunders et al., 2012). Besides, for the assessment
design, we consider the guidelines and critical factors of Kitchenham and Pfleeger
(2002), Marsden and Wright (2010), and Saunders et al. (2012). They describe, for
example, that the experts’ answer format should be in a standardized form.

In most cases, a manual assessment can be time-consuming, which is why not all
requirements® from our data set can be assessed by experts (Ormandjieva et al.,
2007). For that reason, we select 1,000 requirements by random choice. For a simple
and reliable requirements assessment, we developed a tool that consists of a website
linked to a database. The tool enables a simultaneous requirements assessment
of several experts by saving each assessment in the database with the help of SQL
queries. The assessments are carried out in so-called "sessions". A session includes
25 natural language requirements, each of which is assessed according to the nine
characteristics of our quality model.

"At the start [...] you need to explain clearly and concisely why you want the
respondent to complete the survey" (Saunders et al., 2012, p. 446). Therefore, at
the beginning of each session, we present general information and the motivation
for the quality assessment of natural language requirements (see appendix A.1).
This is followed by general questions to the expert, such as the gender and the
number of years of professional experience the expert already has in requirements
engineering.

Inspired by the approach presented in Génova et al. (2013), Saavedra et al. (2013)
and Unterkalmsteiner and Gorschek (2017) to classify quality characteristics ac-
cording to their relevance, we set up a prioritization task before the start of the
assessment session. We ask the experts to prioritize the nine characteristics of
our quality model—Complete, Consistent, Feasible, Implementation Free, Necessary,
Singular, Traceable, Unambiguous, and Verifiable—regarding to the overall quality
of a requirement. The experts can view the description of the characteristics which
we translated into German and can choose between 1 (rather important) and 9

>To further increase readability, we generally refer to a requirement object as "requirement".

3.2

59

60

(rather unimportant). A value can also be used more than once, for example, if two
characteristics have the same prioritization according to the expert’s opinion. In
figure 3.3, we show the approach for the prioritization of characteristics.

Die Anforderung ist so formuliert, dass sie nur in einer Weise interpretiert

werden kann. Die Anforderung ist einfach und leicht verstandlich formuliert.

Eindeutig 1 = eher wichtig v
Implementierungsunabhangig 2 e
Konsistent 3
Notwendig 4
Realisierbar 5
Rickverfolgbar 6 <
Singular 7
Verifizierbar a
Vollstandig 9

= eher unwichtig |~

Prioritization of characteristics from our requirements quality model.

We do not evaluate or analyze these results due to the issues previously discussed
in section 2.2.4 (e.g. that priorities of the characteristics may vary depending
on the role of the person in a development project). With the prioritization, we
rather want to ensure that the experts deal with the descriptions of the quality
characteristics before the assessment of the requirements begins, thus reducing the
factor of different interpretations of the characteristics.

After this task, the experts begin to assess randomly selected requirements from the
data set. Figure 3.4 shows the graphical interface for the assessment, which presents
the current requirement to be assessed in the upper text box. In the first step,
the expert assesses the type and selects between "Requirement" and "Information".
Although we have only selected objects from our data set that are assigned to the
type "Requirement", we consider the expert’s estimation at this step. We reveal in
the result analysis later in section 3.2.2, that not all requirements are assessed as
such.

The expert can display the definition of a requirement translated into German, which
is based on the Institute of Electrical and Electronics Engineers (IEEE 610, 1990)°. If
a requirement does not correspond to this definition, the expert can select the type
"Information", which will not enable the assessment of the quality characteristics.
If "Requirement” is selected, the expert can assess the nine characteristics of the
requirement.

®A requirement is:

(1) a condition or capability needed by a user to solve a problem or achieve an objective;

(2) a condition or capability that must be met or possessed by a system or system component to satisfy
a contract, standard, specification, or other formally imposed document;

(3) a documented representation of a condition or capability of the previous two arguments.

Chapter 3

[Anforderung Information

-..hinsichtlich der Eindeutigkeit ?

1 2 3 4 5 Keine Bewertung méglich

1 2 3 4 5 Keine Bewertung méglich

...hinsichtlich der Notwendigkeit ?

Expert assessment of requirements according to our quality model.

The assessment is the "process of assigning labels (typically numbers) to an attribute
of an object or action in such a way that the characteristics of the attribute are
mirrored in the characteristics of the labels" (Rosenberg, 2008, p. 156). However,
there is no agreement on what number of alternatives (in our case it is the number
of "scores") represents an optimum. Many of the assessment scales are defined by
five or seven response options (Bearden et al., 1993; Peter, 1979; Shaw et al., 1967).
Some contributions claim that the results of the answers improve with the number of
alternatives. However, this increase becomes significantly smaller when this number
exceeds five (Aiken, 1983; Brown et al., 1991; D. McCallum et al., 1988; Weng,
2004). "In practice, the number of alternatives most frequently found [...] is five"
(Lozano et al., 2008, p. 1). These results are also confirmed by one of the most
influential articles on human perception: Miller (1956) describes that humans are
able to distinguish seven (plus or minus two) different items. Scales that have more
than seven alternatives can therefore only provide little additional information.

Despite the extensive research contributions, "the issue of the optimal number of
response categories in rating scales is still unresolved" (Preston & Colman, 2000,
p- 2) and "common practice varies widely" (Krosnick & Presser, 2010, p. 268).
O’Muircheartaigh et al. (2000) generally propose to use an odd number of scores
for assessment scales. This enables a neutral assessment and allows for evasion of
uncertain judgments (Malhotra, 2006; Tsang, 2012). Additionally, Stevens (1946)
provides an overview of four generic types that can be applied for assessment scales

3.2

61

62

in scientific measurements: nominal, ordinal, interval, and ratio scales. "Ordinal
scales are those that measure rank-ordered data" (Bhattacherjee, 2012, p. 46).

As a result, we decided to use an ordinal five-point scale for the assessment of
the characteristics. On the one hand, it provides a suitable range of assessment
alternatives and on the other hand, it is the number with the highest "ease of use"
for the participants (Jones, 1968). Today, five-point scales are widely used, e.g.
in online shopping portals and hotel ratings. Therefore, it is already advisable to
present a scale that is familiar to people. In detail, we apply a numeric assessment
scale where only "end categories are labelled and are known as self-anchoring rating
scales" (Saunders et al., 2012, p. 438). We define the minimum value (1; "very bad")
and the maximum value (5; "very good") as end categories and present these labels
when the expert assesses the characteristics.

If an expert is not able to assess a quality characteristic at all, the option "No
assessment possible" ("NA"; translated from German for "Keine Bewertung moglich")
is also available. Thereby, experts are shown "that it is acceptable to say they have
no [sufficient] information with which to answer a question" (Krosnick & Presser,
2010, p. 282). Saunders et al. (2012) also suggest adding such a category and
place it slightly beside the scale. Therefore, we integrate the option of not having
to assess a characteristic (see figure 3.4). A possible disadvantage could be that
such assessments increase as a session progresses, "at which point motivation [...] is
presumably waning" (Krosnick & Presser, 2010, p. 284). We take this into account
when we analyze the results in section 3.2.2. In the following, exemplary German
requirements are shown, taking confidentiality of the content into account. These
examples should give the reader a sense of the task the experts are confronted with
during the assessment.

Exemplary software requirement 1

Die Funktion muss die beiden Heckleuchten eines LKW klassifizieren.

Exemplary software requirement 2

Es muss fiir Einfahrten die Anzahl der Fehlklassifikationen kleiner als 1 sein.

Exemplary software requirement 3

Die automatische Kalibrierung muss den Gierwinkel der Kamera ermitteln. Dieser
muss durch das System automatisch korrigiert werden.

Chapter 3

3.2.2

Our research aims to collect reliable data through the requirements assessment
by experts. This is also the reason for using methods and techniques from survey
research. The assessment tool collects information on how the quality of the require-
ments is perceived by an expert based on defined characteristics. The collection of
assessments implies the consideration of quality issues. Therefore, we developed
different strategies to overcome potential problems. Besides, it is not only relevant
to know whether an expert can assess a requirement. Rather, it is important to know
for which characteristics the expert has difficulties in assessing the requirements.
The following section contains the presentation and the result analysis from the
assessment sessions. We provide an overview of general results and take a look at
the distribution of assessment scores per characteristic.

Between April and October 2018, 1,000 software requirements were assessed twice
by 113 experts (15 female and 98 male”) from the automotive industry. Each
of the experts had a background in software engineering in areas of automotive
development for comfort and safety functions. The experts had an average of 6.5
years (median of five years) of professional experience in requirements engineering.
There is a huge spectrum that ranges from beginners to domain experts with more
than 35 years. Figure 3.5 illustrates the distribution. Almost 60 percent of the experts
have between four and seven years of professional experience. Mostly, the experts
have five years which indicates a solid knowledge of requirements engineering.

We carried out the assessment sessions only in person and held the sessions in a
meeting room with a maximum of six participants. This ensured a requirement
assessment without disturbances or distractions. The sessions were conducted
several times at three different locations (Stuttgart, Munich, and Ingolstadt). For
each location, attention was paid to ensuring that the same conditions (e.g. meeting
room, time) were available for the experts. A session took about two hours so that an
expert needed on average five minutes to assess the characteristics of a requirement.
Therefore, it was a time-consuming task resulting in more than 170 hours of effort
in total.

Each of the 1,000 requirements in our data set was independently assessed by two
different experts according to the quality characteristics. Every assessment was
stored individually so that the data set finally consists of 2,000 entries of assessed
requirements. Beyond that, a single expert had assessed a requirement for the

"We want to note that we have taken both genders into account, as far as availability permits, for
the quality assessment. In the following, we do not make any distinction between the expert gender.

3.2

63

64

30 —

25 I |
o 23

20 19 a

11

No. of experts
—
ot
[
L
=~
|

3 33
1 22 1 12

0— \ \ \ \ T T T
0 5 10 15 20 25 30 35 40

Professional experience in years

Number of experts in regard to professional experience in years.

second time within an assessment session: one of the first five requirements, that
the expert had already assessed, was randomly chosen and displayed again for
assessment as one of the last five requirements of a session. We use these two
assessments of a single requirement by the same expert for the agreement analysis
in chapter 3.3.4. Of 113 experts, 76 experts have completed the assessment session.
37 experts were not able to assess the full set of 25 requirements due to various
reasons (e.g. short-term deadlines, project topics, customer calls).

In the following, we further reduce the data set of the assessed requirements. First,
we consider only assessments where the expert has completed the session. We can
then ensure that the approach to assessing the requirements has been carried out
equally for all experts. This in turn means that there could be only one assessment
for a requirement in our data set afterward. For this reason, and this describes
our second step, we additionally reduce by requirements that only contain one
assessment by an expert. These two steps reduce our data set from 1,000 to 674
requirements that are assessed by two different experts.

We only considered objects attributed to the type "Requirement" during the selection
of the data set. However, some objects were classified as type "Information": for 97
requirements, "Information" was selected in the assessment by two different experts.
Besides, 159 requirements were classified as "Information” only by one expert. These
results indicate that experts could have difficulties in identifying requirements.

Chapter 3

The experts realized that an assessment of the characteristics was not required
if the type "Information" was selected. This can sometimes lead to the fact that
"Information" was selected more frequently when expert motivation was reduced to
avoid a more complex assessment. We considered this issue during the development
of the tool. Therefore, we saved the position for each assessment in a session. In
table 3.3, we see the number of requirements assessed as "Information" depending on
the position in a session. The positions are summarized in five ranges. Accordingly,
86 requirements within the first five assessments were classified as "Information”. A
decreasing motivation of the experts cannot be recognized by an increasing selection
of the type "Information". The results, however, have an impact on our data set in
that we only take into account those assessments of the experts who agreed on the
type "Requirement". This leads to a reduction to 418 assessed requirements.

Number of selections of the type "Information".

Position No. of "Information" Percentage

1-5 86 25%
6-10 72 20%
11-15 72 20%
16 -20 77 22%
21-25 46 13%

In the following, we present the distribution of the assessments for the characteristics.
Table 3.4 and figure 3.6 illustrate how often a score was selected. For example, for
the characteristic Singular (C6)8, the majority of all requirements were given the
score "5" (43 percent). Also, the experts were mostly able to assess this characteristic,
as the option "NA" (="No assessment possible") was rarely selected.

Frequency distribution of the selected scores for each characteristic.

Score | C1 C2 C3 Cc4 C5 C6 Cc7 C8 Cco
1 12% 3% 4% 6% 4% 10% 3% 8% 6%
21% 11% 7% 16% 9% 14% 8% 14% 8%
23% 16% 16% 26% 18% 13% 15% 19% 18%
23% 35% 30% 25% 28% 19% 28% 28% 27%
17% 24% 33% 24% 28% 43% 17% 30% 39%
NA 4% 11% 10% 3% 13% 1% 29% <1% 2%

gu b~ WON

If an expert cannot assess a characteristic for a requirement, the option "NA" is
possible to select. Therefore, the number of "NA"s indicates challenges during the
assessment. The characteristic Consistent (C2), for example, could not be assessed for
11 percent of the requirements. The experts also seem to have difficulties in assessing

8In tables, the nine quality characteristics are abbreviated as follows: C1 = Complete, G2 =
Consistent, C3 = Feasible, C4 = Implementation Free, C5 = Necessary, C6 = Singular, C7 = Traceable,
C8 = Unambiguous, C9 = Verifiable.

3.2

65

66

400

350

T
|

300 - N

250 - N

200 - .

No. of assessments

150 - .

100

T
|

50

T
|

1im20n3ln4 i sHENA

Number of scores for each characteristic.

Feasible (C3) (10 percent) and Necessary (C5) (13 percent). The characteristic
Traceable (C7), however, seems to present a major challenge in the assessment:
29 percent of the requirements could not be assessed by the experts. On the
other hand, for Unambiguous (C8) (<1 percent) and Singular (C6) (1 percent) the
experts are able to assess almost every requirement. For Complete (C1) (4 percent),
Implementation Free (C4) (3 percent) and Verifiable (C9) (2 percent), an assessment
seems to be less sophisticated as well compared to Traceable (C7).

In addition to the number of "NA"s, other findings can be drawn from the frequency
distribution of the scores for each characteristic. It is remarkable that for a few of the
characteristics (e.g. Complete (C1), Consistent (C2), and Necessary (C5)) a kind of a
normal distribution of the scores can be assumed, whereas for other characteristics
the selection of one score clearly predominates (e.g. Singular (C6)).

In the next section, we identify possible challenges that experts have encountered
during the assessment process and describe issues regarding the collection of reliable
assessment data.

Chapter 3

3.2.3

The characteristic Unambiguous is well considered in the literature within the re-
search area of ambiguity detection. The experts seem to recognize ambiguity and
are therefore able to conduct an assessment. It is also understandable why some of
the characteristics are hardly considered in research. Approaches in the literature
especially for Feasible and Necessary are barely available. Experts seem to have chal-
lenges to assess these characteristics of a single requirement when other contextual
information is not available.

The survey design also indicates reasons why the experts are not able to assess the
characteristics equally well. In the first step, the experts are confronted with the
characteristics (and the descriptions) that they have to prioritize. This task is only
for the experts to deal with the characteristics in advance of the assessments. In
the further course, however, we do not give specific examples of how to assess the
characteristics of a requirement. Due to the different experience levels of the experts,
a requirement can therefore be assessed more or less well.

Besides, the descriptions of the characteristics in the ISO 29148 standard already
allow for interpretation and have a certain degree of fuzziness. Although all charac-
teristics refer to an individual requirement, Traceable, for example, describes that a
requirement should be "upwards and downwards traceable", which would require
additional context information for an assessment. However, the experts were able to
assess 71 percent of the requirements in terms of this characteristic. The analysis in
section 3.3 shows us whether these results are also reliable.

On the other hand, the experts were able to assess almost every requirement with
regard to the characteristics Singular and Unambiguous. Singular describes itself
by the fact that only one requirement is specified and no conjunctions are used.
Unambiguous applies to a requirement if it can only be interpreted in one way and if
it is specified simple and easy to understood. Thus, experts can identify multiple
requirements and are also able to appreciate the complexity of how a requirement is
specified. These observations are intuitive and are not based on statistical analyses.
We provide a more thorough analysis in the next section.

In most cases, the choice of experts has a considerable influence on the quality of the
results. A typical automotive development cycle lasts an average of four years. It is
then relevant that the majority of the experts have at least this amount of experience.
This is important because the expert has then passed through all the steps of a
development process at least once from a requirements engineering perspective. In
our sample, only every fifth expert had less professional experience. Even though

3.2

67

3.3

68

less experience could then eventually lead to less reliable results, we have taken such
assessments into account. Thus, in the trade-off between reliability and quantity of
labeled data, we tend to focus on the latter.

As we are aware of existing bias, we followed different measures to overcome these.
At the beginning of a session, each expert received the same level of information.
We also emphasized that the results are treated anonymously so that no conclusions
can be drawn about an individual person. Every session was conducted using the
same tool and survey approach. We also emphasized the importance of face-to-
face sessions, which leads to a high response rate and a conscientious assessment,
especially when the topic is considered interesting and relevant for the experts’
project work. By conducting the sessions in person and by securing access to the tool,
we were also able to ensure who was assessing the requirements, giving us control
over the data we receive. This was complemented by the fact that the sessions were
not held at the workplace, but in a separate meeting room with other experts. As
we had up to six experts simultaneously assess requirements within one session, the
experts were able to cope with the task at different speeds. This could sometimes
lead to other experts feeling under pressure and therefore assessing requirements
less conscientiously. We are aware of it, but consider this a low risk.

With the results of the sessions and under consideration of the issues, it is possible
to determine the strength of the agreement for the assessments. In the following
section, we present the definition and the determination of agreement in the context
of our research.

In this section, we focus on the agreement of the assessments”. We consider agree-
ment from two perspectives: intra-rater agreement and inter-rater agreement. First,
we provide an introduction to both measures. Then, we describe how agreement is
determined in general and focus on obtaining the values for each perspective.

"The key to reliability is the agreement observed among independent [experts]"
(Hayes & Krippendorff, 2007, p. 78). The ability to reliably assess requirements is
reflected in the degree of agreement between the assessments. The results from this
section, i.e. whether experts are able to reliably assess quality characteristics of a
natural language requirement, answer our second research question.

°In the literature, different terms are used for the analysis of agreement. We use terms that refer
to our research topic (e.g. experts, scores, characteristics) to provide a better reference.

Chapter 3

3.3.1

"When relying on human [experts], researchers must worry about the quality of
the data" (Hayes & Krippendorff, 2007, p. 78). In data collection techniques, in
which assessments are obtained from experts, the following need to be taken into
account: the ability of the participants to answer questions and the existing interest
of the participants for the topic (Bhattacherjee, 2012). The avoidance of ambiguous
alternatives in the scale and the clear and simple formulation of questions help
to improve the results. Although we have considered these issues, this does not
completely exclude unreliable assessments by experts. For that reason, we ask
to what extent the experts can assess the characteristics of the requirements in
agreement.

The determination of agreement requires multiple assessments or interpretations
of the same data. Thus, we gathered multiple assessments of the same require-
ment. This enables us to determine whether the experts assess a requirement
consistently based on quality characteristics. In the following, we define both types
of agreement—intra-rater agreement and inter-rater agreement—in relation to the
quality assessment of natural language requirements.

For the determination of the intra-rater agreement, we have the same expert assess
a requirement for the second time within one session (see section 3.2.2). Highly
similar or identical assessments indicate a high degree of intra-individual objectivity
and the consistent assessment of a single expert (Herz, 2010). Figure 3.7 illustrates
the concept. The expert "Exp1" assesses the requirement "ReqA" a second time within
a session. With these two assessments it is possible to determine the intra-rater
agreement which we define in the context of our research as follows:

Intra-rater agreement

The intra-rater agreement determines the degree of agreement of repeated re-
quirement assessments by a single expert.

3.3

69

3.3.2

3.3.3

70

Quality
Assessment A

’ Complete H Consistent H Feasible ‘

RegA ’ Impl. Free H Necessary H Singular ‘

Expl ’ Traceable ‘ ’ Unambiguous ‘ ’ Verifiable ‘
Quality

Assessment B

For the determination of the intra-rater agreement, the expert "Exp1" assesses the
requirement "ReqA" a second time within an assessment session.

The inter-rater agreement measures the degree of agreement when more than one
person assesses the same data. For the determination of the inter-rater agreement in
our research, we calculate the degree of agreement by two different experts. The
concept is shown in figure 3.8, in which two experts—"Exp1" and "Exp2"—assess
the same requirement "ReqB". The inter-rater agreement is a direct measure of
inter-individual objectivity which we define in our research as follows:

Inter-rater agreement

The inter-rater agreement determines the degree of agreement of requirement
assessments by two different experts.

Usually, a contingency table is used to present assessment results (Bortz & Doring,
2007; Landis & Koch, 1975; Rost, 2004). Table 3.5 illustrates such a table with
exemplary values for the assessment of a quality characteristic by two different
experts. The table shows the number of the experts’ assessments ("Expl" and
"Exp2") along the ordinal five-point scale that we have defined for the requirement
assessment. In a contingency table, the numbers indicate how often assessments
occur according to the intersection of the two scores. In our example, "Exp1" assessed

Chapter 3

Quality
ReqB Assessment 1

I |
‘ Complete H Consistent H Feasible ‘
‘ Impl. Free H Necessary H Singular ‘ A
|

‘ Traceable HUnambiguousH Verifiable

Expl

I Quality
ﬁ ReqB Assessment 2

For the determination of the inter-rater agreement, two experts ("Expl" and
"Exp2") assess the same requirement "ReqB".

20 requirements with the score "2". For 14 of these requirements, "Exp2" selected
the score "2" as well. However, "Exp2" also assessed three of these requirements with
a score of "1". The row sums describe how often "Exp1" used each score to assess
the requirements. The column sums show that analogously for "Exp2".

Contingency table with exemplary values for the number of scores.

Exp2
Expl 1 2 3 4 5 TotalExpl
1 14 3 1 2 0 20
2 3 14 1 0 2 20
3 1 2 14 1 2 20
4 o 1 3 14 2 20
5 2 0 1 3 14 20
Total Exp2 20 20 20 20 20 100

The determination of agreement in its simplest form is described by the proportion
of observed agreements to the total number of assessments. It is defined as "the
percentage of judgments on which the two analysts agree when coding the same
data independently” (Scott, 1955, p. 323). In our example from table 3.5, this is
represented by the main diagonal of the contingency table with a result of 0.70. We
simply count the values where the experts agree (i.e. 70) and divide this result by
the total number of assessments (i.e. 100). A major drawback, however, is that this
approach does not take into account random agreements. Therefore, the literature
suggests different alternatives to quantify the extent of agreement among experts
(Gwet, 2015).

We follow Gwet (2014), who describes a process to determine an appropriate coef-
ficient for a different number of experts and types of scales (ordinal, interval, and

3.3

71

72

ratio). As we defined an ordinal scale and the whole assessment of the character-
istics includes more than two experts, we have the choice of five alternatives from
which we have chosen the coefficient alpha (ay) by Krippendorff (2011). "Krippen-
dorff’s alpha is a reliability coefficient developed to measure the agreement among
observers, coders, judges, raters, or measuring instruments drawing distinctions
among typically unstructured phenomena or assign computable values to them"
(Krippendorff, 2011, p. 1).

Krippendorff’s alpha can be used regardless of the sample size and number of experts,
and can also handle missing data and different metrics or levels of measurement
(Hayes & Krippendorff, 2007). It is also described as a generalization of several
known reliability coefficients. We refrain from describing the coefficient using
coincidence tables and difference functions as listed in Hayes and Krippendorff
(2007). Instead, for the definition, we use notations provided by Gwet (2014) and
Gwet (2015).

In the following, with n’ we describe the number of requirements assessed with a
particular score xj, (score "1" to score "5") by two different experts or by one expert
twice. The total number of requirements that could also include the assessment "NA"
is designated by n. With ¢ we describe the number of different scores (i.e. 5) an
expert can choose from to assess a requirement. The number of experts who assessed
requirement 5 with a particular score z;, is denoted by ;.. Further, »; describes the
number of experts assessments for requirement ¢ with 7 as the average value of all
r;’s. We also consider ¢, = 1/(n/7). Accordingly, the coefficient o, (Krippendorff’s
alpha) is defined as:

op = M, where (3.1
(1 _pe)

Do = (1 - Gn)pg + €n (32)

p 1 : rik(ri — 1)
Po = — — (3.3)

n! Pt ;;1 r(r; —1)
Pe =D WyTpm (3.4)
k.l

Chapter 3

Besides, 77, and 7, are used to calculate the observed agreement p, and the expected
agreement p,:

q
ik = Z WEIT41 (3.5)
=1
= LTk (3.6)
n/ = r

The observed agreement is generally described with p,, i.e. the empirical probability
of agreement. It is often found in different forms when determining agreement, "but
on its own it does not yield values" (Artstein & Poesio, 2008, p. 558). One of the
main reasons is the lack of correction in case of an unequal distribution of the scores
across the requirements. An example from Di Eugenio and Glass (2004) illustrates
this phenomenon, which we adapt to our research topic: Assuming that a data set
contains 90 percent of objects from the type "Requirement" and 10 percent of objects
from the type "Information". The goal is to have the correct classification of the type
by experts. By chance alone, we expect in this example an 81 percent classification
as "Requirement” (0.90 x 0.90) and a 1 percent classification as "Information" (0.10
x 0.10). Hence, there is an 82 percent agreement between experts. Although this
value could appear acceptable at first glance, an observable agreement that is below
82 percent would be worse than a random assessment. Therefore, it is important to
correct the observed agreement by an expected agreement.

The expected agreement is represented by p. and denotes the random assessment of
the experts. It "quantifies how often you would normally expect 2 randomly selected
observers to agree if the scoring is performed randomly according to the observed
classification probabilities" (Gwet, 2015, p. 6). Thus, "[observed agreement, p,]
is an observational probability of agreement and [expected agreement, p.] is a
hypothetical expected probability of agreement under an appropriate set of baseline
constraints" (Landis & Koch, 1977, p. 163).

Besides the consideration of random agreement, some of the typical coefficients do
not distinguish deviations in the experts’ assessments. This seems to make sense
with dichotomous alternatives. However, if a scale has more than two alternatives,
different assessments by the experts may be close to each other. A measure should
therefore also take into account when the assessments of two experts differ only
slightly from each other. If the scale alternatives are available in the ordinal form,
as is the case in our research, discrepancies in the assessments can be weighted
differently.

3.3

73

74

It is generally suggested to consider a weighted approach, as "weighted coefficients
[are] more appropriate for many annotation tasks" (Artstein & Poesio, 2008, p. 576).
Assessments that are increasingly farther apart from each other are increasingly
weighted less. This makes it possible to assess discrepancies in the assessments to
the score distances. For our example in table 3.5, a disagreement between score "5"
and score "4" would be weighted differently than a disagreement between score "5"
and score "2".

In our research, for each pair of scores (k,[) a weight is assigned which can take a
value between 0 and 1. This value decreases with increasing disagreement between
the two scores. For example, if the two experts assess a requirement with the same
score (k = [), full agreement is reached. The weight wyy is then assigned the highest
value of 1. If the two experts assess a requirement with different scores (k # 1),
then a weight less than 1 is assigned to this pair and describes the fraction of full
agreement. For any two scores k and [a weighting function wy; is defined. For the
ordinal scale in our research, Krippendorff (2011) suggests a weighting scheme.
Gwet (2015) offers a simplified representation of this scheme, which we present in
the following:

1, k=1
Wy = { 1 — #{(). mink) Si<jSmaz(kd} ;ep 4 o7

)

Wmax

Gwet (2015) notes that #{(7, j), min(k,l) < i < j < maz(k,l)} describes the
number of pairs (4,j) with ¢ < j, that can be created with numbers between
min(k,l) and maz(k,!). Further, wy,q, is defined as maximum value over all values
of k and .

With the definition of the weighting function, we are now finally able to calculate
values for Krippendorff’s alpha («). The result of such a calculation ranges from 0
to 1, where O represents perfect disagreement and 1 represents perfect agreement.
Regarding the question of when a value for «; is sufficient, Krippendorff provides
suggestions on how to interpret the results. Thus, values for a; equal to or higher
than .667 is the lowest conceivable limit to draw tentative conclusions (Krippendorff,
2004).

In general, a low level of agreement among experts can have various reasons.
Among other things, there may be incongruities that relate to the requirements to be
assessed. We realize that the descriptions of the characteristics on which the quality
of natural language requirements is based are quite vague. We discussed vagueness

Chapter 3

3.3.4

as a research issue in chapter 2.2.4 and already stated that the descriptions allow a
certain degree of interpretation.

Therefore, we would like to draw attention to a probable discrepancy in the as-
sessments, which can be explained by two factors: first, different interpretations of
the descriptions for the characteristics by the experts, which can lead to a varying
assessment; second, identical or very similar interpretations of the descriptions for
the characteristics, but different professional experiences of the experts, which can
lead to a varying assessment. We are aware of these issues and address them in the
next section.

Besides, the deviation from the "perfect agreement", whether by examination of the
assessments between two experts or of a single expert, is considered and determined
in the following section as well.

With the foundations from the previous chapter, we are able to determine agreement
in the context of our research. Our premise is that if the experts statistically agree on
the quality of natural language requirements, we are able to implement an automated
solution. On the other hand, if the experts are not able to assess requirements in
agreement, an automated approach is difficult to implement.

We use two approaches to determine the agreement of the expert assessments:
intra-rater agreement and inter-rater agreement. Thus, we can evaluate a consistent
assessment of a single expert and the agreement between two experts. In the fol-
lowing section, we first analyze the results for the intra-rater agreement. Afterward,
we focus on the determination and analysis of the inter-rater agreement. For both
measures, we use Krippendorff’s alpha (ay).

In general, we can expect the results for intra-rater agreement to be higher than
for inter-rater agreement. This is because if one expert is not "reliable", then two
different experts with different professional experience may be even less reliable.
However, this is then not only a question of the experience of the experts but could
rather refer to whether these characteristics—based on the descriptions from ISO
29148—are assessable at all for a single requirement.

3.3

75

76

Determination of intra-rater agreement.

In total, 76 experts have completed an assessment session and therefore certainly
assessed one requirement a second time. Two of the experts classified an object
as "Information" that they had previously classified as "Requirement” in the first
assessment. These two assessments are not considered in the following. We are
aware that this already describes a certain degree of disagreement. Each of the
remaining requirements (i.e. 74 requirements) was repeatedly assessed by an
expert based on the nine characteristics, resulting in a total of 666 assessment
pairs. One pair includes both assessments of a single expert for a characteristic of a
requirement.

We first analyze the consistent use of the option "NA" ("No assessment possible").
In 76 of the 666 assessment pairs, "NA" is present. Of these, 35 pairs have a
consistent assessment of "NA". For 26 pairs, "NA" was chosen first, but in the second
assessment, a score on the five-point scale was selected by the expert. There are 15
pairs where the reverse case is true. This shows that experts tend to choose a score
more often when reassessing a requirement. We can therefore conclude that experts
are consistent in about half of all cases where they cannot assess a requirement.
Besides, experts tend to assess a requirement on the five-point scale, even if "NA"
was previously selected.

For the further determination of the intra-rater agreement, we use the coefficient
ay. We reduce the data set by the assessment pairs where the expert has selected at
least one "NA" since we are only considering the discrepancy between the numerical
scores!®. The results from the determination of «y, for the intra-rater agreement are
shown in table 3.6. We also present the results for the observed agreement p,.

Observed agreement (p,) and Krippendorff’s alpha («y) for the determination of
intra-rater agreement.

C1 C2 Cc3 C4 C5 C6 Cc7 C8 Cc9
po .582 563 .608 .614 573 .681 .527 .604 .671
or 669 672 691 .707 .768 .775 673 .776 .714

The results differ only slightly between the characteristics. The values for the
observed agreement p, vary between .527 for Traceable (C7) and .681 for Singular
(C6). This indicates that more than half of the assessments of a single expert are
identical on the five-point scale.

The results for oy, varies between .669 for Complete (C1) and .776 for Unambiguous
(C8). For the characteristics Necessary (C5), Singular (C6), and Unambiguous (C8),

YFurthermore, the discrepancy cannot be reasonably weighted for an "NA" assessment.

Chapter 3

an expert is particularly capable of repeatedly assigning very nearby scores. For the
characteristics Feasible (C3), Implementation Free (C4), and Verifiable (C9) there are
larger discrepancies. The results for Complete (C1), Consistent (C2), and Traceable
(C7) imply that a consistent assessment of these characteristics is somewhat more
challenging. According to Krippendorff (2004), we can draw tentative conclusions
for all characteristics as the results are equal to or higher than .667. Thus, a single
expert sufficiently "agrees"!! on all characteristics in our research. However, for
some of these, e.g. Complete (C1), Consistent (C2), and Traceable (C7), the results

are close to the required minimum value stated by Krippendorff.

Overall, two points can be identified from the results. First, an expert repeatedly
chooses the same score at least in every second assessment. For Singular (C6) and
Verifiable (C9), more than two out of three requirements are assessed identically.
As the expert assesses on a five-point scale, one has to consider how far the scores
differ in the two assessments. Therefore, the second point to note is that an expert
agrees on a sufficient level to draw conclusions and reassess also close to the score
of the first assessment. We can conclude that a single expert can reliably assess the
characteristics of a natural language requirement based on our quality model.

Determination of inter-rater agreement.

The determination of the inter-rater agreement follows a similar process. In section
3.2.2, we examine the data set and discover that some of the requirements are
classified as "Information" by the experts. The analysis reduces our data set to 418
requirements based on the assessment of two different experts. This results in a total
of 3,762 assessment pairs for the nine characteristics. In a first step, we examine
again whether the option "NA" was chosen consistently among the experts.

In our data set, we identify the selection of at least one "NA" in 540 assessment pairs.
Out of this, both experts agree on "NA" in 70 assessment pairs. For the remaining
pairs, a score on the five-point scale was selected by the other expert. We describe in
section 3.2.2 that the use of "NA" can indicate challenges during the assessment. We
asked experts with different professional backgrounds for the assessment sessions,
which means that some requirements could presumably be assessed more frequently
by implicit knowledge from professional experience.

In general, it is also less challenging for the expert to assess a requirement as "NA"
than to give a reliable score. For that reason, we also examine when "NA" was used

The word "agree" in this context is representative for the consistent assessment of the characteris-
tics by a single expert.

3.3

77

78

in the assessment session. In section 3.2.2, we mentioned that our tool adds the
position of each assessment in a session. Table 3.7 shows when and how often a
requirement is assessed as "NA". The number is to be interpreted as an aggregated
frequency for all characteristics. The results allow us to determine whether the more
a session progresses, the less the experts are motivated to assess a requirement.

Number of "NA's related to the position in the assessment sessions.

Position No. of "NA"s Percentage

1-5 148 24%
6-10 139 23%
11-15 153 25%
16 - 20 98 16%
21-25 72 12%

The analysis reveals that the frequency of "NA" does not increase with the progress of
an assessment session. Rather, it can be seen that experts select "NA" less frequently
towards the end of an assessment session than at the beginning.

In the further course, we focus on the discrepancies in the assessments for the scores.
For the determination of the inter-rater agreement, we use Krippendorff’s alpha («)
again and reduce the data set by the assessment pairs containing at least one "NA".
We extend the analysis by two additional steps: first, we analyze whether experts
agree on the extreme values; second, we analyze whether the experts tend to agree
in the requirement assessment.

The first step is analyzed by considering only the extreme values of the five-point
scale. If one expert has chosen a score "1" or "5", the corresponding assessment pair
is considered for a separate determination of the Krippendorff’s alpha and described
with the coefficient a,. For the second step of our extended analysis, we determine
whether the experts tend to assess equally. For this purpose, we transform the five-
point scale: the scores "1" and "2" are grouped into the first class; the second class
contains the score "3"; the third class includes the scores "4" and "5". Again we use
Krippendorff’s alpha to determine the values and introduce the coefficient «,. The
results from the calculation of «, and «, are considered for a better interpretation
of the assessed requirements. However, only oy is used to decide whether experts
can reliably assess natural language requirements based on our quality model. We
present results for the observed agreement p, and Krippendorff’s alpha (o, o,)
for each characteristic in table 3.8.

The observed agreement p, is approximately at the same level for all characteristics.
The range is from .302 for Complete (C1) to .401 for Singular (C6). This means that
the experts assess every third requirement identically. The values of oy, o, and oy,

Chapter 3

Observed agreement (p,) and Krippendorff’s alpha (ay, oy, o) for the determi-
nation of inter-rater agreement.

Cl Cc2 C3 C4 C5 Cc6 Cc7 Cc8 Cc9
po 302 .354 357 .333 .329 401 .318 .342 .361
ar 331 185 .387 .336 .213 .698 .144 .673 .321
oy 333 .046 .063 .039 .032 421 .024 .410 .056
o, .283 .079 .291 .356 .133 .696 .097 .674 .258

differ more between the characteristics. The results can be divided into three areas,
which we present below.

The first area'? considers alpha values with o), < .222 and includes Consistent
(C2), Necessary (C5), and Traceable (C7). For these characteristics, the experts’
assessments diverge comparatively more. In addition, low values can be determined
for o, and «,. This indicates that there is no agreement on the assessment of
extreme values and that the two experts also do not generally tend to agree. A
closer look at the description from ISO 29148 reveals the challenges that arise. The
characteristic Consistent (C2) is described as free of conflicts with other requirements.
Necessary (C5) is defined as an essential capability that cannot be fulfilled by other
capabilities. Finally, Traceable (C7) describes that a requirement is traceable upwards
and downwards. From the descriptions, it can be deduced that additional contextual
requirements are necessary for a reliable assessment. A requirement can be assessed
in terms of consistency if all additional requirements are known. The same applies
to the necessity of a requirement. For traceability, on the other hand, further
requirements are needed that are related to the requirement being assessed. This
relationship can be present in higher-level or lower-level requirements in the whole
development project.

In the second area, characteristics with .222 < «aj < .444 can be grouped. This
includes Complete (C1), Feasible (C3), Implementation Free (C4), and Verifiable
(C9). The description for the characteristic Complete (C1) indicates that "the stated
requirement needs no further amplification because it is measurable and sufficiently
describes the capability and characteristics to meet the stakeholder’s need" (ISO
29148, 2011, p. 11). A requirement is Feasible (C3) if it is technically achievable
and does not require major technological advances. To assess Implementation
Free (C4), it is important to determine whether the requirement avoids placing

unnecessary constraints and states what is required (and not how to implement).

The characteristic Verifiable (C9) describes whether the "requirement has the means

to prove that the system satisfies the specified requirement" (ISO 29148, 2011, p.

12gince the lowest conceivable limit to draw tentative conclusions has the value .667 according to
Krippendorff (2004), we have divided this value into thirds for the limits of the areas.

3.3

79

80

11). These characteristics have in common that an assessment may depend on the
professional experience of the expert. In our assessment sessions, we have asked
experts with different years of experience. However, whether a requirement is
complete, feasible, implementation free, and verifiable may become more reliable to
assess with increasing years of professional experience. It is also noticeable that the
values for «, are similarly low as for the characteristics from the first area, whereas
significantly higher values can be identified for «,. This means that the experts
have rather a common tendency in the assessment than for the characteristics of
the previous area, but extreme values are still hardly assessed in agreement. An
exception is the characteristic Complete (C1), for which a significantly higher value
for a, can be determined compared to the characteristics of the first and second
area. Consequently, experts are more likely to agree on extreme values for the
completeness of a requirement.

The third area involves the characteristics Singular (C6) and Unambiguous (C8),
for which results for ay, can be identified at a sufficient level of agreement to draw
conclusions (according to Krippendorff (2004) this relates to .667 < «y). Besides, the
comparatively highest values can be determined for o, and . Experts are therefore
not only able to assess with sufficient agreement along the five-point scale but there
seems to be agreement on the general tendency in the assessment as well. There is
also comparatively high agreement when the experts assess the characteristics of
the requirements with the extreme values "1" or "5". In ISO 29148, the characteristic
Singular (C6) is described when only one requirement is contained in a statement
and no conjunctions are used. Unambiguous (C8) applies to a requirement that is
simply specified and can only be interpreted in one way. These descriptions only
refer to the content of a single requirement. This means that the requirements can
be reliably assessed for the characteristics independently of a broader context and
even without extensive professional experience. The hint that conjunctions should
not be used in a requirement also contributes to the general ability to assess the
characteristic Singular (C6).

The results show that for a large part of the characteristics no reliable assessment
of the quality characteristics of natural language requirements can be performed
by experts. Only for two characteristics, it appears that the experts agree on a
sufficient level. We conclude that experts agree on and can reliably assess whether a
requirement is singular and unambiguous. We consider these results to be sufficient
to implement an automated approach that is capable of assessing the quality char-
acteristics Singular and Unambiguous as an expert would. However, the identified
deviation in the assessment shows that even for these two characteristics a superior
performance of an automated approach cannot be achieved.

Chapter 3

3.4

In our second research question, we focused on whether experts can reliably assess
natural language requirements based on the characteristics of our quality model.
In particular, we focused on the agreement of the assessments, since this is an
important prerequisite for the performance of an automated approach. By proving
reliable results from the assessment sessions with experts, we can use the labeled
data as input for a supervised learning approach to create classification models. A
classifier then enables a quality assessment of requirements that were previously
unknown to the model and assesses them as if an expert would do it. Thus, a reliable
data basis ensures the accuracy of the results and the performance of the automated
classification.

In this chapter, we described the assessment of requirements quality by experts. First,
we presented the process for data selection based on software requirements from the
automotive industry. This resulted in a data set of 14,256 unique German natural
language requirements. Of these, we have imported 1,000 requirements into our
assessment tool, which allowed an expert assessment of requirements based on our
quality model. The general results revealed that experts are not always able to assess
the characteristics of a requirement. Especially for the characteristic Traceable, every
third requirement could not be assessed by the experts. On the other hand, almost
every requirement could be assessed with regard to the characteristics Singular and
Unambiguous.

Further, we examined agreement from two perspectives. Intra-rater agreement
determined the "agreement" of a single expert by the repeated assessment of the
same requirement. With the inter-rater agreement, we considered the agreement
of two different experts. We determined the strength of agreement by using the
alpha coefficient (ay) from Krippendorff (2011). We identified that a single expert
assessed the requirements with varying degrees of agreement, but at a sufficient
level. This led us to conclude that the assessments of the quality characteristics of a
single expert are reliable.

The determination of inter-rater agreement revealed insights into the assessment of
the characteristics of different experts. We identified three areas. The first area in-
cluded characteristics for which the information of additional relevant requirements
would be helpful for assessing. Accordingly, values for oy, revealed a low agreement
level. The second area described characteristics whose assessment could presumably
depend on the professional experience of the experts. As we have asked experts
with different years of professional experience, the results for these characteristics

3.4

81

82

still described an insufficient, albeit higher, level of agreement compared to the first
area. The third area contained characteristics for which values for oy, equal to or
higher than .667 could be determined. The results from the latter area allowed us
to draw tentative conclusions (Krippendorff, 2004).

The results showed that experts cannot reliably assess all quality characteristics of
requirements. The strength of agreement differed with regard to the characteristics.
Therefore, we answered our second research question, whether experts can reliably
assess the quality characteristics of natural language requirements, for Singular
and Unambiguous only. For the others, no sufficient level of agreement could be
determined, so that for these characteristics no reliable database is available for the
implementation of an automated approach.

We paid attention to ensure the same conditions for the experts and tried to reduce
external factors that might influence the expert’s ability to assess. However, we
also identified several threats to the validity of our assessment sessions. The major
threat came from the actual assessment process since this task is dependent on
human judges. For the validity of the results, characteristics of the experts such as
experience, expertise, and expectations influenced how requirements are assessed.
Besides, there was a further threat from the anonymous nature of our assessment
sessions. This prevented us from validating the results in detail with the experts
afterward.

An important factor that influenced the ability to assess requirements by charac-
teristics was the domain and context knowledge of the experts. The assessments
were performed by experts with different project experiences. Existing knowledge
of functions or systems related to the requirement could therefore influence the
assessment of requirements that were known to one expert but not to another due to
a lack of domain knowledge. Thus, the experts’ experience plays a role in assessing
quality and identifying quality defects. This factor is also mentioned in similar
articles dealing with the assessment of requirements quality (Femmer et al., 2017).
We have mitigated this risk by selecting mainly practitioners with several years of
experience for the assessment sessions.

In some contributions, guidelines are provided for the assessment or annotation of
data. These guidelines specify how the requirements are to be assessed (Femmer
et al., 2017; Ormandjieva et al., 2007). In our assessment sessions, we presented
guidelines to the experts in the form of descriptions of the characteristics. The
descriptions provided general information about what needs to be considered in a
requirement to fulfill the characteristic. However, they varied in length and precision
and we did not give an explicit indication of how the requirements should be

Chapter 3

assessed afterward. The descriptions were based on the international standard ISO
29148 and were provided to the experts shortly before the start of the assessments.
Since the descriptions already allow for interpretability and contain fuzziness, the
reliable assessment of the requirement was quite a challenge.

Besides, an identical assessment of a requirement by two experts does not mean that
the assessment is correct (Krippendorff, 2004). If a single requirement contains a
large number of sentences that are additionally linked by conjunctions, this suggests
that this requirement probably does not fulfill the characteristic Singular according
to the description from ISO 29148. If, for example, both experts assessed such
a requirement with the score "5" for Singular, this contributed positively to the
inter-rater agreement. Whether the requirement was then actually Singular in the
sense of ISO 29148 remains questionable.

With the results of this chapter, we can call the data set of the assessed requirements
for the characteristics Singular and Unambiguous reliable. In the next chapter, we an-
swer the question of whether machine learning algorithms can be used to accurately
assess these two quality characteristics of a natural language requirement.

3.4

83

Automated assessment of
requirements quality

The goal is to turn data into information,
and information into insight.

— Carly Fiorina
Former CEO of Hewlett-Packard

In the previous chapter, we examined whether experts are able to assess the quality
characteristics of natural language requirements defined by ISO 29148. The results
reveal differences regarding the agreement of experts. Consequently, only for the
characteristics Singular and Unambiguous, experts agree on a sufficient level.

The following chapter describes the approach to assess these two characteristics in
an automated way by applying techniques from natural language processing and
algorithms from machine learning. More precisely, a supervised machine learning
approach is presented that uses assessed requirements as labeled data for the
training process. With the results from this chapter, we are able to provide an
answer to our first research question, whether machine learning algorithms can be
used to accurately assess (two of the) quality characteristics of natural language
requirements.

The chapter is divided into four sections. First, we present methodological foun-
dations for natural language processing, machine learning, and text mining. The
second section focuses on the implementation of the automated approach. We
describe the preprocessing of our data set and present the analysis and definition of
features that can be derived from requirement text. In addition, we apply different
machine learning algorithms and identify one that can be used most successfully
for the assessment of natural language requirements. As a result of this section,
we obtain trained models for both characteristics Singular and Unambiguous. In
the third section, we focus on evaluating and optimizing the trained models and
determine the feature importance. This provides information about which of the
features contributes most to the automated quality assessment of a requirement in
our research. Finally, the conclusion of the chapter can be found in the last section.

85

4.1

411

86

Several related contributions describe static rules for the quality assessment of a
requirement. We introduced this type as rule-based systems in chapter 2.2.2. In our
research, we aim at an automated classification of the quality characteristics, which
is a typical task known from the area of machine learning.

The requirements in our data set are available in text form. Therefore, algorithms
from the field of machine learning cannot be applied directly. The "unstructured
text" of a requirement must therefore first be transformed into a "structured form".
Methods that perform this transformation can be found in the field of natural
language processing (NLP). This enables the extraction of numerical information
from texts, which can then be used as input for a machine learning algorithm. "Text
will be processed and transformed into a numerical representation" (Weiss et al.,
2015, p. 1). Consequently, by applying NLP methods, we can transform unstructured
requirement text into a set of numerical characteristics (also called features) that
can be used and processed by machine learning algorithms.

For a common understanding of the methodological approaches and foundations, we
provide a brief overview in the following section. We describe how natural language
can be processed and which steps are applied in the preprocessing of textual data.
We enhance the overview with a short explanation of feature engineering. Besides,
relevant methods from machine learning are presented. The combination of NLP
with methods from machine learning is widely known as text mining, which we
describe in the last part of this section.

Textual data cannot be directly analyzed by an algorithm as "text is usually a
collection of unstructured documents with no special requirements for composing
the documents" (Weiss et al., 2015, p. 2). However, computers can explore a
large number of documents and extract relevant information from individual words
or paragraphs. There is a huge amount of literature on the analysis of text data.
Fundamental work in the field has been done by Manning and Schiitze (1999) who
present foundations of statistical NLP and helpful tools.

The extraction of information from a text can be described as a restricted form
of full natural language understanding (Hotho et al., 2005). Analytical methods
are used to process the amounts of data in natural language—based on words and

Chapter 4

structures—and to uncover patterns in unstructured text. NLP is intended to enable
computers to better understand natural language by advanced linguistic analysis.
Thus, it can be described as the machine processing of natural language (Kodratoff,
1999). The "ultimate goal of NLP is to mathematically model the understanding and
generation of human language" (Johnson et al., 2015, p. 174).

For the extraction of information, the text needs to be transformed into a numerical
representation. The transformation can be divided into two steps: preprocessing of
text and feature engineering. Depending on which properties of a text are to be used
for the representation, it initially requires different preprocessing tasks. Afterward,
features can be extracted based on the preprocessed text. In the following, we
present both steps.

Preprocessing.

The tasks allocated to the preprocessing of text typically include, among others,
tokenization, filtering, and stemming (Uysal & Gunal, 2014; Weiss et al., 2015).
In addition, we consider part-of-speech tagging as part of the preprocessing and
provide a short description of these tasks in the following.

* Tokenization. The first step usually involves the tokenization of a text and
the "split into a stream of words by removing all punctuation marks and by
replacing tabs and other non-text characters by single white spaces" (Hotho
et al., 2005, p. 6). Tokenization describes the decomposition and segmentation
of text into its words and enables the processing and analysis of each word
(Webster & Kit, 1992). The Natural Language Toolkit (NLTK)® provides a
tokenizer function that we apply for our data set of assessed requirements
(Bird et al., 2009). As an example, the German natural language requirement
"Das Fahrzeug muss deutsche Verkehrszeichen erkennen" turns into ['Das’,
'Fahrzeug’, 'muss’, ’deutsche’, 'Verkehrszeichen’, ’erkennen’] after the tokeniza-
tion step. The result is an array with tokens consisting of text elements.

* Filtering. Specific elements of a text can be removed by filtering. A well-
known approach is called "stop word removal". It removes words that have
little or no information content and are not discriminatory or specific for
differentiation of requirements (Silva & Ribeiro, 2003). This includes words
such as auxiliary verbs, conjunctions, and articles (Ikonomakis et al., 2005). A

INLTK is a sophisticated open-source toolkit for the programming language Python to process
and analyze natural language.

4.1

87

88

stop word removal can also take into account words that are very common or
very rare in the documents (Frakes & Baeza-Yates, 1992). For the requirement
"Das Fahrzeug muss deutsche Verkehrszeichen erkennen", a stop word removal
results in "Fahrzeug deutsche Verkehrszeichen erkennen". Other filtering
approaches are described by "number removal" and "punctuation removal".

* Stemming. The process of tracing words back to their word stem or root
form is called stemming (Porter, 1980). It is described as "actions to remove
meaningless differences between words" (Arellano et al., 2015, p. 232), where
several forms of the same word are grouped into a single word. Usually,
stemming is done after the tokenization step. For a better understanding,
we apply the stemming process directly to our requirement "Das Fahrzeug
muss deutsche Verkehrszeichen erkennen", that results in "das fahrzeug muss
deutsch verkehrszeich erkenn"?.

* Part-of-speech (POS) tagging. The annotation of words is realized by a part-
of-speech tagger, that identifies grammatical types of each word in a text (e.g.
adjective, verb, noun, determiner). For demonstration purposes, we apply
the Stanford POS tagger of Toutanova et al. (2003), which is known as a
statistical probabilistic tagger. For our exemplary requirement "Das Fahrzeug
muss deutsche Verkehrszeichen erkennen" we get the result: [determiner,
noun, verb, adjective, noun, verb]. Each tag represents a part of speech or
a lexical category. For the implementation in section 4.2, we use built-in
functions from spaCy? for this preprocessing step (spaCy, 2020).

The described tasks create the basis for further processing. In general, the words
of a requirement data set are described as vocabulary that can be considered as
features. Therefore, features are regarded as characteristics or distinct properties of
a text, which can contain significant information for a machine learning algorithm.
"Selecting relevant features and deciding how to encode them for a learning method
can have an enormous impact on the learning method’s ability to extract a good
model" (Bird et al., 2009, p. 224). In the following, we describe how features
for textual data can be extracted after the preprocessing tasks are conducted and
present different approaches.

2We use the Snowball Stemmer from NLTK, that provides an improved approach based on the
algorithms developed by Porter (1980). It also converts all uppercase letters to lowercase letters.
3spaCly is a Python package and provides an extensive set of functions for NLP.

Chapter 4

Feature engineering.

Feature engineering describes the process of identifying and generating features
from a text and enables the transformation into a numerical representation (Mitkov,
2004; Zheng & Casari, 2018). This process creates a vector consisting of features
that are necessary for an algorithm to learn and is therefore called "vectorizing".
The result of the transformation is a vector space representation of text (Ikonomakis
et al., 2005; Jurafsky & Martin, 2014; Manning & Schiitze, 1999). "In language
processing, the vectors [...] are derived from textual data, in order to reflect various
linguistic properties of the text" (Goldberg & Hirst, 2017, p. 65).

An approach that uses vectorization is called "bag-of-words" (Jurafsky & Martin,
2014; Zhang et al., 2010). A bag-of-words simply represents a requirement as
individual words, for which two approaches exist. First, a binary vector is created,
with a value of "1" indicating the presence of a word in a requirement and a value
of "0" indicating that the requirement does not contain it. In the second approach,
the frequency of occurring words is represented. As words are "chosen as the basic
representational unit" (Joachims, 2002, p. 33), it counts the presence and detects
the absence of a word in a requirement. Thus, it generates features from the text,
where each feature is an attribute that can be measured (Segaard, 2013). The
approach is generally described as the most fundamental model of text (Weiss et al.,
2015).

Because of the simplicity of the bag-of-words representation, it is often used for
feature generation (Joachims, 2002; Nassirtoussi et al., 2014). Even though a bag-
of-words does not take into account the position, order, and the context of words
in a text, remarkable results can be achieved in some applications (De Vries et al.,
2018; Purda & Skillicorn, 2015). Table 4.1 presents part of the bag-of-words for the

requirement "Das Fahrzeug muss deutsche Verkehrszeichen erkennen".*

Bag-of-words with a binary vector for a natural language requirement.

Object ID | Das | Fahrzeug | muss | deutsche | Verkehrszeichen | (...)
ID 01 1 1 1 1 1 (..

A more sophisticated method can be used to weight features according to their
relative frequency distribution. The procedure, originally proposed by Salton and
Buckley (1988), is called "term frequency-inverse document frequency" (tf-idf):
"Tf-idf is a weighting of the importance of a term to a document in a corpus" (Huq
et al., 2018, p. 107). As a result, words that are often found in natural language

“For better illustration, preprocessing steps from the previous section have been omitted in this
example.

4.1

89

41.2

90

receive a lower weighting in comparison. In our research, we apply tf-idf for the
implementation in section 4.2, as we expect more from the consideration of a
weighted term than the simple reflection of the presence or absence of words from a
bag-of-words approach (Ramos, 2003).

In addition to the presented approaches, feature engineering can also include the
definition and implementation of individual features. These include features that
are specific and relevant to the particular use case. In our research, we additionally
describe two types of features that are common in related research. One type counts
the occurrence of certain characteristics of the text (e.g. number of sentences). The
other type focuses on whether a feature is present. This can be used, for example, to
identify whether a requirement is written in passive language. A detailed description
of these features can be found in section 4.2.1.

In summary, with different preprocessing tasks and feature engineering, a simple
vector space representation can be realized, which is exemplarily illustrated in
figure 4.1. In general, "Stemming" and "Filtering" can also be carried out optionally,
depending on the desired type of representation.

Stemming

Vector space

Tokenization — Ti-idf —)
representation

Filtering

Preprocessing tasks (tokenization, stemming, and filtering) and feature engineer-
ing (tf-idf) for a vector space representation of textual data.

In this section, we introduced several tasks for preprocessing text and described
different approaches for feature engineering. The resulting numerical representation
of textual data enables the next step. In the following section, we look at the
possibilities of using machine learning methods and particularly consider approaches
that use labeled data.

Generally, a machine learning process trains an algorithm that tries to learn the
logic of complex decisions. Thus, algorithms from machine learning are used
to automate tasks that have previously been performed by a human. For our
research, a complex decision refers to the quality assessment of a natural language
requirement according to the characteristics Singular and Unambiguous. In the

Chapter 4

following, we shortly describe relevant terms and focus especially on methods for
solving a classification problem.

Machine learning can be located at the intersection of statistics and computer science
(Mitchell, 2006). In the field of statistics, machine learning is often seen as the
application and implementation of statistical learning (James et al., 2013). For
computer science, machine learning aims to enable computers to act without being
explicitly programmed and describes the development of efficient algorithms that
can solve various types of problems.

In our research, we apply algorithms from supervised learning. Such algorithms
"learn" from labeled data by using input and output data. This enables an automated
classification of unknown (i.e. unlabeled) data. For the automated assessment of
requirements quality, we have input data by various features and output data by the
expert assessment of the quality characteristics Singular and Unambiguous for each
requirement. Therefore, we are able to follow supervised machine learning.

Classification and regression.

Supervised machine learning is divided into classification and regression problems.
Both approaches have in common that they use labeled data sets. The distinction
between a classification and a regression can be defined, in simple terms, by the
data type of the output variable. A typical regression problem is the calculation of a
purchase price for a house based on known factors (e.g. size, location, age). Another
example is the determination of income by factors such as age and education. As a
result of a regression problem, the output variable can assume a continuous value.
In a classification problem, the process of determining a class is described. The value
of the output variable is derived from a discrete set of values. As in our research, we
are not aiming to predict continuous values, we define the five points of the ordinal
scale from the manual assessment of requirements quality as discrete classes.

Aggarwal and Zhai (2012b) describe the problem of classification in terms of a
training set in which each element is labeled with a class value. Thus, a classification
approach generally requires labeled data and the division of the data set into a
training set and a test set. The training process creates a classification model that
uses the training data. The test set is used to measure the performance of a model.
A model with sufficient performance can then be used to predict class values for
elements that previously had no label.

4.1

91

92

Various approaches allow the data set to be divided into a training set and a test set.
These typically include the percentage split and cross-validation. With a percentage
split, a defined percentage part (usually between 10 and 40 percent) of the data set
is put aside as a test set. The remaining part serves for training a machine learning
model. The test set is then used for the evaluation. In cross-validation, the data
set is randomly divided into a number of "folds" of equal size. One fold serves as
a validation set, the others as the training set. "This approach involves randomly
dividing the set of observations into k groups, or folds, of approximately equal size.
The first fold is treated as a validation set, and the method is fit on the remaining k-1
folds" (James et al., 2013, p.181). The process continues until each fold is defined
once as a validation set. Both approaches follow the principle of separating the data
set into a test (or validation) set and a training set.

Performance evaluation.

Supervised learning describes the employment of an algorithm to transform a
mapping function from input variables (x) to output variables (y). The goal of
supervised learning is to enable the most accurate approximation of this function. It
is particularly important to consider that for new and unknown input data (x,,), the
corresponding output variable (y,,) can be determined with a certain performance.
The performance of a trained model is assessed by using the test set. Typically,
the output values from the test set (true labels)—these are the labels from the
expert assessments in our research—are compared with the output values of the
classification (predicted labels).

A confusion matrix illustrates these results and is shown in figure 4.2. "TP" refers
to "True Positive" and describes the number of correctly classified labels from the
positive class. "TN" means "True Negative" and describes it equally for the negative
class. "FP" stands for "False Positive" and is the number of data incorrectly classified
for the positive class. "FN" is short for "False Negative" and describes the number of
data incorrectly classified for the negative class.

The proportion of correctly classified data to the total number of classified data is
called "accuracy" and provides an initial performance measure for the model. TP
and TN are added and divided by the total number of classified data.

accuracy = TP+TN 4.1)
YTTPYFN+FP+TN '

Chapter 4

Predicted labels

Pos Neg

n POS TP FN
©
et
s
o
S
=

Neg” FP TN

Confusion matrix with true (yellow) and false (grey) classifications.

It is not unusual, however, that in classification tasks the classes to be determined are
not evenly distributed (referred to as imbalanced classes). Therefore, the result for
"accuracy" is not always meaningful (Kuhn & Johnson, 2013). For this reason, when
determining the performance of a supervised learning model, additional statistical
measures are used. Mostly, the performance is evaluated in terms of "precision",
"recall" and "Fs-score" (Chawla et al., 2002; Powers, 2011). We briefly describe
these measures in the following.

"Precision" describes the ratio of TP (i.e. the number of correctly classified labels of
the positive class) to the total number of classified positive (TP + FP). The result
can take values between 0 and 1. A high value indicates a solid classification of the

positive class.

. TP
precision = 5 (4.2)
The ratio of TP to the total number of all true positive labels (TP + FN) is described
by the measure "recall". This measure can also take values between 0 and 1. A high

value implies that positive labels were mostly correctly classified by the model.

TP
= 3
reca TP T N (4)
Finally, for the performance determination of a model, the Fg-score can be used to
enable a weighted compromise between "precision" and "recall" (Van Rijsbergen,

1979). The result can take values between 0 and 1 as well.

precision - recall

4.4)

Fg=(1+5%

" 32 precision + recall

4.1

93

94

Since "precision" and "recall" each concentrate on different views, the F-score offers
a good approach to consider both aspects (Powers, 2011). The parameter 5 enables
to weight the two measures differently in the overall consideration. For §<1, the
focus is on "precision", whereas for 5>1, the focus is on "recall". Depending on
which measure is more relevant for the performance evaluation of a classification
model, the parameter can be adjusted. Often, the value 1 is used for §, so it is
possible to calculate "the harmonic mean between precision and recall" (Jimenez
et al., 2009, p. 566).

precision - recall

=2 (4.5)

preciston + recall

For a multi-class classification problem, the determination of the performance mea-
sures is different from a binary classification problem. In figure 4.3, we show a
confusion matrix for a five-class classification problem with exemplary values.

Predicted labels

1 2 3 4 5
1| 25 6 5 11 1
2| 7 31 16 7 5
3
Q
s ¥ 4 15 27 11 9
£
a2 8 12 32 14
50 2 4 7 35

Exemplary confusion matrix for a five-class classification problem.

In the case of a multi-class classification problem, the values for TP, FP, FN, and TN
are determined for each class. One class is considered a positive class, while the
other classes are treated as negative classes. We demonstrate the determination of

the values by using class "1" as an example in the following.

Chapter 4

For class "1", T'P; is the number of correctly classified labels by the model. In the
confusion matrix, the value "25" can be determined. FP for class "1" (F'P;) is the
number of labels that the model has incorrectly assigned to the class "1". This value
can be found in the sum of the remaining values of the first column (7+4+2+0=13).
Similarly, the value for F'N; is derived from the results that belong to class "1" but
have been assigned by the model to other classes. This corresponds to the following
values in the first row: 6+5+11+1=23. Finally, in simple terms, T'N; contains the
sum of the remaining values in the confusion matrix (equal to 235).

Accuracy for class "1" (accuracy;) results from the sum of TP, and T'N;. This sum
is divided by the sum of T'P;, FP;, F N1, and T'N;. Thus, the result for accuarcy;
is .8784 for the exemplary values in figure 4.3. The accuracy for the multi-class
classification problem (accuracymt; = .8027) is then determined by the average
accuracy of the classes (Sokolova & Lapalme, 2009).

m TP,+TN;

m

ACCUT ACYmuylti —

nn

For the determination of the performance measures "precision", "recall", and "F;-
score", different approaches exist in a multi-class problem (Ozgiir et al., 2005; Y. Yang
& Liu, 1999). Sokolova and Lapalme (2009) describe two alternatives as "macro-
averaging" and "micro-averaging". With macro-averaging, the performance measures
are determined by the average of the performance measures of the individual classes
(analogous to the calculation of accuracy,.;;;). For example, precision for class "1"
is calculated as T'P; divided by (T'P; + F' P;) and results in the value .6579, whereas
for recall the value .5208 can be obtained. For the determination of the F;-score, we
follow the recommendations of Lipton et al. (2014) and Opitz and Burst (2019) and
first calculate the F;-score per class. Then the average of the Fy-score of all classes
is determined. With the values for each class we can calculate "macro precision",
"macro recall" and "macro Fq-score".

Sy _ TP

macro precision = = TR PR 4.7)

m

S TPAEN,
macro recall = =~ TP+INi (4.8)
m
m

m By

macro F) = iz P 4.9)
m

4.1

95

96

Micro-averaging, on the other hand, considers the overall numbers of TP, FP, FN,
and TN and calculates the performance measures of a classifier over the total sum of
the values (Wang & Chiang, 2007). The F;-score is determined by calculating the
harmonic mean between "micro precision”" and "micro recall".

. - i TP (4.10)
micro precision = .
g (TP, + FP)
m. TP
icro recall = =170 4.11
micro reca W (TP, + FNy) ()
micro Fy — 2 micro precision - micro recall 4.12)

micro precision + micro recall

With macro-averaging, all classes are treated equally, since the performance measures
are calculated individually for each class. On the other hand, micro-averaging is
considered as an average in all classes. In general, the choice of measures to assess
the performance of a classifier depends on various factors and is individual for each
application. A recommendation as to which metric to choose is therefore not possible
to provide. For that reason, the performance measure often considers the "cost of
misclassification". Related to our research, we want to consider the following issues
in equal parts, since these are equally important for the results of an automated
quality assessment of natural language requirements: The percentage of correctly
classified labels per class and the percentage of correctly classified labels across
all classes. Therefore, a good measure for our application gives equal weight to
recall and precision and also considers equal weight for all classes. We identify this
measure in the macro Fp-score.

Classification algorithms.

For a classification problem, several algorithms from machine learning exist, some
of which have been shown to work better for text classification tasks. Several
research papers present the use of "Support Vector Machines" (SVM) to analyze
and classify text (Bloehdorn & Moschitti, 2007; Cristianini & Shawe-Taylor, 2000;
Ma et al., 2011; Marseguerra, 2014; Muller et al., 2001). In particular, Joachims
(1998) explores and identifies the benefits of SVM for text categorization. On the
other hand, some researchers tend to use "Naive Bayesian Classification" as the
most popular technique for text classification (Casamayor et al., 2010). Aggarwal
and Zhai (2012b) and Miner et al. (2012) mention algorithms like Decision Trees,

Chapter 4

Support Vector Machines, and Bayes classifier, among others, which are frequently
applied for text classification. Thus, we briefly introduce the algorithms which we
also use in the implementation in section 4.2.

"A considerable amount of emphasis has been placed on [...] SVM classifiers, being
particularly suited to the characteristics of text data" (Aggarwal & Zhai, 2012b,
p- 213). The idea of an SVM is the differentiation between classes by an optimal
hyperplane based on a set of feature vectors in the vector space. The data points
closest to the hyperplane are called support vectors. SVMs are vector-based and
therefore require features that are encoded numerically within the vectors. When
classifying unlabeled data, the feature vector determines on which side of the
hyperplane the data has to be assigned.

Bayes classifiers are algorithms that have been proven for text classification problems
as well. They are based on the Bayes theorem and use a probabilistic model of text
for the estimation of the probability that a document is in one of the given classes.
A commonly used implementation is called Naive Bayes (Lewis & Ringuette, 1994;
A. McCallum & Nigam, 1998). It is a classifier that is based on the assumption of
independent features. Even though in most cases this assumption does not apply,
the use of the Naive Bayes algorithm shows remarkable results.

Besides, there is a category of tree-based approaches (Quinlan, 1993; Quinlan,
1986). As an example, a Decision Tree describes an algorithm that uses a "divide-
and-conquer" strategy and subdivides data by applying rules based on text features
to make a decision (Quinlan, 1996). It is "a hierarchical decomposition of the
(training) data space, in which a predicate or a condition on the attribute value is
used in order to divide the data space hierarchically" (Aggarwal & Zhai, 2012b, p.
176). In general, tree-based methods are less susceptible to unadjusted data and are
only slightly influenced by outliers.

The division or splitting of data in a tree is performed recursively until a node
contains a minimum number of data points, or until a node describes only one class.
The former could result in the predicted class of a node being determined by the
most common class of the node (also called majority vote). The second describes a
node for which no further subdivision of the data is necessary as this part is uniquely
assigned to a class. These nodes are called "leaf nodes" (Quinlan, 1993). Other
nodes are called "decision nodes", which result in a branch and subtree for each
possible outcome of a decision (Quinlan, 1993).

A tree is built iteratively, starting with the root node. The aim is to divide the training
set into homogeneous areas in which a class is clearly described by the features. In

4.1

97

98

the case of text data, the features for the decision nodes are usually based on terms
in the text (Aggarwal & Zhai, 2012b). This can include the features resulting from
the application of tf-idf. In our research, a decision in a node can also be based
on other features that are described later in section 4.2.1. The split is decided by
determining different parameters. One approach describes the determination of
"Gini impurity", which calculates the probability from a randomly chosen element to
be classified wrong. The Gini impurity is defined as follows.

Gi=1-Y 1% (4.13)
k=1

The ratio of class £ samples among all training samples in node i is defined by p; ;.
The following calculation is used to determine the Gini impurity of the first node in
the case of five quality classes:

Gi=1-pl1—plo—Dis—Pis—Pis (4.14)

In this example, p; ; is the probability of choosing samples from class 1 among all
the training samples in the first node.

"The decision tree splitting criterion is based on choosing the attribute with the lowest
Gini impurity index of the split" (Mather & Tso, 2016, p. 188). The determination
of the optimal decision boundary of a node is conducted by testing all possible
boundaries. When the value 0 occurs at a node for the Gini impurity, it only contains
elements of one class. A further subdivision is then not necessary, as additional
information gain is not possible.

Different implementations of the Decision Tree classifier exist. Often these are based
on the C4.5 taxonomy of Quinlan (1986), which allows the use of discrete and con-
tinuous data sets (Sathyadevan & Nair, 2015). CART (Classification and Regression
Trees) follows a similar approach, but only binary trees can be created, while C4.5
also allows non-binary decisions. In section 4.2, we use the implementation of the
Decision Tree classifier from the Python library scikit — learn, which is mainly based
on the CART algorithm.

More complicated methods often promise significant advantages over the simple
model of a Decision Tree, especially with regard to predicting power. These include
so-called ensemble classifiers, where the classification is achieved by a combination
of classifiers and a voting mechanism. In general, this type of classifiers leads to
much more robust results compared to a single classifier and is also frequently used

Chapter 4

for text classification problems (Aggarwal & Zhai, 2012b; Bao & Ishii, 2002; Bi et al.,
2004).

The Random Forest algorithm describes the simplest form of an ensemble classifier.
It applies algorithms of the same type and is therefore called a bagging classifier
(Breiman, 1996). In general, bagging algorithms create different models by training
the same classifier on different subsets of the training set. "The idea in bagging is to
pick bootstrap samples (samples with replacement) from the underlying collection,
and train the classifiers in these samples. The classification results from these
different samples are then combined together in order to yield the final result"
(Aggarwal & Zhai, 2012b, p. 211). Bagging algorithms can be used with any type of
classifier, although they are often associated with Decision Trees.

Thus, Random Forest is a bagging algorithm that uses an ensemble of several random
Decision Trees (Breiman, 2001; Hastie et al., 2009). The randomness is expressed in
two ways: first, each Decision Tree is based on a random sample of the training set;
second, at each node of a Decision Tree, a random subset of all available features is
selected to determine the optimal split. Every Decision Tree creates an output value.
The majority vote of these values results in the output value of a Random Forest
algorithm and usually provides an increased accuracy compared to a single Decision
Tree.

In general, a tree-based approach can be implemented in such a way that the
algorithm does not stop until all data is uniquely assigned to a class. This describes
a Gini impurity of 0, where further splitting is not necessary and reasonable. At a
certain decision depth, however, a tree can tend to refer too much to the training
set. The model is then able to classify the data in the training set but has difficulties
with unknown data in the future. This issue is called "overfitting" and is a general
problem when training machine learning models.

A possible approach to identify overfitting may be the application of k-fold cross-
validation, as described in section 4.1.2. "Probably the simplest and most widely used
method for estimating prediction error is cross-validation" (Hastie et al., 2009, p.
241). As the data set is divided into £ mutually exclusive subsets with approximately
the same size and the process is performed iteratively for the number of k folds, the
output shows a scattering of the results. This scattering provides an indication of
possible overfitting of a trained model and could help to ensure that the model is
generalizable to unknown data. It is well known, that bagging methods are well
suited and "designed to reduce the model overfitting error which arises during the
learning process" (Aggarwal & Zhai, 2012b, p. 211). We refer to this issue in the
implementation in section 4.2.

4.1

99

41.3

100

The previous section describes three types of algorithms from supervised learning
that follow different approaches for classification problems. Common to all su-
pervised learning approaches is that training data, labeled data, and a numerical
representation are required.

In figure 4.4, we show the learning process and the classification process®. In the
learning process, we apply methods from natural language processing to generate
a numerical representation of text by various features. Together with labels, the
representation can be used as input to train a model. In the classification process,
unknown (i.e. unlabeled) data is transformed into a numerical representation that
is based on the same features. The classifier can then be used to classify this data.
In our research, labels (i.e. assessment scores) can be determined for the quality
characteristics of a natural language requirement that have not been assessed by

experts.
Learning process Classification process
Training data Label Unlabeled data
Numerical Numerical
representation representation

Trained model Classifier < Label >

Learning and classification process for text mining problems.

The combination of natural language processing and machine learning techniques is
generally referred to as "Text Mining". Text mining is increasingly used in companies
due to the increase of information and data in an unstructured form. "One of the
main themes supporting text mining is the transformation of text into numerical
data, so although the initial presentation is different, at some intermediate stage,
the data move into a classical data-mining encoding. The unstructured data become
structured" (Weiss et al., 2015, p. 3).

The activities assigned to text mining are manifold and result in various definitions
of the term (Mehler & Wolff, 2005). In general, it is referred to as the automated

>For simplicity, we have skipped the usual implementation of determining model performance
with test data in this figure.

Chapter 4

4.2

processing and analysis of text (Fleuren & Alkema, 2015) and is defined as "the
discovery by computer of new, previously unknown information, by automatically
extracting and relating information from different written resources" (Hearst, 2003).
Felden (2006) details this view and describes text mining as an approach to de-
termine knowledge in text documents by machine processes that use classification
approaches, among other things. This is where our research for the automated
quality assessment of natural language requirements is oriented.

Miner et al. (2012) present seven practice areas related to text mining: "Information
Extraction", "Natural Language Processing", "Concept Extraction", "Web Mining",
"Information Retrieval", "Document Clustering", and "Document Classification". The
practice areas overlap with six adjacent research areas: "AI and Machine Learn-
ing", "Statistics", "Computational Linguistics", "Library and Information Sciences",
"Databases", and "Data Mining". We refrain from describing all application areas
and research fields in detail here. As our focus is on the linguistic structure of
the requirements, which can be determined using features, we apply techniques
from the field of natural language processing. Thus, we consider text mining in our
research as the application of the practice area "Natural Language Processing" in
combination with algorithms from the research area "Al and Machine Learning" for
the automated assessment of requirements quality.

From the conclusion of chapter 3, we are able to call the data set of the assessed
requirements for the characteristics Singular and Unambiguous reliable. Building
on the methodological foundations from the previous section, we describe the
implementation of the automated assessment of requirements quality based on this
data set in the following.

First, we present the preprocessing tasks for the data set and show the results of the
feature engineering for the natural language requirements. With the numerical rep-
resentation at hand, we are then able to apply several machine learning algorithms.
We present configurations, with which we test these algorithms and that involve
the usage of different feature sets and sampling techniques. The results enable us
to identify a classification algorithm and to train a model that performs the most
accurate quality assessment of requirements for each of the characteristics Singular
and Unambiguous.

4.2

101

421

102

For preprocessing the data set, we use the programming language Python and
apply functions from different libraries, which we refer to in the following. We also
describe an individual preprocessing for the creation of two distinct feature sets.

Tf-idf features (feature set 1).

For the extraction of tf-idf features, first tokenization is required to separate the
requirement text into its elements. We use a tokenizer function provided by NLTK.
Afterward, we apply several filtering processes to delete content in the requirement
text that have no information content and are not necessary for further steps. This
includes stop word removal, number removal, and punctuation removal. For stop
word removal, we consider a predefined list from N LT K consisting of 229 German
stop words. Furthermore, in the context of the tf-idf features, we estimate the
presence or frequency of numbers and punctuation marks as text elements without
information content. Thus, we remove numbers and punctuation marks in the
requirements for the extraction of our tf-idf features. The final step comprises
stemming, i.e. reducing the words of the requirement text to their root form. We
apply the "snowball stemmer" provided by N LT K, which is based on the widely
used and established algorithm developed by Porter (1980)°.

In a separate comprehensive study, we used all possible combinations of the pre-
sented preprocessing tasks and applied them for the algorithm evaluation. However,
no improvement in performance could be observed. Therefore, we take into account
all the preprocessing tasks presented in table 4.2.

Preprocessing tasks for the extraction of tf-idf features.

Preprocessing task Description

Tokenization Separation of requirement text into tokens of single words.
Stop word removal Removing stop words from a requirement with a stop word list.
Number removal Removing numbers in the requirement text.

Punctuation removal Removing punctuation marks in the requirement text.
Stemming Reduction of a word to its stem by using "snowball stemmer".

After the preprocessing tasks, we apply the function "TfidfVectorizer" from the Python
library scikit — learn. The result of the function describes a set of tf-idf features
consisting of unigrams and bigrams of the requirements text. We define this set as
feature set 1.

5The "snowball stemmer" also returns all words in a lower case.

Chapter 4

Quantity and binary features (feature set 2).

The extraction of tf-idf features from the requirements text is a first step. Various
publications also indicate that an extended set of appropriate features can signif-
icantly improve the results of a machine learning algorithm (Bird et al., 2009;
Johnson et al., 2015; Nassirtoussi et al., 2014). "The extent that a specification
is fundamental is subjective based on the assessor’s knowledge of the application
domain, whereas certain phrases and sentence structures that indicate a complicated
statement can be objectively identified" (Wilson et al., 1997, p. 3). For that reason,
we build on additional features that have already been proposed and described in
the literature.

Bird et al. (2009) state that a decent performance of an algorithm can be obtained
"by using a fairly simple and obvious set of features" (Bird et al., 2009, p. 224).
Based on the findings from our literature review in section 2.2.2, we can aggregate
such features for the quality assessment of natural language requirements. We briefly
refer to the most relevant publications before we describe our extended feature set
in detail.

The derivation of features from requirements texts is manifold and considers different
linguistic areas. "Requirements analysis is concerned with the question if textual [...]
requirements are clearly and concisely formulated. Accordingly, features are used
that identify weak words, subjunctives, or passive voice, which are all indicators
for ambiguous language" (Fromm et al., 2019, p. 3). Parra et al. (2015) propose
"metrics" based on a framework that describes features for measuring quality in
natural language requirements. The framework is built upon aggregated indicators
from different sources and presents the most commonly used features for the quality
assessment of requirements (Génova et al., 2013).

Wilson et al. (1997) describe nine categories of "quality indicators" (imperatives,
continuances, directives, options, weak phrases, size, text structure, specification
depth, readability statistics) and propose specific approaches for measurement. We
focus on such categories that can be applied to individual requirements and include
them in our feature list. Wiegers (2003) identifies six best practices to be considered
when specifying requirements. From some of them, we can derive features for our
research. Regarding the best practice "Use active voice", for example, we develop a
detection of passive voice in a requirement. For some best practices, on the other
hand, features cannot be uniquely identified (e.g. "Write complete sentences that
have proper spelling and grammar").

4.2

103

104

Besides, Soeken et al. (2014) define a set of ten rules extracted from several publica-
tions (Alexander & Stevens, 2002; Wilson et al., 1997). From some of these rules,
we are able to derive features. Others, however, are not defined in a way that proper
features can be identified (e.g. "R10. Define verifiable criteria"). Some contributions
deal with requirement language criteria’ extracted from ISO 29148 and use POS
tagging and dictionaries to identify these criteria in a requirement (Femmer et al.,
2017). We are able to derive additional text features. In addition to the research
contributions presented, we also have access to several best practices from major
companies in the automotive industry. This enables us to identify additional features
from industrial practice.

The extracted features from the literature and best practices may expand a numerical
representation based on tf-idf and can also be of a very different nature. Thus, we
aggregate the extracted features into two categories.

1. Quantity features. Features of the first category focus on counting textual
characteristics (e.g. words or sentences) of a requirement and partly require a
POS tagging or specific dictionaries. Some of the features are also combined
for a statistical readability measure.

2. Binary features. Features of the second category identify the presence of
defined characteristics of a requirement (e.g. template structure or passive
voice). If a characteristic is present, the value 1 is assigned to the feature,
otherwise the value 0.

An overview of the quantity and binary features is presented in table 4.3. We also
describe each feature in the following.

Overview of quantity features and binary features.

Quantity features Binary features

No. of words (NOW) Impl. obligations (IMO)
No. of sentences (NOS) Options (OPT)

Avg. no. of words per sentence (AWS) Template structure (TES)
Avg. no. of syllables per word (ASW) Passive voice (PAV)

Avg. no. of punctuation marks per sentence (APS)
No. of conjunctions (NOC)

No. of verbs (NOV)

No. of pronouns (NOP)

No. of implementation terms (NOI)

No. of weak words (NWW)

Readability index (REI)

’Requirement language criteria from ISO 29148 describe terms that should be avoided. This
includes, among others, superlatives, subjective language, and vague pronouns.

Chapter 4

Quantity features.

* Number of words (NOW). We use the simplest way to measure the size of a
requirement and count the number of words (Fantechi et al., 2003; Génova
et al., 2013). "Words are defined as non-whitespace strings enclosed by
whitespace characters" (Joachims, 2002, p. 33). For this purpose, we use a
tokenizer function available in Python, that transfers the words of a text into a
list, of which we count the number of elements.

¢ Number of sentences (NOS). Besides the number of words, we also count the
number of sentences in a requirement with a built-in function from N LT K8.
The feature gives us a further indication of the size and structure of a require-
ment (Parra et al., 2018).

* Average number of words per sentence (AWS). Based on the two previous
features, we count the average number of words per sentence and divide the
number of words (NOW) by the number of sentences (NOS). With this feature
proposed by Fantechi et al. (2003), we can determine the average sentence
length for a requirement.

* Average number of syllables per word (ASW). Texts in a technical context
can contain longer and more complex words (Kasser et al., 2006). By counting
the average number of syllables per word, we can analyze whether it affects
the quality of a requirement. For the determination, we implement a function
that returns the number of syllables per word by counting vowels (e.g. a, €, i,
0, u) and diphthongs (e.g. au, ei, eu).

¢ Average number of punctuation marks per sentence (APS).? Génova et al.
(2013) suggest counting the number of punctuation marks in a requirement.
"[A]ldequate punctuation is essential to sentence understandability, and punc-
tuation excess makes the text more difficult to read, maybe pointing out that
the sentence must be split in two or more sentences" (Génova et al., 2013,
p. 30). We implement a function that determines the average number of
punctuation marks per sentence in a requirement. The POS tagger from spaC'y
identifies not only the typical elements of a text (e.g. noun, verb) but also
assigns a tag for punctuation marks. We first count the related tags and then
divide the result by the number of sentences in a requirement.

8The function from NLTK has been proven through manual analysis of different samples to provide
the most reliable results compared to functions from other Python libraries.

°For the extraction of tf-idf features, we removed punctuation marks. For this feature, we count
punctuation marks in the relation to the number of sentences of a requirement, following the suggestion
of some researchers.

4.2 105

106

* Number of conjunctions (NOC). Several publications address the use of

conjunctions in requirements and their potential impact on quality (Ghosh
et al., 2016; Huertas & Juarez-Ramirez, 2013; H. Yang et al., 2012). Parra
et al. (2015) indicate that a high number of connective terms may result in
multiple needs being specified in a requirement. Kasser et al. (2006) also claim
that the occurrence of words such as "and" ("und") and "or" ("oder") influences
whether an individual requirement can be clearly identified. Conjunction terms
are also referred to as "multiplicity-revealing words" that affect the quality
characteristics of a requirement (Berry et al., 2006; Fabbrini et al., 2001). We
consider this feature in our research and implement a function that counts
how many German conjunctions (e.g. "als", "bis", "da", "dadurch", "damit",

"nachdem", "obwohl", "obgleich", "oder", "und", "wahrend", "weil") exist in a

requirement.

Number of verbs (NOV). Several best practices from the automotive industry
claim, that the number of verbs provides information about how many needs
are contained in a requirement. Thus, we determine the number of verbs in a
requirement as a feature. We refer to the POS tag for a verb and implement a
function that counts these tags in a requirement.

Number of pronouns (NOP). A pronoun is usually used as a substitute for a
noun to prevent repetition in a sentence. However, in the context of natural
language requirements, it can be an indicator of ambiguity (Kasser et al.,
2006). "Even with a grammatically impeccable usage, [pronouns] increase the
risk of imprecisions and ambiguities in texts of technical character" (Génova
et al., 2013, p. 31). Thus, Fabbrini et al. (2001), Berry et al. (2006) and
Génova et al. (2013) suggest determining the number of pronouns. In the
specification of German requirements, personal pronouns (including "es") and
demonstrative pronouns (including "diese") may occur. We determine the
number of pronouns by counting the corresponding tag from the POS tagger.

Number of implementation terms (NOI). A requirement should describe a
necessity and not express a solution—specify "what" has to be implemented
and not "how" (Parra et al., 2015). For this reason, Génova et al. (2013) present
"design terms", which give an indication of words in a requirement when a
solution is specified instead of a necessity. We aggregate the German translated
words (e.g. "Methode", "Parameter”, "Datenbank", "Anwendung", "Programm")
into a dictionary to determine whether design or technology-related terms
exist and count the number of occurrences in a requirement.

Chapter 4

* Number of weak words (NWW). The impact of "weak words" on the quality
of requirements is discussed in different research contributions (Kovitz, 1999;
Krisch, 2014; Krisch & Houdek, 2015) and "can indeed be a problem in
requirements documents" (Krisch & Houdek, 2015, p. 349). Weak words
are also called vague terms and indicate that a text is most likely imprecise
(Krisch, 2014; Wiegers, 2003). Looking at the following example of a software
requirement "The vehicle must brake in time where necessary", it can be seen
that the words "in time" and "necessary" allow a broader interpretation. With
the aim of a well-specified requirement, it is important to avoid such words.
We have compiled an extensive list of weak words from different sources
and stored them in a dictionary. As a primary source, we have obtained
several lists from three major automotive companies. The lists are not domain-
specific but are subject to general guidelines to avoid weak words. Also,
we included input from researchers, such as Krisch and Houdek (2015), in
which the authors provide an internal list of weak words from the German
automotive company Daimler AG. Our dictionary is supplemented by weak
words presented in several publications'®. Wilson et al. (1997) describe terms,
"that are apt to cause uncertainty and leave room for multiple interpretations"
(Wilson et al., 1997, p. 4). In Génova et al. (2013), weak words are defined
as "imprecise terms" and are summarized by the kind of imprecision that

non non

characterizes them (e.g. "enough", "sufficient", "approximately", "several", "to

non non

be defined", "adaptable", "extensible", "easy", "familiar", "safe"). Parra et al.

n

(2015) consider "incompleteness expressions” (e.g. "etc.", "not limited to")
which affect the clear scope of a requirement. Fabbrini et al. (2001) propose
several weak words according to different categories (vagueness, subjectivity,
and optionality). Femmer et al. (2017) suggest a list of terms to determine
so-called "requirement smells" (e.g. "best", "most", "highest"). The analysis and
aggregation of different sources result in a dictionary of 961 weak words!!.
Tokenization allows us to identify whether weak words from our dictionary

occur in a requirement which we then count.

91n the literature, some of the suggested weak words overlap with words that are also assigned to
other features. Therefore, we first ensured that these words are not assigned to other features of our
research before we included them in our weak word dictionary.

"To give the reader an idea of the words contained, we present a small extract of the weak word
dictionary of German terms in the following: dhnlich, alternativ, angemessen, anndhernd, anscheinend,
augenscheinlich, ausnahmsweise, ausreichend, bestmdéglich, circa, denkbar, eventuell, gebrauchlich,
geeignet, gewohnt, groStenteils, halbwegs, hochstwahrscheinlich, irgendwelche, manchmal, meistens,
moglicherweise, offensichtlich, optimal, regelmé&Rig, typischerweise, vergleichbar, wahnsinnig, winzig,
zufriedenstellend.

4.2

107

108

 Readability index (REI).!? Some researchers propose the calculation of a

readability index to measure the difficulty in reading (and understanding) a
requirement (Génova et al., 2013; Wilson et al., 1997). "The underlying idea
is that a text is more readable when average sentences and words are shorter"
(Génova et al., 2013, p. 30). Mostly, the "Flesch Reading Ease" index is applied
that evaluates the text in a range between 0 and 100 (Flesch, 1948). The index
is initially designed for English text. Thus, we apply the German variant of the
index which is called the "Amstad Understandability Index (AUI)" (Amstad,
1987, cited in Vor der Briick and Leveling, 2007). The index determines the
readability of a text by the following formula:

AUT =180 — (AW S) — (58.5 - (ASW))

The lower the resulting index, the higher the difficulty is to read the text. A
higher value indicates that text is easier to understand. We use the result from
the calculation of AUI as the feature value.

Binary features.

* Implementation obligations (IMO). Modal verbs are used in the specifica-

tion of requirements as auxiliary verbs that can express the necessity for the
implementation. In the German language a total of six modal verbs are men-
tioned: "diirfen", "kénnen", "mogen", "miissen", "sollen" und "wollen" (Diewald,
2012). However, the different use of modal verbs in a requirement does not
make it clear whether a requirement must be implemented, leading to the
ambiguity between an obligation and an option (Krisch et al., 2016). In the
specification of English requirements, the word "shall" is usually referred to as
a binding verb (Génova et al., 2013; Kasser et al., 2006). This corresponds to
the German modal verb "sollen", but it is considered less strict than "miissen" in
a requirement (Femmer et al., 2017). Thus, the use of the German modal verb
"miissen" indicates a binding requirement. We describe a function that checks
the presence of different forms of the modal verb "miissen". Besides, we also
consider different forms of the modal verb combination "diirfen nicht/kein" in
a requirement that is used for the specification of a prohibition of a character-
istic or functionality—e.g. "Das Auto darf nicht brennen" (Rupp, 2014). The
feature is assigned the value "1" if the modal verb "miissen" or the combination

12gince the readability index is determined using two quantity features (AWS and ASW), we have
assigned it to the same category. We are aware that the index does not count a quantity, but a ratio.

Chapter 4

"diirfen nicht/kein" occurs in a requirement. Otherwise, the feature is assigned
the value "0".

* Options (OPT). In addition to the modal verbs assigned to the previous feature
(IMO), we also determine the "weak verbs" of a requirement (Fabbrini et al.,
2001). They are described as "the category of words that give the developer
latitude in satisfying the specification statements that contain them" (Wilson
et al., 1997, p. 4). These words leave room for interpretation by the recipient
when implementing the requirements. According to some of the best practices
from the automotive industry, the remaining modal verbs'® such as "diirfen",
"konnen" and "sollen" should not be included in a requirement. An exception is
the already mentioned word combination "diirfen nicht/kein". We implement
a function that checks the presence of the words and returns the value "1" in
case of detection. If these modal verbs do not occur, the feature is assigned
the value "0".

* Template structure (TES). Parra et al. (2015) suggest that requirements
should correspond to a given grammatical structure. Also, best practices
from the automotive industry prescribe a structure for the specification of a
requirement. For our research, we adopt a common requirement specification
template defined by several automotive companies. It describes that the re-
quirement should start with a determiner and a subject, followed by a strict
modal verb (see feature "Implementation obligations (IMO)"). Afterward, ob-
jects and parameters can optionally follow before another verb must complete
the requirement. As an example, the following requirement fulfills the given
structure: "Das Fahrzeug muss deutsche Verkehrszeichen erkennen". First,
we identify a determiner ("Das"), followed by a subject ("Fahrzeug") and a
strict modal verb ("muss"). The two words in the requirement ("deutsche"
and "Verkehrszeichen") are considered optional in the template structure. The
requirement then concludes with a further verb ("erkennen"). On the other
hand, the following requirement does not correspond to the template structure:
"Das ist keine Anforderung". To detect the structure and required elements of
the sequence, we use the results from POS tagging of the requirements and a
simple regular expression. If the sequence is detected in at least one sentence
of a requirement, the value "1" is assigned. Otherwise, the value is "0".

* Passive voice (PAV). There is much discussion about the use of the passive
voice in requirements (Rupp & Goetz, 2000; Wiegers, 2003). Génova et al.

13An analysis of our data set reveals that the modal verbs "mégen" and "wollen" do not occur in the
natural language requirements.

4.2 109

110

(2013) point out that the use of passive voice "tend to leave implicit the verbal
subject, leading to a certain degree of imprecision" (Génova et al., 2013, p. 32).
When using passive voice, the actor of a requirement is usually missing. For
this reason, Rupp (2014) suggests formulating each requirement in the active
voice to also ensure simple direct sentences (Soeken et al., 2014). Some online
tools'# offer a passive voice detection by determining the syntax and a specific
verb form. In our research, we implement a function that detects passive voice
in each sentence of a requirement. With the POS tagging we are able to identify
two constructions: first, the past participle of a verb and a form of the German
word "werden" (e.g. "wird", "wurde"); second, a construction consisting of
a form of the German words "sein + zu + infinitive verb form" (Donaldson,
2007; Eroms, 1992). When we detect at least one of these constructions in a
requirement, we identify a passive sentence. For a requirement that consists of
multiple sentences, we assign a value of "1" if at least one sentence is in the
passive voice. If no passive voice is detected, the feature is assigned the value
"0".

We define the quantity and binary features as feature set 2. For the extraction
of this set, we performed separate preprocessing tasks of the requirement text
independently from the previous extraction of tf-idf features. Our goal in selecting
these features is to strive for a variety of text features. Features that include other
information besides the textual part of a requirement (e.g. requirement versions,
hierarchical structure, number of links to other requirements) are not considered in
this thesis.

Sampling and scaling of data.

In addition to suitable features, a machine learning algorithm can only provide
good results if the data set is balanced (Chawla, 2005). When a classifier receives
imbalanced data during training, a bias in favor of the majority class may be present
as there could be not enough data to analyze the minority classes.

We have already revealed in section 3.2.2 that the assessments for the characteristics
are not always equally distributed. For Singular and Unambiguous, we therefore
determine the frequency distribution for the assessments, illustrated in figure 4.5
and figure 4.6.

4Krisch and Houdek (2015) mention the online providers "Congree" (www.congree.com) and
"Languagetool" (www.languagetool.org).

Chapter 4

www.congree.com
www.languagetool.org

1 10.0 %

Assessment score

0 50 100 150 200 250 300 350
Frequency

Fig. 4.5 Frequency distribution of assessment scores for Singular.

14 7.6 %
2 _
()
£
23
%]
&
<
4 _
5 _
0 50 100 150 200 250

Frequency

Fig. 4.6, Frequency distribution of assessment scores for Unambiguous.

4.2 Implementation 111

112

In general, the number of class instances in an imbalanced data set differs signifi-
cantly between each other. Figure 4.5 reveals that for Singular, more than 44 percent
of the requirements are assessed with the highest value "5". Similar observations can
also be drawn for Unambiguous. Thus, the data set for the characteristics Singular
and Unambiguous can be seen as imbalanced. Since machine learning algorithms
require balanced classes to achieve proper performance, we present three sampling
techniques that ensure this in a data set: undersampling, oversampling, and SMOTE
(Chawla et al., 2002).

Undersampling describes a procedure that randomly reduces the number of class
instances. The class with the lowest number of samples defines the value for all other
classes and training data is randomly removed until all classes have the same size
(Drummond & Holte, 2003; Pelayo & Dick, 2007). However, "the major drawback of
random undersampling is that this method can discard potentially useful data that
could be important for the induction process" (A. Fernandez et al., 2018, p. 83).

With oversampling, minority classes randomly duplicate training data until the
number of instances is identical in all classes. Thus, additional instances are created
so that all classes have the same size. It has to be considered, that "random oversam-
pling may increase the likelihood of occuring overfitting, since it makes exact copies
of the minority class examples" (A. Ferndndez et al., 2018, p. 83).

The third technique is called SMOTE (Synthetic Minority Over-Sampling Technique).
It creates synthetic training data in the minority classes so that the amount of data
is the same in all classes of the training set (Chawla et al., 2002). Simply explained,
SMOTE finds the n-nearest neighbors for each sample of the minority classes. Then,
by drawing a line between the neighbors, it creates random points on these lines. To
avoid sampling effects in our research, we generally apply these techniques only for
the training set!®.

Besides, most of the quantity features have varying scales. This is apparent when
we look at the features "NOW" ("Number of words"; range from 6 to 84) and "NOS"
("Number of sentences"; range from 1 to 4). For some machine learning algorithms,
which rely on distances between data points for their prediction (as is the case for
an SVM), features with varying scales pose a problem. Therefore, we normalize
the scales for all quantity features'®. For the feature scaling, we use the function
"MinMaxScaler" provided by scikit —learn that scales the values of a quantity feature
to a range between 0 and 1.

5For a reliable evaluation, the test set always remains in its original distribution.
16Because of the binary values, it is not necessary to normalize the binary features. In addition, it is
not recommended to normalize tf-idf features.

Chapter 4

422

The results from the previous section enable us to create a numerical representa-
tion of our data set based on tf-idf features (feature set 1) and on quantity and
binary features (feature set 2). With this representation, we aim to automatically
determine the score for the characteristics Singular and Unambiguous for unlabeled
requirements.

For the automated assessment, we refer to the scale from the assessment sessions.
Therefore, we consider the points of the scale as discrete classes for which an auto-
mated approach should be implemented. This is a problem that can be found in the
field of machine learning and can be handled by applying multi-class classification
methods.

There has been a lot of research on which algorithms are best suited for text
classification problems. However, there is no algorithm that consistently gives better
results. Consequently, we are not able to decide in advance which machine learning
algorithm will perform best. The performance is also influenced by a variety of
factors, such as the available data set, the number of features, and the number of
different classes. Thus, it is recommended to compare the performance of different
algorithms to select the one best suited for solving a classification problem.

In this section, we first identify a supervised machine learning algorithm that is
most suitable for our multi-class classification problem. We implement classical
algorithms of three commonly used classifiers that are known to perform well
in text classification: Support Vector Machines, Bayes classifiers, and Tree-based
classifiers. In addition to the classical algorithms, approaches from deep learning
are also increasingly applied. For good performance, however, a large amount of
training data is needed, which we do not (yet) have in our research. Therefore,
we refrain from using deep learning methods to solve our classification problem.
Furthermore, the use of neural networks such as a multilayer perceptron would
have been a possible addition. However, we could not identify any purposeful or
beneficial application of neural networks in related research on quality assessment
of requirements, which is why we initially focused on the aforementioned classical
algorithms in this research.

The development is mainly based on the programming language Python, which
provides a large number of relevant libraries for handling text classification problems
(Bird et al., 2009; Swamynathan, 2019). We use the Python library scikit — learn,
which offers an established machine learning library for the implementation of the

4.2

113

114

algorithms (Buitinck et al., 2013; Pedregosa et al., 2011). In table 4.4, we present
the algorithms and the related implementations from scikit — learn.

Algorithms and their implementations.

Algorithm Implementation

Multinomial Naive Bayes (Kibriya et al., 2004)
Complement Naive Bayes (Rennie et al., 2003)
Support Vector Classifier (Bishop, 2006)
Linear SVC! (Bishop, 2006)

Decision Tree (Breiman et al., 1984)

Random Forest (Breiman, 2001)

Bayes classifier

Support Vector Machines

Tree-based classifier

Besides, we define three feature sets for the implementation of an algorithm: first,
we use the tf-idf feature set (feature set 1); second, we apply the quantitative and
binary feature set (feature set 2); third, we use both feature sets (feature set 3).
These feature sets are applied with different sampling techniques, that are necessary
to ensure balanced classes in the training set. In table 4.5, we present the various
feature sets and sampling techniques.

Variants of feature sets and sampling techniques for algorithm selection.

Type Variant
1: Feature set 1 (tf-idf features)

Feature set : Feature set 2 (binary and quantity features)

2
3: Feature set 3 (feature set 1 and 2)

: No sampling
Samplin : Undersampling
ping : Oversampling

: SMOTE

A W N =

With the results from this section, we can conclude the implementation. Besides
applying different feature sets and sampling techniques, we also consider varying
scales when using different implementations of the described algorithms. In the next
section, we focus on the evaluation. We analyze and optimize the trained models
and identify features that are relevant for the assessment of the two characteristics
Singular and Unambiguous.

7Support Vector Classifier and Linear SVC are implementations of the same algorithm using
different Python libraries. Since Linear SVC supports only a linear kernel, it tends to be faster and is
able to scale better.

Chapter 4

4.3

By applying the implementations from table 4.4 and by using the variants (and
combinations) of feature sets and sampling techniques from table 4.5 of the previous
section, we receive a total of 72 results for each of the quality characteristics Singular
and Unambiguous.

We use the standard configuration of the implementations from scikit — learn and
apply cross-validation with three iterations. An important point is to strictly separate
training data to avoid data leakage from the test set to the training set. Therefore,
we apply sampling techniques only on the training set (in each iteration of the
cross-validation). Table 4.6 lists the best ten results sorted by macro F-score of the
characteristic Singular. Besides, we add the best result where only feature set 1 is
considered. Table 4.7 shows the results for the characteristic Unambiguous. We also
present the values for the standard deviation of the macro F;-score.

For Singular, we identify the Random Forest as the algorithm that provides the
highest macro F1-score. The use of feature set 3 and the application of oversampling
lead to the best performance. The standard deviation (STD) of .0080 also indicates
that the results are only slightly scattered and that the algorithm is the most stable.
We can also recognize that the decision between feature set 2 and feature set 3 has
only a minor impact on the results. When using feature set 1 exclusively, the results
are predominantly in the lower range.

Results for Singular in descending order by macro F;-score (Mean).

Algorithm Feature set Sampling macro F, - macro F,
(Mean) (STD)
Random Forest Feature set 3 Oversampling 4379 .0080
SVC Feature set 3 Oversampling 4375 .0317
SvVC Feature set 2 SMOTE 4368 .0167
Random Forest Feature set 2 No sampling 4358 .0286
SVC Feature set 3 SMOTE 4310 .0521
Linear SVC Feature set 3 SMOTE 4302 .0363
Random Forest Feature set 3 ~ Undersampling 4291 .0224
SvVC Feature set 2 Oversampling 4277 .0184
Linear SVC Feature set 2 SMOTE 4248 .0211
Linear SVC Feature set 2 Undersampling 4245 .0279
Random Forest Feature set 1 Oversampling .3708 .0293

For Unambiguous, similar results can be observed. A significant difference between
the use of feature set 2 or feature set 3 is not discernible. Besides, results in the

4.3

115

116

lower range can be identified when using only feature set 1. In the table 4.7, the SVC
algorithm shows a slightly better macro Fy-score (.3085), but the standard deviation
is much higher (.0538) compared to the second-best result obtained by a Random
Forest algorithm (macro F1-score of .3054; standard deviation of .0046). Therefore,
we choose the Random Forest algorithm for the characteristic Unambiguous as
well.

Results for Unambiguous in descending order by macro F;-score (Mean).

Algorithm Feature set Sampling macro Fy - macro F,
(Mean) (STD)
SvC Feature set 3 ~ Undersampling .3085 .0538
Random Forest Feature set 3 Oversampling .3054 .0046
Random Forest Feature set 2 No sampling .3036 .0356
SVC Feature set 3 No sampling .3008 .0173
Random Forest Feature set2 Undersampling .3001 .0176
MultinomialNB Feature set 2 SMOTE .2989 .0255
SvC Feature set 3 SMOTE .2984 .0171
Random Forest Feature set 3 ~ Undersampling .2969 .0051
Linear SVC Feature set 2 SMOTE .2961 .0515
Linear SVC Feature set 3 ~ Undersampling .2940 .0220
Linear SVC Feature set 1 Undersampling .2608 .0241

In general, it can be stated for both characteristics, on the one hand, that the
sampling technique makes hardly any difference. On the other hand, the worst
values predominantly use feature set 1. Therefore, the consideration of additional
features besides those of a tf-idf approach is of significant importance for the
performance of an algorithm. We emphasize here again the five-class classification
problem. Thus, results that are only one score off to the true labels are evaluated
in the same way as results that have a larger difference from the true labels. We
discuss this point later in section 4.3.1.

Certainly, there exist additional preprocessing tasks and implementations of sup-
plemental algorithms to provide better performance. Based on the results of the
analysis so far, however, we decide to use the Random Forest algorithm for our
research in the further course. When applying the Random Forest algorithm to
our data set, we receive a machine learning model. In general, this is called an
instantiation of a machine learning algorithm (Carbonell, 1990). In the further
evaluation, we take a closer look at the resulting models of the best performing
algorithm and analyze the results of the classification based on Random Forest.
We focus on the hyper-parameters of the algorithm, which can be specified and
optimized for the training of a model. Besides, we apply an approach to identify

Chapter 4

features that have a high impact on the classification task. This helps us to determine
whether the features suggested by the literature are helpful for our research. Finally,
the results enable us to answer our first research question, whether machine learning
algorithms can be used to accurately assess (two of) the quality characteristics of
natural language software requirements.

First insights into the results of a trained model are provided by a confusion matrix
that presents the discrepancies between predicted and true labels. In figure 4.7,
we exemplarily illustrate the confusion matrix for one of the folds from the cross-
validation in section 4.2.2 for the characteristic Singular'8. It can be recognized
that the data set has imbalanced classes as a major part of the true labels is located
in class "5". Correct classifications of the model can be found on the diagonal of
the confusion matrix from the upper left to the lower right. Misclassifications are

represented by the remaining values.

Predicted labels

1 2 3
vl 8 7 6
2| 9 4 6 12
2
S ¥ 4 3 6 14 6
=
[
¥ 4 19 21
5 8 19 79

Exemplary confusion matrix for Singular.

The trained model can easily recognize and assign class "5". The matrix also reveals
that the outer corners, i.e. the areas where the highest delta between the true
and predicted labels occurs, have mostly small values. The outer corners are

18The confusion matrix is only intended as an example to show how results of a model can be
additionally analyzed. We do not consider it useful to show all folds of each quality characteristic.

4.3

117

4.3.1

118

highlighted black in figure 4.7. Such outliers are relatively rare as the number of
these misclassifications ranges between 1 and 3. We can identify further misclassified
requirements, which are especially apparent in classes "2" and "3". It can be stated
that the classifier assigns the true labels in these two classes to other classes to a
large extent. Such misclassifications can also be seen for true labels in class "1" and
"4" but to a lower extent.

From the exemplary confusion matrix for Singular it can be derived that the classifier
seems to have difficulties with the assignment of these classes. This can have different
causes, which may also have to do with the selection of the hyper-parameter of
the algorithm. For this reason, in the following, we focus on the analysis and
optimization of the algorithm-specific parameters that can be defined for model
training.

The performance of a classification algorithm depends on several different factors,
such as the number of features or the number of different classes. Besides, each
algorithm has individual parameters, which influence the performance as well.

In general, a machine learning model includes two types of parameters. The model
parameters and the hyper-parameters. The model parameters are determined during
the model training and are also sometimes called "fitted parameters" (Figueroa et al.,
2012; Varghese et al., 2020). On the other hand, hyper-parameters are configurable
parameters that require tuning to obtain a model with optimal performance. Each
algorithm contains specific hyper-parameters that affect the performance of a model
and that can be individually adapted to the application scenario. For a Random
Forest algorithm, which we identified as the best performing algorithm for the
characteristics Singular and Unambiguous, there are hyper-parameters such as the
number of trees and the maximum depth of the trees.

For the determination of optimal hyper-parameter values, a method called grid
search can be applied. For this purpose, a grid with possible values of the relevant
hyper-parameters is defined. These values are then tested against each other. Often
cross-validation is used, which enables to ensure the stability of a model created
with the parameters to be validated.

A complementary procedure is described under the term nested cross-validation. In
particular, the focus is on tuning hyper-parameters and on training the model-specific
parameters (Statnikov et al., 2005). The procedure considers two nested loops. First,

Chapter 4

the inner loop is responsible for tuning the hyper-parameters, while the outer loop
trains the model parameters. In each loop, cross-validation is performed. Regarding
sampling techniques, that we additionally apply at this step, Weihs et al. (2013)
recommend that "both the inner and the outer resampling" should be considered.

The Python library scikit — learn provides a function that allows a combined grid
search and cross-validation. The result is an exhaustive search for the optimal and
best performing parameter combination for the Random Forest algorithm on our
data set (Dietterich, 1998). For the extraction of the results, we additionally apply a
nested cross-validation function presented in Miiller and Guido (2016).

Hyper-parameters and grid values for Random Forest algorithm.

Hyper-parameter Grid values
RF-trees (10,50,100,250,500)
RF-depth (5,10,20,50,100)
RF-features (50,100,250,500)
RF-samples (2,3,5,10)

For our research, we select the grid values presented in table 4.8 for the hyper-
parameter search of a Random Forest algorithm. With "RF-trees" we define the
number of Decision Trees used for the Random Forest algorithm. The parameter
"RF-depth" specifies the maximum number of decisions that can occur in a tree.
As default value, the decisions in the trees are executed until each leaf node has
uniquely assigned samples for a class. This corresponds to a Gini impurity value of
"0" (see section 4.1.2).

With the parameter "RF-features", we define the number of features to be considered
in a split within a Decision Tree. The parameter "RF-samples" describes the minimum
number of training samples required for splitting and serves as a stopping criterion
for the trees. If the number of samples for a node is less than a defined value, no
further splitting occurs and the node is considered a leaf node. A small value can
lead to a strong refinement of the tree and can facilitate model overfitting. On the
other hand, a high value can lead to leaf nodes describing samples from multiple
classes.

Figure 4.8 visualizes the splitting process of a Decision Tree from a Random Forest
algorithm. Starting with the first decision over a depth of five, the leaves of a single
Decision Tree are determined. In this example, we use only the features from the
feature set 2 and select the minimum number of samples for splitting.

4.3

119

£ SSe|0 = S0 }7SSej0 = SSejo

[0°2°2"0"0] = onjen [0°07"0"04] = anjea
¢ = sojdwes G = so|dwes

§0=ub 190 = b

Ze# opou 0z# opou

| SSejo = SSejo
[0°0'6"004] = anjea
9 = sojdwes
0=b
LIV => SMY
84 apou

175SBJ0 = SSejo 27ssepo = ssep
[02°2°0"12) = 8njen [evl ‘1 'gel 0g) ‘8€l] = anjen
G} = sajduwes LG = so|dwes

Gy =1ub 90 =ub
0Le=>13y 605 => SMY

9l# apou 1#®pou

| "ssejo = ssejo
[ev) ‘9v) ‘ZvL 081 '6G1] = anjen
2.p = so|dwes
g0 =ub
G'6=>MMN
0# 8pou

78880 = SSe

*991], uoIspa(e ul ssadoxd 3unirds 9y3 Jo uonezZIfensIp

=>6§31

¥ SSe|0 = SSe|o

[ev) ‘pvl 'SeL Op) ‘9eH] = anjen
05} = se|dwes

80=ub

0'6.=> 134

z#8pou

7 SSe|0 = SSEj0 £ SSe|0 = SSE|0 G SSB| = SSBJD
(622688101 ‘G6] = anjea [5°g°¢) ‘2 ‘0l =onen | | [95 ‘p¥ 82 ‘€ ‘1] = onjen
067 = sa|dwes 6} = so|dwes 91} = so|dwes

90 =ub 19°0=ub 10=b

6# 3pou 94 3pou G 3pou

| SSB0 = SSejo GSSE|o = SSepD
(182668104 ‘L1 1] = anjen
10¢ = s9|dwes
g0 =ub
GL0=>831
L#8pou

 $SeJ0 = SSejd
[zt) ‘1 ‘08) '9z) ‘8€1] = onjen
b = so|dues
80=1b
1961 => SMY
¢# apou

Chapter 4

120

For the parameter grid, we have chosen a broad and reasonable range of values,
resulting in a total of 400 different combinations. We iterate through all parameter
combinations on the inner folds and validate the optimal parameters on the outer
folds. This enables us to receive an estimation of the model error.

In the tables 4.9 and 4.10, the results from the nested cross-validation are listed
for Singular and Unambiguous. We identify similar macro F;-scores in each fold.
For Singular, we obtain values between .3566 and .4067, with a mean of .3843.
The standard deviation is .0238. For Unambiguous, we achieve values between
.3239 and .3829, with a mean of .3468 and a standard deviation of .0243. These
results indicate that there is no tendency towards overfitting since the values for
each characteristic are not widely scattered.

Results from nested cross-validation for Singular.

Outer loop Grid values macro F;
RF-trees RF-depth RF-features RF-samples

Fold 1 50 100 250 5 4067
Fold 2 10 100 100 5 .3566
Fold 3 50 50 250 2 .3937
Fold 4 10 50 100 2 .3611
Fold 5 50 100 50 3 4033
Results from nested cross-validation for Unambiguous.
Outer loop Grid values macro F;
RF-trees RF-depth RF-features RF-samples
Fold 1 10 100 500 10 .3239
Fold 2 10 50 250 10 .3324
Fold 3 10 50 250 5 .3345
Fold 4 10 20 100 10 .3603
Fold 5 50 5 100 5 .3829

For better interpretation, we compare the results in a further step with two baselines.
The first baseline describes a random guess of the scores for a quality characteristic.
All scores are estimated randomly with equal probability (p=0.2). Opitz and Burst
(2019) note that this form of a so-called ’"dummy’-classifier, in which classes are
predicted uniformly at random, is often used as a baseline by researchers. The
trained classifiers provide an improvement of 107.73 percent for Singular and 82.53
percent for Unambiguous over this baseline. The second baseline describes another
random guess classifier but with knowledge about the distribution of scores. As a
result, the scores are estimated proportionally according to the distribution. We
can observe that our best models are able to improve the results by 92.15 percent

4.3

121

122

for Singular and 73.40 percent for Unambiguous. The results are presented in table
4.11 and show the feasibility of automated quality assessment of natural language
requirements for both Singular and Unambiguous. Thus, we can conclude statistically
that automated assessment on unlabeled requirements is well feasible.

Comparison of different baselines with the trained classifiers for Singular and

Unambiguous.

Characteristic Baseline macro F; Increase

Singular Trained classifier (Random Forest) .3843 -
Singular Random guess (no knowledge about the distribution) .1850 +107.73%
Singular Random guess (knowledge about the distribution) .2000 +92.15%
Unambiguous Trained classifier (Random Forest) .3468 -
Unambiguous Random guess (no knowledge about the distribution) .1900 +82.53%
Unambiguous Random guess (knowledge about the distribution) .2000 +73.40%

Based on these findings, we can identify the models including their specific hyper-
parameters for the quality characteristics Singular and Unambiguous. Again, we use
cross-validation, which we apply to the entire data set in the following.

In table 4.12, we present the best ten results from the cross-validation for the
characteristic Singular sorted by the macro F;-score. In addition, we display the
accuracy value. The best performing model achieves a macro F;-score of .4845 with
the following hyper-parameters:

* RF-trees = 500

* RF-depth =5

* RF-features = 250
* RF-samples = 5

In table 4.13, we present the results for macro F;-score and accuracy for the char-
acteristic Unambiguous. The best performing model achieves a macro F;-score of
.3785 with the following hyper-parameters:

* RF-trees = 100
* RF-depth =5

* RF-features = 50
* RF-samples = 10

For the characteristic Singular, the values for the macro Fy-score are slightly higher
compared to the values of the outer folds of the nested cross-validation. For Unam-
biguous, similar values can be identified compared to the nested cross-validation.
The results reveal again that there is no tendency for overfitting in the models. On

Chapter 4

Results from cross-validation for Singular in descending order by macro F-score

(Mean).
Grid values Accuracy macro F,;
(Mean) (Mean)
RF-trees RF-depth RF-features RF-samples
500 5 250 5 .5012 4845
500 10 100 10 4988 4844
100 10 100 10 5012 4824
250 5 250 2 .4988 4819
250 5 250 5 4988 4787
100 5 500 10 4889 4785
50 5 500 5 4902 4783
250 10 100 5 4938 4781
500 10 100 3 4926 4780
50 10 100 5 4902 4766

Results from cross-validation for Unambiguous in descending order by macro
F1-score (Mean).

. Accurac macro F
Grid values y 1

(Mean) (Mean)
RF-trees RF-depth RF-features RF-samples
100 5 50 10 .3873 .3785
500 5 50 3 .3922 .3752
50 5 100 3 .3812 .3727
100 5 50 2 .3824 3710
250 5 50 5 .3837 .3709
10 5 500 2 3727 .3704
250 5 100 10 .3812 .3699
500 5 50 5 .3910 .3691
50 10 50 2 .3800 .3691
50 5 100 10 .3849 .3684

the one hand, however, one would expect that the values for the macro F;-score to
be somewhat higher since more data is available for training the models. On the
other hand, we consider a five-class classification problem in our research. Due to
the complexity of the classification task, the available data, and features, it might
not be able to achieve higher values for these characteristics. Therefore, we perform
further analysis on the results in the following, which provides us with more detailed
insights into the models and performance.

In a classification problem, misclassification is the discrepancy between the true
label and the predicted label. The degree of a wrong classification is usually not
taken into account. If the trained model classifies a value next to the true label, it is
treated as a false classification. However, the same applies if the classified label has

4.3

123

124

four values next to the true label. In the case of multi-class classification problems
with different ordinal classes, the exact classification may be much less frequent.
"Therefore, the prediction accuracy should be judged with respect to the number of
classes presented in the classification problem. A relatively smaller value [...] may
indicate a reasonably good performance when the number of classes is large, and
vice versa" (Sharda & Delen, 2006, p. 248).

For that reason, we extend the current analysis with an approach that is particularly
applicable to multi-class classification problems (Sharda & Delen, 2006). Huang
et al. (2004) refer to this approach as "within-1-class", which considers classifications
next to the true label as correct. Consequently, the classes that are considered correct
for classification are those that lie within one class based on the true label. Only
classifications that are outside the neighboring classes of the true label are handled as
false classifications. The approach is illustrated in figure 4.9 and the cells highlighted
in yellow show a correct classification. For example, for the true label in class "3",
the predicted classes "2", "3", and "4" are considered as correct classifications. On
the other hand, the cells highlighted in grey are misclassifications.

Predicted labels

1 2 3 4 5

True labels
w

Correct classifications (yellow) in the within-1-class approach.

Table 4.14 shows the results for the macro F1-score and accuracy of the within-1-class
approach for Singular and Unambiguous. We also present the original results.

Chapter 4

Results from within-1-class approach for Singular and Unambiguous.

Characteristic Original Within-1-class

Acc. (Mean) macro F] (Mean) Acc. (Mean) macro Fl (Mean)

Singular .5012 4845 .7905 .6383
Unambiguous .3873 .3785 .7503 .6265

For Singular, an increase can be recognized for both measures. The macro F;-score
shows a result of .6383 and the accuracy increases from .5012 to .7905. For the
characteristic Unambiguous, the values for accuracy and macro F;-score are almost
doubled. Again, we compare these results with the previously defined baselines. The
results are shown in table 4.15.

Comparison of different baselines with the trained classifiers for Singular and
Unambiguous for within-1-class approach.

Characteristic Baseline (Within-1-class) macro F; Increase

Singular Trained classifier (Random Forest) .6383 -
Singular Random guess (no knowledge about the distribution) 4107 +55.42%
Singular Random guess (knowledge about the distribution) 4231 +50.86%
Unambiguous Trained classifier (Random Forest) .6265 -
Unambiguous Random guess (no knowledge about the distribution) 4263 +46.96%
Unambiguous Random guess (knowledge about the distribution) 4435 +41.26%

A random guess without knowledge about the score distribution achieves a macro
F;-score of .4107 for Singular and a macro F1-score of .4263 for Unambiguous. With
the within-1-class approach for our trained classifiers, values are achieved that
are 55.42 percent above a random guess for Singular and 46.96 percent above a
random guess for Unambiguous. The second baseline describes a random guess
with knowledge of the score distribution. In this case, as well, improvements of
50.86 percent for Singular and 41.26 percent for Unambiguous can be stated with
our trained classifier. These results once again demonstrate the feasibility of our
approach for automated assessment of the characteristics Singular and Unambiguous
of a natural language requirement.

The results also indicate that for our five-class classification problem, the trained
classifiers predict close to the true labels. The models for the quality characteristics
Singular and Unambiguous can be used for a prediction of the classes, even if there
is uncertainty left. This also results from the fact, which we already observed in
the previous chapter, that even the experts do not always agree when assessing the
requirements. Consequently, a supervised classification model can only ever be as
good as expert assessments. Based on the obtained results, we can answer our first

4.3

125

43.2

126

research question and confirm that machine learning algorithms can be used to
accurately assess (two of the) quality characteristics—Singular and Unambiguous—of
a natural language software requirement.

We are now able to further analyze and determine which of the features contribute
most to the classification. For that purpose, in the following section, we describe the
procedure for determining the importance of the features and present the results for
Singular and Unambiguous.

"Often, we desire to quantify the strength of the relationship between the predictors
and the outcome. Ranking predictors in this manner can be very useful when
sifting through large amounts of data" (Kuhn & Johnson, 2013, p. 463). A decisive
advantage, especially in the context of our research, is the interpretability of the
results for tree-based approaches. When using the Random Forest algorithm for
predicting the score of a characteristic, we can apply a function from the Python
library scikit — learn called "feature importances". This function allows us to view
all the features used in our model and identify the most important ones.

Feature importance by definition is the increase in the model error if we remove the
information received from the feature. In other words, it determines which features
(i.e. number of sentences (NOS), number of words (NOW)) are more important for
the classifier to make an accurate prediction on the requirement assessment. Using
this method, we can visualize which features have a greater effect on the model’s
ability to make accurate predictions. As well as identifying features that have a less
significant effect on the classification outcome if these are used solely. In general,
features that are used at the beginning to divide a decision tree have a greater effect
on the classification.

The function "feature importances" returns a list of the importance values which
correspond to the features. These values range from O to 1 and can be interpreted
as the percentage of how much the model’s performance decreases without these
features. The higher the number, the greater the effect is. The classifier determines
these values using Gini impurity. As described in section 4.1.2, Gini impurity
measures the probability of an incorrectly classified prediction based on some
features. It computes how much each feature contributes to decreasing the impurity
for each tree within the forest, then averages the impurity over all trees.

Chapter 4

While the primary goal is to accurately predict the score of a given requirement,
identifying the important features can be a useful tool in providing reasoning behind
the classifier’s decision to assess the characteristics of a requirement as one of the
five classes. Determining the feature importance helps us to identify which features
from the feature sets are relevant for each characteristic. Therefore, we perform the
feature importance analysis for the characteristics Singular and Unambiguous and
rank the top five results by the importance values in table 4.16.

Top five features according to importance values for Singular and Unambiguous.

Rank Singular Unambiguous
1 NOW NOW

2 NOC NWW

3 NOV NOC

4 AWS AWS

5 NOS NOV

Various findings can be derived from the results of feature importance. The quantity
features from the feature set 2 have the highest importance values for both charac-
teristics. For the characteristic Singular, the number of words ("NOW"), the number
of conjunctions ("NOC"), the number of verbs ("NOV"), the average number of words
per sentence ("AWS"), and the number of sentences ("NOS") appear in the ranking of
the top five features. We do not identify binary or tf-idf features as most important.
A similar ranking can be observed for the characteristic Unambiguous, in which only
quantity features are identified as well. The number of words ("NOW"), the number
of weak words ("NWW"), the number of conjunctions ("NOC"), and the average
number of words per sentence ("AWS") affect the unambiguity of a requirement,
as well as the number of verbs ("NOV"). The feature "NOW" appears on the first
rank for both quality characteristics. Thus, the number of words has a comparable
stronger influence on the general assessment of requirements quality.

Referring to the description of the two characteristics in ISO 29148, the following
points can be identified. For the characteristic Singular, a requirement includes only
one requirement with no use of conjunctions. Consequently, the number of words,
conjunctions, and verbs indicate that there is more than one requirement. Besides,
the number of sentences, as well as the average number of words per sentence have
an influence on this characteristic. A similar result can be seen for Unambiguous.
In particular, it becomes clear that the number of weak words is a relevant feature
for the automated quality assessment of the characteristic Unambiguous. It can be
deduced that weak words influence the ability to interpret requirements in only one
way.

4.3

127

4.4

128

In general, the determination of the feature importance reveals which of the features
from our feature sets are important for the particular characteristics. Relevant
features are based on the quantity features from the feature set 2. Furthermore,
binary features and tf-idf features do not appear in the ranking of the top five feature

importance values.

In this section, we focused on the evaluation of our trained models. In the beginning,
we presented a confusion matrix to exemplarily demonstrate how to get insights into
the results of a model and how to identify misclassifications. We further described
the optimization of the models by hyper-parameter tuning. Besides, we applied an
approach that also provides additional insights into the degree of misclassifications
in multi-class classification problems. In the following section, we conclude the
chapter 4 and discuss open issues.

In this chapter, we provided an answer to our first research question, whether ma-
chine learning algorithms can be used to accurately assess the quality characteristics
of natural language software requirements. For this purpose, we described our
approach for the automated quality assessment.

With the help of extensive feature engineering and the use of different algorithms,
we proved the feasibility of an automated quality assessment of requirements based
on the two characteristics Singular and Unambiguous. We achieved a macro F1-score
of .4845 for Singular and a macro F1-score of .3785 for Unambiguous.

Regarding the results, we must take into account the following issue. In our research,
we are confronted with a multi-class classification problem in which a classifier
uses labeled data from experts who do not always agree on the assessment of
the quality characteristics (see section 3.3.4). However, in comparison with two
different baselines (random guess with/without knowledge about the distribution),
our models outperformed. Extended approaches also revealed that the classifier
results are close to the true labels. These results confirm the feasibility of automated
quality assessment of natural language requirements.

In a further analysis, we evaluated, whether the features describe the quality char-
acteristics sufficiently. The results reveal that the feature importance ranking for
both characteristics is very similar. Besides, some of the features did not contribute
to the classification models. Using the passive voice, for example, did not affect

Chapter 4

the characteristics Singular or Unabmiguous. Although it is claimed, that an actor
is crucial for the implementation of the requirement, we cannot conclude that the
use of passive voice causes problems. An assumption that should be investigated in
further research efforts is that the missing actor of a requirement can be determined
or assumed by the context of a requirement and/or by expert knowledge. This
does not mean that the use of passive voice causes no problems in general. In the
context of our research, however, it does not seem to be as harmful as generally
assumed. Besides, an exclusive assignment of measurable indicators to Singular or
Unambiguous can not be confirmed.

Our approach to automated quality assessment of natural language requirements
surely has some limitations. The performance of our model and the ability to au-
tomatically determine the quality of natural language requirements were highly
dependent on the defined features and thus on the numerical representation of the
text. For the definition of the features, we concentrated on standard techniques in
the field of natural language processing on the one hand, while at the same time
considered additional features proposed in research papers and best practices. With
the defined features, we covered relevant indicators to determine the quality of
requirements. However, it must be taken into account that not all possible aspects
were included. Rather, domain- or language-specific features can play an important
role as well in determining the quality of requirements. Also, we focused primarily
on textual features in our research, neglecting non-textual features. In extended
research, these features could capture and analyze meta information of the require-
ment, such as the number of linked requirements, the frequency of requirement
changes, and the structural information of the specification. Furthermore, semantic
analyses can also improve the performance of our models. A semantic analysis goes
beyond the structural elements of a requirement and examines the meaning of the
text. For example, determining sentiment in terms of its polarity describes a simple
form of semantic analysis. More complex analyses consider the different meanings
of words in the context of other words.

Further limitations include that we only applied simple preprocessing tasks and
did not consider additional machine learning algorithms, such as neural networks.
As we only had a small amount of data available for training the models, no more
insights could be drawn from the elaborate assessments. With our current research,
we aim at a first approach, which is why some of these aspects are not considered
at this point. For future research, however, the consideration of these aspects is
essential.

4.4

129

130

The managerial implications are apparent. With the application of an automated
quality assessment, requirements engineers can specifically identify requirements
that do not satisfy the quality characteristics Singular and Unambiguous. In current
industrial practice, such requirements quality reviews are mostly performed by
time-intensive manual work. A manual review or manual assessment of the quality
characteristics of a requirement is typically the most accurate approach. However,
such a procedure is also the most expensive. The costs of an automated assessment
are practically non-existent. Thus, we consider the results to be appropriate for a
task that is usually performed manually and requires a huge investment of time.

The results of this chapter provide evidence that an automated assessment of the
quality characteristics Singular and Unambiguous by using a supervised learning
approach is possible. We identified different aspects for the further optimization of
our approach. Nevertheless, the presented results can already be used to provide
an initial automated assessment for requirements engineers in industrial practice.
It reduces the time-intense effort that would be required by a comprehensive man-
ual review of the increasing number of requirements in software development
projects.

Chapter 4

5.1

Conclusion

In this thesis, we model and assess the quality of natural language requirements
through the identification and definition of characteristics. We analyze the feasibility
to automatically and accurately assess quality characteristics and present an ap-
proach based on textual indicators. The main output of our research is the successful
development of this approach for the assessment of two quality characteristics by
using natural language processing and supervised machine learning. Requirements
from industrial practice and experts’ input from the automotive industry ensure the
practical applicability of our results.

In the final chapter of this thesis, we summarize the relevant aspects and results
of our research and present limitations and implications. Finally, we provide an
outlook on future research efforts.

The motivation for the automated assessment of requirements quality is based on
the premise that the development of software is becoming an increasingly important
economic factor, especially for the automotive industry. In the purchasing process
of a new vehicle, for example, customers are increasingly looking at the services
and software functions a car provides. This trend leads to additional challenges in
the development of automotive software. In our research, we identify three major
challenges. First, an increase in legal demands and safety requirements. Second,
a general increase in the complexity of the developed software. Third, distributed
development approaches with different partners. These challenges are directly
related to the requirements of a project.

Nowadays, requirements in a software development project are primarily used to
communicate with relevant stakeholders and are largely specified in natural lan-
guage. Despite the availability of numerous approaches with a higher degree of
formalization, hardly any of them are applied in practice. The general comprehensi-
bility and the easy applicability of natural language play a decisive role. However,

131

132

natural language has three problems. It is often imprecise, incomplete, and ambigu-
ous, which makes reliable communication based on requirements difficult. Due to
the increasing challenges in the development of software, we identify a necessity for
quality assessment of natural language requirements as a kind of quality assurance.
Traditional approaches are described in the form of requirement reviews, which are
performed manually by engineers. With the increasing number of requirements,
new, reliable, and automated approaches are necessary.

Our research provides an approach for the automated quality assessment of natural
language requirements. To enable an objective assessment, requirements should be
interpreted within a widely accepted standard framework. We can then expect that
our results are more useful for researchers investigating similar studies. We identify
the international standard ISO/IEC/IEEE 29148:2011, which describes nine quality
characteristics of a requirement: Complete, Consistent, Feasible, Implementation Free,
Necessary, Singular, Traceable, Unambiguous, and Verifiable. Besides, we introduce
our requirements quality model based on these characteristics.

For the implementation of an automated approach, we encounter techniques and
methods from natural language processing and machine learning. We decide on a
supervised machine learning approach based on labeled data. In several assessment
sessions, we let experts from the automotive industry assess 1,000 real requirements
from automotive development projects. Each assessment is based on the character-
istics of our quality model. We analyze the expert assessments and take reliability
into account from two points of view. First, we evaluate the reliable assessment of
a single expert. For that reason, we have an expert re-assess a requirement that
he already assessed before and compare these results. The intra-rater agreement
determines the degree of agreement. Second, we have each requirement assessed by
two different experts. With the inter-rater agreement, we can determine the degree
of agreement by two different experts.

We calculate Krippendorff’s alpha («y) for the determination of reliability. The values
for the intra-rater agreement vary between .669 and .776 for the characteristics,
which indicates a sufficient agreement and confirms the reliable assessment of
a single expert for all quality characteristics. For the determination of the inter-
rater agreement, the results vary to a larger extent between the characteristics. We
identify three groups of characteristics. For Consistent, Necessary, and Traceable, a low
agreement can be determined («y, < .222). The second group contains characteristics
with a slightly better level of agreement. These include the quality characteristics
Complete, Feasible, Implementation Free, and Verifiable (.222 < «y < .444). Finally,
the characteristics Singular and Unambiguous belong to the third group, for which

Chapter 5

values for o, > .667 are identified. We can conclude that not all characteristics from
the ISO 29148 standard can be assessed equally. In particular, quality characteristics
for which context-relevant requirements would be helpful can not be assessed with
the same reliability as characteristics that focus only on the single requirement—Ilike
Singular or Unambiguous.

Based on the results, we decide to continue with the characteristics from the third
group for which, according to Krippendorff, the lowest conceivable limit is reached
to draw tentative conclusions. The results also answer our second research question,
whether experts are able to reliably assess the quality characteristics of a natural
language requirement. We can confirm that this is possible only for Singular and
Unambiguous in the context of our research.

With the labeled data at hand, we can apply supervised machine learning. We
experiment with different feature sets, sampling techniques, hyper-parameters, and
algorithms and are able to identify the best-performing classification models for
Singular and Unambiguous. We obtain a macro F;-score of .4845 for Singular and a
macro Fi-score of .3785 for Unambiguous. The results of the trained classifiers are
compared with different baselines and indicate that our models perform significantly
better than a random guess (+92.15 percent for Singular; +73.40 percent for Un-
ambiguous). We can then answer our first research question, that machine learning
algorithms can be used to accurately assess (two of) the quality characteristics of
natural language requirements.

We demonstrate the effectiveness and feasibility of our approach for the quality as-
sessment of natural language requirements. Further validation in industrial practice
is currently planned with several companies to improve the practical suitability. In
general, quantitative measurement represents one of the foundations of modern
empirical science. It is important that numerical measures are not applied as a
matter of principle, but are used with care and wisdom. For the assessment of
requirements quality, this means that human judgment is still required and can only
be supported by objective measurements. Complete substitution of the human is not
possible, however. Nevertheless, we are convinced that the automated approach for
assessing requirements quality can provide valuable information for improving the
characteristics.

We have diversified our research across different development projects and automo-
tive companies. However, we consider the presented results as the first step towards
the continuous quality assessment of requirements in software development projects.
In the next section, we, therefore, discuss the limitations of our research.

5.1

133

5.2

134

Our research is subject to several limitations. In each chapter of the thesis, we
discuss the specific limitations for the manual assessment (see section 3.4) and for
the automated assessment of requirements quality (see section 4.4). Besides, we
identify the general limitations of our research, which we describe in the following
section.

The generalizability of research should always be a primary goal. The available data
in our research originates exclusively from the automotive industry. This is advanta-
geous because the data tends to be coherent and is therefore suitable for statistical
analysis. Our approach for the assessment of requirements quality, on the other hand,
is based on the international standard ISO 29148 and general machine learning
algorithms. Similarly, the presented features are not necessarily automotive-specific.
Only some of the features that originate from the best practices of the automotive
industry or are based on weak word lists of the major companies could be specific to
the automotive industry. Consequently, there are clear reasons to believe that the
results provide a basis for general applicability. Mostly, approaches and solutions
from the software engineering body of knowledge for the automotive industry can be
adopted from other domains. However, the verification of the automated assessment
of requirements quality for domains other than the automotive industry has not yet
been performed.

Also, we focused on German language requirements only and initially neglected
other languages. A transfer especially to English language requirements seems
reasonable and will be considered in future research efforts. Another limitation
relates to the textual indicators as we cannot exclude that we have considered all
relevant features for the quality assessment of requirements. Rather, we identified
features based on similar research contributions and best practices from the industry.
Besides, we did not use semantic aspects in the models so far but focus primarily on
the extraction of syntactic features of a requirement text. The additional extraction
of entities, for example, as well as their relations from text, can help uncover more
meaningful semantic information compared to a simple tf-idf approach (Aggarwal &
Zhai, 2012a).

One of the major limitations of our research, however, is that only for two quality
characteristics an automated assessment can be realized. For the remaining charac-
teristics, no sufficient agreement in the assessment between the experts could be
determined. This could have two reasons: First, the selection of the experts, who
were not able to assess the requirements due to lack of competence and experience;

Chapter 5

Second, the procedure of how the assessment was performed. We did not provide
the experts with any guidelines but simply used the descriptions of the quality
characteristics from the standard ISO 29148. However, the quality characteristics
are not described in such a way that an expert could reliably assess to what degree
the quality is fulfilled in the individual case. As a result, an algorithm is neither
able to perform an automated quality assessment. Some authors have hypothesized
that the quality characteristics could be assessed based on textual indicators. This
hypothesis is partly verified in our research and worked well only for Singular and
Unambiguous. For the remaining characteristics, however, it did not. The reasons for
this are manifold, but limit the current research and the automated assessment of
requirements quality to the two characteristics.

Besides, as our research includes assessments that have been performed by humans,
the (agreed) assessments may therefore also be subject to human errors. The main
risk in validating the methodology lies in the errors in the assessment of requirements
by the experts. The classifier can learn an incorrect assessment and repeat the error
when assessing new requirements. Although we are confident that our procedures
for assessing requirements and selecting labeled data have helped to reduce this
threat, it is still apparent. Future research efforts may further investigate this type of
reliability for manual assessments.

There are also general limitations to the automated assessments. This is especially
the case for the classifier results, which do not provide a perfect assessment of the
requirements for the characteristics Singular and Unambiguous. We can demonstrate
with our research that we enable a significant improvement compared to different
baselines (random guess with/without knowledge about the distribution). The
results are, however, far from a perfect classifier that would have a macro F;-score
of 1. The reason for this could be that we have not yet exploited the full potential
of natural language processing and machine learning. Among other things, we use
simple preprocessing tasks and focus only on classical algorithms.

Finally, requirements engineering is a diverse field. Thus, one of the main limitations
is that our results do not cover all domains and ways of specifying requirements. To
mitigate this limitation to a certain degree, we focused on the specification technique
that is used mostly today in industrial practice. Requirements stated in other ways
than natural language are not considered and should be addressed in future research
efforts. The presented limitations critically examine the current state of the thesis,
but also open up future research activities.

5.2

135

5.3

5.4

136

In general, the assessment of requirements itself is not limited to specific quality
assurance tasks and therefore does not depend on a specific process model. Rather,
the use of a quality tool and its integration into quality assurance depends on how
the relevant specifics of this context are answered. We follow the view of Femmer
et al. (2017) and support the application of automated quality assessment both in
the process of constructive and analytical quality assurance. The former describes
that the automated quality assessment can be used by requirements engineers to
increase overall quality perception and to eliminate problems. For analytical quality
assurance, quality assessment can be used as a preparation to optimize potentially
cost-intensive quality assurance tasks of external reviewers. Examples of such
tasks include the Fagan inspection (Fagan, 2002), where several different reviewers
examine the requirements. The implications and full application of our research for
these two quality assurance areas must first be validated in future research efforts.

Nowadays, the determination of requirements quality is conducted primarily in
the context of requirement reviews, which are performed manually by engineers.
However, our quality assessment can not (and should not) replace the manual review
by an expert. Rather, it serves as a preliminary step and offers a helpful approach to
support quality assurance in requirements engineering. It should be considered as
a supplement to a review so that the expert can focus exclusively on the essential
elements of a requirement without being distracted by language deficits.

Thus, the practical implications of our research are apparent. Our approach allows
us to ensure the quality characteristics Singular and Unambiguous of requirements
at an early stage of development and to reduce or eliminate the negative effects
of poorly specified requirements. Engineers can examine their requirements and
identify potential defects. In the current state of research, though, the scope is
limited. Future research helps to improve this state from different points of view
and to determine the effects of quality assurance measures for requirements in a
software development project.

With the current research results, we are able to automatically assess two of the
quality characteristics of natural language requirements. We apply machine learning

Chapter 5

techniques and natural language processing to a problem in the field of require-
ments engineering. In general, we do not see our approach as a final solution, but
rather as proof that quality assessment is fundamentally possible in that way. It is
necessary that future research efforts focus on the automated assessment of further
characteristics, the performance of the models, and complement approaches for

optimization.

The consideration of further approaches for the vector representation of requirements
is one possibility for optimization. As an alternative to the use of the presented
feature sets, word embedding methods should be considered, such as static word
embedding and contextualized word embedding. For the former, two approaches
exist, among others. GloVe (Pennington et al., 2014) and word2vec (Mikolov et al.,
2013) represent words of a vocabulary with dense low-dimensional vectors. The
meaning of the words is learned by using the local context. The order of the words
is not considered, the focus is only on the presence (or absence) of a word in the
environment of another word. Promising and revolutionary for NLP problems is the
possibility of converting an arbitrary word into a meaningful vector representation.
In contextualized word embedding, vectors are also formed for each word but
additionally conditioned on their context. This form of context integration has
improved the state of the art in NLP challenges such as sentiment analysis and
document classification. Approaches like ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2018) contribute significantly to this and should be considered in
future research efforts.

A further important aspect is, in particular, to investigate how the remaining quality
characteristics can also be assessed in an automated way. This could include the
need to gather additional labeled data. One way to increase the reliability of the
assessments is to have a third expert assess the quality characteristics for each
requirement. This might allow a majority vote to be identified and used for an
alternative determination of reliability, allowing additional quality characteristics to
be integrated into the automated assessment.

The additional amount of data available for model training is a factor that has
become commonplace in improving the performance of machine learning tasks.
With our labeled data set, we can demonstrate the general applicability of an
automated approach to assess the quality characteristics Singular and Unambiguous
of natural language requirements. An increase of these data by additional expert
assessments would allow a possible optimization of the models and could also enable
the use of further machine learning algorithms. Deep learning, for example, relies
on artificial neural networks, where a hierarchical approach is used to train the

5.4

137

138

networks. The learning with training examples remains the same but the definition
of suitable feature representation is not necessary. Through deep learning and the
hierarchical process, an implicit representation of the data is learned and represented
over several layers. In addition, recent research also enables the interpretation of
neural networks through so-called ablation studies. In these studies, certain parts of
a neural network are removed in order to better understand the behavior of it. This
in turn enables interpretable machine learning.

In general, we provide a comprehensive view of requirements quality based on nine
quality characteristics. However, every single quality characteristic is a field of its
own, which enables a variety of future research activities. The identification of
specific textual indicators to determine quality, in particular, is an exciting field of
research. Besides, the interpretability of the classifier results is an important task.
Most engineers in industrial practice are aware that the requirements do mostly
not correspond to the quality characteristics. Therefore, it would be important to
automatically recommend individual actions to increase the quality of a requirement.
In our research, we have established the first step by determining the feature
importance values for two of the characteristics. These results can be used as a
basis to gain initial insights. Future research should further focus on interpretable
machine learning.

The most important aspect for future research, however, is not to involve additional
or more experienced experts to increase the reliability of the assessments. Also,
enlarging the requirement data set, training other algorithms, or optimizing pa-
rameters do not solve the core problem. Rather, the most important aspect is to
investigate how the quality characteristics of a natural language requirement can
be better assessed from the perspective of the experts and the algorithms. Starting
points for this can be the creation of detailed guidelines according to the defined
quality characteristics, which mitigate the fuzziness of the existing descriptions. In
addition, consideration should be given to extending the approach from the level of
individual requirements to the entire requirements document. The most promising
aspect, though, seems to be the implementation of deeper linguistic approaches that
could allow for an automated assessment of additional characteristics of natural lan-
guage requirements. A proper grammatical and deep analysis of the text should then
identify quite precisely the quality of a requirement based on its characteristics.

Finally, the integration of our approach into requirements management tools (like
IBM Rational DOORS, PTC Integrity, or codebeamer) is helpful to increase accep-
tance. Thereby, requirements can be analyzed immediately after the creation. The
requirements engineer then receives hints about the quality characteristics and

Chapter 5

can decide which adjustments should be made. The consequences of a complete
integration should be analyzed in detail. In particular, we need to understand
whether the assessment enables requirements engineers to improve the quality of
their requirements. These issues must be carefully evaluated in future research
efforts and analyzed in practice. Then the main purpose of our research, to support
quality assurance in requirements engineering, can further be realized.

5.4

139

A1

Appendix

Die Wertschopfung in der Automobilindustrie verlagert sich zunehmend von der Hardware in Richtung Software und Services.
Intelligente Software und niitzliche Services beeinflussen zunehmend die Kaufentscheidung der Kunden.
In diesem Zusammenhang sehen sich Automobilhersteller mit den Herausforderungen in der Spezifikation von Softwareanforderungen
konfrontiert.

Der Ingenieursdienstleister unterstiitzt seit vielen Jahren Automobilhersteller und Zulieferer im Bereich des Anforderungsmanagements.
Als kompetenter und integraler Entwicklungspartner hat der Ingenieursdienstleister mit groRem Erfolg relevante Standards, Methoden
und Prozesse etabliert und weiterentwickelt.

Zur Bewaltigung zukinftiger Herausforderungen entwickelt der Ingenieursdienstleister ein Tool zur automatisierten Qualitatsbewertung
von Softwareanforderungen:

Fir die Entwicklung dieses Tools wird die Bewertung von Anforderungen durch Experten benétigt.
Im Folgenden beurteilen Sie zunachst, ob der angezeigte Text eine Anforderung oder Information darstellt.
Anschlieend erfolgt die Bewertung der Anforderung und zugehdrigen Qualitatskriterien anhand folgender Skala:

1 2 3 4 5 Keine Bewertung moglich
(1 =sehr schlecht — 5 = sehr gut)
Die Bewertung der Anforderungen erfolgt selbstversténdlich anonym|
Bei Fragen wenden Sie sich an:
Patrick Kummler

Email: patrick.kummler@googlemail.com
Tel: 01515/ 51 34 128

ok |

Introductory information for the assessment sessions with experts.

141

References

Abernethy, K., Kelly, J., Sobel, A., Kiper, J. D., & Powell, J. (2000). Technology
transfer issues for formal methods of software specification. In Proceedings
of the Thirteenth Conference on Software Engineering Education and Training
(pp. 23-31).

Aggarwal, C. C., & Zhai, C. (2012a). An introduction to text mining. In Mining Text
Data (pp. 1-10). Springer.

Aggarwal, C. C., & Zhai, C. (2012b). A survey of text classification algorithms. In
Mining Text Data (pp. 163-222). Springer.

Aiken, L. R. (1983). Number of response categories and statistics on a teacher rating
scale. Educational and Psychological Measurement, 43(2), 397-401.
Alexander, 1., & Stevens, R. (2002). Writing better requirements. Pearson Education.
Alshazly, A. A., Elfatatry, A. M., & Abougabal, M. S. (2014). Detecting defects in
software requirements specification. Alexandria Engineering Journal, 53(3),

513-527.

Ambler, S. W. (2004). The object primer: Agile model-driven development with UML
2.0. Cambridge University Press.

Ambriola, V., & Gervasi, V. (1997). Processing natural language requirements. In
Proceedings of the 12th IEEE International Conference on Automated Software
Engineering (pp. 36—45).

Amstad, T. (1987). Wie verstdndlich sind unsere Zeitungen? (PhD thesis). Universitit
Ziirich.

Anda, B., & Sjgberg, D. I. (2002). Towards an inspection technique for use case
models. In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering (pp. 127-134).

Andreessen, M. (2011, August 20). Why software is eating the world. Retrieved May 5,
2021, from https://www.wsj.com/articles/SB10001424053111903480904%
20576512250915629460

Antinyan, V. (2020). Revealing the complexity of automotive software. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (pp. 1525-1528).

Antinyan, V., & Staron, M. (2017a). Proactive reviews of textual requirements. In
Proceedings of the IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (pp. 541-545).

143

https://www.wsj.com/articles/SB10001424053111903480904%20576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904%20576512250915629460

144

Antinyan, V., & Staron, M. (2017b). Rendex: A method for automated reviews of
textual requirements. Journal of Systems and Software, 131, 63-77.
Arellano, A., Zontek-Carney, E., & Austin, M. A. (2015). Frameworks for natural lan-
guage processing of textual requirements. International Journal on Advances

in Systems and Measurements, 8, 230-240.

Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics.
Computational Linguistics, 34(4), 555-596.

Balzert, H. (2010). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements
Engineering. Springer-Verlag.

Balzert, H. (2008). Software-Management: Lehrbuch der Software-Technik. Spektrum
Akademischer Verlag.

Bao, Y., & Ishii, N. (2002). Combining multiple k-nearest neighbor classifiers for
text classification by reducts. In Proceedings of the International Conference
on Discovery Science (pp. 340-347).

Bearden, W. O., Netemeyer, R. G., & Mobley, M. F. (1993). Handbook of Marketing
Scales: Multi-Item Measures for Marketing and Consumer Behavior Research.
Sage Publications.

Belfo, F. (2012). People, organizational and technological dimensions of software
requirements specification. Procedia Technology, 5, 310-318.

Benington, H. D. (1983). Production of large computer programs. Annals of the
History of Computing, 5(4), 350-361.

Berman, S. J., & Bell, R. (2011). Digital transformation - Creating new business
models where digital meets physical. IBM Institute for Business Value, 1-17.

Berry, D. M. (2007). Ambiguity in natural language requirements documents. In
Monterey Workshop (pp. 1-7).

Berry, D. M., Bucchiarone, A., Gnesi, S., Lami, G., & Trentanni, G. (2006). A new
quality model for natural language requirements specifications. In Proceed-
ings of the International Workshop on Requirements Engineering: Foundation
for Software Quality (pp. 1-12).

Berry, D. M., Kamsties, E., & Krieger, M. M. (2003). From contract drafting to software
specification: Linguistic sources of ambiguity (tech. rep.). School of Computer
Science, University of Waterloo.

Bhatia, J., Sharma, R., Biswas, K. K., & Ghaisas, S. (2013). Using grammatical knowl-
edge patterns for structuring requirements specifications. In Proceedings of
the 3rd International Workshop on Requirements Patterns (RePa) (pp. 31-34).

Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices
(2nd ed.).

Bi, Y., Bell, D., Wang, H., Guo, G., & Greer, K. (2004). Combining multiple classifiers
using Dempster’s rule of combination for text categorization. In Proceedings

of the International Conference on Modeling Decisions for Artificial Intelligence
(pp. 127-138).

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bloehdorn, S., & Moschitti, A. (2007). Combined syntactic and semantic kernels for
text classification. In European Conference on Information Retrieval (pp. 307-
318).

Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Software
Engineering, (1), 4-21.

Borgmann, M.-M. (2019, February 28). BMW Group and Daimler AG to jointly
develop next-generation technologies for automated driving. Retrieved May 5,
2021, from https://www.press.bmwgroup.com/global/article/detail /
T0292550EN / bmw - group - and - daimler - ag - to - jointly - develop - next -
generation-technologies-for-automated-driving?language=en

Bortz, J., & Doring, N. (2007). Forschungsmethoden und Evaluation fiir Human-und
Sozialwissenschaftler. Springer-Verlag.

Bowen, J. P., & Hinchey, M. G. (2006). Ten commandments of formal methods... ten
years later. Computer, 39(1), 40-48.

Boyd, S., Zowghi, D., & Farroukh, A. (2005). Measuring the expressiveness of a
constrained natural language: An empirical study. In Proceedings of the 13th
IEEE International Conference on Requirements Engineering (RE’'05) (pp. 339-
349).

Braude, E. J. (2000). Software engineering: An object-oriented perspective. John Wiley
& Sons, Inc.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and
Regression Trees. CRC press.

Brennen, S., & Kreiss, D. (2014). Digitalization and digitization. Culture Digitally, 8.

Brooks, F., & Kugler, H. J. (1987). No silver bullet - Essence and accidents of software
engineering. IEEE computer, 20(4), 10-19.

Brown, G., Widing, R. E., & Coulter, R. L. (1991). Customer evaluation of retail sales-
people utilizing the SOCO scale: A replication, extension, and application.
Journal of the Academy of Marketing Science, 19(4), 347-351.

Broy, M. (2006). Challenges in automotive software engineering. In Proceedings of
the 28th International Conference on Software Engineering (pp. 33-42).

145

https://www.press.bmwgroup.com/global/article/detail/T0292550EN/bmw-group-and-daimler-ag-to-jointly-develop-next-generation-technologies-for-automated-driving?language=en
https://www.press.bmwgroup.com/global/article/detail/T0292550EN/bmw-group-and-daimler-ag-to-jointly-develop-next-generation-technologies-for-automated-driving?language=en
https://www.press.bmwgroup.com/global/article/detail/T0292550EN/bmw-group-and-daimler-ag-to-jointly-develop-next-generation-technologies-for-automated-driving?language=en

146

Bucchiarone, A., Gnesi, S., & Pierini, P. (2005). Quality analysis of NL require-
ments: An industrial case study. In Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE'05) (pp. 390-394).

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., & Grobler, J. (2013). API design for machine
learning software: Experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238.

Burkacky, O., Deichmann, J., Doll, G., & Knochenhauer, C. (2018). Rethinking car
software and electronics architecture. McKinsey & Company.

Carbonell, J. G. (1990). Machine Learning: Paradigms and Methods. Elsevier North-
Holland, Inc.

Carew, D., Exton, C., & Buckley, J. (2005). An empirical investigation of the compre-
hensibility of requirements specifications. In Proceedings of the International
Symposium on Empirical Software Engineering, 2005. (p. 10).

Carson, R. S. (2001). Keeping the focus during requirements analysis. In Proceedings
of the 11th International Symposium of the International Council on Systems
Engineering (INCOSE) (pp. 1-8).

Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional
requirements in textual specifications: A semi-supervised learning approach.
Information and Software Technology, 52(4), 436-445.

Cerpa, N., & Verner, J. M. (2009). Why did your project fail? Communications of the
ACM, 52(12), 130-134.

Charette, R. N. (2009, February 1). This Car Runs on Code. Retrieved May 5, 2021,
from https://spectrum.ieee.org/transportation/systems/this-car-runs-on-
code

Chawla, N. V. (2005). Data Mining and Knowledge Discovery Handbook (O. Maimon
& L. Rokach, Eds.). Springer US.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321-357.

Chillarege, R., Kao, W.-L., & Condit, R. G. (1991). Defect Type and Its Impact on
the Growth Curve. In Proceedings of the 13th International Conference on
Software Engineering (pp. 246-255).

Chitkara, R., Ballhaus, W., Kliem, B., Berings, S., & Weiss, B. (2013). Spotlight on
automotive: PwC semiconductor report. PwC Technology Institute.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1), 37-46.

Collin, J. (2015). Digitalization and dualistic IT. IT Leadership in Transition: The
Impact of Digitalization on Finnish Organizations, 29-34.

https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines
and other kernel-based learning methods. New York, Cambridge University
Press.

Crosby, P. B. (1979). Quality is free: The art of making quality certain (Vol. 94).
McGraw-Hill New York.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 31(11), 1268-1287.

Davis, A. (1993). Software Requirements: Objects, Functions and States (2nd ed.).
Prentice Hall.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G.,
Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., & Theofanos, M. (1993).
Identifying and measuring quality in a software requirements specification.
In Proceedings of the First International Software Metrics Symposium (pp. 141-
152).

De Almeida Ferreira, D., & Da Silva, A. R. (2012). Formally specifying requirements
with RSL-IL. In Proceedings of the Eighth International Conference on the
Quality of Information and Communications Technology (pp. 217-220).

De Marneffe, M.-C., MacCartney, B., & Manning, C. D. (2006). Generating typed de-
pendency parses from phrase structure parses. In Proceedings of International
Conference on Language Resources and Evaluation (LREC) (pp. 449-454).

De Vries, E., Schoonvelde, M., & Schumacher, G. (2018). No longer lost in translation:
Evidence that Google Translate works for comparative bag-of-words text
applications. Political Analysis, 26(4), 417-430.

de Buhr, J. (2015). Joint-Venture-Fantasie — Freund oder Feind? Daimler-Chef Dieter
Zetsche {iber Google und Apple als Herausforderer sowie die Neuerfindung
des Automobils. DUB Unternehmer, 1-6.

Denger, C., Berry, D. M., & Kamsties, E. (2003). Higher quality requirements spec-
ifications through natural language patterns. In Proceedings of the 2003
Symposium on Security and Privacy (pp. 80-90).

Desjardins, J. (2017, February 8). How Many Millions of Lines of Code Does It Take?
Retrieved May 5, 2021, from https://www.visualcapitalist.com/millions-
lines-of-code/

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Di Eugenio, B., & Glass, M. (2004). The kappa statistic: A second look. Computational
Linguistics, 30(1), 95-101.

Diess, H. (2020, January 16). Autokonzern im Wandel. Retrieved May 5, 2021, from
https://www.handelsblatt.com/unternehmen /industrie / autokonzern -

147

https://www.visualcapitalist.com/millions-lines-of-code/
https://www.visualcapitalist.com/millions-lines-of-code/
https://www.handelsblatt.com/unternehmen/industrie/autokonzern-im-wandel-vw-chef-diess-wenn-wir-in-unserem-jetzigen-tempo-weitermachen-wird-es-sehr-eng/25441126.html
https://www.handelsblatt.com/unternehmen/industrie/autokonzern-im-wandel-vw-chef-diess-wenn-wir-in-unserem-jetzigen-tempo-weitermachen-wird-es-sehr-eng/25441126.html

148

im - wandel - vw - chef - diess - wenn - wir - in - unserem - jetzigen - tempo -
weitermachen-wird-es-sehr-eng/25441126.html

Diess, H. (2019, January 24). The car will become a software product. Retrieved
May 5, 2021, from https://www.linkedin.com/pulse/car-become-software-
product-herbert-diess

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7), 1895-1923.

Diewald, G. (2012). Die Modalverben im Deutschen: Grammatikalisierung und Poly-
funktionalitdt (Vol. 208). Walter de Gruyter.

Donaldson, B. (2007). German: An Essential Grammar. Taylor & Francis.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised dis-
cretization of continuous features. In Proceedings of the Twelfth International
Conference on Machine Learning (pp. 194-202). Elsevier.

Drucker, P. (2014). Innovation and Entrepreneurship. Taylor & Francis.

Drummond, C., & Holte, R. C. (2003). C4.5, class imbalance, and cost sensitivity:
Why under-sampling beats over-sampling. In Workshop on Learning from
Imbalanced Datasets (pp. 1-8).

Duncan, J., Lulla, S., & Marshall, A. (2015). Driving digital destiny - Digital Rein-
vention in automotive. Retrieved May 5, 2021, from https://www.ibm.com/
downloads/cas/6PNR9QXO

Ebert, C. (2014). Systematisches Requirements Engineering: Anforderungen ermitteln,
dokumentieren, analysieren und verwalten (5th ed.). dpunkt. verlag.

Ebert, C. (2019). Systematisches Requirements Engineering: Anforderungen ermitteln,
dokumentieren, analysieren und verwalten (6th ed.). dpunkt. verlag.

Ebert, C., & Favaro, J. (2017). Automotive Software. IEEE Software, 34(3), 33-39.

Ebert, C., & Lederer, D. (2007). Dem Kostendruck begegnen-Effizienz nachhaltig
steigern. Automobil Elektronik, 46-48.

Ebert, C., & Lederer, D. (2012, November 30). Evolution und Trends in der E/E [Der
weg zum schnellen, wirksamen und trotzdem flexiblen agieren]. Retrieved
May 5, 2021, from https://www.all-electronics.de/evolution-und-trends-in-
der-ee/

Eroms, H.-W. (1992). Das deutsche Passiv in historischer Sicht. Deutsche Syntax:
Ansichten und Aussichten, 225-249.

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2000). Quality evaluation of software
requirement specifications. In Proceedings of the Software and Internet Quality
Week 2000 Conference (pp. 1-18).

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). The linguistic approach to the
natural language requirements quality: Benefit of the use of an automatic

https://www.handelsblatt.com/unternehmen/industrie/autokonzern-im-wandel-vw-chef-diess-wenn-wir-in-unserem-jetzigen-tempo-weitermachen-wird-es-sehr-eng/25441126.html
https://www.handelsblatt.com/unternehmen/industrie/autokonzern-im-wandel-vw-chef-diess-wenn-wir-in-unserem-jetzigen-tempo-weitermachen-wird-es-sehr-eng/25441126.html
https://www.handelsblatt.com/unternehmen/industrie/autokonzern-im-wandel-vw-chef-diess-wenn-wir-in-unserem-jetzigen-tempo-weitermachen-wird-es-sehr-eng/25441126.html
https://www.linkedin.com/pulse/car-become-software-product-herbert-diess
https://www.linkedin.com/pulse/car-become-software-product-herbert-diess
https://www.ibm.com/downloads/cas/6PNR9QXO
https://www.ibm.com/downloads/cas/6PNR9QXO
https://www.all-electronics.de/evolution-und-trends-in-der-ee/
https://www.all-electronics.de/evolution-und-trends-in-der-ee/

tool. In Proceedings of the 26th Annual NASA Goddard Software Engineering
Workshop (pp. 97-105).

Fagan, M. (2002). Design and code inspections to reduce errors in program develop-
ment. In Software Pioneers (pp. 575-607). Springer.

Fantechi, A., Gnesi, S., Lami, G., & Maccari, A. (2003). Applications of linguistic
techniques for use case analysis. Requirements Engineering, 8(3), 161-170.

Felden, C. (2006). Extraktion, Qualititssicherung und Klassifikation unstrukturierter
Daten. HMD-Praxis der Wirtschaftsinformatik, 247, 54-62.

Femmer, H. (2013). Reviewing Natural Language Requirements with Requirements
Smells. In Proceedings of 11th International Doctoral Symposium on Empirical
Software Engineering (pp. 1-8).

Femmer, H., Fernandez, D. M., Wagner, S., & Eder, S. (2017). Rapid quality assurance
with requirements smells. Journal of Systems and Software, 123, 190-213.

Fernandez, A., Garcia, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018).
Learning from Imbalanced Data Sets. Springer International.

Ferndndez, D. (2018). Supporting Requirements-Engineering Research That Industry
Needs: The NaPiRE Initiative. IEEE Software, (1), 112-116.

Figueroa, R. L., Zeng-Treitler, Q., Kandula, S., & Ngo, L. H. (2012). Predicting sample
size required for classification performance. BMC Medical Informatics and
Decision Making, 12(1), 1-10.

Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3),
221-233.

Fleuren, W. W. M., & Alkema, W. (2015). Application of text mining in the biomedical
domain. Methods, 74, 97-106.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison-Wesley.

Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and
Algorithms. Prentice Hall.

Fromm, H., Wambsganss, T., & Sollner, M. (2019). Towards a Taxonomy of Text
Mining Features. Tiwenty-Seventh European Conference on Information Systems
(ECIS2019), 1-12.

Fuchs, N., & Schwitter, R. (1995). Specifying logic programs in controlled natu-
ral language. In Workshop on Computational Logic for Natural Language
Processing (pp. 1-16).

Gallego, E., Chalé-Gdéngora, H.-G., Llorens, J., Fuentes, J., Alvarez, J., Génova, G.,
& Fraga, A. (2016). Requirements quality analysis: A successful case study
in the industry. In Proceedings of the International Conference on Complex
Systems Design & Management (pp. 187-201).

149

150

Gause, D., & Weinberg, G. (1989). Exploring Requirements: Quality before Design
(Vol. 7). Dorset House New York.

Gawich, M., Badr, A., Hegazy, A., & Ismail, H. (2012). A methodology for ontology
building. International Journal of Computer Applications, 56(2), 39-45.

Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O., & Moreno, V. (2013). A frame-
work to measure and improve the quality of textual requirements. Require-
ments Engineering, 18(1), 25-41.

Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., & Steiner, W. (2016). ARSE-
NAL: Automatic requirements specification extraction from natural language.
In NASA Formal Methods Symposium (pp. 41-46).

Glass, R. (1998). Software Runaways. Prentice Hall.

Glass, R. (2002). Sorting out software complexity. Communications of the ACM,
45(11), 19-21.

Glass, R. (2006). The Standish report: Does it really describe a software crisis?
Communications of the ACM, 49(8), 15-16.

Glass, R., & Becker, P. (2003). Facts and Fallacies of Software Engineering. Addison-
Wesley.

Glinz, M., & Wieringa, R. (2007). Stakeholders in requirements engineering. IEEE
Software, 24(2), 18-20.

Goldberg, Y., & Hirst, G. (2017). Neural Network Methods in Natural Language
Processing. Morgan & Claypool Publishers.

Goldin, L., & Berry, D. M. (1997). AbstFinder, a prototype natural language text
abstraction finder for use in requirements elicitation. Automated Software
Engineering, 4(4), 375-412.

Goodwin, T. (2015, March 4). The Battle Is For The Customer Interface (T. Crunch,
Ed.). Retrieved May 5, 2021, from https://techcrunch.com/2015/03/03/in-
the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/

Gross, A., & Doerr, J. (2012). What you need is what you get!: The vision of
view-based requirements specifications. In Proceedings of the 20th IEEE Inter-
national Requirements Engineering Conference (RE) (pp. 171-180).

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowl-
edge sharing? International Journal of Human-Computer Studies, 43(5-6),
907-928.

Gwet, K. L. (2014). Handbook of Inter-Rater Reliability: The Definitive Guide to Mea-
suring The Extent of Agreement Among Raters (4th ed.). Advanced Analytics.

Gwet, K. L. (2015). On Krippendorff’s Alpha Coefficient [Revised on october 05,
2015].

Haist, F., & Fromm, H. (1991). Qualitdt im Unternehmen: Pringipien-Methoden-
Techniken (2nd ed.). Hanser.

https://techcrunch.com/2015/03/03/in-the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/
https://techcrunch.com/2015/03/03/in-the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/

Hakuli, S., & Krug, M. (2015). Virtuelle Integration. In Handbuch Fahrerassistenzsys-
teme (pp. 125-138). Springer.

Hall, A. (1997). What’s the use of requirements engineering? In Proceedings of
ISRE’97: 3rd IEEE International Symposium on Requirements Engineering
(pp. 2-3).

Hanelt, A., Piccinini, E., Gregory, R. W., Hildebrandt, B., & Kolbe, L. M. (2015).
Digital transformation of primarily physical industries-Exploring the im-
pact of digital trends on business models of automobile manufacturers. In
Wirtschaftsinformatik (pp. 1313-1327).

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer.

Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability
measure for coding data. Communication Methods and Measures, 1(1), 77-89.

Hearst, M. (2003, October 17). What Is Text Mining? Retrieved May 5, 2021, from
http://people.ischool.berkeley.edu/~hearst/text-mining.html

Heck, P., & Parviainen, P. (2008). Experiences on analysis of requirements quality.
In Proceedings of the Third International Conference on Software Engineering
Advances (pp. 367-372).

Heinrich, L. J., Riedl, R., & Stelzer, D. (2014). Informationsmanagement: Grundlagen,
Aufgaben, Methoden. Walter de Gruyter.

Herz, M. (2010). Exploring consumers’ brand image perceptions with collages: Im-
plications on Data Collection, Data Analysis and Mixed Method Approaches.
In Aktuelle Beitrdge zur Markenforschung (pp. 121-143). Springer.

Hickey, A. M., & Davis, A. M. (2003). Elicitation technique selection: How do experts
do it? In Proceedings of the 11th IEEE International Requirements Engineering
Conference (pp. 169-178).

Hinchey, M., & Coyle, L. (2012). Conquering Complexity. Springer Science & Business
Media.

Holtmann, J., Meyer, J., & von Detten, M. (2011). Automatic validation and correc-
tion of formalized, textual requirements. In Proceedings of the IEEE Fourth
International Conference on Software Testing, Verification and Validation Work-
shops (pp. 486-495).

Hooks, 1. (2001). Managing requirements. NJIT Requirements Engineering Handout,
1-8.

Hooks, I. (1994). Writing good requirements. In INCOSE International Symposium
(pp. 1247-1253).

Hotho, A., Niirnberger, A., & Paal3, G. (2005). A brief survey of text mining. In LDV
Forum (pp. 1-37).

151

http://people.ischool.berkeley.edu/~hearst/text-mining.html

152

Hu, H., Zhang, L., & Ye, C. (2010). Semantic-based requirements analysis and
verification. In Proceedings of the International Conference on Electronics and
Information Engineering (pp. 241-246).

Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis
with support vector machines and neural networks: A market comparative
study. Decision Support Systems, 37(4), 543-558.

Huertas, C., & Juarez-Ramirez, R. (2013). Towards assessing the quality of functional
requirements using English/Spanish controlled languages and context free
grammar. In Proceedings of the Third International Conference on Digital
Information and Communication Technology and its Applications (DICTAP
2013) (pp. 234-241).

Hug, K. T., Mollah, A. S., & Sajal, M. S. H. (2018). Comparative study of feature engi-
neering techniques for disease prediction. In Proceedings of the International
Conference on Big Data, Cloud and Applications (pp. 105-117).

Hussain, A., Mkpojiogu, E. O. C., & Mohmad Kamal, F. (2016). The role of require-
ments in the success or failure of software projects. In International Review
of Management and Marketing (pp. 306-311).

Hussain, 1., Ormandjieva, O., & Kosseim, L. (2007). Automatic quality assessment
of SRS text by means of a decision-tree-based text classifier. In Proceedings
of the Seventh International Conference on Quality Software (QSIC 2007)
(pp. 209-218).

IABG. (1993, February 1). V-Model - Lifecycle Process Model (tech. rep.). IABG Infor-
mation Technology.

Ibanez, M., & Rempp, H. (1996). European user survey analysis (tech. rep. TR95104).
European Software Institute.

IEEE 1233. (1998). Guide for Developing System Requirements Specifications (tech.
rep.). Institute of Electrical and Electronics Engineers.

IEEE 610. (1990). Standard Glossary of Software Engineering Terminology (tech. rep.).
Institute of Electrical and Electronics Engineers.

IEEE 830. (1984). Guide for Software Requirements Specifications (tech. rep.). AN-
SI/IEEE.

IEEE 830. (1993). Recommended Practice for Software Requirements Specifications
(tech. rep.). Institute of Electrical and Electronics Engineers.

IEEE 830. (1998). Recommended Practice for Software Requirements Specifications
(tech. rep.). Institute of Electrical and Electronics Engineers.

Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using
machine learning techniques. WSEAS Transactions on Computers, 4(8), 966—
974.

Ilieva, M., & Ormandjieva, O. (2005). Automatic transition of natural language
software requirements specification into formal presentation. In Proceed-
ings of the International Conference on Application of Natural Language to
Information Systems (pp. 392-397).

ISO 25010. (2010). System and Software Quality Models (tech. rep.). International
Standard.

ISO 26262. (2011). Road Vehicles - Functional Safety (tech. rep.). International
Standard.

ISO 29148. (2011). Systems and Software Engineering - Requirements Engineering
(tech. rep.). International Standard.

ISO 9000. (2005). Quality Management Systems - Fundamentals and Vocabulary
(tech. rep.). International Standard.

Jacobs, S. (1999). Introducing measurable quality requirements: A case study. In
Proceedings of the IEEE International Symposium on Requirements Engineering
(pp. 172-179).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical
Learning: with Applications in R. Springer New York.

Jimenez, S., Becerra, C., Gelbukh, A., & Gonzalez, F. (2009). Generalized mongue-
elkan method for approximate text string comparison. In Proceedings of the
International Conference on Intelligent Text Processing and Computational
Linguistics (pp. 559-570).

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines (Vol. 668).

Springer Science & Business Media.

Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the European Conference on
Machine Learning (pp. 137-142).

Johnson, S. L., Safadi, H., & Faraj, S. (2015). The emergence of online community
leadership. Information Systems Research, 26(1), 165-187.

Jones, R. R. (1968). Differences in response consistency and subjects’ preferences
for three personality inventory response formats. In Proceedings of the 76th
Annual Convention of the American Psychological Association (pp. 247-248).

Jorgensen, M., & Molgkken-@stvold, K. (2006). How large are software cost over-
runs? A review of the 1994 CHAOS report. Information and Software Tech-
nology, 48(4), 297-301.

Juarez-Ramirez, R., Gémez-Ruelas, M., Gutiérrez, A. A., & Negrete, P. (2011).
Towards improving user interfaces: A proposal for integrating functionality
and usability since early phases. In Proceedings of the International Conference
on Uncertainty Reasoning and Knowledge Engineering (pp. 119-123).

153

Jurafsky, D., & Martin, J. H. (2014). Speech and Language Processing (2nd ed.).
Pearson Education.

Juran, J. M., Gryna, F. M., & Bingham, R. S. (1974). Quality Control Handbook
(Vol. 3). McGraw-Hill New York.

Kaiya, H., & Saeki, M. (2006). Using domain ontology as domain knowledge for
requirements elicitation. In Proceedings of the 14th IEEE International Re-
quirements Engineering Conference (RE’06) (pp. 189-198).

Kamalrudin, M., Hosking, J., & Grundy, J. (2011). Improving requirements quality
using essential use case interaction patterns. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE) (pp. 531-540).

Kamata, M. L., & Tamai, T. (2007). How does requirements quality relate to project
success or failure? In 15th IEEE International Requirements Engineering Con-
ference (RE 2007) (pp. 69-78).

Kamsties, E., Berry, D. M., Paech, B., Kamsties, E., Berry, D. M., & Paech, B. (2001).
Detecting ambiguities in requirements documents using inspections. In Pro-
ceedings of the First Workshop on Inspection in Software Engineering (WISE’01)
(pp. 68-80).

Kamsties, E., & Peach, B. (2000). Taming ambiguity in natural language requirements.
In Proceedings of the Thirteenth International Conference on Systems and
Software Engineering and their Applications (pp. 1-8).

Kane, G. C., Palmer, D., Nguyen-Phillips, A., Kiron, D., & Buckley, N. (2017). Achiev-
ing digital maturity. MIT Sloan Management Review, 59(1).

Kassab, M., Neill, C., & Laplante, P. (2014). State of practice in requirements engi-
neering: Contemporary data. Innovations in Systems and Software Engineering,
10(4), 235-241.

Kasser, J., & Schermerhorn, R. (1994). Determining metrics for systems engineering.
In INCOSE International Symposium (pp. 740-745).

Kasser, J., Scott, W., Tran, X.-L., & Nesterov, S. (2006). A proposed research pro-
gramme for determining a metric for a good requirement. In Proceedings of
the Conference on Systems Engineering Research (pp. 1-10).

Kibriya, A. M., Frank, E., Pfahringer, B., & Holmes, G. (2004). Multinomial naive
bayes for text categorization revisited. In Proceedings of the Australasian Joint
Conference on Artificial Intelligence (pp. 488-499).

Kiritani, K., & Ohashi, M. (2015). The success or failure of the requirements defini-
tion and study of the causation of the quantity of trust existence between
stakeholders. Procedia Computer Science, 64, 153—-160.

Kitchenham, B., & Pfleeger, S. L. (2002). Principles of survey research: Part 2:
Designing a survey. ACM SIGSOFT Software Engineering Notes, 27 (1), 18-20.

154

Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: The elusive target. [EEE
Software, 13(1), 12-21.

Kiyavitskaya, N., Zeni, N., Mich, L., & Berry, D. M. (2008). Requirements for tools for
ambiguity identification and measurement in natural language requirements
specifications. Requirements Engineering, 13(3), 207-239.

Klein, J.-P., & Ferres, M. (2019, July 31). Decoding the Autonomous Driving Land-
scape - Software will indeed eat the (automotive) world (Firstmile, Ed.). Re-
trieved May 5, 2021, from https://medium.com/@firstmilevc/avlandscape-
8a21491f1f54

Knauss, E., El Boustani, C., & Flohr, T. (2009). Investigating the impact of soft-
ware requirements specification quality on project success. In International
Conference on Product-Focused Software Process Improvement (pp. 28-42).

Kocerka, J., Krzeslak, M., & Gatuszka, A. (2018). Analysing quality of textual require-
ments using natural language processing: A literature review. In Proceedings
of the 23rd International Conference on Methods & Models in Automation &
Robotics (MMAR) (pp. 876-880).

Kodratoff, Y. (1999). Knowledge discovery in texts: A definition, and applications. In
Proceedings of the International Symposium on Methodologies for Intelligent
Systems (pp. 16-29).

Korosec, K. (2019, August 29). Porsche expands on-demand subscription plans to
four more cities (TechCrunch, Ed.). Retrieved May 5, 2021, from https://
techcrunch.com/2019/08/29/porsche-expands-on-demand-subscription-
plans-to-four-more-cities/

Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and
Techniques. Wiley Publishing.

Kovitz, B. L. (1999). Practical Software Requirements: A Manual of Content and Style.
Manning Publications Co.

Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology (2nd ed.).

Sage.

Krippendorff, K. (2011). Computing Krippendorff’s alpha-reliability, 1-10.

Krisch, J. (2014). Weak-Words und ihre Auswirkung auf die Qualitdt von An-
forderungsdokumenten. Softwaretechniktrends, 34, 14-15.

Krisch, J., Dick, M., Jauch, R., & Heid, U. (2016). A lexical resource for the identifi-
cation of “weak words” in German specification documents. In Proceedings
of the Tenth International Conference on Language Resources and Evaluation
(LREC) (pp. 2846-2850).

Krisch, J., & Houdek, F. (2015). The myth of bad passive voice and weak words: An
empirical investigation in the automotive industry. In Proceedings of the IEEE
23rd International Requirements Engineering Conference (RE) (pp. 344-351).

155

https://medium.com/@firstmilevc/avlandscape-8a21491f1f54
https://medium.com/@firstmilevc/avlandscape-8a21491f1f54
https://techcrunch.com/2019/08/29/porsche-expands-on-demand-subscription-plans-to-four-more-cities/
https://techcrunch.com/2019/08/29/porsche-expands-on-demand-subscription-plans-to-four-more-cities/
https://techcrunch.com/2019/08/29/porsche-expands-on-demand-subscription-plans-to-four-more-cities/

156

Krogstie, J., Lindland, O. I., & Sindre, G. (1995). Towards a deeper understanding
of quality in requirements engineering. In Proceedings of the International
Conference on Advanced Information Systems Engineering (pp. 82-95).

Krosnick, J. A., & Presser, S. (2010). Question and questionnaire design. In P. V.
Marsden & J. D. Wright (Eds.), Handbook of Survey Research (pp. 263-313).
Emerald Group Publishing.

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer Science &
Business Media.

Kummler, P. (2017). Towards requirements analytics: A research agenda to model
and evaluate the quality of unstructured requirements specifications. In
International Conference on Exploring Service Science (pp. 197-209).

Kummler, P., Vernisse, L., & Fromm, H. (2018). How good are my requirements?
A new perspective on the quality measurement of textual requirements. In
Proceedings of the 11th International Conference on the Quality of Information
and Communications Technology (QUATIC) (pp. 156-159).

Lan, H., Zhang, C., & Li, H. (2008). An open design methodology for automotive elec-
trical/electronic system based on quantum platform. Advances in Engineering
Software, 39(6), 526-534.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 159-174.

Landis, J. R., & Koch, G. G. (1975). A review of statistical methods in the analysis of
data arising from observer reliability studies (Part II). Statistica Neerlandica,
29(4), 151-161.

Lehner, F. (1993). Quality control in software documentation based on measurement
of text comprehension and text comprehensibility. Information Processing &
Management, 29(5), 551-568.

Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms
for text categorization. In Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval (pp. 81-93).

Lindquist, C. (2005). Fixing the requirements mess. CIO Magazine, 2005, 52—-60.

Lipton, Z. C., Elkan, C., & Naryanaswamy, B. (2014). Optimal thresholding of
classifiers to maximize F1 measure. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (pp. 225-239).

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling
technique. Data Mining and Knowledge Discovery, 6(4), 393-423.

Lozano, L. M., Garcia-Cueto, E., & Muiiiz, J. (2008). Effect of the number of response
categories on the reliability and validity of rating scales. Methodology, 4(2),
73-79.

Ma, H.-B., Geng, Y.-B., & Qiu, J.-R. (2011). Analysis of three methods for web-based
opinion mining. In Proceedings of the International Conference on Machine
Learning and Cybernetics (pp. 915-919).

MacDuffie, J. P., & Fujimoto, T. (2010). Why dinosaurs will keep ruling the auto
industry. Harvard Business Review, 88(6), 23-25.

Macias, B., & Pulman, S. G. (1995). Natural-language processing and requirements
specifications (tech. rep. UCAM-CL-TR-373). University of Cambridge, Com-
puter Laboratory.

Malhotra, N. K. (2006). Questionnaire design and scale development. The Handbook
of Marketing Research: Uses, Misuses, and Future Advances, 83-94.

Mann, K., West, M., & Wilson, N. (2017, August 17). Hype Cycle for Application
Development. Gartner Research. Retrieved May 5, 2021, from https://www.
gartner.com/doc/3779164/hype-cycle-application-development

Manning, C. D., & Schiitze, H. (1999). Foundations of Statistical Natural Language
Processing. The MIT Press.

Marasco, J. (2007, June 26). What Is the Cost of a Requirement Error? Retrieved
May 5, 2021, from https://www. stickyminds.com / article / what - cost -
requirement-error

Marsden, P. V., & Wright, J. D. (2010). Handbook of Survey Research. Emerald Group
Publishing.

Marseguerra, M. (2014). Early detection of gradual concept drifts by text categoriza-
tion and support vector machine techniques: The TRIO algorithm. Reliability
Engineering & System Safety, 129, 1-9.

Mather, P. M., & Tso, B. (2016). Classification Methods for Remotely Sensed Data
(2nd ed.). CRC Press.

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes
text classification. In AAAI-98 Workshop on Learning for Text Categorization
(pp. 41-48).

McCallum, D., Keith, B. R., & Wiebe, D. J. (1988). Comparison of response formats
for mulitdimensional health locus of control scales: Six levels versus two
levels. Journal of Personality Assessment, 52(4), 732-736.

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Pearson
Education.

Mehler, A., & Wolff, C. (2005). Einleitung: Perspektiven und Positionen des Text
Mining. In LDV-Forum (pp. 1-18).

Meissner, F., Shirokinskiy, K., & Alexander, M. (2020, January 1). Computer on
wheels: Disruption in automotive electronics and semiconductors (tech. rep.).
Roland Berger.

157

https://www.gartner.com/doc/3779164/hype-cycle-application-development
https://www.gartner.com/doc/3779164/hype-cycle-application-development
https://www.stickyminds.com/article/what-cost-requirement-error
https://www.stickyminds.com/article/what-cost-requirement-error

158

Mich, L., Franch, M., & Novi Inverardi, P. (2004). Market research for requirements
analysis using linguistic tools. Requirements Engineering, 9(1), 40-56.

Mich, L., & Garigliano, R. (2000). Ambiguity measures in requirement engineering.
In Proceedings of the International Conference on Software Theory and Practice
(pp. 39-48).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. The Psychological Review, 63(2),
81-97.

Miner, G., Elder, J., Fast, A., Hill, T., Nisbet, R., & Delen, D. (2012). Practical Text
Mining and Statistical Analysis for Non-structured Text Data Applications.
Academic Press.

Mitchell, T. M. (2006). The Discipline of Machine Learning. Carnegie Mellon Univer-
sity, School of Computer Science.

Mitkov, R. (2004). The Oxford Handbook of Computational Linguistics. OUP Oxford.

Moffett, J. (1999). Requirements and policies. In Position Paper for Policy Workshop.

Moravek, M. (2020, March 19). Unlocking vehicle data and creating value for both
the vehicle manufacturer and driver. Retrieved May 5, 2021, from https:
//medium.com/engineering - data- economies/ unlocking - vehicle - data-
and - creating - value - for - both - the - vehicle - manufacturer - and - driver -
cfd2d91121fb

Miiller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: A
Guide for Data Scientists. O’'Reilly Media.

Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2), 181-201.

Naeem, A., Aslam, Z., & Shah, M. A. (2019). Analyzing quality of software re-
quirements: A comparison study on nlp tools. In Proceedings of the 25th
International Conference on Automation and Computing (ICAC) (pp. 1-6).

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining
for market prediction: A systematic review. Expert Systems with Applications,
41(16), 7653-7670.

Nikora, A., Hayes, J., & Holbrook, E. (2010). Experiments in automated identification
of ambiguous natural-language requirements. In Proceedings of 21st IEEE
International Symposium on Software Reliability Engineering (pp. 1-10).

O’Muircheartaigh, C., Krosnick, J. A., & Helic, A. (2000). Middle alternatives, acqui-
escence, and the quality of questionnaire data, 1-48.

Opitz, J., & Burst, S. (2019). Macro f1 and macro f1. arXiv preprint arXiv:1911.03347.

https://medium.com/engineering-data-economies/unlocking-vehicle-data-and-creating-value-for-both-the-vehicle-manufacturer-and-driver-cfd2d91121fb
https://medium.com/engineering-data-economies/unlocking-vehicle-data-and-creating-value-for-both-the-vehicle-manufacturer-and-driver-cfd2d91121fb
https://medium.com/engineering-data-economies/unlocking-vehicle-data-and-creating-value-for-both-the-vehicle-manufacturer-and-driver-cfd2d91121fb
https://medium.com/engineering-data-economies/unlocking-vehicle-data-and-creating-value-for-both-the-vehicle-manufacturer-and-driver-cfd2d91121fb

Ormandjieva, O., Hussain, I., & Kosseim, L. (2007). Toward a text classification
system for the quality assessment of software requirements written in natural
language. In Proceedings of the Fourth International Workshop on Software
Quality Assurance (SOQUA 2007) (pp. 39-45).

Ozgiir, A., Ozgiir, L., & Giingér, T. (2005). Text categorization with class-based and
corpus-based keyword selection. In International Symposium on Computer
and Information Sciences (pp. 606-615).

Palvia, P., Leary, D., Mao, E., Midha, V., Pinjani, P., & Salam, A. F. (2004). Research
methodologies in MIS: An update. The Communications of the Association for
Information Systems, 14(1), 526-542.

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-
item scale for measuring consumer perceptions of service quality. Journal of
Retailing, 64(1), 12-40.

Parra, E., de la Vara, J. L., & Alonso, L. (2018). Analysis of requirements quality
evolution. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (pp. 199-200).

Parra, E., Dimou, C., Llorens, J., Moreno, V., & Fraga, A. (2015). A methodology
for the classification of quality of requirements using machine learning
techniques. Information and Software Technology, 67, 180-195.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12, 2825-2830.

Pekar, V., Felderer, M., & Breu, R. (2014). Improvement methods for software require-
ment specifications: A mapping study. In Proceedings of the 9th International
Conference on the Quality of Information and Communications Technology
(pp. 242-245).

Pelayo, L., & Dick, S. (2007). Applying novel resampling strategies to software
defect prediction. In Annual Meeting of the North American Fuzzy Information
Processing Society (pp. 69-72).

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMINLP) (pp. 1532-1543).

Peter, J. P. (1979). Reliability: A review of psychometric basics and recent marketing
practices. Journal of Marketing Research, 16(1), 6-17.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettle-
moyer, L. (2018). Deep contextualized word representations. arXiv preprint
arXiv:1802.05365.

Pirsig, R. M. (1999). Zen and the art of motorcycle maintenance: An inquiry into
values. Random House.

159

160

Pohl, K. (2008). Requirements Engineering: Grundlagen, Prinzipien, Techniken. dpunkt-
Verlag.

Pohl, K., & Rupp, C. (2015). Basiswissen Requirements Engineering: Aus- und Weit-
erbildung nach IREB-Standard zum Certified Professional for Requirements
Engineering Foundation Level. dpunkt-Verlag.

Polpinij, J. (2009). An ontology-based text processing approach for simplifying
ambiguity of requirement specifications. In Proceedings of the IEEE Asia-
Pacific Services Computing Conference (APSCC) (pp. 219-226).

Porter, M. F. (1980). An algorithm for suffix stripping. Program: Electronic Library
and Information Systems, 14(3), 130-137.

Powers, D. M. (2011). Evaluation: From precision, recall and f-measure to roc,
informedness, markedness and correlation. Journal of Machine Learning
Technologies, 2(1), 37-63.

Press Release. (2019, October 31). Groupe PSA and FCA plan to join forces to build a
world leader for a new era in sustainable mobility. Retrieved June 24, 2020,
from https://media.groupe-psa.com/en/groupe-psa-and-fca-plan-join-
forces-build-world-leader-new-era-sustainable-mobility

Preston, C. C., & Colman, A. M. (2000). Optimal number of response categories
in rating scales: Reliability, validity, discriminating power, and respondent
preferences. Acta Psychologica, 104(1), 1-15.

Purda, L., & Skillicorn, D. (2015). Accounting variables, deception, and a bag of
words: Assessing the tools of fraud detection. Contemporary Accounting
Research, 32(3), 1193-1223.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106.

Quinlan, J. R. (1996). Learning Decision Tree Classifiers. ACM Computing Surveys
(CSUR), 28(1), 71-72.

Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. In
Proceedings of the First Instructional Conference on Machine Learning (pp. 133-
142).

Reidel, M. (2016, March 16). So will sich die BMW Group fiir die Zukunft riisten.
Retrieved May 5, 2021, from https://www. horizont. net / marketing /
nachrichten/Number-One-Next-So-ruestet-sich-die-BMW-Group-fuer-die-
Zukunft-139338

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assump-
tions of naive bayes text classifiers. In Proceedings of the 20th International
Conference on Machine Learning (pp. 616-623).

https://media.groupe-psa.com/en/groupe-psa-and-fca-plan-join-forces-build-world-leader-new-era-sustainable-mobility
https://media.groupe-psa.com/en/groupe-psa-and-fca-plan-join-forces-build-world-leader-new-era-sustainable-mobility
https://www.horizont.net/marketing/nachrichten/Number-One-Next-So-ruestet-sich-die-BMW-Group-fuer-die-Zukunft-139338
https://www.horizont.net/marketing/nachrichten/Number-One-Next-So-ruestet-sich-die-BMW-Group-fuer-die-Zukunft-139338
https://www.horizont.net/marketing/nachrichten/Number-One-Next-So-ruestet-sich-die-BMW-Group-fuer-die-Zukunft-139338

Rolland, C., & Proix, C. (1992). A natural language approach for requirements
engineering. In Proceedings of the International Conference on Advanced Infor-
mation Systems Engineering (pp. 257-277).

Rosenberg, J. (2008). Statistical Methods and Measurement. Springer.

Rost, J. (2004). Lehrbuch Testtheorie - Testkonstruktion. Hans Huber.

Royce, W. W. (1987). Managing the development of large software systems: Concepts
and techniques. In Proceedings of the 9th International Conference on Software
Engineering (pp. 328-338).

RTI. (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing
(tech. rep.). RTI - Health, Social, and Economics Research.

Rupp, C. (2014). Requirements-Engineering und-Management: Aus der Praxis von
klassisch bis agil (6th ed.). Carl Hanser Verlag GmbH Co KG.

Rupp, C., & Goetz, R. (2000). Linguistic methods of requirements-engineering (NLP).
In Proceedings of the European Software Process Improvement Conference
(EuroSPI) (pp. 7-11).

Ryan, K. (1993). The role of natural language in requirements engineering. In
Proceedings of the IEEE International Symposium on Requirements Engineering
(pp. 240-242).

Saavedra, R., Ballejos, L. C., & Ale, M. A. (2013). Software requirements quality
evaluation: State of the art and research challenges. In Proceedings of the
14th Argentine Symposium on Software Engineering (pp. 240-257).

Sabriye, A., & Zainon, W. M. N. (2018). An approach for detecting syntax and syn-
tactic ambiguity in software requirement specification. Journal of Theoretical
and Applied Information Technology, 96(8), 2275-2284.

Saito, S., Takeuchi, M., Hiraoka, M., Kitani, T., & Aoyama, M. (2013). Requirements
clinic: Third party inspection methodology and practice for improving the
quality of software requirements specifications. In Proceedings of the 21st
IEEE International Requirements Engineering Conference (RE) (pp. 290-295).

Salger, F. (2013). Requirements reviews revisited: Residual challenges and open
research questions. In Proceedings of the 21st IEEE International Requirements
Engineering Conference (RE) (pp. 250-255).

Salger, F., Engels, G., & Hofmann, A. (2009). Inspection effectiveness for different
quality attributes of software requirement specifications: An industrial case
study. In Proceedings of the ICSE Workshop on Software Quality (pp. 15-21).

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5), 513-523.

Sarkar, D. (2016). Thermal Power Plant: Pre-Operational Activities. Elsevier Science.

161

162

Sathyadevan, S., & Nair, R. R. (2015). Comparative analysis of decision tree algo-
rithms: ID3, C4. 5 and random forest. In Computational Intelligence in Data
Mining (pp. 549-562). Springer.

Saunders, M., Lewis, P., & Thornhill, A. (2012). Research Methods for Business
Students. Pearson Education Limited.

Scheffezyk, J., Borghoff, U. M., Birk, A., & Siedersleben, J. (2005). Pragmatic consis-
tency management in industrial requirements specifications. In Proceedings
of the Third IEEE International Conference on Software Engineering and Formal
Methods (SEFM’05) (pp. 272-281).

Schneider, F., & Berenbach, B. (2013). A literature survey on international standards
for systems requirements engineering. Procedia Computer Science, 16, 796—
805.

Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding.
Public Opinion Quarterly, 19(3), 321-325.

Seiberth, G. (2015). Wie verdndern digitale Plattformen die Automobilwirtschaft
(Accenture, Ed.). Retrieved May 5, 2021, from http://plattform-maerkte.de/
wp-content/uploads/2015/10/Gabriel-Seiberth-Accenture.pdf

Seiniger, P., & Weitzel, A. (2015). Testverfahren fiir Verbraucherschutz und Geset-
zgebung. In Handbuch Fahrerassistenzsysteme (pp. 167-182). Springer.

Shah, U. S., & Jinwala, D. C. (2015). Resolving ambiguities in natural language
software requirements: A comprehensive survey. ACM SIGSOFT Software
Engineering Notes, 40(5), 1-7.

Sharda, R., & Delen, D. (2006). Predicting box-office success of motion pictures with
neural networks. Expert Systems with Applications, 30(2), 243-254.

Shaw, M. E., Hawley, G. G., & Wright, J. M. (1967). Scales for the Measurement of
Attitudes. McGraw-Hill.

Sikora, E., Tenbergen, B., & Pohl, K. (2012). Industry needs and research directions in
requirements engineering for embedded systems. Requirements Engineering,
17(1), 57-78.

Silva, C., & Ribeiro, B. (2003). The importance of stop word removal on recall values
in text categorization. In Proceedings of the International Joint Conference on
Neural Networks (pp. 1661-1666).

Simon, H. A. (1981). The Sciences of the Artificial (2nd ed.). Cambridge, MA.

Singh, S. (2015). Critical reasons for crashes investigated in the national motor
vehicle crash causation survey (tech. rep.). National Highway Traffic Safety
Administration.

Soeken, M., Abdessaied, N., Allahyari-Abhari, A., Buzo, A., Musat, L., Pelz, G., &
Drechsler, R. (2014). Quality assessment for requirements based on natural

http://plattform-maerkte.de/wp-content/uploads/2015/10/Gabriel-Seiberth-Accenture.pdf
http://plattform-maerkte.de/wp-content/uploads/2015/10/Gabriel-Seiberth-Accenture.pdf

language processing. In Proceedings of the Forum on Specification and Design
Languages (pp. 1-4).

Sggaard, A. (2013). Semi-supervised learning and domain adaptation in natural
language processing. Synthesis Lectures on Human Language Technologies,
6(2), 1-103.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4), 427-
437.

Somers, J. (2017). The coming software apocalypse. The Atlantic, 26.

spaCy. (2020). Industrial-Strength Natural Language Processing. Retrieved May 5,
2021, from https://spacy.io

Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., & Levy, S. (2005). A com-
prehensive evaluation of multicategory classification methods for microarray
gene expression cancer diagnosis. Bioinformatics, 21(5), 631-643.

Stevens, S. S. (1946). On the Theory of Scales of Measurement. Science New Series,
103(2684), 677-680.

Suma, V., & Gopalakrishnan Nair, T. R. (2009). Defect management strategies in
software development (M. A. Strangio, Ed.). InTech, 379-404.

Swamynathan, M. (2019). Mastering Machine Learning with Python in Six Steps:
A Practical Implementation Guide to Predictive Data Analytics Using Python.
Apress.

Terzakis, J. (2013). The impact of requirements on software quality across three
product generations. In Proceedings of the 21st IEEE International Require-
ments Engineering Conference (RE) (pp. 284-289).

The Standish Group. (2006). The Chaos Report (tech. rep.). Standish Group.

Tjong, S. F., Hallam, N., & Hartley, M. (2006). Improving the quality of natural
language requirements specifications through natural language requirements
patterns. In Proceedings of the the Sixth IEEE International Conference on
Computer and Information Technology (CIT'06) (p. 199).

Tobin, A. (2019, July 14). Ford And Volkswagen Enter Self-Driving Car Joint Venture.
Retrieved May 5, 2021, from https://www.forbes.com/sites/annatobin/
2019/07/14/ford-and-volkswagen-enter-self-driving- car-joint-venture/
#48¢574347cc8

Toutanova, K., Klein, D., Manning, C., & Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology (pp. 173-180).

Tsang, K. K. (2012). The use of midpoint on Likert Scale: The implications for
educational research. Hong Kong Teachers’ Centre Journal, 11(1), 121-130.

163

https://spacy.io
https://www.forbes.com/sites/annatobin/2019/07/14/ford-and-volkswagen-enter-self-driving-car-joint-venture/#48c574347cc8
https://www.forbes.com/sites/annatobin/2019/07/14/ford-and-volkswagen-enter-self-driving-car-joint-venture/#48c574347cc8
https://www.forbes.com/sites/annatobin/2019/07/14/ford-and-volkswagen-enter-self-driving-car-joint-venture/#48c574347cc8

Unterkalmsteiner, M., & Gorschek, T. (2017). Requirements quality assurance in
industry: Why, what and how? In P. Griinbacher & A. Perini (Eds.), Proceed-
ings of the International Working Conference on Requirements Engineering:
Foundation for Software Quality (pp. 77-84). Springer.

Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification.
Information Processing & Management, 50(1), 104-112.

Van Lamsweerde, A. (2009). Requirements Engineering: From System Goals to UML
Models to Software Specifications (Vol. 10). John Wiley & Sons.

Van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). Butterworths.

Varghese, A., Agyeman-Badu, G., & Cawley, M. (2020). Deep learning in automated
text classification: A case study using toxicological abstracts. Environment
Systems and Decisions, 40(4), 465-479.

Velupillai, S., Dalianis, H., Hassel, M., & Nilsson, G. H. (2009). Developing a standard
for de-identifying electronic patient records written in Swedish: Precision,
recall and f-measure in a manual and computerized annotation trial. Interna-
tional Journal of Medical Informatics, 78(12), e19—-e26.

Verma, K., & Kass, A. (2008). Requirements analysis tool: A tool for automatically an-
alyzing software requirements documents. In Proceedings of the International
Semantic Web Conference (pp. 751-763).

Volkswagen. (2020). Over-the-air-Technik wird Elektroautos jung halten. Retrieved
June 20, 2020, from https://www.volkswagen.at/elektroauto/id-magazin/
technologie/over-the-air-technik

Vor der Briick, T., & Leveling, J. (2007). Parameter learning for a readability checking
tool. In Proceedings of LWA 2007: Lernen - Wissen - Adaption (pp. 149-153).

Wang, T.-Y., & Chiang, H.-M. (2007). Fuzzy support vector machine for multi-class
text categorization. Information Processing & Management, 43(4), 914-929.

Weber, M., & Weisbrod, J. (2002). Requirements engineering in automotive development-
experiences and challenges. In Proceedings of the IEEE Joint International
Conference on Requirements Engineering (pp. 331-340).

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future:
Writing a literature review. JSTOR.

Webster, J., & Kit, C. (1992). Tokenization as the initial phase in NLP. In Proceedings
of the 14th Conference on Computational Linguistics (pp. 1106-1110).

Weihs, C., Mersmann, O., & Ligges, U. (2013). Foundations of Statistical Algorithms:
With References to R Packages. CRC Press.

Weiss, S. M., Indurkhya, N., & Zhang, T. (2015). Fundamentals of Predictive Text
Mining (2nd ed.). Springer London.

164

https://www.volkswagen.at/elektroauto/id-magazin/technologie/over-the-air-technik
https://www.volkswagen.at/elektroauto/id-magazin/technologie/over-the-air-technik

Weng, L.-J. (2004). Impact of the number of response categories and anchor labels
on coefficient alpha and test-retest reliability. Educational and Psychological
Measurement, 64(6), 956-972.

Wiegers, K. (2003). Software Requirements (2nd ed.). Microsoft Press.

Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E. (1997). Automated analysis of
requirement specifications. In Proceedings of the 19th International Conference
on Software Engineering (ICSE) (pp. 161-171). ACM Press, New York.

Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for selecting
a research design in empirical software engineering. Empirical Software
Engineering, 20(6), 1427-1455.

Yang, H., De Roeck, A., Gervasi, V., Willis, A., & Nuseibeh, B. (2012). Specula-
tive requirements: Automatic detection of uncertainty in natural language
requirements. In Proceedings of the 20th IEEE International Requirements
Engineering Conference (RE) (pp. 11-20).

Yang, H., Willis, A., De Roeck, A., & Nuseibeh, B. (2010). Automatic detection
of nocuous coordination ambiguities in natural language requirements. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering (pp. 53-62).

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 42-49).

Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: A sta-
tistical framework. International Journal of Machine Learning and Cybernetics,
1(4), 43-52.

Zheng, A., & Casari, A. (2018). Feature Engineering for Machine Learning: Principles
and Techniques for Data Scientists. O’Reilly Media.

165

List of Figures

1.1

1.2
1.3

2.1
2.2
2.3

2.4

2.5
2.6
2.7

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8

4.1

Software innovations and complexity drivers in the automotive devel-

opment (Ebert & Favaro, 2017). 4
Overview of autonomous driving partnerships (Klein & Ferres, 2019). . 8
Structure of the thesis. 14
Structure of an SRS according to ISO29148. 20
Simplified V-model according to ISO 29148. 22
Own representation of the cost of change curve (inspired by Ambler,

2004). . .. e 27

Percentage investment for requirements engineering (Phase A & B;
x-axis) in relation to percentage cost overruns (y-axis) according to
Hooks (2001).. o v o o e e e e e e e e e e e 29
Our requirements quality model based on characteristics from ISO 29148 34
Requirements spell and grammar checker from Verma and Kass (2008). 40

Relationship between quality attributes (i.e. characteristics) and quality

indicators according to Wilson et al. (1997). 46
Selection process for thedataset. 56
Analysis of the number of words in a requirement to identify outliers in

thedataset. e 57
Prioritization of characteristics. 60
Expert assessment of requirements according to our quality model. . . 61
Number of experts in regard to professional experience in years. 64
Number of scores for each characteristic. 66

For the determination of the intra-rater agreement, the expert "Exp1"
assesses the requirement "ReqA" a second time within an assessment
SESSION. . . v i e e 70
For the determination of the inter-rater agreement, two experts ("Exp1"
and "Exp2") assess the same requirement '"RegB". 71

Preprocessing tasks (tokenization, stemming, and filtering) and feature
engineering (tf-idf) for a vector space representation of textual data. . 90

167

168

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Al

Confusion matrix with true (yellow) and false (grey) classifications. . .
Exemplary confusion matrix for a five-class classification problem. . . .
Learning and classification process for text mining problems.
Frequency distribution of assessment scores for Singular.
Frequency distribution of assessment scores for Unambiguous.
Exemplary confusion matrix for Singular.
Visualization of the splitting process in a Decision Tree.
Correct classifications (yellow) in the within-1-class approach.

Introductory information for the assessment sessions with experts. . . .

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

4.13

4.14
4.15

4.16

Objects in an SRS with a defined set of attributes. 55
Detailed analysis of the distribution of the number of words. 58
Number of selections of the type "Information". 65
Frequency distribution of the selected scores for each characteristic. . . 65
Contingency table with exemplary values for the number of scores. . . 71
Observed agreement (p,) and Krippendorff’s alpha (ay) for the deter-

mination of intra-rater agreement. 76
Number of "NA's related to the position in the assessment sessions. . . 78

Observed agreement (p,) and Krippendorff’s alpha (o, o, o) for the
determination of inter-rater agreement. 79

Bag-of-words with a binary vector for a natural language requirement. 89

Preprocessing tasks for the extraction of tf-idf features. 102
Overview of quantity features and binary features. 104
Algorithms and their implementations. 114
Variants of feature sets and sampling techniques for algorithm selection.114
Results for Singular in descending order by macro F;-score (Mean). . . 115
Results for Unambiguous in descending order by macro F1-score (Mean).116
Hyper-parameters and grid values for Random Forest algorithm. 119
Results from nested cross-validation for Singular. 121
Results from nested cross-validation for Unambiguous. 121

Comparison of different baselines with the trained classifiers for Singu-
lar and Unambiguous. i v i i i e e e e e e 122
Results from cross-validation for Singular in descending order by macro
Fi-score (Meamn). v v v v v v v v i e e e e e e e e e e 123
Results from cross-validation for Unambiguous in descending order by
macro Fi-score (Mean). o i i i i i e e e 123
Results from within-1-class approach for Singular and Unambiguous. . 125
Comparison of different baselines with the trained classifiers for Singu-
lar and Unambiguous for within-1-class approach. 125
Top five features according to importance values for Singular and Un-
ambigUOUS. o e e e e e e e e e e 127

169

This thesis was typeset with BIEX2c. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research design
	1.3 Structure of thesis

	2 Foundations and related work
	2.1 Requirement foundations
	2.1.1 Requirement definition
	2.1.2 Requirements in the development process
	2.1.3 Requirements engineering

	2.2 Quality assessment of requirements
	2.2.1 Requirements quality
	2.2.2 Related work
	2.2.3 Research gap
	2.2.4 Research issues

	2.3 Conclusion

	3 Manual assessment of requirements quality
	3.1 Data handling
	3.1.1 Data acquisition
	3.1.2 Data selection

	3.2 Requirements assessment
	3.2.1 Assessment tool design
	3.2.2 Assessment results
	3.2.3 Assessment issues

	3.3 Agreement on assessments
	3.3.1 Intra-rater agreement
	3.3.2 Inter-rater agreement
	3.3.3 Determination of agreement
	3.3.4 Agreement analysis

	3.4 Conclusion

	4 Automated assessment of requirements quality
	4.1 Methodological foundations
	4.1.1 Natural language processing
	4.1.2 Machine learning
	4.1.3 Text mining

	4.2 Implementation
	4.2.1 Natural language processing
	4.2.2 Machine learning

	4.3 Evaluation
	4.3.1 Model optimization
	4.3.2 Feature importance

	4.4 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Limitations
	5.3 Implications
	5.4 Future research

	A Appendix
	A.1 Assessment sessions

	References
	Colophon

